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Introduction

Benford’s Law describes how leading digits of numbers are distributed among
a large amount of datasets. Intuitively, it seems reasonable to assume that
numbers follow a uniform distribution, instead they follow a particular log-
arithmic distribution. For example, the number 1 appears as the first digit
approximately 30% of the times, while the number 9 occurs less than 5% of
the times.
This phenomenon was first discovered by the astronomer Simon Newcomb in
1881. He noticed that the the first pages of the logarithmic tables, those with
the logarithms of numbers beginning with the first digits, were more dirty
than the last ones, i.e. the scientists used numbers with the lowest digits
more than expected. So he wrote a law describing the expected distribution
of the digits but his article was not successful and was forgotten. About fifty
years later, the physicist Frank Benford, regardless of Newcomb, rediscovered
the phenomenon with the same observations on his log tables. He supported
his thesis collecting more than 20000 numbers from different sources such as
square roots of integers, physics constants, sizes of populations, street ad-
dresses of “American Men of Science” and many others [5]. Benford noticed
that the more random the numbers were, the more they fitted a law that later
discovered to be logarithmic. In particular, he asserted that the proportion
(or relative frequency) of times for which d is the first significant digit of a
number taken in a big dataset is equal to log10(1 + 1/d).
Then, the interest also shifted to the occurrence of the second and higher
significant digits, leading to a more complete form of the law: the frequency
with which d1, d2, ...dm appear as the first, second,...,m-th significant digits of
a number taken in a big dataset is equal to log10(1 + (∑︁n

i=1 10n−idi)−1) [1].
At first this law may seem only theoretical without any applications and also
scientists thought that. Then, in the 70s, some applications started to be
studied even if it was in the 90s that the most important studies took hold.
The mathematician Carslaw suggested that Benford’s law could be used as a
test for falsification in data collections based on the assumption that human
mind prefers to round up or down a number with the result of a non-natural
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distribution of digits. Since then, many steps forward have been made and
the law is applied in many areas such as computer design, modelling and
fraud detection [5].
In this thesis the discussion is focused on the Real-Valued Deterministic Pro-
cesses and their connection with Benford’s law. A one-dimensional deter-
ministic process is a system in which there is no randomness that affects the
future states of the system itself and for that is one of the simplest models
for evolving processes. In mathematics these models are described by one-
dimensional iterated maps or sequences and the purpose of this thesis is to
study under what conditions the frequencies of visits to a state conform to
Benford’s law. Most of the results of this thesis are taken from [1].
The work is divided as follows:

Chapter 1: Preliminary notions In this chapter a brief introduction of
Benford’s law is given, then, the principal tools to describe the Benford
behavior of sequences are studied. In particular, the whole theory is
based on the concepts of significand and of the uniform distribution
modulo one which are going to be recall throughout the thesis.

Chapter 2: Autonomous Systems and the Benford’s Law This chap-
ter is dedicated to present Autonomous Systems, i.e. systems in which
there is no time dependence. In particular, sequences are going to be
defined by iterations of maps. There will be also a distinction between
the types of growth of sequences that are polynomial, exponential or
super-exponential. With the help of examples, it will be shown the
different behavior of these sequences with respect to Benford’s law.

Chapter 3: Non-Autonomous Systems and the Benford’s Law This
chapter contains a generalization of the results of the previous chap-
ter by introducing maps that are time dependent. Here, the types of
growth of sequences are exponential and super-exponential and as it
will be shown the differences compared to the autonomous case are few.
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Chapter 1

Preliminary notions

In this first chapter some definitions and theorems that will be useful through-
out the thesis will be recalled. For simplicity denote with log the logarithm
to base 10, log10.
As already mentioned, Benford’s law characterizes the distribution of leading
digits that, in particular, it’s not uniform. In fact, the probability of finding
numbers with first digit 1, in a large dataset, is greater than that of finding
numbers that start with 9. More specifically, the first significant digit D1 of
a number conforms to the following law:

Prob(D1 = d1) = log
(︄

1 + 1
d1

)︄
for all d1 = 1, 2, ..., 9

For example, Prob(D1 = 1) = log 2 = 0.3010 and Prob(D1 = 9) = log(10/9)
= 0.04575 and, in fact, number 9 has a less probability to occur than number
1.
The law can also be extended to the distribution of the other significant digits
D2, D3, ..., Dm, m ∈ N:

Prob((D1, D2, ..., Dm) = (d1, d2, ..., dm)) = log

⎛⎜⎝1 +
⎛⎝ m∑︂

j=1
10m−jdj

⎞⎠−1
⎞⎟⎠

for all d1 ∈ {1, 2, ..., 9} and di ∈ {0, 1, ..., 9}, i ≥ 2.
An aspect that should be further explored is how to define Prob. Since this
thesis focused on Deterministic Systems and the more simple way to describe
them is through sequences (xn), then Prob refers to the proportion (or relative
frequency) of times n for which an event, for example D1 = d1, occurs. This
means that the limiting proportion, as N → ∞, of times n ≤ N such that
the first significant digit of an entry of a sequence is d1, is Prob(D1 = d1) [2].
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Contrary to what one might expect, the general form of the law leads to the
fact that the significant digits are dependent. For example,

Prob(D2 = 1) =
9∑︂

d1=1
log(1 + (10d1 + 1)−1) =

9∑︂
d1=1

log(1 + 1
10d1 + 1) = 0.1138

whereas the conditional probability that D2 = 1 given that D1 = 1 is

Prob(D2 = 1|D1 = 1) = Prob(D1 = 1, D2 = 1)
Prob(D1 = 1) = log(1 + 1/11)

log 2 = 0.1255

which is different from the other one.
An important concept for the study of Benford’ law is the significand. In fact,
this law concerns the statistical distribution of significant digits or, more
generally, the significands (fraction parts in floating-point arithmetic). In-
formally, the significand of a real number is its first left part expressed in
floating-point notation. The formal definition is as follows:
Definition 1.1. For x ∈ R+ the decimal significand of x, denoted S(x), is
the function S : R →[1,10) given by

S(x) =

⎧⎨⎩t if x ̸= 0
0 if x = 0

where t is the unique number in [1,10) with x = 10kt for some (necessarily
unique) k ∈ Z. For x ∈ R−, S(x) = S(−x).

For example S(
√

2) = S(−
√

2) = S(10
√

2) =
√

2 = 1.414 and S(2019) =
S(0.02019) = S(−20.19) = 2.019.
Starting from this definition it is obvious that the first significant(decimal)
digit of a number x ∈ R, denoted D1(x), is the first left digit of S(x). More for-
mally, the first significant decimal digit of x is the only integer j ∈ {1, 2, ..., 9}
that satisfies 10kj ≤ |x| ≤ 10k(j + 1) for some (necessarily unique) k ∈ Z.
For example D1(

√
2) = D1(−

√
2) = D1(10

√
2) = 1.

As mentioned before, a sequence of real numbers (xn) is considered a (base-
10) Benford sequence if, as N → ∞, the proportion of indices n ≤ N where
xn has the first significant digit d exists and is equal to log(1 + d−1) for all
d ∈ {1, 2, .., 9} (and similarly for the other blocks of significant digits). It is
now useful to give a more rigorous definition in relation to when a sequence
is Benford:
Definition 1.2. A sequence (xn) = (x1, x2, . . . ) of real numbers is a (base-10)
Benford sequence if

lim
N→∞

|{1 ≤ n ≤ N : S(xn) ≤ t}|
N

= log t for all t ∈ [1, 10)
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or if for all m ∈ N, all d1 ∈ {1,2,...,9} and all di ∈ {0,1,...,9}, i ≥ 2,

lim
N→∞

|{1 ≤ n ≤ N : Di(xn) = di for i = 1, 2, ..., m}|
N

= log
(︄

1 +
(︃ m∑︂

i=1
10m−idi

)︃−1
)︄

The meaning of this definition is that, as N → ∞, the limiting proportion
of indices n ≤ N for which xn has significand less than or equal to t is exactly
log t. To give an interpretation in probabilistic language, a sequence of real
numbers is Benford if, chosen uniformly at random one of the first N entries,
the probability that its first significant digit is d converges to the Benford
probability log(1 + d−1) as N → ∞ for every d ∈ {1, 2, .., 9} and likewise for
all other blocks of significant digits.

Example 1.1. The sequence of positive integers (n) = (1, 2, 3, 4, ...) is not
Benford. In fact, more than half of the entries that are less than 2 · 10m have
first digit 1 for every m > 0 and the reason of this is almost intuitive. For
example, if m = 1 we are considering the numbers from 1 to 2 · 10 − 1 = 19.
Among these, numbers starting with 1 are 11 and this is more than half of
the numbers considered. More generally, the numbers starting with 1 between
1 and 2 · 10m − 1 are 10m + 10m−1 + ... + 1 and this is more than 10m. Surely,
the limiting proportion of entries with significand ≤ 2 is at least 0.5, although
Benford’s law states that it should be approximately log 2 < 0.5.

As one can imagine, it is not always so simple to determine whether a
sequence is Benford or not. So, it is useful to give some fundamental re-
sults about Benford sequences. One of the most important properties is the
uniform distribution modulo 1, which is widely used to study the Benford
behavior of sequences.

Definition 1.3. A sequence (xn) = (x1, x2, . . . ) of real numbers is uniformly
distributed modulo one (u.d. mod 1) if

lim
N→∞

|{1 ≤ n ≤ N : ⟨xn⟩ ≤ s}|
N

= s for all s ∈ [0, 1) (1.1)

where ⟨xn⟩ denotes the fractional part of xn, n ∈ N.

The next result is a powerful tool in Benford theory, in particular for the
characterization of Benford sequences.

Theorem 1.1. A sequence of real numbers is Benford if and only if the
sequence (log |xn|) = (log |x1|, log |x2|, ...) is uniformly distributed mod 1.
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Proof. Let (xn) be a sequence of real numbers.
(⇒) If (xn) is a Benford sequence then: limN→∞

|{1≤n≤N :S(xn)≤t}|
N

= log t for
all t ∈ [1,10).
There is the relation S(xn) = 10⟨log |xn|⟩. In fact, for the definition of signif-
icand: |xn| = S(xn) · 10k for k ∈ Z and so log |xn| = log S(xn) + k. Now
note that k is the integer part of log |xn|. So we can decompose log |xn|
in its integer part and its fractional part: log |xn| = k + ⟨log |xn|⟩. Thus,
⟨log |xn|⟩ = log S(xn) and so 10⟨log |xn|⟩ = S(xn).
Hence, S(xn) = 10⟨log |xn|⟩ ≤ t is equal to ⟨log |xn|⟩ ≤ log t. Putting this
inequality in the limiting proportion and calling log t = s:

lim
N→∞

|{1 ≤ n ≤ N : ⟨log |xn|⟩ ≤ log t}|
N

= log t

and this is equivalent to

lim
N→∞

|{1 ≤ n ≤ N : ⟨log |xn|⟩ ≤ s}|
N

= s

In particular, if t ∈ [1, 10), s ∈ [0, 1). So log |xn| is u.d. mod 1.
(⇐) Let’s assume that log |xn| is u.d. mod 1. So limN→∞

|{1≤n≤N :⟨log |xn|⟩≤s}|
N

= s for all s ∈ [0,1). Like before, S(xn) = 10⟨log |xn|⟩, so ⟨log |xn|⟩ = log S(xn)
≤ s is equal to S(xn) ≤ 10s. Putting again into the limiting proportion and
calling 10s = t:

lim
N→∞

|{1 ≤ n ≤ N : S(xn) ≤ 10s}|
N

= s

which is equivalent to

lim
N→∞

|{1 ≤ n ≤ N : S(xn) ≤ t}|
N

= log t

As said above, if s ∈ [0, 1), t ∈ [1, 10). So (xn) is Benford.

Others important results which help to determine the Benford property for
many sequences and in particular the u.d mod 1 are the following propositions:
Proposition 1.1. The sequence (xn) is u.d. mod 1 if and only if (kxn + b)
is u.d. mod 1 for every k ∈ Z \ {0} and every b ∈ R.
Also, if limn→∞ |yn − xn| = 0, (xn) is u.d. mod 1 if and only if (yn) is u.d.
mod 1.

As a consequence of the latter proposition, if a sequence is Benford also
its powers and reciprocal are Benford:
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Theorem 1.2. Let (xn) be a Benford sequence. Then, for all a ∈ R and
k ∈ Z with ak ̸= 0, the sequence (axk

n) is also Benford.

Proposition 1.2. Let (xn) be a sequence of real numbers.

(i) If limn→∞(xn+1 − xn) = θ for some irrational θ, then (xn) is u.d. mod
1.

(ii) If (xn) is periodic, i.e. xn+p = xn for some p ∈ N and for all n, then
(nθ + xn) is u.d. mod 1 if and only if θ is irrational.

(iii) The sequence (xn) is u.d. mod 1 if and only if (xn +a log n) is u.d. mod
1 for all a ∈ R.

(iv) If (xn) is u.d. mod 1 and non-decreasing, then (xn/ log n) is unbounded.

(v) If limn→∞ n(yn+1 − yn) = 0 for the sequence of real numbers (yn), (xn)
is u.d. mod 1 if and only if (xn + yn) is u.d. mod 1.

Lemma 1.1. The sequence (na) = (a, 2a, ...) is u.d. mod 1 if and only if a
is irrational.

Proof. (⇒) It follows by Proposition 1.2(i) that limn→∞(n + 1)a − na = a
and if a is irrational, then (na) is u.d. mod 1.
(⇐) Assume that (na) is u.d. mod 1. If a ∈ Z, then the fractional part of
the sequence is clearly equal to 0 and the sequence cannot be u.d. mod 1. If
a ∈ Q, (na) can be rewritten as

(︂
np

q

)︂
with p, q ∈ Z, q ̸= 0, so the fractional

part is periodic with period q (for example
(︂
⟨n1

3⟩
)︂

=
(︂
0, 1

3 , 2
3 , 0, 1

3 , ...
)︂
. Also

in this case the sequence cannot be u.d. mod 1 because a periodic sequence
only assumes a finite number of distinct values in the interval [0,1), while a
u.d. mod 1 sequence must "cover" [0,1) in a uniform way. It follows that a
must be irrational.

Example 1.2. (i) By Theorem 1.1 and Lemma 1.1, the sequence (2n) is
Benford. In fact, (log 2n) = (n log 2) and log 2 is irrational. Conversely,
(10n) is not Benford: we have that (log 10n) = (n log 10) and log 10 = 1
is not irrational.

(ii) The sequence (log n) is not u.d. mod 1. In fact, (log n) is non-decreasing
but (xn/ log n) = 1 is not unbounded. So, by Proposition 1.2(iv), this
sequence is not u.d. mod 1 and, in particular, the sequence (n) is not
Benford.
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(iii) The sequence of prime numbers (pn) = (2, 3, 5, 7, 11, ...) is not Benford:
by the Prime Number Theorem limn→∞ pn = n ln n, so

lim
n→∞

log pn

log n
= lim

n→∞

log (n ln n)
log n

= lim
n→∞

1 + log (ln n)
log n

= 1

As before, by proposition 1.2(iv), the sequence (log pn) is not u.d. mod
1 and so (pn) is not Benford.

The following theorem gives a necessary and sufficient condition for an
asymptotically exponential sequence to be Benford and is a generalization of
Lemma 1.1.

Theorem 1.3. Let bn be a sequence of real numbers such that limn→∞ |bn/an|
exists and is positive for some a > 0. Then (bn) is Benford if and only if log a
is irrational.

The proof is almost obvious but needs another results about the Benford
property of sequences:

Theorem 1.4. (i) Let (an) and (bn) be sequences of real numbers with
limn→∞ |an| = +∞ and such that limn→∞ |an/bn| exists and is positive.
Then (an) is Benford if and only if (bn) is Benford.

(ii) Let (an) and (bn) be sequences of real numbers with limn→∞ |an| = +∞
and supn∈N |an − bn| < +∞. Then (bn) is Benford if and only if (an) is
Benford. [2]

Proof. Let (an) and (bn) be sequences of real numbers with the hypothesis of
the statements.

(i) Suppose without loss of generality that limn→∞ |an/bn| = 1. This im-
plies that |bn| → ∞ and log |an| − log |bn| = log |an/bn| → 0.
(⇒) If (an) is Benford, (log |an|) is u.d. mod 1 (Theorem 1.1). So, by
Proposition 1.1 also (log |bn|) is u.d. mod 1. This is equivalent to the
fact that (bn) is Benford.
(⇐) The proof of this implication is equivalent to the other’s, simply
exchanging (an) with (bn).

(ii) Let c = sup |an − bn| + 1 > sup |an − bn|. Without loss of generality, it
can be assumed that |an|, |bn| ≥ 2c for all n ∈ N. In fact, |an| → +∞
so there always exists an index n0 such that |an| ≥ 2c for every n ≥ n0
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while |bn| must be sufficiently large since sup |an − bn| < +∞. The
following inequalities apply:

|bn−an| ≤ c

|an| − c ≤|bn| ≤ |an| + c

1 − c

|an|
≤ |bn|

|an|
≤ 1 + c

|an|

Applying the logarithm:

log |bn|
|an|

≤ log
⎛⎝1 + c

|an|

⎞⎠ ≤ log
⎛⎝1 + c

|an| − c⏞ ⏟⏟ ⏞
>0

⎞⎠

and

log |bn|
|an|

≥ log
⎛⎝1 − c

|an|

⎞⎠ = − log
⎛⎝ |an|

|an| − c

⎞⎠ = − log
⎛⎝1 + c

|an| − c

⎞⎠
The latter two inequalities imply that

− log
⎛⎝1 + c

|an| − c

⎞⎠ ≤ log |bn|
|an|

≤ log
⎛⎝1 + c

|an| − c⏞ ⏟⏟ ⏞
>0

⎞⎠

It follows that

⃓⃓⃓
log |bn| − log |an|

⃓⃓⃓
=

⃓⃓⃓⃓
⃓⃓ log |bn|

|an|

⃓⃓⃓⃓
⃓⃓ ≤ log

⎛⎝1 + c

|an| − c

⎞⎠→ 0 as n → ∞.

By Proposition 1.1, (log |bn|) is u.d. mod 1 if and only if (log |an|) is, so
(bn) is Benford if and only if (an) is Benford.

Proof of Theorem 1.3. Let (bn) be a sequence of real numbers such that
limn→∞ |bn/an| exists and is positive for some a > 0. By Theorem 1.4(i)
(bn) is Benford if and only if (an) is Benford. Then, by Theorem 1.1, (an) is
Benford if and only if (log an) = (n log a) is u.d. mod 1 and this is true if and
only if log a is irrational (Lemma 1.1).
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Chapter 2

Autonomous Systems and the
Benford’s Law

The aim of this chapter is to describe the Benford behavior of deterministic se-
quences. As said in the introduction, the focus will be on one-dimensional de-
terministic processes which are described by one-dimensional difference equa-
tions. These equations lead to sequences (of numbers) which are generated
recursively through iterations of a single function, i.e. the same function is
applied over and over again. This means that the state of a process at a
certain time n ∈ N is a function of the previous one (or ones), i.e. in the
terminology of sequences, xn = f(xn−1), where f : C → R is a function such
that f(C) ⊂ C. In this study the set C is often equal to R+ or [a, +∞) for
some (large) a ≥ 0 and the function f is usually referred to as a map.
In this chapter the attention will be on autonomous systems, i.e. systems in
which maps do not depend explicitly on n, while in the next chapter there
will be some examples of nonautonomous systems, i.e. systems in which maps
explicitly depend on n.
Here the terminology used throughout this thesis is given.
For any x0 ∈ C, the difference equation

xn = f(xn−1), n ∈ N (2.1)

recursively defines a sequence xn in C called the orbit of x0 (under f).
The nth iterate of f is denoted by fn and is defined as fn = fn−1 ◦ f =
f(f(f(...))), in particular f 0 = idC . So the orbit of x0 is

(xn) = (fn(x0)) = (f(x0), f(f(x0)), f(f(f(x0))), ...)

and the interpretation of the orbit as a sequence is evident.
An orbit is a periodic sequence of period p if fp(x0) = x0 (or equivalently
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xn+p = xn for all n ∈ N) for some p ∈ N:

(xn) = (f(x0), f 2(x0), ..., f p−1(x0), x0, f(x0), ...)

A point x0 is a periodic or fixed point if p = 1. Furthermore, x0 and its
orbit are attracting (x0 is an attracting fixed point) if, starting with a number
sufficiently close to x0, the iterations converge to x0, i.e. limn→∞ |fnp+j(x) −
f j(x0)| = 0 for every j=1,2,...,p whenever |x − x0| is sufficiently small. Ob-
viously, in this case a sequence (xn) cannot be Benford. Instead, a repelling
fixed point shows the opposite behavior: if the starting point is close to it,
the iterations tend to move away from it. In this case, the sequence may be
Benford because the sequence may cover a wide range of values.
Observation 2.1. It can happen that (xn) is not periodic, but the sequence
(S(xn)) is. For example f(x) = x

√
10 with the starting point x0 = 1 generates

the orbit (xn) = (
√

10, 10, 10
√

10, 102, ...) = (10n/2) which tends to +∞. On
the other hand, the sequence of significands is (S(xn)) = (

√
10, 10,

√
10, 10, ...)

= (10⟨n/2⟩) and it is periodic with period 2.
As will be seen here, there are three types of growth of a sequence and

each of them has a different behavior in relation to Benford property:

(i) Polynomial increasing or decreasing sequences are not Benford. In this
group there are, for example, (n2) or (pn) (see Example 1.2(iii)).

(ii) Exponential increasing or decreasing sequences are usually Benford for
all starting points in a region, but their conformity to Benford’s Law is
given by the specific map, as will be seen. Here some examples are the
sequences (2n) and (n!) (these are Benford and, in particular, (n!) will
be studied in the next chapter).

(iii) Super-exponential increasing or decreasing sequences are usually Ben-
ford for almost all, but not all, starting point (i.e. there are some sets
of measure zero1 in which points generate orbits that are not Benford).
An example is the map f(x) = 10x2 (with the starting point x0=2 is
Benford).

The next table shows whether the sequences mentioned above follow Benford’s
Law or not. It is evident the Benford behavior of the last 3 sequences (remind
that if a sequence is Benford, then the number 1 appears as the first digit
approximately 30% of the times and the number 9 less than 5%), see the
graphics below.

1In the measure theory, a set A ∈ Rn that is measurable, has measure zero if µ(A) = 0
where µ : P(Rn) → [0, ∞] is an outer measure.
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fn(x)
Digit 1 2 3 4 5 6 7 8 9

(n2) 19.19 14.69 12.37 10.95 9.84 9.08 8.45 7.91 7.52

(pn) 16.01 11.29 10.97 10.55 10.13 10.13 10.27 10.03 10.06

(2n) 30.10 17.61 12.49 9.70 7.91 6.70 5.79 5.12 4.58

(n!) 29.56 17.89 12.76 9.63 7.94 7.15 5.71 5.10 4.26

xn = 10x2
n−1, x0 = 2 30.19 17.66 12.68 9.56 7.83 6.97 5.45 5.13 4.53

Table 2.1: Relative frequencies (in percentage) of the leading significant digit for
the first 104 terms of the five sequences nominated just before.

(a)

(b)

Figure 2.1: In red it is represented how the digits from 1 to 9 occur (in percentage)
as first significant digit in accordance with Benford’s Law. The points represent the
occurrence (in percentage) of these digits as first significant digit among the entries
of some sequences. In (a) it is shown the non-Benford behavior of two polynomial
sequences, (b) shows how some exponential and super-exponential sequences tend
to follow Benford’s Law.
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2.1 Sequences with polynomial growth
Linear sequences are the orbits generated by maps like f(x) = x + g(x) and,
in general, are not Benford for any x0 as the following theorem shows.

Theorem 2.1. Let f : R+ → R+ be a map such that f(x) = x + g(x) where
g(x) ≥ 0 for all sufficiently large x. If g = o(x1−ε) as x → +∞ 2 with some
ε > 0, then for all sufficiently large x0, the orbit (fn(x0)) is not Benford.

Proof. Pick ξ > 0 such that g(x) ≥ 0 for all x ≥ ξ. If x0 ≥ ξ, the non-
decreasing sequence (xn) = (fn(x0)) is bounded and then it is not Benford.
In fact, if the sequence is non-decreasing and there exists an upper limit
that cannot be exceeded, from a certain n ∈ N the iterates will grow less
and less and the leading digits tend to remain the same. So, assume that
limn→∞ xn = +∞ and let yn = log xn for every n ∈ N (note that this is
equivalent to saying that xn = 10yn). Obviously, (yn) is non-decreasing,
limn→∞ yn = +∞ and it can be rewritten as

yn = log xn = log xn−1 + log
(︄

1 + g(xn−1)
xn−1

)︄
= yn−1 + h(yn−1)

with h(y) = log
(︂
1 + g(10y)

10y

)︂
.

Now fix 0 < δ < ε and consider the auxiliary function H : R+ → R+ given by

H(y) = 1
δ

log(1 + 10−δy)

and note that it is a decreasing function. From

h(y) ≈ g(10y)
10y

= o(10y(1−ε))
10y

= o(10−εy) as y → +∞

and

lim
y→+∞

H(y)
10−δy

= lim
y→+∞

1
δ

log(1 + 10−δy)
10−δy

= lim
y→+∞

1
δ

log e ln(1 + 10−δy)
10−δy

= 1
δ

log e

It follows that H(y) = O(10−δy) and, in particular, that, since ε > δ, h(y)
≤ H(y) for all y ≥ η for an appropriate η > 0. Now, fix any Y0 ≥ η and define

2A function f : R+ → R is said to be o(g) as x → ∞ (for any g : R+ → R) if
limx→∞ f(x)/g(x) = 0, whereas f = O(g) as x → ∞ if lim supx→∞ |f(x)/g(x)| < ∞. An
important fact that will be used in the examples is that for every a ∈ R, f = o(xa) ⇒ f =
O(xa) ⇒ f = o(xa+ε) for every ε > 0.

18



the sequence Yn = Yn−1 + H(Yn−1), n ≥ 1. Given any y0 ≥ max{η, log ξ},
note that

y1 − Y1 = y0 + h(y0) − Y0 − H(Y0) ≤ y0 − Y0 + H(y0) − H(Y0)

If y0 ≤ Y0, then y1 − Y1 ≤ H(y0) ≤ H(η) since H is decreasing. If, instead,
y0 > Y0, then y1 − Y1 ≤ y0 − Y0. In both cases,

η ≤ y0 ≤ y1 ≤ Y1 + max{H(η), |y0 − Y0|}

The second iterate is such that

y2 − Y2 = y1 + h(y1) − Y1 − H(Y1) ≤ y1 − Y1 + h(y1) − H(Y1) ≤ y1 − Y1

and with the same argument as before, the conclusion is that

y1 ≤ y2 ≤ Y2 + max{H(η), |y0 − Y0|}

Iterating for all n, it is obtained that

η ≤ yn ≤ Yn + max{H(η), |y0 − Y0|} for all n.

Then rewrite Yn as

Yn = Yn−1 + H(Yn−1)

= Yn−1 + 1
δ

log
(︂
1 + 10−δYn−1

)︂
=

log
(︂
10δYn−1

)︂
δ

+ 1
δ

log
(︂
1 + 10−δYn−1

)︂
= 1

δ
log

(︂
10δYn−1 + 1

)︂
= 1

δ
log

(︃
10δ( 1

δ
log(10δYn−2 +1)) + 1

)︃
= 1

δ
log

(︂
10δYn−2 + 2

)︂
= 1

δ
log

(︂
n + 10δY0

)︂
Putting the equations together, it follows that

η ≤ yn ≤ 1
δ

log(n + 10δY0) + max{H(η), |y0 − Y0|}

and
yn

log n
≤ 1

δ

log(n + 10δY0)
log n

+ max{H(η), |y0 − Y0|}
log n

n→∞−−−→ 1
δ
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So,
(︂

yn

log n

)︂
is bounded and, by Proposition 1.2(iv), the sequence (yn) is not

u.d. mod 1 for y0 ≥ max{η, log ξ}. Then it follows by Theorem 1.1 that for
every x0 ≥ max{10η, ξ} the orbit (fn(x0)) is not Benford.

Example 2.1. (i) Consider the map f(x) = x + 2
√

x + 1. For x0 ≥ 0
the first iterate of the orbit is x0 + 2√

x0 + 1 = (√x0 + 1)2 and so the
second one is (√x0 +1)2 +2(√x0 +1)+1 = (√x0 +2)2. Using the same
reasoning, we obtain that the map f generates the orbit ((√x0 + n)2)
for any x0 ≥ 0. In this case g(x) = 2

√
x + 1 = O(x1/2) as x → ∞, i.e.,

for example, g(x) = o(x2/3) (see footnote 2) and so the sequence is not
Benford by Theorem 2.1. Note that if x0 = 0, then (xn) = n2 and so
this sequence is not Benford, as seen in the table before.

(ii) Consider the map

f(x) =

⎧⎨⎩x+1 if x ≤ p1 = 2
pn+2−pn+1

pn+1−pn
(x − pn) + pn+1 if pn ≤ x < pn+1

where (pn) is the sequence of prime numbers (see Example 1.2(iii)).
This function is defined so that f(pn) = pn+1, f(pn+1) = pn+2 and
(fn(1)) = (pn). In fact, if x0 = 1 ≤ 2 then x1 = f(x0) = 1 + 1 = 2 = p1
and x2 = f(x1) = 2 + 1 = 3 = p2 because x0, x1 ≤ p1. The other
iterates are generated by the second part of the function by the relation
f(pn) = pn+1 (in fact, xn = pn) and so the sequence of prime numbers
can be written in the form of an orbit.
Calling g(x) = f(x) − x, we can observe that g(x) ≥ 1 and that g(x)
can be rewritten as

(︂
pn+2−pn+1

pn+1−pn
− 1

)︂
(x − pn) + pn+1 − pn. This function

is linear in x, increasing or decreasing whether pn+2−pn+1
pn+1−pn

is more or less
than 1. So, in particular, the maximum value of g over the interval
[pn, pn+1] occurs at one of the endpoints:

g(x) =

⎧⎨⎩pn+1 − pn if x = pn

pn+2 − pn+1 if x = pn+1

Therefore, for any x ∈ [pn, pn+1] the difference f(x)−x is bounded by the
larger of these values: g(x) = f(x) − x ≤ max{pn+1 − pn, pn+2 − pn+1}.
A result of G.Hoheisl says that, for some ε > 0,

pn+1 − pn = o(p1−ε
n ) as n → ∞ (2.2)

(in [3] it is shown that ε can be chosen as large as ε = 19
40). From 2.2

it follows that the difference between two consecutive prime numbers
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grows slower than p1−ε
n as n → ∞ and this implies that g = o(x1−ε) as

x → +∞ since g(x) is less than or equal to the difference of two primes.
As a result of Theorem 2.1, the sequence (fn(x0)) is not Benford for any
x0 ∈ R. In particular, (fn(1)) = (pn) is not Benford, as already seen in
Example 1.2(iii) and in the previous table.

Until now, only maps with +∞ as an attracting fixed point have been
considered but the results can be extended to include maps that have 0 as an
attracting fixed point: it is sufficient to consider reciprocals and the fact that
a real sequence (xn) is Benford if and only if the sequence of its reciprocals
(x−1

n ) is Benford (Theorem 1.2).
Corollary 2.1. Let f : R → R be C2 and assume that |f(x)| ≤ |x| for some
δ > 0 and all |x| ≤ δ. If |f ′(0)| = 1, then (fn(x0)) is not Benford whenever
|x0| ≤ δ.

Example 2.2. The smooth map f(x) = sin x satisfies |f(x)| < |x| for all
x ̸= 0. In fact, the Taylor expansion of the function about 0 is sin x = x− x3

3 +
o(x3), so for |x| ≤ δ, δ > 0, surely |f(x)| < |x|. Since |f ′(0)| = | cos(0)| = 1,
(fn(x0)) is not Benford for any |x0| ≤ δ by Corollary 2.1. Furthermore,
limn→∞ fn(x0) = 0 for every x0 ∈ R: the reason is that in each iteration the
values decrease because | sin x| < |x| even if the initial point x0 is large. The
conclusion is that this map is not Benford for any x0 ∈ R.

2.2 Sequences with exponential growth
The maps in this section are like f(x) = ax or, more generally, f(x) =
ax+g(x) with g that is small in some sense but not identically zero, and they
are usually all Benford or none, depending on whether log |a| is irrational
or not. Recall that the sequence (anx0), which is generated by the map ax,
is Benford if and only if log |a| is irrational for any a ∈ R and any x0 ̸= 0
(Theorem 1.3).
Proposition 2.1 ([2]). Let f(x) = ax with a ∈ R. Then (fn(x0)) is Benford
for every x0 ̸= 0 or for no x0 at all, depending on whether log |a| is irrational
or rational, respectively.

Now, the maps of this proposition will be slightly modified to study the
Benford properties of more general maps.
Theorem 2.2. Let f : R+ → R+ be a map such that f(x) = ax + g(x) with
a > 1 and g = o(x) as x → +∞. Then:

(i) If log a ∈ R \Q then (fn(x0)) is Benford for every sufficiently large x0.
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(ii) If log a ∈ Q and g = o(x/ log x) as x → ∞ then, for every sufficiently
large x0, (fn(x0)) is not Benford.

Proof. (i) Since g(x) = o(x) as x → +∞, there exists ξ > 0 such that
|g(x)| ≤ 1

2(a − 1)x for all x ≥ ξ and so

xn = axn−1 + g(xn−1) ≥ axn−1 − |g(xn−1)| ≥ 1
2(a + 1)xn−1

for xn−1 ≥ ξ. This implies that

xn = fn(x0) ≥ 1
2(a + 1)xn−1

≥ 1
2(a + 1)(axn−2 + g(xn−2))

≥ 1
4(a + 1)2xn−2

≥ 1
2n

(a + 1)nx0 ≥ ξ

and so fn(x0) n→∞−−−→ +∞ whenever x0 ≥ ξ. Now let yn = log xn for
every n, then:

yn − yn−1 = log xn − log xn−1

= log
(︄

axn−1 + g(xn−1)
xn−1

)︄

= log a + log
(︄

1 + g(xn−1)
axn−1

)︄
n→∞−−−→ log a

By Proposition 1.2(i), it follows that (yn) is u.d. mod 1 if log a is irra-
tional. In this case, so, (fn(x0)) is Benford for all x0 ≥ ξ.

(ii) Since g(x) = o
(︂

x
log x

)︂
as x → +∞, with the same argument used in

(i), there exists ξ > 0 such that xn = fn(x0) ≥ ξ for every n and
fn(x0) n→∞−−−→ +∞ whenever x0 ≥ ξ. Given any ε > 0, the following
inequality holds:⃓⃓⃓⃓

⃓log
(︄

1 + g(xn)
axn

)︄⃓⃓⃓⃓
⃓ ≤ |g(xn)|

2axn

≤ εxn

log xn

1
2axn

<
ε log a

log xn

for all sufficiently large n. Note that the first inequality holds since
| log(1 + x)| ≤ 1

2 |x| for all x ≥ −1
4 . Now let yn = log xn, which has the
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same properties as in point (i), and define the sequence zn = yn−n log a.
Note that

zn

n
= log xn − n log a

n

≈ log(anx0 + g̃(x0)) − n log a

n

=
log(anx0) + log

(︂
1 + g̃(x0)

anx0

)︂
− n log a

n

=
log x0 + log

(︂
1 + g̃(x0)

anx0

)︂
n

n→∞−−−→ 0

where g̃ is a small correction given by g after n iterations. It follows
that

n|zn+1 − zn| = n| log xn+1 − (n + 1) log a − log xn + n log a|

= n

⃓⃓⃓⃓
⃓ log

(︃
xn+1

axn

)︃⃓⃓⃓⃓
⃓

= n

⃓⃓⃓⃓
⃓ log

(︄
axn + g(xn)

axn

)︄ ⃓⃓⃓⃓
⃓

≤ nε log a

log xn

= nε log a

zn + n log a

= ε log a

log a + zn/n

So, lim supn→∞ n|zn+1 − zn| ≤ ε and in fact limn→∞ n(zn+1 − zn) = 0
since ε is arbitrary. By Proposition 1.2(v), the sequence (yn) is u.d. mod
1 if and only if (zn + yn) = (n log a) is and this sequence is u.d. mod 1
if and only if log a is irrational according to Lemma 1.1. So, by the fact
that log a ∈ Q, (fn(x0)) is not Benford for all x0 ≥ ξ.

Corollary 2.2. Let f : R+ → R+ be a map such that, with some a > 1,
f(x) − ax = o(x/ log x) as x → +∞. Then, for every sufficiently large x0,
(fn(x0)) is Benford if and only if log a is irrational.
Example 2.3. (i) A simple example is the map f(x) = 2x + e−x . This

map is such that

(f(x) − ax) log x

x
= (2x + e−x − 2x) log x

x
= e−x log x

x
x→+∞−−−−→ 0
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so f(x)−2x = o(x/ log x). By Corollary 2.2 every orbit under this map
is Benford since log 2 is irrational.

(ii) Now consider the map f(x) = 2x − e−x. It has a unique repelling fixed
point that is x = 0.5671. If x0 > x, then fn(x0) → +∞ as n → ∞
and so Corollary 2.2 implies that fn(x0) is Benford for the same reason
as Before. On the other hand, if x0 < x, then fn(x0) → −∞ super-
exponentially fast, and this scenario is not covered by any result so far.

Another tool that is useful to establish the behavior of maps like these
(and for maps that will be seen in the next section) is a simple version of
Shadowing Lemma.

Lemma 2.1 (Shadowing Lemma). Let f : R → R be a map such that f(x) =
bx + Γ(x) with b > 1. If lim supx→+∞ |Γ(x)| < +∞, then there exist η ∈ R
and a function ŝ : [η, +∞) → R such that the sequence (fn(x) − bnŝ(x))
is bounded for every y ≥ η. The function ŝ is continuous whenever f is
continuous. Furthermore, if limx→+∞ Γ(x) = 0, then limx→+∞(ŝ(x) − x) = 0
and, for every y ≥ η, limn→∞(fn(x) − bnŝ(x)) = 0.

In many situations, (fn(x0) − bnx0) is unbounded for every x0, but there
exists a unique point ŝ(x0) ∈ R with the property that (fn(x0) − bnŝ(x0))
remains bounded. The point ŝ(x0) is called the shadow of x0.

Proof. Since lim supn→∞ |Γ(x)| < +∞, there exists η0 ∈ R and γ > 0 such
that |Γ(x)| ≤ γ for all x ≥ η0. So, if x ≥ η := max{η0, 2γ/(b − 1)}, then

f(x) = bx + Γ(x) ≥ bx − γ = (b − 1)x + x − γ ≥ 2γ + x − γ = γ + x

and so

fn(x) = bfn−1(x) + Γ ◦ fn−1(x)
= b2fn−2(x) + bΓ ◦ fn−2(x) + Γ ◦ fn−1(x)

= bnx +
n∑︂

j=1
bn−jΓ ◦ f j−1(x) ≥ x ≥ η for all n

This means that fn(x) → +∞ as n → ∞. The number

ŝ(x) = x +
+∞∑︂
j=1

b−jΓ ◦ f j−1(x)
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is well defined and is finite since b > 1. Recall that |Γ(x)| ≤ γ, it follows that,
for every n,

|fn(x) − bnŝ(x)| =

⃓⃓⃓⃓
⃓⃓bnx +

n∑︂
j=1

bn−jΓ ◦ f j−1(x) − bnx − bn
+∞∑︂
j=1

b−jΓ ◦ f j−1(x)

⃓⃓⃓⃓
⃓⃓

=

⃓⃓⃓⃓
⃓⃓ +∞∑︂
j=n+1

bn−jΓ ◦ f j−1(x)

⃓⃓⃓⃓
⃓⃓

=
↑

k=j−n

⃓⃓⃓⃓
⃓
+∞∑︂
k=1

b−kΓ ◦ fk+n−1(x)
⃓⃓⃓⃓
⃓

≤
+∞∑︂
k=1

b−kγ = γ

b − 1

This implies that the sequence (fn(x) − bnŝ(x)) is bounded for every x ≥ η.
Furthermore, if there exists another point s̃(x) such that |fn(x) − bns̃(x)| is
bounded, then |fn(x)−bns̃(x)| = |fn(x)−bnŝ(x)−bn(s̃(x)− ŝ(x)| is bounded
if and only if s̃(x) = ŝ(x) due to the fact that bn grows really fast. So,
ŝ(x) is unique for any x ≥ η. If f is continuous on [η, +∞), then Γ ◦ f j−1

is continuous for every j ∈ N. In this case, according to the Weierstrass
criterion, ∑︁+∞

j=1 b−jΓ ◦ f j−1(x) converges uniformly and so ŝ is continuous.
Now assume that Γ(x) x→+∞−−−−→ 0. From this, given any ε > 0,there exists
xε ≥ η such that |Γ(x)| ≤ ε(b − 1) for all x ≥ xε. Hence, if x ≥ xε, then
f j−1(x) ≥ x ≥ xε ≥ η for all j ∈ N and so

|ŝ(x) − x| =

⃓⃓⃓⃓
⃓⃓+∞∑︂
j=1

b−jΓ ◦ f j−1(x)

⃓⃓⃓⃓
⃓⃓ ≤

+∞∑︂
j=1

b−jε(b − 1) = ε

Then limx→+∞(ŝ(x) − x) = 0 since ε is arbitrary. In the same way, if y ≥ η
then |Γ◦hj+n−1(y)| ≤ γ for all j and all n and limn→∞ Γ◦hj+n−1(y) = 0. This
implies that limn→∞(hn(y) − bnŝ(y)) = 0 by the above inequality, where the
limit can be taken inside the sum by the Dominated Convergence Theorem.

Reconsider the map f(x) = 2x + e−x and note that fn(x0) → +∞ for
every x0. The basic idea of shadowing is that for large n the orbit generated
by f is similar to the orbit generated by 2x, with some initial point x̄0, which
is 2nx̄0. In fact, fn(x0) can be rewritten as

fn(x0) = 2nx0 +
n∑︂

j=1
2n−je−fj−1(x0) ≥ 0
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for every x0 ∈ R and n ∈ N. Let’s now consider the number

x̄0 = x0 +
+∞∑︂
j=1

2−je−fj−1(x0)

It is well-defined and positive because fn(x0) ≥ 0. Note also that f(x) ≥
max{0, x + 1} for all x and, so, fn(x) ≥ max{0, x + n}. Using this fact, we
can apply the Shadowing Lemma:

|fn(x0) − 2nx̄0| =
⃓⃓⃓⃓
2nx0 +

n∑︂
j=1

2n−je−fj−1(x0) − 2nx0 − 2n
+∞∑︂
j=1

2−je−fj−1(x0)
⃓⃓⃓⃓

=
⃓⃓⃓⃓
−

+∞∑︂
j=n+1

2n−je−fj−1(x0)
⃓⃓⃓⃓

=
↑

k=j−n

+∞∑︂
k=1

2−ke−fk+n−1(x0)

≤
+∞∑︂
k=1

2−ke−(x0+k++n−1)

= e−(x0+n−1)
+∞∑︂
k=1

(2e)−k

= e−(x0+n−1) · 1
2e − 1

n→∞−−−→ 0.

This proves that fn(x0) is similar to 2nx̄0 and this implies that fn(x0) is
Benford for all x0 ∈ R according to Theorem 1.4(ii). Note that the conclusion
of example 2.3 above is correct because, even if e−x is not bounded for x →
−∞, f maps R into R+ and so x̄0 is well-defined for every x0 ∈ R.
Like in the previous section, there is also a result for 0 instead of +∞ as
attracting fixed point. Again, it is sufficient to consider reciprocals.
Corollary 2.3. Let f : R → R be C2 with f(0) = 0 and 0 < |f ′(0)| < 1.
Then, for every x0 ̸= 0 sufficiently close to 0, (fn(x0)) is Benford if and only
if log |f ′(0)| is irrational.
Example 2.4. (i) The map f(x) = x + 1

3e−x − 1
3 is smooth, with f(0) = 0

and 0 < f ′(0) = 1 − 1
3 = 2

3 < 1. This implies that the sequence
(fn(x0)) is Benford for every x0 ̸= 0 sufficiently close to 0 because
log f ′(0) = log 2

3 is irrational. Another way to see the Benford property
of this sequence is to note that fn(x0) n→∞−−−→ 0 3 for every x0 ∈ R with an

3A fixed point x0 is attractive if |f ′(x0)| < 1 and is repulsive if |f ′(x0)| > 1. If |f ′(x0)| =
1, nothing can be said.
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exponential decay, thereby covering several orders of magnitude, which
means it is Benford unless fn(x0) = 0 for some n ∈ N. Since f is
strictly convex (f ′′(x) = 1

3e−x > 0 for all x ∈ R), fn(x0) = 0 only if
f(x0) = 0 and this happens when x0 = 0 or x0 = −1.903. So, (fn(x0))
is Benford for every x0 ∈ R \ {0, −1.903}.

(ii) Consider again the map f(x) = 2x + e−x. To see that Corollary 2.3
applies to this map, it is useful the following tool: let

f̃(x) = f(x−2)−1/2 =

⎧⎨⎩
|x|√

2+x2e−1/x2 x ̸= 0

0 x = 0

The map f̃ : R → R is smooth and 0 < f̃
′(0) = 1√

2 < 1. Since log
(︂

1√
2

)︂
is irrational, (f̃n(x0)) is Benford for every x0 ̸= 0 and hence (fn(x0))
is Benford for all x0 ̸= 0 by Theorem 1.2 because fn(x) = f̃

n(|x|−1/2)−2

for all n.

2.3 Sequences with super-exponential growth
In this section, maps such as f(x) = axb, a > 0, b > 1, are going to be
studied. To observe how substantially different these maps are from those
of the maps in the previous two sections, consider this example: the map
f(x) =

√
x4 + 12x2 + 30. Obviously, limn→∞ fn(x) = +∞ for every x ∈ R

but it follows from f(x)2 + 6 = (x2 + 6)2 that

fn(x) =
√︂

(x2 + 6)2n − 6 = (x2 + 6)2n−1 + O(6−2n−1) as n → ∞

and this shows that every orbit has a double-exponential growth. Clearly, this
map has a faster growth than, for example, fn(x) = 2nx. The purpose of this
section is to give some results about the Benford behavior of maps like this
and it will be shown that they are Benford for Lebesgue almost every x0 ∈ R
(but not all)4. Unfortunately, it is more simple to find points that create
orbits that are not Benford. In the previous map, for example, if x0 = 2 the
associated orbit is (fn(2)) = (2,

√
94,

√
9994,

√
999994, ...) and it is evident

that D1(fn−1(x0)) = 9 for every n ∈ N and clearly fn(x0) is not Benford. The
following proposition is an analog of Proposition 2.1 in the super-exponential
setting.

4A statement holds for almost every x if there is a set of Lebesgue measure zero that
contains all x for which the statement does not hold.
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Proposition 2.2. Let f(x) = axb with a > 0, b > 1. Then (fn(x0)) is
Benford for almost x0 > 0, but every non-empty open interval in R+ contains
uncountably exceptional points, i.e. points x0 > 0 for which (fn(x0)) is not
Benford.

Example 2.5. Consider the map f(x) = 10x2. By Proposition 2.2, (fn(x0))
is Benford for almost all but not all x0 > 0 and, in fact, the statement can
be extended for x0 ∈ R because f(x) ≥ 0 for every x ∈ R. The associated
sequence is fn(x0) = 102n−1x2n

0 and, for example, if x0 = 10k for some k ∈ Z,
then fn(x0) always has first significant digit 1 and so for these initial points
the sequence is not Benford.

To better understand the statement of the previous proposition, given any
map f : R+ → R+, let

B = {x ∈ R+ : (fn(x)) is Benford}.

Proposition 2.2 says that, if f(x) = axb, then R+ \ B = {x ∈ R+ : x /∈ B}
has measure zero. At the same time, however, R+ \ B is also uncountable
and everywhere dense in R+. So, technically, also almost all x /∈ B. This
may explain why it is not so simple to find even a single point x0 for which
(fn(x0)) is Benford despite Proposition 2.2 asserts that there exists a lot of
such points.
The next step is to study more general maps, i.e. maps with the property that
f(x) − axb = o(xb) as x → +∞ for some a > 0 and b > 1. The problems that
occur here are that, even if f(x) − axb may decay very rapidly, the Benford
properties of the orbits may be quite different to those in Proposition 2.2.

Theorem 2.3. Let f : R+ → R+ be a map such that f(x) = axb + g(x) with
a > 0, b > 1 and g(x) = o(xb) as x → +∞.

(i) If f is continuous then, for every c > 0, there exist uncountably many
x0 ≥ c for which (fn(x0)) is Benford, but also uncountably many x0 ≥ c
for which (fn(x0)) is not Benford, i.e. [c, +∞) ∩ B and [c, +∞) \ B are
both uncountable.

(ii) If f is differentiable with continuity and g′ = o(xb−1/ log x) as x → +∞,
then there exists c > 0 such that (fn(x0)) is Benford for almost all
x0 ≥ c, i.e. [c, +∞) \ B has (Lebesgue) measure zero.

Proof. To demonstrate this theorem it will be useful the Shadowing Lemma
(Lemma 2.1). Note first that f̃(x) = αf(x/α) for any α > 0 is such that
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fn(x) = 1
α
f̃

n(αx) and putting α = a(b−1)−1 it follows that

f̃(x) = a(b−1)−1
f
(︂
x
/︂(︂

a(b−1)−1)︂)︂ = a(b−1)−1 · a
(︃

x

a(b−1)−1

)︃b

+ g

(︄
x

(a(b−1)−1)

)︄

= xb + g

(︄
x

(a(b−1)−1)

)︄

So, without loss of generality, it can be assumed that a = 1. Now, given any
x0 > 0, define yn = log xn = log fn(x0) and rewrite it as

yn = log(xb
n−1 + g(xn−1))

= b log xn−1 + log
(︄

1 + g(xn−1)
xb

n−1

)︄

= byn−1 + log
(︄

1 + g(10yn−1)
10byn−1

)︄
= h(yn−1)

where h : R → R is given by h(y) = by + log
(︂
1 + g(10y)

10by

)︂
. Since g = o(xb) as

x → +∞, then

lim
y→+∞

(h(y) − by) = lim
y→+∞

(︄
by + log

(︄
1 + g(10y)

10by

)︄
− by

)︄
= 0

After these considerations, the theorem can be proven.

(i) Since f is continuous, also h is continuous and by the Shadowing Lemma,
there exist η ∈ R and a continuous function ŝ : [η, +∞) → R with
ŝ(y) − y → 0 as y → +∞ such that limn→∞(hn(y) − bnŝ(y)) = 0 for all
y ≥ η. By Proposition 1.1, (hn(y)) is u.d. mod 1 if and only if (bnŝ(y))
is for y ≥ η. By the Intermediate Value Theorem, [ŝ(log c), +∞) ⊂
ŝ([log c, +∞)) and by Proposition 2.2 the set that contains the points
y ≥ ŝ(log c) such that (bny) is u.d. mod 1 and the set that contains the
points y ≥ ŝ(log c) such that (bny) is not u.d. mod 1 are both uncount-
able. So, the set

Uc = {y ≥ log c : (hn(y))is u.d mod 1}
= {y ≥ log c : (bnŝ(y))is u.d. mod 1}

is uncountable and so is [log c, +∞) \ Uc. This implies that the sets
[c, +∞) ∩ B = {x0 ≥ c : (fn(x0)) is Benford} and [c. + ∞) \ B are both
uncountable.
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(ii) Take ŝ(y) = y +∑︁+∞
j=1 b−jΓ ◦ hj−1(y) as in Lemma 2.1, where

Γ(y) = log
(︄

1 + g(10y)
10by

)︄
, y ∈ R

Now, let’s derive Γ:

Γ′(y) =

(︂
b10by + g′(10y)10y

)︂
−
(︂
10by + g(10y)

)︂
b(︂

10by + g(10y)
)︂

= 10yg′(10y) − bg(10y)
10by + g(10y)

and note that

lim
y→+∞

yΓ′(y) = lim
y→+∞

y10yg′(10y)
10by + g(10y) − byg(10y)

10by + g(10y) = 0

since g′(x) = o(xb−1/ log x) and g(x) = o(x) as x → +∞ implies that
g′(10y) = o

(︂
10y(b−1)

y

)︂
and g(10y) = o(10by) as y → +∞. This means

that Γ′(y) = o(1/y). Then note that

(b−jΓ ◦ hj−1(y))′ = b−jΓ′(hj−1(y)) · (hj−1)′(y)

= b−jΓ′ ◦ hj−1(y)
j−1∏︂
k=1

(b + Γ′ ◦ hk−1(y))

Since Γ′ = o(1/y), it follows that limy→+∞(b−jΓ ◦ hj−1(y))′ = 0 as
y → +∞ (in fact, Γ′ tends really quickly to 0 as y → +∞) and in
particular |(b−jΓ ◦ hj−1(y))′| ≤ γ0b

−j for all j ∈ N, y ≥ η and for
some appropriate constant γ0 > 0. Thus, the function ŝ is C1 with its
derivative

ŝ′(y) = 1 +
+∞∑︂
j=1

(b−jΓ ◦ hj−1(y))′ y→+∞−−−−→ 1

where the limit can be taken due to the Dominated Convergence Theo-
rem. Since the derivative is strictly positive near +∞, this implies that,
by the sign-preserving Theorem and by the inverse function Theorem,
for every sufficiently large c > 0, in this interval ŝ is a diffeomorphism
of [log c, +∞) onto [ŝ(log c), +∞) and in particular maps nullsets onto
nullsets. This means that the set [log c, +∞) \ Uc is a nullset and so
[c, +∞) \ B is.
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Example 2.6. (i) Let f(x) = apxp +ap−1x
p−1 + ...+a1x+a0 where p ∈ N,

p ̸= 1 and a0, a1, ...ap ∈ R with ap ̸= 0. Assume without loss of generality
that ap > 0. In fact, if ap < 0, f can be replaced by −f(−x) if p is
even or by f(x)2 if p is odd and by Theorem 1.2 the conclusions are the
same. The map f is differentiable with continuity and

g(x) = f(x) − apxp = ap−1x
p−1 + ... + a1x + a0 = o(xp)

is such that

g′(x) = (p − 1)ap−1x
p−2 + (p − 2)ap−2x

p−3 + ... + a1 = o(xp−1/ log x)

as x → +∞. By Theorem 2.3(ii), (fn(x0)) is Benford for almost all
x0 with |x0| sufficiently large. For example, consider f(x) = x2 + 1.
It is such that fn(x0) → +∞ as n → ∞ for every x0 ∈ R so, by
the previous considerations, (fn(x0)) is Benford for almost all x0 (in
this case, x0 ∈ R). As also said by the theorem, there are many ex-
ceptional points: for example, it can be shown that with the choice of

x0 = limn→∞

√︃
...
√︂√

102n − 1 − 1 = 9.949..., the first significant digit
of fn(x0) is always 9.

(ii) Let h : R → R be the continuous function

h(y) =

⎧⎨⎩2y − sin(2πy2)
2πy

y ̸= 0
0 y = 0

Define the countable union of intervals

J =
⋃︂

k∈Z\{0}

[︄
k − 1

25|k|
, k + 1

25|k|

]︄

With a short calculation, or via graphic, it can be shown that h(J) ⊂ J
and furthermore that (hn(y) − 2nk) → 0 as n → ∞ for every y ∈ J and
the proper k ∈ Z. For this reason, (hn(y)) is not u.d. mod 1 for all
y ∈ J . In fact, by Proposition 1.1, (hn(y)) is u.d. mod 1 if and only
if (2nk) is, but this sequence cannot be u.d. mod 1 because ⟨2n⟩ ≡ 0 5.
Now define the map f : R+ → R+

f(x) = 10h(log x) = 102 log x10− sin(2π(log x)2)
2π log x = x210− sin(2π(log x)2)

2π log x = x2 + g(x)
5It is interesting to know that it is not so simple to determine if sequences like (an) are

u.d. mod 1. Clearly, as in this example, if a ∈ Z the fractional part is equal to zero for
all entries and the sequence cannot be u.d. mod 1. Instead, even if a is rational, there
are no results that can state whether an is u.d. mod 1 or not. For instance, to establish
if ((3/2)n) is u.d. mod 1 is a famous open problem. However, there is a statement that
asserts that (anx) is u.d. mod 1 for almost all x ∈ R(see [1]).
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where g(x) is given by

g(x) = f(x) − x2 = x2
(︃

10− sin(2π(log x)2)
2π log x − 1

)︃
In particular,

g(x)
x2 = 10− sin(2π(log x)2)

2π log x − 1 → 0 as x → +∞

so g(x) = o(x2) and by Theorem 2.3(i) the map is Benford for almost
every x such that |x| is sufficiently large. However, from the previous
observation, it is simple to find some points x0 such that (fn(x0)) is
not Benford. In fact, if log x0 ∈ J , the sequence generated by f is
not Benford because log f(x) = h(log x) is not u.d. mod 1 for every
y = log x ∈ J . Furthermore, fn(x0) is not Benford also if log x0 ∈
10J = {10y : y ∈ J} = ⋃︁

k∈Z\0 10k

[︃
10−1/(25|k|), 101/(25|k|)

]︃
that, in fact,

has infinite Lebesgue measure. This means that, effectively, there are
uncountable many x0 for which (fn(x0)) is not Benford.

As in the previous sections, Theorem 2.3 yields a corollary that consider
the reciprocals.
Corollary 2.4. Let f : R → R be a smooth map with f(0) = 0, f ′(0) = 0 and
f (p) ̸= 0 for some p ∈ N \ {1}. Then (fn(x0)) is Benford for almost every x0
sufficiently close to 0, but there are also many uncountable exceptional points.
Example 2.7. (i) The map f(x) = x − 1 + e−x is such that f(0) = 0,

f ′(0) = 0 and f ′′(0) = 1. Then, by Corollary 2.4, (fn(x0)) is Benford
for almost all x0 near 0. Since fn(x0) n→∞−−−→ 0 for every x0, in fact
(fn(x0)) is Benford for almost all x0 ∈ R.

(ii) Consider the map f(x) = 1
2(x2 + x4) and note that limn→∞ fn(x0) = 0

if and only if |x0| < 1. By the latter corollary, (fn(x0)) is Benford for
almost all x0 ∈ (−1, 1). If one wants to study the map also for |x0| > 1,
i.e. for initial points such that limn→∞ fn(x0) = +∞, just consider

f̃(x) = f(x−1)−1 =
(︃1

2
(︂
x−2 + x−4

)︂)︃−1
= 2x4

1 + x2

This map is such that f̃(0) = 0, f̃
′(0) = 0 = f̃

′′(0) = f̃
′′′(0) and

f̃
iv(0) = 48 and this implies that (f̃n(x0)) is Benford for almost all

|x0| > 1 and so even (fn(x0)) is. The conclusion is that (fn(x0)) is
Benford for almost all x0 ∈ R.
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Since maps like f(x) = ex, which have a faster growth than the maps
studied in this section, have no result that can give some tool to analyze the
Benford behavior, here it follows another proposition.
Proposition 2.3. Let f : R+ → R+ be a map such that, for some c ≥ 0,
both of the following conditions hold:

(i) The function log f(10x) is convex on (c, +∞)

(ii) log f(10x)−log f(10c)
x−c

> 1 for all x > c

then (fn(x0)) is Benford for almost all sufficiently large x0, but there also
exist uncountably many x0 > c for which (fn(x0)) is not Benford.
Example 2.8. Consider f(x) = ex and let’s verify the conditions. The
function h(x) = log f(10x) = log(e10x) = 10x log e is such that h′′(x) =
10x ln(10) > 0 for all x ∈ R and so h(x) is convex on R. To demonstrate the
second point, some additional calculations are necessary:

h(x) − h(c)
x − c

= log e
10x − 10c

x − c

?
> 1

If c = 0, the inequality becomes

log e
10x − 1

x
> 1

and this is true for all x > 0. In fact, the left-hand side of the inequality is
equal to 1 only for x = 0. So, Proposition 2.3 applies with c = 0 and this
means that (fn(x0)) is Benford for almost all sufficiently large x0. Further-
more, it can be shown that fn(x0) > 2n−2 for every x0 ∈ R and n ≥ 2 (even
if x0 << 0, x1 will be approximately 1 and so the next iterations will increase
more and more). So, the sequence is Benford for almost all x0 ∈ R.
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Chapter 3

Nonautonomous Systems and
the Benford’s Law

The sequences that have been considered so far were not explicitly dependent
on n. The aim of this chapter is to give some results about nonautonomous
systems or time-dependent systems. These systems have been known a recent
interest in many fields of study because of their important practical applica-
tions as well as purely mathematical questions. Here, the focus will be mainly
on extending the theory seen in the previous chapter. The notation will be
slightly different since the nonautonomous maps change with n. The maps
are replaced by sequences of functions (fn) that map C ⊂ R into itself. As
before, the set often is equal to R+, but can be adapted to other sets. This
means also a little change in the sequences for the fact that now there is not
the iteration of a single function but at every iteration the map is modified:
so, given any x0 ∈ C, the nonautonomous orbit of x0 under f1, f2, ... is defined
by

(xn) = (f1(x0), f2(f1(x0)), ...) = (fn ◦ ... ◦ f1(x0))

Equivalently, to write it in the form of difference equations, such as (2.1),

xn = fn(xn−1), n ∈ N

where xn is the unique solution.
In this chapter only sequences with exponential and super-exponential growth
are going to be study. It is interesting to note that most of the results in this
chapter have as special cases the results of their autonomous counterparts.
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3.1 Sequences with exponential growth

Let fn : R+ → R+ be a sequence of maps of the form fn(x) = anx + gn(x),
n ∈ N, with an > 0 and gn that is small in some sense that will be specified
later. The following theorem is a generalization of Corollary 2.2 with the
difference that an is not required to be strictly greater than 1.

Theorem 3.1. For every n ∈ N, let fn : R+ → R+ be a sequence of maps such
that fn(x) = anx+gn(x) with an > 0. Suppose that lim infn→∞ an > 1 and that
gn = o(x/ log x) uniformly1 as x → +∞. Then, for every sufficiently large
x0, (fn ◦ ...◦f1(x0)) is Benford if and only if

(︂∏︁n
j=1 aj

)︂
= (a1, a1a2, a1a2a3, ...)

is Benford.

Proof. Pick δ > 0 and N ∈ N such that an ≥ 1 + 2δ for all n ≥ N . Then pick
ξ1 large enough such that |gn(x)| < δx/ log x for all x ≥ ξ1 and n ∈ N. So,

fn(x) = x

(︄
an + gn(x)

x

)︄
> x

(︄
an − δ

log x

)︄
> x(an − δ) ≥ x(1 + δ)

for all x ≥ ξ1, n ≥ N . Note that limx→+∞ fN ◦ ... ◦ f1(x) = +∞ for all x ≥ ξ1
and so there exists ξ2 > 0 such that fN ◦ ... ◦ f1(x) ≥ ξ1 and so there exists
ξ2 > 0 such that fN ◦ ... ◦ f1(x) ≥ ξ1 for all x ≥ ξ2. Hence, for all x ≥ ξ2 and
n ≥ N ,

fn ◦ ... ◦ f1(x) = fn ◦ ...fN+1(fN ◦ ... ◦ f1(x)) ≥ (1 + δ)n−Nξ1

Now take x0 ≥ ξ2 and put yn = log xn = log fn ◦ ... ◦ f1(x0). Then define

1A sequence of functions fn : R+ → ∖ is said to be o(g) uniformly as x → +∞ (for
g : R+ → R) if, for every ε > 0, there exists c ≥ 0 such that |fn(x)/g(x)| < ε for all n ∈ N
and for all x ≥ c. Furthermore, fn = O(g) uniformly as x → +∞ if there exists c > 0 such
that |fn(x)/g(x)| < c for every n ∈ N and for all x sufficiently large.
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zn = yn − log∏︁n
j=1 aj and observe that, picking an arbitrary ε > 0:

n|zn+1 − zn| = n

⃓⃓⃓⃓
⃓⃓yn+1 − log

n+1∏︂
j=1

aj − yn + log
n∏︂

j=1
aj

⃓⃓⃓⃓
⃓⃓

= n

⃓⃓⃓⃓
⃓⃓ log

(︄
xn+1

∏︁n
j=1 aj

xn
∏︁n+1

j=1 aj

)︄⃓⃓⃓⃓
⃓⃓

= n

⃓⃓⃓⃓
⃓⃓ log

(︄
xn+1

xnan+1

)︄⃓⃓⃓⃓
⃓⃓

= n

⃓⃓⃓⃓
⃓⃓ log

(︄
1 + gn+1(xn)

xnan+1

)︄⃓⃓⃓⃓
⃓⃓

≤ n|gn+1(xn)|
2xnan+1

≤ nδ

2an+1 log xn

≤ nε

log xn

≤ nε

log((1 + δ)n−Nξ1)
= nε

(n − N) log(1 + δ) + log ξ1

It follows that
lim sup

n→∞
n|zn − zn+1| ≤ ε

log(1 + δ)
and so

lim
n→∞

n(zn+1 − zn) = 0

from the fact that ε > 0 was arbitrary. So, the sequence (yn) is u.d. mod 1 if
and only if

(︂
log∏︁n

j=1 aj

)︂
is, by Proposition 1.2(v). This implies that (xn) is

Benford if and only if
(︂∏︁n

j=1 aj

)︂
is Benford.

Maybe it is not that simple to prove that
(︂∏︁n

j=1 aj

)︂
is Benford, so there

is another result that will help to determine it.
Lemma 3.1. Let (an) be a sequence of positive real numbers. Then the se-
quence

(︂∏︁n
j=1 aj

)︂
= (a1, a1a2, a1a2a3, ...) is Benford if one of the following

statements holds:

(i) limn→∞ an = a∞ exists and is such that a∞ > 0 and log a∞ is irrational

(ii) an = g(n) for all n ∈ N, where g is any non-constant polynomial
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Proof. (i) Note that log∏︁n+1
j=1 aj − log∏︁n

j=1 = log an+1
n→∞−−−→ log a∞ that

exists by assumption. In particular, by Proposition 1.2(i), (∏︁n
j=1 aj) is

Benford if log a∞ is irrational, which is by hypothesis. So, the first point
is proved.

(ii) Since g is a non-constant polynomial, it can be written as g(t) = cptp +
cp−1t

p−1 + ... + c0 where p ∈ N and c0, ...cp ∈ R with cp > 0. Observe
that

log
n∏︂

j=1
aj = log

n∏︂
j=1

g(j)

=
n∑︂

j=1
log

(︂
cpjp + cp−1j

p−1 + ... + c0
)︂

=
n∑︂

j=1

(︄
log (cpjp) + log

(︄
1 + cp−1

cp

j−1 + ... + c0

cp

j−p

)︄)︄

=
n∑︂

j=1
(p log(j) + log(cp)) +

n∑︂
j=1

log e

(︄
cp−1

cp

j−1 + ... + c0

cp

j−p

)︄

=
n∑︂

j=1
p log(j) + n log(cp) + cp−1

cp

log e
n∑︂

j=1

1
j

+ βn

where (βn) is a convergent sequence. Then, it is known that

log e
n∑︂

j=1

1
j

≈ log n + γ

where γ is the Eulero-Mascheroni constant and, by the Eulero-Maclaurin
formula

n∑︂
j=1

log(j) ≈ 1
2 log(n) + n log(n) − n log(e) + C

where C is a constant. So, putting them together, it follows that

log
n∏︂

j=1
aj − pn log n − n(log cp − p log e) −

(︄
p

2 + cp−1

cp

)︄
log n

is convergent. By Proposition 1.2(iii), the sequence (∏︁n
j=1 aj) is Ben-

ford if and only if
(︂
pn log n + n (log cp − p log e) +

(︂
p
2 + cp−1

cp

)︂
log n

)︂
is

u.d mod 1 and in fact it is u.d. mod 1(see [4],Exc.2.26).
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Example 3.1. (i) Consider the linear maps fn : R → R such that fn(x) =
(2 + 1

n
)x. Here an = 2 + 1

n
> 2 and gn ≡ 0. The aim is to determine

whether
(︂∏︁n

j=1 aj

)︂
is Benford or not:

log
n∏︂

j=1
aj − log

n−1∏︂
j=1

aj = log an
n→∞−−−→ log 2 /∈ Q

and this implies that
(︂

log∏︁n
j=1 aj

)︂
is u.d. mod 1 by Proposition 1.2(i)

and so
(︂∏︁n

j=1 aj

)︂
is Benford. So, by Theorem 3.1, the nonautonomous

orbit (fn ◦ ... ◦ f1(x0)) is Benford for all sufficiently large x0

(ii) Consider fn(x) = nx where an = n. Then, Lemma 3.1(ii) applies and
so (fn ◦ ... ◦ f1(x0)) = (n!x0) is Benford for every x0 ̸= 0, as already
seen in Table 2.1.

(iii) The Fibonacci sequence is defined by Fn+2 = Fn+1+Fn for all n ∈ N and
the first iterates are equals to (Fn) = (1, 1, 2, 3, 5, 8, 13, ...). In particular
the sequence is also given by the formula

Fn = 1√
5

(︃(︃1
2 + 1

2
√

5
)︃n

−
(︃1

2 − 1
2

√
5
)︃n)︃

= ϕn − (−ϕ−1)n

√
5

, n ∈ N

where ϕ = 1
2(1 +

√
5) = 1.618.

Consider now the maps fn(x) = Fn+1
Fn

x, n ∈ N, where an = Fn+1
Fn

> 0.
The sequence an has the well-known property that limn→∞

Fn+1
Fn

= ϕ and,
by Proposition 1.2(i), the sequence

(︂∏︁n
j=1 aj

)︂
is Benford, since

log
n∏︂

j=1

Fj+1

Fj

− log
n−1∏︂
j=1

Fj+1

Fj

= log Fn+1

Fn

n→∞−−−→ log ϕ

which is irrational. This implies that (fn ◦ ... ◦ f1(x0)) = (Fnx0) is
Benford for all x0 ̸= 0 by Theorem 3.1. In particular, with x0 = F1 =
1, the maps generated the Fibonacci sequence and this means that the
Fibonacci sequence is Benford.
The same conclusion of points (i) and (iii) could be found applying
Lemma 3.1(i).

As in the sections of the previous chapter, even here there is a result in
which the reciprocals are taken into account.
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Theorem 3.2 ([2]). Let fn : R → R be a sequence of C2-maps with fn(0) = 0
and f ′

n = an ̸= 0 for all n ∈ N. Assume that supn max|x|≤1 |f ′′
n(x)| and∑︁∞

n=1
∏︁n

j=1 |aj| are both finite. If limn→∞ log |an| exists and is irrational, then
(fn ◦ ... ◦ f1(x0)) is Benford for all x0 ̸= 0 sufficiently close to 0.

Example 3.2. (i) Reconsider the maps fn(x) =
(︂
2 + 1

n

)︂
x. The same con-

clusion of exercise 3.1(i) can be given by applying Theorem 3.2 just
considering Fn(x) = fn (x−1)−1 =

(︂(︂
2 + 1

n

)︂
x−1

)︂−1
= nx

2n+1 . These
maps are such that Fn(0) = 0 and F ′

n(0) = n
2n+1 ̸= 0. Furthermore,

F ′′
n (x) = 0 and

∞∑︂
n=1

n∏︂
j=1

j

2j + 1 =
∞∑︂

n=1

n!
(2n + 1)!!

is such that limn→∞
(n+1)!

(2(n+1)+1)!!
(2n+1)!!

n! = limn→∞
n+1
2n+3 = 1

2 < 1 so, by the
ratio asymptotic test, the sum is convergent and so finite. Then,

lim
n→∞

log
⃓⃓⃓⃓
⃓ n

2n + 1

⃓⃓⃓⃓
⃓ = log(1/2) = − log 2

that is irrational. Hence, Fn(x0) (and so fn(x0)) is Benford for all
x0 ̸= 0.

(ii) Let fn(x) = 10−1+
√

n+1−
√

nx, n ∈ N, be a sequence of linear maps. Here
an = 10−1+

√
n+1−

√
n, fn(0) = 0 and f ′

n(0) = 10−1+
√

n+1−
√

n ̸= 0. Again
f ′′

n(x) = 0 and
∞∑︂

n=1

n∏︂
j=1

10−1+
√

j+1−
√

j =
∞∑︂

n=1
10−(n+1)+

√
n+1

which is convergent by the ratio test since limn→∞
10−(n+2)+

√
n+2

10−(n+1)+
√

n+1 = 1/10.
Now the limit

lim
n→∞

log
⃓⃓⃓
10−1+

√
n+1−

√
n
⃓⃓⃓
= log 10−1 = −1

that is not irrational, so Theorem 3.2 can’t be used to determine the
Benford behaviour of the sequence. However, fn(x) = 10−(n+1)+

√
n+1

and the logarithm log |fn(x)| = −(n + 1) +
√

n + 1 + log |x| is u.d. mod
1. So, the sequence (fn ◦ ... ◦ f1(x0)) is Benford for all x0 ̸= 0.

3.2 Sequences with super-exponential growth
Let fn : R+ → R+ be a sequence of maps such that fn(x) = anxbn , n ∈ N,
where (an) is a sequence of positive real numbers and (bn) is a sequence of
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non-zero real numbers. This section has some results that recall the results
of the analogue autonomous section. The following theorem has as special
case Proposition 2.2 and, again, the difference holds in the fact that bn may
be not strictly greater than 1.

Theorem 3.3. Let fn(x) = anxbn be a sequence of maps with an > 0 and
bn ̸= 0 for every n ∈ N. If lim infn→∞ |bn| > 1, then (fn ◦ ... ◦ f1(x0)) is
Benford for almost all x0 > 0, but every non-empty open interval in R+

contains uncountably many x0 for which (fn ◦ ... ◦ f1(x0)) is not Benford.

Example 3.3. (i) Consider the maps fn(x) = 2nx2, n ∈ N, where an =
2n and bn ≡ 2. Since lim infn→∞ |bn| = lim infn→∞ |2| = 2 > 1, the
sequence (fn ◦ ... ◦ f1(x0)) is Benford for almost all x0 > 0. In fact, it
is Benford for almost all x0 ∈ R since fn(x) > 0 for all x ̸= 0.

(ii) Let fn(x) = x31/n2
where an = 1 and bn = 31/n2 which is such that

bn > 1 + 1/n2 > 1. In particular, note that lim infn→∞ |bn| = 1. The
orbit generated by these maps is

(xn) = (fn ◦ ... ◦ f1(x0)) = x

∏︁n

j=1 31/j2

0 = x3
∑︁n

j=1 1/j2

0 , n ∈ N

and limn→∞ xn = x3
∑︁∞

j=1 1/j2

0 = x3π2/6
0 . So, the sequence cannot be Ben-

ford for any x0 > 0.
This example shows that it is not sufficient to assume only bn > 1 since
the orbit generated by a sequence of functions may not be Benford for
any x0 (or, on the contrary, may be Benford for every x0 > 0: see [1]).

If now the attention is moved on more general maps, it is obvious that
these sequences may have a really fast growth. So, a more general statement
of Proposition 2.3 is given.

Theorem 3.4. Let c ≥ 0 and let fn : R+ → R+, n ∈ N, be a sequence of
maps such that both of the following conditions hold:

(i) the function log fn(10x) is convex on (c, +∞)

(ii) log fn(10x)−log fn(10c)
x−c

≥ bn > 0 for all x > c

If lim infn→∞ bn > 1, then (fn◦...◦f1(x0)) is Benford for almost all sufficiently
large x0, but there also exist uncountably many x0 > c for which (fn ◦ ... ◦
f1(x0)) is not Benford.
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Example 3.4. (i) Consider

fn =

⎧⎨⎩x2 if n is even
2x if n is odd

The function log fn(10x) =

⎧⎨⎩log(102x)
log(210x)

=

⎧⎨⎩2x if n is even
10x log 2 if n is odd

is convex on (0, +∞) .
Then consider

log fn(10x) − log fn(1)
x

=

⎧⎨⎩
2x
x
10x log 2−log 2

x

=

⎧⎨⎩2 > 0
log 2(10x−1)

x
> 0

for all x > 0. So, by Theorem 3.4 with c = 0, the sequence (fn ◦ ... ◦
f1(x0)) is Benford for almost all, but not all, sufficiently large x0 and,
in fact, for almost all x0 ∈ R since clearly limn→∞ xn = +∞.

(ii) Consider

fn(x) =

⎧⎨⎩10 if n = 1
x2 if n ≥ 2

By point (i) it is known that the function satisfies the assumptions of
the theorem for n > 1. Instead, for n = 1, the second statement does
not hold since

log f1(10x) − log f1(10c)
x − c

= 0

for all x and c. So, Theorem 3.4 cannot be applied because one statement
does not hold, even if only for an index. In fact, D1(xn) = 1 for every
n ≥ 1, so, in any case, the sequence (fn ◦ ... ◦ f1(x0)) could not be
Benford.

To conclude the section, it can be interesting to give another result about
polynomial maps that follows from Theorem 3.4.
Corollary 3.1 ([2]). Let the sequence of maps fn be polynomials, i.e. fn(x) =
xpn + an,pn−1x

pn−1 + ... + an,1x + an,0 where pn ∈ N \ {1} and an,l ∈ R for all
n ∈ N and 0 ≤ l ≤ pn. If supn∈N maxpn−1

l=0 |an,l| < +∞, then (fn ◦ ... ◦ f1(x0))
is Benford for almost every x0 ∈ R \ [−c, c] with some c ≥ 0. However,
R \ [−c, c] also contains uncountable exceptional points.
Example 3.5. Consider fn(x) = xn − 1, n ∈ N. Note that this map does
not satisfy assumption (i) of Theorem 3.4 since log fn(10x) = log(10nx − 1)
always has the second derivative negative. Despite this, by the latter corollary,
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(fn ◦ ... ◦ f1(x0)) is Benford for almost every x0, but there exist also many
uncountable points for which the orbit is not Benford.
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Conclusions

Benford’s law is one of the most interesting results about the distribution of
significant digits. In this thesis the focus is on one-dimensional Deterministic
Systems and how they conform to this law, however, there also exist Random
Systems which are not taken into account (see [1]). The obvious difference
between them is that, in a deterministic system, the evolution of its next
states are completely determined by its initial conditions and the rules that
govern the system, while in a random system, the future states are influenced
by stochastic variables or probabilistic processes. In particular, Deterministic
Systems give the simplest way to describe processes that evolve over time and
these processes are described by one-dimensional difference equations which
take the form of sequences given by iterations of a single function or map f .
The first subdivision to be made is between autonomous and nonautonomous
systems, i.e. systems in which maps do or do not depend explicitly on time
respectively. Among them, the distinction is given by the growth of the se-
quences. In the autonomous case, it has been shown that sequences with
polynomial growth are not Benford for any initial point x0. These latter se-
quences are generated by maps of the form f(x) = x + g(x), with g that is
somehow small. Then, exponential and super-exponential increasing or de-
creasing sequences are taken into account. The difference of these two types
of sequences may seem very little but the super-exponential ones, besides the
fact that they have a clearly faster growth, they also conform to Benford’s law
without any specific request on the nature of the coefficients, contrary to the
exponential ones. In fact, sequences with exponential growth are generated
by maps of the form f(x) = ax + g(x) and their Benford behavior is given
by the nature of the logarithm of a. Sequences that have a super-exponential
growth, instead, are given by maps written in the form f(x) = axb +g(x) and
are usually Benford for almost all, but not all, initial point x0. The interesting
fact is that for many maps of this type the set of the initial points for which
(fn(x0)) is Benford and also its complementary are both uncountable.
In the nonautonomous case there is not so much difference in the results com-
pared to the previous case. Here, maps that lead to an exponential growth
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are in the form of fn(x) = anx + gn(x) and even here the fact that a sequence
is Benford or not depends on how an is constructed (the distinction is that
now an is a sequence and not a number). Then, super-exponential growth
sequences, are studied mainly in the form of maps like fn(x) = anxbn which
have the same properties of those of autonomous case, i.e. they are Benford
for almost all x0 > 0 and there also exists uncountable exceptional points.

Even though it might not be immediately apparent, the applications of this
law are numerous. As mentioned in the introduction, this law is used mostly
to test falsifications in data collections and this includes a lot of areas, such
as natural science, medicine, economics. . . The most famous application is
fraud detection. One of the main works in this field was given by Nigrini [6]
that noticed that some tax data adhere to Benford’s law but fraudulent data
do not. In the medical field the law is used, for example, to evaluate data
for new drugs or to identify possibly falsified scientific publication. Another
interesting fact is that Benford’s law can be used to find changes in natural
phenomena such as earthquakes. In fact, at the beginning of an earthquake,
the set of values of the ground movements tend to conform to this law and
this may help to detect the start of a seism even without reading the seismo-
gram [7].
In conclusion, Benford’s Law offers an unexpected way to look at the dis-
tribution of numbers in real life datasets and, since the interest in this law
is increasing, in the future there will probably emerge new applications and
discoveries.
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