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Abstract

The need for advanced optimization techniques is growing increasingly impor-
tant as robotic tasks are becoming more complex, especially in industrial envi-
ronments. A key focus in robotic systems is the creation of efficient and reliable
trajectories that robots can execute smoothly. This thesis aims to develop feasi-
ble trajectories, that enable smooth robotic movement along designated paths,
while ensuring both efficiency and reliability.
To achieve this, the research focuses on methods that prioritize energy mini-
mization, defined as the reduction in the variation of joint angles of the robotic
manipulator. By optimizing the robot’s movements, unnecessary joint actions
are reduced, resulting in enhanced overall efficiency and performance. The ap-
proach incorporates rotation around the Tool Axis as an additional degree of
freedom, allowing the robot to handle a wider range of trajectories.
The proposed solutions include the Greedy Graph Connectivity-Based method
and the Graph Energy Minimization method, both of which rely on graph con-
struction to identify a trajectory that minimizes total energy consumption. These
methods were evaluated on synthetic trajectories and applied to practical in-
dustrial scenarios such as glue application for shoe manufacturing and bicycle
painting. Results indicate that the Energy Minimization approach significantly
reduces unnecessary joint movements and delivers more consistent outcomes
compared to the Greedy Graph method.
This work contributes to improved flexibility and efficiency in robotic motion
planning within industrial settings, especially in applications where trajectory
optimization is essential.





Sommario

La crescente complessità dei compiti robotici, soprattutto negli ambienti indus-
triali, rende sempre più indispensabili tecniche di ottimizzazione avanzate. Uno
tra gli aspetti fondamentali è la creazione di traiettorie efficienti e affidabili che
i robot possano eseguire. Questa tesi mira a sviluppare traiettorie fattibili, che
consentano un movimento robotico fluido lungo percorsi designati, garantendo
al contempo efficienza e affidabilità.
Per raggiungere questo obiettivo, la ricerca si concentra su metodi che privi-
legiano la minimizzazione dell’energia, definita come la riduzione della vari-
azione degli angoli dei giunti del manipolatore robotico. Ottimizzando i movi-
menti del robot, si riducono le azioni articolari non necessarie, con conseguente
miglioramento dell’efficienza e delle prestazioni complessive. L’approccio in-
corpora la rotazione intorno all’asse dell’utensile come grado di libertà aggiun-
tivo, consentendo al robot di gestire una gamma più ampia di traiettorie.
Le soluzioni proposte includono il metodo Greedy Graph Connectivity-Based
e il metodo Graph Energy Minimization, entrambi basati sulla costruzione di
grafi per identificare una traiettoria che minimizzi il consumo totale di energia.
Questi algoritmi sono stati valutati su traiettorie sintetiche e applicati a scenari
industriali pratici, come l’applicazione di colla per la produzione di scarpe e la
verniciatura di biciclette. I risultati indicano che l’approccio di minimizzazione
dell’energia riduce significativamente i movimenti articolari non necessari e for-
nisce risultati più coerenti rispetto al metodo Greedy.
Questo lavoro contribuisce a migliorare la flessibilità e l’efficienza della pianifi-
cazione del movimento robotico in ambito industriale, soprattutto nelle appli-
cazioni in cui l’ottimizzazione della traiettoria è essenziale.
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1
Introduction

1.1 CONTEXT AND MOTIVATION

In today’s rapidly evolving technological landscape, robotics is experiencing
unprecedented expansion and transformation. More and more companies, from
manufacturing and healthcare to logistics and services, are turning to automa-
tion specialists [2]. Robotic technology enhances efficiency and productivity and
introduces new possibilities for innovation and improved life’s quality [7].
As the complexity of robotic systems increases, the need for advanced algo-
rithms and techniques to optimize their performance grows. A key focus in
robotic systems is the creation of efficient and reliable trajectories that robots
can execute smoothly. The primary goal of this thesis is to find a feasible trajec-
tory that ensures the robot can physically move along the desired path.
The solution to the previous problem is often too restrictive, and in many real-
world applications, it would be advantageous to incorporate additional degrees
of freedom for the target pose. This approach allows for overcoming reachabil-
ity issues, avoiding singularities, and optimizing the robot’s movements, ulti-
mately facilitating easier scheduling and reducing production times. Consider
the case in which one wants to make the robot follow a trajectory obtained from
the movements of an operator to mimic his movements. This data can be ob-
tained through cameras, gyroscopes, or commercial devices such as OptiTrack
or RealSense. However, the data obtained often contains critical issues for the
robot, which must be avoided. Examples of such applications include weld-
ing, gluing shoes or other parts (Figure 1.1), and surface cleaning operations, in
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which the main purpose is to cover the entire surface rather than maintaining a
specific orientation of the cleaning tool. In those cases, the most important data
is the position of the robot’s end effector, while some components of the orien-
tation may be neglected.

Figure 1.1: Teaching an industrial robot how to apply glue on a shoe.

1.2 THESIS OBJECTIVES

The primary motivation for this thesis is to develop a comprehensive solu-
tion that enhances the trajectory-tracking capabilities of robotic arms. The focus
is on generating a feasible trajectory that minimizes the movement of the robot’s
joints by leveraging an additional degree of freedom in the orientation.
To achieve this, the approach allows for adjustments in the screw angle while
keeping the approach direction (or tool axis) fixed with respect to the recorded
position (Figure 1.2). This flexibility facilitates the generation of a feasible trajec-
tory without compromising the tool’s orientation, which is critical in tasks such
as glue application or surface cleaning.
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CHAPTER 1. INTRODUCTION

Figure 1.2: The robotic arm with the tool direction represented in green, the tool
coordinate system in blue, and the screw angle in red.

1.3 EUCLID LABS

This thesis has been conducted in collaboration with EUCLID LABS, a lead-
ing company in the field of robotics and industrial automation. The logo can
be seen in Figure 1.3, and the following information is obtained from the com-
pany’s website [3].

Figure 1.3: Company logo of EUCLID LABS

Founded in 2005 by Matteo Peluso and Roberto Polesel, EUCLID LABS’ mis-
sion is to create flexible and effective software tools that address the challenges

3
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of small-batch manufacturing, high-quality requirements, and complex task au-
tomation. Their vision is to increase the profitability of automation by mini-
mizing programming time and adding adaptive skills, allowing manufacturers
to respond to evolving market demands efficiently. With the experience gained
and the various successes, the company is expanding more and more in different
countries, always providing new solutions for every sector. EUCLID LABS of-
fers a variety of innovative products designed to enhance automation processes
in industrial settings.

1.4 THESIS STRUCTURE

This thesis is organized into the following chapters:

• Theoretical Background (Chapter 2)
This chapter provides an overview of industrial robotics, including funda-
mental concepts such as kinematics, inverse kinematics, and direct kine-
matics. Methods for solving these kinematic problems are also discussed.

• Problem Formulation ( Chapter 3)
This chapter explains the problem addressed in this thesis and presents the
main idea behind the methods implemented: a greedy graph connectivity-
based method and a graph energy minimization method. The chapter also
includes a section on computational analysis.

• Implementation ( Chapter 4)
This chapter details the implementation of the greedy graph connectivity-
based method and the graph energy minimization method, providing in-
sights into the algorithms, data structures, and optimizations applied to
achieve the desired results.

• Results (Chapter 5)
This chapter presents the results obtained and provides a comparative
analysis of the two methods. We analyze why the greedy method often
fails to converge and discuss the improvements made to address this is-
sue, highlighting the advantages of the energy-based method in achieving
more consistent results.

4
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• Conclusions and Future Works (Chapter 6)
The final chapter summarizes the key findings of the thesis, discusses the
implications of the results, and suggests potential areas for future research.
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2
Theoretical Background

2.1 INDUSTRIAL ROBOTS

An industrial robot is defined as an “automatically controlled, reprogrammable
multipurpose manipulator, programmable in three or more axes, which can be
either fixed in place or fixed to a mobile platform for use in automation applica-
tions in an industrial environment” [ISO8373:2021].

Figure 2.1: Examples of industrial robots from EUCLID LABS used in various
applications

Industrial robots are designed to perform tasks with high precision and effi-
ciency in manufacturing and production environments. Their development and
application involve a combination of mechanical engineering, control theory,
and computer science. Equipped with sensors, control systems, manipulators,
power supplies, and specialized software, they are widely used in tasks such as:

• Assembly Operations: Thanks to their proficiency in performing complex
and precise movements, these robots are ideal for assembling small and
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intricate components.

• Material Handling: Their versatility allows them to handle a variety of
materials — from fragile items to heavy loads — making them suitable for
tasks like packaging, palletizing, and loading/unloading.

• Welding and Painting: They are well-suited for welding and painting be-
cause their precision and range of motion ensure consistent and accurate
results.

Robots used in industries such as automotive assembly lines and electron-
ics manufacturing are optimized for repetitive, precise movements. Advances
in robotics have led to improvements in robot kinematics, movement optimiza-
tion, and control techniques, which are crucial for enhancing performance and
adaptability in industrial environments.

2.1.1 MAIN COMPONENTS OF MANIPULATORS

By virtue of its programmability, the industrial robot is a typical compo-
nent of programmable automated systems. Nonetheless, robots can be entrusted
with tasks both in rigid and flexible automated systems. The main components
of manipulators include [6]:

• The robot’s base, typically fixed to the ground or a stationary platform,
provides support and stability for the mechanical structure or manipu-
lator, which consists of a sequence of rigid bodies (links) connected us-
ing articulations (joints). The type of joint is crucial because it determines
whether the robot can perform specific movements or not. More specifi-
cally:

– revolute joint allows rotation around a single axis and it is used in
applications where the robot needs to perform rotational movements,
such as bending an arm at the elbow;

– prismatic joint, also known as a linear joint, is used to perform trans-
lational movements ( for example extending or retracting a segment
of the robot arm) because it allows linear movement along a single
axis.

8
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A manipulator is also characterized by an arm that ensures mobility, a
wrist that confers dexterity, and an end effector that performs the task re-
quired of the robot. The end-effector is the component that interacts di-
rectly with the environment and its type depends on the specific task the
robot is designed to perform.

• Actuators that set the manipulator in motion through actuation of the joints;
the motors employed are typically electric and hydraulic, and occasionally
pneumatic.

• Sensors that ensure the status of the manipulator (proprioceptive sensors)
and, if necessary, the status of the environment (exteroceptive sensors).

• A control system (computer) that enables control and supervision of ma-
nipulator motion.

2.1.2 ANTHROPOMORPHIC ROBOTS

There are different forms of robots, each with a particular purpose, utility,
and set of inherent advantages. Anthropomorphic robots, also known as ar-
ticulated robots, are robots with movements on 5 or more joints, which mimic
the human arm’s structure and movement capabilities. This design allows for a
wide range of motion, making it a significantly flexible form of automation ca-
pable of performing multiple activities across different industrial applications.
As illustrated in Figure 2.2, the kinematic model of the human arm shows how
these robots are designed to replicate the intricate joint movements and degrees
of freedom of a human arm.

A notable example of an anthropomorphic industrial robot is the KUKA KR
5 Arc, which has a human-like arm structure with multiple rotary joints that
provide a high degree of freedom similar to a human arm. This robot features
advanced kinematics and control systems, enabling it to perform complex tasks
with high precision. [9]

9



2.2. INTRODUCTION TO KINEMATICS

Figure 2.2: Left: Kinematic model of the human arm. Right: Robot KUKA KR 5
Arc.

2.2 INTRODUCTION TO KINEMATICS

Kinematics is a fundamental and classical topic in robotics, focusing on the
relationship between a robot’s joint coordinates and its spatial layout. Kinemat-
ics can provide precise calculations for tasks like positioning a gripper in space,
designing a mechanism that can move a tool from point A to point B, or predict-
ing whether a robot’s motion would collide with obstacles. Kinematics focuses
only on the robot’s current position and ignores movement caused by forces and
torques (which are covered in dynamics). The kinematics problem may be rather
trivial for certain robots, like mobile robots that are essentially rigid bodies, but
requires involved study for other robots with many joints, such as humanoid
robots and parallel mechanisms.

REFERENCE FRAMES

The frames attached to the base and the end-effector are essential for describ-
ing the robot’s kinematics. The base frame is termed 𝑂𝑏 − 𝑥𝑏𝑦𝑏𝑧𝑏 and provides
a fixed reference point for the robot’s movements. The frame attached to the
end-effector allows us to define the final position and orientation of the robot’s
working tool. The origin of this frame is known as the Tool Center Point (TCP),
i.e. the precise point where the end-effector interacts with the environment, such
as the tip of a welding tool or the center of a gripper. This end-effector frame is
typically defined by three unit vectors: 𝑥𝑒 , 𝑦𝑒 , 𝑧𝑒 , which are represented in blue
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in Figure 2.3.

Figure 2.3: Example of Tool reference frame

In addition to understand these frames, it is crucial to define the Tool Axis,
which represents the direction along which the tool interacts with the environ-
ment. The Tool Axis is aligned with the tool’s working direction, adapting to the
specific task requirements.
Understanding these frames and how they relate to each other is crucial for pro-
gramming and controlling industrial robots.

CONFIGURATION SPACE, OPERATIONAL SPACE, AND WORKSPACE

A m-dimentional vector can describe the end-effector pose

𝑥𝑒 =

[
𝑝𝑒
𝜙𝑒

]
(2.1)

where 𝑝𝑒 is the position and 𝜙𝑒 is the orientation. This vector is defined in the
space in which the manipulator task is specified (operational space) while the
joint space (configuration space) denotes the space in which we define the (𝑛×1)
vector of joint variables:

𝑞 =


𝑞1
...

𝑞𝑛


Each entry 𝑞𝑖 of this vector represents the value of a joint, which can be either
an angular displacement 𝜃𝑖 for a revolute joint, or a linear displacement 𝑑𝑖 for
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a prismatic joint. A configuration of the robot is a complete specification of the
joint values, and therefore, the set of all possible configurations defines the con-
figuration space. Knowing the values of all joint variables makes it possible to
determine the position of every point on the manipulator, given that the base is
fixed and the links are rigid. The number of degrees of freedom (DOF) of the
robot corresponds to the minimum number of independent parameters needed
to specify its configuration, which is also the dimensionality of the configuration
space.

In addition to the configuration and operational space, there is also the so-
called workspace: the region described by the origin of the end-effector frame
when all the manipulator joints execute all possible motions. There are generally
two types of workspace that are considered:

• Reachable Workspace: This is the set of all points that the origin of the
end-effector frame can reach with at least one orientation.

• Dexterous Workspace: This is a subset of the reachable workspace where
the end effector can reach a point while attaining any orientation. The
dexterous workspace is typically smaller than the reachable workspace be-
cause the orientation constraints reduce the number of positions the end
effector can achieve.

REDUNDANCY IN ROBOT KINEMATICS

Regarding the above-defined spaces, a manipulator can have different types
of redundancy depending on its structure and task. These include:

• Intrinsic redundancy: if the dimension of the joint space is greater than
the dimension of the operational space (𝑚 > 𝑛). This type of redundancy
is inherent to the robot’s structure: the manipulator has more DOF than
the number required to fully define its position and orientation in space.
Example: a robot with 7 DOF operating in a 3D space requires only 6 DOF
(3 for position and 3 for orientation).

• Kinematic redundancy: when the number of variables necessary to de-
scribe a given task does not exceed the number of DOF. This redundancy

12
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is task-specific: a manipulator can be redundant w.r.t one task and non-
redundant w.r.t another.
Example: A 7-DOF robot arm tasked with positioning an object in space
(which requires only 6 DOF) is kinematically redundant for this specific
task, because positioning the object requires only 3 DOF (position in space).

• Functional redundancy: even when 𝑚 = 𝑛, a manipulator may exhibit re-
dundancy if only 𝑟 components of the operational space are relevant to the
specific task, with 𝑟 < 𝑚.
Example: a 6 DOF robot arm that only needs to position an object in space
without worrying about its orientation. In this case, only 3 DOF are nec-
essary to achieve the task.

Redundancy—whether intrinsic, kinematic, or functional—offers significant
advantages in robotics. It allows for greater flexibility in task execution, enabling
the robot to avoid obstacles, optimize joint movement, or reduce energy con-
sumption. Multiple joint configurations can be used to achieve the same end-
effector position, which helps in optimizing criteria such as minimizing joint
velocities or avoiding mechanical limits.

2.3 DIRECT KINEMATICS PROBLEMS

Since both orientation and position depend on the joint variables, the direct
kinematics equation can be written as

𝑥𝑒 = 𝜅(𝑞) (2.2)

where the (𝑚 × 1) vector function 𝜅(.) allows the computation of the operational
space variables from the knowledge of the joint space variables. In other words,
in this case the aim is to compute the pose of the end-effector as a function of
the joint variables. Hence with the respect to a reference frame 𝑂𝑏 − 𝑥𝑏𝑦𝑏𝑧𝑏 ,
the direct kinematics function is expressed by the homogeneous transformation
matrix:

𝑇𝑏
𝑒 (𝑞) =

[
𝑥𝑏𝑒 (𝑞) 𝑦𝑏𝑒 (𝑞) 𝑧𝑏𝑒 (𝑞) 𝑝𝑏𝑒 (𝑞)

0 0 0 1

]
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where 𝑞 is the vector of joint variables, 𝑥𝑒 , 𝑦𝑒 , 𝑧𝑒 are the unit vectors of a frame
attached to the end-effector, and 𝑝𝑒 is the position vector of the origin of such a
frame w.r.t. the origin of the base frame (see Figure 2.4).

Figure 2.4: Description of the position and orientation of the end-effector frame

An operating procedure for the computation of direct kinematics can be nat-
urally derived from the typical open kinematic chain of the manipulator struc-
ture. Since each joint connects two consecutive links, it is logical first to de-
scribe the kinematic relationship between adjacent links and then recursively
derive the overall kinematic description. To this purpose, following the so-called
Denavit-Hartenberg convention (DH), which is explained in Appendix A.1, let us
define a coordinate frame attached to each link, from Link 0 to Link n. Then,
the coordinate transformation describing the position and orientation of Frame
n w.r.t. Frame 0 is given by:

𝑇0
𝑛 (𝑞) = 𝐴0

1(𝑞1)𝐴1
2(𝑞2) . . . 𝐴𝑛−1

𝑛 (𝑞𝑛) (2.3)

where 𝐴𝑖−1
𝑖 (𝑞𝑖) is the homogeneous coordinate transformation from Frame i to

Frame i-1. Given 𝑇𝑏
0 and 𝑇𝑛

𝑒 , compute the direct kinematics function as

𝑇𝑏
𝑒 = 𝑇𝑏

0 𝑇
0
𝑛𝑇

𝑛
𝑒 (2.4)

that yields the position and orientation of the end-effector frame with respect to
the base frame.
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CHAPTER 2. THEORETICAL BACKGROUND

2.4 INVERSE KINEMATICS PROBLEMS

In most industrial applications, the Cartesian variables are provided, be-
cause the final position of the end effector defines the task requirements and
the corresponding joint variables must be calculated to ensure task execution.
In this case it is possible to talk about “inverse kinematics”.
Let x𝑑

𝑒 be the end-effector’s desired pose. We would like to solve the nonlinear
equation

𝑥𝑑𝑒 = 𝜅(𝑞) (2.5)

where 𝑞 is the vector of the 𝑛 unknowns. Solving this problem is critically
important in order to transform the motion specifications, assigned to the end-
effector in the operational space, into the corresponding joint space motions that
allow execution of the desired motion. Concerning the direct kinematics equa-
tion, once the joint variables are known there is only one way to compute the
end-effector position and rotation matrix. On the other, the inverse kinematics
problem is much more complex for the following reasons:

• The equations to solve are typically nonlinear (it is not always possible to
find a closed-form solution).

• There may be multiple possible solutions.

• There may be infinite solutions in the case of a kinematically redundant
manipulator.

• There might be no admissible solutions depending on the manipulator’s
kinematic structure ( for instance, if the given end-effector position does
not belong to the manipulator reachable workspace).

On the other hand, the problem of multiple solutions depends not only on
the number of degrees of freedom (DOF) but also on the number of non-zero
DH parameters: the greater the number of non-null parameters, the greater the
number of admissible solutions. For example, there are in general up to 16 ad-
missible solutions for a six-DOF manipulator without mechanical joint limits.
This leads to the need to find criteria for choosing between the admissible solu-
tions. For the real structure, the number of admissible multiple solutions can be
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reduced by the existence of mechanical joint limits.
Computation of closed-form solutions requires :

• algebraic intuition to identify the key equations involving the unknowns.

• geometric intuition to find those relevant points on the structure with re-
spect to which it is convenient to express position and/or orientation as a
function of a reduced number of unknowns.

In many practical cases, finding closed-form solutions is either impossible
or extremely difficult and it may be necessary to resort to numerical solution
techniques (like Newton algorithm or Gradient-descent algorithm); these have
the advantage of being applicable to any kinematic structure, but in general they
do not allow computation of all admissible solutions.

2.4.1 GEOMETRIC JACOBIAN INVERSE

Differential kinematics gives the relationship between the joint velocities and
the end-effector’s linear and angular velocity. This mapping is described by a
matrix, known as the geometric Jacobian 𝐽(𝑞), which depends on the manipula-
tor configuration.
More specifically, we can express the end-effector’s linear velocity 𝑝¤ 𝑒 and angu-
lar velocity 𝜔𝑒 as functions of the joint velocities 𝑞¤ :

𝑣𝑒 =

[
𝑝¤ 𝑒
𝜔𝑒

]
=

[
𝐽𝑃(𝑞)
𝐽𝑂(𝑞)

]
𝑞¤ (2.6)

where both 𝐽𝑃 and 𝐽𝑂 are (3×𝑛)matrices. This equation establishes a linear map-
ping between the joint velocity space and the operational velocity space, though
it depends on the current configuration. This fact suggests that the differential
kinematics equation could be used to address the inverse kinematics problem.
Assume that a motion trajectory is assigned to the end-effector in terms of 𝑣𝑒 and
the initial conditions on position and orientation. The goal is to find a joint trajec-
tory (𝑞(𝑡), 𝑞¤(𝑡)) that can reproduce the given trajectory. By considering Equation
2.6, the joint velocities can be obtained by inverting of the Jacobian matrix

𝑞¤ = 𝐽−1(𝑞)𝑣𝑒 . (2.7)
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If 𝑞(0) is known, the positions can be computed by integrating velocities over
time, i.e.,

𝑞(𝑡) =
∫ 𝑡

0
𝑞¤(𝜂) 𝑑𝜂 + 𝑞(0). (2.8)

This integration process can be executed in discrete time by using numerical
techniques. The simplest technique is based on the Euler integration method;
given a time step Δ𝑡, if the joint positions and velocities at time 𝑡𝑘 are known,
the joint positions at the subsequent time 𝑡𝑘+1 = 𝑡𝑘 + Δ𝑡 are

𝑞(𝑡𝑘+1) = 𝑞(𝑡𝑘) + 𝑞¤(𝑡𝑘)Δ𝑡. (2.9)

This technique for inverting kinematics does not rely on the kinematic struc-
ture’s solvability. Nonetheless, the Jacobian must be square and of full rank,
otherwise the direct inversion of 𝐽(𝑞) is not feasible. To address this, in many
practical applications, the pseudoinverse of the Jacobian, denoted as 𝐽†(𝑞), is
implemented. The pseudoinverse provides a least-squares solution that mini-
mizes the error in the operational space, ensuring a feasible joint trajectory even
in the presence of redundancy or singularities.
Equation 2.7 can be rewritten as

𝑞¤ = 𝐽𝑇(𝐽𝐽𝑇)−1𝑣𝑒 = 𝐽†(𝑞)𝑣𝑒 . (2.10)

Using the pseudoinverse is particularly advantageous when dealing with re-
dundant manipulators, where several joint configurations can reach the same
end-effector pose. In these scenarios, the pseudoinverse allows for the selection
of a solution that optimizes a secondary criterion, such as minimizing joint ve-
locities or avoiding joint limits.

2.4.2 NEWTON ALGORITHM

Consider the case where 𝑚 = 𝑛. The main idea is to generate a sequence of
values for 𝑞, starting from an initial guess 𝑞0 that, hopefully, will converge to a
solution q∗ of Equation 2.5.
Let 𝑞𝑘 be the value the joint variable vector attained at the 𝑘-th iteration. By
computing the first-order Taylor expansion of Equation 2.5 around 𝑞𝑘 , we obtain

𝑥𝑑𝑒 = 𝜅(𝑞) ≈ 𝜅(𝑞𝑘) + 𝐽𝐴(𝑞𝑘)(𝑞 − 𝑞𝑘) (2.11)
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where 𝐽𝐴 = 𝜕𝜅(𝑞𝑘)
𝜕𝑞 is the so-called analytical Jacobian. Finally 𝑞𝑘+1 is obtained

by solving the equation

𝑥𝑑𝑒 = 𝜅(𝑞𝑘) + 𝐽𝐴(𝑞𝑘)(𝑞𝑘+1 − 𝑞𝑘) (2.12)

that yields

𝑞𝑘+1 = 𝑞𝑘 + 𝐽−1
𝐴 (𝑞𝑘)

(
𝑥𝑑𝑒 − 𝜅(𝑞𝑘)

)
. (2.13)

Newton’s method exhibits quadratic convergence when near to a solution 𝑞∗.
However, convergence is not always guaranteed; the choice of the initial guess 𝑞0

is crucial for determining it. Additionally, problems may arise when computing
𝐽−1
𝐴 (𝑞𝑘) if 𝑞𝑘 is close to singularities of the Jacobian matrix 𝐽𝐴. Finally, notice

that Equation 2.13 can be applied only when 𝑛 = 𝑚; in the case of a redundant
manipulator, where 𝑛 > 𝑚, it must be adjusted accordingly.

2.4.3 GRADIENT-DESCENT ALGORITHM

Let consider the error function

𝐻(𝑞) = 1
2
‖𝑥𝑑𝑒 − 𝜅(𝑞)‖2

The main idea is to move along the direction of the negative gradient. From

∇𝑞𝐻(𝑞) = −𝐽𝑇𝐴(𝑞)
(
𝑥𝑑𝑒 − 𝜅(𝑞)

)
we obtain

𝑞𝑘+1 = 𝑞𝑘 + 𝛼𝐽𝑇𝐴(𝑞𝑘)
(
𝑥𝑑𝑒 − 𝜅(𝑞𝑘)

)
where the step size 𝛼 > 0 must be carefully chosen to ensure that the error

function 𝐻(𝑞) decreases along the trajectory generated by the algorithm, mean-
ing that 𝐻(𝑞𝑘+1) < 𝐻(𝑞𝑘), as long as 𝑞𝑘 is not a stationary point.
The gradient method is computationally simpler than the Newton method be-
cause it requires the transpose of the Jacobian matrix rather than its inverse. This
makes the gradient algorithm suitable also for non-redundant manipulators.
However, the algorithm may get stuck at a point 𝑞 where the error 𝑒 = 𝑥𝑑𝑒 − 𝜅(𝑞)
is not zero but belongs to the kernel of 𝐽𝑇𝐴(𝑞).
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2.4.4 FABRIK ALGORITHM

After exploring Jacobian-based and numerical methods, heuristic alterna-
tives are worth considering to solve the inverse kinematics problem. Heuristic
methods are often preferred in contexts where speed and simplicity of imple-
mentation are crucial, even at the cost of rigorous precision or ensuring an op-
timal solution in every case. Among these methods, FABRIK (Forward And
Backward Reaching Inverse Kinematics) is one of the best-known and appreci-
ated.

FABRIK, as explained in Fabrik [1], was introduced by Andreas Aristidou
and Joan Lasenby in 2011 as an innovative method that avoids the complex ma-
trix manipulations and singularity problems typical of Jacobian-based solutions.
FABRIK stands out for its intuitive approach: instead of using rotation angles or
complex matrix operations, it calculates the position of each joint by locating a
point on a line between the previous and next joint. This simplified approach
makes the algorithm extremely efficient and easily implementable.

FABRIK algorithm consists of two steps which can be clearly visualized in
Figure 2.5:

• Forward Reaching Phase: From the end effector, FABRIK updates the joint
positions by proceeding along the chain until it reaches the root joint. Dur-
ing this phase, each joint is repositioned along the line that connects it to
the next joint, keeping the distance between adjacent joints constant.

• Backward Reaching Phase: Once the root is reached, the algorithm pro-
ceeds in reverse, repositioning the joints until returning to the end-effector.
This double iterative process ensures that the solution quickly converges
to a configuration where the end effector comes as close as possible to the
desired target position.
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2.4. INVERSE KINEMATICS PROBLEMS

Figure 2.5: A full iteration of FABRIK for a single target and 4 manipulator joints,
showing the movement of the end effector towards the target and the subsequent
adjustments of the joints until convergence.

In 2020, FABRIK was extended to mobile manipulators in the M-FABRIK ap-
proach [5]. This extension, developed by Phillipe Cardoso Santos et al., was
designed specifically for real-time applications with industrial robots, such as
the Kuka YouBot. M-FABRIK retains the core strengths of FABRIK—low com-
putational cost and simplicity—while introducing improvements to handle the
redundancy and mobility of industrial robots mounted on mobile platforms. It
has proven effective in avoiding obstacles, managing joint limits, and increasing
manipulability, making it a valuable tool for industrial applications.

20



3
Problem Formulation

The problem addressed involves generating a sequence of joint configura-
tions that accurately trace a given Cartesian-space trajectory while minimizing
the movement of the robot’s joints.
As explained in Section 2.4, the Inverse Kinematics process determines the joint
angles required to achieve each pose in the trajectory and, due to the redundancy
of robotic systems, multiple joint configurations can reach each pose. The chal-
lenge of this thesis is not only to solve inverse kinematics for each pose individ-
ually but also to select configurations that minimize joint movements between
consecutive poses, reducing mechanical wear and energy consumption.
To quantify the movement between two configurations, the distance 𝑑 between
two configurations is computed as follows:

𝑑 =

√√
𝑛∑
𝑖=1

(𝐶𝑜𝑛 𝑓1,𝑖 − 𝐶𝑜𝑛 𝑓2,𝑖)2 (3.1)

where

𝐶𝑜𝑛 𝑓1 =


𝑞1,1

𝑞1,2
...

𝑞1,𝑛


, 𝐶𝑜𝑛 𝑓2 =


𝑞2,1

𝑞2,2
...

𝑞2,𝑛


,

and 𝑞𝑖 is the joint angle for a given joint 𝑖. This formula calculates the Eu-
clidean distance between the two sets of joint angles, effectively measuring how
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much the robot’s joints move from one configuration to the next. Minimizing
this distance between consecutive configurations is key to reducing unneces-
sary joint movements.
When the robot encounters situations where joint movements are excessively
large or certain poses are unreachable due to workspace limitations or singular-
ities, an additional degree of freedom is introduced: a rotation around the Tool
Axis, as defined in Section 2.2. In fact, by adjusting the orientation of the tool
through this rotation, the robot can explore alternative configurations to ensure
that all poses in the trajectory remain reachable, while minimizing unnecessary
joint movements.
In this context, this degree of freedom corresponds to a rotation around the
z-axis of the end-effector’s reference frame. This degree of freedom is imple-
mented by controlling the tool attitude, which is represented by a tool axis vector
𝑇. As illustrated in Figure 3.1, the tool attitude is defined by two angles: the tool
axis inclination direction angle 𝛼 and the tool inclination angle 𝛽. These angles
describe the tool’s orientation relative to the normal vector 𝑁 of the tool’s work-
ing surface. In this thesis we set 𝛽 = 0 while 𝛼 is varied from 0 to 360 degrees
around 𝑁 to adjust the tool’s orientation.

Figure 3.1: Left: tool position and orientation with respect to the tool axis. Right:
experiment with 𝛽 fixed at 30 degrees and 𝛼 varied around the normal vector 𝑁 .

Therefore, the solution proposed focuses on generating feasible trajectories
by minimizing joint movements across consecutive poses, while leveraging the
rotation around the Tool Axis as an additional degree of freedom. This approach
helps address reachability issues, avoid singularities, and optimize the robot’s
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movements, making scheduling easier and improving production times.

3.1 ENERGY FUNCTION

We need a mathematical way to measure the quality of a trajectory in terms
of feasibility. We choose the concept of energy as a metric to compare multiple
trajectories:

• Reachability check: if any pose in a trajectory is not reachable (as discussed
in the previous chapter), the entire trajectory is considered non-feasible,
and the energy is infinite.

• Joint difference using Euclidean distances (Formula 3.1):

𝐸 =
𝑡−1∑
𝑗=0

√√
𝑛∑
𝑖=1

(𝐶𝑜𝑛 𝑓𝑗 ,𝑖 − 𝐶𝑜𝑛 𝑓𝑗+1,𝑖)2 (3.2)

Where:

– 𝑡 is the total number of trajectory points,

– 𝑛 is the number of the robot’s joints,

– 𝐶𝑜𝑛 𝑓𝑗 ,𝑖 and 𝐶𝑜𝑛 𝑓𝑗+1,𝑖 represent the robot’s configurations at consecu-
tive trajectory points, where 𝑗 denotes the trajectory point and 𝑖 refers
to the joint.

This formula essentially measures the overall change in the robot’s joint
angles, giving an indication of how much adjustment is needed to move
from one point to the next.

Therefore, the goal of the thesis can be redefined as minimizing this energy.

3.2 STATE OF THE ART

In this section, we present the STAMPEDE method [4], which addresses the
problem of trajectory tracking motion optimization.
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STAMPEDE is a discrete-optimization technique for finding feasible robot
arm trajectories that pass through provided 6-DOF Cartesian-space end-effector
paths with high accuracy, the so-called pathwise-inverse kinematics problem.
The output consists of a path function of joint angles that best follows the pro-
vided end-effector path function, given some definition of “best”.
The strategy used is to cast the robot motion translation problem as a discrete-
space graph-search problem: each node in the graph represents a feasible config-
uration at a given time step, while edges between nodes represent feasible tran-
sitions between configurations. The method employs various sampling tech-
niques such as diversity sampling, to ensure that a wide variety of configura-
tions are considered at each step, and adaptive sampling, to refine the search
space based on proximity to singularities or unreachable points.
This approach offers significant potential for use in various robotics applica-
tions, such as teaching-by-demonstration, where a user’s hand motion is remapped
to a feasible robot path that matches what the user’s hand did with high accu-
racy. Additionally, the method could be used to retarget motions between dif-
ferent robots. Since robots have vastly different scales and capabilities in joint
space, having a method that provides correspondence between robot arms in a
common end-effector space can serve as a bridge to compile motions and actions
between robots.
However, the method also presents some limitations. While it performs effi-
ciently for a global optimization technique, it is still slower than local, greedy
methods. Furthermore, the current framing of the pathwise-IK problem only
considers static input paths and future extensions are needed to enable dynamic
adjustments using incremental path search algorithms. These adaptations could
allow for real-time branching and modification of paths. Lastly, the method does
not consider dynamics, which could be addressed by integrating a time-scaling
approach to improve its applicability in more complex scenarios.
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Figure 3.2: This figure shows a Sawyer robot tracing the word “ICRA” (the
purple curve is ground truth, the green curve is the robot’s end effector path).
STAMPEDE (right) achieves greater accuracy than RelaxedIK (left) when find-
ing a feasible robot motion that traces the input Cartesian path.

3.3 PROPOSED SOLUTION

In this section we introduce two graph-based solutions to solve the trajectory
optimization problem. The implementation details of each part can be found in
the next chapter.

In mathematics and computer science, a graph is a structure that consists of a
set of nodes (also called vertices) and edges that connect pairs of nodes. Graphs
are widely used to represent relationships between entities and can model a va-
riety of problems, from social networks to optimization issues. The approach
proposed in this thesis draws inspiration from previous graph-based methods,
such as STAMPEDE method, which also address inverse kinematics and path-
planning problems using a graph-search strategy, as detailed in Section 3.2.
Both proposed solutions use a graph-based method in which the trajectory points
are discretized into nodes, each representing a possible joint configuration that
allows the robot to reach a specific pose. The connections between nodes indi-
cate feasible transitions between configurations at consecutive trajectory points.
Since the edges can only be traversed in one direction and there are no cycles
(no paths lead back to a previously visited node), the resulting structure is a Di-
rected Acyclic Graph (DAG). These edges are weighted based on the Euclidean

25



3.3. PROPOSED SOLUTION

distance between the configurations, as defined in Equation 3.1.

3.3.1 GREEDY GRAPH CONNECTIVITY-BASED APPROACH

The main idea is to construct the graph dynamically, adding feasible nodes
to the graph as they are found. We evaluate each pose in sequence, ensuring
that the trajectory remains valid up to that point. Once the graph is created, we
proceed by searching for a possible path through the graph, meaning one that
connects the first configuration to the last.
This greedy approach makes adjustments as issues arise. For this reason, it does
not guarantee that there isn’t another trajectory with less joint movement, as the
algorithm stops once it finds a feasible configuration.

KEY STEPS:

1. Graph Construction Process:
For each trajectory point, all possible joint configurations are calculated by
using the Inverse Kinematics process. These nodes are only added to the
graph if they have feasible connections with the nodes from the previous
trajectory point (level). If no feasible connections are found, the robot’s
pose is rotated around the Tool Axis a certain number of times to explore
alternative configurations that may be reachable or that require smaller
joint movements. If, after multiple rotations, no valid connections are iden-
tified, the process becomes recursive, revisiting and recalculating config-
urations at the previous levels to attempt new connections.
A representation of the final graph is shown in Figure 3.3.
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Figure 3.3: Graph

2. Path Search:
After constructing the entire graph, the next step is to determine the longest
feasible path with the minimum weight from the starting configuration to
the final configuration. This longest path is identified using a Depth-First
Search algorithm, which explores all possible paths through the graph and
selects the one with the maximum number of nodes (configurations).
DFS [8] is an algorithm for traversing or searching tree or graph data struc-
tures. The algorithm starts at the root node (selecting some arbitrary node
as the root node) and explores as far as possible along each branch before
backtracking.

3.3.2 GRAPH ENERGY MINIMIZATION APPROACH

This approach presents an alternative to the graph-based method discussed
in the previous section. The main idea is to work in the joint space: instead of
rotating trajectory points dynamically whenever a problem arises, this method
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precomputes all possible configurations for each pose and adds them to the ded-
icated graph level. These pre-generated configurations are then used to generate
multiple possible trajectories, each aimed at minimizing the total energy. The al-
gorithm generates multiple trajectories, evaluates each one based on its energy,
and selects the one with the lowest overall energy as the final solution.

KEY STEPS:

1. Initial Configuration Generation:

The algorithm begins by generating all feasible joint configurations for
each pose along the trajectory. In other words, for each trajectory point,
a pre-generated list of possible joint configurations is created. These con-
figurations are obtained by rotating each pose around the Tool Axis and
storing all valid solutions.

2. Energy-Based Selection:

After generating configurations, the algorithm selects a set of trajectories
using a process that prioritizes energy minimization. In particular, we it-
erate over the configurations, selecting the most energy-efficient joint tran-
sitions between consecutive poses.

3. Final Trajectory Selection:

Once the possible trajectories are initialized, they are evaluated and ranked
by the total energy required. The trajectory with the minimum energy is
selected as the final solution.

3.4 COMPLEXITY ANALYSIS

3.4.1 GREEDY GRAPH CONNECTIVITY-BASED APPROACH

The complexity analysis considers both the graph construction process and
the path search for finding the longest path.
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BEST CASE SCENARIO

• Graph Construction Process
The algorithm processes each trajectory point sequentially, passing through
each level only once without any retries or backtracking.As a result, it per-
forms a linear traversal of the trajectory points.

• Path Search
In the best case, each level has only one configuration, which results in the
DFS algorithm having a complexity proportional to the number of trajec-
tory points.

Overall, the time complexity for the best-case scenario can be expressed as:

Total Complexity : 𝑂(𝑁) (3.3)

with 𝑁 being the number of trajectory points.

WORST CASE SCENARIO

• Graph Construction Process
When a trajectory point cannot be connected, the algorithm must backtrack
and retry previous points. The total number of retry attempts across all
levels can be expressed as:

𝑂

(
𝑁 +

𝑁∑
𝑖=1

𝑅𝑖

)
(3.4)

where 𝑅𝑖 is the number of retries for level 𝑖. Since retries are finite and
bounded by a constant, the complexity remains 𝑂(𝑁).

• Path Search
The algorithm includes a depth-first search (DFS) for finding the longest
path in the constructed graph. The DFS has a time complexity of:

𝑂(𝑁 × 8 + 𝑁 × 82) ≈ 𝑂(𝑁) (3.5)

where:
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– 𝑁 × 8 is the number of nodes, with 8 being the average number of
configurations per point.

– 𝑁 × 82 is the number of edges.

The overall time complexity can be represented as:

Total Complexity : 𝑂(𝑁) + 𝑂(𝑁) ≈ 𝑂(𝑁) (3.6)

with 𝑁 being the number of trajectory points.

3.4.2 GRAPH ENERGY MINIMIZATION APPROACH

The complexity analysis for this algorithm considers both the configuration
generation process and the evaluation of energy between trajectory.
For each trajectory point, the algorithm generates configurations by rotating
the points around the tool axis and checking for valid solutions. In the worst
case, this process results in (𝑃 × 8) configurations per level, where 𝑃 represents
the number of generated rotation points, and 8 is the number of potential so-
lutions per rotation. Subsequently, the algorithm iterates over the configura-
tions to find the trajectory with minimum energy. This involves evaluating all
combinations of configurations, which has a time complexity proportional to
(𝑁 × (𝑃 × 8)2 × max_Trajectories), where max_Trajectories denotes the max-
imum number of feasible trajectories considered per point.

The overall time complexity can be represented as:

Total Complexity : 𝑂(𝑁 × (𝑃 × 8)2 × max_Trajectories) ≈ 𝑂(𝑁) (3.7)

with 𝑁 being the number of trajectory points.
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4
Implementation

This chapter outlines the implementation of the methods introduced in Chap-
ter 3 : Section 4.1 explains how the trajectories are generated, while Section 4.2
and Section 4.3 describe the implementation of the Greedy Graph Connectivity-
Based Approach and the Graph Energy Minimization Approach, respectively.

4.1 SYNTHETIC TRAJECTORIES

Trajectory generation involves calculating the series of poses (positions and
orientations) that a robot’s end-effector must follow to complete a desired mo-
tion. In the following sections, the trajectories used in this thesis are described:
a conical spiral and a spherical path.

4.1.1 CONICAL SPIRAL TRAJECTORY

The conical spiral trajectory is generated by simulating a mathematical curve
known as a conical spiral, which is a three-dimensional spiral wrapped around
a cone. The primary parameters defined for this trajectory include the number
of sample points and the maximum height (𝑧Max). These parameters allowed the
trajectory to be fine-tuned according to the specific requirements of the task.
The equations mathematically define the conical spiral trajectory:
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𝑥(𝑡) = 𝑎 · 𝜃 · cos(𝜃)
𝑦(𝑡) = 𝑎 · 𝜃 · sin(𝜃)
𝑧(𝑡) = −𝑚 · 𝑎 · 𝜃

(4.1)

where 𝑡 represents the sample point index, 𝜃 is the rotation angle, 𝑎 is a scal-
ing factor derived from the geometric properties of the cone and 𝑚 is the slope
of the cone’s lines with respect to the 𝑥-𝑦 plane.

The trajectory points are computed iteratively within a loop, where each it-
eration calculates the next position in 3D space using the above equations. For
each point, in addition to the position, a corresponding orientation matrix is gen-
erated: x-axis is tangent to the cone’s surface, z-axis normal to the cone’s surface
and finally y-axis as a vector product between x and z.

4.1.2 SPHERICAL SPIRAL TRAJECTORY

The spherical trajectory involved generating points on the surface of a sphere
by following a procedure very similar to that used for the cone in the previous
section.
The spherical trajectory is defined using spherical coordinates, which are con-
verted into Cartesian coordinates for the robot’s reference frame. The equations
used are:

𝑥(𝜙, 𝜃) = 𝑟 · sin(𝜙) · cos(𝜃)
𝑦(𝜙, 𝜃) = 𝑟 · sin(𝜙) · sin(𝜃)

𝑧(𝜙) = 𝑟 · cos(𝜙)
(4.2)

where 𝜙 is the polar angle, 𝜃 is the azimuthal angle, and 𝑟 is the radius of
the sphere.
Points on the sphere are calculated in a loop, with the polar and azimuthal an-
gles incremented in each iteration to ensure even distribution across the sphere’s
surface. The orientation is set in the same way as described in Section 4.1.1.
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4.2 GREEDY GRAPH CONNECTIVITY-BASED APPROACH

The first step is to construct a graph, which is built and managed using the
following key classes: Node, Connection, GraphLevel, and Graph.
• Node Class: Represent a specific robot configuration at a trajectory point.

1 class Node:
2 % Attributes
3 List<Node> Parents
4 List<Connection > ChildConnections
5 double[] RobotInternalAxes
6

7 % Method
8 def TryAttach(solution: double[]):
9 % Check if the connection is feasible (the weight is

acceptable)
10 return True if the connection is feasible , False otherwise

Code 4.1: Node Class

• Connection Class: Represent a connection between two nodes, including the
weight of the transition.

1 class Connection:
2 % Attributes
3 Node ChildNode
4 double Weight
5

6 % Method
7 def CalculateWeight(joints1: double[], joints2: double[]):
8 % Returns the weight between two joint configurations (

Equation 3.1)
9 return computedWeight

Code 4.2: Connection Class

• GraphLevel Class: Represent a single level in the graph, containing multiple
nodes.

1 class GraphLevel:
2 % Attributes
3 List<Node> Nodes
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4 elTrajectoryElement TrajectoryElement

Code 4.3: GraphLevel Class

• Graph Class: Manage the overall graph construction and pathfinding process.
This class plays a crucial role in the process of constructing the graph by using
the Node, Connection, and GraphLevel classes.

1 class Graph:
2

3 % Attribute
4 GraphLevel[] Levels
5

6 % Methods
7 elTrajectory CreateGraph(elTrajectory traj, elRobot robot)
8 % Generate the graph for the given trajectory and robot
9

10 void AddLevel(int level , elTrajectory trj, elRobot robot)
11 % Add a new GraphLevel to the graph
12

13 List<Node> FindLongestPath()
14 % Find the longest path through the graph
15

16 void DFS(Node current , Set visited , List<Node> currentPath , List<
Node> longestPath)

17 % Depth -First Search to explore the graph and find paths

Code 4.4: Graph Class

4.2.1 GRAPH CONSTRUCTION PROCESS

The CreateGraph method (shown in Algorithm 1) manages the entire process
by calling AddLevel to add each new level of nodes to the graph as it is computed.
When all levels have been filled, the FindLongestPath() method (Section 4.2.2
) returns the selected final path.
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Algorithm 1 CreateGraph method
1: Input: elTrajectory traj, elRobot robot
2: Output: elTrajectory trj
3:
4: def CreateGraph(traj, robot):
5: trj = traj.Clone() % Clones the input trajectory
6: Levels = new GraphLevel[trj.Count] % Initializes levels for each trajectory point
7: for l = 0 to trajectory.Count % Loop through each trajectory point
8: AddLevel(l, trajectory) % Adds each level to the graph
9: FindLongestPath() % Finds the longest valid path through the graph

10: return trj % Returns the final trajectory

Regarding the AddLevel method (reported in Algorithm 2), we first check if
the pose is reachable. If it is, we continue with that pose; otherwise, we ran-
domly rotate the pose along the z-axis until it becomes reachable.
Then we proceed differently depending on the level we are at:

1. Level 0: Add a special node called ”START”. Calculate the possible con-
figurations (nodes) to reach pose 0 and add them with weight = 0.

2. From Level 1 to Level t-1: Compute all possible configurations. Each node
is validated by checking if it can connect to any nodes in the previous level.
If a valid connection is found, the node is added to the current level. If not,
the trajectory pose is adjusted randomly , and the validation process is re-
peated until the maximum number of iterations is reached.
If valid connections cannot be established after several attempts, the algo-
rithm recursively adjusts the trajectory at previous levels to find a feasible
path forward.
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Algorithm 2 AddLevel method
1: Input: int level, elTrajectory trj, elRobot robot
2: Output: void
3:
4: def AddLevel(int level, elTrajectory trj, elRobot robot):
5: elTrajectoryElement element = trj.TrajectoryElements[level]
6: if (element is reachable):
7: Compute all possible configurations (validSolutions)
8: else:
9: trj.TrajectoryElements[level] = randomized

10:
11: if (level == 0):
12: Levels[level] = new GraphLevel(validSolutions)
13: else:
14: attachedAtLeastOnce = false
15: iter = 0
16: do:
17: iter++
18: foreach (Node node in Levels[level-1].Nodes):
19: foreach (double[] solution in validSolutions):
20: if (node.TryAttach(solution)):
21: attachedAtLeastOnce = true
22: newNode = new Node(RobotInternalAxes = solution)
23: if (!attachedAtLeastOnce):
24: trj.TrajectoryElements[level] = randomized
25: while (!attachedAtLeastOnce and iter < maxIter):
26: if (!attachedAtLeastOnce):
27: trj.TrajectoryElements[level-1] = randomized
28: AddLevel(level-1, trj, robot)
29: else:
30: Add all computed nodes in the current level
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Figure 4.1: The figure shows how the first and second levels are populated. For
the first level, all possible configurations are connected to the ”START” node
with weight = 0. In the second level, the configurations that attach to at least
one node of the previous level and have an acceptable weight (in this example,
weight < 5) are calculated.

4.2.2 PATH SEARCH

To find a feasible path, the following methods are implemented:

1. FindLongestPath()

• Finds the longest possible path from the start node to the end node.

• Uses a Depth-First Search (DFS) to explore all possible paths and se-
lects the one with the highest number of nodes.

Algorithm 3 FindLongestPath() method
1: Input: None
2: Output: List<Node> longestPath
3:
4: def FindLongestPath():
5: longestPath = empty list
6: visited = empty set
7: for level in Levels:
8: for node in level.Nodes:
9: currentPath = empty list

10: DFS(node, visited, currentPath, longestPath) % Perform depth-first search to update
longestPath

11: return longestPath
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2. DFS(current, visited, currentPath, longestPath)
Below, the specific steps of how DFS algorithm works in practice are ex-
plained:

• Support function for Depth-First Search.

• Adds the current node to the current path and marks the node as
visited.

• If the current node has unvisited children, it explores them recur-
sively.

• If the current node is a leaf (without unvisited children) and the cur-
rent path is longer than the longest path found so far, it updates the
longest path.

• Removes the last node from the current path and marks the node as
unvisited to allow further exploration.

Algorithm 4 DFS() method
1: Input: Node current, Set visited, List<Node> currentPath, List<Node> longestPath
2: Output: None
3:
4: def DFS(current, visited, currentPath, longestPath):
5: add current to visited
6: add current to currentPath
7: hasChildren = false
8: for connection in current.ChildConnections:
9: child = connection.ChildNode

10: if child not in visited then:
11: hasChildren = true
12: DFS(child, visited, currentPath, longestPath)
13:
14: if !hasChildren and currentPath.length > longestPath.length then:
15: longestPath = currentPath.clone()
16: remove last element from currentPath
17: remove current from visited
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4.3 GRAPH ENERGY MINIMIZATION APPROACH

The core of the energy-based selection process lies in the second phase, which
is managed by the InitializeTrajectoryMinimumEnergy method. It generates
multiple trajectories for the robot by selecting configurations that minimize the
weight between consecutive poses.
The method loops through a set number of initial configurations for the first
point of the trajectory, as controlled by the variable maxTrajectories. For each
initial configuration, it starts constructing a trajectory by following the next steps:

• For each subsequent pose, it evaluates the weight required to transition
from the current configuration to each possible configuration of the next
pose. The weight is calculated as the difference in joint angles between the
configurations using Connection.CalculateWeight().

• The configuration that results in the minimum weight is selected as the
next one in the trajectory.

• This process repeats until a complete trajectory is generated, ensuring the
weight is minimized for every transition.

The algorithm generates a fixed number of trajectories, equal to the param-
eter maxTrajectories, each starting from a different configuration for the first
point. These trajectories are stored in a list for later evaluation to select the one
with the lowest energy.

Algorithm 5 Energy-Based Approach
1: Input: elTrajectory trj (initial trajectory)
2: Output: elTrajectory bestTraj, List<double[]> bestConf
3:
4: def Main(trj):
5: % 1. Initialization
6: allConfigurations = GenerateConfigurations(trj)
7: % 2. Energy-Based Selection
8: selectedConf = InitializeTrajectoryMinimumEnergy(allConfigurations)
9: % 3. Final Trajectory Selection

10: orderedConf = Sort(selectedConf) by energy
11: bestConf = orderedConf[0]
12: bestTraj = DirectKinematics(bestConf)
13: return (bestTraj, bestConf)
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Algorithm 6 GenerateConfigurations Method
1: Input: elTrajectory trj
2: Output: List<List<double[]» allConfigurations
3:
4: def GenerateConfigurations(trj):
5: for each element in trj do
6: configurations = []
7: for angle from 0 to 359 with step 1 do
8: rotatedElement = RotateAroundZ(element, angle)
9: if rotatedElement is valid then

10: solutions = GetConfiguration(rotatedElement)
11: if solutions are valid then
12: configurations.Add(solutions)
13: end if
14: end if
15: end for
16: allConfigurations.Add(configurations)
17: end for
18: return allConfigurations
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Algorithm 7 InitializeTrajectoryMinimumEnergy Method
1: Input: List<List<double[]» allConfigurations, int maxTrajectories
2: Output: List<List<double[]» selectedTrajectories
3:
4: def InitializeTrajectoryMinimumEnergy(trj):
5: selectedTrajectories = []
6: for i = 0 to maxTrajectories do
7: currentTrajectory = [allConfigurations[0][i]]
8: currentPoint = allConfigurations[0][i]
9: for j = 1 to allConfigurations.Count do

10: currentConfig = allConfigurations[j]
11: minEnergy = MAX
12: minIndex = 0
13: for k = 0 to currentConfig.Count do
14: energy = CalculateWeight(currentPoint, currentConfig[k])
15: if energy < minEnergy then
16: minEnergy = energy
17: minIndex = k
18: end if
19: end for
20: currentPoint = allConfigurations[j][minIndex]
21: currentTrajectory.Append(currentPoint)
22: end for
23: selectedTrajectories.Append(currentTrajectory)
24: end for
25: return selectedTrajectories
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5
Results

This chapter shows the results obtained by following the approaches de-
scribed in Chapter 4.
The implementation was carried out in C# NetFramework 4.6.2 using Visual Stu-
dio 2022 as the Integrated Development Environment (IDE).

5.1 ROBOT KUKA KR50 R2100

The proposed solution is independent of the choice of robot used. For the
tests the KUKA KR50 R2100 Robot (Figure 5.1), a high precision and versatile
industrial robot, is chosen. It is widely used in automation applications due to
its robustness and ability to operate in complex environments.
Technical specifications:

• Model: KUKA KR50 R2100

• Capacity: 50 kg

• Range of action: 2100 mm

• Number of axies: 6
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Figure 5.1: On the left: The KUKA KR50 R2100 robot displayed within its sim-
ulated working environment. On the right: The graphical representation of the
robot’s workspace.

5.2 THE USER INTERFACE

For this thesis, a test program has been developed using the EuclidLabs 3D
world as a test environment. As shown in Figure 5.2, the interface displays the
robot and allows the user to import real-world trajectories or generate synthetic
ones. Once the trajectory is imported, these trajectories are displayed as in Figure
5.3, with warning signals marking unreachable trajectory points.

Figure 5.2: User Interface
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Figure 5.3: User interface: on the left, the imported trajectory is displayed with
all trajectory points and configurations; on the right, the optimized trajectory is
shown with selected configurations highlighted in green.

5.3 SYNTHETIC TRAJECTORIES

Three different trajectories are used to test the proposed algorithms. The
first one is a conical spiral, calculated as explained in Section 4.1.1 and shown
in Figure 5.4. The second (Figure 5.5) is a spherical spiral option, implemented
according to the method described in Section 4.1.2. The third is also a spiral
trajectory, implemented using Equation 4.2 with 𝑧(𝜙) = 700 ((Figure 5.6).
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Figure 5.4: Conical spiral trajectory
( 100 samples) with 𝑧max = 500 mm,
𝑎 = 𝑧max

𝑚·maxRotation , and 𝑚 = cos
(𝜋

6
)
.

Figure 5.5: Spherical spiral trajec-
tory (100 samples) with 𝑟 = 200 mm
and 𝜙 limited to 𝜋

2 .

Figure 5.6: Planar spiral trajectory (100
samples) with 𝑟 = 200 mm, 𝜙 limited to
𝜋
2 and 𝑧(𝜙) = 700mm.

5.4 REAL-WORLD TRAJECTORIES

Real-world trajectories are recorded using MARVIN, a software provided
by Euclid Labs that supports various industrial robots and enables hardware-
independent trajectory acquisition. It allows users to manually record complex
trajectories executed by an operator and convert them into robot programs.
For this analysis, two real-world trajectories are utilized: one representing the
application of glue to shoes (Figure 5.7, 258 poses) and the other involving the
painting process of a bicycle (Figure 5.8, 188 poses). These examples are chosen
to assess the performance of the proposed algorithms under practical conditions
with different levels of complexity.
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Figure 5.7: glue application to
shoes. Figure 5.8: Bike painting process.

5.5 RESULTS

The following sections present the results for the synthetic trajectory anal-
ysis, detailing the performance of the Greedy Graph Connectivity-Based Ap-
proach (Section 5.5.1), the Graph Energy Minimization Approach (Section 5.5.2),
and a comparative analysis between the two Approaches (Section 5.5.3).
Section 5.5.4 extends the analysis to real-world trajectories, showcasing how
both approaches perform under practical conditions.
Data collected include computation time, total energy, and the average/vari-
ance energy components. Specifically, for synthetic trajectories, these data are
collected starting from 25 poses and increasing incrementally by 25, up to a max-
imum of 1000 poses.
It is important to note that, since all processing is conducted offline, we are not
focused on achieving real-time performance, allowing for longer processing du-
rations if they lead to improvements in trajectory efficiency and effectiveness.

5.5.1 GREEDY GRAPH CONNECTIVITY-BASED APPROACH

In some cases, the algorithm may encounter a local minimum, where it be-
comes unable to resolve the current level, leading to an excessively long recur-
sion as the algorithm repeatedly attempts to fix the same level without suc-
cess. To handle this, the CreateGraph function is modified to keep track of how
many times it has attempted to fix the same level. If this happens more than 5
times, it restarts from the first level, randomizing all the poses. If the variable
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maxRestart, which tracks the total restarts, exceeds 50, it concludes that no so-
lution could be found within the allotted time. This behavior is indicated in the
subsequent graphs by a red cross, showing that the algorithm was unable to find
a valid solution.
Figure 5.9 illustrates the behavior of the variable countRestart, which tracks the
number of times the algorithm restarts in a conical trajectory. This data high-
lights that the algorithm often gets stuck in local minima, requiring repeated
restarts to overcome these challenges and continue the search for a feasible path.

Figure 5.9: The countRestart variable in conical spiral trajectories.

Figure 5.10 shows the absolute value of the difference in energy between two
test runs (|𝐸1 − 𝐸2 |). The variability between tests indicates that the algorithm
does not consistently find the minimum energy solution, demonstrating the pro-
cess’s stochastic nature and limitations in achieving optimal results.
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Figure 5.10: Absolute difference in energy between two different tests (|𝐸1−𝐸2 |).

5.5.2 GRAPH ENERGY MINIMIZATION APPROACH

The variable maxTrajectories represents the number of feasible configura-
tions for the initial trajectory point, and its value directly affects the number
of generated trajectories that are subsequently evaluated and compared. Fig-
ure 5.11 shows the comparison of energy outcomes when setting maxTrajecto-
ries to different values. The results highlight a noticeable difference between
maxTrajectories = 30 and maxTrajectories = 5, showing that with only 5 con-
figurations the algorithm is limited in achieving minimum energy values.

Figure 5.11: Energy results for different maxTrajectories values.
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5.5.3 COMPARISON OF APPROACHES FOR SYNTHETIC TRAJECTORIES

Figures 5.12, 5.13, and 5.14 illustrate a comparison between the two approaches
for synthetic trajectories in terms of time, energy, mean and variance. The re-
sults shown are calculated as the average of two test runs.
In the Greedy approach, we set an acceptable weight of 1 between configura-
tions. For the Graph Energy Minimization Approach, the variable maxTrajectories
is set to 30 to allow a more extensive exploration of feasible configurations.

For simpler trajectories, such as the planar one, the Greedy approach finds
solutions faster than the other method but with higher energy values, as it stops
at the first acceptable solution without attempting to further minimize the en-
ergy cost. However, for more complex trajectories, such as the conical and spher-
ical ones, the Greedy approach faces significant challenges. The frequent ori-
entation changes in these trajectories make the method unreliable, resulting in
frequent failures to find a solution. Table 5.1 highlights the specific trajectory
points where the Greedy approach stopped during the tests, underscoring its
limitations in handling complex paths and the frequency with which it gets stuck
in local minima. On the other hand, the Graph Energy Minimization approach
consistently finds lower and more stable energy values, even if it requires longer
computational time due to its exploration of feasible configurations.

Trajectory Test Trajectory Points Stopped Level
Cone 1 800 711
Cone 2 1000 716
Cone 2 575 517
Cone 2 900 738

Sphere 1 25 19
Sphere 1 575 535
Sphere 1 950 897
Sphere 1 975 765
Sphere 2 25 19
Sphere 2 825 794
Sphere 2 875 740

Table 5.1: Stopped levels for the conical trajectory
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Figure 5.12: Results for the planar spiral trajectory.
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Figure 5.13: Results for the conical spiral trajectory.
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Figure 5.14: Results for the spherical spiral trajectory.
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5.5.4 COMPARISON OF APPROACHES ON REAL-WORLD TRAJECTORIES

The tests conducted on real-world trajectories confirm the observations made
during the synthetic trajectory experiments. Specifically, for the glue application
to shoes, which involves a trajectory with few orientation changes, the Greedy
Graph Connectivity-Based Approach is faster and finds an energy value compa-
rable to that of the other approach. However, since the bicycle painting trajec-
tory requires handling multiple orientation changes, the Greedy approach fails
to find a solution as it often gets stuck in local minima. In contrast, the Graph
Energy Minimization Approach successfully finds a solution.
The collected data are shown in Table 5.2.

Trajectory Approach Time (ms) Energy [rad] Average Energy Component [rad] Variance [rad2]
Glue application Greedy 64 0.7345 0.0028 2.0588E-06
Glue application Energy 5792 0.6675 0.0026 1.5980E-06
Bicycle Painting Energy 4518 240.3861 1.2786 0.7189

Table 5.2: Comparison of computation time, total energy, average energy com-
ponent, and variance for real-world trajectories.
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In recent years, the development of algorithms for robotic optimization in the
industrial sector has become increasingly necessary. For this thesis the problem
to determine a feasible trajectory that allows the robot to move smoothly along a
desired path has been faced. The primary focus was on minimizing the energy
associated with joint movements, defined as the sum of the changes of the joints
along the trajectory. To achieve this, the rotation around the Tool Axis was used
as a degree of freedom to create efficient trajectories that overcome reachability
issues, avoid singularities, and optimize the robot’s movements.
To this aim, two methods based on graph construction were implemented. The
first one is a greedy approach that examines each point in sequence, rotating it
until an acceptable solution is found. This method often fails because it tends to
get stuck in local minima, limiting its effectiveness for more complex trajectories.
To overcome this limitation, a second algorithm was implemented to explore the
joint space more systematically, aiming to find not only valid but also optimal
solutions. The Graph Energy Minimization approach demonstrated a greater
ability to produce consistent trajectories, minimizing joint motion and improv-
ing adaptability to complex trajectories, such as spherical and conical ones.
Both methods were tested on real trajectories generated by the MARVIN soft-
ware, confirming the results observed with the synthetic ones. In the tests, the
application of glue produced similar results between the two approaches, as this
type of trajectory involves few changes in direction and can be managed effec-
tively by the greedy method. However, in the painting of bicycles the Graph En-
ergy Minimization approach proved significantly superior, validating that the

55



6.1. FUTURE WORKS

greedy approach is reliable only for less demanding trajectories.

6.1 FUTURE WORKS

As possible future improvements, we propose the following:

• Addressing local minima in energy optimization problems
One of the main challenges in finding suitable algorithms for this problem
has been the non-linear nature of the energy landscape, which features
many local minima. This makes it difficult to identify in advance which
points are worth exploring to minimize energy without merely falling into
local minima. One potential solution is to use stochastic optimization meth-
ods, such as simulated annealing or evolutionary algorithms, which intro-
duce randomness to escape local minima and explore a broader range of
the energy landscape.

• Variable-step sampling refinement
A possible improvement could involve refining the sampling process. Cur-
rently, the algorithm performs a basic sampling of the axis space, gen-
erating configurations by rotating by 1 degree around the Z-axis. Since
minimizing execution time is a secondary goal, an additional refinement
phase could be introduced: once an acceptable trajectory is found, further
minimization could be achieved by using variable-step sampling. For in-
stance, applying a bisection method between configurations would allow
for a more accurate exploration of configurations.

• Increased degrees of freedom
Effective energy minimization could be improved by increasing the de-
grees of freedom, allowing small rotations around other axes depending
on the specific application. This approach could provide greater flexibility
and precision, especially in cases where additional degrees of freedom are
feasible. For example, the STAMPEDE method demonstrates improved
results in trajectory optimization by using rotations around all axes.

• Integration of real-world constraints
In practical applications, additional constraints may need to be considered:
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– Certain configurations might be preferred to avoid damaging compo-
nents attached to the robot, potentially limiting the allowable range
of rotation on some axes. In these cases, virtual axis limits that differ
from the robot’s physical limits could be introduced, ensuring com-
patibility with the current implementation.

– To account for potential environmental collisions, a cost function could
be designed to not only minimize the motion of the robot’s axes but
also to maximize the safety distance from surrounding objects. This
approach would enhance the robot’s adaptability to complex envi-
ronments by balancing efficient motion with safety and operational
constraints.
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A.1 DENAVIT-HARTENBERG CONVENTION

The Denavit-Hartenberg convention (DH) is a standard method used in robotics
to represent robot geometries; in particular, to describe the positions and orien-
tations of segments of robotic manipulators with respect to a coordinate system.
This method standardizes the process of deriving transformation matrices that
describe the position and orientation of each joint and segment of the robot.
Consider Figure A.1; let Axis 𝑖 denote the axis of the joint connecting Link 𝑖 − 1
to Link 𝑖; the so-called Denavit-Hartenberg convention (DH) can be written in an
operating form as follows.

1. Find and number consecutively the joint axes (for a revolute joint, the axis
about which the rotation is performed; for a prismatic joint, the axis along
which the translation is performed); set the directions of axes 𝑧0, . . . , 𝑧𝑛−1.

2. Choose Frame 0 by locating the origin on axis 𝑧0; axes 𝑥0 and 𝑦0 are chosen
so as to obtain a right-handed frame. If feasible, it is worth choosing Frame
0 to coincide with the base frame.

Execute steps from 3 to 5 for 𝑖 = 1, . . . , 𝑛 − 1:

4. Locate the origin 𝑂𝑖 at the intersection of 𝑧𝑖 with the common normal to
axes 𝑧𝑖−1 and 𝑧𝑖 . If axes 𝑧𝑖−1 and 𝑧𝑖 are parallel and Joint 𝑖 is revolute,
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then locate 𝑂𝑖 so that 𝑑𝑖 = 0; if Joint 𝑖 is prismatic, locate 𝑂𝑖 at a reference
position for the joint range, e.g., a mechanical limit.

5. Choose axis 𝑥𝑖 along the common normal to axes 𝑧𝑖−1 and 𝑧𝑖 with direction
from Joint 𝑖 to Joint 𝑖 + 1.

6. Choose axis 𝑦𝑖 so as to obtain a right-handed frame.

To complete:

7. Choose Frame 𝑛: if Joint 𝑛 is revolute, then align 𝑧𝑛 with 𝑧𝑛−1; otherwise,
if Joint 𝑛 is prismatic, then choose 𝑧𝑛 arbitrarily. Axis 𝑥𝑛 is set according
to step 4.

8. For 𝑖 = 1, . . . , 𝑛, form the table of parameters 𝑎𝑖 , 𝑑𝑖 , 𝛼𝑖 , 𝜃𝑖 :

• 𝑎𝑖 : distance between 𝑂𝑖 and 𝑂𝑖−1,

• 𝑑𝑖 : coordinate of 𝑂𝑖−1 along 𝑧𝑖−1,

• 𝛼𝑖 : angle between axes 𝑧𝑖−1 and 𝑧𝑖 about axis 𝑥𝑖 to be taken positive
when rotation is made counter-clockwise,

• 𝜃𝑖 : angle between axes 𝑥𝑖−1 and 𝑥𝑖 about axis 𝑧𝑖−1 to be taken positive
when rotation is made counter-clockwise.

Figure A.1: Denavit-Hartenberg kinematic parameters
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