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Abstract

In the field of neuroscience, analyzing brain signals and identifying relevant patterns pose sig-
nificant challenges. The brain’s complex structure and non-linear nature makes it difficult to
classify and detect patterns within raw brain signals. Extracellular electrophysiology recordings
capturing the activity of neuronal populations, e.g., Local Field Potentials (LFPs), have offered
important insights into cortical dynamics. Yet there is still a lack of clarity about how features
and characteristics of these extracellular potentials relate to the properties and function of the
underlying neural populations. Mechanistic models combined with simulation-based inference
(SBI) algorithms have emerged as an effective strategy for developing predictive tools that fit
well with available empirical data and can be used to predict key parameters that describe neural
activity. Numerous SBI techniques rely on summary statistics or interpretable features to ap-
proximate the likelihood or posterior. However, at present, a significant challenge is assessing
how each feature impacts the SBI model’s predictions. Here, it was developed an approach to
determine feature importance in the context of cortical circuit parameter inference. it was first
created a dataset that includes a million distinct simulations from a spiking cortical microcircuit
model of recurrently connected excitatory and inhibitory populations. Biophysics-based causal
filters were coupled with spikes to generate realistic LFP data. Then, it was extracted a set of
meaningful features from simulated LFP data that were used to train an SBI algorithm. To eval-
uate feature importance, differents tecnichs were used like mutual information (MI), principal
component analisis (PCA) and SHAP values, a prominent tool in machine learning for inter-
preting the contribution of eachfeature to the prediction outcomes. The results demonstrate the
effectiveness of this approach in identifying the most critical features for inferring the parame-
ters of a recurrent cortical circuit model based on electrophysiological data. These results were
presented at the Brain Informatics 2024 International Conference.
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Chapter 1

Introduction

1.1 General Background

1.1.1 General information on computational neuroscience

Computational neuroscience is a specialized field within neuroscience focused on theoretically
examining the brain. Its objective is to reveal the principles and mechanisms governing the
development, arrangement, processing of information, and cognitive capacities of the nervous
system. This domain emerged from recognizing the imperative of interdisciplinary coopera-
tion to grasp the intricacies of the brain. Scholars from various disciplines collaborate to tackle
fundamental inquiries concerning brain function, organization, evolution, and pathology. Key
investigations include understanding how the brain functions, its biological mechanisms, or-
ganization, principles of information processing, evolution, changes throughout the lifespan,
effects of injury, possibilities for rehabilitation, and treatments for diseases. Computational
neuroscience furnishes theoretical frameworks and analytical instruments to simulate brain pro-
cesses, aiding in the interpretation of experimental evidence and advancing our comprehension
of the nervous system.

It represents a multifaceted realm nestled within neuroscience, serving as a critical avenue
for untangling the intricate processes of the brain. Embracing an array of methodologies and
techniques, it endeavors to craft and validate hypotheses concerning the functional dynamics of
the brain. Neural computation revolves around the formulation and scrutiny of models, serving
as theoretical scaffolds for grasping the essence of brain function.

These models, often complex and beyond analytical tractability, are simulated using com-
puters to simulate neural processes and interactions. The use of computational tools allows re-
searchers to conduct carefully designed numerical experiments, enabling comparisons between
model predictions and experimental data. However, computational neuroscience does not solely
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rely on numerical techniques; analytical studies are also employed to provide deeper insights
into model features and underlying phenomena [1].

Experimental data from various disciplines within neuroscience, such as neuroanatomy,
neurophysiology, and psychology, provide crucial input for computational neuroscience. Neu-
roanatomy offers insights into the morphology and functional connectivity of brain structures,
while neurophysiology investigates the behavior of individual neurons. Additionally, psychol-
ogy contributes behavioral effects through psychophysical experiments.

Integrating experimental results from various levels of research is crucial for creating unified
models of brain function. Through the fusion of computational analyses and empirical data,
computational neuroscience aims to clarify the workings of the brain, formulating hypotheses,
building models, and validating them against experimental findings. Ultimately, the objective
is to attain a thorough comprehension of brain function through interdisciplinary teamwork and
meticulous scientific investigation [2].

1.1.2 The Significance of Brain Signal Analysis

Analysis of brain signals forms one of the most important in neuroscience research; it offers
insights into the inner working of the human mind that are second to none. Researchers can,
through the dissection of intricate neural activity patterns, disentangle the layers of complex-
ity shrouding brain function and dysfunction, leading toward breakthroughs in discoveries of
cognitive science and clinical neurology.

Brain signal analysis expands our understanding of how the brain functions. It allows
scientists to explore the activity of neurons and circuits in more detail. Techniques such as
electroencephalography (EEG), magnetoencephalography (MEG) and functional magnetic res-
onance imaging (fMRI) broaden our view of brain activity. These signals reveal how the brain
processes information, focuses attention, recalls memories, and makes decisions.

Additionally, studying brain signals is vital for understanding the causes of neurological
disorders. By comparing how the brain works in healthy people to those with conditions like
epilepsy, Alzheimer’s, or schizophrenia, scientists can pinpoint unusual brain patterns linked to
these diseases. This insight not only helps us grasp what’s happening in these disorders but also
opens doors for new ways to diagnose and treat them.[3].

For years, EEG,MEG, and other brain imaging methods have been crucial for understanding
how the brain works. EEG gives us a direct look at the brain’s electrical activity, helping us
map out things like neural rhythms, how the brain responds to events, and how different areas
communicate. Similarly, MEG shows us the magnetic fields produced by brain cells firing,
offering another layer of insight alongside EEG. By combining EEG and MEG data, scientists
can get a richer picture of how the brain operates, revealing detailed patterns of activity across
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both space and time.[4].
This study is focused on Local field potentials (LFP), that offer another approach to study

neural circuits through correlated neural activity. LFP are measured by placing an electrode
within or directly on the surface of the brain. Unlike action potentials which are generated by
individual neurons, LFP predominantly measure synaptic potentials pooled across groups of
neurons near the recording electrode and are closely linked to trans-membrane currents. As a
result, LFP signals reflect the presence of correlations in the activity of many neurons. Cru-
cially, while LFP signals are related to EEG signals measured at the scalp because both measure
voltages from pooled synaptic potentials, LFP signals can reveal quite different activity patterns
than EEG signals.

1.2 SBI model (Simulation Based-Inference)

Simulation-Based Inference (SBI) has emerged as a powerful paradigm in computational neu-
roscience, revolutionizing the way we analyze and interpret brain signals. Initially, traditional
statistical methods struggled to capture the complex dynamics of neural systems, leading re-
searchers to explore alternative approaches.

In the early 2000s, the advent of computational models enabled researchers to simulate large-
scale neural networks and generate synthetic brain signals resembling those observed experi-
mentally. In recent years, significant strides have been made in three key areas. Firstly, the
machine learning (ML) revolution has empowered us to engage with higher-dimensional data,
notably advancing inference quality through deep learning breakthroughs. Secondly, active
learning techniques have systematically enhanced sampling efficiency, enabling us to address
increasingly intricate and computationally demanding simulations. Lastly, the deep integration
of automatic differentiation and probabilistic programming into simulation codes, coupled with
leveraging insights extracted from the simulator to enrich training data, has yielded substantial
improvements in inference quality and sample efficiency. However, despite these advance-
ments, the fundamental approach to simulation-based inference remains largely unchanged.
Simulators are still perceived as black boxes, receiving parameters as input and generating data
as output, maintaining a distinct separation from the inference engine. However, inferring the
underlying parameters of these models from empirical data remained a formidable challenge.

Statistical inference operates within a statistical model framework, where in simulation-
based inference (SBI), the simulator itself defines the statistical model. In SBI, a simulator is
a computer program that takes a parameter vector as input, generates internal states or latent
variables

z ∼ p(z|θ, z)
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and outputs a data vector
x ∼ p(x|θ, z)

SBI addresses this challenge by employing advanced simulation techniques and Bayesian
statistical inference to estimate model parameters directly from observed brain signals. Through
iterative comparisons between simulated and experimental data, SBI refines its parameter esti-
mates, offering insights into the underlying mechanisms of brain function.

Simulation-Based Inference (SBI) represents a paradigm shift in computational neuro-
science, offering a unique avenue for unraveling the mysteries of brain function. By harnessing
the power of computational modeling, SBI allows researchers to construct virtual brain networks
that faithfully mimic the intricate dynamics of the human brain. These models not only capture
the complex interplay between neurons but also simulate the emergence of brain signals.

By careful calibration to empirical data, SBI empowers researchers to decode the hidden
mechanisms that govern neural activity and to infer the rich tapestry of brain signals that under-
pin cognition and behavior. Furthermore, SBI acts as a catalyst for hypothesis generation and
testing by allowing researchers to navigate a huge landscape of possible neural architectures and
functional configurations. Through iterative refinement and validation of computational models
to experimental observations, SBI promotes a deeper understanding of brain functions, enabling
transformative insights into the workings of the mind and new therapeutic interventions against
neurological disorders. In all respects, SBI ushers in a new epoch of discovery in neuroscience,
where by computational modeling and empirical investigation come together to illuminate the
intricacies of brain mechanisms and unlock its full potential.[5].

Figure 1.1: Statistical inference bridges the real world, one in which observations are made,
with the theoretical world, inhabited by models.[6]

1.2.1 Statistical inference

The advancement of detailed computational models in neuroscience presents a challenge in
aligning them with increasingly complex observations. Bridging this gap necessitates a method
to discern which models best fit observed data and existing knowledge. Statistical inference
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emerges as a crucial tool in this endeavor, acting as the conduit between real-world observa-
tions and theoretical models. By employing probability as its language, statistical inference
accommodates the inherent uncertainty and variability present in scientific investigations[6].

Observations are always mediated through measurement probes and experimental condi-
tions, leading to inherent variability. Likewise, the specification of models is often incomplete,
and systems may exhibit stochastic behavior at microscopic levels. Statistical methods enable
principled decision-making amidst uncertainty, offering a framework to assess model consis-
tency with observed data.

However, conventional statistical inference methods can impose stringent restrictions on
viable model configurations, often requiring numerical evaluation of likelihood functions to
gauge their consistency with observations. This dilemma underscores the tension between two
approaches in model design within neuroscience.

On one hand, incorporating statistical considerations into model development creates a close
feedback loop between data and theory, fostering a nuanced understanding of the underlying
causal mechanisms. However, this approach imposes stringent constraints on the types of mod-
els that can be utilized, potentially limiting the scope of insights gained.

Conversely, opting for interpretable mechanistic models, particularly those relying on high-
fidelity computer simulations, offers a deeper understanding of underlying processes. Yet, this
approach often sacrifices the ability to perform likelihood-based statistical inference, making it
challenging to constrain these models using observed data.

Thus, striking a balance between statistical rigor and mechanistic fidelity remains a signifi-
cant challenge in advancing computational neuroscience[7].

1.2.2 Difference between Frequentism and Bayesianism

Statistical inference enables us to address the question of which model configurations align with
observed data. Traditionally, all types of statistical inferences rely on the numerical evaluation
of the likelihood function.The likelihood function yields a value that rises for compatible model
configurations and declines for incompatible ones. In other words, it articulates the relative
coherence of each model configuration with the observation x. In statistical theory, two funda-
mental paradigms emerge: frequentist and Bayesian inference. Both approaches frequently rely
on numerical evaluation of the likelihood function

Frequentism, also known as the classical interpretation of probability, defines probability in
terms of observed frequencies. According to frequentist principles, the probability P (x) of an
event x is the relative frequency of its occurrence in an infinite sequence of repeated trials:

P (x) = lim
n→∞

nx

n
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where nx denotes the number of times event x occurs in n trials. Frequentist methods rely
on sampling theory and the properties of estimators for statistical inference.

In contrast, Bayesianism adopts a subjective interpretation of probability. According to
Bayesian principles, probability reflects the degree of belief or uncertainty associated with
events. Central to Bayesian inference is Bayes’ theorem, which provides a systematic frame-
work for updating prior beliefs based on observed evidence:

p(θ|x) =
p(x|θ)p(θ)

∫︁

p(x|θ)p(θ)dθ

where p(θ|x) denotes the posterior distribution, p(x|θ) represents the likelihood function,
p(θ) is the prior distribution, and p(x) is the marginal likelihood or evidence[8].

While frequentism emphasizes objective measurements and observed frequencies,
Bayesianism incorporates subjective beliefs and the iterative update of prior knowledge.
Bayesian inference is akin to a learning process, where prior beliefs about model configura-
tions are updated in light of observed data. The posterior distribution represents the updated
beliefs about model configurations consistent with the observed data.

Moreover, in Bayes approach we don’t have to choose a probability distribution over the
model configuration space arbitrarily, there is a natural procedure for updating a prior distribu-
tion that encodes our domain expertise about the model into a posterior distribution that iden-
tifies those model configurations consistent with both our domain expertise and the observed
data. Inferences, decisions, and predictions all follow from natural probabilistic operations.

1.2.3 Intractable likelihood

Statistical analysis and data inference are often driven by models that rely on the assumption
of a known and computable likelihood function. However, in many real-world scenarios, the
likelihood may be inestimable or difficult to compute, leading to a series of challenges in the
statistical inference process.

The notion of ”intractable likelihood” refers to situations where the mathematical form of
the likelihood is known, but its direct computation is computationally prohibitive or impracti-
cal. This can stem from various factors such as model complexity, data dimensionality, or the
presence of unobservable latent variables.

In contexts like these, using traditional approaches based on direct likelihood computa-
tion becomes ineffective or even impossible. However, there are several strategies that can
be adopted to address the issue of unavailable likelihood.

The core challenge in simulation-based inference is the intractability of the likelihood func-
tion defined by the simulator. This function involves integrating over all possible trajectories in
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the latent space, making explicit computation infeasible.

p(θ|x) =

∫︂

p(x,z|θ)dz

For simulators in real-world scenarios with extensive latent spaces, explicitly computing
this integral is clearly impractical. Given that the likelihood function serves as a cornerstone
in both frequentist and Bayesian inference, this presents a significant challenge for inference
across numerous fields.

There are several scenarios where the likelihood is intractable. One such scenario is inte-
grating over the simulator’s latent state. The stochastic nature of a simulator often arises from
generating random numbers that form the simulator’s latent state. Calculating the likelihood
involves integrating over these latent states, which is typically intractable due to the complexity
and high dimensionality of the latent variables.

Another scenario is when the simulator’s output is a deterministic transformation of its latent
state. In such cases, calculating the integral over the delta function for the likelihood is not
tractable. The joint distribution of the output and latent variables does not admit a proper density,
complicating the likelihood calculation and making it impractical.

A final scenario is when the simulator’s internal workings are inaccessible. Even if theoret-
ically possible, using a likelihood-based method may be impractical if the simulator is a black
box. The simulator might be provided as an executable, written in a low-level language for
efficiency, or be an external library routine. This makes it difficult to access the underlying
mechanisms needed for likelihood calculation, as the internal processes are hidden or not easily
manipulated[9][10].

Simulationmodels with this problem type are particularly suitable for scientific applications,
not only for neuroscience research, but also in biology[11], astronomy and cosmology[12][13],
evolution and ecology[14][15].

One common strategy involves the use approximation techniques such as Taylor expansions
or advanced numerical methods like Monte Carlo integration to obtaining approximate likeli-
hood estimates while avoiding direct computation of its analytical form.

Additionally, utilizing alternative models or Bayesian inference approaches such as Sequen-
tial Neural Posterior Estimation (SNPE) can provide innovative solutions to tackle the problem
of intractable likelihood. These models enable conducting statistical inferences even in the pres-
ence of challenging-to-compute likelihoods, opening up new possibilities in data analysis and
statistical modeling.
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1.2.4 Challenges in Complex Brain Model Inference

When exploring the domain of intricate biophysical models of the cortex, scientists face nu-
merous hurdles that greatly affect our capacity to precisely grasp and simulate brain operations.
These obstacles stem from the complex nature of neural networks and the intricacies woven into
their interactions. Here, we dissect the specific obstacles faced when applying Simulation-Based
Inference (SBI) to such models, highlighting high dimensionality, non-linearity, and computa-
tional cost as the primary hurdles.

The vast networks of interconnected neurons comprising neural systems contribute to the
high dimensionality of complex brain models. Each neuron exhibits intricate dynamics, result-
ing in a parameter space that becomes exceedingly large and challenging to explore compre-
hensively. This dimensionality complicates the estimation of model parameters from observed
data, as it amplifies issues related to model identifiability and overfitting.

The nonlinear nature of neural dynamics presents another significant challenge when infer-
ring complex brain models. Individual neurons and their interactions often follow nonlinear
trajectories, characterized by thresholding, saturation, and feedback loops. These nonlinearities
give rise to emergent properties at the network level, making it difficult to predict system be-
havior solely based on its constituent parts. Accounting for these nonlinearities is crucial when
applying SBI to complex brain models, as linear approximations may fail to capture the rich
dynamics exhibited by real neural systems.

The computational cost of simulating and analyzing complex brain models poses a practi-
cal challenge for researchers. Multi-layered biophysical models require sophisticated numerical
methods and extensive computational resources to simulate accurately. Additionally, inferring
model parameters from experimental data involves computationally intensive optimization al-
gorithms, often necessitating large-scale parallel computing infrastructure. These practical lim-
itations in terms of time, computational resources, and expertise hinder the application of SBI
to complex brain models.

Overcoming these obstacles requires interdisciplinary teamwork among neuroscientists,
mathematicians, and computer scientists. Creative methods like reducing dimensions, imple-
menting regularization techniques, and employing parallel computing approaches can ease the
computational challenges posed by high-dimensional models. Furthermore, progress in ma-
chine learning and Bayesian inference provides encouraging paths for enhancing the precision
and effectiveness of parameter estimation in nonlinear systems.
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1.2.5 The Simulation Based Inference (SBI) model: Sequential Neural
Posterior Estimation (SNPE)

Traditional methods for inference without tractable likelihoods have been developed to address
this longstanding problem. Among these methods, Approximate Bayesian Computation (ABC)
is arguably the most well-known. In its simplest form, rejection ABC involves sampling pa-
rameters from the prior distribution and then using a simulator to generate simulated data. If the
simulated data are sufficiently close to the observed data, the parameters are retained as samples
from the posterior distribution. The likelihood is essentially approximated by the probability
that the condition is satisfied, typically using a distance measure and a tolerance threshold.1.2

However, ABC has limitations. For instance, the acceptance probability vanishes for con-
tinuous data in the limit of a small tolerance threshold, requiring a large number of simulations.
Moreover, ABC’s sample efficiency scales poorly with high-dimensional data, and inference
for new observations necessitates repeating the entire inference algorithm [16].

Moreover, Markov-chainMonte Carlo ABC (MCMC-ABC) is an alternative approach to re-
duce the number of rejections involves proposing parameters using Markov-chain Monte Carlo
(MCMC) techniques. Instead of independently drawing parameters from the prior distribution,
this method generates new parameters bymaking small adjustments to previously accepted ones.
By keeping these adjustments small, the likelihood of accepting the new parameters increases,
resulting in fewer rejections compared to directly sampling from the prior. Similarly to rejection
ABC, the acceptance probability ofMCMC-ABC decreases as becomes smaller or as the dimen-
sionality of the data increases. Another challenge with MCMC-ABC is the initialization of the
Markov chain: if the initial parameters θ are unlikely to generate data close to the observed data
x0, the chain may remain stuck at its initial state for an extended period[9].

Another classic approach is to create a model for estimating likelihood are frequentist [18]
and Bayesian [19] inference then proceed as if the likelihood were tractable. This method,
sometimes referred to as approximate frequentist computation, offers the advantage of being
amortized: after an initial computational cost, new data points can be evaluated efficiently.

Both traditional approaches face challenges due to the curse of dimensionality, necessitating
the use of low-dimensional summary statistics. Historically, the development of these summary
statistics has been the responsibility of domain experts, and the choice of summary statistics has
been predetermined prior to inference.

Running high-fidelity simulations can often be resource-intensive, involving numerous pa-
rameters and potentially generating complex, high-dimensional data. Traditional methods face
difficulties in handling such scenarios effectively. Consequently, there has been a shift towards
exploring alternative approaches that leveragemachine learning techniques to enhance the appli-
cability space after SBI.Their method directly addresses the posterior distribution by employing
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Figure 1.2: A general scheme for rejection Approximate Bayesian Computation (ABC) algo-
rithms involves either proposing all parameters from the prior distribution or employing sequen-
tially refined proposal distributions [17].

neural network-based conditional density estimation, offering a promising avenue for tackling
the limitations of classical SBI methods in complex simulation settings.

The fundamental concept behind neural posterior estimation (NPE) approaches is straight-
forward: a dataset is created by sampling parameters from the prior distribution and simulating,
resulting in a training set. This dataset is then utilized to optimize the parameters of a neu-
ral network-based conditional density estimator, enabling the derivation of an estimate for the
posterior distribution. Compared to traditional methods, this strategy has demonstrated supe-
rior simulation efficiency.To enhance simulation space after efficiency, a sequential version of
NPE (SNPE) can be employed, particularly beneficial when performing inference for a specific
observation.

Sequential Neural Posterior Estimation (SNPE) is an innovative Bayesian inference method
based on neural networks and machine learning techniques. The primary goal of SNPE is to
efficiently and accurately estimate the posterior distribution of a statistical model’s parameters,
even in the presence of intractable likelihoods or high computational complexity. This method
is based on recent advances in simulation-based Bayesian inference[16],[20],[9].

Unlike traditional approaches that rely on Monte Carlo sampling methods [19] or analytical
likelihood approximations [18], SNPE takes a completely different approach leveraging the pre-
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dictive capabilities of neural networks. Specifically, SNPE uses neural networks as generative
models to approximate the joint distribution of observed data and model parameters.

The inference process in SNPE occurs sequentially , using a series of neural networks to
progressively approximate the posterior distribution of parameters. Initially, neural networks are
trained to approximate the prior distribution of parameters and the data distribution generated
by the model. Subsequently, active learning techniques are employed to select points in the
parameter space to progressively improve the posterior distribution approximation.1.3

Figure 1.3: A general framework for posterior estimation algorithms entails either proposing
all parameters directly from the prior distribution or employing sequentially refined proposal
distributions [17].

Using neural networks as generative models allows SNPE to effectively handle intractable
likelihoods or complex models, enabling accurate and reliable model parameter estimates. Fur-
thermore, the sequential approach adopted by SNPE optimizes computational efficiency and re-
duces the overall computational cost of inference. Given the observed/simulation experimental
data (or summary features) xo and a mechanistic model with parameters θ, SNPE uses probabil-
ity distributions to represent both prior knowledge and the range of parameters that are consistent
with the data. SNPE produces a posterior distribution p(θ | xo) that assigns high probability to
parameters θ that align with both the observed data xo and the prior knowledge, while assigning
near-zero probability to parameters θ that do not1.4.

In order to define posterior distributions, various strategies for SNPE (Fig1.4) have been pro-
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posed, with the latest one implemented and utilized in this thesis being SNPE-C [21]. SNPE-C
enables dynamically adapting the posterior estimation using arbitrary, continuously updated pro-
posals. Thismethod is particularly significant as it overcomes limitations of existing approaches,
which are constrained by a narrow range of proposal distributions. Moreover, SNPE-C is com-
patible with powerful flow-based density estimators, making it flexible, scalable, and efficient.
Its capability to operate directly on high-dimensional time series and image data opens up new
possibilities for likelihood-free inference applications.

Figure 1.4: The algorithm (SNPE) takes three inputs: a candidate mechanistic model, prior
knowledge or constraints on the model parameters, and data (or summary statistics). SNPE
proceeds as follows: (1) it samples parameters from the prior and simulates sets of synthetic
data based on these parameters; (2) it uses a deep density estimation neural network to learn
the probabilistic association between the data (or data features) and the underlying parameters,
i.e., to learn statistical inference from the simulated data; (3) it applies this density estimation
network to empirical data to derive the entire parameter space consistent with the data and the
prior, thus obtaining the posterior distribution. Parameters consistent with the data and the prior
are assigned a high posterior probability, while inconsistent parameters are assigned a low pos-
terior probability; (4) if necessary, an initial estimate of the posterior can be used to adaptively
guide further simulations to produce results consistent with the data [22].

1.2.6 Model simulation and structure

Modeling neuronal networks entails simulating the intricate behavior of individual neurons and
their interactions within a network. These simulations serve as a cornerstone in comprehending
brain functionality and elucidating how neural activity manifests into observable phenomena,
such as extracellular electric and magnetic signals.
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By delving into the dynamics of neuronal networks, researchers gain insights into the com-
plex interplay between various neuronal components, including synaptic connections, neuro-
transmitter release, and action potential generation. These models not only provide a theoretical
framework for understanding brain function but also offer a platform for investigating the effects
of different stimuli or perturbations on neural activity [5].

There are various levels of detail in neuronal network models to predict extracellular signals
such as EEG. Biophysically detailed multicompartment (MC) neuron models strive to capture
the intricate behaviors of neurons by considering various factors such as their electrophysiolog-
ical properties, synaptic connections, and anatomical structures. These models aim to replicate
the complex dynamics observed in real neurons, providing a high level of biological realism in
simulations. They are valuable for predicting extracellular signals because they take into con-
sideration the spatiotemporal distribution of transmembrane currents. By accurately simulating
the activity of individual neurons, including the flow of ions across their membranes and the
resulting changes in membrane potential, these models can provide insights into the generation
of extracellular electrical fields. Since extracellular signals are influenced by the collective ac-
tivity of neurons in a particular region, understanding the dynamics of transmembrane currents
is crucial for predicting the patterns of extracellular signals observed experimentally. Neverthe-
less, The mechanisms governing networks of biophysically detailed multicompartment model
neurons are less accessible to analysis and these models are more prone to overfitting.

On the other hand, simplified point-neuron models focus primarily on the generation of ac-
tion potentials (spikes) in response to external stimuli. While these models are computationally
efficient and useful for certain types of analyses, they often lack the biological detail present in
multicompartment models.

Population-type models offer a broader perspective by treating groups of neurons as col-
lective entities. Instead of simulating individual neurons, these models represent the overall
activity of neuronal populations. They are valuable for understanding emergent properties and
population-level dynamics within neural circuits, but they may oversimplify the behavior of
individual neurons 1.5.

Spiking neuron network models offer a powerful framework to describe neural phenomena
at both micro- and mesoscopic scales [24]–[27]. These models occupy a unique intermediate
level of biophysical detail, allowing researchers to interpret the relationships between neuronal
and synaptic changes—mediated by molecular and cellular mechanisms—and large-scale brain
dynamics [28], [29].

In this study, it was simulated a generic recurrent network model consisting of excitatory
(E) and inhibitory (I) populations of integrate-and-fire neurons, with 8192 excitatory neurons
and 1024 inhibitory neurons. These populations were driven by external inputs modeled as
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Figure 1.5: Levels of detail for neuronal network models and roadmaps for approximate predic-
tions of brain signals. Biophysically detailed MC neuronal network models at the microscopic
scale allow direct simulation of synaptic connectivity and complete cellular dynamics, including
action potentials, spike trains, and extracellular signals (such as extracellular potential). Less
detailed point neuron network models and continuous population models (such as neuronal mass
models, mean field models, and neuronal field models) at the mesoscopic scale do not allow di-
rect predictions of extracellular signals[23].

fixed-rate Poisson processes. The network parameters were adapted from the best-fit values
reported in [23], with the exception of the synaptic weights JEE , JEI , JIE , and JII (where
JY X represents the synaptic weight from presynaptic population X to postsynaptic population
Y ), as well as the excitatory and inhibitory synaptic time constants (τsynE and τsynI) and the
weight of external synapses (Jext). These parameters were systematically varied to explore one
million distinct configurations, providing a detailed understanding of how synaptic mechanisms
influence cortical circuit activity and contribute to the generation of macroscopic brain signals
(Fig. 1.6).

The motivation for focusing on these synaptic parameters stems from their critical role
in neurodegenerative diseases [30], [31] and neurodevelopmental disorders [32]–[36], where
synaptic dysfunctions are key factors. Focusing on these specific parameters focused on in-
vestigating how variations in synaptic properties shape the behavior of the neural circuit while
holding other aspects of the model constant.

To compute the extracellular signals and Local Field Potentials (LFP) generated by the sim-
ulated synaptic activity, it was employed the LFPykernels package [23]. The current dipole
moment, serving as a proxy for the LFP, this is why it was important to describe the LFP signal
in the sections above. It was derived by convolving the population spike rates with spatiotem-
poral filter kernels. These kernels accounted for neuronal biophysics, the spatial distribution of
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Figure 1.6: The cortical network model include an excitatory and an inhibitory population of
leaky integrate-and-fire (LIF) spiking neuron models that interact through recurrent connections

cells and synapses, and network connectivity, using conductance-based multicompartment neu-
rons. For simplicity, it was adopted the reference model of ball-and-stick neurons to represent
the multicompartment network, as described in [23].

This approach allowed us to link biophysical synaptic changes to the generation of LFP
signals, offering insights into how cortical circuits contribute to macroscopic brain activity.

1.3 Dataset

In the field of neuroscience research, the use of simulated datasets plays a important role in
deepening our understanding of neural systems. Examining a simulated dataset created through
Hagen’s model [23] signifies a notable stride forward in our capacity to scrutinize brain activity.

Simulating data offers an invaluable advantage: the ability to establish a ”ground truth,”
a reliable reference point that allows us to control and validate the results of analyses. This
holds particular significance in comprehending intricate phenomena such as brain signals, as it
grants us meticulous control over experimental conditions, thus ensuring the robustness of our
findings.

Furthermore, simulating data provides us with unparalleled flexibility in exploring a wide
range of scenarios and conditions that may not be easily replicable in real experimental stud-
ies. This flexibility allows us to test hypotheses, carefully examine variations in model pa-
rameters, and gain a deeper understanding of the underlying mechanisms driving the observed
phenomenology. The dataset considered in this study consists of approximately 1 million brain
signal simulation samples (to be precise, 948,819) along with their respective parameters from
which they are generated through the model explained in the next section.
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1.3.1 Features Dataset

Given the complexity and variability of time series data, it was decided to focus analysis on a
limited set of features. To achieve this, it was used a filtered version of the hctsa[37] library.
The 22 CAnonical Time-series CHaracteristics[38], known as catch22, were carefully selected
from the time series data with the aim of significantly reducing the computational cost associated
with temporal analysis without substantially compromising classification accuracy.

# Feature name Short name Category

1 DN_HistogramMode_5 mode_5 Distribution shape
2 DN_HistogramMode_10 mode_10 Distribution shape
3 DN_OutlierInclude_p_001_mdrmd outlier_timing_pos Extreme event timing
4 DN_OutlierInclude_n_001_mdrmd outlier_timing_neg Extreme event timing
5 first1e_acf_tau acf_timescale Linear autocorrelation
6 firstMin_acf acf_first_min Linear autocorrelation
7 SP_Summaries_welch_rect_area_5_1 low_freq_power Linear autocorr
8 SP_Summaries_welch_rect_centroid centroid_freq Linear autocorr
9 FC_LocalSimple_mean3_stderr forecast_error Simple forecasting
10 FC_LocalSimple_mean1_tauresrat whiten_timescale Incremental differences
11 MD_hrv_classic_pnn40 high_fluctuation Incremental differences
12 SB_BinaryStats_mean_longstretch1 stretch_high Symbolic
13 SB_BinaryStats_diff_longstretch0 stretch_decreasing Symbolic
14 SB_MotifThree_quantile_hh entropy_pairs Symbolic
15 CO_HistogramAMI_even_2_5 ami2 Nonlinear autocorr
16 CO_trev_1_num trev Nonlinear autocorr
17 IN_AutoMutualInfoStats_40_gaussian_fmmi ami_timescale Nonlinear autocorr
18 SB_TransitionMatrix_3ac_sumdiagcov transition_variance Symbolic
19 PD_PeriodicityWang_th001 periodicity Linear autocorr
20 CO_Embed2_Dist_tau_d_expfit_meandiff embedding_dist Other
21 SC_FluctAnal_2_rsrangefit_50_1_logi_prop_r1 rs_range Self-affine scaling
22 SC_FluctAnal_2_dfa_50_1_2_logi_prop_r1 dfa Self-affine scaling

Table 1.1: Series of numbered features along with a concise description and their corresponding
short names

Below is a specific description of each feature regarding its informative content:

16



• Mode_5 and Mode_10: These features analyze the shape of the distribution of time-
series values by identifying the most common values within the data. Mode_5 divides the
time series into 5 bins, while Mode_10 divides it into 10 bins. They provide insights into
the positioning of the most probable values relative to the mean, highlighting whether the
distribution is concentrated around the mean or dispersed.

• Outlier_timing_pos and outlier_timing_neg: Timing of Extreme Events Features as-
sess the timing of extreme events concerning the start and end of the time series. They
measure whether over-threshold events, which could be positive or negative deviations
from the mean, tend to occur near the start of the time series, are approximately equally
likely to happen anywhere throughout the time series, or are more frequently observed
near the end of the time series. By analyzing these patterns, these features capture aspects
related to the stationarity of over-threshold events, indicating whether their occurrence
remains consistent or changes over time.

• Acf_timescale: This feature quantifies the scale of autocorrelation within a time series,
indicating how far into the future a value at the current point remains substantially corre-
lated with a future point (>1

e
correlation).

• Acf_first_min: this features computes the first minimum of the autocorrelation function.
It exhibits similar behavior.

• Periodicity: This feature detects periodic patterns in the time series, indicating regular
repetitions of values at consistent intervals. Such periodic behavior reveals recurring pat-
terns within the data, offering insights into the cyclic nature of the observed phenomenon.

• Low_freq_power: This feature calculates the relative power in the lowest 20% of fre-
quencies in a time series. High values indicate dominance of low frequencies, while
low values suggest higher frequency dominance. The power spectrum is estimated us-
ing Welch’s method with a rectangular window

• Centroid_freq: This feature calculates the frequency based on the higher predominance
frequencies.

• Trev: This feature calculates the average of the cube of successive differences in the time
series. If increases tend to be larger in magnitude, it yields a positive value; if decreases
are larger, it yields a negative value. Essentially, it qualitatively reveals the asymmetry
of the time series.

• Ami2: This feature represents a nonlinear variation of the autocorrelation function. In-
stead of employing a traditional linear correlation metric, it utilizes a nonlinear correlation

17



metric, specifically mutual information. The evaluation is conducted using a histogram
with 5 bins and at a time delay of τ = 2.

• Ami_timescale: This feature offers an assessment of the timescale at which the time
series exhibits significant (potentially nonlinear) autocorrelation. It is calculated as the
minimum value of the automutual information function, which evaluates the level of in-
formativeness between observations at a given time interval compared to observations at
subsequent time intervals. This measurement provides an estimate of the characteristic
timescale where the time series displays substantial autocorrelation structure.

• Entropy_pairs: This feature divides the time series into three equal parts (’A’, ’B’, ’C’)
based on value ranges. Then, it calculates the entropy of the probabilities of all two-letter
sequences (’AA’, ’AB’, ’BB’, etc.). Low entropy suggests predictable sequences, while
high entropy indicates less predictable sequences.

• Transition_variance: This feature divides the time series into three equal parts (’A’, ’B’,
’C’) based on their quantiles. It then identifies the time delay, denoted as τ, by locating the
first zero-crossing of the autocorrelation function. This feature quantifies the specificity
of transitioning from one state to another over the timescale determined by τ. Higher
values suggest more ordered series with distinct state transition rules, while lower values
indicate noisier series with more uniform transition probabilities.

• Stretch_decreasing and Stretch_high: This two features measure the maximum length
of time during which similar consecutive local patterns are observed. The former calcu-
lates the longest sequence of successive steps in the time series that decrease, while the
latter computes the longest sequence of successive values in the time series that are greater
than the mean.

• High_fluctuation: This feature assigns low values to time series with periods where the
values remain approximately constant (within 0.04 standard deviations), and high values
to series that do not exhibit such constant periods. Additionally, it monitors and identifies
sudden increases in amplitude within the time series.

• Whiten_timescale: This feature computes the ratio between the autocorrelation of incre-
mental differences between successive pairs of time-series values and the autocorrelation
for the original time series. A higher ratio suggests that the residuals are more consistent
with the original time series, while a lower ratio indicates greater divergence between the
two. Suggesting a metric for assessing the predictability of fluctuations between succes-
sive time points in the time series.
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• Forecast_error: This feature computes the error from using the mean of the previous 3
values to predict the next value in the time series. It measures the standard deviation of the
residuals from a set of simple 1-step forecasts. A low value indicates that the time series
is easy to predict, as the mean of the previous 3 time steps serves as a good predictor of
the current value.

• Rs_range: This features aim to capture potential long-range correlations in time series
by analyzing fluctuations. it utilizes rescaled range analysis to estimate points in a log-
arithmic timescale–fluctuation space. Time series that exhibit rapid changes over short
timescales will receive low values for this feature.

• Dfa: This features also aim to capture potential long-range correlations in time series
through fluctuation analysis. One feature measures the same property as before but from
a timescale–fluctuation curve estimated using detrended fluctuation analysis, employing
linear detrending in each window after down-sampling the time series by a factor of 2.

• Embedding_dist: This feature begins by embedding the time series into a two-
dimensional space using a time delay determined by the first zero-crossing of the au-
tocorrelation function. It then calculates the distances between successive points in this
embedding space and examines the probability distribution of these distances. The feature
outputs the mean absolute error of an exponential fit to this distribution.

1.3.2 Parameters

Each neuron receives connections from other neurons in the network, both excitatory and in-
hibitory, and also receives an external input, that is the same for both excitatory and inhibitory
neurons. These parameters play a critical role in defining the behavior of the network and its
response to external stimuli.

• JEE (Excitatory-Excitatory Synapses): This parameter represents the synaptic efficacy
of excitatory connections transmitting signals from excitatory neurons to other excitatory
neurons within the same population. It indicates the strength of excitatory synapses and
influences the network’s ability to generate intrinsic excitatory activity and propagate
signals through the network.

• JII (Inhibitory-Inhibitory Synapses): This parameter represents the synaptic efficacy
of inhibitory connections transmitting signals from inhibitory neurons to other inhibitory
neurons within the same population. It controls inhibitory activity in the network and
regulates the balance between excitation and inhibition.
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• JIE (Excitatory-Inhibitory Synapses): This parameter indicates the synaptic efficacy of
excitatory connections transmitting signals from excitatory neurons to inhibitory neurons.
It regulates the influence of excitatory inputs on the inhibitory population and can have a
significant impact on the network dynamics.

• JEI (Inhibitory-Excitatory Synapses): This parameter represents the synaptic efficacy
of inhibitory connections transmitting signals from inhibitory neurons to excitatory neu-
rons. It controls inhibitory activity that modulates excitatory activity in the network and
can influence the network’s ability to generate and regulate neuronal spikes.

• τE (Excitatory Time Constant): This parameter represents the characteristic response
time of neurons integrate excitatory synaptic inputs.

• τI (Inhibitory Time Constant): This parameter represents the characteristic response
time of inhibitory postsynaptic potentials.

• Jext (External Input): This parameter represents the external input that affects both pop-
ulations of excitatory and inhibitory neurons. It can represent external stimuli or inputs
from other regions of the brain or nervous system.

Further, it was decided The [E/I]net like a new metric.

[E/I]net =

(︃

JEE

JIE

)︃

/

(︃

JII

JEI

)︃

It is defined as the ratio between predicted EI of excitatory and inhibitory populations, re-
spectively. This summary measure quantifies the net effect of excitatory and inhibitory pro-
cesses in the circuit model and may be seen as a global EI ratio from model simulations. It is a
convenient metric because the synaptic parameters of recurrent connections (J_YX) are difficult
to be interpreted alone as they are strongly coupled and interrelated. Additionally, in the real
world, we don’t know about any brain disease or artificial manipulation of brain activity that
modifies only one synaptic parameter alone. For example, when you chemogenetically inhibit
pyramidal neurons, both J_EE and J_IE are directly affected. However, for interpreting results,
it is complicated to analyze a change of a parameter without considering a change in the other
parameters simultaneously.

Overall, these parameters define the properties and dynamics of the neural network, includ-
ing how it responds to external inputs, how it self-organizes, and how it generates and transmits
signals within the network.
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1.3.3 Software and hardware

The SBI (Simulation-Based Inference) library is a Python toolbox [39] designed for simulation-
based inference. Instead of relying on complex analytical models, SBI enables users to formulate
models through direct computational simulations. Additionally, SBI provides a set of tools and
techniques optimized for simulation-based inference, allowing users to efficiently explore the
parameter space of the model and obtain robust probabilistic estimates. It has been supported
by the German Federal Ministry of Education and Research (BMBF) through project ADIMEM
(FKZ 01IS18052 A-D), project SiMaLeSAM (FKZ 01IS21055A) and the Tübingen AI Center
(FKZ 01IS18039A).

For the calculation of brain activity simulations to construct the dataset, NEST [40] was
employed for running the simulations. NEST is a powerful tool designed for simulating large-
scale neural networks, enabling the modeling of complex neuronal interactions and dynamics
across extensive populations of neurons. LFPykernels [41] were used to calculate kernels de-
rived from simulated brain activity, which are critical to understanding how simulated neural
activity translates into measurable electrical signals.

Due to the significant data load and consistent computational demand for calculating re-
sults and executing algorithms, it was necessary to utilize the supercomputers of University of
Granada. It is composed into different parts, with the most recent one known as ’ALBAICÍN’
[42]. Its architecture is a powerful server infrastructure designed to deliver high performance
across a wide range of computational applications. Here are some additional specifications:

• 168 Nodes with 56 Cores and 192 GB of RAM: These nodes provide substantial com-
puting power for medium to large-scale workloads. Each node is equipped with 56 cores
and 192 GB of RAM.

• 2 Nodes with 56 Cores and 1 TB of RAM: These two nodes boast a large amount of
RAM, totaling 1 TB each, making them suitable for applications requiring management
of large datasets or complex computational simulations.

• Infiniband HDR200 Interconnection: The Infiniband HDR200 connectivity ensures
high bandwidth and low latency, facilitating fast and efficient communication between
cluster nodes.

• 822 TFLOPS Linpack Rmax: This measurement indicates the maximum computing
power achievable by the system, assessed using the Linpack benchmark. With 822
TFLOPS, the system offers significant computing capacity, ideal for applications requir-
ing intense computational performance.

It offers a total of 9520 cores, 184 terabytes of hard drive memory, and 35 terabytes of RAM.
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1.3.4 Multiprocessing and Multithreads

The operating system plays a crucial role in resource allocation to processes, and to improve
CPU utilization, multiprocessing and multithreading are two fundamental approaches.

Multiprocessing involves executing multiple processes using two or more processors si-
multaneously. This approach can significantly enhance system performance by distributing the
workload across multiple processing units.

• Symmetric Multiprocessing (SMP): In this model, all processors have uniform access
to memory and I/O resources. Each processor performs tasks independently without any
hierarchy.

• Asymmetric Multiprocessing (AMP): Here, processors follow a master-slave architec-
ture. The master processor manages process allocation and resource management, while
the slave processors execute the tasks assigned by the master. This model can simplify
task management but may introduce bottlenecks if the master becomes overloaded.

Multithreading, on the other hand, involves dividing a single process into multiple threads
that run concurrently. This approach allows a process to handle multiple tasks in parallel without
the need to create separate processes, making it more resource-efficient. Specifically, the key
differences are:

• Multiprocessing: Involves executing multiple processes on two or more processors.
Each process is independent and requires separate resources.

• Multithreading: Involves executing multiple threads within a single process. Threads
share common resources, reducing overhead and improving efficiency.

In this study, due to the high computational load caused by the SBI model, it became neces-
sary to use these techniques to optimize and reduce code execution time. Initially, a multithread-
ing approach was attempted, but it proved inefficient because it did not allow for separate control
signal handling for the interruption of each created thread. Therefore, an asymmetric multipro-
cessing (AMP) approach was adopted, made possible by utilizing the UGR server, which allows
for distributing the computational load across up to four nodes, including the master node [43].

1.4 Posterior Diagnostics

1.4.1 Interquartile range (IQR)

In statistics, the interquartile range (IQR) is a measure of statistical dispersion and is defined as
the difference between the third quartile (Q3) and the first quartile (Q1) of a dataset. A quartile
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is one of three markers that divide a dataset into four equally sized groups, each containing
approximately 25% of the data points. The first quartile, or lower quartile (Q1), marks the 25th
percentile, while the third quartile, or upper quartile (Q3), marks the 75th percentile 1.7.

The IQR is useful because it quantifies the spread of the middle 50% of the data, providing
a measure of central dispersion that is not influenced by extreme values. This makes the IQR
particularly robust in the presence of outliers, unlike other measures of dispersion such as the
range or standard deviation, which can be significantly affected by outliers.

To calculate the IQR, you must first determine the median of the dataset. The median is the
midpoint value that separates the higher half from the lower half of the data. Once the median
is identified, the dataset is divided into two halves: the lower half (below the median) and the
upper half (above the median).

The first quartile (Q1) is calculated as the median of the lower half of the dataset:

Q1 = Median of lower half of data

Similarly, the third quartile (Q3) is calculated as the median of the upper half of the dataset:

Q3 = Median of upper half of data

The interquartile range (IQR) is then computed as:

IQR = Q3−Q1

Despite its usefulness, the IQR has limitations. It does not provide information about the
outliers or the overall shape of the data distribution; it only reflects the spread of the middle 50%
of the data. Additionally, the IQR can be biased by small sample sizes, potentially not capturing
the true variation within a population. However, it remains a valuable tool for understanding
data dispersion, particularly when dealing with datasets containing extreme values [44].

1.4.2 Parameter Recovery Error (PRE)

When working with a posterior approximation Φ, it is beneficial to examine its behavior across
different regions of the parameter space. For a given configuration of parameters θ0 and a sim-
ulated output x0 ∼ p(x|θ0), we measure how concentrated Φ(θ|x0) is around θ0. This measure
is known as the Parameter Recovery Error (PRE)[45].

To calculate the PRE, we compare the marginal distribution Φ(θ|x0) with a Dirac delta cen-
tered at θ0[k]. Practically, we estimate the PRE as follows:
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Figure 1.7: Rappresentation of the interquartile range (IQR)like the difference between the third
quartile of your data and the first quartile of your data on boxplot.

PREk(Φ, θ0) =
1

N

N
∑︂

i=1

(θi[k]− θ0[k])
2

where N samples {θ1, . . . , θN} ∼ Φ(θ|x0) are generated from our posterior approximation
conditioned on x0 ∼ p(x|θ0), which is an observation from the simulator at the true value θ0.

In a model with multiple parameters, θ0 represents a vector of k distinct parameters, i.e.,

θ0 = (θ0[1], θ0[2], . . . , θ0[k])

This means that each component of θ0 (i.e., each θ0[k]) represents a specific parameter of
the model.

To evaluate how well the posterior approximation Φ(θ|x0) recovers each individual param-
eter θ0[k], a PRE value is calculated for each parameter. Thus, we obtain k distinct PRE values,
one for each parameter.

In other words, each parameter θ0[k] is mapped from its defined interval in the prior distri-
bution to the interval (0, 1). This means that regardless of the original range of the parameters,
they are transformed into a standardized interval from 0 to 1.

• A maximum PRE of 1.0 indicates the worst possible parameter recoverability, meaning
that the posterior samples are far from the true value θ0[k].

• A PRE of 0.0 indicates perfect recoverability, meaning that the posterior samples are
exactly equal to the true value θ0[k].

This normalization provides a standardized measure of error, regardless of the different
scales of the original parameters.

This mapping allows for the comparison of estimated parameter values with true values on
a common, normalized scale. Here’s why this transformation is necessary:
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• Consistency in Measures: Mapping both θ0[k] and the samples from the posterior dis-
tribution Φ(θ|x0) to the interval (0, 1) ensures that we are comparing values on the same
scale. This makes the PRE measure meaningful and comparable across different param-
eters.

• Comparability between Parameters: Different parameters may have vastly different
value ranges. For instance, one parameter might range from 0 to 1000, while another
ranges from 0 to 1. Without normalization, PRE values would not be comparable, as
an error of 0.1 has very different implications across different ranges. By mapping all
parameters to the interval (0, 1), we can meaningfully compare PREs across different
parameters.

• Interpretation of PRE: When all parameters are mapped to the interval (0, 1), the PRE
has a clear and interpretable meaning. A PRE of 1.0 indicates the maximum possible error
(i.e., the samples are at the extreme of the interval relative to the true value), while a PRE
of 0.0 indicates perfect parameter recovery.

1.5 Objective & Motivation

Understanding the intricate wiring patterns of neurons within the brain and their function is es-
sential for unraveling the complex mechanisms underlying brain function. In particular, study-
ing the interplay between excitatory and inhibitory dynamics within cortical circuits provides
crucial insights into how synaptic mechanisms contribute to overall brain activity. The role of
synaptic dysfunction in neurodegenerative diseases and neurodevelopmental disorders under-
scores the importance of focusing on the balance of excitation and inhibition within neural cir-
cuits. For example, in Alzheimer’s disease and other neurodegenerative conditions, alterations
in synaptic strength and connectivity often precede the onset of clinical symptoms, highlighting
the need for early detection methods that target these underlying synaptic changes [30], [31].
Similarly, in neurodevelopmental disorders such as autism spectrum disorder and schizophre-
nia, disruptions in the excitatory/inhibitory (E/I) balance are thought to contribute to the core
cognitive and behavioral symptoms observed in these conditions [32]–[34].

Recent advancements in the field of connectomics have enabled researchers to gather vast
datasets on neuronal connectivity, facilitating detailed mapping of the brain’s structural net-
works.However, despite the tremendous progress in data acquisition, translating this wealth of
connectivity data into actionable insights about the functional principles governing neuronal
communication remains a formidable challenge. The brain’s connectivity is highly complex,
involving a dense web of excitatory and inhibitory connections that interact dynamically across
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multiple spatial and temporal scales. Extracting meaningful patterns from these connections
requires not only advanced computational tools but also a deeper understanding of how these
connectivity patterns influence the emergent properties of brain networks, such as oscillatory
dynamics, synchronization, and signal propagation.

Simulation-based Bayesian inference (SBI) has emerged as a promising approach to ad-
dress this challenge by leveraging computational models to infer the parameters of hypothesized
wiring rules. By simulating neuronal networks and comparing the resulting synthetic data with
empirical observations, SBI enables researchers to systematically explore the space of possible
wiring rule parameters and identify those that best replicate real-world connectivity patterns.

The objective of this study was to develop a robust approach for determining feature im-
portance in the context of cortical circuit parameter inference. To achieve this, we generated a
dataset comprising one million distinct simulations from a spiking cortical microcircuit model,
featuring recurrently connected excitatory and inhibitory neuronal populations. Realistic lo-
cal field potential (LFP) data were obtained by applying biophysics-based causal filters to the
simulated spike activity. From these LFP simulations, we extracted a comprehensive set of
meaningful features that were used to train a SBI algorithm. To assess the significance of each
feature in predicting model parameters, we employed differents tecnich like mutual information
(MI), principal component analysis (PCA) and SHAP values, a widely-used method in machine
learning that provides detailed insights into the contribution of each feature to the prediction
outcomes.
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Chapter 2

Methods

2.1 Features Analysis

2.1.1 Correlation

Correlation is a fundamental concept in science, particularly in statistics and scientific research,
as it provides a way to measure and understand the degree of relationship between two variables.
In simple terms, it indicates whether and how much two variables tend to vary together. There
are different types of correlation [46], but one of the most common is Spearman’s correlation.

Spearman’s correlation is a non-parametric measure of correlation that assesses the mono-
tonic relationship between two variables. This means that, instead of being based on the actual
values of the variables, it is based on the ordinal classifications of observations. In other words,
it evaluates whether there is a general trend between the variables without assuming a specific
functional relationship.

Spearman’s correlation is often used when the data do not meet the requirements for the
application of Pearson’s correlation, for example, when the data are nominal or ordinal rather
than continuous, or when the relationship between the variables is nonlinear [47].

Spearman’s correlation provides a correlation coefficient, known as Spearman’s correlation
coefficient or rho (ρ), which ranges from -1 to +1. A value of +1 indicates a perfect positive
correlation, a value of -1 indicates a perfect negative correlation, and a value of 0 indicates
no correlation. Spearman’s correlation is used in a wide range of scientific fields.[48]. It is
employed to examine relationships between variables in observational studies, to assess the
reliability of measures or tests, and to identify potential associations between phenomena.

Spearman’s correlation is an important statistical technique for measuring and understanding
the relationship between two variables, especially when the data do not meet the requirements
for other forms of correlation or when the relationship between the variables is nonlinear.
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2.1.2 Mutual Information

Mutual Information (MI) between two random variables measures the nonlinear relationships
between them and indicates how much information can be obtained from one random variable
by observing another.

It is closely related to the concept of entropy, as it can be interpreted as the reduction of
uncertainty of a random variable if another is known. Another use is for feature selection. When
having a big dataset with a big range of features, mutual information can help to select a subset
of those features in order to discard the irrelevant ones.

The formula for calculating the mutual information for two discrete random variables is:

I(X;Y ) =
∑︂

y∈Y

∑︂

x∈X

p(X,Y )(x,y) · log
(︃

p(X,Y )(x,y)

pX(x) · pY (y)

)︃

Where pX and pY are the marginal probability density functions and pXY is the joint proba-
bility density function. To compute the mutual information for continuous random variables, the
summations are replaced by integrals As explained before, it is related to entropy. This relation
is shown in the following formula:

I(X;Y ) = H(X) +H(Y )−H(X,Y ) = H(X,Y )−H(X|Y )−H(Y |X)

Entropy (H) measures the level of expected uncertainty in a random variable. Therefore,
H(X) is approximately how much information can be learned from the random variable X by
observing just one sample.

H(X) = −
∑︂

xi∈X

P (X = xi) · log(P (X = xi))

The joint entropymeasures the uncertainty when considering two random variables together.
The conditional entropyH(X,Y ) measures how much uncertainty the random variable X has
when the value of Y is known. In other words if X and Y are independent then MI will be
zero and greater than zero if they are dependent. This implies that one variable can provide
information about the other thus proving dependency. The definitions provided above are given
for discrete variables and the same can be obtained for continuous variables by replacing the
summations with integrations [49].

Mutual information is a useful measure for quantifying nonlinear relationships between ran-
dom variables and also between variable and target for assessing how much information one
random variable provides about another random variable or specific target. Its interpretation is
crucial for better understanding the nonlinear relationships intrinsic to the dataset, which could
be essential for data analysis and statistical modeling.
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2.2 Evaluation of Features Importance

A fundamental property of a unique feature is its ability to contain useful information about the
different classes within the data. This property, known as feature relevance, measures a feature’s
usefulness in discriminating between different classes [50].

The issue of feature relevancy is crucial, and numerous publications[50][51][52] have pro-
posed various definitions and measurements for the relevance of a variable. A general definition
states that a feature can be regarded as irrelevant if it is conditionally independent of the model
output. Essentially, this means that while a feature can be independent of the input data, it cannot
be independent of the model output. In other words, a feature that does not influence the class
labels could be discarded. By focusing on relevant features, we can reduce the dimensionality
of the data, mitigate the risk of overfitting, and improve the interpretability and efficiency of the
model.

Moreover, understanding and quantifying feature relevancy is not just about eliminating
irrelevant features but also about recognizing the interplay between features. Highly correlated
features may share redundant information, suggesting that only one of them might be sufficient
for the model. Conversely, features that provide unique, non-redundant information are crucial
because they capture different aspects of the data’s underlying structure.

However, it is also important to consider that a variable, which may appear completely use-
less by itself, can provide a significant performance improvement when taken in combination
with other variables due to the interactions between features[50][53]. These interactions can
have a substantial impact on the model’s performance, highlighting the complexity and interde-
pendence of features within the dataset.

2.2.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a fundamental technique in the realm of dimensionality
reduction, widely employed to simplify large datasets by transforming a voluminous set of vari-
ables into a more manageable and concise representation. The essence of PCA lies in its ability
to reduce the number of variables while retaining the majority of the original data’s information.
This reduction facilitates easier exploration, visualization, and analysis of data, enhancing both
efficiency and clarity in data processing.

In PCA, ”information” is quantified as the total variability present in the original input vari-
ables, essentially the sum of the variances of these variables. The core of PCA is the spec-
tral decomposition (also known as eigendecomposition) of the sample variance-covariance ma-
trix. This decomposition yields the eigenvalues and eigenvectors of the covariance matrix. The
eigenvalues, ordered in descending magnitude, represent the amount of total variability in the
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original variables “explained” or “expressed” by each principal component. The corresponding
eigenvectors denote the orthogonal directions of maximum variability derived from the principal
components.

Principal components are constructed as new variables through linear combinations of the
original variables. These combinations are designed to ensure that the new variables (i.e., princi-
pal components) are uncorrelated and encapsulate most of the information from the initial vari-
ables within the first few components. By organizing information in this manner, PCA enables
dimensionality reduction with minimal loss of information, achieved by discarding components
with low information content and retaining those with significant variance [54].

Figure 2.1: The purple line represents the first principal components at which explain the highest
variance.

However, it is crucial to acknowledge that principal components, being linear combinations
of the original variables, are less interpretable and do not possess intrinsic meaning. Geomet-
rically, principal components represent the directions in the data that account for the maximum
variance, essentially the axes along which data dispersion is greatest. The relationship between
variance and information implies that a line carrying larger variance exhibits greater data disper-
sion along it, hence more information. Conceptually, principal components can be envisioned
as new axes providing optimal angles to view and evaluate data, enhancing the visibility of
differences between observations.

The construction of principal components matches the number of variables in the dataset,
with the first principal component capturing the maximum possible variance. Mathematically,
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this component is the line that maximizes the variance, represented as the average of the squared
distances from the projected points to the origin(Fig. 2.1 ). The second principal component,
orthogonal to the first, accounts for the next highest variance and is calculated similarly.

Standardization of variables is often essential in PCA, particularly when there are significant
differences in the variances of the original variables. Without standardization, variables with
higher variance may dominate the principal components, skewing the analysis. Consequently,
principal components should typically be derived from the covariance matrix only when all
original variables operate on approximately the same scale. In datasets where variables differ
in type and origin, the structure of principal components will depend on the arbitrary choice of
measurement units, underscoring the importance of standardization [55].

PCA offers a robust methodology for dimensionality reduction, preserving critical informa-
tion while simplifying data structures. Its mathematical and geometric foundations ensure that it
remains a pivotal tool in the analysis of complex datasets, facilitating clearer insights and more
efficient data processing.

2.2.2 Shapley Additive Explanations (SHAP)

Shapley Additive Explanations (SHAP) is a powerful method for interpreting and explaining
machine learning model predictions by attributing importance scores to input features. Machine
learning models have become increasingly complex, making it difficult for users to understand
and trust their predictions. SHAP addresses this issue by providing a way to explain the contri-
butions of each feature to a model’s prediction for a specific instance.

SHAP is a model-agnostic method (i.e., it can be applied to different types of machine learn-
ing models) and belongs to the class of additive feature attribution methods; meaning that it
attributes an effect of a feature xi on the prediction of a model f(x). Such methods construct a
simple additive explanation model, g—which is a linear function of binary variables—to repre-
sent the complex original model, f . In the SHAP framework, the explanationmodel is expressed
as a ”conditional expectation function of the original model” [20].

Given simplified inputs x′, the original input can be mapped through a mapping function hx,
where x = hx(x

′). This ensures that g(z′) ≈ g(hx(z
′)) whenever z′ ≈ x′, with z′ ∈ {0,1}M

andM representing the number of simplified input features.
Consequently, an effect φi, where φi ∈ R, is attributed to each feature, and the sum of these

effects approximates f(x) as follows:

f(x) ≈
M
∑︂

i=1

φi

This quantification is based on the concept of Shapley values, which are a concept from co-
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operative game theory that provides a fair way to distribute rewards among players (or features).
They are calculated by considering all possible permutations of players and determining

the marginal contribution of each player to the total reward. This ensures that each player’s
contribution is fairly recognized, taking into account the interactions between players and their
individual impact on the game’s outcome. At its core, the Shapley Value is a fair value allocation
method, a way to distribute total gains (or losses) among participants in a multi-player setting,
ensuring each one gets their due based on their contribution.

The Shapley value for a player i is the average of their marginal contributions to all possible
coalitions they can join. The formal definition is:

φ(i) =
∑︂

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
[v(S ∪ {i})− v(S)]

In this equation:

• φ(i) represents the Shapley value for player i.

• The sum is taken over all subsets S of the set N that don’t include player i.

• |S| is the size of subset S, and |N | is the total number of players.

• v(S) is the value function, which assigns a value to each coalition of players.

• The formula effectively averages the marginal contributions of player i across all possible
coalitions.

This equation may look complicated, but it’s essentially a method to average all possible
contributions of a player (or feature) across different coalitions [56].

In this setting, Shapley values help to fairly distribute a model’s prediction among its in-
put features, providing insight into the importance of each feature. To define the influence of
features on the model they focus and take into account certain proprieties

• Local Accuracy (Additivity): This property ensures that the sum of the individual feature
attributions equals the original model prediction. If a model’s prediction for a particular
instance is f(x), then the sum of the Shapley values of all features for that instance should
also be f(x).

Mathematically, for a model f and input instance x:

f(x) =
m
∑︂

i=1

φi

where φi is the Shapley value corresponding to feature i for the instance x.
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• Consistency (Symmetry): Consistency ensures that if a feature contributes more to a
model’s prediction in onemodel compared to another, then its Shapley value should reflect
this difference. If changing a feature value has a larger impact on modelA than on model
B, the Shapley value (feature importance) for that feature should be higher in model A
than in model B.

• Nonexistence (Null Effect): If a feature does not contribute to the model’s prediction
regardless of the presence of other features, its Shapley value should be zero. This means
that for any feature that has no impact on the output of the model, the Shapley value will
reflect that it has no importance.

The SHAP framework leverages the properties of Shapley values to provide a unified ap-
proach to feature attribution inmachine learningmodels. SHAP values are derived from Shapley
values and adapted for interpreting the output of complex models.

These properties can be examined by representing feature weights as Shapley values. A cru-
cial aspect involves weighting artificial samples appropriately to link Shapley values with the
LIME approach [57][20]. LIME is an approach that explains model predictions by approximat-
ing the model locally around the instance to be explained.

The LIMEmethodology generates the explanation xi of an instance x according to Equation:

ξ(x) = argmin
g∈G

L(f, g, πx) + Ω(g)

where:

• G is a class of interpretable (linear) models.

• L is the loss function to minimize.

• πx is the proximity measure between an instance z(approximation) and x (kernel defining
locality).

• Ω(g) is an optional regularization term to control (limit) model complexity.

While LIME uses heuristic choices to select the model and weighting function, SHAP re-
fines this approach by introducing a kernel function directly related to the definition of Shapley
values, ensuring that the feature weights follow the axioms of local accuracy and consistency.
Kernel SHAP approximates feature contributions using Shapley values, whereas the original
LIME approach defines the locality of an instance heuristically. Kernel SHAP necessitates a
background dataset for training, simulating feature absence by replacing feature values with
prevalent values from the training data. It then trains a weighted linear regression model, g, as
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the explanation model based on artificial samples created by toggling features on or off, which
corresponds to considering various feature sets. The coefficients of model g are the SHAP values
that determine feature importance [58].

Specifically, SHAP uses the following procedure for interpreting an instance:

• Training Data Clustering: The training data is organized using k-means clustering to
create a set of k representative samples. These samples are weighted according to the
number of training instances they represent, forming a background data set with typical
feature values.

• Generating Artificial Samples: Artificial samples are generated by systematically re-
placing features of the test instance x with values from the background data set. This
process creates variations of the test instance with different combinations of original and
background feature values.

• Weighting Artificial Samples: These artificial samples are weighted using the SHAP
kernel function. The kernel function is designed to assign weights in a manner consis-
tent with the Shapley value definition, ensuring that the importance of each feature is
accurately captured.

• Training a Linear Model: A weighted linear regression model g is trained using the
weighted artificial samples. The goal of this model is to approximate the original model
f locally around the instance x. The coefficients of this linear model correspond to the
Shapley values, providing feature importance estimates.

The SHAP method offers significant advantages for machine learning models, particularly
in terms of transparency and trust. By explaining the contributions of each feature to a model’s
prediction, SHAP helps users understand and trust complex models, which is crucial for de-
ployment in sensitive areas such as healthcare, finance, and legal systems. In this study, we
investigated which features impact a single parameter and how they do so using two metrics:
themean and the interquartile range (IQR). Themean identifies how the central, high-probability
value of the parameter shifts in response to changes in the features, providing insight into the
general direction and magnitude of the parameter’s response. In contrast, the IQR focuses on the
variability or variance within the parameter’s distribution, revealing the spread of the parameter
values and how this spread changes with different feature values. By employing both metrics,
we obtain a comprehensive understanding of how features influence the parameter, considering
both central tendency and distribution variability.
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Chapter 3

Results and Discussion

3.1 Features Analysis

3.1.1 Data visualization

In this section, with the aid of graphs and visualizations, it will be explore the dataset to gain a
preliminary understanding of the collected data.

Figure 3.1: Violin plot of normalized features
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By employing graphical representations, the relationships was analyzed between different
variables and assess their significance and impact within the dataset.

Figure 3.2: Zoom of violin plot of normalized features

In Figure 3.2 The violin plot of the 22 normalized features extracted reveals significant
insights into the distribution and variability of these features. Features likemode_5 andmode_10
display broad distributions, indicating a wide range of common values, with mode_10 shows
more detail due to finer binning.

Features such as outlier_timing_pos and outlier_timing_neg capture the timing of extreme
events, with their spread suggesting variability in the occurrence of such events, indicating po-
tential non-stationarity. Autocorrelation-related features like acf_timescale and acf_first_min
show distributions that highlight the persistence and initial decay of correlations within the se-
ries, showing a greatly variability.

Features such as low_freq_power and centroid_freq provide insights into the frequency do-
main, where broader distributions in low_freq_power suggest varying dominance of low fre-
quencies across samples. The trev feature reveals asymmetry in the time series, with its distri-
bution indicating variability in the magnitude of increases versus decreases.

Trend-related features such as stretch_decreasing and stretch_high measure the persistence
of trends, with their distributions reflecting how often certain patterns persist. The high_fluctua-
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tion feature highlights the stability of the series, with higher values indicating less stable periods.
Predictability measures like forecast_error and whiten_timescale offer insights into the ease of
forecasting the series. Long-term correlation features such as rs_range and dfa reveal poten-
tial long-term dependencies, with their distributions indicating a sustained maintenance of the
patterns.

3.1.2 Relationship between parameters of a cortical model and features

Prior to investigating the impact of features on the outcomes of the SBI prediction model, the
initial focus was on analyzing the relationships between cortical model parameters and LFP-
derived features. To identify potential associations between the model parameters and these
features, it was computed the mutual information between each catch22 feature and each pa-
rameter of the model.

To detect the relationship intra-features dataset it can be considered Fig. 3.3, it is noted that
the features Mode_5 and Mode_10 show a strong positive correlation (0.68), suggesting that
dividing the time series into 5 or 10 bins provides similar information about the distribution of
values.

Similarly, Outlier_timing_pos and Outlier_timing_neg are highly correlated (0.96), indicat-
ing that the timings of extreme positive and negative events tend to occur at similar moments.

The transition_variance exhibits a strong negative correlation with outlier_timing_pos
(-0.96), outlier_timing_neg (-0.95), whiten_timescale (-0.92), high_fluctuation (-0.92), and
stretch_high (-0.92). This suggests that variable transitions are inversely proportional to the
timings of extreme events and autocorrelation timescales, while the positive correlation with
low_freq_power indicates that greater variability and noise in transitions are associated with
lower fluctuations and stretching in the data.

Both rs_range and dfa are strongly negatively correlated with outlier_timing_pos (-0.98),
outlier_timing_neg (-0.99), high_fluctuation (-0.79), and stretch_high (-0.95), suggesting an
association with extreme event timings, high fluctuations, and data stretching. Additionally,
they are negatively correlated with acf_timescale (-0.94) and whiten_timescale (-0.93), indicat-
ing that a larger RS range is associated with shorter autocorrelation timescales. Examining the
correlations of entropy_pairs, ami2, periodicity, and embedding_dist, it is observe a low corre-
lation with most other features. This suggests that these metrics are relatively independent and
not strongly influenced by other aspects of the system. The structural complexity captured by
these metrics is not directly related to the variations and dynamics captured by the other features,
thus providing unique and complementary information.

By analyzing both the correlation matrix Fig. 3.3 and the Mutual Information (MI) Fig.
3.4 matrix among the features, it can be seen similar patterns of interdependence. This sug-
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Figure 3.3: Spearman’s correlation between features

gests that the same pairs of variables that exhibit strong correlation also tend to have high MI
values, indicating a close dependency. Transition_variance, for example, shows a high corre-
lation with dfa and rs_range. This elevated correlation suggests that transition_variance, dfa,
and rs_range share a substantial amount of information. The redundancy among these variables
could lead to multicollinearity, negatively impacting the model’s stability and performance.
Thus, reducing or transforming these variables might be necessary. Nevertheless they show
a strong and significant correlation with parameters. In addition, Mode_10 and Mode_5 have
an high MI value, indicating a strong dependency, it might be appropriate to remove one of
them. Entropy_pairs, ami2, periodicity, and embedding_dist exhibit weak relationships with
other variables. Entropy_pairs shows relatively weak relationships with other variables, poten-
tially providing unique information not captured by other features. Similarly, Periodicity and
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Embedding_dist have low MI values with most other variables, suggesting it might contribute
unique information to the model.

Figure 3.4: Mutual information(MI) between features

To explore potential associations between model parameters and features it was computed
the correlations between key parameters and various system features (Fig. 3.5), and it can be
see a low general correlation, in particular in the first four coloums. However, it can be seen in
figure 3.6 like the new parameters adopted [E/I]net is more correlated on the parameter respect
to his components.

These parameters ([E/I]net, τsynE , τsynI) show strong correlations with various features,
highlighting how they significantly modulate the behavior and characterization of the simulated
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output signal, influencing the system’s complexity and variability. In particular, it is noticeable
how some features generally appear to be more correlated than others across all parameters like
low_freq_power, trancition_variance, rs_range and dfa

The high correlations, both positive and negative, indicate the presence of underlying com-
plex dynamics affecting the system’s behavior. This suggests that the system is highly interde-
pendent and that the measured metrics often represent complex and intertwined aspects of the
system’s behavior.

Figure 3.5: Spearman’s correlation between features and parameters

In examining the role of rs_range and dfa, it can be said to capture the rapid fluctuations
of time series. These metrics serve as general aggregators of other features describing such
behavior, rather than individually defining each characteristic of the signal’s fluctuations.

Moreover, ir was conducted a mutual information (MI) analysis to measure the dependency
between the catch22 features and each model parameter, specifically [E/I]net, τsynE, τsynI ,
and Jext (Fig. 3.7). This initial step in the analysis was crucial for identifying and quantifying
the relevance of various features in a machine learning regression framework, offering insights
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Figure 3.6: Spearman’s correlation between features and parameters

into their potential predictive power.
The MI analysis revealed that among the parameters, [E/I]net exhibited the highest MI

scores with a majority of the features. This suggests a strong relationship between [E/I]net

and many of the catch22 features, indicating that these features might be particularly effective
in predicting or modeling this specific parameter. However, it is noteworthy that some features,
such as mode_5, mode_10, entropy_pairs, and ami2, were found to be less informative in rela-
tion to [E/I]net. These features consistently demonstrated lower MI values, implying a weaker
association and, consequently, a limited contribution to the prediction of [E/I]net.

On the other hand, Jext generally showed low MI values across the majority of features,
with only a few exceptions, such as transition_variance. This pattern suggests that Jext may be
less influenced by the features examined, or that the relevant features for this parameter might
not be fully captured by the catch22 set. Nonetheless, the presence of certain exceptions like
transition_variance indicates that specific features still hold predictive potential for Jext.

Interestingly, some features demonstrated consistently highMI values across all parameters.
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Figure 3.7: Mutual information between parameters and features

Features such as outlier_timing_pos, low_freq_power, transition_variance, and dfa stood out
for their strong associations with all parameters under investigation. These features appear to
be robust indicators with significant predictive relevance, making them valuable for a broad
range of parameter estimations within the model.

Conversely , the removal of redundant variables such as transition_variance, dfa, rs_range
andMode_5 could be beneficial due to their high interdependence. Given their high correlation,
these variables might be considered redundant, and removing or transforming them could help
reduce multicollinearity. This careful consideration of both redundant and unique features is es-
sential for enhancing overall model performance, ensuring stability, and preserving the richness
of the dataset. It will be check on the next section.
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3.2 Evaluation of Features Importance

3.2.1 Principal Component Analysis (PCA)

Subsequently, to investigate the informativeness of the features and their importance, in line
with the results of previous section, of correlation and mutual information (MI) analyses, a
principal component analysis (PCA) was performed. The scatter plot of the variance explained
by each principal component provides an in-depth analysis of the distribution of variance within
the dataset. From this plot (Fig.3.8), two key observations emerge:

Figure 3.8: The variance scatter plot shows the variance explained for each principal component
with all features.

Firstly, the first three principal components stand out as dominant, as they explain a signif-
icant portion of the total variance, approximately 60%. This suggests that a substantial amount
of the information contained in the original data can be effectively captured using just these
three components. In other words, most of the distinctive features and variations present in the
dataset can be adequately represented through these three principal components, allowing for
dimensionality reduction without substantial information loss.

Secondly, there is a rapid decrease in the variance explained by the subsequent components.
This trend indicates that each additional component contributes less and less to the explanation
of the total variance. As more principal components are considered, their informational contri-
bution diminishes significantly, suggesting that the inclusion of further components may not be
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justified in terms of improving data interpretation or representation.

Figure 3.9: The heatmap of the 17 principal components shows the correlation coefficients
between the original features and the principal components.

However, noting the arrangement of the principal components in the heat map in Fig.3.10, it
can be seen that the components are generally independent of each other. This is evidenced by
the fact that each component is necessary to explain each feature individually. The independence
of the features is supported by the fact that the first 3-4 principal components generally try to
explain the variance of all features, without being able to capture a significant percentage of vari-
ability. Indeed, we can achieve an acceptable and significant explained variance around 80% by
considering at least 10 principal components. It is interesting to note that through the analysis of
the correlation matrix (Fig. 3.3), we can see that features showing a correlation with each other
tend to be explained by the same principal component. This suggests that the principal compo-
nents are effective in capturing the internal structure of the data, highlighting the relationships
among correlated features (timig_timing_pos,Outlier_timing_neg, rs_range,dfa). In figure 3.10,
it can be observe that Mod_5 and Mode_10 exhibit varying correlations with different princi-
pal components, indicating that the patterns of distribution in their temporal values contribute
to multiple dimensions of variation within the data. Similarly, Outlier_timing_pos and Out-
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lier_timing_neg demonstrate significant correlations with the principal components, suggesting
that the timings of extreme events, both positive and negative, play a substantial role in the
data’s variability. The differing correlations between positive and negative outliers imply that
they might be influenced by distinct factors or have varying impacts on the overall pattern. Ad-
ditionally, Acf_timescale and Acf_first_min, which are features related to autocorrelation, show
considerable variability. Specifically, Acf_first_min has a high degree of variability, indicating
that the first minimum of the autocorrelation differs significantly across the data. This suggests
variations in periodicity patterns or short-term memory in the time series, necessitating a sepa-
rate component for its explanation. Furthermore, Low_freq_power andCentroid_freq contribute
differently to the principal components, reflecting the diversity in the frequency characteristics
of the time series.

However, the low percentage of variability explained by the first principal components in-
dicates that the dataset is complex and the features are quite independent of each other. This
implies that there are multiple dimensions and factors contributing to the variability in the data,
and it is not possible to significantly reduce the dimensionality without losing a considerable
amount of information.

Figure 3.10: The variance scatter plot shows the variance explained for each principal compo-
nent with remove features.

When a feature is correlated with multiple principal components, it indicates that this feature
contributes to various dimensions of variability, capturing different and likely more significant
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aspects of the data. This suggests that a single principal component cannot fully explain the
variability of the entire set of features, as the dataset’s variability is spread across multiple lev-
els. Consequently, some features are exclusively associated with a single principal component,
highlighting their independence and unique contribution to the data’s structure.

Subsequently, the PCA was recalculated on the reduced dataset to observe the impact on
the explanation of the dataset with respect to the principal components (PCs) (Fig. 3.10). It
is noted that the first principal component (PC1) decreases the amount of explained variance
compared to the complete dataset, form 0.32 to 0.24 of explained variance. This is because the
eliminated features were highly correlated with PC1. Generally, we see that some components
increase their explained variance. However, the overall explained variance by the PCs remains
low, necessitating the use of at least 10 PCs to achieve an explained variance around 85-90%.

In addition, to confirm the results, the SBImodel was performed using two datasets: one con-
taining all features and another excluding the selected features (mode_5, transition_variance,
rs_range, dfa). The analysis was conducted using 10-fold cross-validation with 2 repetitions.
For each iteration, half of the fold (approximately 50,000 samples) was used to calculate the
posterior distribution of the parameters. This result can be by Table 3.2 shows that there is
significant radical change compared to the model trained on the full dataset versus the reduced
dataset, after removing the previously mentioned features, demonstrate a significant impact on
the variability of the parameter posterior. Basically, these features prove to be very important
for explaining the posterior distribution of the parameters, likely thanks to the SBI model, which
is able to extract more hidden information from them.

Data [E/I]net τsynE τsynI Jext
Interquartile Range (IQR)

Original 1.967 0.457 1.310 12.414
Remove 3.874 0.617 2.528 16.135

Parameter Recovery Error (PRE)
Original 0.009 0.000 0.004 0.126
Remove 0.014 0.000 0.007 0.163

Table 3.2: The results of the SBI model with the original dataset and with the features removed
dataset, after 10-fold cross-validation with 2 repetitions. it was taken half of test set sampled
randomlyto expedite the progress.
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3.2.2 Analysis of feature importance in SBI prediction models through
SHAP values

The next step was to evaluate the significance of features within the framework of SBI pre-
dictions. SHAP values were exploited to provide insights into how each features affects the
predictions made by SBI methods.To describe the posterior distribution estimated by SBI tools,
it was calculated its mean and IQR. SHAP values were employed to explain how features af-
fect these two metrics for all four parameters of the cortical model (Figs. 3.11, 3.12, 3.13 and
3.14). These bar plots of mean SHAP values show the average impact of each feature on the
SBI model’s predictions. Features with higher mean SHAP values are more important, meaning
they have a greater impact on the model’s output.

(a) Mean of posterior distribution (b) IQR of posterior distribution

Figure 3.11: Mean SHAP values for [E/I]net calculated with two different metrics: (a) mean
and (b) IQR of the posterior distribution. The mean SHAP values were obtained by averaging
all SHAP values across the 10 fold evaluations.

The two bar (Fig. 3.11a) charts provided elucidate the influence of various features on the pa-
rameter [E/I]net using SHAP values. It is evident that the order of feature importance is largely
consistent between the two metrics, namely means and IQR. The feature rs_range exhibits the
highest impact on the mean of [E/I]net, suggesting that variations in the range of residuals
significantly influence this parameter. Furthermore, the feature high_fluctuation demonstrates
a substantial effect, indicating that fluctuations in the data considerably impact [E/I]net. Ad-
ditionally, dfa emerges as a critical feature affecting [E/I]net. This analysis underscores that
a consistent set of features exerts a significant influence on [E/I]net across different metrics,
thereby highlighting their essential role in the model.The charts represents (Fig. 3.12) demon-
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strates that the four most significant features remain consistent across both metrics. The most
influential feature is dfa, indicating its crucial role in predicting tau_syn_E. Another important
feature is low_frequency_power, which significantly impacts the mean of tau_syn_E, under-
scoring the importance of this frequency range. Additionally, the feature mode_10 exhibits a
considerable effect on tau_syn_E, highlighting the impact of specific modes on this parameter.
Transition variance is also identified as a key factor, reflecting the significance of variance dur-
ing transitions in influencing τsyn_E . Furthermore, high_fluctuations in the data are shown to
play an essential role. However, it is noteworthy that the mean SHAP value is not as high as
those for the previously mentioned parameters.In the bar plot(Fig. 3.13), it is evident that the
results of the most informative and significant features vary across the two matrices. Notably,
the feature outlier_timing_neg consistently emerges as the most significant for the τsyn_I pa-
rameter, while dfa and low_freq_loweralso demonstrate considerable influence. However, it is
important to note that the mean shape values of these features are somewhat lower compared to
other parameters. In Figure 3.14, the features associated with the Jext parameter demonstrate a
consistent ranking across both charts, albeit with some variation in the absolute SHAP values
depending on the context (mean vs. IQR). The rs_range feature emerges as the most influential
in both contexts, though it exhibits greater influence when considering the mean compared to the
IQR. Additionally, transition_variance and high_fluctuation are identified as highly influential
across both metrics, though their relative rankings differ slightly. Notably, transition_variance
exerts a marginally higher influence in the IQR context compared to the mean. Moreover, the
mean value consistently presents higher SHAP values across features in comparison to other
parameters.

(a) Mean of posterior distribution (b) IQR of posterior distribution

Figure 3.12: Mean SHAP values for τsynE .
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(a) Mean of posterior distribution (b) IQR of posterior distribution

Figure 3.13: Mean SHAP values for τsynI .

The analysis of the parameters [E/I]net, τsyn_E , τsyn_I , and Jext highlights the critical im-
portance of specific characteristics in determining the behavior of the neural network and its
response to external stimuli. In particular, the parameter [E/I]net, defined as the ratio between
the product of excitatory and inhibitory synapses (JEE / JEI) and that of inhibitory and excita-
tory synapses (JIE / JII), quantifies the net effect of excitatory and inhibitory processes within
the circuit model. This ratio can be interpreted as a global measure of E/I balance, providing an
overall indication of how the two neuronal populations (excitatory and inhibitory) interact and
influence the network’s dynamics. Regarding [E/I]net, the characteristics rs_range, high_fluc-
tuation, and dfa emerge as the most influential, with a significant impact on both the central
tendency (mean) and the variability (IQR) of the parameter. These characteristics, which cap-
ture the system’s ability to detect long-range correlations and significant fluctuations, suggest
that variations in these metrics can lead to substantial changes in the E/I balance, thereby af-
fecting the overall equilibrium between excitatory and inhibitory processes. In the context of
τsyn_E , dfa, low_freq_power, and mode_10 are identified as essential, with consistent influence
on both metrics. The presence of low_freq_power, which measures the power of low frequen-
cies in the signal, and mode_10, which assesses the distribution of the most frequent values in
the time series, underscores the importance of modulating low_frequency components and the
shape of the distribution in influencing the temporal response of excitatory neurons. For τsyn_I ,
the analysis shows that outlier_timing_neg is the most significant feature, indicating that ex-
treme negative events (deviations below the mean) play a crucial role in regulating the response
time of inhibitory neurons. The persistence of characteristics such as dfa and low_freq_power,
albeit with a different impact on mean and variability, highlights the complexity of inhibitory
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dynamics, where the network’s response depends not only on temporal synchrony but also on
the distribution of dominant frequencies. Finally, for Jext, rs_range dominates the influence on
the mean of the parameter, indicating its importance in regulating the network’s global response
to external inputs. However, its influence is slightly less pronounced on variability (IQR), sug-
gesting that while rs_range plays a key role in modulating the network’s average activity, char-
acteristics such as transition_variance and high_fluctuation might be more relevant when the
goal is to manage the variability of the response. This observation is confirmed by the 3.2,
where a significant increase in IQR is observed once the features of interest are removed. In
addition, it is noteworthy that ami2 and entropy_pairs, despite being completely uncorrelated
with the other features, prove to be entirely irrelevant with respect to all parameters, adding no
significant information for the prediction of the posterior. This comprehensive analysis allows
for the precise identification of the most influential characteristics on the network parameters,
providing an effective guide for the selection and prioritization of features in predictive mod-
els. Focusing on the differences in the impact of features on mean and variability enables the
optimization of models according to the specific objectives of the analysis, thereby improving
predictive performance and the ability to explain the network’s behavior.

(a) Mean of posterior distribution (b) IQR of posterior distribution

Figure 3.14: Mean SHAP values for Jext.

3.3 Discussion

This study aimed to assess feature importance in SBI-based predictions using SHAP values to
interpret and explain model outcomes. It was evaluated the effectiveness of this approach for
predicting parameters of a spiking cortical circuit model using simulated LFP data. These results
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highlight the efficacy of this method in identifying crucial features from electrophysiological
data, such as dfa, rs_range, low_freq_power, and transition_variance, which are essential for
accurately predicting key parameters of cortical circuit activity. The significance of these fea-
tures stems from their robust association with the dynamics of neural circuits. For instance, dfa
is widely used to quantify long-range temporal correlations in time-series data, a characteristic
frequently observed in brain activity. The prominence of dfa in these findings suggests that the
temporal structure of fluctuations in neural signals holds critical information about the balance
between excitatory and inhibitory processes in the brain. Similarly, low_freq_power is known
to reflect slower brain oscillations, which play key roles in coordinating neural network activity
and may directly correspond to changes in synaptic strength or network connectivity, as cap-
tured by parameters like [E/I]net, τsynE , and τsynI in this study. The use of mutual information
(MI) and correlation techniques allowed us to identify both linear and non-linear relationships
between the features of the LFP and the parameters of interest, reinforcing the results obtained
through SHAP and highlighting the most relevant features. At the same time, the PCA analy-
sis confirmed the crucial role of these features by demonstrating their significant contribution
to explaining the dataset’s variance. This further validated their importance in describing the
variability of the posterior distribution during parameter prediction using SBI.

Moreover, by incorporating SHAP values into this analysis, it was provided a clear and
interpretable framework for examining how features influence the model’s predictions. This
approach allowed us to identify not only the most influential features but also those that had
a negligible impact, such as ami2 and entropy_pairs, which consistently received lower SHAP
scores. This outcome aligns with mutual information (MI) analysis between features and param-
eters, reinforcing the reliability of these results and the consistency between different metrics.

However, while this study demonstrates the utility of SHAP values for feature importance
assessment in SBI models, it also opens the door for further refinement. One important direction
would be to compare this SHAP-based approach with other techniques specifically tailored for
SBI models. For example, the FSLM algorithm[59], combined with a greedy feature selection
process, is designed to evaluate how individual features influence the posterior uncertainty of
parameters in SBImodels. A comparative analysis between SHAP and FSLMcould offer deeper
insights into the nuances of feature importance, particularly regarding posterior uncertainty and
its impact on model predictions. Such a comparison may reveal complementary strengths of
these methods and guide researchers in selecting the most appropriate tools for different mod-
eling scenarios.

Furthermore, this analysis could benefit from expanding the set of features used in the pre-
diction models. While the catch22 library provides a powerful summary of key time-series
properties, other feature sets may capture complementary aspects of neural dynamics. For ex-
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ample, features from the hctsa toolbox, which offers an extensive range of over 7000 time-series
features, could provide a more comprehensive picture of the underlying processes driving corti-
cal circuit activity. Additionally, specific features known to reflect key aspects of neural signals,
such as the 1/f slope, which is linked to the fractal nature of brain oscillations, or microstates,
which represent quasi-stable patterns of brain activity over short periods, could further improve
the predictive power of our models. By incorporating these additional feature sets, it was able to
improve our ability to fully capture the complexity of neural dynamics and improve the accuracy
of predictions for circuit parameters.

In conclusion, while this study has successfully demonstrated the most informative features
for predictive parameters with the use of different techniques such as MI, PCA, and SHAP val-
ues to interpret the importance of features in SBI models, it also lays the foundation for future
research. By refining this analysis with more specialized tools, applying the models to real-
world data, and expanding the range of features considered, we can improve the robustness and
interpretability of predictions in complex neural systems. This work highlights the importance
of leveraging advanced computational techniques to decode the intricate relationships between
neural dynamics and underlying circuit parameters, ultimately contributing to a deeper under-
standing of brain function.
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