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Abstract

Cooperative transportation using aMulti-Robot System has emerged as a relevant research topic
in recent years, primarily due to its potential in challenging workspaces, including transporting
large payloads in cluttered environments. In this case, an obstacle avoidance feature is essential
to guarantee the safe navigation of both agents and payload.
This thesis addresses the problem of cooperative transportation in environments populated by
static and dynamic obstacles by implementing a feasibility-aware leader-follower Model Pre-
dictive Control based algorithm. Compared to the existing state-of-art, a more realistic model
of agents dynamics is considered. A geometrical approach is employed to define the hard con-
straints for obstacle avoidance, while soft constraints are represented by a potential repulsive
field functional cost, which acts to guide the agents away from the obstacles.
The results achieved through numerical simulations in MATLAB® show that a variable predic-
tion horizon MPC can guarantee improved performance in trajectory planning with a reduced
computational effort, compared to a fixed prediction horizon MPC. Algorithm robustness to
disturbance and delay is also assessed, showing that it depends both on MPC parameters and
obstacle placement. Lastly, Gazebo simulations are performed to include physics and implement
more realistic experiments, showing that this algorithm is able to fulfill its tasks successfully.
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Chapter 1

Introduction to Multi-Robot System
transportation

1.1 Literature review

A Multi-Robot System (MRS) consists on a group of robots that can execute tasks in the
same workspace, or even work on the same task. To successfully cooperate, they need
to interact with each other, such as exchanging information collected by onboard sensors
about the environment or about their status. Cooperative MRS has become an important
research topic, because of its large variety of useful applications. The focus of this work is
cooperative transportation, that implements the transportation of an object to a target position
by planning a feasible path for the agents. Agents have to keep a certain distance between
each other to accomplish this task and to avoid payload damaging. To evaluate this ability,
formation error, or else the difference between ideal formation distance and actual agents
distance, is considered. The trajectory computation takes into account different criteria for each
robot and depends on the composition of the MRS, the agents’ hierarchy and the used algorithm.

1.1.1 Multi-Robot Systems

Most of the MRS studied in literature use Unmanned Aerial Vehicles (UAVs) or Unmanned
Ground Vehicles (UGVs), as they are the most versatile and useful agents for military, civil and
industrial purposes. In particular, UAVs are mainly used in combination with cables to grasp
the payload [1], [2], [3], [4], [5], rather than manipulators that are more commonly used with
UGVs [6]. Moreover, UAVs are preferred for spatial problems due to their high mobility, while
UGVs usage depends on the type of manipulators or end-effectors mounted on agents. Mixed
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agent MRS has also been considered [7], aiming to analyze more generic spatial problems with
increased complexity, due to actuated manipulators equipped on both agents, that guarantee a
flexible and efficient system, even in cluttered and complex environments.

Tasks division in a MRS can be carried out with different approaches. Leader-follower
approach is probably the most common, where one agent is the leader and has to compute
the trajectory to move the payload to the target, while the remaining agents are followers and
they can have different strategies to fulfill their task. For instance, in [6], [8], [9] a precise
distance between the agents has to be maintained. In [7], [1], [2] forces on payload are
minimized, to avoid stretches or damages on it. These objectives are implemented as functional
costs to minimize. In addition, other kind of optimization can be introduced, such as energy
consumption [3], [9], time spent moving [3] and so on. Feasibility-aware, or else recovery,
policy is an interesting leader-follower feature developed in [6]. This policy is actuated when
formation error is higher than a certain limit and it slows down the leader to let followers
recover their position in formation.

1.1.2 Model Predictive Control approach

Model Predictive Control (MPC) is probably the control architecture that best suits the cooper-
ative transportation problem. The goal of MPC is to optimize a cost function that dictates the
behaviour of the agents, ensuring the solution satisfies some hard constraints. These constraints
are defined as equations, inequalities, or boundaries involving variables such as agent state or
input. MPC facilitates trajectory planning and computes control inputs. It also seamlessly in-
corporates both hard and soft constraints. Specifically, soft constraints are handled by adding
them as terms in the cost function.
A generic MPC problem consists on a functional cost J(x(·), u(·)) to optimize in a prediction
horizon N , defined as a set of N following time steps, while satisfying some constraints, such
as model dynamics, state and input constraints:
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uopt = argminu(·)
(
J (x(·), u(·))

)
(1.1)

x(k + 1) = Ax(k) + Bu(k) (model dynamics) (1.2)

x(k) ∈ X (state constraints) (1.3)

u(k) ∈ U (input constraints) (1.4)

k ∈ Z, k ∈ [0, N ] (time) (1.5)

The MPC problem has different forms, as it is shown in Table 1.1, and, according to its
properties, using a precise MPC scheme presents different pros and cons. Talking about the
MPC formulation, linear MPC clearly uses a simplified or linearized model, that can cause
approximation problems, and both functional costs and constraints are linear, so usually easy to
optimize. On the other hand, non-linear MPC is tougher to implement, having to manage non-
linear functions and inequalities, but it is more precise. Moreover, solution modality defines the
scalability of the architecture. In a centralized MPC a single agent computes trajectories for all
the agents. This approach can be really efficient but has to deal with scalability and robustness
problems. In decentralized MPC schemes, often based on a leader-follower approach, every
single agent executes the algorithm, producing a scalable and robust system.

Table 1.1: Characterization of MPC scheme.

MPC formulation Linear MPC [6], [8], [5] Non-Linear MPC [7], [1], [2], [10], [11], [9]
Solution modality Centralized [1], [2], [5] Decentralized [6], [7], [8], [11], [9]

1.1.3 Obstacle avoidance policy

Obstacle avoidance is another key component of this project, because it represents the MPC
constraints used in environments where various obstacles can be placed. A large amount of
approaches have been formulated and tested in literature. First of all, there are two main
categories of constraints: hard constraints and soft constraints (Table 1.2). Hard constraints can
represent a set of non feasible solutions and are incorporated to the algorithm as equations or
inequalities related to the optimization variable. Soft constraints are usually written as func-
tional costs, such as barrier function or repulsive function, and are added to the path-generation
functional costs.
The geometrical approach [6] is the one used and analyzed in this thesis. Each agent path,
which is predicted throughout the horizon, satisfies the constraints when the agent shape, in
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each position of this path, completely lays on a convex space. Simple minimum distance
between agents and obstacles defines the constraints in [1], [2], [9].
Soft constraints are used [7] to implement obstacle avoidance too, performing a potential
repulsive field that guide the agents away from the obstacles.
Otherwise, input, velocity and state constraints are always set as hard constraints, such as
boundaries.

Table 1.2: Obstacle avoidance approach.

Hard constraints Soft constraints Mixed constraints
[6], [1], [2], [8], [11], [9] [7] [10]

A particularly interesting constraint formulation is presented in [10], where a Chance
Constrained MPC is developed, considering the agent-agent and agent-obstacle collision
probability to define hard constraints and two functional costs that produce a penalty and
a barrier function. The result is a smoother path produced by the algorithm and a reduced
computational effort.
Finally, the algorithm presented in [8] is able to control more than one formation of robots
working in the same area. It implements collision avoidance between robots in the same
formation and between different formations, allowing a great scalability and the transportation
of more payloads at the same time.

Linear MPC Framework for a 2 degrees of freedom MRS (2-DOF LMPC) exposed in [6]
results to be the most interesting work to study and improve. In fact, the agents model used is
a planar double integrator, way simpler than other papers that considered spatial problems [7]
and cable tension models [1], [2]. Moreover, it developed a more intuitive obstacle avoidance
constraints definition with respect to [10], [8] and definitely more interesting than [1], [2], [9].
Lastly, this paper presents excellent cooperative transportation performance, such as the ability
to avoid collisions, reach the target and keep the formation error bounded below few centimeters.

1.2 Contribution

In this thesis, the leader-follower feasibility-aware 2-DOF LMPC controlling two UGVs with
an actuated manipulator presented in [6] is analyzed and enhanced. The improvements include
incorporating agent heading into the model, which necessitates transitioning from linear MPC
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to non-linear MPC, and implementing a variable prediction horizon to optimize computational
efficiency. So, a Non-Linear MPC Framework for a 3 degrees of freedom MRS (3-DOF
NLMPC) is developed based on the 2-DOF LMPC framework.
More precisely, linear constraints used in geometrical approach are converted to non-linear
constraints, so that they are compatible with the new 3 degrees of freedom (DOF) model. After
that, potential repulsive field functional cost similar to [7], for both agents, and control effort
functional cost, for the follower, are added to the functions used in 2-DOF LMPC.

In literature, every paper considered a fixed prediction horizon and analyzed which could be
the optimal length, depending on the environment and the algorithm used. It is intuitive that the
longer the prediction horizon is, the bigger the computational cost for each algorithm iteration
will be. Moreover, the latter increases with the number of obstacles in the workspace. The novel
idea to improve the performance of this system is to implement a state machine, where the MPC
uses a longer prediction horizon N when the MRS is far from the obstacles, so that obstacle
avoidance can be ignored, while it uses a much shorter prediction horizon when obstacle avoid-
ance is necessary to prevent collisions. Obstacles position in the environment needs to be fully
known or sensed in well advance. State machine ideally optimizes computational effort and
keeps the same behaviour of the system in [6]. By reducing computation when unnecessary and
using a wider prediction horizon to anticipate the best path, it balances efficiency and perfor-
mance. MATLAB® simulations comparing fixed and variable prediction horizons validate this
intuition. The robustness to disturbance of the system is also tested and the algorithm proves to
be effective in presence of a reasonably sized noise.
After that, Simulink® simulations are performed to assess the behaviour of the algorithm with
respect to the instrinsic input delay due to computation. These tests show that an input delay
significantly affects the effectiveness of this algorithm. Lastly, Gazebo simulations introduce
real-world physics and delays due to ROS2™ communication between Simulink® and Gazebo
environment, confirming the same behaviour proven in Simulink®.

1.3 Thesis structure

In Chapter 2 all the assumptions and MPC architecture used in [6] are reported. Chapter 3
details the enhancements made to the system. Results of numerical simulations conducted in
MATLAB® are shown in Chapter 4. Chapter 5 reports results obtained in Simulink® and Gazebo
simulations. Chapter 6 discusses the results obtained and suggests future work.
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1.4 Notation

In this work, calligraphic letters define sets, for instance V is a set of vertices. Scalars in R are
represented with lowercase letters, such as x. Vectors inRk are written in bold lowercase letters,
such as u ∈ R2. Matrices inRk×h are written in uppercase letters, for exampleAc ∈ R4×4, k, h ∈
N. Superscripts indicate that a variable is referred to a specific element in the environment,
such as leader, follower or load. For example f ∗ is referred to agent ∗ = L, F, load. Symbol ⊗
represents the Kronecker product between two matrices.

6



Chapter 2

Linear Model Predictive Control
Framework for a 2 degrees of freedom
Multi-Robot System: description and
analysis

In this chapter, an analysis of the 2-DOF LMPC framework used in [6] is made, to point out
some details that are essential for implementing the more complex 3-DOF NLMPC framework,
which will be further developed in Chapter 3.

The objective of this 2-DOF LMPC framework is to control a leader-follower MRS com-
posed of two UGVs transporting a bar payload to the goal in a 2-D cluttered environment, with
static and dynamic obstacles, ensuring the minimization of the formation error, or else main-
taining the inter-agent distance required to successfully carry the payload, and enabling obsta-
cle avoidance. A recovery policy is incorporated to improve formation error performance in
particularly cluttered environments.

2.1 Application scenario assumptions

2-DOF LMPC framework is based on assumptions presented in the following.
The considered MRS accounts for two UGVs, each of them composed of a mobile base and a
manipulator. Note that the manipulator can be simplified into a fixed joint between the agent
and the payload, since the problem is planar and the bar is assumed to be at a constant height.
The mobile base is equipped with omnidirectional wheels (Figure 2.1).
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These two robots have to grasp and transport a bar payload in a 2-D environment whereM ≥ 0

circular obstacles are placed. The latter can be either static or dynamic with a uniform rectilinear
motion.
It is also assumed that:

• agents are assumed to already be grasping the payload, so the grasping task is not consid-
ered.

• the agent is assumed to be controlled by a low-level controller, acting on all DOF, that
applies agent input computed by the MPC to the real robot. Basically, it converts agent
accelerations into wheels motor commands.

• the grasping between the end-effector and the load is compliant, so if a formation error
between the agents occurs, a wrench, proportional to the formation error, is applied to the
load. To avoid damaging the payload, one of the goal in this application scenario is to
minimize the formation error.

• the end-effector is placed at the center of the agent, so formation error is measured as the
distance between agents center.

• agents have direct access to exact obstacles position and to the other agent state. These
variables are referenced to a global inertial frameFw, placed in the target position at (0, 0)
for simplicity, without loss of generality.

Figure 2.1: MRS scheme used in this thesis.
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2.1.1 Agents model

The dynamics of both UGVs composing the consideredMRS is described by a double integrator
model. In general, each agent state is defined as x∗ ∈ Rn and incorporates agent position
p∗ ∈ R2 and velocity w∗ ∈ Rv, where n is the state dimension and v = n

2
is the velocity vector

dimension. Agent input is u∗ ∈ Rm, where m is the input dimension, and it represents agent
acceleration. ∗ = L, F defines if it refers respectively to leader or follower.

In this 2-DOF model, state vector is defined as

x∗(t) =
[
x∗(t) y∗(t) v∗x(t) v∗y(t)

]T
∈ R4 (2.1)

p∗(t) =
[
x∗(t) y∗(t)

]T
∈ R2 w∗(t) =

[
v∗x(t) v∗y(t)

]T
∈ R2 (2.2)

p∗(t) is the position and w∗(t) is the velocity vector of the agent, both expressed in the global
inertial frame Fw (world frame). t ∈ R is a generic time step.
In addition, according to the double integratormodel, the control input of the ∗ agent corresponds
to the linear acceleration of the agent along the x- and y-axes of the world frame, namely

u∗(t) =
[
u∗
x(t) u∗

y(t)
]T

∈ R2 (2.3)

The continuous-time model of both leader and follower agent dynamics can be described as:

ẋ∗(t) = Acx∗(t) + Bcu∗(t) (2.4)

y∗(t) = x∗(t) (2.5)

where the system matrices are:

Ac =

[
02×2 I2×2

02×2 02×2

]
∈ R4×4 Bc =

[
02×2

I2×2

]
∈ R4×2 (2.6)

This continuous model can be discretized with a sampling time Ts, resulting in the discrete-time
representation:

x∗(s+ 1) = Ax∗(s) + Bu∗(s) (2.7)

y∗(s) = x∗(s) (2.8)

where s = ⌊ t
Ts
⌋ is the discrete time step, with t being the continuous time and s ∈ Z.
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The sample time chosen for this algorithm is Ts = 0.1 s, as this value was also used in [6],
[7] and it has proven to be a compatible value with the computational effort required by the
3-DOF NLMPC framework in most tested environments (Chapter 4). In general, a lower Ts can
guarantee more frequent path updates, considering that mobile obstacles are present. Thus, a
trade-off between update rate and algorithm execution time is necessary.

2.1.2 Obstacles model

Obstacles are modeled as circles on the plane, with their centers represented as oi =[
oxi

oyi

]T
∈ R2 and radii ri ∈ R, where i = 1 . . .M and M ∈ N is the total number of

obstacles in the environment. Obstacles can move in the workspace with a constant velocity
defined by vobsi =

[
vobsxi

vobsyi

]T
∈ R2.

At the beginning of the simulation, obstacles are placed in the environment, and their positions
are updated at the end of each time step based on their velocities. Thus, agents consider obstacles
to be stationary during eachMPC iteration and across the entire prediction horizon. This because
agents have complete access to obstacles position but they cannot predict their trajectory.

2.2 Linear Model Predictive Control approach

To face the cooperative transportation problem in the described application scenario, the authors
of [6] propose a linear MPC with an incorporated recovery policy and a geometrical obstacle
avoidance constraints approach.

The generic MPC problem is re-proposed and adapted to this specific application. It con-
sists on a functional cost J∗(x∗h, u∗k) to optimize in a prediction horizon N , defined as a set
of N following time steps, with respect to the optimization variable u∗k, while satisfying some
constraints, such as model dynamics, state and input constraints:

u∗k = argminu∗k
(
J∗ (x∗h, u∗k)

)
(2.9)

x∗(k + 1) = Ax∗(k) + Bu∗(k) (model dynamics) (2.10)

x∗(h) ∈ X (state constraints) (2.11)

u∗(k) ∈ U (input constraints) (2.12)

(2.13)
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The optimization variable of this algorithm is the stacked vector containing optimal inputs
of the ∗ = L, F agent over the entire prediction horizon, expressed in world frame, defined as:

u∗k =
[
u∗
x(0) u∗

y(0) . . . u∗
x(N − 1) u∗

y(N − 1)
]T

∈ RmN (2.14)

The index k = 0 . . . (N − 1) indicates that these inputs correspond to the current time step
(k = 0) and the subsequent N−1 steps, where N ∈ N represents the length of the prediction
horizon.
x∗(0) ∈ Rn is the state of the agent at current time step. Then, the stacked vector containing
the predicted state of the ∗ = L, F agent, in world frame, over the entire prediction horizon in
which u∗k is applied, is:

x∗h =
[
x∗(1) y∗(1) v∗x(1) v∗y(1) . . . x∗(N) y∗(N) v∗x(N) v∗y(N)

]T
∈ RnN (2.15)

h = 1 . . . N represents the index of the state throughout the prediction horizon.
Model dynamics of the agents over the prediction horizon is regulated by the equation

xh = T̄x(0) + S̄uk (2.16)

where:

S̄ :=


S̄1

...
S̄N

 =


B 0n×m . . . 0n×m

AB B . . . 0n×m

... ... ... ...
AN−1B AN−2B . . . B

 ∈ RnN×mN (2.17)

T̄ :=


A

A2

...
AN

 ∈ RnN×n (2.18)

In Figure 2.2, the control scheme of this system is illustrated. The control architecture is
composed of two MPC controllers, one for each agent: a Leader MPC and a Follower MPC.

• Leader MPC receives as inputs the target position pLgoal =
[
0 0

]T
, its current state xL,

and obstacles information, namely their center positions and radii, alongside the coordi-
nates of the point on each obstacle surface nearest to the leader center, and the distance
between these points. Using this information, the Leader MPC computes the agent accel-
eration inputs over the prediction horizon, uLk , to generate an optimal trajectory. Only the
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first acceleration input uL is applied by the low-level controller.

• FollowerMPC takes as inputs the predicted states of the leader over the prediction horizon
xLh , its current state xF , and obstacles information referenced to the follower center. Simi-
lar to the Leader MPC, the Follower MPC computes follower acceleration inputs over the
prediction horizon uFk and applies only the first input uF using the low-level controller.

After the inputs computation a “recovery policy check” is performed receiving agents predicted
states xLh and xFh as inputs. If recovery policy actuation criteria is satisfied, input computation
is repeated with leader recovery function JL

rec replacing standard leader functional cost JL.
Recovery policy is defined in Section 2.2.3.
When the MPC has finished its computation and agent accelerations are given as output, ideal
low-level controllers apply u∗ to the real robots. The agents state in the next step x∗(t + 1) are
then measured, assuming ideal measurements, and used as inputs for the next iteration of the
MPC algorithm.
This means that MPC elaborates online the agent input that the real system needs to apply
through low-level controllers. Since low-level controllers and measurement system are assumed
to be ideal, x∗(t+ 1) perfectly follows the dynamics described by equation (2.7).

Leader
MPC

[
0 0

]T xL

Follower
MPC

xLh
obstacles data

xF

MPC

Leader
dynamics +
low-level
controller

uL xL

Follower
dynamics +
low-level
controller

uF xF

recovery
policy
check

xFh

JL
rec

Figure 2.2: 2-DOF LMPC architecture.

These MPC controllers are different for leader and follower in terms of functional cost,
because the aim of the leader is to plan the best path to reach the goal, while the follower needs
to keep a fixed distance to the leader to correctly transport the load, moving on the shortest path
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possible. In addition, both agents need to avoid obstacles, so obstacle avoidance for both Leader
and Follower MPC is provided by hard constraints.

2.2.1 Leader functional cost

Leader MPC objective is to plan the best path to reach the goal. As a consequence, leader
functional cost is a quadratic cost function defined as below:

JL
(
xL(k), uL(k)

)
=

N−1∑
k=0

(
(xL(k))TWxL(k) + (uL(k))TRLuL(k)

)
+ (xL(N))TZxL(N)

W ∈ Rn×n RL ∈ Rm×m Z ∈ Rn×n (2.19)

• (xL(k))TWxL(k) represents leader state cost throughout the prediction horizon, that
weights the distance of leader state to the goal state

[
0 0 0 0

]T
, so position (0, 0)

with null velocities, andW is its weight matrix.

• (uL(k))TRLuL(k) represents leader control effort throughout the prediction horizon, that
is used to reduce the energy spent to move the leader, and RL is its weight matrix.

• (xL(N))TZxL(N) is leader state cost of the last prediction horizon step andZ is its weight
matrix.

The expression can be simplified [6]:

JL(uLk ) = JL
1 (uLk ) =

1

2
(uLk )THuLk + xL(0)FuLk +

1

2
(xL(0))TY xL(0) (2.20)

H := 2
(
(IN ⊗RL) + S̄T W̄ S̄

)
∈ RmN×mN (2.21)

W̄ :=

[
IN−1 ⊗W 0n(N−1)×n

0n×n(N−1) Z

]
∈ RnN×nN (2.22)

F := 2T̄ W̄ S̄ ∈ Rn×mN (2.23)

Y := 2(W + T̄ T W̄ T̄ ) ∈ Rn×n (2.24)

Since the term (xL(0))TY xL(0) in equation (2.20) is independent to the optimization vari-
able, it can be omitted.

2.2.2 Follower functional cost

Follower agent has to navigate through the environment keeping a certain distance to the leader
to avoid damaging the payload, moving on the shortest path possible. For this reason Follower
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MPC functional cost can be decomposed in two components, each corresponding to a specific
task that the agent is required to accomplish:

1. Firstly, the squared formation error is defined as:

eL,F =
∣∣∣∣pL(t)− pF (t)

∣∣∣∣2 − d2L,F (2.25)

where dL,F is the correct distance leader and follower center should have, or else the length
of payload.
The first component JF

1 accounts for the minimization of the squared formation error, so
that follower agent keeps the correct distance dL,F with respect to the leader, in order to
successfully transport the payload:

JF
1 (eL,F (h)) =

N∑
h=1

βhe2L,F (h) (2.26)

β ∈ (0, 1] ⊂ R is a decaying weight factor that prioritizes theminimization of squared for-
mation error during the initial steps of the prediction horizon. This is particularly relevant
since only the first predicted input is applied at each iteration.

2. The second component JF
2 minimizes the travelled distance over the prediction horizon,

to avoid excessive movements:

JF
2 (pF (k)) =

N−1∑
k=0

∣∣∣∣pF (k + 1)− pF (k)
∣∣∣∣2 (2.27)

Thus, the total functional cost for the follower is:

JF = CJF
1 + JF

2 (2.28)

where C ∈ R is the squared formation error weight. A higher value of C reduces the formation
error.

This functional cost needs to be expressed in a different way, so that optimization variable
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uFk is explicit.

JF
1

(
uFk
)
=

N∑
k=1

βk
(∣∣∣∣P (xL(k)− T̄hxF (0)− S̄huFk

)∣∣∣∣2 − d2L,F

)2
(2.29)

JF
2 (uFk ) =

(
S̄ ′uFk T̄ ′xF (0)

)T
P̄ T P̄

(
S̄ ′uFk T̄ ′xF (0)

)
(2.30)

S̄ ′ :=


B 0n×m . . . 0n×m

(A− In)B B . . . 0n×m

... ... . . . ...
AN−2(A− In)B AN−3(A− In)B . . . B

 ∈ RnN×mN (2.31)

T̄ ′ :=


A− In

A(A− In)
...

AN−1(A− In)

 ∈ RnN×n (2.32)

P̄ := IN ⊗ P ∈ RmN×nN (2.33)

In equation (2.29) T̄h ∈ Rn×n and S̄h ∈ Rn×mN are the h-th row group, each composed of n
rows, of matrices introduced in equations (2.18) and (2.17), respectively. As a matter of fact,
the equation T̄hxF (0)+ S̄huFk = xF (h) selects the predicted state at time step h of the prediction
horizon, namely the h-th block of n rows of the vector xFh , according to equation (2.16).

2.2.3 Recovery policy

The decentralized nature of this algorithm means that the leader could plan a trajectory that is
infeasible for the load or the follower, potentially causing system failure. To prevent this, a
recovery policy can be implemented. Formation error is defined as

feL,F (h) = ||pL(h)− pF (h)|| − dL,F (2.34)

with pL(h) and pF (h) predicted positions computed by leader and follower standard functional
costs in a certain algorithm iteration, with h = 1 . . . N . If the absolute value of formation error
|feL,F (h)| exceeds a certain value, ϵloose_grip, for at least one of the first kloose_grip steps in the
prediction horizon, both agents input are recomputed with a modified leader functional cost that
slows the leader down, allowing the follower to recover and reduce the formation error. In other
words, recovery policy is actuated if standard inputs computation results to predict a system path
with an excessive formation error.
However, this approach could still fail due to really strict obstacle avoidance constraints and an
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incorrect value of the formation error weight C, for example when the system encounters an
extremely narrow passage between obstacles. In such cases, the leader will slow down, but if
leader manages to pass through the narrow passage while the load or follower is blocked, the
formation error will diverge.
The new leader functional cost used during recovery is:

JL
rec(pL(k)) = JL

rec,1(pL(k)) =
N−1∑
k=0

∣∣∣∣pL(k + 1)− pL(k)
∣∣∣∣2 (2.35)

This cost effectively slows down the leader, reducing the space navigated at each step throughout
the prediction horizon.

2.2.4 Linear leader and follower constraints

An analysis of the linear constraints used in [6] is essential for understanding this approach and
its non-linear extension described in Section 3.3.4.

To analyze obstacle avoidance constraints, it is necessary to introduce additional variables
that describe the agents shape and the interaction between agents and obstacles.
M is the number of obstacles in the workspace. The vector

q∗i =
[
q∗ix q∗iy

]T
∈ R2 (2.36)

represents the coordinates of the point on the surface of the i-th obstacle, in world frame, that is
the nearest to the agent ∗ = L, F at step 0 of the current prediction horizon. i = 1 . . .M is the
obstacle index. Obstacles, and so q∗i , are considered static by the agents at each MPC iteration.
Each robot has a set of vertices V∗ with cardinality L∗ ∈ N, ∗ = L,F . For both the leader and
the follower, the location of each vertex v∗j is expressed in the agent body frame FB, a reference
system centered in the agent center of mass:

v∗j =
[
v∗jx v∗jy

]T
∈ R2 (2.37)

Since in this 2-DOF LMPC framework a fixed joint is considered between agents and load, at the
beginning of each MPC iteration vertices v∗j are rotated by θload, or else the angle corresponding
to payload rotation. θload directly depends on agents current center position and is defined as:

θload(0) = atan2
(
(yF (0)− yL(0)), (xF (0)− xL(0))

)
(2.38)
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θload = 0 when both agents center lay on the same y coordinate and follower stands on leader
right.
Load vertices are not considered in these constraints.
This vertices model implies that the position of the j-th vertex in world frame at step t is
p∗(t) + v∗j .

To simplify the notation, hereafter, the superscripts are omitted since these matrices are the
same for both leader and follower.
Constraints are divided in obstacle avoidance constraints and agents acceleration and velocity
boundaries. Obstacle avoidance constraints build a safe area where leader and follower can
move over the prediction horizon, making sure their vertices do not collide with obstacles by
computing a set of infeasible positions. Agents acceleration and velocity constraints apply satu-
ration on acceleration, and consequently on control force, and limit agents dynamic. Constraints
are defined by the following inequality:

Guk ≤ W + Sx(0) (2.39)

G, W and S are composed of blocks with a precise meaning, that are made explicit in the
following AbarS̄

Gin

AvelS̄

 uk ≤
 Bbar

Bin

Bvel_constr

+

−(AbarT̄ )

02vN×n

−(AvelT̄ )

 x(0) (2.40)

A separate analysis for each block provides a clearer understanding of how the constraints are
constructed. All matrices used to build these constraints are presented in Appendix .1.

1. The first row block of equation (2.40) is

AbarS̄uk ≤ Bbar − AbarT̄x(0) (2.41)

and represents obstacle avoidance constraints. Since state predictions over prediction
horizon are related to the initial state and the predicted input over the same horizon by
xh = T̄x(0) + S̄uk, then it holds that:

Abarxh − AbarT̄x(0) ≤ Bbar − AbarT̄x(0)

Abarxh ≤ Bbar

(2.42)

By expliciting matrixAbar containing constraints definition and the predicted state xh, the
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result is:


Aconstr . . . 0ML×n

... . . . ...
0ML×n . . . Aconstr





x(1)

y(1)

vx(1)

vy(1)
...

x(N)

y(N)

vx(N)

vy(N)



≤ Bbar (2.43)

After multiplying matrices, and by using their definitions in Appendix .1, it follows that
each row defines a scalar inequality:

[q1x − x(0)]x(1) + [q1y − y(0)]y(1)

[q1x − x(0)]x(1) + [q1y − y(0)]y(1)
...

[q2x − x(0)]x(1) + [q2y − y(0)]y(1)
...

[q1x − x(0)]x(2) + [q1y − y(0)]y(2)
...


≤



[q1x − x(0)][q1x − v1x ] + [q1y − y(0)][q1y − v1y ]

[q1x − x(0)][q1x − v2x ] + [q1y − y(0)][q1y − v2y ]
...

[q2x − x(0)][q2x − v1x ] + [q2y − y(0)][q2y − v1y ]
...

[q1x − x(0)][q1x − v1x ] + [q1y − y(0)][q1y − v1y ]
...


(2.44)

To clarify the inequality and give it a more geometrically interpretable form, it is suitable
to focus on individual rows, reordering terms step by step to extract the underlying geo-
metrical meaning. Note that the outcomings are valid for each i-th obstacle, j-th vertex
and h time step.([

qix

qiy

]
−

[
x(0)

y(0)

])T [
x(h)

y(h)

]
≤

([
qix

qiy

]
−

[
x(0)

y(0)

])T ([
qix

qiy

]
−

[
vjx

vjy

])
(2.45)

−

([
qix

qiy

]
−

[
x(0)

y(0)

])T [
x(h)

y(h)

]
+

([
qix

qiy

]
−

[
x(0)

y(0)

])T ([
qix

qiy

]
−

[
vjx

vjy

])
≥ 0 (2.46)

([
qix

qiy

]
−

[
x(0)

y(0)

])T ([
qix

qiy

]
−

([
x(h)

y(h)

]
+

[
vjx

vjy

]))
≥ 0 (2.47)
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([
x(0)

y(0)

]
−

[
qix

qiy

])T (([
x(h)

y(h)

]
+

[
vjx

vjy

])
−

[
qix

qiy

])
≥ 0 (2.48)

(vec1)T (vec2) ≥ 0 (2.49)

vec1 :=

([
x(0)

y(0)

]
−

[
qix

qiy

])
vec2 :=

(([
x(h)

y(h)

]
+

[
vjx

vjy

])
−

[
qix

qiy

])
(2.50)

The vector vec1 links the point on i-th obstacle surface qi to the center of the robot at step
0 of the prediction horizon. vec2 links qi to the position of the j-th vertex of the robot in
world frame at step h. Inequality (2.48) holds when vec1 and vec2, which are 2-D vectors,
are both pointing out from the half-plane containing the i-th obstacle, tangent to the latter
at qi and normal to vec1 (Figure 2.4).
Geometrically, this means that each vertex during the entire prediction horizon cannot lie
inside the half-plane containing the i-th obstacle. This half-plane is static throughout the
horizon. When considering all obstacles, the combination of all their half-planes forms
a convex region, known as the safe area, within which the robot must remain to avoid
collisions, similar to the one represented in Figure 2.3. Consequently, the constraints ap-
plied to a single half-plane must hold for the entire safe area to ensure the robot trajectory
remains free from obstacles.

Figure 2.3: Example of obstacle avoidance convex area for leader agent. Leader predicted po-
sitions throughout the current prediction horizon need to lay inside the red area, delimited by
half-planes tangent to obstacles. At next iteration of the MPC, the half-planes, and consequen-
tially the safe area, will change. Leader and follower have different safe areas, but the definition
is the same.
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(a) Constraint satisfied, because both vectors lay inside the safe area.

(b) Constraint violated, because vec2 lays outside the safe area.

Figure 2.4: Examples of linear obstacle avoidance constraints. The system in bright colors is
the system at time step 0 of the current prediction horizon, while the system in faded colors
represents the system at a generic step h of the current prediction horizon. vec1 and vec2 for
vertices vL1 and vL2 , as an example, are drawn in light blue.

The total amount of obstacle avoidance constraints are:
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• NMLL for leader, where LL is the number of leader vertices.

• NMLF for follower, where LF is the number of follower vertices.

2. The second row block of inequality (2.40), i.e. inequality

Ginuk ≤ Bin (2.51)

accounts for input constraints, namely u∗
x/y(k) ∈ [−u∗

max, u
∗
max]. As a matter of fact,

expanding matrices in inequality (2.51) with matrices in Appendix .1, we obtain:


Ul . . . 02m×m

... . . . ...
02m×m . . . Ul




ux(0)

uy(0)
...

ux(N − 1)

uy(N − 1)


≤




umax

umax

umax

umax


...

umax

umax

umax

umax


...



(2.52)

where Ul is the matrix selecting each control input, once for the positive and once for the
negative bound, within u∗(k) (see Appendix .1). Multiplying matrices leads to:

ux(0)

−ux(0)

uy(0)

−uy(0)
...

ux(N − 1)

−ux(N − 1)

uy(N − 1)

−uy(N − 1)



≤



umax

umax

umax

umax

...
umax

umax

umax

umax



(2.53)

The total number of input constraints for each agent results to be 2mN .
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3. The third row block of inequality (2.40), i.e. inequality

AvelS̄uk ≤ Bvel − AvelT̄x(0)

Avelxh − AvelT̄x(0) ≤ Bvel − AvelT̄x(0)

Avelxh ≤ Bvel

(2.54)

accounts for velocity constraints, namely v∗x/y(h) ∈ [−v∗max, v
∗
max]. Once again, expand-

ing matrices in inequality (2.54) with matrices found in Appendix .1:


Vl . . . 02v×n

... . . . ...
02v×n . . . Vl





x(1)

y(1)

vx(1)

vy(1)
...

x(N)

y(N)

vx(N)

vy(N)



≤




vmax

vmax

vmax

vmax


...

vmax

vmax

vmax

vmax


...



(2.55)

where Vl is the matrix selecting each linear velocity, once for the positive and once for the
negative bound, within x∗(h) (see Appendix .1). The result is:

vx(1)

−vx(1)

vy(1)

−vy(1)
...

vx(N)

−vx(N)

vy(N)

−vy(N)



≤



vmax

vmax

vmax

vmax

...
vmax

vmax

vmax

vmax



(2.56)

The total number of velocity constraints for each agent results to be 2vN .
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2.3 Discussion and remarks

This 2-DOF LMPC framework proved to have good performance in [6] regarding minimiza-
tion of formation error and obstacle avoidance. Hereafter, pros and cons are listed to point out
strengths and weaknesses of this algorithm, and consequently introduce the 3-DOF NLMPC.

• Pros:

1. Simple double integrator UGVs dynamic model.

2. Effective choice of leader and follower functional costs to efficiently reach the goal
and to keep formation error bounded.

3. Great enhancement in formation error performance thanks to recovery policy, shown
in [6].

4. Obstacle avoidance approach implemented through hard constraints, guaranteeing
safety and reliability.

• Cons:

1. Double integrator UGVs model does not consider agents independent rotation with
respect to the payload, causing the system to lack on flexibility and affecting obstacle
avoidance performance.

2. There is no penalty function that penalizes robot vertices too near obstacles, so agent-
obstacle distance tends to be dangerously small. This might affect obstacle avoid-
ance robustness.

3. Follower does not have a control effort functional cost, leading this agent to carry
out unnecessary movements.

4. Recovery policy might be computationally expensive if evaluated too often, due
to the fact it expects to execute input computation twice in an MPC iteration (see
Section 2.2.3).

5. This obstacle avoidance approach lacks in robustness when dynamic obstacles are
present in the environment. This is due to the fact that constraints consider each
obstacle to be static during the prediction horizon. This assumption is ensured ex-
clusively when obstacle dynamics is slow enough.

6. The fact that half-planes composing the safe area are static during the prediction
horizon may affect obstacle avoidance flexibility in particularly cluttered environ-
ments (see Section 3.3.5).
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Consequently, 3-DOFNLPMC framework is developed to enhance UGVsmodel to consider
agent rotation. In addition, it adds a potential repulsive field function to penalize robot vertices
too near obstacles and a follower control effort function that limits follower agent movements.
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Chapter 3

Non-Linear Model Predictive Control
Framework for a 3 degrees of freedom
Multi-Robot System: design and
development

3-DOF NLMPC framework is developed and discussed in this chapter. This algorithm builds
on the solution presented in Chapter 2 by incorporating the robots 3-DOF dynamic model,
which accounts for rigid body dynamics. This includes the agents independent rotational
capabilities alongside translational motion, offering a more realistic representation of their
behavior in the environment. Functional costs and obstacle avoidance constraints are adapted
to also consider the agent orientation. In particular, obstacle avoidance constraints incorporate
payload vertices, too. Moreover, potential repulsive field function and follower control effort
function are added to the previous agent functional cost formulation (Section 2.2). The state
machine implementing the variable prediction horizon for this framework is described, with
the aim of enhancing computational efficiency. Lastly, considering that in Chapter 2 agents
are assumed to know the exact map of the environment and do not possess realistic sensing
capabilities, a perception range for obstacle sensing is introduced to achieve a more realistic
and effective algorithm.
The non-linearity of this new framework arises from the definition of the set of vertices V∗,
where each v∗j ∈ V∗ is referenced to agent ∗ = L, F body frame, centered in the agent center
of mass. This means that, in a system where agents can rotate, a rototranslation of the vertices
is required to express their position in world frame.
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One of the principal aims of this work is to develop a control solution that enables each agent
in the MRS to rotate independently of the payload. This capability enhances the transportation
system flexibility in challenging environments, where precise obstacle avoidance is critical and
often pushed to its limits. Consequently, the following algorithmic changes and improvements
of the algorithm are tested with a rectangular leader agent tasked with navigating through a
narrow space between two obstacles, which is designed to be smaller than the biggest side of
the leader shape, to force the robot to rotate (Figure 3.1). This experiment is inspired by robots
with an elongated shape commonly employed in robotic transportation, such as OmniAGV©

[12].

Figure 3.1: Test setup for rotation capabilities of the system. TheMRS, on the right, is composed
by the leader (in red), the follower (in blue) and the load (in green), while the obstacles are the
two dotted line circles on the left. The biggest side of the leader is 1.6m long, while the passage
between obstacles is 0.8 m long, o1 =

[
5 0.9

]T
m, o2 =

[
5 −0.9

]T
m, r1 = r2 = 0.5 m.

3.1 Application scenario assumptions

The assumptions made regarding the application scenario for the 3-DOF NLMPC framework
are consistent with those reported in Section 2.1. There is only one difference regarding the
end-effector which can be considered as a revolute joint, allowing agents independent rotation
with respect to the payload.
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3.2 Rigid body agents dynamic model

The enhanced dynamic model of both the UGVs composing the considered MRS is described
here, and it closely follows the model presented in Section 2.1.1.
Agent ∗ = L,F state is now

x∗(t) =
[
x∗(t) y∗(t) θ∗(t) v∗x(t) v∗y(t) ω∗(t)

]T
∈ R6 (3.1)

referenced to the world frame, such that heading angle and angular velocity are incorporated. t
is a generic time step. The position of the agent in the plane is:

p∗(t) =
[
x∗(t) y∗(t)

]T
∈ R2 (3.2)

The control input of the ∗ agent is

u∗(t) =
[
u∗
x(t) u∗

y(t) u∗
θ(t)
]T

∈ R3 (3.3)

referenced to the world frame, and it is composed of robot linear (u∗
x(t) and u∗

y(t)) and angular
accelerations (u∗

θ(t)).
The continuous-time dynamic model changes into:

ẋ∗(t) = Acx∗(t) + Bcu∗(t) (3.4)

y∗(t) = x∗(t) (3.5)

where matrices are defined as:

Ac =

[
03×3 I3×3

03×3 03×3

]
∈ R6×6 Bc =

[
03×3

I3×3

]
∈ R6×3 (3.6)

The time discretization of the continuous-time model is exactly the same as in (2.7):

x∗(s+ 1) = Ax∗(s) + Bu∗(s) (3.7)

y∗(s) = x∗(s) (3.8)

where s = ⌊ t
Ts
⌋ is the discrete time step, Ts is the sample time, with t being the continuous time

and s ∈ Z. A and B are the discrete-time model state and input matrices. State and control
input during the prediction horizon are defined with the same notation introduced in Section 2.2
for the 2-DOF LMPC model, namely:
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u∗k =
[
u∗(0) . . . u∗(N − 1)

]T
∈ RmN , k = 0 . . . (N − 1) (3.9)

x∗h =
[
x∗(1) . . . x∗(N)

]T
∈ RnN , h = 1 . . . N (3.10)

3.3 Non-Linear Model Predictive Control formulation

Leader and follower have the same task to accomplish described in Section 2.2, therefore they
have the same functional costs. However, to improve the performance of the system, potential
repulsive field function and follower control effort function are added. Moreover, non-linear
constraints are defined to account for agents rotation and to avoid load vertices collision, taking
as a reference the geometrical approach explained in Section 2.2.4.

The rototranslation expressing vertices in world frame is formulated as:

v∗j,Fw
(t) = p∗(t) + R(θ∗(t))v∗j

=

[
x∗(t)

y∗(t)

]
+

[
cos(θ∗(t)) −sin(θ∗(t))

sin(θ∗(t)) cos(θ∗(t))

][
v∗jx
v∗jy

]
(3.11)

whereR(ϕ) ∈ SO(2) is the transformation matrix that performs a rotation of ϕ angle in the 2-D
plane, p∗(t) ∈ R2 is the position of the ∗ = L,F agent and θ∗(t) ∈ R is the ∗ = L, F agent
heading angle.

3.3.1 Potential repulsive field

A potential repulsive field function is introduced to force agents to keep a certain distance to
obstacles, with the purpose of improving obstacle avoidance performance and robustness and
to make this algorithm more suitable for a real application. Specifically, this function optimizes
the distance between each vertex of the agents and the obstacles.
This potential repulsive field function is similar to the one used in [7] and is:

J∗
3 =

M∑
i=1

L∗∑
j=1

N∑
h=1

Cpotexp

(
−λ

[∣∣∣∣∣
∣∣∣∣∣p∗(h) + R(θ∗(h))

[
v∗xj

v∗yj

]
−

[
oxi

oyi

]∣∣∣∣∣
∣∣∣∣∣− ri

])
(3.12)

Cpot ∈ R is a weight variable. The higher Cpot is, the greater the penalization of the functional
cost is when vertices are too near an obstacle. λ ∈ R determines the decay rate of the cost, such
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that a higher value of λ ensures that only obstacles in close proximity to the agent significantly
affect the cost. This is valid for agents vertices only, ∗ = L, F . This approach does not apply
to load vertices because it would simply increase the cost without offering any advantage.

For clarity, J∗
3 will be manipulated to explicitly show it depends on uFk . Superscripts are

omitted to simplify the notation.
Firstly we need to extract uk from the state xh, using the equation xh = T̄x(0) + S̄uk (2.16).
Then p(h) and θ(h) need to be selected, so, respectively, selection matrices F (h) and G(h) are
defined. These are time-variant matrices that depend on the step h of the prediction horizon. In
fact, in order to select the correct variables from the state vector, these matrices will have ones
only in the position corresponding to the correct variable within xh . For example, if h = 1, it
is:

F (1) =

[
1 0 0 . . .

0 1 0 . . .

]
∈ R2×nN G(1) =

[
0 0 1 0 . . .

]
∈ R1×nN (3.13)

F (1) selects p(1) and G(1) selects θ(1). Thanks to these matrices, functional cost J3 can be
decomposed in h parts, each of them referred to time step h of the prediction horizon:

J3(h) =
M∑
i=1

L∑
j=1

Cpotexp

(
−λ

[∣∣∣∣∣∣∣∣F (h)(T̄x(0) + S̄uk)+

R
(
G(h)(T̄x(0) + S̄uk)

) [vxj

vyj

]
−

[
oxi

oyi

] ∣∣∣∣∣∣∣∣− ri

])
(3.14)

such that the total functional cost is:

J3 =
N∑

h=1

J3(h) (3.15)

So (3.15) is the function added to JL (2.20), JL
rec (2.35) and JF (2.28) to incorporate the repulsive

field into agents functional cost, that change into:

JL = JL
1 + JL

3 (3.16)

JL
rec = JL

rec,1 + JL
3 (3.17)

JF = CJF
1 + JF

2 + JF
3 (3.18)
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Gradient of the follower functional cost is used during the optimization process to accelerate
computation. The expression for this gradient is presented here.
Using the definition of R(ϕ) we can derive:

J3(h) =
M∑
i=1

L∑
j=1

Cpotexp

(
−λ

[∣∣∣∣∣∣∣∣F (h)(T̄x(0) + S̄uk)+[
cos
(
G(h)(T̄x(0) + S̄uk)

)
−sin

(
G(h)(T̄x(0) + S̄uk)

)
sin
(
G(h)(T̄x(0) + S̄uk)

)
cos
(
G(h)(T̄x(0) + S̄uk)

) ] [vxj

vyj

]
−

[
oxi

oyi

] ∣∣∣∣∣∣∣∣− ri

])
(3.19)

It is useful to define vector D:

D(h) := F (h)(T̄x(0) + S̄uk)+

+

[
cos
(
G(h)(T̄x(0) + S̄uk)

)
vxj

− sin
(
G(h)(T̄x(0) + S̄uk)

)
vyj

sin
(
G(h)(T̄x(0) + S̄uk)

)
vxj

+ cos
(
G(h)(T̄x(0) + S̄uk)

)
vyj

]
−

[
oxi

oyi

]
(3.20)

so that J3(h) equation is simplified:

J3(h) =
M∑
i=1

L∑
j=1

Cpotexp (−λ [||D(h)|| − ri]) (3.21)

The gradient of J3(h) with respect to uk is:

g3(h) =
M∑
i=1

L∑
j=1

−λCpotexp(−λ[||D(h)|| − ri])

(
S̄T (F (h))T+

S̄T (G(h))T

−sin

(
G(h)(T̄x(0) + S̄uk)

)
vxj

− cos

(
G(h)(T̄x(0) + S̄uk)

)
vyj

cos

(
G(h)(T̄x(0) + S̄uk)

)
vxj

− sin

(
G(h)(T̄x(0) + S̄uk)

)
vyj


T )

D(h)

||D(h)||

(3.22)

The total potential repulsive field gradient for both ∗ = L,F agent is:

g∗3 =
N∑

h=1

g∗3(h) (3.23)
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3.3.2 Follower control effort function

During the initial tests of the algorithm, follower agent was easily induced to move or rotate
way more than necessary, making the control effort to be higher than expected. For this reason,
a control effort functional cost is introduced for this agent to avoid useless accelerations:

JF
4 = (uFk )TReffuFk (3.24)

RF ∈ Rm×m is the follower control effort weight, that aims to reduce the energy spent to move
the follower, while Reff = IN ⊗ RF ∈ RmN×mN is the matrix used to apply the control effort
weight to all inputs throughout the prediction horizon, uFk .
The follower functional cost JF finally becomes:

JF = CJF
1 + JF

2 + JF
3 + JF

4 (3.25)

The corresponding gradient of equation (3.24) is:

gF4 = 2ReffuFk (3.26)

Accordingly, gradient of the follower functional cost is:

gF = CgF1 + gF2 + gF3 + gF4 (3.27)

3.3.3 Angular velocity and acceleration constraints

The enhanced rigid body dynamic model of both the UGVs enabling rotation of the agent re-
quires a new matrix inequality definition for linear constraints, introducing angular velocity and
acceleration limits. Moreover, with respect to equation (2.40), obstacle avoidance constraints
are excluded, since they turned into non-linear constraints and have to be expressed separately.
This new formulation is:

G′u∗k ≤ W ′ + S ′x∗(0) (3.28)

Expanding matrices we obtain:[
G′

in

A′
velS̄

]
uk ≤

[
Bin

Bvel_constr

]
+

[
02vN×n

−(A′
velT̄ )

]
x(0) (3.29)

Heading angle is added to the model, so it is also necessary to apply boundaries to angular
acceleration and velocity, alongwith linear accelerations and velocities already treated in Section
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2.2.4. G′,W ′ and S ′ have different dimensions with respect to G,W and S according to agent
state and input dimension. In particular G′

in and A′
vel are hereafter defined.

Angular acceleration constraints

Acceleration constraints need to include u∗
θ(k), such that u∗

θ(k) ∈ [−u∗
θ,max, u

∗
θ,max]. To reach

this results, Gin of the 2-DOF LMPC (2.51) needs to change into:

G′
in = IN ⊗ Unl =


Unl . . . 02m×m

... . . . ...
02m×m . . . Unl

 ∈ R2mN×mN (3.30)

where Unl is the matrix selecting each acceleration input, once for the positive and once for the
negative bound, within u∗(k) (see Appendix .1), which is defined as:

Unl :=



1 0 0

−1 0 0

0 1 0

0 −1 0

0 0 1

0 0 −1


(3.31)

Angular velocity constraints

The same concept as angular acceleration is implemented for angular velocities, where ω∗(h) ∈
[−ω∗

max, ω
∗
max]. Avel of the 2-DOF LMPC (2.54) dimension changes and it becomes:

A′
vel = IN ⊗ Vnl =


Vnl . . . 02v×n

... . . . ...
02v×n . . . Vnl

 ∈ R2vN×nN (3.32)
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where Vnl is the matrix selecting each velocity, once for the positive and once for the negative
bound, within x∗(h) (see Appendix .1), defined as follows:

Vnl :=



0 0 0 1 0 0

0 0 0 −1 0 0

0 0 0 0 1 0

0 0 0 0 −1 0

0 0 0 0 0 1

0 0 0 0 0 −1


(3.33)

3.3.4 Non-linear constraints

Geometrical approach linear constraints analyzed in Section 2.2.4 are used as reference to build
non-linear obstacle avoidance constraints. Additionally, load obstacle avoidance constraints are
introduced using the same approach to account for the possibility of load vertices protruding
from the leader or follower robot’s shape. Load vertices in world frame are expressed as:

vloadj,Fw
(t) = pF (t) + R(θload(t))vloadj

=

[
xF (t)

yF (t)

]
+

[
cos(θload(t)) −sin(θload(t))

sin(θload(t)) cos(θload(t))

][
vloadjx

vloadjy

]
(3.34)

Notice that load vertices vloadj ∈ R2 are referenced to follower body frame. As a matter of fact,

θload(t) = atan2
(
(yF (t)− yL(t)), (xF (t)− xL(t))

)
(3.35)

is the rotation angle of the load in a generic step t, that depends on the relative position between
leader and follower. It is θload = 0 when both agents center lays on the same y coordinate and
follower stands on leader right.
Since in Section 3.3.4 load vertices will be added to obstacle avoidance constraints and
considering that load vertices position in world frame depends on both leader and follower
position, the leader optimization problem must be solved first. Then follower optimization
problem must be computed incorporating the obstacle avoidance constraints for the load.

The idea is to use the same inequality used for linear constraints (2.48) and introducing the
rotation of the vertices. This formulation is valid for each agent, i-th obstacle, j-th vertex and h
time step.
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(vec1)T (vec2) ≥ 0 (3.36)

vec1 :=

[
x∗(0)

y∗(0)

]
−

[
q∗ix
q∗iy

]
(3.37)

vec2 :=

([
x∗(h)

y∗(h)

]
+

[
cos(θ∗(h)) −sin(θ∗(h))

sin(θ∗(h)) cos(θ∗(h))

][
v∗jx
v∗jy

])
−

[
q∗ix
q∗iy

]
(3.38)

By expliciting and then rearranging signs and inequality sign:([
x∗(0)

y∗(0)

]
−

[
q∗ix
q∗iy

])T (([
x∗(h)

y∗(h)

]
+

[
cos(θ∗(h)) −sin(θ∗(h))

sin(θ∗(h)) cos(θ∗(h))

][
v∗jx
v∗jy

])
−

[
q∗ix
q∗iy

])
≥ 0

−

([q∗ix
q∗iy

]
−

[
x∗(0)

y∗(0)

])T ([
q∗ix
q∗iy

]
−

([
x∗(h)

y∗(h)

]
+

[
cos(θ∗(h)) −sin(θ∗(h))

sin(θ∗(h)) cos(θ∗(h))

] [
v∗jx
v∗jy

])) ≤ 0

∗ = L, F. h = 1 . . . N. i = 1 . . .M. j = 1 . . . L∗.

The process slightly changes for load vertices, since they are referenced to follower body
frame, so pF (h) is used:

(vec1load)T (vec2load) ≥ 0 (3.39)

vec1load :=
([

xF (0)

yF (0)

]
+

[
cos(θload(0)) −sin(θload(0))

sin(θload(0)) cos(θload(0))

][
xload

yload

])
−

[
qloadix

qloadiy

]
(3.40)

vec2load :=
([

xF (h)

yF (h)

]
+

[
cos(θload(h)) −sin(θload(h))

sin(θload(h)) cos(θload(h))

] [
vloadjx

vloadjy

])
−

[
qloadix

qloadiy

]
(3.41)

By expliciting and then rearranging signs and inequality sign:

−

(([
qloadix

qloadiy

]
−
([

xF (0)

yF (0)

]
+

[
cos(θload(0)) −sin(θload(0))

sin(θload(0)) cos(θload(0))

][
xload

yload

]))T

([
qloadix

qloadiy

]
−
([

xF (h)

yF (h)

]
+

[
cos(θload(h)) −sin(θload(h))

sin(θload(h)) cos(θload(h))

] [
vloadjx

vloadjy

])))
≤ 0

h = 1 . . . N. i = 1 . . .M. j = 1 . . . Lload.

(3.42)

In equation (3.42)
xload =

[
xload yload

]T
∈ R2 (3.43)

are the coordinates of the center of mass of the load defined as a fixed position in follower body

34



frame and θload ∈ R is payload orientation. Therefore, qloadi is the vector representing the point
on the surface of the i-th obstacle in world frame that is the closest to the center of the load at
step 0 of the current prediction horizon. As a consequence, the same geometrical meaning is
valid for load vertices. They need to lie inside load safe area over the prediction horizon, which
is built by the intersection of half-planes tangent to the i-th obstacle at qloadi and normal to the
vector vec1 connecting qloadi and the load center at step 0 (Figure 3.2).
The total amount of non-linear obstacle avoidance constraints is:

• NMLL for leader, where LL is the number of leader vertices;

• NM(LF + Lload) for follower, where LF and Lload are the number of follower and load
vertices, respectively.

35



(a) Constraint satisfied, because both vectors lay inside the safe area.

(b) Constraint violated, because vec2 lays outside the safe area.

Figure 3.2: Examples of non-linear obstacle avoidance load constraints. The system in bright
colors is the system at time step 0 of the current prediction horizon, while the system in faded
colors represents the system at a generic step h of the current prediction horizon. vec1 and vec2
for load vertices vload1 and vload2 , as an example, are drawn in light blue.
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3.3.5 Qualitative discussion about non-linear obstacle avoidance con-
straints

This section discusses the non-linear obstacle avoidance strategy implemented in Section 3.3.4,
highlighting the significant enhancement in mobility of the MRS in cluttered environments.
Moreover, different critical situations and environments are depicted and a deeper analysis of
these constraints is provided to fully characterize this algorithm. Also, a few possible solutions
to the emerged problems are proposed.

Narrow passage between static obstacles

To prove the effectiveness of the algorithm, qualitative tests are conducted using the setup
shown in Figure 3.1. The purpose of these tests is simply to show that the MRS is capable of
reaching the goal. However, these results strongly depend on MPC parameters, such as Cpot,
and environment setup, where the dimension of the passage is crucial. The MPC parameters
used in these tests are the optimal ones described in Section 4.1.
Figure 3.3 shows a sequence of images representing the simulation of this test, demonstrating
that the MRS successfully navigates through the passage without any collision.

Despite its advantages, the proposed navigation solution has some limitations. As pre-
viously mentioned, the performance and the chance of success strongly depends on the set
of MPC parameters and environment setup. For instance, if the corridor is too narrow and
obstacles have a relatively small radius, the MRS may choose to bypass the corridor and
navigate around the obstacles. This behaviour primarily depends on the Cpot weight, which
establishes the distance each agent has to guarantee for obstacle avoidance.
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(a) Instant 1 (b) Instant 2

(c) Instant 3 (d) Instant 4

Figure 3.3: Sequence that shows the effectiveness of agent rotation to navigate through narrow
passages. Red and blue lines with circles are respectively leader and follower navigated path,
while magenta and light blue lines with circles are respectively leader and follower predicted
path.

Dynamic obstacles

Dynamic obstacles tests are important to assess whether the proposed navigation solution is ef-
fective and robust also in chaotic and dynamic environments, since the idea is to use this strategy
in industrial context such as warehouse or other spaces shared with humans.
The presence ofmoving obstacles in the environment is considered in this navigation framework.
However, since obstacles are considered fixed during the optimization process and half-planes
that compose the safe areas are static during the prediction horizon, the algorithm is unreliable
in presence of dynamic obstacles. Specifically, if an agent is near a moving obstacle, the op-
timization may lead the robot to plan a trajectory that avoids the obstacle based on its actual
position, but this could lead to a collision if the object is moving toward the predicted position
of the agent. For instance, a simple setup with two dynamic obstacles is shown in Figure 3.4.
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At 7.4 s a collision clearly occurs (Figure 3.5) between the follower agent and one of the obsta-
cles. For this reason, geometrical obstacle avoidance constraints approach designed in Sections
2.2.4 and 3.3.4 cause the algorithm to lack in robustness in presence of dynamic obstacles. One
possible solution is to assume that moving obstacles have a sufficiently slow dynamics, making
it reasonable to approximate them as static obstacles over the prediction horizon. A different
solution might be the introduction of a sort of object behaviour prediction algorithm that can
compute a prediction of the obstacle path, so that constraints are capable to deal with moving
obstacles. However, this approach would increase significantly the computational effort.

Figure 3.4: Dynamic obstacles environment. Two moving obstacles are placed in the environ-
ment. Red arrows indicate the rectilinear direction in which each obstacle moves. This frame
shows the initial pose of these obstacles.

Other challenging conditions

In particular cases, the constraints described in equations (3.3.4) and (3.42) may be too strict.
The fact that the half-planes are static during the prediction horizon could lead to an infeasible
path, for example in particularly narrow L-shaped corridors (Figure 3.6), especially when
the load is a long bar like the one considered in this work. An infeasible path, in this case,
could cause the system to become stuck at a certain position without the possibility to move.
Therefore, testing the system performance in specific conditions to evaluate the behaviour of
these constraints could be a goal for future work.
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Figure 3.5: Follower collision with a dynamic obstacle.

Figure 3.6: L-shaped corridor that might be challenging for this obstacle avoidance constraints
approach.

An interesting feature that could be implemented may also be a leader-follower collision-
avoidance, designed to handle MRS where the leader and follower agents have unconventional
designs that could collide while navigating.

A possible solution to most of these challenging scenarios is the implementation of time-
variant half-planes based constraints. This would significantly improve the flexibility of the

40



MRS and, on the other hand, increase drastically the computational cost.

3.4 State machine for variable prediction horizon

The aim of this thesis is to develop an algorithm that is suitable for real applications, operated
in real-time and that is as efficient as possible. For this reason, new features are incorporated
to reduce computational effort, with the aim of keeping the computational time for each step
below the sample time of the system, namely Ts = 0.1 s.

In the literature, all MPC solutions adopt a fixed prediction horizon length, which guarantees
an easy-to-manage algorithm but often sacrifices performance in certain situations. For instance,
in the context exposed in this thesis, when the MRS is far from obstacles, the obstacle avoidance
constraints become unnecessary and can negatively impact computational effort. This is because
a large number of non-linear constraints can be computationally expensive. At the same time,
a longer prediction horizon is beneficial for planning the optimal path, primarily to guarantee
a feasible follower path. On the other hand, when the MRS is near obstacles it needs to avoid
collisions and maintain a bounded formation error with an appropriate algorithm execution time,
so a shorter prediction horizon is preferable to meet these needs efficiently. A shorter horizon
decreases the number of hard and soft constraints evaluated during each MPC iteration, as these
constraints scale proportionally with the length of prediction horizon.
For this reason, a state machine composed of two states is implemented, each corresponding to
the conditions described. The MRS state is selected according to the distance between leader or
follower to their nearest obstacle surface. Nlong is the prediction horizon used when system is
far from obstacles, Nshort is the shorter prediction horizon used to perform obstacle avoidance.
The transition between these states is triggered by a distance r∗d which is defined as a distance
from the ∗ = L,F agent center. This trigger distance value represents the distance an agent,
traveling at full speed, would cover before coming to a stop under maximum deceleration, plus
the agent maximum radius r∗max, adjusted by a safety factor Crd ∈ R. Formally, this is:

r∗d = Crd

(
r∗max +

1

2

(v∗max)
2

a∗max

)
(3.44)

The trigger distance r∗d can be interpreted as the radius of the obstacle-avoidance area (OA area),
as reported in Figure 3.7. When at least one obstacle is inside the OA area of either the leader
or follower, theNshort state is triggered, while if neither agent detects obstacles within their OA
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area, the Nlong state is applied.

3.4.1 Perception range

As discussed in Section 1.1, a decentralized MPC is more scalable than a centralized MPC,
but still has its limits. Numerical results presented in Section 4.2 show that a large amount
of obstacles significantly reduce the performance of the algorithm, causing the computational
time of the single step to exceed the system sample time Ts. In addition, computing obstacle
avoidance for obstacles that are far from the MRS, considering their relative velocity, wastes
computational power. To address this issue, a perception range is introduced to simulate the
MRS ability to detect nearby obstacles through its sensors.
Perception range rpr is defined relative to the center of the MRS, located in the load center for
simplicity. It is defined as the maximum vertex-MRS center distance in the MRS, incremented
by the safety factor Cpr ∈ R:

rpr = Cpr

(
dL,F
2

+max(rLmax, r
F
max)

)
(3.45)

So, rpr can be interpreted as the radius of the perception area (Figure 3.7), that has to be a equal
or wider region than the OA areas of both robots.

Figure 3.7: Perception area (in green) and OA areas (in yellow) of the MRS.
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3.5 Discussion and remarks

This novel 3-DOFNLMPC algorithm is developed to enhance 2-DOF LMPC framework perfor-
mance regarding computational cost, flexibility in cluttered environments and obstacle avoid-
ance effectiveness. Consequently, hereafter improvements are listed:

1. UGVs dynamic model is extended to a 3-DOF, incorporating independent agents rotations
with respect to the payload, so that robots can agilely move in more narrow spaces and
cluttered environments, compared with the 2-DOF LMPC framework.

2. Potential repuslive field function ensures an higher safety of the framework, incrementing
the distance between agents and obstacles during navigation.

3. Follower control effort functional cost reduces energy spent moving this agent and un-
necessary accelerations. Obviously, this functional cost member needs to be weighted
correctly to avoid interfering with proper follower task accomplishment.

4. Load vertices are incorporated to the definition of obstacle avoidance hard constraints, to
guarantee collision avoidance even when payload has a particular shape.

5. Perception range emulating a sensing system is implemented, realizing a more realistic
framework and reducing the number of obstacles sensed in each algorithm iteration. This
feature causes a decreased computational effort.

6. Lastly, the state machine providing a variable prediction horizon framework is designed.
When obstacles are far from the system, obstacle avoidance is not performed and a wider
prediction horizon is used. On the other hand, when the system is approaching obstacles,
a shorter prediction horizon is applied to perform obstacle avoidance, causing reduced
execution time due to the decreased number of hard and soft constraints to be computed
for obstacle avoidance.

Cons about the geometrical approach implemented in both 2-DOF LMPC and 3-DOF NLMPC
frameworks are reported in Section 3.3.5.
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Chapter 4

Non-Linear Model Predictive Control
Framework for a 3 degrees of freedom
Multi-Robot System: assessment and
validation

In this chapter, MATLAB® simulations are performed to assess and validate the proposed
transportation framework. Firstly, optimal parameters for 3-DOF NLMPC framework are
selected through a detailed analysis. Then fixed and variable prediction horizon configurations
are compared to evaluate the differences regarding both computational effort and formation
error. Also, a comparison between 2-DOF LMPC and 3-DOF NLMPC frameworks is reported
to prove the effectiveness of the improvements developed. The influence of the perception
range is demonstrated, and finally, a Monte Carlo simulations campaign is performed to assess
the robustness to disturbances of the 3-DOF NLPMC framework.

To simplify the simulations, it is important to note that input delays due to computation
are not considered in this analysis. Specifically, the system remains frozen until the necessary
inputs are computed and applied to the robots.

Simulations results can significantly change depending on the values assigned to certain vari-
ables. Some of them are the selected MPC parameters (as discussed in Section 4.1), while oth-
ers are considered system’s constants, such as velocity and acceleration boundaries for agents,
agents dimensions, load dimension and so on. The constants used in the simulations are sum-
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marized below:

• Leader dynamic parameters:

– maximum linear velocity: vLmax = 1 m/s.

– maximum linear acceleration: uL
max = 3 m/s2.

– maximum angular velocity: ωL
max = 1.57 rad/s.

– maximum angular acceleration: uL
θ,max = 10 rad/s2.

• Follower dynamic parameters:

– maximum linear velocity: vFmax = 1.5 m/s.

– maximum linear acceleration: uF
max = 5 m/s2.

– maximum angular velocity: ωF
max = 3.14 rad/s.

– maximum angular acceleration: uF
θ,max = 20 rad/s2.

Note that follower dynamic parameters are higher than leader’s, in order to have a follower
that can easily accomplish its task and efficiently follow the leader.

• MRS dimensional parameters:

– Leader: square robot 0.6 m× 0.6 m, resulting in rLmax = 0.424 m.

– Follower: square robot 0.3 m× 0.3 m, resulting in rFmax = 0.212 m.

– Payload: rectangular load 1.0 m× 0.2 m, resulting in dL,F = 1 m.

• Distance threshold between the leader center and the final goal that determines if the
simulation ended successfully: δ = 0.1 m.

• Steps of the prediction horizon, starting from the first prediction, where formation error
is checked to decide if recovery policy is needed: kloose_grip = 3.

• Formation error that triggers recovery policy: ϵloose_grip = 0.01 m.

In Section 4.1 a fixed prediction horizon N = 10 is used to study optimal parameters. Instead,
Crd , defining OA area extension, requires a variable prediction horizon to be tested. Nlong = 15,
Nshort = 5 is the chosen state machine configuration for the analysis of this parameter. In
Section 4.2 the impact of prediction horizon is analyzed.
These MATLAB® simulations run on a laptop with Ubuntu 22.04, an Intel™ Core i7-1165G7@
2.80GHz × 8 processor, a RAM memory of 16.0 GB.
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4.1 Optimal MPC parameters analysis

To achieve optimal performance for this algorithm, it is crucial to determine the optimal MPC
parameters. Given the system’s complexity and the presence of multiple functional costs, there
are several MPC parameters to consider:

1. W ∈ Rn×n: leader state weight during prediction horizon. (eq. (2.19))

2. RL ∈ Rm×m: leader control effort weight during prediction horizon. (eq. (2.19))

3. Z ∈ Rn×n: leader state weight on the last prediction horizon step. (eq. (2.19))

4. RF ∈ Rm×m: follower control effort weight during prediction horizon. (eq. (3.24))

5. C ∈ R: squared formation error weight. (eq. (2.28))

6. β ∈ (0, 1] ⊂ R: decaying factor of the squared formation error during prediction horizon
in JF

1 . (eq. (2.26))

7. λ ∈ R: the parameter of the potential repulsive field that affects the functional cost weight
of each obstacle according to their distance to the agent considered. (eq. (3.12))

8. Cpot ∈ R: potential repulsive field weight. (eq. (3.12))

9. Crd ∈ R: safety parameter that regulates the dimension of the OA area, where obstacle
avoidance is performed. (eq. (3.44))

10. Cpr ∈ R: safety parameter that regulates the dimension of the perception area. (eq. (3.45))

λ,Cpot andCrd may have different values for each agent, but they are considered equal for leader
and follower in this thesis.
Given the large number of parameters involved, the simulations to select optimal parameters are
divided into blocks aiming to analyze together parameters that have mutual effects on the same
variables or functional costs. The blocks are designed as follows:

1. Leader navigation parameters. {W, RL, Z}

2. Follower navigation parameter. {RF}

3. Formation error parameters. {C, β}

4. Potential repulsive field parameters. {Cpot, λ}

5. Potential repulsive field dimension. {Crd}
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6. Perception range dimension. {Cpr}

The simulations are structured in a way that each block of parameters is tested in a controlled
manner to evaluate their impact on the algorithm’s behavior, while the other parameters are
fixed. These fixed parameters for the simulations are reported in the first row of each block
table, namely Tables 4.1, 4.3, 4.5, 4.7, 4.9 and 4.11.
Specifically designed environments, to cover every aspect of the tested algorithm, are used for
these simulations to understand the generic behaviour of the algorithm. Each one of them has
a specific purpose in terms of testing the impact of the parameters on the path planning and
decision-making process of the MRS. The considered environments include:

• No obstacles environment. Obstacle avoidance is not required in this environment, so it
is mostly useful to analyze how quickly the leader trajectory converges to the goal and
how the follower responds. Obviously, it is unnecessary to test potential field parameters
in this environment.
Leader initial state is

[
20 10 0 0 0 0

]T
m (Figure 4.1).

Figure 4.1: No obstacles environment.

• One obstacle environment. In order to assess how the algorithm responds to a potential
singularity, the obstacle is placed along the ideal leader path.
The static obstacle is placed at

[
5 5

]T
m, its radius is r1 = 3 m. The leader initial

position is
[
10 10 0 0 0 0

]T
m (Figure 4.2).
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Figure 4.2: One obstacle environment.

• Corridor environment. This scenario involves multiple static obstacles arranged to create
a narrow passage, providing an ideal scenario to assess obstacle avoidance performance.
Additionally, the recovery policy may be activated.
Obstacles placement and radii are:
Obstacle Center position [m] Radius [m]

o1
[
7 7

]T
0.8

o2
[
10 7

]T
0.8

o3
[
7 6

]T
0.8

o4
[
10 6

]T
0.8

o5
[
7 5

]T
0.7

o6
[
10 5

]T
0.8

o7
[
6.5 4.5

]T
0.8

o8
[
7 8

]T
0.8

o9
[
9.5 4

]T
0.7

The leader initial position is
[
10 10 0 0 0 0

]T
m (Figure 4.3).
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Figure 4.3: Corridor environment.

• Obstacle near goal environment. It tests the ability of the MRS to reach the goal in
environments where obstacles are placed near the target, providing optimal choice of
potential repulsive field parameters. For this reason, it is employed for potential repulsive
field parameters block only. This obstacle is placed in

[
−2 0

]T
m, and its radius is

r1 = 1 m (Figure 4.4).

Figure 4.4: Obstacle near goal environment.
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The criteria for selecting the best configuration of parameters are different, depending on the
nature of the parameters. For example, simulations involving formation error parameters show
a noticeable impact on formation error, whereas in other simulations, the differences are negli-
gible. For this reason, only relevant data are presented.
Optimal set of parameters chosen for each block is highlighted in Tables 4.1, 4.3, 4.5, 4.7, 4.9
and 4.11.

4.1.1 Leader navigation parameters

Table 4.1: Leader navigation parameters tested.

Set W RL Z

1 diag([1, 1, 1, 1, 1, 1]) diag([0.9, 0.9, 0.9]) diag([1, 1, 1, 1, 1, 1])
2 diag([10, 10, 10, 10, 10, 10]) diag([1.5, 1.5, 10]) diag([10, 10, 10, 10, 10, 10])
3 diag([1, 1, 10, 1, 1, 10]) diag([1, 1, 10]) diag([100, 100, 100, 100, 100, 100])
4 diag([1, 1, 10, 1, 1, 10]) diag([0.9, 0.9, 0.9]) diag([500, 500, 100, 100, 100, 100])

Total execution time and trajectory planned in these simulations are the significant results
analyzed to choose the best set of parameters. No obstacles environment results for these
simulations are similar, therefore they are not significant.

Table 4.2: Simulations data for leader navigation parameters.

Set One obstacle total execution time [s] Corridor total execution time [s]
1 44.126 85.054
2 46.041 101.681
3 29.709 83.881
4 28.715 79.875

The trajectory difference between set couples (1, 2) and (3, 4) in one obstacle environment is
significant. As shown in Figure 4.5, during the simulations with sets 1 and 2, the MRS remains
stationary from t = 4 s to t = 6.5 s, causing the increased execution time in the first two rows
in Table 4.2, while with set 3 and 4 the MRS is able to plan a smoother path.
Collision avoidance is successfully guaranteed for all the simulation of these sets.
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(a) Leader and follower planned trajectory, set 2 (b) Leader and follower planned trajectory, set 4

(c) Leader and follower x and y coordinates, set 2 (d) Leader and follower x and y coordinates, set 4

Figure 4.5: Trajectory and position coordinates comparison for leader navigation parameters in
one obstacle environment.
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4.1.2 Follower navigation parameter

Table 4.3: Follower parameters tested.

Set RF

1 diag([5, 5, 10])
2 diag([10, 10, 20])
3 diag([1, 1, 5])
4 diag([1, 1, 1])
5 diag([0.5, 0.5, 0.5])

In this case, only total execution time of the simulation is relevant. Table 4.4 shows that
set 4 is generally the best one, even if set 5 performs significantly faster in environments with
more obstacles. For this reason, a trade-off between performance and unnecessary movements
is considered and set 4 is chosen.
Anyways, the trend shows that a low control effort weight improves the algorithm computational
performance.
Collision is always avoided successfully and no significant formation error difference between
sets is reported.

Table 4.4: Total execution time in follower parameters simulations.

Set No obstacles [s] One obstacle [s] Corridor [s]
1 15.963 28.582 78.789
2 17.640 55.334 102.373
3 13.893 25.365 73.409
4 13.033 22.977 75.418
5 15.351 24.527 55.168

4.1.3 Formation error parameters

Table 4.5: Formation error parameters tested.

Set C β

1 5000 0.95
2 5000 1
3 500 0.97
4 50 1
5 5000 0.90

To evaluate formation error parameters performance, maximum and mean formation error
are considered, as well as the total execution time (Table 4.6). Sets 3 and 4 are excluded
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because the MRS could not reach the goal in a reasonable number of steps, while other sets
assure the MRS to reach the target avoiding obstacles.

Table 4.6: Formation error parameters simulations data.

Set Environment Max |feL,F | [mm] Mean |feL,F | [mm] Tot execution time [s]
1 No obstacles 7.343 0.247 15.567
2 No obstacles 6.971 0.228 14.724
5 No obstacles 7.735 0.268 15.432

1 One obstacle 7.341 1.085 29.992
2 One obstacle 6.972 1.015 30.943
5 One obstacle 13.405 1.241 29.431
1 Corridor 9.222 1.253 78.445
2 Corridor 10.915 1.823 161.258
5 Corridor 7.725 1.555 77.411

In environments where few obstacles are placed, set 2 has the best overall performance, but
in corridor environment its behaviour is by far the worst. Thus, the combination of these results
prove that set 1 is the optimal choice.

4.1.4 Potential repulsive field parameters

Table 4.7: Potential repulsive field parameters tested.

Set Cpot λ

1 1 1
2 7 1
3 7 3
4 15 3
5 15 10

Obstacle near goal environment is essential for potential repulsive field parameter optimal
choice. Certain combinations of repulsive potential field parameters and obstacle proximity
to the goal might prevent the MRS from reaching the target, causing it to stop at a distance
determined by the repulsion parameters. However, the choice made in Table 4.1 of using an
high terminal position weight on matrix Z mitigates the impact of this issue.

The key metric analyzed here is the minimum distance da,o between an agent and an obstacle
during the simulation. For obstacle near goal simulations the primary focus is on whether the
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navigation successfully reaches the target (Table 4.8).
Since a reasonable safety margin for obstacle avoidance is desirable, set 5 is the optimal choice.

Table 4.8: Potential repulsive field simulation data.

Set One obstacle da,o [m] Corridor da,o [m] Obstacle near goal success
1 0.000972 0.072410 Yes
2 0.023683 0.058267 No
3 0.048787 0.166017 Yes
4 0.069657 0.302202 No
5 0.069441 0.158751 Yes

All simulations of these sets achieve the same formation error performance.

4.1.5 Potential repulsive field dimension

Table 4.9: Potential repulsive field dimension parameters tested.

Set Crd

1 2
2 3
3 4
4 5

Potential repulsive field dimension is relevant for variable prediction horizon algorithm only
and does not have a direct impact on performance. However, a larger OA area increases the
number of steps in which obstacle avoidance is active. The impact of this parameter become
evident when combined with a prediction horizon length N analysis, as discussed in Section
4.2. So, in this situation, Crd , namely the safety factor regulating OA area radius, is chosen
considering a reasonable distance at which obstacle avoidance becomes necessary, considering
the ratio between this dimension and the maximum radius of the agent, for both agents.

Table 4.10: Potential repulsive field dimension simulation data.

Set Leader rd [m] Leader rd/rmax Follower rd [m] Follower rd/rmax

1 1.267 2.714 0.917 3.928
2 1.900 4.071 1.375 5.893
3 2.533 5.428 1.833 7.857
4 3.167 6.786 2.292 9.821
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Given these robot dimensions and values of vmax and umax, set 2 seems to ensure the correct
safety margin for obstacle avoidance actuation (Table 4.10). As a matter of fact, collisions are
avoided successfully. Formation error performance is not relevant in these simulations.

4.1.6 Perception range dimension

Table 4.11: Perception range dimension parameter tested.

Set Cpr

1 4
2 5
3 6
4 7

These tests are conducted exclusively in the corridor environment to evaluate howmany ob-
stacles the system detects at each instant. The goal is to select the set with the most reasonable
trade-off between safety and computational effort, as the computational load increases signifi-
cantly when more obstacles are sensed.

Table 4.12: Perception range dimension simulation data.

Set rpr [m] Tot execution time [s]
1 3.867 65.457
2 4.833 74.972
3 5.800 68.130
4 6.767 71.617

Table 4.12 shows that set 1 is the fastest configuration and presents a sufficient perception
range distance, considering the path navigated (Figure 4.6). Figure 4.7 supports this intuition,
showing that the number of obstacles sensed is reasonable for this setup. In general, all
simulations reach the target correctly.

Table 4.13 groups the MPC optimal parameters chosen in this section.
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Figure 4.6: MRS trajectory navigated in corridor environment.

Table 4.13: Optimal parameters chosen in Section 4.1. These are set for all simulations in next
sections.

Parameter Value
W diag([1, 1, 10, 1, 1, 10])
RL diag([0.9, 0.9, 0.9])
Z diag([500, 500, 100, 100, 100, 100])
RF diag([1, 1, 1])
C 5000
β 0.95

Cpot 15
λ 10
Crd 3
Cpr 4
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(a) Set 1 (b) Set 2

(c) Set 3 (d) Set 4

Figure 4.7: Number of obstacles M sensed at each step of the algorithm by the system in each
simulation set.
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4.2 Fixed vs variable prediction horizon

The aim of this section is to study fixed and variable prediction horizon performance to highlight
the differences. The environments designed for these simulations are the same tested in [6]:

• No obstacles, the same used in Section 4.1 (Figure 4.1).

• Two obstacles (Figure 4.8), where
Obstacle Center position [m] Radius [m]

o1
[
3 12

]T
3

o2
[
6 5

]T
3

Figure 4.8: Two obstacles environment.

• Three obstacles (Figure 4.9), where
Obstacle Center position [m] Radius [m]

o1
[
5 11

]T
3

o2
[
7 4

]T
3

o3
[
1 3

]T
1

• Valzer, where 24 obstacles are placed to compose multiple corridors and narrow pas-
sages. An additional dynamic obstacle is implemented, that moves at x = 12 m with a
vy = −1 m

s
(Figure 4.10).
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Figure 4.9: Three obstacles environment.

Figure 4.10: Valzer environment. The red arrow indicate the moving direction of the only dy-
namic obstacle in this environment. This image depicts the initial conditions of the environment.

Seven prediction horizon settings are tested, four with a fixed and three with a variable
prediction horizon. In [6], only a N = 20 fixed horizon was tested.
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• Fixed horizon, N = 20 (F20).

• Fixed horizon, N = 15 (F15).

• Fixed horizon, N = 10 (F10).

• Fixed horizon, N = 5 (F5).

• Variable horizon, Nlong = 20, Nshort = 10 (V20_10).

• Variable horizon, Nlong = 20, Nshort = 5 (V20_5).

• Variable horizon, Nlong = 15, Nshort = 5 (V15_5).

These values are selected to facilitate comparisons and anticipate potential real-time imple-
mentation. Each one of these configurations is tested in the four reported environments. In
this section, the system detects all obstacles in the environment. Perception range is introduced
later in Section 4.3. “ET” denotes the execution time, while feL,F (t) = ||pL(t)−pF(t)||−dL,F

is the formation error.
Tables 4.14, 4.15, 4.16, 4.17 present the results, where execution time is the primary difference
between prediction horizon settings. In all the tests, the target is successfully reached.

Table 4.14: No obstacles environment fixed and variable prediction horizon data. Best result
for each row is highlighted in green, while the worst is highlighted in red.

F20 F15 F10 F5 V20_10 V20_5 V15_5
Max ET [s] 0.598 0.085 0.030 0.009 0.262 0.204 0.109
Min ET [s] 0.017 0.010 0.006 0.003 0.021 0.020 0.011
Mean ET [s] 0.034 0.016 0.009 0.004 0.037 0.033 0.019

Mean ET Nlong [s] − − − − 0.037 0.033 0.019
Mean ET Nshort [s] − − − − − − −

Total ET [s] 7.117 3.372 1.805 0.868 7.852 6.934 3.909
Max |feL,F | [mm] 3.158 3.154 3.155 3.315 3.158 3.158 3.154
Mean |feL,F | [mm] 0.068 0.073 0.087 0.250 0.068 0.068 0.073

Formation error is generally below 10 mm, but in cluttered environments a peak formation
error of up to 15 mm is possible. Different prediction horizon settings present similar formation
error values on the same environment. In general, F20 selection results in the highest maximum
and mean formation error. F5 selection results in the worst performance in no obstacles and
three obstacles environments, likely due to the shorter prediction horizon used throughout the
simulation, but performs better in other conditions. For this reason, it is difficult to find a
pattern that explains the relation between formation error and length of prediction horizon.
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Table 4.15: Two obstacles environment fixed and variable prediction horizon data. Best result
for each row is highlighted in green, while the worst is highlighted in red.

F20 F15 F10 F5 V20_10 V20_5 V15_5
Max ET [s] 3.325 1.535 0.392 0.051 0.375 0.220 0.100
Min ET [s] 0.245 0.147 0.080 0.011 0.025 0.013 0.015
Mean ET [s] 1.002 0.472 0.147 0.029 0.084 0.037 0.025

Mean ET Nlong [s] − − − − 0.043 0.044 0.022
Mean ET Nshort [s] − − − − 0.135 0.028 0.028

Total ET [s] 159.2 71.76 21.17 4.112 12.67 5.527 3.678
Max |feL,F | [mm] 11.553 6.814 6.561 3.315 7.122 3.159 3.154
Mean |feL,F | [mm] 0.710 0.522 0.390 0.378 0.314 0.178 0.202

Table 4.16: Three obstacles environment fixed and variable prediction horizon data. Best result
for each row is highlighted in green, while the worst is highlighted in red.

F20 F15 F10 F5 V20_10 V20_5 V15_5
Max ET [s] 4.299 2.223 0.556 0.092 0.652 0.205 0.095
Min ET [s] 0.206 0.254 0.067 0.022 0.034 0.024 0.014
Mean ET [s] 1.676 0.786 0.225 0.041 0.198 0.046 0.040

Mean ET Nlong [s] − − − − 0.068 0.082 0.038
Mean ET Nshort [s] − − − − 0.212 0.043 0.040

Total ET [s] 310.0 137.5 35.98 6.139 31.41 6.975 5.936
Max |feL,F | [mm] 8.949 8.635 7.032 7.681 7.979 5.600 6.775
Mean |feL,F | [mm] 1.210 1.050 1.139 1.285 1.189 1.163 1.242

Table 4.17: Valzer environment fixed and variable prediction horizon data. Best result for each
row is highlighted in green, while the worst is highlighted in red.

F20 F15 F10 F5 V20_10 V20_5 V15_5
Max ET [s] 1383 288.6 3.218 0.745 3.215 0.744 0.743
Min ET [s] 2.560 1.531 0.559 0.054 0.016 0.017 0.009
Mean ET [s] 17.16 4.981 1.381 0.237 0.895 0.166 0.161

Mean ET Nlong [s] − − − − 0.029 0.028 0.016
Mean ET Nshort [s] − − − − 1.471 0.259 0.259

Total ET [s] 8407 2247 588.4 99.97 381.4 70.07 67.83
Max |feL,F | [mm] 15.341 9.972 10.349 9.708 10.349 9.708 9.708
Mean |feL,F | [mm] 1.102 0.763 0.496 0.710 0.492 0.682 0.677

Execution time significantly increases with the number of obstacles in the environment and
the length of the prediction horizon. For instance, F20 selection in valzer environment leads
to an unacceptable mean execution time, since sampling time of the system is Ts = 0.1 s. A
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good result would be Mean_ET < Ts, but none of these settings, with optimal parameters
selected in Section 4.1, can guarantee this performance for all four environments. Actually,
the only environment that exceeds this execution time limit is valzer, due to the high number
of obstacles. In any other environment, at least a few settings have good results, such as F5,
V20_5 and V15_5.
However, for a hard real-time algorithm, it is necessary for all steps to have ET < Ts, and
these results indicate that none of the settings meet the condition Max_ET < Ts in all
environments. Nevertheless, the incorporation of the perception range is expected to improve
the computational performance (Section 4.3).
Here, time distribution of each MPC iteration execution time of setting V20_5 in two obstacles
environment is represented in Figure 4.11a. When parameter Nlong is high, there is much more
possibility that long horizon state time steps take a longer time to compute than Ts, probably
due to the number of hard constraints computed or formation error minimization, even if
obstacle avoidance is not performed.
In general, the first step of the algorithm tends to be much more computationally expensive
than subsequent steps, likely due to the intrinsic convergence challenges of the optimization
problem. As a result, the execution time for the first step can vary significantly each time the
simulation runs.
Moreover, in particularly cluttered environments with multiple obstacles, such as a corridor, a
single step can be computationally intensive, increasing the maximum execution time value.
For instance, in Figure 4.11b none of the Nlong state time steps exceed Ts, while obstacle
avoidance is clearly expensive and increases both maximum and mean execution time values.

Only one fixed prediction horizon configuration, valzer environment excluded, has an
acceptable behaviour, with this parameters and environments setup, namely F5. V15_5 works
well in two obstacles and three obstacles environments, but exceeds Ts in its first step only in
no obstacles environment, as shown in Figure 4.11c.

These results prove how a short fixed prediction horizon generally has good formation error
performance and faster computation times. In contrast, a variable prediction horizon provides
a broader prediction window, which can be crucial in more dynamic environments, given the
correct combination ofNlong andNshort. Also, this solution achieves a slightly better formation
error performance.

63



(a) V20_5 in two obstacles environment. (b) V15_5 in valzer environment.

(c) V15_5 in no obstacles environment.

Figure 4.11: Distribution of each MPC iteration execution time of various configurations in
different environments. Histograms bin width is 0.01 s.

Regarding obstacle avoidance, the effectiveness is the same in all configurations, since no
collision occurs. Table 4.18 shows the minimum agent-obstacle distance for each setting. This
variable clearly depends on N , for fixed horizon, and Nshort, for variable horizon, since in
some simulations where N = Nshort the agents keep the same minimum distance. However,
no specific trend is observed in the results.
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Table 4.18: Minimum agent-obstacle distance. Highest distance for each environment, which
means more safety, are highlighted in green, while smallest distances are highlighted in red.

Setting Two obs [m] Three obs [m] Valzer [m]
F20 0.436 0.145 0.236
F15 0.581 0.695 0.109
F10 0.154 0.331 0.032
F5 0.589 0.002 0.567

V20_10 0.154 0.075 0.032
V20_5 0.634 0.005 0.567
V15_5 0.627 0.003 0.567

4.3 Perception range

A properly sized perception range can improve drastically the performance of this algorithm by
reducing computational effort in environments with many obstacles. This is because it limits the
number of obstacles sensed by the system, resulting in fewer collision avoidance hard and soft
constraints. Tables 4.19, 4.20 and 4.21 demonstrate the improvement brought by the perception
range introduction in environments with obstacles. Only settings that performed well without
perception range are considered. Obviously, no obstacles environment simulations are not
repeated, since perception range does not effect their results.

Table 4.19: Two obstacles environment with perception range. Best result for each row is high-
lighted in green, while the worst is highlighted in red.

F5 V20_5 V15_5
Max ET [s] 0.038 0.237 0.110
Min ET [s] 0.004 0.009 0.010
Mean ET [s] 0.019 0.036 0.025

Mean ET Nlong [s] − 0.044 0.023
Mean ET Nshort [s] − 0.027 0.027

Total ET [s] 2.690 5.422 3.683
Max |feL,F | [mm] 3.315 3.159 3.154
Mean |feL,F | [mm] 0.374 0.177 0.201

Similar to simulations in Section 4.2, formation error values are consistent across the
settings, but we can observe that variable prediction horizon settings have a slightly better
performance, considering all environments. F5 mean formation error is between 1.05 and 3.68

times bigger than mean formation error of V20_5 and between 1.05 and 3.42 times bigger than
mean formation error of V15_5. No particular difference is reported between formation error
performance with and without perception range.
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Table 4.20: Three obstacles environment with perception range. Best result for each row is
highlighted in green, while the worst is highlighted in red.

F5 V20_5 V15_5
Max ET [s] 0.070 0.205 0.100
Min ET [s] 0.012 0.014 0.014
Mean ET [s] 0.028 0.035 0.030

Mean ET Nlong [s] − 0.082 0.042
Mean ET Nshort [s] − 0.031 0.029

Total ET [s] 4.113 5.255 4.534
Max |feL,F | [mm] 5.212 5.809 5.111
Mean |feL,F | [mm] 1.281 1.173 1.152

Table 4.21: Valzer environment with perception range. Best result for each row is highlighted
in green, while the worst is highlighted in red.

F5 V20_5 V15_5
Max ET [s] 0.303 0.311 0.319
Min ET [s] 0.003 0.009 0.009
Mean ET [s] 0.045 0.054 0.050

Mean ET Nlong [s] − 0.029 0.016
Mean ET Nshort [s] − 0.071 0.073

Total ET [s] 19.11 22.70 21.03
Max |feL,F | [mm] 7.073 7.073 7.073
Mean |feL,F | [mm] 0.631 0.601 0.597

Data demonstrate that the perception range highly decreases computational effort when the
environment presents lots of obstacles spread over a large area, such as valzer environment,
while it is less effective for more bounded environments, where there are few obstacles
permanently inside the perception range of the system, such as two obstacles environment.
Table 4.22 shows that F5 achieves the biggest improvement, considering that this setting
always performs obstacle avoidance, while variable prediction horizon setups almost have no
advantage in two obstacles environment, for the reason explained before, but exhibit substantial
improvement in valzer environment.

Thanks to perception range, each configuration now has a mean execution time compatible
with Ts, but the maximum execution time issue is still affecting this algorithm. Mean execution
times for bothNlong andNshort states in variable configuration are below Ts, suggesting that the
problem stems from a few computationally intensive steps that exceed the sample time.
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Table 4.22: Mean execution time reduction for each setting provided by perception range.

Setting Two obs Three obs Valzer
F5 34.57% 32.56% 80.64%

V20_5 1.90% 24.66% 67.61%
V15_5 0.00% 23.63% 69.00%

Figure 4.12 shows that this problem is caused by a too high Nlong value for V20_5 and a peak
execution time in the first step of the optimization problem for V15_5 in three obstacles environ-
ment. Since Two obstacles environment behaves similarly, the explanation remains the same.

(a) V20_5. (b) V15_5.

Figure 4.12: Distribution of each MPC iteration execution time of variable configurations in
three obstacles environment.

Valzer environment execution time data, shown in Figure 4.13, prove that, even thoughmean
execution time while performing obstacle avoidance is below Ts, many steps require ET > Ts,
in all three configurations. This suggests that, with these sets ofNlong andNshort, this algorithm
may be ineffective for hard real-time applications with the chosen rate, particularly when a large
number of obstacles are sensed simultaneously (Figure 4.14).
The potential solutions are:

• increase Ts, so that all steps are computed within the sample time.

• reduce N , Nlong and Nshort until all steps are computed within the desired time, yet con-
sidering the trade-off with formation error performance and the possible impact of com-
putationally critical steps caused by a too short prediction horizon.
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In conclusion, execution time of variable prediction horizon configurations is slightly higher.
Nevertheless, we expect that increasing sample time to ensure the correct real-time behaviour of
V15_5 should not have a significant impact on 3-DOF NLMPC framework’s performance with
respect to F5. This holds because in valzer environment the difference between peak execution
time of F5 and V15_5 configurations is negligible, and in other environments the sample time
increase required by V15_5 selection is not significant. Moreover, formation error in variable
prediction horizon configurations is lower. Thus, the configuration V15_5 is selected as the best
overall performance.

(a) V20_5 selection. (b) V15_5 selection.

(c) F5 selection.

Figure 4.13: Distribution of each MPC iteration execution time in valzer environment.

68



(a) Trajectory navigated. (b) Number of obstaclesM sensed.

Figure 4.14: Trajectory navigated by the MRS in valzer environment and number of obstacles
sensed.

4.4 2-DOF LMPC and 3-DOF NLMPC frameworks compar-
ison

The best comparison between 2-DOF LMPC and 3-DOF NLMPC frameworks should focus on
both formation error and computational time performance. Both algorithms use the same op-
timal parameters (Section 4.1). 2-DOF LMPC algorithm is run by selecting N = 20 and it is
compared with 2 configurations of 3-DOF NLMPC framework: F20 configuration, which uses
an equivalent MPC prediction horizon length, and V15_5 configuration, the best overall perfor-
mance configuration for the 3-DOF NLMPC algorithm. Optimal perception range is used by
the 3-DOF NLMPC during these simulations.
Table 4.23 show how the 2-DOF LMPC algorithm has better formation error performance, both
in terms of maximum and mean values. The explanation could be that follower functional cost
in 2-DOF LMPC framework is primarily focused on formation error optimization, while in
3-DOF NLMPC framework follower functional cost incorporates potential repulsive field func-
tion, which also leads to an optimization of the distance to obstacles. Figure 4.15 displays a
formation error comparison in valzer environment. At the same time Table 4.24 proves that 2-
DOF LMPC is far less efficient than 3-DOF NLMPC V15_5 configuration in all environments.
So, the 3-DOF NLMPC framework presents a decreased formation error performance compen-
sated by a great improvement on computational effort.
3-DOF NLMPC is preferred to the 2-DOF LMPC considering the enhanced obstacle avoid-
ance performance and flexibility demonstrated and the reduced computational effort. In fact,
2-DOF LMPC presents an excessive execution time that cannot be solved by an increased sam-
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ple time because it would lead to an insufficient path update frequency, causing the algorithm
to be unreliable. Instead, formation error can be reduced acting on manipulator, mounted on the
robots base, and on end-effector. The solutions are either controlling the manipulator mounted
on agents base to move the end-effector or designing a passive end-effector that can deal with
formation error without damaging the payload.

Table 4.23: Formation error performance comparison between 2-DOF LMPC and 3-DOF
NLMPC algorithms in different environments. Best results for each environment are highlighted
in green, while worst values are highlighted in red.

Environment Configuration Max |feL,F | [mm] Mean |feL,F | [mm]

No
obstacles

2-DOF F20 0.787 0.075
3-DOF F20 3.158 0.068

3-DOF V15_5 3.154 0.073

Two
obstacles

2-DOF F20 0.633 0.094
3-DOF F20 12.293 0.897

3-DOF V15_5 3.154 0.201

Three
obstacles

2-DOF F20 0.985 0.187
3-DOF F20 12.582 1.571

3-DOF V15_5 5.111 1.152

Valzer
2-DOF F20 1.352 0.128
3-DOF F20 11.687 0.971

3-DOF V15_5 7.073 0.597

Table 4.24: Computational time comparison between 2-DOF LMPC and 3-DOF NLMPC algo-
rithms in different environments.

Environment Configuration Max ET [s] Mean ET [s] Tot ET [s]

No
obstacles

2-DOF F20 0.816 0.071 15.095
3-DOF F20 0.579 0.034 7.102

3-DOF V15_5 0.089 0.019 3.884

Two
obstacles

2-DOF F20 0.830 0.110 16.930
3-DOF F20 3.561 0.644 102.402

3-DOF V15_5 0.110 0.025 3.683

Three
obstacles

2-DOF F20 0.869 0.150 24.466
3-DOF F20 4.933 1.189 221.095

3-DOF V15_5 0.100 0.030 4.534

Valzer
2-DOF F20 1.013 0.271 117.809
3-DOF F20 90.752 2.834 1362.964

3-DOF V15_5 0.319 0.050 21.028
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Figure 4.15: Formation error comparison between 2-DOF LMPC and 3-DOF NLMPC algo-
rithms in valzer scenario.
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4.5 Monte Carlo analysis

In this section, the assumptions made in Section 2.1 regarding ideal low-level controllers and
measurement system are relaxed. These are now considered non-ideal, where the measurement
system is affected by additive Gaussian noise, n(t), which represents both process noise (due
to low-level controller inaccuracies) and measurement noise. The control scheme is shown in
Figure 4.16.
Additive Gaussian noise n(t) ∈ Rn only affects the measurements of the position of agents
center, pL(t) and pF(t). Its mean value is 0 and its covariance is σ2:

n(t) =
[
n(t) n(t) 0 0 0 0

]T
n(t) ∼ N (0, σ2) (4.1)

Leader
MPC

[
0 0

]T xL

Follower
MPC

xLh
obstacles data

xF

MPC

Leader
dynamics +
low-level
controller

uL xL

+
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Follower
dynamics +
low-level
controller

uF xF

+
+

n

recovery
policy
check

xFh

JL
rec

Figure 4.16: Control scheme with measurement noise inside the control loop.

To evaluate a realistic covariance σ2, indoor localization systems accuracy is considered.
For instance, Ultra-WideBand (UWB) is one of the most used systems and presents an accuracy
of few centimeters, with particularly narrow environments and additional technologies, or
between 10− 15 cm in more common applications in environments with a maximum extension
of 50 m, similar to the environments dimensions considered in this thesis ([13] and [14]). It is
also considered a second indoor localization system with an assumed accuracy between 5 mm

and 2 cm, such as Motion Capture.
The Monte Carlo analysis is conducted in all four environments introduced in Section 4.2, with
the configuration 3-DOF NLMPC V15_5, repeated Nsims = 25 times for each combination
of noise and environment. The success rate of the simulations is clearly the most important
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result to study, as it takes into consideration both the fact that leader reaches the goal within
a certain tolerance δ and the fact that collisions are successfully avoided. In addition, average
and standard deviation values of variables already considered in previous sections are reported
to depict the performance of the algorithm in presence of disturbances.

4.5.1 UWB accuracy simulations

A set of three covariance values, chosen such that n(t) lays inside the accuracy bounds with a
99.7% probability, is tested to show the robustness to disturbances of the system. (Table 4.25)

Table 4.25: First set of additive Gaussian noise tested.

Noise Accuracy [cm] σ2 [m2]
N6 6 0.022

N10 10 0.0332

N15 15 0.052

The MPC variable ϵloose_grip is the recovery policy formation error trigger value that deter-
mines when the formation error becomes critical and recovery policy needs to be actuated. Since
noise is affecting agents position, formation error will also be noisy and with the same magni-
tude as accuracy. Depending on the ϵloose_grip value, recovery policy will be executed with a
different rate.

Constant ϵloose_grip = 0.01 m

Table 4.26 shows that simpler environments, without obstacles or with large passages, consis-
tently allow the system to converge to the goal without failure. In three obstacles environment,
a particularly narrow passage does not allow the MRS to reach the goal, since the agents seems
to be unable to satisfy constraints. It is also clear that if covariance increases, the success rate
decreases significantly. In valzer environment there are no passages as narrow as in three
obstacles, resulting in a higher success rate.
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Table 4.26: Percentage of simulations where the goal is reached, collision avoidance rate and
success rate, which is the combination of goal reached and collisions avoided successfully, with
ϵloose_grip = 0.01 m.

Noise Environment Goal reached Collision avoided Success rate

N6

No obstacles 100% - 100%
Two obstacles 100% 100% 100%
Three obstacles 100% 100% 100%

Valzer 100% 100% 100%

N10

No obstacles 100% - 100%
Two obstacles 100% 100% 100%
Three obstacles 72% 92% 72%

Valzer 100% 96% 96%

N15

No obstacles 100% - 100%
Two obstacles 100% 100% 100%
Three obstacles 40% 60% 32%

Valzer 96% 80% 80%

(a) Three obstacles environment failure. (b) Valzer environment failure.

Figure 4.17: Examples of algorithm failure in presence of noise, where the MRS cannot reach
the goal.

An analysis on mean and peak formation error values is conducted, so the average and
standard deviation values among Nsims simulations of these parameters are reported in Tables
4.27 and 4.28. Formation error is bounded in all simulations, but its magnitude scales linearly
with noise covariance. The maximum formation error is generally about twice the related
accuracy, while the mean formation error is typically around half of the accuracy (Table 4.27).
Figure 4.18 show the formation error comparison between different noise configurations.
Moreover, both maximum and mean formation error are similar across all four environments,
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since the noise is significantly higher, at least ten times greater, than algorithm formation error
performance without disturbance (Section 4.3).

Table 4.27: Maximum and mean feL,F average values among Nsims simulations for each noise
setting in different environments with ϵloose_grip = 0.01 m. Highest value is highlighted in red
and the lowest in green for each noise configuration.

Noise Environment Max |feL,F | [m] Mean |feL,F | [m]

N6

No obstacles 0.101960 0.026493
Two obstacles 0.098156 0.027092
Three obstacles 0.107750 0.027390

Valzer 0.113644 0.028212

N10

No obstacles 0.179787 0.047795
Two obstacles 0.179812 0.047056
Three obstacles 0.199276 0.046895

Valzer 0.191798 0.047338

N15

No obstacles 0.307955 0.075279
Two obstacles 0.303027 0.073747
Three obstacles 0.337092 0.075050

Valzer 0.345605 0.076812

Table 4.28: Maximum and mean feL,F standard deviation values among Nsims simulations for
each noise setting in different environments with ϵloose_grip = 0.01 m.

Noise Environment Max |feL,F | [m] Mean |feL,F | [m]

N6

No obstacles 0.011241 0.001538
Two obstacles 0.013421 0.001883
Three obstacles 0.016644 0.001815

Valzer 0.010239 0.001306

N10

No obstacles 0.022123 0.003339
Two obstacles 0.029875 0.003201
Three obstacles 0.024222 0.002477

Valzer 0.029118 0.001719

N15

No obstacles 0.032893 0.004726
Two obstacles 0.044856 0.004502
Three obstacles 0.050534 0.002779

Valzer 0.047834 0.004627

Formation error values reported in Table 4.27 are almost always above recovery policy
trigger limit ϵloose_grip = 0.01 m, so inevitably recovery policy is adopted very often in these
simulations. This is the reason why some simulations do not reach the goal, because leader
recovery policy functional cost JL

rec causes the leader to slow down and plan a more feasible
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path for the follower, while only JL has the task to guide the leader to the goal.

Figure 4.18: Formation error comparison between one simulation for each noise setting in three
obstacles environment and ϵloose_grip = 0.01 m.

ϵloose_grip same magnitude as accuracy

Setting ϵloose_grip at a value comparable with formation error peaks in presence of noise,
ϵloose_grip = 0.06, 0.1, 0.15m respectively, reduces the number of steps where recovery policy
is actuated. This adjustment acknowledges that a certain magnitude of formation error under
these conditions is unavoidable. This causes all simulations to reach the goal, but also leads to
an higher number of collisions, probably because leader does not slow down as frequently as
with a lower ϵloose_grip, so agents velocities are higher and collision is tougher to avoid. As a
consequence, success rate is equal to collision avoidance rate, in these simulations (Table 4.29).
To understand the relationship between increased collision rate and agents velocities, leader
and follower mean navigation velocity average values among Nsims simulations in some noise
configurations, with both ϵloose_grip values, are compared in Tables 4.30, 4.31.
Increased mean agents velocities also have the side effect of causing velocity or acceleration
constraints violations. This happens, for instance, when an agent tries to avoid an unexpected
collision scenario caused by the noise. As a matter of fact, all constraints violations occur when
the MRS is near obstacles. In Figure 4.19, the violation occurs at 17.9 s, that corresponds to
a leader position of (23.8; 6.0) m, extremely near to an obstacle (see valzer environment at
Figure 4.10).
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Table 4.29: Percentage of successful simulations with variable ϵloose_grip.

Noise Environment Success rate

N6

No obstacles 100%
Two obstacles 76%
Three obstacles 52%

Valzer 92%

N10

No obstacles 100%
Two obstacles 60%
Three obstacles 40%

Valzer 96%

N15

No obstacles 100%
Two obstacles 52%
Three obstacles 48%

Valzer 80%

Table 4.30: Mean navigation agents velocities average value amongNsims simulations for noise
configuration N6 with constant and variable ϵloose_grip.

Noise ϵloose_grip [m] Leader velocity [m/s] Follower velocity [m/s]
No
obstacles

0.01 1.144 1.172
0.06 1.144 1.179

Two
obstacles

0.01 1.158 1.281
0.06 1.200 1.347

Three
obstacles

0.01 0.885 0.975
0.06 1.218 1.419

Valzer 0.01 1.135 1.165
0.06 1.165 1.222

Average and standard deviation values among Nsims simulations of mean and peak forma-
tion error are reported in Tables 4.32 and 4.33.
Table 4.29 shows that an higher ϵloose_grip reduces the overall success rate, but the inconvenience
of a MRS not moving towards the goal is removed. This trade-off highlights a key aspect of
balancing recovery policy actuation with success rate. Moreover, when comparing the effect
of different ϵloose_grip on the framework, formation error performance shown in Tables 4.27
and 4.32 remains almost unchanged. However, it is slightly better when recovery policy is
more frequently activated. Thus, in presence of noise, ϵloose_grip does not affect formation error
significantly.
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Table 4.31: Mean navigation agents velocities average value amongNsims simulations for noise
configuration N15 with constant and variable ϵloose_grip.

Noise ϵloose_grip [m] Leader velocity [m/s] Follower velocity [m/s]
No
obstacles

0.01 0.892 1.061
0.15 1.121 1.243

Two
obstacles

0.01 0.856 1.037
0.15 1.167 1.274

Three
obstacles

0.01 0.612 0.838
0.15 1.191 1.276

Valzer 0.01 1.028 1.144
0.15 1.182 1.246

Figure 4.19: Leader velocity constraint violation in valzer environment with σ2 = 0.052 m2 and
ϵloose_grip = 0.15m. Leader velocity in x-axis has a spike at around 17.9 s (highlighted with the
red sign) and exceeds the limit of vLmax = 1 m/s imposed at the beginning of Chapter 4.

Recovery policy increases computational effort, regardless of the environment, probably due
to the fact that iterations where recovery policy is actuated perform twice the inputs computa-
tion, with respect to standard iterations, as it is explained in Section 2.2.3).
Tables 4.38 and 4.39 show an example of how mean and total execution time increases with
higher noise covariance when ϵloose_grip is small with respect to the noise, because of the raising
actuation of recovery policy. Instead, when ϵloose_grip is the same magnitude as noise, the dif-
ference between noise configurations mean execution time is mitigated. In general, execution
time decreases when noise is smaller.
On the other hand, maximum execution time has a different behaviour (Tables 4.40 and 4.41).
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In fact, when ϵloose_grip is high, computational time peaks become bigger, probably due to high
velocities of the agents that lead the disturbed system to a configuration where the optimal path
is harder to compute.

Table 4.32: Maximum and mean feL,F average values among Nsims simulations for each noise
setting in different environments with variable ϵloose_grip. Highest value is highlighted in red and
the lowest in green for each noise configuration.

Noise Environment Max |feL,F | [m] Mean |feL,F | [m]

N6

No obstacles 0.101482 0.027253
Two obstacles 0.097734 0.026998
Three obstacles 0.101521 0.027429

Valzer 0.114048 0.027885

N10

No obstacles 0.183457 0.048233
Two obstacles 0.175444 0.048435
Three obstacles 0.178431 0.047678

Valzer 0.202803 0.047786

N15

No obstacles 0.309866 0.077616
Two obstacles 0.278231 0.076377
Three obstacles 0.294648 0.077192

Valzer 0.357100 0.078387

Table 4.33: Maximum and mean feL,F standard deviation values among Nsims simulations for
each noise setting in different environments with variable ϵloose_grip.

Noise Environment Max |feL,F | [m] Mean |feL,F | [m]

N6

No obstacles 0.009877 0.001631
Two obstacles 0.014704 0.002164
Three obstacles 0.016778 0.001929

Valzer 0.012673 0.001231

N10

No obstacles 0.034089 0.003273
Two obstacles 0.028390 0.003810
Three obstacles 0.031699 0.003356

Valzer 0.033805 0.001808

N15

No obstacles 0.065969 0.006785
Two obstacles 0.048341 0.007043
Three obstacles 0.051394 0.008133

Valzer 0.097592 0.005777
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4.5.2 Motion Capture

A different set of covariance σ2 is here tested, such that accuracy is between 5 mm and 2 cm

(Table 4.34).

Table 4.34: Second set of additive Gaussian noise tested.

Noise Accuracy [cm] σ2 [m2]
N05 0.5 0.001672

N1 1 0.003332

N2 2 0.006672

With ϵloose_grip set as 0.01m, all simulations successfully reach the target (Table 4.35). The
success rate improves significantly compared to previous scenarios (Section 4.5.1) due to the
smaller noise magnitude.
For settings N1 and N2 success rate is smaller than setting N6, in the most challenging
environments, even though ϵloose_grip is the same (Table 4.26). Considering that configurations
with lower noise magnitude should behave better, this is an unexpected result. This happens
because ϵloose_grip is now the same magnitude as these N1 and N2 settings covariance, so
recovery policy is actuated less frequently with respect to N6, causing the effects explained
previously. Despite that, algorithm simulation with setting N05 has a perfect success rate in all
environments, probably because this noise is so small that it does not affect the efficiency of
the algorithm.

Table 4.35: Percentage of successful simulations of the second set of disturbances with
ϵloose_grip = 0.01 m.

Noise Environment Success rate

N05

No obstacles 100%
Two obstacles 100%
Three obstacles 100%

Valzer 100%

N1

No obstacles 100%
Two obstacles 100%
Three obstacles 96%

Valzer 96%

N2

No obstacles 100%
Two obstacles 100%
Three obstacles 84%

Valzer 96%
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Table 4.36: Maximum and mean feL,F average values among Nsims simulations for each noise
setting in different environments with ϵloose_grip = 0.01 m.

Noise Environment Max |feL,F | [m] Mean |feL,F | [m]

N05

No obstacles 0.008746 0.002309
Two obstacles 0.008340 0.002288
Three obstacles 0.009966 0.002661

Valzer 0.010927 0.002524

N1

No obstacles 0.016704 0.004642
Two obstacles 0.016424 0.004678
Three obstacles 0.017360 0.004765

Valzer 0.019248 0.004713

N2

No obstacles 0.033185 0.009006
Two obstacles 0.033482 0.009336
Three obstacles 0.035160 0.009321

Valzer 0.036753 0.009356

Table 4.37: Maximum and mean feL,F standard deviation values among Nsims simulations for
each noise setting in different environments with ϵloose_grip = 0.01 m.

Noise Environment Max |feL,F | [m] Mean |feL,F | [m]

N05

No obstacles 0.001198 0.000147
Two obstacles 0.001425 0.000155
Three obstacles 0.001743 0.000191

Valzer 0.001704 0.000154

N1

No obstacles 0.001472 0.000356
Two obstacles 0.002282 0.000451
Three obstacles 0.002247 0.000369

Valzer 0.001928 0.000221

N2

No obstacles 0.004352 0.000547
Two obstacles 0.004726 0.000588
Three obstacles 0.004759 0.000820

Valzer 0.003426 0.000441

Average and standard deviation values among Nsims simulations of mean and peak forma-
tion error are reported in Tables 4.36 and 4.37.
The same observations made for execution times of previous settings are valid for this new set.
(Tables 4.38 and 4.40)

ϵloose_grip might be decreased to aim for 100% success rate in each environment with
noise configurations (N05, N1, N2), losing computational performance. For example
ϵloose_grip = 0.005 m makes the simulations reach a better success rate (Table 4.42), but
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presents the problems exposed before about a too small ϵloose_grip value.

Table 4.38: No obstacles environment execution times with disturbance and ϵloose_grip = 0.01m.
Best result for average values in each column is highlighted in green, while the worst is high-
lighted in red.

Noise Max ET [s] Mean ET [s] Tot ET [s]

N05 Average 0.117 0.021 4.515
Standard deviation 0.081785 0.001444 0.301695

N1 Average 0.090 0.024 4.946
Standard deviation 0.004644 0.000363 0.080425

N2 Average 0.093 0.031 6.375
Standard deviation 0.008111 0.001075 0.219525

N6 Average 0.136 0.055 11.67
Standard deviation 0.072076 0.002537 1.233502

N10 Average 0.127 0.066 15.21
Standard deviation 0.007215 0.003493 2.760342

N15 Average 0.162 0.075 27.62
Standard deviation 0.070868 0.003115 6.536876

Table 4.39: No obstacles environment execution times with disturbance and variable ϵloose_grip.
Best result for average values in each column is highlighted in green, while the worst is high-
lighted in red.

Noise Max ET [s] Mean ET [s] Tot ET [s]

N6 Average 0.117 0.035 7.257
Standard deviation 0.075168 0.001245 0.273934

N10 Average 0.093 0.038 8.175
Standard deviation 0.009451 0.000906 0.402068

N15 Average 0.098 0.039 8.366
Standard deviation 0.008421 0.001063 0.728493

This Monte Carlo simulations campaign proves that this 3-DOF NLMPC framework is ro-
bust to disturbance below 10 cm, depending on MPC parameters and settings chosen, such as
ϵloose_grip, and depending on how obstacles are placed. In fact, adjusting MPC parameters can
allow the system to reach the target successfully. Too narrow passages tend to be a critical point
in terms of collision avoidance and ability to reach the target for this 3-DOFNLMPC algorithm.
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Table 4.40: Valzer environment execution times with disturbance and ϵloose_grip = 0.01m. Best
result for average values in each column is highlighted in green, while the worst is highlighted
in red.

Noise Max ET [s] Mean ET [s] Tot ET [s]

N05 Average 0.315 0.051 21.46
Standard deviation 0.057635 0.001064 0.463230

N1 Average 0.347 0.054 22.61
Standard deviation 0.073248 0.001309 0.556421

N2 Average 0.414 0.067 28.48
Standard deviation 0.032908 0.002132 1.022726

N6 Average 0.392 0.102 46.25
Standard deviation 0.021056 0.002991 1.929293

N10 Average 0.413 0.116 55.17
Standard deviation 0.027148 0.003009 3.446492

N15 Average 0.465 0.114 64.70
Standard deviation 0.314906 0.008419 7.647056

Table 4.41: Valzer environment execution times with disturbance and variable ϵloose_grip. Best
result for average values in each column is highlighted in green, while the worst is highlighted
in red.

Noise Max ET [s] Mean ET [s] Tot ET [s]

N6 Average 0.399 0.063 26.60
Standard deviation 0.293805 0.001874 0.908621

N10 Average 0.540 0.066 27.84
Standard deviation 0.298196 0.003110 1.321838

N15 Average 0.814 0.069 29.11
Standard deviation 0.356279 0.003403 1.584019

Table 4.42: Percentage of successful simulations of the second set of disturbances with
ϵloose_grip = 0.005 m.

Noise Environment Success rate

N05

No obstacles 100%
Two obstacles 100%
Three obstacles 100%

Valzer 100%

N1

No obstacles 100%
Two obstacles 100%
Three obstacles 96%

Valzer 100%

N2

No obstacles 100%
Two obstacles 100%
Three obstacles 100%

Valzer 100%
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Chapter 5

Real-time simulations

In this chapter, the 3-DOF NLMPC framework, configured with the V15_5 prediction horizon
selection and optimal parameters, is tested in almost real-time environments, namely Simulink®

and Gazebo, to evaluate its feasibility for real-world applications. The planned trajectory and
the trend of the formation error are compared. The assumption made in MATLAB® simulations
regarding the absence of delay in agent acceleration inputs due to computations is removed,
since this algorithm needs to work in real-time. Measurement disturbance is not considered.

5.1 3-DOF NLMPC Simulink results

The 3-DOF NLMPC framework assessed in MATLAB®, and represented in Figure 2.2, is now
tested in Simulink® to evaluate its behavior in a more time-realistic environment, where a
constant MPC output delay due to computation is present. The delay is equal to the sample time
∆T = Ts = 0.1 s. As a matter of fact, the MPC operates at a sample rate of fs = 1

Ts
, and each

agent input is actuated at the end of each iteration. Tests are performed for all environments
introduced in Section 4.2.
Since this delay can have effects similar to a disturbance, recovery policy has a decisive role
in terms of effectiveness and formation error performance. After conducting several tests,
ϵloose_grip = 0.05 m is set.

Simulation reported in Figure 5.4 demonstrate that the algorithm is significantly affected
by this delay, leading the system to failure, considering multiple collisions and incompatible
formation error performance with the problem considered.
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5.2 3-DOF NLMPC for Trajectory Generation

Considering the 3-DOF NLMPC framework approach of applying agents acceleration directly
computed by the MPC to the robots produced the unacceptable results discussed in Section 5.1,
now the 3-DOF NLMPC framework is employed as a trajectory generator (3-DOF NLMPC
4TG), represented in Figure 5.1. The MPC output becomes the next predicted state for both
agents and it is given as a reference to two low-level controllers, for example PID, with the task
of following this trajectory. This approach is consistent with other MPC approaches studied in
the literature [7], [1], [2]. The primary change to the control scheme shown in Figure 2.2 is
the MPC output, which now corresponds to the next predicted agent state x∗ref , along with the
inclusion of a PID structure responsible for controlling the trajectory of the robots (Figure 5.1).
Since the objective is to follow a trajectory reference composed of

tr∗ref =
[
x∗
ref y∗ref θ∗ref

]T
(5.1)

but the MPC output is a predicted state

x∗ref =
[
x∗
ref y∗ref θ∗ref v∗xref

v∗yref ω∗
ref

]T
(5.2)

two different PID structures are analyzed and compared: one with a simple position and heading
angle control, one with both position-heading angle and linear-angular velocities, introducing a
feedforward using reference velocities (Figures 5.2, 5.3).

Leader
MPC

[
0 0

]T

Follower
MPC

xLh
obstacles data

MPC

+ - Leader
PID

Leader
dynamics +
low-level
controller

xLref uL
xL

+
-

Follower
PID

Follower
dynamics +
low-level
controller

xFref uF

xF

recovery
policy
check

xFh

JL
rec

Figure 5.1: 3-DOF NLMPC 4TG framework scheme.
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Figure 5.2: Example of position-heading PID (PH PID) structure, with a generic spatial variable
to control and u generic output.

PID
+
-

aref

a

+ +
-

vref

vffd

v

PID
u

Figure 5.3: Example of position-heading and velocity PID (PH-V PID) structure, with a generic
spatial variable to control, v generic velocity variable and u generic output.

With this new configuration, this 3-DOF NLMPC 4TG scheme can fulfill its tasks and
transport the payload to the target without colliding with obstacles. Cpot = 50 is set to
improve collision avoidance performance. Also, linear acceleration limits are increased
(uL

lim = 5 m/s2, uF
lim = 7 m/s2) to avoid a too strict saturation, penalizing the tracking

performance.
Formation error performance of each PID structure is reported in Figures 5.4 and 5.5 showing
a significant improvement with respect to the previous 3-DOF NLMPC control scheme.
This holds because the computational delay, in this case, only determines a time shift of the
state reference and does not compromise the effectiveness of the MPC shown in Chapter
4. Therefore, the performance of the algorithm highly depends on PID tracking capability,
which in this case proves to be sufficiently accurate. In particular, both PID structures assure
a good formation error (Table 5.3), but with a different trend, that seems to be more stable
using position-heading angle control only. Moreover, this latter seems to converge after an
initial transient phase. Obviously, these results strongly depend on PID parameters1. PID
configuration is reported in Tables 5.1 and 5.2.

Simulink® simulations demonstrated that a direct MPC control on theMRS is not possible in
real-time, because of the computational delay on agents input. Consequently a 3-DOF NLMPC
4TG scheme is developed to solve this problem and effectively control the MRS with the frame-
work studied in previous chapters, showing good formation error and tracking performance.

1PID filtered derivative is employed.
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Table 5.1: Leader PID parameters used in 3-DOF NLMPC 4TG architecture.

Leader PH PID Leader PH-V PID
P I D P I D

x 1600 50 20 900 10 42
y 1600 110 20 1000 0 0
θ 1250 1 43 3200 0.5 50
vx − − − 5 0 1
vy − − − 0.2 0.005 0.06
ω − − − 1 0 0.01

Table 5.2: Follower PID parameters used in 3-DOF NLMPC 4TG architecture.

Follower PH PID Follower PH-V PID
P I D P I D

x 1275 80 45 3000 0 0
y 1050 110 32 3000 0 0
θ 1250 1 43 1250 1 43
vx − − − 0.1 0 0.025
vy − − − 0.1 0 0.0009
ω − − − 0.05 0.057 0.01

Table 5.3: PID structure formation error performance in all environments tested. Best value for
each environment is highlighted.

Environment PID structure Max |feL,F | [m] Mean |feL,F | [m]
No
obstacles

PH 0.063 0.007
PH-V 0.057 0.028

Two
obstacles

PH 0.063 0.013
PH-V 0.065 0.032

Three
obstacles

PH 0.063 0.013
PH-V 0.077 0.035

Valzer PH 0.067 0.008
PH-V 0.125 0.025

88



Figure 5.4: Formation error comparison between MATLAB® and Simulink® simulations in
Three obstacles environment of the 3-DOF NLMPC and 3-DOF NLMPC 4TG algorithm.
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(a) Three obstacles environment.

(b) Valzer environment.

Figure 5.5: Formation error comparison between PID structures of the 3-DOF NLMPC 4TG
framework in different scenarios.
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5.3 Gazebo experiments

Gazebo is a realistic simulation environment that can implement physical properties to the mod-
els inserted, such as introducing gravity, friction and collision dynamics. It is useful to evaluate
the behaviour and the interaction of the tested model with a more realistic world, in presence
of various kind of real disturbances. Thus, three obstacles environment is implemented in
Gazebo2 to assess the behaviour of the 3-DOF NLMPC 4TG algorithm, with V15_5 prediction
horizon and PH PID controller, in a realistic environment, where real-world physics is taken
into account. The algorithm runs on Simulink® and ROS2 topics are used to communicate state
measurement, from Gazebo to Simulink®, and to exchange agent inputs, which are provided
as force and torque applied to the robot base from the PID output. The computational delay
investigated previously in Simulink® is present. Moreover, delays concerning the non-ideality
of ROS2 topics are introduced. Measurement noise is not considered.

5.3.1 Simplified agents model and no friction

Agents are modeled as simple boxes and obstacles as fixed cylinders, with their dimensions
specified in Chapter 4. No payload is placed to measure formation error and to avoid unexpected
behaviour due to forces applied on the revolute joint in combination with the non-deformability
of the payload (Figure 5.6). Friction is initially excluded.
MPC is configured with optimal parameters (Section 4.1) and ϵloose_grip = 0.05 m, except for
Cpot that needs to be higher to assure the reliability of the algorithm in these conditions and to
successfully avoid obstacles, so Cpot = 125. Also, agents acceleration bounds introduced in
Section 5.2 are used for the same reason.

Gazebo simulations show that the 3-DOF NLMPC 4TG framework behaves similarly to
Simulink® simulations discussed in Section 5.2, guaranteeing the same formation error per-
formance, with a mean |feL,F | of 7.3 mm, but with a more noisy trend (Figure 5.7). Despite
that, observing the simulation in Gazebo GUI, it is noticeable that agents navigation is not really
smooth and it appears as though the robots stop at each predicted position. It is not really clear if
this is due to Gazebo computational performance or it is the actual algorithm behaviour. Accord-

2Algorithm effectiveness decreases when Gazebo Graphical User Interface (GUI) is active, so these simulations
are realized using Gazebo server only (command gzserver). This performance drop is likely caused by the Gazebo
environment, probably because it results to be computationally demanding for the device running both the MPC
and the simulative environment. Moreover, each Gazebo simulation with the same exact setup can differ in some
results, probably due to the intrinsic Gazebo uncertainties and its impact on device performance.
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ingly, it might be caused by non-optimal PID gains, that may imply inefficient position tracking
and a noisy navigation path. Another explanation can be inconsistent robots parameters, such
as velocity and acceleration bounds, which could lead to jerky movement.

(a) Three obstacles environment setup.

(b) Simplified MRS.

Figure 5.6: Test setup for Gazebo simulations: it presents the MRS, composed of two simple
boxes with no friction, where leader is in red and follower in blue, and the obstacles are modeled
as gray fixed cylinders.
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5.3.2 Experiments with wheels and friction

Now four symmetric spherical wheels are added to the two agents in the Gazebo model to carry
out even more realistic experiments, even though spherical wheels are not typically used in
common applications. This addition does not impact the overall performance, since the results
remain consistent with those shown in Figure 5.7. An interesting experiment would involve
studying the effect of friction applied to the wheels. This friction would act like a disturbance,
more precisely like a process noise, since friction is not considered in agents dynamic model.
Friction coefficient µ = 1 is set for translational and rotational movements of the wheels.
This value of the friction coefficient emulates the contact between rubber and concrete in dry
conditions.

Figure 5.7: Three obstacles Gazebo simulation formation error graph, without Gazebo GUI
running.

Figure 5.7 shows how the performance is not affected by the friction, meaning the tracking
controller is effective. However, the fact that the spherical wheel model touches the ground at a
single point may be a significant approximation. The mean formation error |feL,F | is 7.8 mm.
The only observable difference is the spike during the first few instants of the simulation shown
in Figure 5.7, that is probably caused by a little delay on agents position tracking due to friction.
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5.3.3 Experiments with the payload

Lastly, the payload is added to the model. It is designed as a box with the dimensions specified
in Chapter 4 and a negligible weight with respect to robots so that it does not interfere with
the wrench input of agents, applied to the base. Payload is attached with fixed joints to two
cylinders that act like a revolute joint with respect to robots base (Figure 5.8).

Figure 5.8: MRS with payload in Gazebo. Payload is the green box and is attached to two gray
cylinders, that act as revolute joints with agents base.

Even this solution behaves really well, considering that the trajectory of the MRS remains
consistent with previous Gazebo simulations (Figure 5.9). Since the payload is fixed to the
cylinders, the expectations were to see a null formation error, but probably Gazebo has a certain
tolerance for these kind of joints where mechanical loads are applied. Hence, a formation error
is measured, but it is bounded below 4 cm (Figure 5.10).

Gazebo simulations proved how this 3-DOF NLMPC 4TG framework has a great poten-
tial in real-world applications, showing good performance on cooperative transportation and a
compatible formation error graph with the problem addressed.
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Figure 5.9: Trajectory of Gazebo simulations in hree obstacles environment.

Figure 5.10: Formation error of the system with payload in Gazebo simulation.
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Chapter 6

Conclusions

This thesis addressed the cooperative transportation topic proposing a feasibility-aware non-
linear MPC framework for a MRS composed of two UGVs with 3-DOF, navigating in a planar
space in presence of obstacles. The 3-DOF dynamic model of the agents ensured the capability
of the MRS to become more flexible and efficient in its obstacle avoidance task, with respect to
the previous work presented in [6]. Moreover, potential repulsive field and obstacle avoidance
constraints for load vertices improved the safety of the system regarding collision avoidance.
These changes introduced non-linearity to the 2-DOF LMPC framework designed in [6], which
may have caused the increased formation error reported in Section 4.4. Although, the enhanced
obstacle avoidance performance are considered more significant, since formation error can be
reduced either controlling the manipulator mounted on agents base to move the end-effector
or designing a passive end-effector that can deal with formation error without damaging the
payload.
A state machine enabling the implementation of a variable prediction horizon MPC demon-
strated that a variable prediction horizon MPC can reach similar computational performance
of a small fixed prediction horizon MPC, but reporting a lower formation error. Moreover,
sample rate of the MPC can be modified according to the execution time of the 3-DOF NLMPC
framework. This novel approach based on a state machine is hardly treated in the literature.
Monte Carlo simulations campaign revealed that the system is robust to measurement distur-
bances relatable to Motion Caption, while it is more susceptible with disturbances similar to
UWB accuracy.
Time-realistic environments, namely Simulink® and Gazebo, simulations demonstrated that a
3-DOF NLMPC architecture giving as an output the control input of the agents is ineffective
due to computational delay. Consequently, the 3-DOF NLPMC framework is redesigned to
compute agents next predicted state as an output, consistently with other MPC approaches in
the literature [7], [1], [2], in combination with a PID structure tasked to track the trajectory.
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This solution is far more effective and it is able to reach the target without colliding with
obstacles and keeping the formation with a certain error in Gazebo experiments. If PID structure
performance is considered insufficient, different tracking controllers can be investigated.
Various possible further steps to improve this algorithm can be implemented, such as revise
obstacle avoidance constraints to correctly consider dynamic obstacles, to implement agent-
collision avoidance and to achieve a reliable and efficient algorithm, trying more intensive tests.
For instance, a few experiments are suggested in Section 3.3.5. Then, introducing chance con-
straints presented in [10] to smooth out the trajectory can be a valid improvement, even though
this algorithm already reaches great performance from this point of view. Lastly, increasing
system complexity by controlling more formations at the same time, and so implementing
formation avoidance constraints, is an interesting feature [8].
Experiments with real robots are obviously the priority concerning further works, to assure the
actual feasibility of the algorithm. A revolute joint is not recommended since the end-effector
needs to have a certain level of mobility tolerance to allow formation error, as Gazebo
simulations proved, otherwise the behaviour might be different than the one reported here.
All things considered, this 3-DOF NLMPC implementing a variable prediction horizon have
a great potential in collaborative transportation, ensuring enhanced obstacle avoidance perfor-
mance and a compatible formation error with respect to this application. It also guarantees
a certain level of robustness to disturbances, consistent with indoor localization systems
employed in common applications.
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.1 Linear constraints matrices

G =

AbarS̄

Gin

AvelS̄

 ∈ R(NML+2(v+m)N)×mN (1)

Aconstr =



q1x − x(0) q1y − y(0) 0 0

q1x − x(0) q1y − y(0) 0 0
... ... ... ...

q2x − x(0) q2y − y(0) 0 0
... ... ... ...

qMx − x(0) qMy − y(0) 0 0


∈ RML×n (2)

Aconstr is composed ofML rows, where there are L identical rows for each obstacle.

Abar = IN ⊗ Aconstr =

=





q1x − x(0) q1y − y(0) 0 0

q1x − x(0) q1y − y(0) 0 0
... ... ... ...

q2x − x(0) q2y − y(0) 0 0
... ... ... ...

qMx − x(0) qMy − y(0) 0 0


0ML×n . . .

... . . . ...

0ML×n . . .



q1x − x(0) q1y − y(0) 0 0

q1x − x(0) q1y − y(0) 0 0
... ... ... ...

q2x − x(0) q2y − y(0) 0 0
... ... ... ...

qMx − x(0) qMy − y(0) 0 0




∈ RNML×nN

(3)

Gin = IN ⊗


1 0

−1 0

0 1

0 −1

 = IN ⊗ Ul =


Ul . . . 02m×m

... . . . ...
02m×m . . . Ul

 ∈ R2mN×mN (4)

Gin is a block diagonal matrix selecting each acceleration input, once for the positive and once
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for the negative bound, within u∗k.

Avel = IN ⊗


0 0 1 0

0 0 −1 0

0 0 0 1

0 0 0 −1

 = IN ⊗ Vl =


Vl . . . 02v×n

... . . . ...
02v×n . . . Vl

 ∈ R2vN×nN (5)

Avel is a block diagonal matrix selecting each agent velocity, once for the positive and once for
the negative bound, within x∗h.

W =

 Bbar

Bin

Bvel_constr

 ∈ R(NML+2(v+m)N)×1 (6)

bconstr =



[
q1x − x(0) q1y − y(0)

] [q1x − v1x

q1y − v1y

]
[
q1x − x(0) q1y − y(0)

] [q1x − v2x

q1y − v2y

]
...[

q2x − x(0) q2y − y(0)
] [q2x − v1x

q2y − v1y

]
...[

qMx − x(0) qMy − y(0)
] [qMx − vLx

qMy − vLy

]



=

=



[q1x − x(0)][q1x − v1x ] + [q1y − y(0)][q1y − v1y ]

[q1x − x(0)][q1x − v2x ] + [q1y − y(0)][q1y − v2y ]
...

[q2x − x(0)][q2x − v1x ] + [q2y − y(0)][q2y − v1y ]
...

[qMx − x(0)][qMx − vLx ] + [qMy − y(0)][qMy − vLy ]


∈ RML × 1

(7)
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Bbar = repmat(bconstr, N, 1) =



[q1x − x(0)][q1x − v1x ] + [q1y − y(0)][q1y − v1y ]
...

[qMx − x(0)][qMx − vLx ] + [qMy − y(0)][qMy − vLy ]

[q1x − x(0)][q1x − v1x ] + [q1y − y(0)][q1y − v1y ]
...

[qMx − x(0)][qMx − vLx ] + [qMy − y(0)][qMy − vLy ]
...


∈ RNML×1

(8)

repmat(vec, N, 1) is the MATLAB® function that repeats the same matrix or vector vec,
bconstr in this case, for N rows and 1 column.

Bin =




umax

umax

umax

umax


...

umax

umax

umax

umax


...



∈ R2mN×1 Bvel_constr =




vmax

vmax

vmax

vmax


...

vmax

vmax

vmax

vmax


...



∈ R2vN×1 (9)

S =

−(AbarT̄ )

02vN×n

−(AvelT̄ )

 ∈ R(NML+2(v+m)N)×n (10)

AbarS̄

Gin

AvelS̄

 uk ≤
 Bbar

Bin

Bvelconstr

+

−(AbarT̄ )

02vN×n

−(AvelT̄ )

 x(0) (11)

Equation (2.40) is the expanded inequality representing the linear constraints. Checking
the dimension we can see that: R(NML+2(v+m)N)×mN × RmN×1 ≤ R(NML+2(v+m)N)×1 +

R(NML+2(v+m)N)×n × Rn×1, so R(NML+2(v+m)N)×1 ≤ R(NML+2(v+m)N)×1.
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.2 fmincon algorithms comparison

In MATLAB® code, optimization problem is performed by fmincon() function, only for fol-
lower functional cost optimization in 2-DOF LMPC algorithm and for all functional costs in
3-DOF NLMPC algorithm. It has different options depending on the problem, such as the op-
timization algorithm it uses. The performance of the latter, in terms of computational speed,
depends on the functional costs and constraints of the problem, so, to reach the best possible
solution, an algorithm comparison is necessary.
Algorithms recommended by the fmincon() guide, for the kind of optimization problem treated
in this thesis, are:

• “interior-point”.

• “sqp”.

• “active-set”.

These tests are made using optimal parameters selected in Section 4.1 and considering the best
configurations for each fixed and variable prediction horizon found in Section 4.3, also using
perception range.
All tests reveal “sqp” is the best fmincon() algorithm, guaranteeing the best computational
performance and usually the best results regarding formation error and agent-obstacle distance.
A few examples are reported in Tables 1, 2, 3, 4, 5.

Table 1: fmincon() algorithms comparison with F5 prediction horizon in no obstacles envi-
ronment.

“interior-point” “sqp” “active-set”
Max ET [s] 0.822 0.056 0.171
Mean ET [s] 0.017 0.005 0.007
Total ET [s] 3.399 0.950 1.368

Max |feL,F | [mm] 3.300 3.315 3.297
Mean |feL,F | [mm] 0.333 0.250 0.246
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Table 2: fmincon() algorithms comparison with F5 prediction horizon in three obstacles envi-
ronment.

“interior-point” “sqp” “active-set”
Max ET [s] 0.284 0.066 0.122
Mean ET [s] 0.047 0.027 0.035
Total ET [s] 7.073 3.986 5.142

Max |feL,F | [mm] 7.989 5.212 8.004
Mean |feL,F | [mm] 1.423 1.275 1.413

Min obs distance [mm] 5.671 1.952 5.969

Table 3: fmincon() algorithms comparison with V15_5 prediction horizon in no obstacles
environment.

“interior-point” “sqp” “active-set”
Max ET [s] 0.125 0.094 0.185
Mean ET [s] 0.031 0.018 0.032
Total ET [s] 6.504 3.816 6.711

Max |feL,F | [mm] 2.694 3.154 3.154
Mean |feL,F | [mm] 0.099 0.073 0.070

Table 4: fmincon() algorithms execution time comparison with V15_5 prediction horizon in
valzer environment .

“interior-point” “sqp” “active-set”
Max ET [s] 2.393 0.280 0.677
Mean ET [s] 0.079 0.044 0.057

Mean ET Nlong [s] 0.028 0.015 0.024
Mean ET Nshort [s] 0.114 0.064 0.079

Total ET [s] 33.68 18.76 24.08

Table 5: fmincon() algorithms formation error and obstacle avoidance performance compari-
son with V15_5 prediction horizon in valzer environment.

“interior-point” “sqp” “active-set”
Max |feL,F | [mm] 8.602 7.073 8.957
Mean |feL,F | [mm] 0.614 0.596 0.676

Min obs distance [cm] 18.6 19.8 16.3
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