
Master Thesis in Computer Engineering

Real-time multi-camera 3D human pose estimation
on edge devices

Master Candidate Supervisor

Emanuele Francesco Savoia Prof. Stefano Ghidoni
Student ID 2088248 University of Padova

Co-supervisor

Dott. Matteo Terreran
University of Padova

Academic Year
2023/2024

Abstract

Human pose estimation is the process that aims to locate body parts and build
human body representations from input data such as images and video. It is typ-
ically a computationally difficult operation, where, in order to achieve accurate
results, the use of expensive GPUs is mandatory. Nowadays new use cases, such
as augmented reality, demand to make this kind of operations viable on mobile
and edge devices and research in other fields, such as human-robot collabora-
tion, is leaning towards building portable and inexpensive solutions. This thesis
describes the design and prototyping process of a real-time human pose estima-
tion network made using edge devices, building a network using only Raspberry
Pi boards for image processing, exploiting the TensorFlow lite (TFlite) library
for running the necessary Deep Convolutional Neural Network (DCNN) com-
ponents and utilizing the Robot Operating System (ROS2) framework to build
a fast, real-time system. Additionally some techniques for creating DCNN that
are capable of real-time execution will also be discussed and evaluated in order
to try and surpass the hardware limitations imposed by the setup. A solution
that archives real-time results with good accuracy is obtained with this work.

Contents

List of Figures xi

List of Tables xiii

List of Code Snippets xv

List of Acronyms xvii

1 Introduction 1
1.1 Use cases for Human Pose Estimation 1
1.2 The objective . 2

2 Human Pose Estimation 5
2.1 Evolution of human representations 5

2.1.1 Pictorial Structures and Flexible Mixture-of-Parts 5
2.1.2 Skeletons . 6

2.2 Approaches . 7
2.2.1 Single-person and multi-person 7
2.2.2 Type of representation . 9
2.2.3 Regression and heatmap methods 10

2.3 Challenges . 12
2.3.1 Occlusion . 12
2.3.2 Unusual poses . 13
2.3.3 Depth ambiguities . 13

2.4 Metrics . 15
2.5 Recent advancements and trends 16
2.6 Edge devices and real time HPE . 17

v

CONTENTS

3 Design choices for multi-camera HPE 19
3.1 Hardware choices . 19
3.2 Frameworks choices . 22
3.3 Neural networks used . 24

3.3.1 Human pose estimation . 24
3.3.2 People detector . 24

3.4 The triangulation . 25
3.5 Neural network optimizations . 27

3.5.1 MeTRAbs lite . 27
3.5.2 Knowledge distillation . 27

4 The network architecture 29
4.1 General architecture . 29
4.2 The slave node . 31

4.2.1 Startup . 32
4.2.2 Callback cycle . 32
4.2.3 The worker node . 33
4.2.4 The calibration service . 34
4.2.5 The loop node . 34

4.3 The master node single . 36
4.3.1 Slave scanning and callbacks 36
4.3.2 The visualizer node . 37
4.3.3 The master loop thread . 38

4.4 Iterations . 38

5 Experiments 41
5.1 Experiments . 41
5.2 Results . 43

6 Conclusions and Future Works 47
6.1 Conclusions . 47
6.2 Future works . 48

7 Appendix 49
7.1 Messages and services . 49

7.1.1 Estimate service . 49
7.1.2 Detection . 49

vi

CONTENTS

7.1.3 Box . 50
7.1.4 Hpe2d . 50
7.1.5 Joints2d . 50
7.1.6 Slave . 51
7.1.7 Calibration service . 51
7.1.8 IntrinsicParams . 51

References 53

vii

List of Figures

2.1 Pictorial Structures example . 6
2.2 Flexible Mixture-of-Parts example 6
2.3 Different skeleton models and MeTRAbs autoencoder solution . . 7
2.4 Top-down and bottom-up approaches 9
2.5 2D and 3D example (made with MeTRAbs DCNN) 11
2.6 HUPOR occlusion training model 12
2.7 Unusual pose example . 13
2.8 Depth ambiguity example . 14
2.9 LocLLM example . 16
2.10 Generative adversarial networks for 3D lifting 18

3.1 Raspberry pi 4 and 5 . 21
3.2 Nvidia Jetson Nano . 21
3.3 Supported TFlite operations diagram 27
3.4 Knowledge Distillation example . 28

4.1 Hardware diagram . 30
4.2 Software diagram . 31
4.3 Slave node diagram . 32
4.4 Master node diagram . 36
4.5 Visualizer output example . 37
4.6 Example 3D skeleton obtained by the master node 38

5.1 Skeleton from MeTRAbs(red) and our skeleton (green) during test 4 42

xi

List of Tables

3.1 Performance and cost of different boards 21

5.1 Experiment parameters . 42
5.2 Experiment accuracy results . 43
5.3 Experiment performance results (FPS) 44

xiii

List of Code Snippets

4.1 Old slave spin . 35
4.2 New slave spin . 35
7.1 Estimate.srv . 49
7.2 Detection.msg . 49
7.3 Box.msg . 50
7.4 Hpe2d.msg . 50
7.5 Joints2d.msg . 50
7.6 Slave.msg . 51
7.7 Calibration.srv . 51
7.8 Calibration.msg . 51
7.9 IntrinsicParams.msg . 51

xv

List of Acronyms

HPE Human Pose Estimation

DCNN Deep Convolutional Neural Network

ROS2 Robot Operating System

TFlite TensorFlow lite

PCK Percentage of Correct Keypoints

PCP Percentage of Correct Parts

MPJME Mean Per Joint Position Error

AP Average Precision

AR Average Recall

SOTA state-of-the-art

LLM Large Language Model

IMU Inertia Measurement Unit

xvii

Glossary

bounding box A set X,Y,W,H representing the coordinates and dimensions of
the smallest box containing the desired object. 8, 24, 33, 34, 50

future An object that provides access to results of asynchronous operations.
33–35, 39

skeleton An ordered vector representing the 2D or 3D joints of a human in
space. 1, 3, 5–7, 25, 34, 39

xix

1
Introduction

1.1 Use cases for Human Pose Estimation

Human Pose Estimation (HPE) is the process that aims to locate body parts
and build human body representations (usually represented in the form of
skeletons) from input data such as images and video [28]. HPE can vary widely
in form, from 2D or 3D representations to single-person or multi-person models
each bringing it’s costs and benefits trade off in terms of accuracy and real-
time capabilities. As of today HPE is a tool that can be used in many different
scenarios, each with different requirements and challenges.

The most promising application area is human-robot collaboration where, in
order to make human operators and robots interact seamlessly, an accurate 3D
real-time representation of the humans inside and near the robot workspace is
necessary. Nowadays, this type of collaboration is usually made possible by
utilizing a series of expensive high performance setups that relies on powerful
GPUs to run inferences on state-of-the-art (SOTA) DCNNs. Tackling this prob-
lem using integrated boards with limited resources could open up new uses of
this technologies even for applications with tighter budgets.

One of the newer applications of this technology is the augmented (and vir-
tual) reality. This particular field aims at seamlessly fuse the real world with
the digital by utilizing devices that can sense the real world and reproduce it
on screen for the user with the addition of some new assets and, in some cases,

1

1.2. THE OBJECTIVE

digital avatars representing real people visible to the user. For this application
real-time capabilities are essentials in order to enhance the user experience and
portability is becoming more and more important as the target platform of this
field is gradually becoming the smartphone.

Other common applications of this field are found in fitness, where smart-
phone applications are being developed for evaluating one’s mistakes or overall
level when practicing sports, general healthcare, where the assessment of the
physical capabilities of a patient is needed, and animation, where older mecha-
nisms to obtain a reconstruction of the human body (such as reflective markers
and Inertia Measurement Unit (IMU))

1.2 The objective

The current objective of this project is to prototype a system that can perform
real-time HPE on edge devices and that could be used to perform human-robot
collaboration or other similar tasks. In order to understand how to accomplish
this objective it is important to know the main challenges of this endeavor.

3D: in order to be able to use this system with robots in the real world the
human representation used in this project must account for three-dimensional
positions of the joints. Unfortunately this kind of task is extremely computation-
ally intensive when it’s performed on single images, in order to obtain reliable
3D data another solution must be found. Ideally a solution where inferences
are computed in 2D and then the 3D solution is achieved would be better for
dealing with low-power devices.

Occlusion: a system that is used in dangerous tasks, such as human-robot
collaboration, needs to be resistant to occlusions. A single camera system would
surely not be enough, especially when the workspace is occupied by moving
objects that can completely occlude people in the frame.

A multi-camera setup would alleviate both of these problems since it is possi-
ble to obtain the 3D joint locations data from multiple 2D estimations performed
on images obtained from different views and, thanks to the multiple point of
views, the probability of occlusion is extremely reduced.

2

CHAPTER 1. INTRODUCTION

Knowing this, it is possible to affirm that this work aims to study HPE and
it’s possible applications in real-time embedded systems, the objective of the
proposed prototype will be to generate the 3D skeleton of a single person. In
order to reach this objective a network of Raspberry Pis with associated cameras
will be employed to acquire 2D image data and to run the necessary neural
networks. By leveraging edge devices as primary processing devices, this work
aims to demonstrate that HPE can be executed effectively even on a low budget,
possibly making this kind of technology more accessible removing the high-
performance hardware limitations.

3

2
Human Pose Estimation

2.1 Evolution of human representations

In this section some of the methods [9] used for representing human poses
are exposed and discussed. While most of the current research is focused on
skeletons, some of these unconventional methods have been used and researched
as late as 2016.

2.1.1 Pictorial Structures and Flexible Mixture-of-Parts

The pictorial structures, method that was first proposed in [3], consists in rep-
resenting the human body as a set of parts organized in a deformable structure
[10] where each part is connected to it’s neighbors in a tree-like fashion by the
use of virtual springs in order to encode spatial relationships between parts.
Each part is represented using a set of features that are matched against the
input image and the spatial encoding in order to retrieve the 2D positions of the
body parts. This model used to be very efficient, but unfortunately it proved
to be weak to occlusion and diverse poses, leading to the development of new
more robust models.

The Flexible Mixture-of-Parts method builds on the concepts of the previous
one, representing the human body by transforming parts into mixtures. These
objects were made to represent the sets of different possible configurations that
could be found in a body part in order to be able to represent it in many different

5

2.1. EVOLUTION OF HUMAN REPRESENTATIONS

Figure 2.1: Pictorial Structures example

configurations and from different views [21]. This method was an improvement
on it’s predecessor, but challenges due to occlusion and extreme poses still
persisted.

Figure 2.2: Flexible Mixture-of-Parts example

2.1.2 Skeletons

The skeleton is the preferred way to represent a human pose at this time. There
are many different conventions used, but all of them can be defined as an ordered
set of vectors where each vector represents a specific body joint. The extreme
variety in skeleton conventions adds some difficulties when dealing with DCNN
training, since usually one must be chosen as the network representation and
each dataset provides a very small variety of annotation conventions to choose
from. Fortunately, if different datasets are needed during training, the authors
of the MeTRAbs DCNN published a promising paper [16] that details the steps
they used to train their network to output multiple different skeleton formats
for the same detection using a geometry-aware autoencoder 2.3.

6

CHAPTER 2. HUMAN POSE ESTIMATION

Figure 2.3: Different skeleton models and MeTRAbs autoencoder solution

2.2 Approaches

This section provides an overview of the key differences in approaches com-
monly used in modern skeleton-based HPE applications. HPE evolved a lot
since it’s inception, in the beginning the field was dominated by approaches
leveraging image features, while today’s standards for performing HPE are
DCNNs.

State of the art DCNNs are fast, versatile and resistant to most of the old
methods’ weaknesses such as strange poses and light occlusions. These new
advancements are possible due to the sheer volume of data that is now available
to research in the form of public data (COCO [11], H3.6M [7], etc...) and due to
the vast improvements in computational power in the latest years.

There are many differences among different HPE DCNNs, but most of today’s
methods are typically categorized based on three main variables: the maximum
number of subjects that can be in the input image, the dimensions of the joint
vector representations and the method used to identify joints.

2.2.1 Single-person and multi-person

Different DCNNs are suited to different tasks, single person approaches the
HPE problem by assuming that only one person is in the image frame at the time
of inference. This leads to higher efficiency and speeds than it’s counterpart,

7

2.2. APPROACHES

but this approach fails to maintain a high accuracy when more people enter the
frame since the network can’t usually distinguish different subjects. This kind
of approach can be easily combined with a people detector (an object detection
model trained to estimate the bounding boxes of people [29]) to generate a
top-down multi-person HPE pipeline. Today the research on this side of HPE
is currently swaying towards lightning-fast networks designed to run on low-
power devices with projects such as RTMPose [8] while research on multi-person
HPE is focusing on more complex networks that exploit new architectures such
as transformers [26].

Multi person DCNNs, on the other hand, are built for the purpose of detect-
ing multiple people in one frame. This more difficult task is often archived at
the expense of network complexity, real-time performance and accuracy when
handling overlaps. The added complexity is often handled with two different
approaches to the problem: top-down and bottom-up. While top-down meth-
ods prioritize detecting individual persons first and then estimating their joints’
poses, bottom-up approaches invert this order by detecting all keypoints first
and grouping them into individual poses afterward.

The top down methods discover the people in the image first, typically framing
them in bounding boxes with specially trained object detectors [29] designed to
detect people and passing images cropped accordingly as inputs for the HPE
model that will estimate a set of keypoints in each bounding box. The main
advantage of this approach is that, since bounding boxes are formed around
people, it is possible to "zoom in" while evaluating the HPE inference since the
DCNN input is usually of fixed size and fitting a smaller cropped area in the
same number of pixels would for sure let the DCNN work with finer details.
This opportunity raises the overall accuracy of this methods and grants them
an advantage when dealing with overlapping individuals, while the nature of
performing one HPE invocation for each person in the image makes the speed
performance of this approach directly dependent on the number of people.
In image 2.4 it is easy to see how, by combining the results of the inferences
performed by the HPE network, the multi-person output is obtained.

The bottom-up approach, on the other hand, is composed of two main steps as
shown in figure 2.4. The first part of the pipeline is a body joint detector and it’s

8

CHAPTER 2. HUMAN POSE ESTIMATION

purpose is to predict all the body joint candidates in the input image, while the
second part is a body part association mechanism that assigns each predicted
joint to it’s person’s set. While the first task is usually approached with DCNNs
the second can be solved by using other algorithms or methodologies such as
Integer Linear Programming for DeepCut [15]. This approach is much faster
than it’s counterpart (especially when a large number of people is involved in
the detection), but it lacks in accuracy since the precision is directly tied to how
well the persons in the frame are distinguishable in an usually down scaled
version of the original input image frame.

Figure 2.4: Top-down and bottom-up approaches

2.2.2 Type of representation

The first thing that comes to mind when thinking about HPE is the fact that,
despite having two dimensional data such as images as input, some algorithms
and DCNNs are able to reconstruct the three dimensional pose of the humans
in the camera frame while some others are not.

2D HPE focuses on retrieving the joints information with respect to the image
frame. These methods are usually much faster than 3D ones and much less
complex, but they lack usability in tasks requiring depth information. Some-
times these methods can be used as a stepping stone to get to the 3D poses with
techniques such as 2D to 3D lifting or by leveraging multi-camera setups.

9

2.2. APPROACHES

While most of the current approaches to HPE focus on single camera infer-
ence, some research revolves around new ways to improve multi-camera setups.
This approach grants some robustness when dealing with occlusions and other
possible challenges since even if, for example, a person is occluded in one cam-
era’s frame, it probably is visible enough in some others, so that it is possible
to weight the single camera results and get an overall better HPE result. Multi-
camera setup are commonly used to perform the 3D triangulation of the HPE
results from 2D (or 3D) skeletons generated by multiple cameras and perspec-
tives. Even though most multi-camera setups are just composed by a set of
DCNNs that operates on a single image and some kind of algorithm that gen-
erates a final prediction by combining the single DCNNs’ estimates, some other
networks like VoxelPose [19] use directly the multiple views as their input and
directly reasons in 3D space.

Single-image 3D HPE, on the other hand, is slower and more computationally
demanding than it’s counterparts since, on top of the 2D approach’s workload,
there must be mechanisms to extract the depth information from a 2D image
in order to pinpoint 3D joint coordinates. These mechanism can be built by
leveraging hardware such as depth cameras or by adding additional compu-
tational complexity to the underlying DCNN. Depth cameras are sometimes
used in order to gain some additional information to generate a better 3D pre-
diction and to better separate the people from the background, unfortunately
this approach has some great limitations. Since depth cameras are usually very
sensitive to sunlight, this approach is usually only used for indoor estimation
and, even indoors, depth sensors produce lots of noise making them unreliable
for critical applications. The main advantages of these methods is the real-world
coordinates output. These are essential for tasks involving interaction between
humans and machines and to find and suppress implausible poses when preci-
sion is needed.

2.2.3 Regression and heatmap methods

When dealing with joint representation, it is important to distinguish between
the two main ways to actually extract keypoints from an image: regression and
heatmap-based methods.

10

CHAPTER 2. HUMAN POSE ESTIMATION

Figure 2.5: 2D and 3D example (made with MeTRAbs DCNN)

Regression-based methods are simpler than the heatmap-based ones as they
are more straightforward. These methods directly predict the joint coordinates
from images without intermediate steps. This usually means that they are faster
than their counterparts and are better suited for real-time tasks. An example of
this approach can be found in the DCNN used in the ROS2 network prototype
that will be introduced in the following chapters.

Heatmap-based methods, on the other hand, add an additional step with
respect to the regression-based ones. Instead of estimating directly the joint
coordinates these methods add an intermediate step where 2D Gaussian kernels
are generated on each join location. These heatmaps represent the probability
that the corresponding keypoint lies in a certain position and their ground-
truths are generated by centering 2D Gaussians at the keypoint ground truth
location [28].

These methods are commonly used when performing multi-person bottom-
up HPE in order to estimate the single joint coordinates before performing body
part association like in MeTRAbs [17].

11

2.3. CHALLENGES

2.3 Challenges

This section will expose some of the most relevant challenges that arises
when dealing with HPE and some possible ways used to overcome them.

2.3.1 Occlusion

Occlusion is one of the most well-known challenge in the field and it refers
to the scenario where some parts of the person on which HPE needs to be
performed is not entirely visible from one or more points of view (cameras).
This has some notable impacts in single-camera scenarios as it is impossible
to know for sure the positions of the occluded joints, but some networks like
"HUPOR" [12] are built from the ground up with the intention of becoming
resistant to occlusions by correctly guessing the poses of heavily occluded joints
with specific mechanisms and training. In this case the network, after finding
all the visible keypoints, performs an "occluded keypoints reasoning" step that
infers the occluded keypoints’ heatmap from visible cues. This step’s training is
done by utilizing another network to predict the occluded keypoints’ map from
the dataset’s keypoints and using that heatmap as the ground truth for training
this step. On the other hand, this phenomenon is more manageable in a multi-
camera scenario where models can be trained to assign lower confidence scores
to uncertain joints and a voting or weight system can be implemented in order
to try and overcome the occlusions in some frames (note that if the same joint
is occluded in every frame the problem still persist). This is how this particular
problem was managed in this thesis work.

Figure 2.6: HUPOR occlusion training model

12

CHAPTER 2. HUMAN POSE ESTIMATION

2.3.2 Unusual poses

Another great challenge when dealing with HPE is the difficulty for most
models to correctly estimate "unusual" poses. These poses often include upside-
down people or convoluted positions derived from yoga or martial arts. This
difficulty is mostly due to the nature of the datasets used during training since
most of the images and videos used contain people performing common actions
(such as standing, sitting, walking ...) and lack some proper examples for
other kinds of actions such as fitness related moves (handstands, yoga poses,
etc...). Some particular networks are trained to cope with some unusual poses
by modifying the dataset, for example the movenet network by google that was
used in this work is trained with "fitness" related poses, making it less susceptible
to this problem.

Figure 2.7: Unusual pose example

2.3.3 Depth ambiguities

In 3D HPE the image medium inherently lacks depth information and the
same 2D pose can be represented by a set of possible 3D poses [25]. These
conditions lead to a field of research in HPE that deals with finding the best
methods to find the correct 3D interpretations of 2D poses. As of today various

13

2.3. CHALLENGES

of these methods are used for dealing with this particular problem, some of the
most relevant are temporal and kinematic constraints.

Temporal Consistency Constraints: these methods involve the use of videos
because of the additional time information. This additional information is useful
to the DCNNs since the context information gained from close frames can give
clues about the depth information.

Kinematic Constraints: these methods model the human body as a set of
restrictions (bone lengths, joint angles, etc...) in order to easily suppress or
penalize impossible or implausible poses.

Figure 2.8: Depth ambiguity example

14

CHAPTER 2. HUMAN POSE ESTIMATION

2.4 Metrics

In the deep learning metrics are essentials to quantify networks’ performance,
in the HPE field these are some of the most used metric used to evaluate DCNNs
[2]:

Percentage of Correct Parts (PCP): this metric measures the localization accu-
racy for limbs. A limb is deemed correctly localized if it’s two endpoints (joints)
are within a certain threshold from the ground truth’s endpoints. The most
commonly used threshold is 50% of the total bone length, but other thresholds
dependent on other variables (bounding boxes, pixel count, etc...) might be
used.

Percentage of Correct Keypoints (PCK): this metric is very similar to PCP,
but it measures the accuracy for joint estimates instead of the whole limb. In
this case a joint estimation is deemed correct if it falls within a threshold from
it’s ground truth. This threshold can also be calculated in different ways based
on the same variables used for PCP.

Mean Per Joint Position Error (MPJME): this is the most widely used metric
to evaluate 3D HPE performance. It represents the average euclidean distance
of a computed joint 𝐽𝑖 to it’s ground truth 𝐽∗

𝐼
.

𝑀𝑃𝐽𝑀𝐸 =
1
𝑁

𝑁∑︂
𝑖=1

|| 𝐽𝑖 − 𝐽∗𝑖 || (2.1)

Average Precision (AP) and Average Recall (AR): when computing these
common metrics, a joint prediction that is defined as "true positive" falls within
a certain threshold from the ground truth (as in PCK), this means of course
that a prediction that is outside this threshold is a "true negative" while a "false
positive" is any unassigned prediction.

For evaluating the ROS2 network the PCK and MPJME metrics were used.

15

2.5. RECENT ADVANCEMENTS AND TRENDS

2.5 Recent advancements and trends

In the recent years many new innovative ideas and SOTA architectures that can
benefit overall HPE were introduced. Among these, we can, for sure, see a rise in
transformer-based architectures that can easily capture temporal relationships
across the input frames as well as the actual human body joints, generating an
overall smoother detection. This architecture was first applied in the PoseFormer
[27] network and then expanded in it’s second iteration [26].

With the current success of Large Language Model (LLM) architectures some
researches have begun studying their application to HPE [14] by integrating
their semantic understanding with geometric reasoning. An example of this
new research field can be seen in SCALE-Pose [13], a model that leverages
both the previously disused transformer based architecture and the newer LLM
addition. Another interesting approach to LLM based estimation can be found
in LocLLM [20]. This model employs the LLM to generate never-before-seen
keypoints by using their description as input along as the image where to locate
them.

Figure 2.9: LocLLM example

16

CHAPTER 2. HUMAN POSE ESTIMATION

2.6 Edge devices and real time HPE

SOTA architectures, exposed in the previous section are surely too compu-
tationally demanding for working on mobile or edge devices and, since as of
today real-time mobile HPE is becoming increasingly important for consumer
use, research on this topic is rapidly growing. The key challenge in this field is
designing models that are both fast, accurate and light enough so that they are
able to run with limited resources available maintaining a good frame rate.

An example of these novel architectures is MovePose [22], a MobileNet [5]
based architecture developed specifically for edge devices. This particular
DCNN produces results with accuracy comparable to current SOTA architec-
tures in a fraction of the time. This feat is made possible by using DARK [23],
a model-agnostic method that improves precision when extracting keypoints
from a heatmap. Another interesting approach to creating DCNNs is the one
proposed with MoVNect [6]. In this paper the researchers create a light and fast
network by performing knowledge-distillation with a bigger pretrained network
as teacher. In order to obtain this result researchers created a novel mimicry loss
function that encapsulates both the heatmap and keypoints losses with respect
to both teacher and ground-truth.

Another approach to this problem would be designing algorithms outside
of the main HPE DCNNs and using them in order to boost performance. In
[18] the authors explain how they achieved a real-time 3D HPE pipeline by
utilizing TFlite optimizations and generative adversarial networks to train the
2D to 3D lifting network used. While the optimizations are pretty common
in this field, the idea of utilizing generative adversarial networks to boost the
performance of the lifting process is extremely innovative. This approach works
by training a network to distinguish between real and generated 2D poses and
by using it’s output as the loss function for training the depth generator that
generates z coordinates with respect to the camera frame for every 2D keypoint
detected by the underlying HPE DCNN, since the "generated" that are fed to the
discriminator are 2D projections of the rotated 3D poses generated by the depth
generator. This approach reaches real time with up to 39 FPS on the Google
Coral board for it’s single-person single-image 3D HPE pipeline, unfortunately
the paper’s authors don’t provide accuracy measures but they do provide some

17

2.6. EDGE DEVICES AND REAL TIME HPE

impressive images taken from the pipeline output 2.10.

Figure 2.10: Generative adversarial networks for 3D lifting

Another interesting proposal would be to find ways to skip unnecessary HPE
inferences in order to use less resources and gain better frame rates. Researchers
that worked on MobiPose [24] proposed to use motion vectors to track persons
across frames. This approach makes sure that the underlying DCNN inference
isn’t necessary for every frame, reducing the average time between frames by
leveraging the faster nature of motion-vector-based tracking. This approach
results in up to 80 FPS on mobile GPUs while maintaining over 80% accuracy.

18

3
Design choices for multi-camera HPE

3.1 Hardware choices

Selecting the right hardware when creating AI powered projects is a critical
step in development, especially for single board computers and other edge
devices. An uninformed choice could spell the end for a project if the maintainer
is not adequately prepared, that is why, in order to build the edge network, these
constraints were formulated for the hardware selection:

Budget: it was decided to focus on edge devices in order to provide some
insights on performing HPE even on a tight budget, this is why it was decided
to spend as little as possible when selecting the main computing units for this
project.

No powerful GPU: the first constraint was to not use a device with a powerful
dedicated GPU. Even if as of today GPUs are almost ubiquitous in modern
devices it was decided not to use any in order to make this endeavor a true
challenge and test the limits of CPU-only and low-power-GPU DCNN inference.

Multi core CPU: in order to try and archive real time with little amounts of
GPU parallelization (or without it in it’s entirety), it is necessary to be equipped
with a multi core CPU, in order to be able to address communication between
devices and inferences in parallel. Of course a high clock speed is a nice bonus

19

3.1. HARDWARE CHOICES

to consider when selecting a device for this type of projects and it was taken into
account.

Maintainability: when selecting a device it was crucial to have an easily
maintainable device, possibly with a known system on board in order to reduce
the configuration time to the bare minimum and to quickly recover when some
software inevitably fails.

The Raspberry platform was chosen as the core of this project because of it’s
low cost compared to it’s computational power and because it runs on Linux
(more specifically Ubuntu 24.04 since this summer). It was chosen to use a
set made by Raspberry Pi 4 and Pi 5 in order to evaluate the differences in
performance between the two different models. Both versions of the boards are
equipped with 8 GB of RAM and the server version of Ubuntu 24.04 LTS (in
order to reduce unnecessary software and try to improve performance) as well
as 64 GB of SD memory and they are connected to a RealSense Stereo Camera
D455. Unfortunately, despite our best efforts, it was not possible to use the
dedicated GPU in order to speed up DCNNs computations on the boards for
unknown reasons related to OpenCL and graphic drivers.

Another option that was discussed was the NVIDIA Jetson Nano board that
is currently widely used for low-power AI applications since it possesses a very
powerful on board GPU. This, of course makes this board and it’s predecessors
widely used in edge device AI research, but it falls out of the scope of this thesis
project by having such powerful hardware. A similar product sometimes used
in edge AI is google’s Coral board, but for the same reasons as the Jetson it falls
out of the scope of this work and was not used in the end. It is worth to know
that the Coral USB accelerator is another powerful tool that can be used in order
to perform DCNN inference on most edge devices. This could be explored in
future works.

The last hardware piece that was considered in the final months of this work
is the new Raspberry AI camera. Unfortunately it was not possible to use it in
our tests, but it would for sure be a fine addition for future developments. This
new piece of technology holds a powerful AI accelerator inside that directly runs

20

CHAPTER 3. DESIGN CHOICES FOR MULTI-CAMERA HPE

various DCNNs out of the box, such as one made for people detection and one
for HPE, both of these would be very useful for the project.

Figure 3.1: Raspberry pi 4 and 5

Figure 3.2: Nvidia Jetson Nano

Feature Raspberry Pi 4 Raspberry Pi 5 NVIDIA Jetson Nano
GPU speed 32 GFLOPS 51 GFLOPS 512 GFLOPS
CPU cores 4 4 4
CPU speed 1.8 GHz 2.4 GHz 1.43 GHz

Price 80=C 100=C 250=C +

Table 3.1: Performance and cost of different boards

21

3.2. FRAMEWORKS CHOICES

3.2 Frameworks choices

In this project we relied on the ROS2 framework (more specifically the jammy
release) for handling the task scheduling and communication across various
systems. This choice was made because of many factors:

Compatibility: this piece of software is out of the box compatible with Ubuntu
24.10 LTS and, thanks to it’s nature, it provides easy scalability and cross-
platform compatibility. The compatibility issue is mentioned because prior
to the release of Ubuntu 24.10 using ROS2 on a Raspberry Pi 5 was a particularly
"hacky" and tedious task since often critical required packages were missing
from the Raspberry OS’ packages list, while it was the only possible OS choice
for the time and the only way to install it natively was a very slow build process
that could take up to 3 or 4 hours and fail at any time for missing dependencies.

Real-time capability: ROS2 is often used in real-time applications, such as
robot navigation and control, this is because it’s communication systems (such
as messages, services and actions) are fast and reliable and most of all highly
configurable and adaptable to new situations. In this project, messages and
asynchronous services played a crucial role in establishing a fast and efficient
communication network.

Data acquisition and visualization: the rviz2 tool provide a great interface
for visualizing 2D and 3D data, such as camera feed and 3D markers posi-
tions and, thanks to the bag package recording data for testing new program
pieces becomes trivial and this greatly speeds up development and helps with
qualitative and quantitative analysis.

Community and experience: of course previous experience with the ROS1
framework proved to be essential for swift development and the community
forums are of great help, especially since the overall documentation is often
lacking and overlooks some crucial details.

22

CHAPTER 3. DESIGN CHOICES FOR MULTI-CAMERA HPE

The TFlite 1 framework was used for running the DCNN inferences efficiently
on the Raspberry Pi boards. This choice was made despite the current limita-
tions on supported operations imposed by the TFlite library because of these
advantages:

Edge optimizations: the shared C++ libraries can be compiled directly on
ARM boards with a great deal of optimizations with respect to the base version
of TensorFlow. Some of these optimizations are given by delegates are optimized
for a different platform (or set of platforms), the GPU delegate on the other hand
supports offloading computations to on board GPUs on most devices. TFlite
differs from it’s parent library TensorFlow also for it’s model representation: as
a matter of fact TFlite utilizes static graph execution, this feature reduces the
overheads due to changes in the DCNN at runtime by sacrificing some versatility.
In this work the XNNPACK delegate was used for CPU inferences, while the
GPU delegate is available to be used on other machines it does not work with
the current Raspberry setup as some drivers are not working as intended.

Model optimizations: the framework provides many different options for
optimizing existing DCNNs with operations, such as quantization and pruning.

Compatibility: the TFlite framework supports converting models to the
".tflite" format from various different file types other than TensorFlow, such
as PyTorch and the interpreter is available for multiple different embedded de-
vices, such as single board Linux computers like the Raspberry Pi, but also
microcontrollers such as Arduino.

1Please note that at the time of writing the TFlite project is migrating to LiteRT, this means
that the installation guides provided in the project repository might not be up to date in the
future.

23

3.3. NEURAL NETWORKS USED

3.3 Neural networks used

In this project two main networks were used: the first one handles single
person 2D HPE and the other handles people detection. This section briefly
discusses the two DCNNs.

3.3.1 Human pose estimation

The DCNNs that were chosen to perform 2D HPE from the worker node are
derived from google’s MobileNet [5] family and are called MoveNet. These
models are built to be used with the TFlite framework for tasks on edge devices
and are designed to be robust when detecting fast or difficult movements and
to reject people that are closer to the frame border, making them perfect to use
concurrently with the detector DCNN since it will better reject keypoints on the
bounding boxes’ edge that probably belong to another person.

Two versions of this network were used: thunder and lightning. Both versions
are quantized and they differ in input size, lightning is the faster version of the
model, built for performance-critical applications with a 192x192 input size,
while thunder was made for obtaining higher accuracy at the cost of some
speed with it’s 224x244 input size. Both networks are built for single-person
HPE, but a multi-person variant exists, even if it was not tested in this project.

3.3.2 People detector

The network used for people detection is based on the YOLO architecture
and it was provided by as a pre-trained TFlite model by a GitHub repository
DoranLyong/yolov4-tiny-tflite-for-person-detection. The YOLO architecture [1] was
chosen as it is one of the fastest available for this kind of tasks for state of the art
results. While the model utilized is based on YOLOv4, a possible improvement
for this project would be building a people detector with a newer (and faster)
YOLO version as the base for building the network.

24

CHAPTER 3. DESIGN CHOICES FOR MULTI-CAMERA HPE

3.4 The triangulation

In order to accurately estimate the real-world 3D joint coordinates from the
2D ones obtained by DCNN inference the triangulation algorithm proposed in
[4] was used. This method consists on solving a simple weighted least square
problem of form

𝑥 𝑗 = [𝐴𝑇
𝑗𝑊𝑗𝐴 𝑗]−1𝐴

𝑇
𝑗𝑊𝑗𝐵 𝑗 (3.1)

for each joint in the HPE model’s skeleton.

The A and B matrices in the previous equations are directly derived from the
camera projection matrices

𝑀𝑐 = 𝐼𝑐𝑊𝑇
−1
𝐶𝑐 (3.2)

that are obtained by the calibration information given by the slave nodes’
calibration service since 𝐼𝑐 and 𝑊𝑇

−1
𝐶𝑐 are respectively the intrinsic matrix and the

extrinsic matrix of the 𝑐-th camera.

Assuming that the vector 𝑝𝑐,𝑗 represents the coordinates of the j-th joint on
the c-th camera’s frame and that 𝑚𝑖

(𝑘,ℎ) represents the element of matrix 𝑀𝑖 at
row k and column h, then the matrices 𝐴 𝑗 and 𝐵 𝑗 will be of form

𝐴 𝑗 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑝1, 𝑗 (1)(𝑚1(3,1) − 𝑚1(1,1)) 𝑝1, 𝑗 (1)(𝑚1(3,2) − 𝑚1(1,2)) 𝑝1, 𝑗 (1)(𝑚1(3,3) − 𝑚1(1,3))
𝑝1, 𝑗 (2)(𝑚1(3,1) − 𝑚1(2,1)) 𝑝1, 𝑗 (2)(𝑚1(3,2) − 𝑚1(2,2)) 𝑝1, 𝑗 (2)(𝑚1(3,3) − 𝑚1(2,3))

...
...

...

𝑝𝑖 , 𝑗 ()(𝑚𝑖
(3,1) − 𝑚𝑖

(1,1)) 𝑝𝑖 , 𝑗 (1)(𝑚𝑖
(3,2) − 𝑚𝑖

(1,2)) 𝑝𝑖 , 𝑗 (1)(𝑚𝑖
(3,3) − 𝑚𝑖

(1,3))
𝑝𝑖 , 𝑗 (2)(𝑚𝑖

(3,1) − 𝑚𝑖
(2,1)) 𝑝𝑖 , 𝑗 (2)(𝑚𝑖

(3,2) − 𝑚𝑖
(2,2)) 𝑝𝑖 , 𝑗 (2)(𝑚𝑖

(3,3) − 𝑚𝑖
(2,3))

...
...

...

𝑝𝑐,𝑗 (1)(𝑚𝑐
(3,1) − 𝑚𝑐

(1,1)) 𝑝𝑐,𝑗 (1)(𝑚𝑐
(3,2) − 𝑚𝑐

(1,2)) 𝑝𝑐,𝑗 (1)(𝑚𝑐
(3,3) − 𝑚𝑐

(1,3))
𝑝𝑐,𝑗 (2)(𝑚𝑐

(3,1) − 𝑚𝑐
(2,1)) 𝑝𝑐,𝑗 (2)(𝑚𝑐

(3,2) − 𝑚𝑐
(2,2)) 𝑝𝑐,𝑗 (2)(𝑚𝑐

(3,3) − 𝑚𝑐
(2,3))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.3)

25

3.4. THE TRIANGULATION

𝐵 𝑗 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑝
(1)
1, 𝑗(𝑚

(1,4)
1 − 𝑚1(3, 4))

𝑝
(2)
1, 𝑗(𝑚

(2,4)
1 − 𝑚1(3, 4))

...

𝑝
(1)
𝑖 , 𝑗
(𝑚(1,4)

𝑖
− 𝑚

(3,4)
𝑖

)
𝑝
(2)
𝑖 , 𝑗
(𝑚(2,4)

𝑖
− 𝑚

(3,4)
𝑖

)
...

𝑝
(1)
𝑐,𝑗
(𝑚(1,4)

𝑐 − 𝑚
(3,4)
𝑐)

𝑝
(2)
𝑐,𝑗
(𝑚(2,4)

𝑐 − 𝑚
(3,4)
𝑐)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.4)

The weight matrix 𝑊𝑗 is instead a square diagonal matrix of form

𝑊𝑗 = 𝑑𝑖𝑎𝑔

(︄[︄
𝑤1, 𝑗 0

0 𝑤1, 𝑗

]︄
, . . . ,

[︄
𝑤𝑖 , 𝑗 0
0 𝑤𝑖 , 𝑗

]︄
, . . . ,

[︄
𝑤𝑐,𝑗 0

0 𝑤𝑐,𝑗

]︄)︄
(3.5)

where 𝑤𝑐,𝑗 is the weight associated to the camera 𝑐 and joint 𝑗. This equation
represents the way of calculating this value proposed by the [4] paper’s authors

𝑤𝑐,𝑗 = 𝑤𝑠
𝑐,𝑗

(︄
𝑤𝑜

𝑐,𝑗
+ 𝑤𝑑

𝑐,𝑗

2

)︄
(3.6)

In this equation 𝑤𝑠
𝑐,𝑗

represents the square of the considered joint’s confi-
dence score given with respect to camera 𝑐’s perspective, while 𝑤𝑑

𝑐,𝑗
weights the

distance of the joint’s distance to the same camera. The last value is the orthogo-
nality index 𝑤𝑜

𝑐,𝑗
and it is used to weight the orientation of the body with respect

to the camera frame, giving a higher weight to 2D joints generated by cameras
that the person is directly facing.

In our implementation we used a sightly different equation to generate
weights:

𝑤𝑐,𝑗 = 𝑤𝑠
𝑐,𝑗 ∗ 𝑤𝑐

𝑐,𝑗 (3.7)

The only variations is that the orthogonality index as proposed in the paper
has been removed since, for the time being, records of the skeletons are not
kept by the system. Following the insights proposed by the paper’s authors low
confidences (< 0.4) further penalize the weight assignments by squaring them,
but not removing them totally as it was proposed.

26

CHAPTER 3. DESIGN CHOICES FOR MULTI-CAMERA HPE

3.5 Neural network optimizations

In order to try and build an overall better system, two main ways to generate
light DCNNs were tried, in this section the attempts are exposed.

3.5.1 MeTRAbs lite

The first thing that was attempted when trying to create a better network was
creating a TFlite compatible DCNN based on a SOTA one. The chosen network
was MeTRAbs [17], unfortunately this endeavor proved to be too difficult to
actively pursue since the network utilizes unsupported TensorFlow operations
and other totally custom operations. In order to provide fast inference times the
TFlite framework only officially supports a subset of all Tensor Flow operations
and does not support any custom operation 3.3. These operations would have
needed to be implemented in C and compiled with the TFlite library in order
to work. After noticing that many other SOTA approaches needed this kind of
support in order to be used it was decided to try and develop a custom network
using knowledge distillation.

Figure 3.3: Supported TFlite operations diagram

3.5.2 Knowledge distillation

Following the paper "Lightweight 3D Human Pose Estimation Network Train-
ing Using Teacher-Student Learning"[6] a lightweight version of the MeTRAbs
[17] network was built and trained using the method proposed in [6] by ex-
ploiting another sightly modified version of the MeTRAbs DCNN as the teacher

27

3.5. NEURAL NETWORK OPTIMIZATIONS

network in order to be able to access the heatmap data. The H36M dataset
was used for this experiment, unfortunately, due to time constraints, it was not
possible to use the whole dataset to train the model and a very small number
of epochs was used as well. This endeavor proved to be unsuccessful, with a
PCK value of under 0.2 when using a threshold of 300mm but might be a great
starting point for expanding this work.

A big reason for this failure (other than the time and dataset constraints) might
lie in the actual network architecture that was used for the student network since
it was based on the paper’s [6] network with some modifications to make it more
similar to MeTRAbs.

Figure 3.4: Knowledge Distillation example

28

4
The network architecture

4.1 General architecture

In this chapter the architecture of the network will be discussed and the
reasons for the main choices will be explained as long as some of the iterations
needed to reach the final product. The complete final repository can be found
and tested here at: https://github.com/TheSav1101/ros2-ws/.

The network, from an hardware perspective, consists of four Raspberry Pi
boards (divided in two Pi 4 boards and two Pi 5) and a master PC all connected
to the same local network for communication. Each Raspberry is also connected
to a calibrated RealSense camera and it’s calibration information are either stored
in a json file or sent as calibration messages. All the available DCNNs in ".tflite"
format are stored on the devices and the information needed to configure the
TFlite interpreters for different models are (for the time being) hard coded in the
project.

From a ROS2 point of view a slave node (that will perform HPE inferences) is
launched on each Raspberry Pi. Every slave node automatically generates new
threads with other nodes such as worker, loop and webcam nodes as needed. On
the other hand, a master node (that will obtain the 3D HPE result by merging
results obtained by all slave nodes) is launched on the master PC and it will
automatically start scanning the local ROS2 network for slave nodes and make
subscriptions and calibration requests. Note that the RealSense nodes are not

29

https://github.com/TheSav1101/ros2-ws/

4.1. GENERAL ARCHITECTURE

spawned by the slaves, but need to be manually launched. The project provides
an alternative webcam node by passing "NULL" as "raw_image_topic" parameter
if the RealSense cameras are not used.

Figure 4.1: Hardware diagram

30

CHAPTER 4. THE NETWORK ARCHITECTURE

Figure 4.2: Software diagram

4.2 The slave node

This is the main node running on each Raspberry board, it is the one respon-
sible for handling image data and executing the HPE on it. This is the only
node that needs to be ran in order to setup all the logic related to the raspberry

31

4.2. THE SLAVE NODE

computations.

Figure 4.3: Slave node diagram

4.2.1 Startup

When a slave node is launched, it automatically generates a variable number
of worker nodes (nodes responsible for the HPE inference) based on a command
line parameter, then it creates a subscriber to the RealSense camera topic passed
(or generates a webcam node that tries to get a video input from any webcam
connected to the board if the user deems it necessary), if there is one, it subscribes
to the sensor_msgs::msg::CameraInfo topic in order to get calibration information,
it instantiate the TFlite tensors for the people detector and starts spinning.

4.2.2 Callback cycle

When a new image is received from the image topic and the callback function
is called, the image message is used as input for the off-the-shelf people detector
DCNN that returns the possible bounding boxes of all people in the image frame.
After non maxima suppression is applied to the resulting bounding boxes array
the best ones are used to resize the images and request a service to the worker
nodes. In order to exploit all the resources available and to parallelize the

32

CHAPTER 4. THE NETWORK ARCHITECTURE

computation, each worker node only works on a single image at each cycle; if
not enough workers are available at a certain cycle, new ones will be generated
and the excess bounding boxes will be discarded. All the service requested to
the workers are then tied to a lambda function, that will handle the delivery of
the Slave message to the master node.

This node is capable of handling multiple people in the same image for 2D
HPE, sadly the master node is not yet ready for this, as we will see in the next
sections, but it wasn’t always like this. In the first iterations of the project,
the loop and worker nodes did not exist and the HPE computation that is
now executed by the worker nodes was executed directly by the slave node,
improving real time performance at the cost of accuracy, since the humans in
the whole images are much smaller than the ones in the bounding boxes that
the worker nodes now receive and the models were not able to correctly guess
joint coordinates for such small targets. Currently this old version of the node
still exists and is usable in the project and it is named "slave_single node".

Slave callback
Inputs: The image acquired by the corresponding camera.

Outputs: The callbacks on futures generated by the worker service calls.

Description: This callback runs the DCNN responsible for finding all
bounding boxes that find people in the given image and request a HPE
service to the worker nodes.

4.2.3 The worker node

Each worker node is directly created by a slave node and it holds the logic
for executing a single person HPE on a bounding box each time a service is
requested by the corresponding slave. A slave node can have as many active
worker nodes as the maximum number of people found up to the relevant point
in time. Since having more worker nodes in memory doesn’t cause significant
performance drops as long as they are not working, there is not any kind of
"garbage collector" that kills inactive workers, but this would be a welcome
addition if the project is picked up again later on.

33

4.2. THE SLAVE NODE

Worker service
Inputs: The bounding box data resized to the HPE DCNN input size.

Outputs: The 2D skeleton detection corresponding to the person in the
bounding box with respect to the camera frame coordinates.

Description: This service performs the single-person 2D HPE on the
bounding box and sends back as response the skeleton obtained with an
additional confidence vector.

4.2.4 The calibration service

Each slave node receives some calibration information when launched, either
by a json file prepared in advance by the user (with the node name in the
file’s name) or a "sensor_msgs::msg::CameraInfo" subscriber if a publisher is
passed as command line parameter by the user. In this second case, no extrinsic
information is given in the info message and it is expected that the "frame_id"
parameter in the info message header corresponds to a tf2 frame that is being
actively published. The rotation and translation information is always gathered
with respect to the "world" frame.

Calibration service
Inputs: Empty request.

Outputs: The Calibration message with the extrinsic parameters ex-
pressed as a tf2 frame and the intrinsics expressed as an IntrinsicParams
message.

Description: This service finds and returns the information necessary
for the master node triangulation process.

4.2.5 The loop node

This node was used in the old iterations, before the futures were handled by
lambda callbacks. It ran on a separate thread with respect to the slave node
and contained a loop that checked the pointer to the futures queue belonging to
it’s parent slave node for pending operations (while locking a mutex for thread
safety) and if a futures vector was present the queue was popped and the loop

34

CHAPTER 4. THE NETWORK ARCHITECTURE

started waiting for the future results from the worker nodes in order to compile
them into a "Slave" message that contained all information about detections at
the point in time described in the header for the slave node.

Initially this loop was inside the main slave node, but there was an issue with
the future handling (futures were never marked as SUCCESS) and it had to be
moved to a separate node. Sadly the cause of the problem is not yet clear but it is
suspected that it has to do with how the node multi threaded executor that was
handling the slave node never stopped spinning, making impossible for other
callbacks that have to do with future handling to be processed. This suspicion
was raised when switching to a callback system instead of a loop, since the code:

1 executor.spin();

Code 4.1: Old slave spin

had to be changed with the code:

1 rclcpp::Rate rate(30);

2 while (keep_running.load() && rclcpp::ok()) {

3 executor.spin_some();

4 rate.sleep();

5 }

Code 4.2: New slave spin

in order to make callbacks work correctly.

35

4.3. THE MASTER NODE SINGLE

Figure 4.4: Master node diagram

4.3 The master node single

This multi-person master node is not usable at the moment, instead the "mas-
ter_node_single" is compatible with the rest of the network and usable for single
person 3D triangulation. This node is the only one that does not run on an
edge device (even if it probably could since it is the node that uses the least
computational power at the moment) and it’s responsible for handling all Slave
messages with 2D HPE generated by the slave nodes.

This node, when started, automatically starts scanning the ROS2 local network
for nodes of type slave that are publishing every couple of seconds with a
dedicated wall_timer. When one of these nodes is found a service request is
made to the slave’s calibration service and the data acquired is stored in an
array. At the same time a subscription to the node’s slave message publisher
is generated and inserted in a second array at the same index occupied by the
calibration information. When the node is created it also spawns a second thread
called "loop thread".

4.3.1 Slave scanning and callbacks

There is not a direct way to find a node of a certain type in ROS2, this is
why, in order to find active slave nodes, the master node takes the whole
ROS2 topic list and matches the names against the "(/slave_)(.*)" regular ex-

36

CHAPTER 4. THE NETWORK ARCHITECTURE

pression. This is possible because all slave nodes publish their Slave messages
on the "slave_nodeName" topic. From this knowledge, the master node keeps
track of the new slave node name and, after adding a blank message in the
slaves_feedback_ vector, it generates a lambda callback that will store the last
message received from this particular new node at the correct index in the
slaves_feedback_ vector. After this is done, the master node requests a calibra-
tion to the newfound node following the service naming convention "calibra-
tion_nodeName" and generates a new visualizer node, passing the same slave
name as a constructor parameter and adding it to the multi threaded executor.

4.3.2 The visualizer node

This is a simple node that subscribes to a particular image topic that is pub-
lished by a slave while executing the raw image callback (i.e. when performing
the inference on the people detector DCNN). The image published by the topic
is the same one that is published by the camera node, but with all of the consid-
ered bounding boxes drawn on it. This node simply reads the last Slave message
and the last image from this topic and draws markers where the joints should
be 4.5. Unfortunately, it does not store old images and, since the HPE inference
and the people detector inference are running in parallel, the markers usually
lag a bit behind the person in the frame.

Figure 4.5: Visualizer output example

37

4.4. ITERATIONS

4.3.3 The master loop thread

This thread is the main thread of the node and it is used to compute the
3D HPE by triangulating the 2D joint information given by the slave nodes.
At first the "filterFeedbacks()" function selects only the Slave messages from
the slaves_feedback_ vector that were generated by an image acquired within
a small time constant. This is possible because the time stamp in the Slave
message header corresponds to the original image’s. If fewer than two messages
that satisfy this constraint are found in the vector, the thread prints a warning
message and skips the triangulation; otherwise it performs a first unweighted
triangulation as explained in chapter 3 and then a series of weighted ones for
each joint in the given skeleton. After this process, the node clears old joint and
edge markers in rviz2 and generates new ones that are color-coded based on the
average confidence of the slaves responses for the given joint.

Figure 4.6: Example 3D skeleton obtained by the master node

4.4 Iterations

This project’s architecture history can be divided in three major iterations for
the time being. The first iteration is the simplest one: in this iteration the slave
nodes simply received an image from the camera subscription and started a
callback that performed the single person HPE, assuming that just one person
was in the camera frame. This approach was the best for real-time performance,

38

CHAPTER 4. THE NETWORK ARCHITECTURE

but it lacks in accuracy when the person is far from the camera, this is why the
second iteration of the project built.

In this second design phase, the slave node did not perform the HPE inference
directly, but it used an off-the-shelf people detector in order to find the bounding
boxes of all the people in the frame. When some people are found, the slave
node sends the camera image cropped following the the bounding boxes to a
set of worker nodes as a service request. The HPE computation is handled
by the worker node on the zoomed in image and, at this point in time, the
responses were handled by a separate node that was spawned by the slave: the
loop node. This iteration leveraged the concept of futures, an object returned
by an asynchronous request that is used to access the request’s result when it
terminates. The loop node was responsible for waiting for the asynchronous
requests’ futures and compiling a message with the multi-person 2D HPE result.
Currently the triangulation process does not support multiple people and only
the first skeleton returned by each slave node is actually used. This might create
problems if the project is used inadvertently for multi-person HPE purposes.

The third phase is mainly about optimization. The loop node is no longer
used and the futures are handled by callbacks in the slave node directly by the
ROS2 scheduler. This phase also added some improvements in visualization
and was used to test the best parameters for the network and the GPU delegate
performance.

39

5
Experiments

5.1 Experiments

A total of 10 experiments were conducted in a laboratory with two Raspberry
Pi 5 (RpiA, RpiS) and two Raspberry Pi 4 (RpiB, RpiC) connected via a network
switch (1G) to the master computer that was running the master node. Each
Raspberry was connected to a RealSense D455 camera and a RealSense-Ros
node was launched on every board in order to acquire images and publish
calibration information. The two Pi 5 boards were equipped with active cooling
modules, while the others were running with no case and no cooling. This
is mentioned because of overheating problems during the experiments that
severely degraded the performance of two of the boards (RpiA, RpiC) but, even
when using domestic fans for additional cooling, nothing could be done to
improve them during these tests. In each experiment a different set of variables
were used.

The table 5.1 reports the different parameter used for the experiment. The text
(Sgl/Slv) indicates the type of node used for the inference. The "Sgl" node is
the slave_single node, while the "Slv" is the final version of the slave node with
people detection. On the other hand the numbers indicate the HPE model used
for inference where 0 corresponds to the faster "lightning" model and 1 to the
more accurate "thunder" model.

41

5.1. EXPERIMENTS

Test Parameters pi 5 Parameters pi 4
0 Sgl 0 Sgl 0
1 Sgl 1 Sgl 0
2 Sgl 1 Sgl 1
3 Slv 0 Sgl 0
4 Slv 0 Sgl 1
5 Slv 1 Sgl 0
6 Slv 1 Sgl 1
7 Slv 0 Slv 0
8 Slv 1 Slv 1
9 Slv 1 Slv 1

Table 5.1: Experiment parameters

The metrics used for evaluating the networks are PCK, MPJME and HC PCK,
where the HC PCK metric only keeps track of nodes with accuracy above the
0.6 threshold but otherwise works as a normal PCK. For both PCK metrics
the chosen threshold was 250mm and the ground truth for every metric was
obtained by using the MeTRAbs DCNN on the input image received from RpiS’
camera.

Figure 5.1: Skeleton from MeTRAbs(red) and our skeleton (green) during test 4

42

CHAPTER 5. EXPERIMENTS

5.2 Results

Table 5.2 reports the accuracy results for the experiment that were conducted,
while table 5.3 reports the performance of each Raspberry during the experi-
ments. Note that the frame rates are calculated as 1

𝑑𝑒𝑙𝑎𝑦 , where 𝑑𝑒𝑙𝑎𝑦 is the time
that an image needs to be processed by the pipeline.

Test PCK (%) HC PCK (%) MPJME (m)
0 07.3 06.0 0.70
1 15.1 11.1 0.63
2 36.1 40.9 0.45
3 44.3 57.9 0.41
4 60.0 75.2 0.33
5 12.0 19.1 0.82
6 22.0 25.6 0.49
7 23.2 22.1 0.47
8 03.9 02.2 0.91
9 06.0 05.9 0.81

Table 5.2: Experiment accuracy results

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

Test Number

PC
K

(%
)a

nd
H

C
PC

K
(%

)

Experiment Results Graph

PCK (%) HC PCK (%)

0.3

0.5

0.7

0.9

M
PJ

M
E

(m
)

MPJME (m)

43

5.2. RESULTS

Test RpiA RpiB RpiC RpiS
0 58.1 18.9 18.9 58.0
1 19.9 16.2 16.3 20.1
2 19.9 05.2 05.1 20.1
3 07.9 17.3 15.6 07.9
4 05.4 09.1 07.2 08.3
5 02.1 10.1 01.7 08.3
6 05.7 10.2 07.7 08.3
7 01.0 01.7 00.2 08.4
8 02.2 01.6 00.6 08.6
9 04.8 01.7 01.1 08.7

Table 5.3: Experiment performance results (FPS)

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

Test Number

Fr
am

es
Pe

rS
ec

on
d

(F
PS

)

Experiment Performance Results (FPS)

RpiA RpiB RpiC RpiS

When logging the results for "Slv" type tests the HPE inference delays were
also logged, this fact generated a curious result: even if the Raspberry Pi 4 boards
couldn’t go above 19 FPS in the "Sgl" tests, the HPE inference frame rate was
much higher in "Slv" tests, reaching up to 35.8 FPS when the "lightning" network
was used and 14.4 when the "thunder" network was. This is probably due to
how the ROS2 executors were used since that is the only relevant difference
between the two node types. The same is true for the Raspberry Pi 5 boards that
also saw increased HPE performance when ran with the different executor.

44

CHAPTER 5. EXPERIMENTS

During the experiment it became evident that Raspberry boards with de-
graded performance (RpiA when overheating) and older Pi 4 boards when un-
der heavy workloads couldn’t keep up with sending messages across the local
network. This fact severely degraded performance during more intensive tests
even after reboots and efforts to cool them down. In the end the only boards
that didn’t suffer from overheating problems are the RpiB (that was without a
case and positioned close to an open door that provided some air currents) and
the RpiS (that had a custom perforated case on top of the stock Raspberry active
cooling solution and was positioned next to an open window).

45

6
Conclusions and Future Works

6.1 Conclusions

From the results of the experiment it is clear to see that older Raspberry Pi 4
boards are inadequate for real-time HPE processing, a network made using this
project should only be comprised of Raspberry Pi 5 boards. Furthermore the data
acquired suggest that a great bottleneck is generated in the system when using
the people detector, making the FPS count plummet. Since the best test results
were obtained with the added precision granted by this last network though a
solution to the problem might lie in utilizing a lighter network for that purpose
as it produces a great boost in accuracy with respect to the faster methods that
do not use it. Overall the system runs in real-time with poor accuracy, but could
be made better (as seen from the experiments) by sacrificing some speed or
by experimenting with new ways to reduce the overall CPU workload such as
possibly using another lighter model when performing people detection.

47

6.2. FUTURE WORKS

6.2 Future works

Other than a new people detector network, some more topics require further
investigation and possible work and adjustments. First of all, during the more
intensive tests, some difficulties were encountered with the local network mes-
sage delivery. The high CPU usage made it difficult for the older boards and the
ones that were suffering from overheat to reliably send messages to the master
PC on time, raising the overall latency. In order to relieve the CPU from some
of it’s workload alternative hardware could be used to boost the overall system
performance. At first a test with the on-board GPU should be tried, this was
not possible during this project because of driver issues, hopefully this problem
will eventually be solved as some hobbyists claim to have done in Raspberry’s
official forums. Other tests could be conducted by using other hardware such
as the Raspberry AI camera and the Coral USB accelerator that were presented
in chapter 3.

Another thing that would need to be worked on is the master node. As of
now it lacks an appropriate algorithm to be used for multi-person HPE. Such
an algorithm would need to able to reliably discard false positive detections and
would need to include skeleton tracking as the system is not synchronized as of
now.

The last path that could be taken in future research would be to eliminate
the people detector DCNN altogether and substitute it and the current single-
person HPE DCNN with another network that directly performs multi-person
inferences, if possible even with 3D outputs. 3D detections could for sure make
the final detections overall more precise with the additional information, with
that said it is probably too computationally intensive for this type of devices and
some other steps would need to be taken in order to ensure the applicability of a
3D DCNN. In order to archive this result, a good starting point could be found
in the knowledge distillation research [6] discussed in chapter 2, but a whole
project should be dedicated to this research in order to get acceptable results.

48

7
Appendix

7.1 Messages and services

In this section the messages and services used in the project will be exposed
to the viewer in order to try and give a better understanding of the architecture.

7.1.1 Estimate service

This service is the one used by the slave node to request a DCNN inference
on the image data contained in a bounding box.

1 hpe_msgs/Detection detection

2 ---

3 hpe_msgs/Hpe2d hpe2d

Code 7.1: Estimate.srv

7.1.2 Detection

This message contains the cropped image defined by the corresponding
bounding box and it’s used in the Estimate service as a request parameter.

1 sensor_msgs/Image image

2 hpe_msgs/Box box

Code 7.2: Detection.msg

49

7.1. MESSAGES AND SERVICES

7.1.3 Box

This message is used to represent a bounding box in an image and hold some
more useful image related information in order to convert the coordinates of
joints found by the worker node from the bounding box frame to the original
image frame’s pixel coordinate system.

1 int32 x

2 int32 y

3 int32 width

4 int32 height

5 int32 img_width

6 int32 img_height

Code 7.3: Box.msg

7.1.4 Hpe2d

This message is used as response in the Estimate service and it contains an
header for keeping track of the time at which the image was taken and the
Joints2d message representing the coordinates of the joints found by the worker
node performing HPE.

1 std_msgs/Header header

2 hpe_msgs/Joints2d joints

Code 7.4: Hpe2d.msg

7.1.5 Joints2d

This message holds all the information about the position and confidence for
each joint in a detection, as well as the number of joints found by the worker
node.

1 float32[] x

2 float32[] y

3 float32[] confidence

4 int32 dim

Code 7.5: Joints2d.msg

50

CHAPTER 7. APPENDIX

7.1.6 Slave

This message contains the aggregated result of the skeletons found by a slave
node. This is the message that is sent to the master node after each loop iteration
in the slave node.

1 std_msgs/Header header

2 hpe_msgs/Joints2d[] all_joints

3 int32 skeletons_n

Code 7.6: Slave.msg

7.1.7 Calibration service

This is a simple service that has no request parameters, the response is a
custom message that holds intrinsics and extrinsic information about the camera
related to the slave node acting as service server.

1 ---

2 hpe_msgs/Calibration calibration

Code 7.7: Calibration.srv

1 geometry_msgs/TransformStamped frame

2 hpe_msgs/IntrinsicParams intrinsic_params

Code 7.8: Calibration.msg

7.1.8 IntrinsicParams

This message is used as part of the calibration message and holds all informa-
tion about the intrinsic camera matrix and the distortion coefficients.

1 float64[] camera_matrix # 3x3 intrinsic matrix

2 float64[] distortion_coefficients #[k1, k2, p1, p2, k3]

Code 7.9: IntrinsicParams.msg

51

References

[1] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. YOLOv4:
Optimal Speed and Accuracy of Object Detection. 2020. arXiv: 2004.10934
[cs.CV]. url: https://arxiv.org/abs/2004.10934.

[2] Yucheng Chen, Yingli Tian, and Mingyi He. “Monocular human pose
estimation: A survey of deep learning-based methods”. In: Computer Vi-
sion and Image Understanding 192 (2020), p. 102897. issn: 1077-3142. doi:
https://doi.org/10.1016/j.cviu.2019.102897. url: https://www.
sciencedirect.com/science/article/pii/S1077314219301778.

[3] M.A. Fischler and R.A. Elschlager. “The Representation and Matching
of Pictorial Structures”. In: IEEE Transactions on Computers C-22.1 (1973),
pp. 67–92. doi: 10.1109/T-C.1973.223602.

[4] Luca Fortini et al. Markerless 3D human pose tracking through multiple cameras
and AI: Enabling high accuracy, robustness, and real-time performance. 2023.
arXiv: 2303.18119 [cs.CV]. url: https://arxiv.org/abs/2303.18119.

[5] Andrew G. Howard et al. MobileNets: Efficient Convolutional Neural Net-
works for Mobile Vision Applications. 2017. arXiv: 1704.04861 [cs.CV]. url:
https://arxiv.org/abs/1704.04861.

[6] Dong-Hyun Hwang et al. “Lightweight 3D Human Pose Estimation Net-
work Training Using Teacher-Student Learning”. In: Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV).
Mar. 2020.

[7] Catalin Ionescu et al. “Human3.6M: Large Scale Datasets and Predictive
Methods for 3D Human Sensing in Natural Environments”. In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 36.7 (July 2014), pp. 1325–
1339.

53

https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2004.10934
https://doi.org/https://doi.org/10.1016/j.cviu.2019.102897
https://www.sciencedirect.com/science/article/pii/S1077314219301778
https://www.sciencedirect.com/science/article/pii/S1077314219301778
https://doi.org/10.1109/T-C.1973.223602
https://arxiv.org/abs/2303.18119
https://arxiv.org/abs/2303.18119
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861

REFERENCES

[8] Tao Jiang et al. RTMPose: Real-Time Multi-Person Pose Estimation based on
MMPose. 2023. arXiv: 2303.07399 [cs.CV]. url: https://arxiv.org/
abs/2303.07399.

[9] Rohit Josyula and Sarah Ostadabbas. A Review on Human Pose Estimation.
2021. arXiv: 2110.06877 [cs.CV]. url: https://arxiv.org/abs/2110.
06877.

[10] Naimat Ullah Khan and Wanggen Wan. “A Review of Human Pose Es-
timation from Single Image”. In: 2018 International Conference on Audio,
Language and Image Processing (ICALIP). 2018, pp. 230–236. doi: 10.1109/
ICALIP.2018.8455796.

[11] Tsung-Yi Lin et al. Microsoft COCO: Common Objects in Context. 2015. arXiv:
1405.0312 [cs.CV]. url: https://arxiv.org/abs/1405.0312.

[12] Qihao Liu et al. “Explicit Occlusion Reasoning for Multi-person 3D Human
Pose Estimation”. In: Computer Vision – ECCV 2022. Ed. by Shai Avidan
et al. Cham: Springer Nature Switzerland, 2022, pp. 497–517. isbn: 978-3-
031-20065-6.

[13] Xinnan Ma et al. “SCALE-Pose: Skeletal Correction and Language Knowledge-
assisted for 3D Human Pose Estimation”. In: Pattern Recognition and Com-
puter Vision. Ed. by Zhouchen Lin et al. Singapore: Springer Nature Singa-
pore, 2025, pp. 578–592. isbn: 978-981-97-8795-1.

[14] Rama Bastola Neupane, Kan Li, and Tesfaye Fenta Boka. “A survey on
deep 3D human pose estimation”. In: Artificial Intelligence Review (2024).
issn: 1573-7462. doi: 10.1007/s10462-024-11019-3. url: https://doi.
org/10.1007/s10462-024-11019-3.

[15] Leonid Pishchulin et al. DeepCut: Joint Subset Partition and Labeling for
Multi Person Pose Estimation. 2016. arXiv: 1511.06645 [cs.CV]. url: https:
//arxiv.org/abs/1511.06645.

[16] István Sárándi, Alexander Hermans, and Bastian Leibe. Learning 3D Hu-
man Pose Estimation from Dozens of Datasets using a Geometry-Aware Autoen-
coder to Bridge Between Skeleton Formats. 2022. arXiv: 2212.14474 [cs.CV].
url: https://arxiv.org/abs/2212.14474.

[17] István Sárándi et al. “MeTRAbs: Metric-Scale Truncation-Robust Heatmaps
for Absolute 3D Human Pose Estimation”. In: CoRR abs/2007.07227 (2020).
arXiv: 2007.07227. url: https://arxiv.org/abs/2007.07227.

54

https://arxiv.org/abs/2303.07399
https://arxiv.org/abs/2303.07399
https://arxiv.org/abs/2303.07399
https://arxiv.org/abs/2110.06877
https://arxiv.org/abs/2110.06877
https://arxiv.org/abs/2110.06877
https://doi.org/10.1109/ICALIP.2018.8455796
https://doi.org/10.1109/ICALIP.2018.8455796
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1405.0312
https://doi.org/10.1007/s10462-024-11019-3
https://doi.org/10.1007/s10462-024-11019-3
https://doi.org/10.1007/s10462-024-11019-3
https://arxiv.org/abs/1511.06645
https://arxiv.org/abs/1511.06645
https://arxiv.org/abs/1511.06645
https://arxiv.org/abs/2212.14474
https://arxiv.org/abs/2212.14474
https://arxiv.org/abs/2007.07227
https://arxiv.org/abs/2007.07227

REFERENCES

[18] Hai-Thien To, Trung-Kien Le, and Chi-Luan Le. “Real-Time End-to-End
3D Human Pose Prediction on AI Edge Devices”. In: Intelligent Systems and
Networks. Ed. by Duc-Tan Tran et al. Singapore: Springer Singapore, 2021,
pp. 248–255. isbn: 978-981-16-2094-2.

[19] Hanyue Tu, Chunyu Wang, and Wenjun Zeng. VoxelPose: Towards Multi-
Camera 3D Human Pose Estimation in Wild Environment. 2020. arXiv: 2004.
06239 [cs.CV]. url: https://arxiv.org/abs/2004.06239.

[20] Dongkai Wang, Shiyu Xuan, and Shiliang Zhang. “LocLLM: Exploiting
Generalizable Human Keypoint Localization via Large Language Model”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). June 2024, pp. 614–623.

[21] Yi Yang and Deva Ramanan. “Articulated pose estimation with flexible
mixtures-of-parts”. In: CVPR 2011. 2011, pp. 1385–1392. doi: 10.1109/
CVPR.2011.5995741.

[22] Dongyang Yu et al. “MovePose: A High-Performance Human Pose Estima-
tion Algorithm on Mobile and Edge Devices”. In: Artificial Neural Networks
and Machine Learning – ICANN 2024. Ed. by Michael Wand et al. Cham:
Springer Nature Switzerland, 2024, pp. 144–158. isbn: 978-3-031-72338-4.

[23] Feng Zhang et al. Distribution-Aware Coordinate Representation for Human
Pose Estimation. 2019. arXiv: 1910.06278 [cs.CV]. url: https://arxiv.
org/abs/1910.06278.

[24] Jinrui Zhang et al. “MobiPose: real-time multi-person pose estimation on
mobile devices”. In: Proceedings of the 18th Conference on Embedded Networked
Sensor Systems. SenSys ’20. Virtual Event, Japan: Association for Comput-
ing Machinery, 2020, pp. 136–149. isbn: 9781450375900. doi: 10.1145/
3384419.3430726. url: https://doi.org/10.1145/3384419.3430726.

[25] Siqi Zhang et al. “A Survey on Depth Ambiguity of 3D Human Pose
Estimation”. In: Applied Sciences 12.20 (2022). issn: 2076-3417. doi: 10.3390/
app122010591. url: https://www.mdpi.com/2076-3417/12/20/10591.

[26] Qitao Zhao et al. PoseFormerV2: Exploring Frequency Domain for Efficient and
Robust 3D Human Pose Estimation. 2023. arXiv: 2303.17472 [cs.CV]. url:
https://arxiv.org/abs/2303.17472.

55

https://arxiv.org/abs/2004.06239
https://arxiv.org/abs/2004.06239
https://arxiv.org/abs/2004.06239
https://doi.org/10.1109/CVPR.2011.5995741
https://doi.org/10.1109/CVPR.2011.5995741
https://arxiv.org/abs/1910.06278
https://arxiv.org/abs/1910.06278
https://arxiv.org/abs/1910.06278
https://doi.org/10.1145/3384419.3430726
https://doi.org/10.1145/3384419.3430726
https://doi.org/10.1145/3384419.3430726
https://doi.org/10.3390/app122010591
https://doi.org/10.3390/app122010591
https://www.mdpi.com/2076-3417/12/20/10591
https://arxiv.org/abs/2303.17472
https://arxiv.org/abs/2303.17472

REFERENCES

[27] Ce Zheng et al. 3D Human Pose Estimation with Spatial and Temporal Trans-
formers. 2021. arXiv: 2103.10455 [cs.CV]. url: https://arxiv.org/abs/
2103.10455.

[28] Ce Zheng et al. “Deep Learning-Based Human Pose Estimation: A Sur-
vey”. In: CoRR abs/2012.13392 (2020). arXiv: 2012.13392. url: https:
//arxiv.org/abs/2012.13392.

[29] Zhengxia Zou et al. “Object Detection in 20 Years: A Survey”. In: Proceed-
ings of the IEEE 111.3 (2023), pp. 257–276. doi: 10.1109/JPROC.2023.
3238524.

56

https://arxiv.org/abs/2103.10455
https://arxiv.org/abs/2103.10455
https://arxiv.org/abs/2103.10455
https://arxiv.org/abs/2012.13392
https://arxiv.org/abs/2012.13392
https://arxiv.org/abs/2012.13392
https://doi.org/10.1109/JPROC.2023.3238524
https://doi.org/10.1109/JPROC.2023.3238524

	List of Figures
	List of Tables
	List of Code Snippets
	List of Acronyms
	Introduction
	Use cases for Human Pose Estimation
	The objective

	Human Pose Estimation
	Evolution of human representations
	Pictorial Structures and Flexible Mixture-of-Parts
	Skeletons

	Approaches
	Single-person and multi-person
	Type of representation
	Regression and heatmap methods

	Challenges
	Occlusion
	Unusual poses
	Depth ambiguities

	Metrics
	Recent advancements and trends
	Edge devices and real time HPE

	Design choices for multi-camera HPE
	Hardware choices
	Frameworks choices
	Neural networks used
	Human pose estimation
	People detector

	The triangulation
	Neural network optimizations
	MeTRAbs lite
	Knowledge distillation

	The network architecture
	General architecture
	The slave node
	Startup
	Callback cycle
	The worker node
	The calibration service
	The loop node

	The master node single
	Slave scanning and callbacks
	The visualizer node
	The master loop thread

	Iterations

	Experiments
	Experiments
	Results

	Conclusions and Future Works
	Conclusions
	Future works

	Appendix
	Messages and services
	Estimate service
	Detection
	Box
	Hpe2d
	Joints2d
	Slave
	Calibration service
	IntrinsicParams

	References

