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Abstract

In recent years, squaraine dyes have garnered significant attention for their role in solution-processed
photovoltaics due to their strong absorption in the red and near-infrared (NIR) region of the solar
spectrum, which is not effectively harnessed by current technologies. Despite extensive experi-
mental work and proposed applications, understanding the complex photophysics of these organic
molecules, particularly in the ultrafast regime, remains limited.
This Thesis aims to provide a deeper understanding of the static and time-resolved photophys-
ical properties of three commercially available squaraines: 2,4-bis[4-(N,N-diisobutylamino)-2,6-
dihydroxyphenyl] squaraine(SQ), 2,4-bis[4-(N,N-diphenylamino)-2,6-dihydroxyphenyl] squaraine
(DPSQ), 2,4-bis[4-(N,N-dibenzylamino)-2,6-dihydroxyphenyl] squaraine (DBSQ).
A combination of linear and nonlinear, static, and time-resolved optical spectroscopies was em-
ployed to investigate the origin of nonradiative decay pathways that might negatively affect the
efficiency of these dyes as sensitizers for solar cells.
In particular, we focused on the results obtained by applying two-dimensional electronic spec-
troscopy (2DES), which has proven to be well-suited for studying the ultrafast dynamics of squaraine
dyes. This technique enabled the detailed examination of processes occurring on the femtosecond
timescale and facilitated the determination of the time constants associated with various relaxation
pathways in squaraine solutions. The obtained experimental results revealed the presence of a con-
ical intersection (CI) between the ground and the excited state, as highlighted by distinct spectral
signatures that could be explained by a two-state two-mode model. The crucial role of at least two
vibrational modes strongly coupled with the electronic degrees of freedom has been elucidated.
The passage through a CI was identified as a crucial relaxation pathway for the excited state, shed-
ding light on one of the factors contributing to the complexity of the photophysical behavior of
these dyes.
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Introduction

The shortage of energy and the harmful environmental impact of fossil fuel consumption are
among the most pressing issues faced by humanity today [1]. The development of alternative
and renewable sources is essential not only to ensure a reliable energy supply but also to mitigate
carbon dioxide emissions and other pollutants released during fossil fuel combustion. Solar en-
ergy, a highly promising renewable resource, provides approximately 6000 times more energy to
Earth’s surface than the world’s current energy demand [2]. Photovoltaic technologies, such as
dye-sensitized solar cells (DSSCs), offer a viable approach to harness this abundant energy. DSSCs,
initially pioneered by Grätzel in 1991 [3], have attracted attention due to their low production
costs, adaptability to low-light conditions, rapid energy payback, and ease of waste management
[4]. These thin-film solar cells mimic the natural photosynthetic process by using dyes to absorb
sunlight, producing excited electrons that are then injected into a semiconductor. The resulting cur-
rent flows through an external circuit before being collected back by an electrolyte at the cathode,
thus completing the cycle [5].
Compared to traditional silicon solar cells, DSSCs offer several advantages, particularly in applica-
tions requiring lightweight and flexible devices. To move away from traditional metal-based sensi-
tizers, particularly Ru(II) complexes, and to address some of their inherent limitations, such as high
costs and limited availability, researchers are exploring metal-free alternatives. These alternatives
offer advantages, including higher absorption extinction coefficients and the potential for photon
harvesting beyond the visible spectrum, extending into the red and near-infrared (NIR) wavelength
regions, which accounts for more than half of the solar energy that reaches the Earth’s surface.
[6]. However, DSSCs with metal-free dyes generally exhibit lower energy conversion efficiencies,
primarily due to their narrower absorption range in the solar spectrum [4]. Squaraine dyes have
emerged as promising candidates for enhancing DSSCs performance, thanks to their strong absorp-
tion in the red and near-infrared (NIR) regions, straightforward synthesis routes, and high stability
[7, 8, 9, 10]. Squaraines are squaric acid derivatives characterized by a donor-acceptor-donor (D-A-
D) π-conjugated system, constituted by a central four-membered ring and two electron-donating
groups. Since the early 2000s, several symmetrical and asymmetrical squaraine dyes have been
studied as sensitizers in DSSCs. Despite extensive experimental work and various proposed ap-
plications, our understanding of their complex photophysics remains limited. Furthermore, it is
unclear which specific properties regulate the efficiency of different squaraine dyes as photosensi-
tizers in DSSCs, which hinders the design of new, more efficient molecular structures. To address
this gap, this Thesis project aims to investigate the photophysical behavior of squaraine dyes with
different molecular structures. The goal is to propose relationships between structure and prop-
erties. In particular, the attention was focused on the linear and nonlinear optical properties of
three commercially available symmetrical red-absorbing squaraines. In particular, by exploring
the ultrafast dynamics of these molecules we aim to gain important information about competitive
nonradiative decay pathways undesired for solar cell efficiency, such as charge-recombination or
thermal relaxation processes driven by vibronic coupling. Indeed, to maximize efficiency, DSSCs
dyes must maintain charge separation long enough to facilitate effective electron injection into the
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substrate [4]. Nonradiative decay pathways are therefore detrimental to the performance of the
device, particularly in the case of red-absorbing dyes, due to their low energy transition.

A comprehensive understanding of the microscopic processes that influence DSSC efficiency
can be achieved through time-resolved optical spectroscopy. In particular, two-dimensional elec-
tronic spectroscopy (2DES) is a powerful technique for probing the ultrafast dynamics of complex
chromophoric systems and quantifying nonradiative contributions to their relaxation processes.
2DES has been widely used to study energy and charge transport mechanisms in biological and
artificial light-harvesting systems, as well as their interactions with the environment and nuclear
degrees of freedom [11, 12, 13]. The technique can be broadly classified as a four-wave-mixing
heterodyne detected spectroscopy featuring ultrafast (<15 femtoseconds) temporal resolution. It
utilizes a sequence of three ultrashort laser pulses to induce a third-order nonlinear optical re-
sponse, which is represented in the form of 2D frequency-frequency correlation maps that evolve
over time [14]. The presence of couplings, such as vibronic coupling, is indicated by the emer-
gence of cross-peaks and enables the isolation and identification of vibronic contributions. The
multidimensionality of this technique combined with its temporal resolution, provides 2DES with
a significant advantage over conventional one-dimensional techniques, such as pump-probe spec-
troscopy, and makes 2DES particularly suitable for the objectives of this Thesis.

This Thesis is organized as follows:

• Chapter 1 provides the theoretical background for describing nonlinear time-resolved optical
spectroscopy, with a particular focus on the basis of 2DES. Additionally, it includes a brief
introduction to conical intersections, to contextualize the experimental results.

• Chapter 2 describes the systems under investigation, consisting of a selection of three sym-
metrical squaraines, along with their preliminary optical characterization using linear spec-
troscopies.

• Chapter 3 details the optical setup used in the 2DES experiments and the analysis toolbox
developed for data processing, analysis, and interpretation.

• Chapter 4 presents the experimental results obtained through 2DES characterization and their
interpretation.
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1 Theoretical Background

To gain a deeper understanding of 2DES and the results presented in this work, it is essential to
first address the underlying theory.
This chapter will begin by exploring the foundational concepts and quantum-mechanical tools un-
derpinning 2DES, following the response function formalism [15]. Thereafter, a brief discussion
of conical intersections (CIs) will be provided, as their role is crucial for interpreting the findings
presented in the subsequent Sections.

1.1 Light-Matter Interaction

Spectroscopy is the study of the interaction between light and matter, allowing the exploration of
both the electronic structure and dynamics of matter.

In this context, light and matter are treated as a single system that can be described through a
Hamiltonian, specified as the sum of three terms:

ˆ︁H = ˆ︁HM + ˆ︁HL + ˆ︁Hint (1.1)

where ˆ︁HM is the Hamiltonian of matter, ˆ︁HL represents the Hamiltonian of light and ˆ︁Hint ac-
counts for their mutual interaction.

To simplify the diagonalization of this Hamiltonian, it is convenient to apply the so-called
semi-classical approximation, in which the light is described classically and the matter quantum-
mechanically. This allows to neglect the ˆ︁HL term, such that Equation (1.1) becomes [16]:

ˆ︁H = ˆ︁HM + ˆ︁Hint (1.2)

In the semiclassical approximation, the light is described as a wave by using Maxwell’s equa-
tions, leading to the wave equation of the electrical field, which in vacuum takes the form:

ˆ︁∇2E(r, t)− 1
c2

∂2

∂t2 E(r, t) = 0 (1.3)

and a possible general solution can be written as a plane wave [17]:

E(r, t) = 2E0(t)ˆ︁ϵcos(k · r− ωt) = E0(t)ˆ︁ϵ [︂
ei(k·r−ωt) + e−i(k·r−ωt)

]︂
(1.4)

This equation describes the electric field as a function that oscillates in time along a direction
defined by the unitary vector ˆ︁ϵ, amplitude E0, and frequency ω and that propagates through space
in the direction defined by the wavevector k, with module k = ω

c .
On the other hand, matter is treated as a distribution of charges, whose distribution is modified

after the interaction with an external electric field. The macroscopic result of this process is called
polarization [18], which can be generally expressed as a power expansion of E:

P = ϵ0[χ(1) · E + χ(2) · E2 + χ(3) · E3 + ...] = P(1) + P(2) + P(3) + ... (1.5)
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where χ(n) is the nth order susceptibility, a tensor quantity, and ϵ0 the dielectric permittivity in
vacuum.

Under these conditions, the wave equation previously formulated in vacuum for E, Equation
(1.3) is corrected for propagation in a medium as [19]:

ˆ︁∇2E(r, t)− 1
c2

∂2E(r, t)
∂t2 = 1

ϵ0c2
∂2P(r, t)

∂t2 (1.6)

The material’s polarization P(t) is a crucial quantity in this discussion, being the primary phys-
ical observable of a spectroscopic experiment. Indeed, the signal emitted from the sample, S, is
directly proportional to the polarization [20]:

S ∝ iP (t) (1.7)

For weak electric fields, the polarization can be adequately described only considering the linear
term. However, when the light source is more intense, such as in the case of laser light, nonlinear
terms become significant and cannot be neglected. Therefore, Equation (1.5) can be conveniently
rewritten as:

P(r, t) ≡ P(1)(r, t) + PNL(r, t) (1.8)

In the upcoming sections, the significance of the quantity P will be extensively emphasized, as
it is linked to the nonlinear response function S, presented in Section 1.4.

1.2 Time Evolution of the Wavefunction

So far, the provided description has been from a macroscopic perspective. To understand the un-
derlying processes within the system, it is essential to adopt a microscopic viewpoint based on
quantum mechanics.

A quantum system is described in terms of its wavefunction |Ψ(t)⟩, and its time evolution is
governed by the solutions of the time-dependent Schrödinger equation:

∂

∂t
|Ψ(t)⟩ = − i

ℏ
ˆ︁H |Ψ(t)⟩ (1.9)

The system’s temporal evolution can also be determined through the definition of the time-
evolution operator, which for a time-independent Hamiltonian is formulated as:

ˆ︁U(t, t0) = e− i
ℏ ˆ︁H·(t−t0) (1.10)

This operator is used to propagate the wavefunction from time t0 to time t as follows:

|Ψ(t)⟩ ≡ ˆ︁U(t, t0) |Ψ(t0)⟩ (1.11)

It is important to note that solving the Schrödinger equation is equivalent to solving the equa-
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tion of motion of the time-evolution operator [21], as they convey the same information:

∂

∂t
ˆ︁U(t, t0) = − i

ℏ
ˆ︁H ˆ︁U(t, t0) (1.12)

Integrating Equation (1.12) between t0 and t is the first step towards deriving its solution:

ˆ︁U(t, t0) = 1− i

ℏ

∫︂ t

t0

dτ ˆ︁H(τ) ˆ︁U(τ, t0) (1.13)

since by definition ˆ︁U(t0, t0) = 1. This equation can then be solved iteratively according to:

ˆ︁U(t, t0) = exp+

[︂
− i

ℏ
∫︁ t

t0
dτ ˆ︁H(τ)

]︂
≡ 1 +

∑︁∞
n=1

(︁
− i

ℏ
)︁n ∫︁ t

t0
dτn...

∫︁ τ2
t0

dτ1 ˆ︁H(τn)... ˆ︁H(τ1)
(1.14)

where exp+ is a positive time-ordered exponential [21].
Equation (1.14) depicts the evolution of a quantum system subjected to a time-dependent per-

turbation over a specific time interval, considering all potential paths from the initial state to the
final one, through any number of intermediate states. A crucial aspect of this expression is the
time-ordering, which in this case is:

t0 → τ1 → τ2 → τ3 → ...→ τn → t (1.15)

Going back to the wavefunction, the time evolution of the system can be expressed as:

|Ψ(t)⟩ = |Ψ(t0)⟩+
∞∑︂

n=1

(︃
− i

ℏ

)︃n ∫︂ t

t0

dτn...

∫︂ τ2

t0

dτ1H(τn)...H(τ1) |Ψ(t0)⟩ (1.16)

where |Ψ(t0)⟩ is the wavefunction of the unperturbed system.

Typically, the interaction with the external electric field is considered weak compared to the
internal fields of the molecule, making it appropriate to treat the former as a perturbation of the
system’s energy. Under these conditions, it is possible to describe the dynamics of the system in a
simplified way by applying the time-dependent perturbation theory. According to this formalism,
it is possible to write the Hamiltonian as:

ˆ︁H(t) = ˆ︁H0(t) + ˆ︁V (t) (1.17)

where ˆ︁H0(t) is the Hamiltonian of the unperturbed system, which is generally well known
and defined, and ˆ︁V (t) is the term accounting for a weak interaction, suitable for a perturbative
treatment.

The interaction Hamiltonian ˆ︁V (t) is typically expressed as a multipolar expansion:

ˆ︁V (t) = Qϕ− ˆ︁µ · E + ... (1.18)
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where Q is the net charge, ϕ is the electrostatic potential, ˆ︁µ is the electric dipole moment and E is
the electric field; the subsequent terms account for interactions between higher rank tensors. Con-
sidering a medium with no neat charge (Q=0) and truncating the expansion to the first non-zero
term, justified by the inverse proportionality of the terms to powers of the distance, the Hamilto-
nian becomes [20]: ˆ︁H(t) = ˆ︁H0 − ˆ︁µE(t) (1.19)

(where the vector nature of ˆ︁µ has been neglected by assuming it to be parallel to the electric
field). At this point, it is beneficial to switch from the Schrödinger picture, implicitly applied so far,
to the interaction picture or Dirac representation [15]. In the Schrödinger picture, the time depen-
dence is fully enclosed in the wavefunctions, while in the interaction picture, both wavefunctions
and the operators carry time dependence. This approach is particularly useful when the system’s
Hamiltonian can be factorized as in Equation (1.17).

In the interaction picture, a new set of wavefunctions can be defined as:

|ΨS(t)⟩ ≡ ˆ︁U0(t, t0) |ΨI(t)⟩ (1.20)

where |ΨS(t)⟩ is the wavefunction within the Schrödinger picture and ˆ︁U0(t, t0) is the time-
evolution operator in respect to only ˆ︁H0. Indeed this propagator can be introduced as the solution
of Equation (1.12) for the unperturbed Hamiltonian:

ˆ︁U0(t, t0) = exp+

[︂
− i

ℏ
∫︁ t

t0
dτ ˆ︁H0(τ)

]︂
≡ 1 +

∑︁∞
n=1

(︁
− i

ℏ
)︁n ∫︁ t

t0
dτn

∫︁ τ

t0
dτn−1...

∫︁ τ2
t0

dτ1 ˆ︁H0(τn) ˆ︁H0(τn−1)... ˆ︁H0(τ1)
(1.21)

Therefore, the time dependence of |ΨI(t)⟩ describes the evolution of the wavefunction due to
the difference between ˆ︁H(t) and ˆ︁H0(t), thus is only related to the applied perturbation ˆ︁V (t).

When replacing Equation (1.20) into Equation (1.9), the result is substantially equivalent to the
Schrödinger equation:

d

dt
|ΨI(t)⟩ = − i

ℏ
ˆ︁VI(t) |ΨI(t)⟩ (1.22)

where the perturbation in the interaction picture is defined as:

ˆ︁VI(t) = ˆ︁U†
0 (t, t0)ˆ︁V (t) ˆ︁U0(t, t0) = e

i
ℏ ˆ︁H0(t−t0) ˆ︁V (t)e− i

ℏ ˆ︁H0(t−t0) (1.23)

Analogously to the previous definition of ˆ︁U0(t, t0) it is possible to define also ˆ︁UI(t, t0), referred
to the perturbation, as:

ˆ︁UI(t, t0) = exp+

[︂
− i

ℏ
∫︁ t

t0
dτ ˆ︁VI(τ)

]︂
≡ 1 +

∑︁∞
n=1

(︁
− i

ℏ
)︁n ∫︁ t

t0
dτn

∫︁ τ

t0
dτn−1...

∫︁ τ2
t0

dτ1 ˆ︁VI(τn)ˆ︁VI(τn−1)...ˆ︁VI(τ1)
(1.24)

Analogously to what has been done before, Equation (1.22) can be solved using an iterative
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procedure:

|ΨI(t)⟩ = ˆ︁UI(t, t0) |ΨI(t0)⟩

= |ΨI(t)⟩ = |ΨI(t0)⟩
+

∑︁∞
n=1

(︁
− i

ℏ
)︁n ∫︁ t

t0
dτn

∫︁ τn

t0
dτn−1...

∫︁ τ2
t0

dτ1 ˆ︁VI(τn)ˆ︁VI(τn−1)...ˆ︁VI(τ1) |ΨI(t0)⟩

(1.25)

Focusing on each single term within the summation allows the reader to infer the physical
meaning of this expression. The system is at equilibrium until time τ1, at which the perturbationˆ︁V (τ1) is applied. After this, the system will propagate freely until time τ2, when it interacts with the
second perturbation ˆ︁V (τ2), and so forth. This concept can be better understood through Feynman
diagrams, an important graphical tool that will be presented in Section 1.4.2.

The formalism presented is well-suited for describing a pure state, which pertains to a system
that can be represented by a single wavefunction. However, in the condensed phase, it becomes
essential to consider statistical ensembles of quantum systems in various states, commonly referred
to as mixed states. In such scenario, it is more appropriate to use the density operator ˆ︁ρ(t), as
discussed in the next Section.

1.3 Density Matrix Formalism

The density operator is defined as the outer product of the wavefunction and its complex conjugate
[21]: ˆ︁ρ(t) = |Ψ(t)⟩ ⟨Ψ(t)| (1.26)

This expression can be generalized considering a statistical ensemble made of different replicas
of a quantum system, where each replica is associated with a probability pk of being in the state
|Ψk⟩. In this case, ˆ︁ρ(t) can be written as:

ˆ︁ρ(t) =
∑︂

k

pk |Ψk(t)⟩ ⟨Ψk(t)| (1.27)

In Equation (1.27), the values of pk are non-negative and normalized. When all pk are null
except for one, which is equal to 1, the system is in a pure state, as previously explained.

The density operator can be conveniently represented as a matrix. Using an arbitrary basis set
|n⟩, the wavefunction and its complex conjugate can be written as:

|Ψk(t)⟩ =
∑︂

n

c(k)
n (t) |n⟩

⟨Ψk(t)| =
∑︂
m

c(k)∗
m (t) ⟨m|

(1.28)

where c
(k)
n are the expansion coefficient and c

(k)∗
m their complex conjugate.
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Therefore the matrix elements will be defined as [16]:

ρnm(t) = ⟨n| ˆ︁ρ(t) |m⟩ =
∑︂

k

pk⟨n|Ψk(t)⟩⟨Ψk(t)|m⟩ =
∑︂

k

pkc(k)
n (t)c(k)∗

m (t) (1.29)

The diagonal elements (n = m) are called populations and represent the probability of the system
of being in the nth eigenstate:

ρnn = cnc∗
n = pn (1.30)

where the overline denotes averaging over the statistical ensemble.
The off-diagonal elements (n ̸= m) are complex quantities and are defined as coherences. These
represent coherent superpositions of states that oscillate with a specific frequency ωmn:

ρnm = cn(t)c∗
m(t) = cnc∗

me−iωmnt (1.31)

with ωmn = ωm − ωn = (Em − En)/ℏ, where En and Em are the energies of the states involved
in the superposition.

The use of the density operator provides significant advantages. This becomes evident when
calculating the expectation value of a generic operator ˆ︁A:

⟨ ˆ︁A(t)⟩ = ⟨Ψ(t)| ˆ︁A |Ψ(t)⟩ =
∑︁

n,m cn(t)c∗
m(t) ⟨m| ˆ︁A |n⟩

=
∑︁

n,m Amnρnm(t) = Tr [Aρ(t)]
(1.32)

as the problem is simplified by moving the complexity of the calculation from an integral to a
trace of a product of matrices.

In the previous Section, the time evolution of a pure state was investigated. Similarly, it can be
done for mixed states using the equation of motion of ˆ︁ρ:

∂

∂t
ˆ︁ρ(t) = − i

ℏ
[ ˆ︁H(t), ˆ︁ρ(t)] (1.33)

known as the Liouville-von Neumann equation, which is the equivalent of the Schrödinger
equation in the frame of the density matrix formalism.

Within the interaction picture, Equation (1.33) can be rewritten as:

∂

∂t
ˆ︁ρI(t) = − i

ℏ
[ˆ︁VI(t), ˆ︁ρI(t)] (1.34)

aknowledging that the density operator ˆ︁ρI(t) is defined as:

ˆ︁ρ(t) = ˆ︁U0(t, t0)ˆ︁ρI(t) ˆ︁U†
0 (t, t0) (1.35)
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Also in this case, it is possible to solve Equation (1.34) by applying an iterative procedure:

ˆ︁ρI(t) = ˆ︁ρI(t0)

+
∑︁∞

n=1
(︁
− i

ℏ
)︁n ∫︁ t

t0
dτn...

∫︁ τ2
t0

dτ1

[︂ˆ︁VI(τn),
[︂ˆ︁VI(τn−1), ...,

[︂ˆ︁VI(τ1), ˆ︁ρI(t0)
]︂]︂]︂

= ˆ︁ρI(t0) +
∑︁∞

n=1 ˆ︁ρ(n)
I (t)

(1.36)

where

ˆ︁ρ(n)
I (t) =

(︃
− i

ℏ

)︃n ∫︂ t

t0

dτn...

∫︂ τ2

t0

dτ1

[︂ˆ︁VI(τn),
[︂ˆ︁VI(τn−1), ...,

[︂ˆ︁VI(τ1), ˆ︁ρI(t0)
]︂]︂]︂

(1.37)

In this way, the perturbative expansion for the density operator was obtained [15]. This expres-
sion holds significant value within the context of nonlinear spectroscopy [21], as it will be later
elaborated in Section 1.4.

1.4 Response Theory

The response theory serves as the primary tool for describing the evolution of a system away from
thermal equilibrium, under perturbative conditions. It is particularly attractive as it connects mea-
surable quantities obtained from spectroscopic measurements to microscopic quantum-mechanical
properties.

Based on the perturbative approximation, it is possible to describe the expectation value of a
generic operator ˆ︁A as:

⟨ ˆ︁A(t)⟩ = ⟨ ˆ︁A(−∞)⟩+ δA(t) = ⟨ ˆ︁A(−∞)⟩+
∫︂ t

−∞
dt0S(t, t0)f(t0) + ... (1.38)

where ⟨ ˆ︁A(−∞)⟩ is the equilibrium value before the perturbation, t0 is the time at which the
external stimulus f(t0) is applied and t is the observation time. S(t, t0) accounts for the response
of the system that is enclosed in an integral that extends over the ’time history’ of the system’s
perturbation.

This formalism can be employed to describe the polarization P(t), a key quantity for spec-
troscopy, as previously emphasized. Indeed, P(t) can also be defined as the average value of the
dipole operator ˆ︁µ. By utilizing the density operator formalism, it is viable to restate the polarization
expression as [15, 20]:

P(t) = Tr[ˆ︁µ · ˆ︁ρ(t)] (1.39)

This expression can be generalized for the nth-order within the interaction picture:

P(n)(t) = Tr[ˆ︁µI · ˆ︁ρ(n)
I (t)] (1.40)
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Now, by substituting Equation (1.37) into Equation (1.39), remembering that ˆ︁VI(t) = −ˆ︁µI · E(t):

P(n)(t) =
(︃
− i

ℏ

)︃n ∫︂ ∞

0
dtn

∫︂ ∞

0
dtn−1...

∫︂ ∞

0
dt1E(t− tn) · E(t− tn − tn−1) · ...

· E(t− tn − tn−1 − ...− t1)

· Tr {ˆ︁µI(tn + tn−1 + ... + t1) [ˆ︁µI(tn−1 + ... + t1), ... [ˆ︁µI(0), ˆ︁ρI(t0)]]} (1.41)

where a new set of variables was defined as:

τn = t− tn

τn−1 = t− tn − tn−1

...

The time definitions are represented in Figure (1.1), where the time-zero point is arbitrarily set
to τ1 = 0, when the first perturbation is applied to the system.

time
τ1 = 0 τ2 τ3 τn

← t1 → ← t2 → → tn

Figure 1.1: Time ordering in the definition of the nth-order polarization. The time variables tn

indicate the time intervals while τn are referred to absolute time points.

By comparison with the first-order term of Equation (1.38), Equation (1.41) may also be ex-
pressed more simply as:

P(n)(t) =
∫︂ ∞

0
dtn

∫︂ ∞

0
dtn−1...

∫︂ ∞

0
dt1E(t− tn)

· E(t− tn − tn−1) · ... · E(t− tn − ...− t1) · S(n)(tn, tn−1, ..., t1) (1.42)

where the external stimuli, previously generically indicated with f , now explicitly refer to the
applied electric field.

Finally, it is possible to obtain the expression for the response function S(n)(tn, ...t1) [15]:

S(n)(tn, ...t1) =
(︃
− i

ℏ

)︃n

Tr {ˆ︁µI(tn + ...t1) [ˆ︁µI(tn−1 + ... + t1), ... [ˆ︁µI(0), ˆ︁ρI(t0)]]} (1.43)

where ˆ︁ρI(t0) is the density operator at the equilibrium, also reported as ˆ︁ρeq .
Note that the response function S(n) is a real quantity directly connected to the observable.

1.4.1 Third Order Response Function

The third-order response function is of particular interest: it represents the lowest order permitting
the investigation of excited states properties and offers the justification for the optical signal of
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nonlinear techniques that employ excitation with three laser pulses, such as 2DES [20, 22].
According to the treatment outlined in the preceding Sections, the third-order polarization is

expressed as:

P(3)(t) =
∫︂ ∞

0
dt3

∫︂ ∞

0
dt2

∫︂ ∞

0
dt1E(t− t3)E(t− t3 − t2)E(t− t3 − t2 − t1)S(3)(t3, t2, t1) (1.44)

where the third-order response function is:

S(3)(t3, t2, t1) =
(︃
− i

ℏ

)︃3
Tr {ˆ︁µI(t3 + t2 + t1)[ˆ︁µI(t3 + t2), [ˆ︁µI(t1), [ˆ︁µI(0), ˆ︁ρeq]]]} (1.45)

This expression can be rewritten in a more convenient way by explicitly calculating the com-
mutators:

S(3)(t3, t2, t1) =
(︃
− i

ℏ

)︃3 4∑︂
α=1

[Rα(t3, t2, t1)−R∗
α(t3, t2, t1)] (1.46)

Rα (and their associated complex conjugates R∗
α) represent the so-called Liouville pathways. For the

third-order treatment, 23 = 8 pathways are generated, each one described as a trace of a product of
matrices, as explicitly shown in Equation (1.47) [15].

R1(t3, t2, t1) = Tr [ˆ︁µI(t1 + t2 + t3)ˆ︁µI(t1 + t2)ˆ︁µI(t1)ˆ︁µ(0)ˆ︁ρeq]

R∗
1(t3, t2, t1) = Tr [ˆ︁µI(t1 + t2 + t3)ˆ︁ρeq ˆ︁µ(0)ˆ︁µI(t1)ˆ︁µI(t1 + t2)]

R2(t3, t2, t1) = Tr [ˆ︁µI(t1 + t2 + t3)ˆ︁µI(t1)ˆ︁ρeq ˆ︁µ(0)ˆ︁µI(t1 + t2)]

R∗
2(t3, t2, t1) = Tr [ˆ︁µI(t1 + t2 + t3)ˆ︁µI(t1 + t2)ˆ︁µ(0)ˆ︁ρeq ˆ︁µI(t1)]

R3(t3, t2, t1) = Tr [ˆ︁µI(t1 + t2 + t3)ˆ︁µI(t1 + t2)ˆ︁ρeq ˆ︁µ(0)ˆ︁µI(t1)]

R∗
3(t3, t2, t1) = Tr [ˆ︁µI(t1 + t2 + t3)ˆ︁µI(t1)ˆ︁µ(0)ˆ︁ρeq ˆ︁µI(t1 + t2)]

R4(t3, t2, t1) = Tr [ˆ︁µI(t1 + t2 + t3)ˆ︁µ(0)ˆ︁ρeq ˆ︁µI(t1)ˆ︁µI(t1 + t2)]

R∗
4(t3, t2, t1) = Tr [ˆ︁µI(t1 + t2 + t3)ˆ︁µI(t1 + t2)ˆ︁µI(t1)ˆ︁ρeq ˆ︁µ(0)]

(1.47)

Each Liouville pathway accounts for a distinct sequence of light-matter interactions involving
the three exciting fields, resulting in a specific density matrix evolution. The assignment of physical
meaning to each path is nontrivial, thus diagrammatic methods, such as double-sided Feynman
diagrams are widely employed.

1.4.2 Double-sided Feynman diagrams

As illustrated in Figure (1.2), these diagrams can be constructed by following a precise set of rules:

i. The time evolution of the ket and the bra of the density operator is depicted by vertical lines,
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respectively on the left and right sides. Time progresses from the bottom to the top of the
diagram.

ii. Arrows represent interactions with the electric field: interactions with a positive frequency
(negative frequency) field are represented by arrows pointing to the left (right).

iii. The final arrow, typically indicated with a wavy line, represents the emission of the signal
from the sample. As a convention, it is drawn on the left side of the diagram (or on the right
side in the case of the conjugate complex).

iv. Absorption interactions are depicted with arrows pointing toward the system, while emission
interactions are shown with arrows pointing away from it.

v. Before the first interaction, the system is in equilibrium, usually in the ground state. After
the emission of the signal, the system returns to a population state, either ground (|g⟩ ⟨g|) or
excited (|e⟩ ⟨e|).

time

|a⟩ ⟨a|
−−−−−
|b⟩ ⟨a|

−−−−−
|b⟩ ⟨c|

−−−−−
·
·
·

−−−−−

↕t1

↕t2

E1

E2

Figure 1.2: General example of a double-sided Feynman diagram for a multilevel system. The
external electric fields are depicted in red, while the time evolution of the system is shown in green.
The diagram illustrates the sequence of interactions and the transitions between different states
a, b, c, ..., highlighting the coherent dynamics and population evolution throughout the process.
The states a, b, c, ... are arbitrary states for illustrative purposes.

As shown in Equation (1.46), only four terms are required for the third-order response function.
The corresponding double-sided Feynman diagrams are illustrated in Figure (1.3), specifically for
a two-level system. R1 and R3 are the pathways associated with the ground state bleaching (GSB)
process: the first two pulses reduce the ground state population and the third generates a coherence
between the ground and the excited states, responsible for the emission of the signal. On the other
hand, R2 and R4 refer to the stimulated emission (SE) process, where the first two pulses lead to
the excited state, and the third induces the coherence that ultimately generates the signal.

The emitted signal has a wavevector ksig , which is derived as the combination of the wavevec-
tors of the incident beams:

ksig =
3∑︂

n=1
±kn (1.48)
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This implies that it is possible to distinguish the signals originating from different Liouville
pathways based on their wavevector, by selecting an appropriate experimental setup geometry.
This separation of the total signal enables the isolation of the rephasing (R) and non-rephasing (NR)
components:

kR
sig = −k1 + k2 + k3

kNR
sig = +k1 − k2 + k3

(1.49)

The distinction between these two terms arises from their differing behavior during the t1 and
t3 time intervals. For the rephasing component, the signal’s phase evolves at conjugate frequencies
during these intervals, resulting in an echo signal. In contrast, for the non-rephasing pathway, the
phase evolves at the same frequency, and no echo is produced [21].

Thus, the specific terminology used for the time intervals between consecutive interactions is
also clarified. The interval t1 is referred to as coherence time, as the system is in a coherent super-
position of ground and excited states following the first interaction. The interval t2 is known as
population time since the system can evolve in a pure state during this period. Finally, t3 is called
rephasing time, which is the time required to emit the signals.

R1

ket/ket/ket

GSB

ωsig = +ω1 − ω2 + ω3

ksig = +k1 − k2 + k3

|g⟩ ⟨g|
−−−−−
|e⟩ ⟨g|

−−−−−
|g⟩ ⟨g|

−−−−−
|e⟩ ⟨g|

−−−−−
|g⟩ ⟨g|

↕ t1

↕ t2

↕ t3

E1

E2

E3

R2

bra/ket/bra

SE

−ω1 + ω2 + ω3

−k1 + k2 + k3

|g⟩ ⟨g|
−−−−−
|g⟩ ⟨e|

−−−−−
|e⟩ ⟨e|

−−−−−
|e⟩ ⟨g|

−−−−−
|g⟩ ⟨g|

R3

bra/bra/ket

GSB

−ω1 + ω2 + ω3

−k1 + k2 + k3

|g⟩ ⟨g|
−−−−−
|g⟩ ⟨e|

−−−−−
|g⟩ ⟨g|

−−−−−
|e⟩ ⟨g|

−−−−−
|g⟩ ⟨g|

R4

ket/bra/bra

SE

+ω1 − ω2 + ω3

+k1 − k2 + k3

|g⟩ ⟨g|
−−−−−
|e⟩ ⟨g|

−−−−−
|e⟩ ⟨e|

−−−−−
|e⟩ ⟨g|

−−−−−
|g⟩ ⟨g|

Figure 1.3: Feynman diagrams representing the third-order response function for a two-level sys-
tem. The diagrams illustrate four different pathways: R1 and R3 correspond to GSB processes,
while R2 and R4 represent SE processes. The signal wavevector for each pathway is indicated, with
R1 and R4 contributing to the non-rephasing signal, and R2 and R3 contributing to the rephasing
signal. The complex conjugate diagrams, R∗

α, are the mirror images of the ones shown and are
therefore omitted for brevity.

Real systems are more complex than the simplified two-level model described above, requiring
consideration of additional contributions to the signal. For example, if higher excited states are
accessible, the third interaction may lead to absorption from the excited state: these pathways are
referred to as excited state absorption (ESA). As reported in Figure (1.4), ESA pathways contribute
to both rephasing and non-rephasing phase-matching conditions, and the corresponding signal
always exhibits negative values. In contrast, GSB and SE pathways generate positive signals.
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R∗
4

bra/ket/ket

ESA

−ω1 + ω2 + ω3

−k1 + k2 + k3

|g⟩ ⟨g|
−−−−−
|g⟩ ⟨e|

−−−−−
|e⟩ ⟨e|

−−−−−
|f⟩ ⟨e|

−−−−−
|e⟩ ⟨e|

R∗
2

ket/bra/ket

ESA

+ω1 − ω2 + ω3

+k1 − k2 + k3

|g⟩ ⟨g|
−−−−−
|e⟩ ⟨g|

−−−−−
|e⟩ ⟨e|

−−−−−
|f⟩ ⟨e|

−−−−−
|e⟩ ⟨e|

Figure 1.4: Feynman diagrams illustrating the ESA pathways contributing to the third-order re-
sponse function of a three-level system (with g ground state and e and f excited state; Ee < Ef ). R∗

2
contributes to non-rephasing signal while R∗

4 to the rephasing component.

1.5 Two-dimensional Electronic Spectroscopy

Within the perturbative framework, 2DES can be categorized as a four-wave-mixing (FWM) tech-
nique. In FWM methods, the sample is illuminated by a sequence of three light pulses, and the
fourth wave corresponds to the emitted signal, as depicted in Figure (1.5).

time

E1

τ1

E2

τ2

E3

τ3

signal

t1 t2 t3

Figure 1.5: Pulse sequence in a two-dimensional electronic spectroscopy experiment.

The signal S is therefore described by using the third-order response function S(3)(t3, t2, t1)
[14], as explained through Equations (1.7) and (1.44). Since interpreting the signal directly in the
time domain would be extremely complicated, a Fourier transform (FT) is applied to t1 and t3 to
simplify the visualization:

S(ω3, t2, ω1) =
∫︂ ∞

0

∫︂ ∞

0
dt1dt3S(t3, t2, t1)eiω3t3e±iω1t1 (1.50)

where ω1 = FT (t1) and ω3 = FT (t3) are defined as excitation and detection frequency, respec-
tively; the ± sign distinguishes between R and NR pathways.

As a result, the signal is represented in two-dimensional frequency-frequency maps, evolving
over t2. In these spectra, the x-axis corresponds to ω1 and the y-axis to ω3, as shown in Figure (1.6).

The multidimensionality of 2DES enables the exploration of various details related to the elec-
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ω1: excitation frequency
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ωg

ωg

ωe

ωe

t1

t2

t3

Figure 1.6: Typical structure of a 2D frequency-frequency map for a given t2 value, where ω1 and
ω3 are FTs of t1 and t3, respectively; the intensity of the signals appears in the maps with a color
scale: red peaks are positive (GSB+SE) and blue ones are negative (ESA).

tronic structure, vibrational and electronic motions, interactions, couplings, and relaxation pro-
cesses [22]. To extract all this information, two primary aspects must be analyzed: the peaks’
position in the 2D map and their evolution over t2.

About the peaks’ position, two types of contributions to the signal can be distinguished:

i. Diagonal peaks, where the excitation and detection frequencies are the same, provide in-
formation on the frequencies of the main transitions involved in the studied photophysics.
Therefore, the distribution of the signal along the diagonal reflects the energy landscape of
the studied molecular system.

ii. On the other hand, off-diagonal peaks arise only in the presence of couplings between tran-
sitions or states (for example, in the presence of excitonic coupling, vibronic coupling, energy
or charge transfer, etc.). The positions of these cross-peaks help identify which states are
coupled. The presence (or absence) of these peaks in a 2D map provides insight into the na-
ture of the electronic system. This capability extends to dynamic processes involving dark
states, which can be identified through the appearance of ESA cross-peaks. Dark states may
be populated through relaxation from higher-energy bright states, and once populated, they
can absorb further into higher-excited states [22].

Regarding the system’s evolution during t2, two distinct types of contributions can be observed:

i. Non-oscillating contributions arise when, after the first two pulses, the system reaches a
population state, as shown in Figure (1.7a). These dynamics can be described by solving ap-
propriate kinetic differential equations.

ii. The second class, referred to as oscillating contributions, occurs when a coherent superpo-
sition of states is created after the first two pulses, as shown in Figure (1.7b), forming the
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so-called coherence or wavepacket (WP) [23]. In agreement with the density matrix formalism
(as discussed in Section 1.3), this signal oscillates along t2 at a frequency proportional to the
energy gap between the two states involved (see Equation (1.31)). These oscillations decay
over time based on their dephasing rates, which depend on factors such as the nature of the
states, temperature, and the environment [22], and are well described by complex exponential
functions.

(a)

|g⟩ ⟨g|
−−−−−
|a⟩ ⟨g|

−−−−−
|a⟩ ⟨a|

−−−−−
|a⟩ ⟨g|

−−−−−
|g⟩ ⟨g|

(b)

|g⟩ ⟨g|
−−−−−
|a⟩ ⟨g|

−−−−−
|a⟩ ⟨b|

−−−−−
|a⟩ ⟨g|

−−−−−
|g⟩ ⟨g|

Figure 1.7: Examples of Feynman diagrams representing (a) non-oscillating and (b) oscillating con-
tributions to the signal.

1.5.1 Electronic and Vibrational Coherences

So far, no assumptions have been made regarding the nature of the levels a and b involved in the
coherent superposition evolving during t2 in the beating diagrams (Figure (1.7b)). Indeed, they
could be two different electronic states or two vibrational sub-levels belonging to the same elec-
tronic state. In the first case, we are discussing an electronic coherence that evolves over time,
while in the second case, we are discussing a vibrational (or vibronic) coherence. Electronic and
vibrational coherences can be both captured by 2DES and in many cases they can be distinguished
by inspecting the signal distribution, as they generate distinct amplitude patterns in the 2D spec-
tra [24]. These patterns can be accurately predicted using specific models, such as the excitonic
dimer (ED) for electronic coherences and the displaced harmonic oscillator (DHO) for vibrational
coherences.

Electronic coherences can be modeled using the ED approach [25]. This model describes two
identical molecules (forming a homodimer), each having two levels consisting of an electronic
ground state (g) and an excited state (e), without coupled vibrations. The molecules interact through
an electrostatic coupling, characterized by the strength constant J . The resulting exciton dimer
retains the same ground state as the monomers but forms new excitonic states, α and β. These
are linear combinations of the monomer excited states, with opposite signs and energies equal to
εα,β = ε ± J , where ε is the transition energy of the monomeric species. This three-level model,
initially conceived for an excitonic homodimer, can describe any pair of coupled electronic states
that can be simultaneously excited by the first two pulses.
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Oscillating signals are thus generated by coherent superpositions of the excitonic states α and
β. Both in rephasing and non-rephasing experiments, only two Feynman pathways contribute to
these oscillating signals, as shown by the diagrams in Figure (1.8). These pathways produce two
cross-peaks at coordinates (εα, εβ) and (εβ , εα) in the rephasing 2D map and two diagonal peaks at
(εα, εα) and (εβ , εβ) in the non-rephasing 2D map. The signals oscillate at a frequency proportional
to the energy difference between the two excitonic states, equal to 2J .

E

g

α

β

e

εα
εβ

Rephasing

εα εβ

εα

εβ

Non-Rephasing

εα εβ

εα

εβ

g g
−−−
α g

−−−α β
−−−
α g

−−−
g g

g g
−−−
β g

−−−β α
−−−
β g

−−−
g g

g g
−−−

g β
−−−α β
−−−
α g

−−−
g g

g g
−−−

g α
−−−β α
−−−
β g

−−−
g g

Figure 1.8: Excitonic dimer model illustrating the signatures of electronic coherences. The 2D maps
for R and NR experiments are presented along with the corresponding Feynman diagrams. Each
contribution is marked by a colored dot in the 2D maps, which correlates with the respective Feyn-
man diagram of the same color.

Signals generated by Feynman pathways involving vibrational coherences during t2 are com-
monly interpreted using a four-state model, known as the DHO model [24, 26], shown in Figure
(1.9).

This model consists of two electronic states, the ground state (g) and an excited state (e), both
coupled to a vibrational mode with frequency ωvib. Under the assumption that the vibration is
harmonic, the potential energy surfaces of the electronic states are represented by two parabolas:
the excited state parabola is shifted upwards by the electronic transition energy ε and displaced
along the nuclear coordinate.

The Feynman diagrams depict GSB and SE pathways, which produce oscillating signals during
t2. The frequencies of these oscillations can be either positive or negative, depending on the sign of
the coherence during t2. In the rephasing 2D maps, the peaks form a characteristic chair-like pattern,
while in the non-rephasing 2D maps, this pattern is inverted.

The predictions from these two models suggest that it should be easy to differentiate between
electronic and vibrational coherences by examining the beating distribution within the 2D maps.
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g0

g1

ωvib

e0

e1
ωvib

ε
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ε − ωvib ε + ωvibε
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Figure 1.9: DHO model illustrating the signatures of vibrational coherences. The 2D maps for R
(left) and NR (right) experiments are shown, along with the corresponding Feynman diagrams.
Each contribution is represented by a colored dot in the 2D maps, corresponding to the Feynman
diagram of the same color.

However, in real 2D map analysis, this task is not straightforward for several reasons. Firstly,
excitonic coupling in aggregates often falls within the same energy range as vibrational modes,
making pattern identification more complicated. Additionally, the DHO model neglects ESA con-
tributions, which can be significant when higher-energy electronic states are involved, introducing
new possible beating signals at different positions. Moreover, multiple vibrational modes may
couple to a single electronic transition, resulting in additional oscillating signals at different co-
ordinates in the spectrum [27]. This complexity necessitates careful signal analysis for accurate
attributions and map interpretation. One approach to assist with this is to examine the dynamical
behaviors: electronic coherences typically last for tens of femtoseconds at room temperature, while
vibrational coherences can persist for up to a few picoseconds. Additionally, the comparison with
other spectroscopic methods, such as IR or Raman spectroscopy—which are sensitive to vibrational
modes—can help resolve the challenge.
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1.6 2DES for Detecting Conical Intersections

With its capability to resolve signals both in time and frequency domains, 2DES is predicted to
be particularly suitable for investigating complex ultrafast phenomena whose spectral signatures
are often hidden in more conventional 1D spectroscopic responses. An example of these complex
ultrafast phenomena is the presence of conical intersections (CIs) [28, 29].

1.6.1 Conical Intersections

As extensively discussed in previous Sections, the molecular behavior, including photoinduced
dynamics, is described by the Schrödinger equation. To solve this complex equation, the Born-
Oppenheimer (BO) approximation is commonly employed, allowing the separation of electronic
and nuclear coordinates and the factorization of the wavefunction. This approach is justified by
the significant mass difference between electrons and nuclei, which enables the assumption that
their motions are independent [30]. The result is an approach known as the adiabatic approximation,
where the Schrödinger equation is solved at fixed nuclear positions, yielding electronic energies
as a function of these nuclear coordinates, thus forming potential energy surfaces (PESs). This
approximation is sufficient to describe a wide range of phenomena and most chemical processes.
However, in certain regions of the potential energy landscape, strong coupling between electronic
and nuclear degrees of freedom causes the BO approximation to break down [31].
One prominent case in which the BO approximation fails is at CIs, defined as real crossing points
between two electronic states [32, 33]. CIs are ubiquitous features in the photophysics and photo-
chemistry of molecules [33, 34], and they are involved in processes as important as photosynthesis
[35], vision [36], and photostability of DNA [37, 38]. Acting as “doorways”, CIs efficiently funnel
the photoexcited WP to a lower-energy electronic state, facilitating nonradiative relaxation which
occurs on a femtosecond timescale [31, 39].
In Figure (1.10), monodimensional and multidimensional representations of a CI are shown. The
WP funneling occurs along a reaction coordinate, which may correspond to a photochemical reac-
tion (e.g., as in photorhodopsin [36]), or a change in the molecular conformation [40, 41]. The two
dimensions x1 and x2 define a branching space, where the WP propagates. These two coordinates
are vibrational degrees of freedom that are generally a combination of changes in bond length and
angles of the molecular structure of the species under investigation. The reaction coordinate is not
necessarily one of these coordinates; rather, it is represented by the steepest descent path on the
PES [32, 42].

CIs represent specific topologies within the PESs where two or more electronic states become
isoenergetic, forming a multidimensional seam rather than just isolated points in space [34]. De-
pending on the local topography around the seam, CIs can be classified as either peaked or sloped, as
shown in Figure (1.11). This topography significantly influences the ability of the CI itself to pro-
mote the nonadiabatic transition [43]. In a peaked CI, the WP is directed towards the intersection
seam regardless of its initial approach direction, resulting in a more efficient conversion and trig-
gering photochemistry. In contrast, a sloped CI exhibits less pronounced funneling characteristics,
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Figure 1.10: Cartoon illustration of a CI with a double cone structure, showing the excited state
reaction pathway and two ground state reaction pathways (arrowed lines on the hypersurface).
Coordinates x1 and x2 form the branching space. On the right, a monodimensional representation
of the CI is reported to illustrate the mechanistic concept underlying these pathways. Abbrevia-
tions: FC, Franck-Condon excited state; TS, transition state. Reprinted from [42].

as the WP must ”climb uphill” to reach the seam. This often leads to slower decay rates that do
not involve photochemical processes [44, 45]. Controlling the topography around an intersection
has been an intriguing area of research. This tuning was explored through variations in the sur-
rounding environment [46, 47, 48] and by modifying the molecular structure, such as introducing
different substituents [31, 49, 50].

Figure 1.11: Schematic representation of peaked (a) and sloped (b) intersections. Reprinted from
[51].

The simplest model employed in the description of CIs is the two-state two-mode (2S2M) model,
which is illustrated in Figure (1.12). This model has been applied to relevant systems, such as
photorhodopsin [52]. This framework introduces two electronic states and two vibrational modes
to define the seam. The two electronic states can either be the ground state and the first excited
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state or two energetically adjacent excited states. Regarding the vibrational degrees of freedom, the
minimal configuration to model an intersection includes two vibrational modes: a coupling mode
and a tuning mode. The coupling mode represents the interaction between the two PESs, while the
tuning mode provides information on the energy shift between the two states. Typically, the tuning
mode corresponds to a vibrational motion that reduces the symmetry of the system, thereby lifting
the degeneracy between the electronic states and adjusting the energy gap [53, 54].
The main advantage of this model lies in its simplicity: it effectively captures the essential features
of nonadiabatic transitions while remaining robust in its application. For this reason, this Thesis
will adopt this model for data interpretation. However, it is important to note that the model’s
simplicity could be a disadvantage, as it might overlook additional states and modes that may be
relevant to the dynamics [55].

Figure 1.12: CI of two PESs illustrated as a function of the coupling and tuning mode. Transitions
originating from the ground state are represented by vertical arrows, while the branching and evo-
lution of the WP along the reaction coordinates are reported with pink curved arrows. Reprinted
from [53].

An intriguing question is understanding the typical spectroscopic signatures of CIs and how
these unique features can be captured experimentally. While it is relatively straightforward to cal-
culate CIs using appropriate algorithms [56], their experimental detection remains challenging [45].
A primary characteristic of the dynamics at CIs in polyatomic molecules is the decay of the excited
state population on timescales ranging from tens to a few hundred femtoseconds. Therefore, the
presence of accelerated relaxation dynamics could serve as initial evidence of this phenomenon.
[57]. However, it is desirable to identify signatures of a CI not only through the ultrafast nature of
the nonradiative electronic decay but also through additional more robust spectroscopic informa-
tion [53]. Another notable consequence of the presence of a CI in a system is the Berry phase, which
is often considered the ”smoking gun” for CIs in spectroscopic investigations [31]. The Berry phase
is a specific type of geometric phase affecting the electronic wavefunction. This phase shift occurs
during cyclical processes and is measurable. In an adiabatic system where the wavefunction is
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dependent on nuclear coordinates, movement through parameter space results in the generation
of a phase factor. To maintain the overall sign of the total wavefunction, the sign of the nuclear
wavefunction changes in opposition to that of the electronic wavefunction [58]. The effect was
generalized by Berry [59] and therefore is known as the Berry phase or geometric phase. As a
consequence, the geometric phase can affect nuclear dynamics as the WP may interfere after being
spread across the branching space along the possible pathways [60]. In light of this, the possible
presence of time-dependent changes in the amplitude, frequency, and phase of the beatings relative
to the time evolution of the vibrational WPs might represent a possible spectroscopic signature of
the presence of a CI. In this context, 2DES, particularly sensitive to the time behavior of vibrational
beatings, is predicted to be a powerful tool to capture clear evidence for CIs.
As a final consideration, it is important to note that various spectral signatures reported in the
literature are highly dependent on the specific characteristics of each system. Consequently, the
analysis of each system requires the development of specific tools. In Chapter 4, we will examine
the spectral features of the studied squaraines using a combination of experimental data and differ-
ent data analysis methodologies based on the predictions of the above-mentioned general models
for CIs [53, 57, 61].

28



2 Squaraines

2.1 General Properties of Squaraine Dyes

Squaraine dyes are 1,3-disubstituted squaric acid derivatives. These dyes present a D-A-D π-
conjugated system, where D represents the electron donor group while A denotes the acceptor
moiety. Their general structure, as illustrated in Figure (2.1), highlights the zwitterionic nature of
these dyes, promoted by the electron-deficiency of the central squaric ring [8, 62]. This structure
facilitates an extensive charge delocalization, resulting in a quadrupolar charge distribution [63].

Figure 2.1: Resonance limit-structures for a generic squaraine dye.

Due to their rigid, planar, and zwitterionic nature, squaraines exhibit strong absorption, with
molar extinction coefficients reaching up to 105 L mol−1cm−1 [8], spanning from the visible (Vis)
to the NIR region [9]. In combination with their flexible synthetic tunability and overall chemical
stability, these characteristics make squaraines excellent candidates for the use as sensitizers in
DSSCs [10].

In this Thesis, three symmetrical squaraine dyes were selected as sample compounds:

• 2,4-bis[4-(N,N-diisobutylamino)-2,6- dihydroxyphenyl] squaraine (SQ);

• 2,4-bis[4-(N,N-diphenylamino)-2,6-dihydroxyphenyl] squaraine (DPSQ);

• 2,4-bis[4-(N,N-dibenzylamino)-2,6-dihydroxyphenyl] squaraine (DBSQ).

These dyes are commercially available (Sigma-Aldrich®) and their structures are reported in
Figure (2.2).
Unlike the general structure depicted in Figure (2.1), the selected compounds bear hydroxyl sub-
stitutions on the lateral phenyl groups. These groups enable intramolecular hydrogen bonding,
which increases the rigidity of the conjugated system and thus enhances the dye’s overall perfor-
mance [8]. Additionally, they offer functional advantages by playing a critical role in binding to
electrodes in DSSCs [64].
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Figure 2.2: Molecular structure of the three squaraine dyes examined in this work.

Computational calculations conducted by Prof. Petrone and his collaborators at Università degli
Studi di Napoli on these specific squaraine dyes have revealed that these molecules can adopt three
distinct structural forms, in solution and at room temperature [65], as shown in Figure (2.3) for SQ.
These conformations include the neutral planar (p-), neutral distorted (d-) and anionic (a-) form.

The planar structure is characterized by a symmetrical arrangement of the atoms, stabilized
by a network of four intramolecular hydrogen bonds. In contrast, the distorted structure deviates
from this highly symmetric conformation. This form is particularly noteworthy due to its potential
impact on the electronic and vibrational properties of the dyes. Lastly, the anionic form, which
emerges from an acid-base equilibrium, is non-planar and exhibits distinct electronic and spectro-
scopic properties compared to the neutral forms [65].

2.2 Sample Preparation

Preparing sample solutions with suitable properties is a critical step for 2DES measurements. First,
we need to ensure that the samples have optimal absorbance to maximize nonlinear signals while
minimizing excessive scattering during measurements. Therefore, it is necessary to choose a sol-
vent that is able to solubilize the dye effectively. At the same time, the choice of solvent presents
another challenge, as many solvents can interfere with signal detection. Thus, selecting an appro-
priate solvent requires a balance between achieving sufficient solubility and minimizing interfer-
ence in the measurement process. This interference typically arises from the solvent’s non-resonant
signal, which combines with the system’s signal to influence the overall response [66]. The strength
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Figure 2.3: Computed conformations of SQ in acetonitrile; the (p-), (d-) with the angle involved in
the distortion highlighted in blue and (a-) forms are depicted. Reprinted from [65].

of this signal depends on the solvent’s nonlinear susceptibility [67]. Therefore, ensuring that the
solvent response does not overlap with the sample’s response is critical to capture the ultrafast dy-
namics of interest. For instance, although toluene effectively dissolves organic compounds such as
squaraines, it is unsuitable for our purposes due to its strong third-order response, which can mask
the relevant dynamics in our investigation.
Among the solvents tested, water and methanol exhibited minimal interference. Glycerol, ethanol,
isopropanol, and acetonitrile were also deemed suitable for standard 2DES conditions. In contrast,
solvents such as benzene, toluene, xylene, chloroform, and dichloromethane proved to be problem-
atic in 2DES analysis [67]. All considered, acetonitrile emerged as the preferred solvent, offering
an optimal balance in terms of solubility and minimal interference. To investigate the role of hy-
drogen bonding on the dynamics, methanol was selected as the best option among protic solvents
with properties similar to those of acetonitrile.
As a result, five sample solutions were prepared: SQ, DPSQ, and DBSQ in acetonitrile, and SQ and
DPSQ in methanol. DBSQ was only poorly soluble in methanol, and the resulting solution was also
unstable over time; therefore, this sample was not considered for the ensuing characterizations.

2.3 Preliminary Spectroscopic Characterization

Acquiring preliminary data on the basic optical properties of the studied molecules is essential for
the subsequent interpretation of the 2D spectra. To accomplish this, several linear spectroscopic
techniques were utilized.
This Section presents the linear optical characterization of the dyes, using absorption (Agilent®

Cary 100), fluorescence (HORIBA® FluoroMax-P), IR (FT-IR Bruker® Tensor 27) and resonant Ra-
man spectroscopy. UV-Vis absorption and emission spectroscopies serve as a key preliminary step
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to identify relevant electronic transitions, essential for interpreting the signals in 2DES, and to en-
sure that the samples have not deteriorated after the nonlinear measurements. Additionally, time-
resolved fluorescence measured by time-correlated single-photon counting (TCSPC) was employed
to assess the lifetime of the excited states, providing complementary information to the dynam-
ics measured by 2DES. Finally, vibrational properties were investigated by IR and Raman spec-
troscopy; the obtained results offer valuable information on the molecular vibrations that might
contribute to the beating behavior recorded in the 2DES response (see Section 1.5.1); further details
on this specific topic are presented later in Section 3.2.2.

2.3.1 UV-Vis Absorption and Emission Spectra

Each of the analyzed samples exhibits a characteristic and rather narrow intramolecular charge
transfer (ICT) absorption band between 600 and 700 nm [68, 69], as shown in Figure (2.4). This
band corresponds to the π − π∗ transition between the HOMO and LUMO levels [70, 71].
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Figure 2.4: Normalized absorption spectra of SQ, DPSQ, and DBSQ in (a) acetonitrile and (b)
methanol solutions.

The wavelengths corresponding to the maximum absorption (λmax) of the samples are reported
in Table (2.1).

Solvent SQ, λmax [nm] DPSQ, λmax [nm] DBSQ, λmax [nm]
Acetonitrile 647 657 638

Methanol 644 652

Table 2.1: Summary of the maximum absorption wavelengths obtained from the UV-Vis spectra.

In acetonitrile, as visible in Figure (2.4a), SQ and DBSQ display a shoulder at 594 nm and 588
nm, respectively, which has been attributed to a vibronic progression [72]. Instead, DPSQ deviates
from this trend and presents a significantly broader absorption bandwidth, when compared to the
other samples. This suggests that, aside from the predominant contribution of the planar form,
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which is expected to dominate the linear response because of its lower energy [65], other confor-
mations might be significant in the solution at the equilibrium, leading to a broader spectrum that
masks the vibronic shoulder.

The UV-Vis spectrum of DPSQ in methanol (Figure (2.4b)) shows a similar shoulder feature. To
determine whether this shoulder is a result of the protic nature of the solvent, a solution in another
protic solvent, ethanol, was prepared; its spectrum is shown in Figure (2.5).
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Figure 2.5: Normalized absorption spectra of DPSQ in acetonitrile, methanol, and ethanol.

In both methanol and ethanol, the shoulder is present and centered at ∼ 580 nm, which corre-
sponds to the absorption of the anionic form, as confirmed by calculations and measurements on
basified DPSQ solutions [65]. This might indicate that in protic solvents, the a-DPSQ form is stabi-
lized due to hydrogen bond acceptors in the solvent, whereas such stabilization does not occur in
aprotic solvents like acetonitrile. This also agrees with the pKA estimations [65] and the linewidth
of the band already commented. No further investigations were carried out on the ethanol sample
due to its limited stability over time.

A crucial aspect of this photophysical characterization was ensuring that the solution contained
only monomers. This was verified by recording absorption spectra of progressively diluted so-
lutions. If the spectral shape remains unchanged with increasing dilution, it indicates that most
likely no aggregate formation is present in the most concentrated solution. This verification is es-
sential not only for this study but also for the intended application of squaraine dyes. Indeed, the
presence of aggregates would be detrimental to DSSCs efficiency, as aggregation tends to quench
intramolecular charge transfer, thereby reducing the electron injection efficiency from the sensitizer
to the TiO2 conduction band [9].

The experimental spectra shown in Figure (2.6) confirmed that no aggregates were formed, as
no relevant changes were observed as a function of the concentration. This can be attributed to the
presence of out-of-plane alkyl groups on the π-bridge, which were found to reduce the tendency
for dye aggregation. Given the dyes’ planar and quadrupolar π-conjugated structure, one would
typically expect aggregation due to extensive π − π intermolecular interactions. However, the sub-
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(b) SQ in methanol
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(c) DPSQ in acetonitrile
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(d) DPSQ in methanol
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(e) DBSQ in acetonitrile.

Figure 2.6: Normalized absorption spectra of solutions prepared by successive dilutions (1:1, 1:10
and 1:50).
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stituents act as isolating groups, effectively preventing dye-dye intermolecular interactions [8].

Fluorescence emission spectra were also recorded and are reported in Figure (2.7). The presence
of a single band, corresponding to a single decay (as confirmed in the TCSPC analysis presented
in the next Section), is an additional proof to support the presence of single monomeric species in
solution. The characteristics of these emission bands are summarized in Table (2.2).
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Figure 2.7: Normalized emission spectra for SQ, DPSQ, and DBSQ in acetonitrile. λexc = 610 nm for
SQ; λexc = 615 nm for DPSQ and DBSQ. Emission spectra for the samples in methanol are omitted,
as they are analogous to those shown here.

Solvent SQ, λem [nm] DPSQ, λem [nm] DBSQ, λem [nm]
Acetonitrile 662 659 651

Methanol 658 652

Table 2.2: Wavelengths corresponding to the maxima of the emission bands for the studied sample
solutions.

2.3.2 Time-Correlated Single Photon Counting Technique

TCSPC is a time-resolved technique largely used to determine the fluorescence lifetime (τf ) of dyes
[73, 74]. This parameter is interesting because it relates to the DSSC efficiency, as seen in the defini-
tion of τf :

τf = 1
krad + knon−rad

(2.1)

where krad and knon−rad are the decay rate constants associated with radiative and nonradiative
processes, respectively.

In this work, the data were collected with a modified version of a HORIBA® FluoroMax, equipped
with a pulsed nanoLED centered at 609 nm with a 1 MHz repetition rate and a 1.5 ns time resolu-
tion. After data collection, the lifetime constants τf were extracted by fitting the output decay with
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a single-exponential function f(τf ) [74]:

f(τf ) = be
− t

τf (2.2)

with b the pre-exponential factor. The most relevant results are shown in Figure (2.8) and summa-
rized in Table (2.3). Note that only samples later examined via 2DES were reported.
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Figure 2.8: TCSPC data of the three analyzed samples. The fitting curve is reported (yellow solid
line), alongside the experimental data (orange dots), and the instrumental response function (IRF)
(blue solid line).

These results indicate that the excited-state lifetime of SQ is minimally affected by solvent vari-
ations from aprotic to protic environment, as samples present similar fluorescence lifetimes within
the experimental error. This suggests that the excited-state lifetime of SQ is not significantly in-
fluenced by changes in the hydrogen-bonding network surrounding the molecule. In contrast,
variations in the peripheral N-substituents have a more pronounced effect on τf . It can be inferred
that SQ’s excited state is less susceptible to nonradiative processes in both solvents compared to
DBSQ, likely attributable to its simpler molecular structure. A more detailed analysis of the na-
ture of these nonradiative processes and the role of the N-substituents will be explored through the
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Sample τf [ns] Error [ns]
SQ in AcCN 2.5 ±0.2
SQ in MeOH 2.3 ±0.2

DBSQ in AcCN 1.7 ±0.2

Table 2.3: Measured fluorescence lifetime constants for the examined samples. Each constant is
retrieved from a mono-exponential fitting and is reported with the corresponding error.

2DES analysis presented in Chapter 4.

2.3.3 Vibrational Spectra

The experimental IR and Raman spectra, respectively in Figures (2.9) and (2.11), were collected
in the solid phase and are consistent with the computational results, where the vibrational anal-
ysis was performed in acetonitrile solutions [65]. A meaningful comparison can still be made by
focusing on the main vibrational features.

Observing Figure (2.9), three key regions of interest can be identified:

i. 600-700 cm−1. This region is dominated by collective out-of-plane aromatic C-H bending,
addressed to DPSQ and DBSQ. For SQ, this range is characterized by modes associated with
the lateral alkyl substituents [75].

ii. 1200-1400 cm−1. In this spectral range, the most intense mode results in a ring breathing of
phenolic rings, located at ∼1250 cm−1.

iii. 1100-1750 cm−1. This region encompasses collective and backbone modes for all studied
squaraines. Such modes are asymmetric and symmetric stretching of C–C, C–O, and C–N
bonds [65]. Notably, no C=O stretching at∼1700 cm−1 is observed. This strongly indicates the
extensive bond delocalization in the four-membered ring. Instead, strong absorption bands
at ∼1600 cm−1 are observed and attributable to the C=C stretching in the squaric and the
phenyl rings [75].

The computed IR spectra enabled the further exploration of the different conformations. The
band around 1250 cm−1 was identified as the most sensitive to conformational changes, with a
blue shift and reduced intensity observed for SQ, as shown in Figure (2.10). Applying the same hy-
pothesis also to the other dyes, it becomes evident that the experimental spectrum of DPSQ, Figure
(2.9b), displays a broader band around 1250 cm−1, once again suggesting a significant contribution
from non-planar conformations.

The same observations made for the IR spectra also apply to the Raman spectra shown in Figure
(2.11), with further analysis provided for the most intense peaks:

i. ∼150 cm−1. This peak corresponds to the breathing motion of the N-substituents in the donor
moiety of each sample. Due to structural differences in these substituents, the exact frequency
varies slightly among the samples (155 cm−1 for SQ, 140 cm−1 for DPSQ, and 148 cm−1 for
DBSQ.)
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Figure 2.9: IR spectra registered in solid state. The dyes, in powder form, were dispersed in KBr-
pressed pellets.

ii. ∼450 cm−1. Present in all three samples, this peak is especially prominent in DPSQ. For SQ
and DBSQ, it is attributed to the combined breathing motion of the N-substituents and the
central hydrogen bonds. In DPSQ, however, it corresponds to a unique vibration involving
the out-of-plane motion of the N-phenyl substituents, which explains the observed deviation
in intensity.

iii. ∼590 cm−1. This peak represents the twisting motion of the phenolic rings relative to the
squaric core.
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Figure 2.10: B3LYP/6-31+G(d,p)/C-PCM infrared spectra of different conformations and protona-
tion states in acetonitrile solution. p-SQ cyan dashed line, d-SQ violet dashed line, and a-SQ yellow
dashed line. Intensities were scaled with respect to the planar conformation, which is the most
intense. Reprinted from [65].
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Figure 2.11: Normalized Raman spectra; λecc= 633 nm. The samples were analyzed in solid state at
low temperature (T∼ 160°C), to prevent damage.

39



40



3 Experimental Setup and Data Analysis

With the diffusion of ultrashort pulsed light sources in the late 1990s, transient spectroscopies
gained access to the nano- and picosecond time domains. However, short light pulses have a
broad energy spectrum due to the time-frequency uncertainty principle, which means that achiev-
ing good time resolution generally comes at the cost of losing frequency resolution. 2DES over-
comes the Fourier limit, providing both high temporal resolution, to track dynamics occurring on
the femtosecond timescale, and spectral resolution, to resolve excitation and emission energies over
significant bandwidths with high spectral accuracy [76]. As mentioned in Chapter 1, 2DES offers
several advantages and can provide more information than conventional 1D spectroscopies, but
this comes at the expense of a more complex optical setup [77].

This Chapter offers a concise overview of the fully non-collinear 2DES setup used to investigate
the ultrafast dynamics of the systems under study, along with the key steps in experimental and
data analysis procedures.

3.1 Experimental Setup

This Section illustrates the components of the optical layout, schematized in Figure (3.1).

3.1.1 Laser Source and Light Conversion

The laser source is a Coherent® Libra laser based on an amplified Ti:Sapphire system. The source
consists of three different subunits: a Ti:Sapphire oscillator (Vitesse), a regenerative optical amplifier
(Regen Cavity) which is pumped by a Nd:YAG laser (Evolution).
The Vitesse oscillator initially produces a train of pulses, called seed pulses, at a wavelength of 800
nm. These pulses feature a duration of about 100 fs, a bandwidth of approximately 12 nm, and a
repetition rate of 80 MHz, with each pulse possessing an energy of around 3.5 nJ.
The energy of the seed pulses is not high enough for many nonlinear experiments. Therefore, the
pulses undergo an amplification stage within the Regen Cavity, where their energy is increased up to
100,000 times. The Regen contains a second Ti:Sapphire crystal where an inversion of population is
generated by the Evolution laser, using pulses at 527 nm. To protect the Ti:Sapphire crystal from high
peak power damage, the seed pulses are temporally stretched before amplification and compressed
back to their original duration of 100 fs after amplification.
In the end, the output from the Libra system is a continuous train of pulses centered at 800 nm,
with a repetition rate of 3 kHz and an energy of 0.8 mJ.

The laser pulses from the Libra source are then used to pump the Light Conversion® TOPAS
White, an automated non-collinear optical parametric amplifier (NOPA), designed to convert the
central wavelength of the pulses from 800 nm to a tunable value within the 500-1100 nm range.
The amplification process in the NOPA system is facilitated by a supercontinuum light (white light)
generated in a nonlinear crystal.
Upon entry, a beam splitter divides the incoming 800 nm beam into two components; 1% of the
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Figure 3.1: Schematic representation of the 2DES setup. Abbreviations: SM, spherical mirror; P,
prism; DO, bi-dimensional diffractive optical element; DSM, donut spherical mirror; C, chopper;
ND, neutral density filter; WP, wedge pair; TS, translational stage; S, sample.
Insert (a) describes the pulse sequence and the time intervals definition in a 2DES rephasing ex-
periment. Insert (b) reports a schematic representation of BOXCARS geometry, where Ei are the
three interacting fields, ki are the wavevectors, and ELO is the fourth pulse used for heterodyne
detection. Reprinted from [77].

beam is focused onto a sapphire plate to produce the white light continuum. This white light is
then collimated using spherical mirrors and directed into a pulse shaper that controls the chirp and
bandwidth of the final amplified pulse. The remaining 99% of the pump beam is directed through
a barium-boron-oxide (BBO) crystal (Ba(BO2)2) where a 400 nm pulse is generated via second har-
monic generation (SHG). This converted beam is further split into a pre-amplification beam (5%)
and a main amplification beam (95%). The white light and amplification beams subsequently in-
teract in a second nonlinear BBO crystal; by adjusting the incident angles and delays of the three
beams, it becomes possible to selectively amplify a specific range of the white light by rotating the
crystal. The amplified beam is then collimated using a mirror telescope before exiting the TOPAS
White.
At the end of this amplification stage, the output is a train of pulses with a tunable central wave-
length ranging between 500 and 1100 nm, with a typical bandwidth of 80-100 nm, depending on the
chosen wavelength. Each pulse has a time duration of approximately 20 fs and an energy ranging
from 1 to 30 µJ, adjustable via neutral density filters.
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3.1.2 Pulse Shaping and Compression

When broadband pulses pass through transmissive optical media, the frequency components prop-
agate at different speeds due to the wavelength dependence of the refractive index. This phe-
nomenon, known as chirp, results in phase distortions that broaden the pulse duration and com-
promise the time resolution necessary for 2DES experiments [78]. To ensure high-quality results,
it is essential to achieve transform-limited (TL) pulses, which are the shortest possible pulses for
a given bandwidth. A pulse is TL when its phase, ϕ(ω), is a linear function of the frequency, ω.
In our setup, a combination of a prism compressor and an acousto-optic programmable dispersive
filter (AOPDF, Fastlite® Dazzler) is used to compress and shape the pulse to approach as much as
possible the TL condition.

The prism compressor consists of two prisms with a well-characterized wavelength-dependent
refractive index. The linear chirp is corrected by adjusting the distance between the prisms and
the angle of incidence. Therefore, the prism compressor handles most of the chirp compensation;
however, the AOPDF is necessary to perform fine adjustments. It utilizes a birefringent crystal
coupled to a piezoelectric device that generates acoustic waves. These waves interact with the
pulse, scattering different wavelengths at specific times to allow precise control of the phase and
amplitude of each spectral component.

The alignment of the prism compressor and the AOPDF settings must be optimized to achieve
the shortest possible pulse duration. This is done through an iterative procedure where all the
parameters are modified while monitoring the pulse duration. The pulse duration is measured
using a third-order technique called frequency-resolved optical gating (FROG). This step is crucial
to ensure optimal performance, as the pulse duration should be as close as possible to the TL
condition.

The FROG experiment uses the same setup as 2DES, ensuring that the pulse properties and op-
erating conditions are consistent between the two experiments. The FROG measurement involves
three ultrafast laser pulses interacting with a non-resonant third-order material, typically a solvent
such as dimethyl sulfoxide (DMSO), within the same cuvette and sample position used for 2DES
measurements. During the FROG experiment, the time delay between the first two pulses (k1 and
k2) is set to zero, while the third pulse (k3) is delayed by a time T. At the sample position, the
first two pulses interfere to form an optical grating that diffracts the third pulse, and the resulting
diffracted signal is recorded along the signal emission direction. The delay T is typically scanned
over a range of approximately 100 fs, from -50 to +50 fs. As this scan is performed, the time-
frequency map is recorded, with the time delay T represented on the x-axis and the corresponding
spectral frequencies on the y-axis, as shown in Figure (3.2).

For an ideal TL pulse, the signal is detected when the third pulse temporally overlaps with the
first two, and it decays uniformly for all spectral components as the third pulse moves away from
the overlap condition. After being integrated along the frequency axis, the signal is fitted with a
Gaussian function. The full width at half maximum (FWHM) of this fit provides the pulse duration.
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Figure 3.2: Pulse characterization by FROG measurements. (a) Experimental pulse profile mea-
sured by the FROG experiment showing no relevant chirp effects. (b) Fitting of the FROG signal
(integrated along the frequency axis) with a Gaussian function.

3.1.3 BOXCARS Geometry and Time Delay Regulation

Once the pulses are optimized, the beam is directed into the optical setup, where BOXCARS geome-
try ensures proper phase matching and pulse timing. To achieve this condition, the incoming pulse
is split into four identical replicas by focusing it on a suitably designed two-dimensional diffractive
optic element (DOE). After the DOE, the beams propagate parallel along the vertices of an ideal
square, as shown in Figure (3.1b), and are focalized on the sample. Three of these beams serve as
the exciting pulses, while the fourth, attenuated by a neutral density filter, is used as the local os-
cillator (LO), needed for detection purposes. Due to the phase-matching condition, the third-order
signal is generated along the same direction as the LO.

Time delays between the exciting pulses are introduced using pairs of CaF2 wedges; one wedge
of each pair is mounted on a computer-controlled translation stage (Aerotech® Ant95). By adjusting
the stage position, the overall thickness of the material crossed by the beam changes, controlling the
time delay with a precision of about 0.07 fs. CaF2 is preferred over the more common fused silica
for its ability to minimize phase distortions in broadband pulses, leading to finer phase control.
The fourth LO pulse is used as a time reference and thus remains fixed in its temporal position.

3.1.4 Heterodyne Detection

Due to the BOXCARS geometry, the third-order signal is emitted in the same direction as the LO,
allowing for the two beams to interfere. The detection method is based on acquiring precisely
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the interference between the emitted signal and the LO and is known as heterodyne detection. This
methodology is known to be particularly advantageous in increasing the signal-to-noise ratio in
case of very weak signals, like the third-order response measured in a 2DES experiment. The total
intensity measured by the detector can be written as:

IT OT ∝ |Esig + ELO|2 = |Esig(t)|2 + |ELO(t)|2 + 2ℜ
{︁

E∗
sig(t)ELO(t)

}︁
(3.1)

After neglecting the signal intensity, which is much smaller than the other contributions, and
subtracting the intensity of the LO (measured separately) the recorded intensity is linearly related
to the electric field of the signal. This linear dependence significantly improves the signal-to-noise
ratio.
Experimentally, the LO-signal interference passes through a spectrograph (Andor® Shamrock 303i),
which disperses the light according to wavelength. The spectrograph has three gratings optimized
for different spectral ranges, allowing for better resolution under varying conditions. Finally, the
interference signal is recorded by a 5.5 Megapixel scientific complementary metal-oxide semicon-
ductor (sCMOS) camera (Andor® Zyla).

3.1.5 Calibrations

Before performing any measurement, it is essential to ensure the phase-matching conservation and
accurately calibrate the experimental setup. These procedures are essential in guaranteeing phase
stability, which is crucial in obtaining meaningful 2DES maps.
The first step involves using a charge-coupled device (CCD) camera to confirm that the beam paths
maintain the correct BOXCARS geometry without deviations during the wedges’ motion. If any
misalignment is detected, small adjustments can be made to the prism compressor and the wedges
to optimize the alignment.
Then, the delay lines’ calibration is performed: it links the position of each wedge (in millimeters)
to the time delay (in femtoseconds) introduced for each pulse. The time delay calibration follows
the linear relation:

τi = ci(xi − zi) (3.2)

where τi is the time delay of the ith pulse, ci is the linear calibration coefficient in fs/mm, xi is
the position of the ith wedge and zi represents the zero-time position, at which all pulses have the
same delay relative to the LO.

The typical calibration procedure involves placing a 25 µm pinhole at the sample position,
where the four beams are focused. By recording the spectral interference between each pulse and
the LO through the pinhole, the zero-time positions zi can be determined. The calibration process
proceeds through three main steps:

i. Evaluation of the zero time position zi of the three linear stages that satisfy the condition
τi(zi) = 0 fs.

ii. Evaluation of the linear coefficients ci.
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iii. Evaluation of the delay from the LO, τLO.

Additionally, calibration of the sCMOS camera is essential to associate specific wavelengths
with each pixel. To achieve this, the AOPDF is used to create narrow ’holes’ in the laser spectrum
at specific wavelengths, which are then matched to the corresponding camera pixels. This pro-
cedure is repeated several times across the spectral range to ensure accurate wavelength-to-pixel
association.

3.2 Data Processing and Analysis

The output of a 2DES measurement is a three-dimensional matrix that captures the interference
between the signal and the LO, as a function of t1, t2, and emission frequency ω3, as depicted in
Figure (3.1a). The raw data contain both the signal and spurious scattering contributions, which
must be removed before analysis. Therefore, a preliminary process to obtain the actual signal is
crucial. Both pre-processing and data analysis are carried out using a home-written MATLAB®

routine.

3.2.1 Preliminary Processing

The preliminary processing of the data is a complex procedure [77], whose exhaustive description
goes beyond the aims of this Thesis. Therefore, only the main steps will be quickly summarized
here. First, it is necessary to extract the pure signal from the interferogram, removing the scattering
and the LO contributions. Then, a FT of the t1 axis is performed to obtain the excitation frequency
axis ω1. At this point, the obtained signal is complex. To isolate the real and the imaginary compo-
nents, the phase between the signal and the LO fields must be accurately estimated. This is done
through a procedure called phasing, which is based on the projection-slice theorem [79]. We are
particularly interested in retrieving the real part of the signal as it corresponds to absorptive phe-
nomena occurring during the experiment [80]. This procedure is applied both to R and NR data.
Then, after summation of the R and NR datasets, a third set of data is obtained, called the total (T)
or purely absorptive signal. All the datasets at this point assume the form of 3D matrices where the
signal (R, NR, or T) is reported as a function of ω1, t2 and ω3.

3.2.2 Data Analysis

By examining the signal evolution along the population time, important insights into the system
dynamics can be acquired, as described in Section 1.5.
Over the years, various approaches have been developed to analyze 2DES data [81, 82]. In our
research group, a multi-exponential global fitting model has been developed for this purpose [83].
The fitting function is defined as:

f(ω1, t2, ω3) =
N∑︂

n=1
an(ω1, ω3)eiϕne− t2

τn eiωnt2 (3.3)
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This function fits the decay of signals at each (ω1, ω3) coordinate of the 2DES maps simultane-
ously. It efficiently extracts both the oscillating (ωn ̸= 0) and non-oscillating (ωn = 0) components,
each corresponding to a specific kinetic constant τn, without requiring prior subtraction of the os-
cillatory part.
The fitting returns two types of amplitude (an(ω1, ω3)) maps: 2D decay-associated spectra (2D-
DAS) and 2D coherence-associated spectra (2D-CAS).

i. 2D decay-associated spectra. These maps result from the fit of the non-oscillating compo-
nents (where ωn = 0). The real part of the 2D-DAS reflects population dynamics and can be
interpreted in comparison with the 2D maps: signals appearing with the same (opposite) sign
at the same coordinates in 2D-DAS and the 2D maps, indicate an exponential decay (rise).

ii. 2D coherence-associated spectra. These maps capture the oscillatory components of the sig-
nal. By fitting with complex exponentials, 2D-CAS provide information about the beating
frequency ωn, amplitude an, and phase ϕn of specific modes.

Alternatively, oscillations can be analyzed by removing the non-oscillating components, leav-
ing behind oscillating residues. These residues can be integrated over both ω1 and ω3 and Fourier-
transformed along t2, resulting in a Fourier spectrum of coherences (FSC). This spectrum correlates
the intensities of the beatings that oscillate along t2 with their frequencies, allowing for easy iden-
tification of the main contributing frequencies. Comparing the FSC with the Raman spectrum can
help differentiate vibrational coherences from other contributions, such as electronic coherences or
solvent effects. If all the oscillations stem from vibrational coherences, the power spectrum should
match the Raman spectrum [84].

An additional and robust approach to the oscillation analysis is to apply a time-frequency trans-
form (TFT) to the oscillating residues. This analysis overcomes the limitations of conventional
methods based on FTs, maintaining both frequency and time resolution. By combining bilinear
and linear transforms, the TFT analysis produces a bi-dimensional plot where the signal is shown
as a function of population time (x-axis) and the frequency of oscillating components (y-axis). TFTs
provide both amplitude and phase information, offering a more comprehensive understanding of
the oscillations’ evolution and dephasing over time [85].
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4 2DES Experimental Results

This Chapter presents the results obtained by applying 2DES to the following three samples: SQ in
acetonitrile and methanol and DBSQ in acetonitrile. The other sample solutions initially prepared
could not be investigated with 2DES because of insufficient solubility or stability.

Due to the extensive information that can be extracted from the 2DES response of the samples,
for the sake of conciseness, the discussion will be first focused on analyzing the results achieved
with SQ in acetonitrile, which serves as a benchmark sample due to its stronger signal.
Subsequently, we will explore how variations in different solvents and substituents may influence
the overall dynamics by comparing the response of SQ in acetonitrile with that of SQ in methanol
and DBSQ in acetonitrile, respectively.

The Sections below begin with an overview of the main spectral features observed in the 2DES
maps, followed by a discussion of the population dynamics. Then, a detailed investigation of the
oscillating dynamics is presented, using various data analysis methods.

Experimental Parameters. The experimental parameters for the 2DES measurements were the
same for all samples. The experiments were run at room temperature employing an excitation laser
bandwidth centered at 15870 cm−1 (630 nm), as shown in Figure (4.1), with a bandwidth of about
100 nm. The pulse duration was 12 fs, as determined by FROG measurement. t2 was scanned from
0 to 1000 fs in steps of 7.5 fs, while t1 was scanned from 0 to 90 fs in 2.3 fs increments. The exciting
energy of the samples was set to approximately 7-8 nJ per pulse. R and NR experiments were
performed for all the samples, each repeated three times to ensure reproducibility and improve the
signal-to-noise ratio.

500 550 600 650 700 750
Wavelength (nm)

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 A
bs

or
ba

nc
e

Laser
SQ in AcCN
SQ in MeOH
DBSQ in AcCN

Figure 4.1: Spectral profile of the excitation pulse used in 2DES (shaded in gray). The colored solid
lines represent the experimental absorption spectra of each sample, normalized and overlapped for
comparison.
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4.1 Evolution of 2DES Maps along the Population Time

The peaks observed in a 2DES map correspond to various processes occurring in the sample upon
excitation, as described in Section 1.5. By analyzing the peak positions, it is possible to infer the
energies of the levels involved in these processes, which helps to identify the transitions excited by
the laser pulses.
Figure (4.2) shows the evolution of the 2DES signal for SQ in acetonitrile as a function of population
time. Each 2D map represents a slice of the real part of the total 3D-matrix dataset, recorded at
different values of the population time.
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Figure 4.2: Total real 2DES maps at selected values of t2 for SQ in acetonitrile. In panel (a), the dots
pinpoint specific relevant coordinates: green (15420, 16720) cm−1, black (15420, 15420) cm−1 and
magenta (15420, 14760) cm−1.

The main feature of these maps is a positive diagonal peak at (15420,15420) cm−1 (black dot in
Figure (4.2a)) attributed to the bleaching of the S1 ← S0 transition, as confirmed by both the UV-Vis
spectrum and theoretical calculations [65]. Additionally, two off-diagonal negative features are vis-
ible below and above the diagonal, which can be attributed to ESA processes. Both features share
the same excitation frequency as the positive peak, suggesting that the initially excited S1 serves
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as a starting point for both these ESA processes. The lower peak (magenta dot in Figure (4.2a)),
hereafter referred to as ESA1, is centered at (15420, 14760) cm−1, while the upper one (green dot
in Figure (4.2a)), ESA2, peaks at (15420, 16720) cm−1. Further insights into the dynamic processes
giving rise to these ESA signals can be achieved by analyzing the time evolution of their amplitude.
Looking at the evolution of the maps as a function of t2 (Figure (4.2)), ESA2 shows its maximum
amplitude immediately after photoexcitation. Then it undergoes a gradual decrease in intensity.
This observation indicates that ESA2 originates directly from the first excited state initially popu-
lated by the exciting sequence, i.e. S1, and suggests that ESA2 can be attributed to an Sn ← S1

transition. Indeed, the decay of ESA2 intensity follows the same dynamics as the positive diag-
onal peak one, indicating a correlated depletion of the S1 population. ESA1 displays completely
different dynamics, with a signal amplitude that increases after approximately ∼100-150 fs. This
behavior implies a two-step process: first, the population initially prepared on S1 must relax to a
lower energy state (denoted here generally as S∗), after which the ESA will occur starting precisely
from S∗. Figure (4.3) proposes a first graphical interpretation of these processes.

S0

S1

Sn

Sn

S∗
GSB

ω = 15420 cm−1

ESA2
ω = 16720 cm−1

ESA1
ω = 14760 cm−1

Figure 4.3: Level diagram summarizing the processes involved in the SQ photophysics captured
by 2DES. Transition frequencies are reported in wavenumbers (cm−1). Blue (red) arrows pinpoints
ESA (GSB) processes. The gray dashed arrow indicates nonradiative population transfer.

To support the previous hypothesis, a more quantitative analysis based on the global fitting of
the maps has been performed, as presented in the next Section.

4.2 Non-oscillating Signal Analysis

The global fitting analysis identified three non-oscillating decay components: two in the ultrafast
regime, of 10 and 166 fs, and one with a significantly larger time constant (≫ 1 ps). Each of these
time parameters is associated with a 2D-DAS, which reports the amplitude distribution of the non-
oscillating signal as a function of excitation and detection frequency, as shown in Figure (4.4). As
already described in Section 3.2.2, the evolution of the system can be deduced by comparing the
2D map and the 2D-DAS at specific coordinates.

The first ultrafast component (Figure (4.4a)) exhibits a complex signal distribution. Such a short
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Figure 4.4: 2D-DAS corresponding to the three times constants obtained from the global fitting
analysis of the dataset obtained for SQ in acetonitrile. The intensities are normalized for ease of
visualization. In panel (b) the dots pinpoint the same relevant coordinates as in Figure (4.2a): green
(15420, 16720) cm−1, black (15420, 15420) cm−1 and magenta (15420, 14760) cm−1.

time constant may correspond to several processes, including phenomena not directly related to
the photophysics of the studied dye, such as laser pulse overlap, scattering, and coherent arti-
facts. Nonetheless, the distinctive shape of the signals, with a positive diagonally elongated peak
surrounded by two negative peaks symmetrically below and above diagonal, present the typical
features commonly attributed to spectral diffusion, which is a time-dependent broadening of the
electronic transition due to the interaction with the environment (including the coupling with vi-
brational degrees of freedom and with the solvent molecules) [22, 86]. While spectral diffusion
for organic molecules in solution is generally associated with slightly longer time constants [87],
it has been observed that when anharmonic coupling between high-frequency and low-frequency
intramolecular vibrational modes is present, the spectral diffusion rate tends to increase [88]. As
discussed later in the oscillating analysis presented in Section 4.3, this could be the case. Addition-
ally, another notable feature in Figure (4.4a) is the prominent negative peak below the diagonal.
Literature reported that such a signature can be typically attributed to the relaxation from higher
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to lower energy states [89]. This could be interpreted as the relaxation from the vertically excited
FC state to the relaxed configuration within the same potential energy surface, similar to what has
been already found for other red-absorbing dyes [90].

The second ultrafast 2D-DAS (Figure (4.4b)) reveals two distinct features centered at around
ωexc=15420 cm−1: an intense off-diagonal negative (blue) peak, that extends over higher detection
frequencies and a diagonal positive (red) peak that spreads towards lower ωdet. To understand
the underlying dynamics, we compare the signs of the signal at the coordinates marked by dots
in Figures (4.2a) and (4.4b). At the coordinates pinpointed by the black and green dots, the signal
in the 2D maps and the one in the 2D-DAS have consistently the same sign, meaning that at these
coordinates the signal is decaying with the same time constant of 166 fs. Instead, at the coordinates
of the magenta dot, the signal sign indicates that the amplitude is rising, again with a time constant
of 166 fs. Given this information, it can be concluded that with a time constant of 166 femtoseconds,
some of the population initially prepared in the S1 state is transferred to another state, referred to
as S*. This transfer leads to a second ESA (ESA1), the intensity of which follows the dynamics
of the population transitioning from S1 to S*. At this point, the focus turns to understanding the
nature of the still unspecified S* state. One possible hypothesis is that the state in question is a
dark state (because it is not detected in the absorption spectrum), lying at a lower energy than
S1. However, for quadrupolar systems like this one [91], dark states below S1 are typically not
expected. Furthermore, the S1 ← S0 transition has been confirmed to involve the HOMO and
LUMO [65, 68, 69]. A second possibility is that S* represents a relaxed configuration associated
with the S1 surface, which can be reached through a relaxation process starting from the initially
populated FC state. However, when considering the overall dynamics, it is important to note that
this process has already been linked to the shortest time constant due to the peculiar amplitude
distribution observed in the corresponding 2D-DAS. The third most likely possibility is that S* is
the product of the crossing of a CI, associated, for example, with a different distorted geometry of
the molecular structure. The sequence of these two processes—relaxation from the FC state and
crossing of a CI—is plausible since CIs typically lie at lower energy compared to the vertically
excited FC state [56]. Moreover, the presence of planar and distorted molecular geometries have
been already verified also from the theoretical point of view, as described before [65].
The dynamic behavior shown in Figure (4.5) closely matches the trends predicted for a CI described
by the 2S2M model [53], both in terms of the shape of the signals and timescale of the involved
processes [57].

To better read the dynamics behind these two processes described, Figure (4.6) graphically re-
ports the two discussed phenomena.

The last 2D-DAS reports a long time constant, due to dynamics that extend well beyond the
experimental range. Its main feature is a positive diagonal peak, which corresponds to the final re-
laxation of the system to the ground state. This relaxation occurs with a time constant that exceeds
the experimental time window [14, 92]. This observation agrees with the preliminary characteriza-
tion reported in Sections 2.3.1 and 2.3.2, where a significant fluorescence signal was reported, and
fluorescence lifetimes in the ns regime were recorded.
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(c) (15420, 14760) cm−1

Figure 4.5: Experimental decays (blue dots) and fitting traces (orange solid lines) at selected coor-
dinates, as pinpointed by the colored markers in Figure (4.4b). At this stage, the oscillations were
not included in the fitting.
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Figure 4.6: Graphical representations of the possible ESA1 origins. (a) Relaxation from the ver-
tically excited FC state to the relaxed configuration at the local minimum of the PES (RC). (b)
Crossing of a CI (drawn in gray) within a 2S2M model. In both diagrams, the green arrows show
the WP pathway.
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Typically, the presence of a CI leads to highly efficient nonradiative deactivation of the excited
state [38, 57]. In this case, a comparison of the intensity of the diagonal peak in the second and third
2D-DAS suggests that the CI contributes to only about 25% of the overall deactivation and justifies
the fluorescence behavior previously mentioned.

In Section 1.6, we highlighted how the role of beatings is crucial in defining and characterizing
CI dynamics. As discussed in the next Sections, the analysis of these beatings will be essential for
both confirming the presence of a CI and gaining deeper insights into its properties.

4.3 Oscillating Signal Analysis

An initial examination of the signal evolution as a function of t2 (Figure 4.5) reveals strong oscil-
lations superimposed on the signal decay. These oscillations arise from a combination of various
beating components, stemming from different physical pathways that guide the system into differ-
ent states during t2. To identify the frequencies of the oscillations and analyze their time evolution,
several approaches were employed, as previously described in Section 3.2.2.

4.3.1 Fourier Spectrum of Coherences

As described in Section 3.2.2, the FSC highlights the beating modes that are most strongly coupled
with the resonantly excited transition. The intensity of each mode in the FSC correlates with the
strength of this coupling [84]. When interpreting this type of spectrum, it is essential to consider a
frequency error of ± 60 cm−1, due to experimental resolution. Additionally, modes with frequen-
cies below 100 cm−1 are excluded, as artifacts from the fitting procedure may heavily affect the
actual frequencies [83]. The FSC obtained by Fourier transforming the oscillating residues of R and
NR signals are reported in Figure (4.7).
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Figure 4.7: FSC of SQ in acetonitrile for the rephasing (blue) and non-rephasing (orange) response.
The main signals are labeled.
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Three main coupled modes were identified. Their attribution to specific vibrational modes is
based on the calculations performed by Prof. Petrone and coworkers and on the comparison with
the Raman spectrum [65] as:

• 166 cm−1: is the most intense signal in the FSC, attributed, within the experimental error, to
the 155 cm−1 mode that represents the breathing motion of the N-diisopropyl substituents.

• 574 cm−1: reasonably corresponding to the 580 cm−1 mode, which involves the twisting
motion of the phenolic rings with respect to the squaric core.

• 1353 cm−1: this frequency corresponds to the 1361 cm−1 mode, describing the O-H motions
around the phenolic fragments.

These three modes, depicted in Figure (4.8), altogether are responsible for inducing significant
distortions in the molecule. These distortions are primarily localized around the central part of
SQ, specifically at the junction of the squaric core and phenyl rings. It can be inferred that these
deviations from the planar structure have an impact on the electronic transition.

(a) 155 cm−1 (b) 580 cm−1

(c) 1361 cm−1

Figure 4.8: B3LYP/6-31+G(d,p)/C-PCM (acetonitrile) infrared vibrational mode for p-SQ found at
155, 580 and 1361 cm−1. Data provided by Prof. Petrone and coworkers.
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4.3.2 Coherences Associated Spectra

An alternative method to analyze the beatings contributing to the 2DES response involves directly
including the oscillating components in the global fitting procedure. The output of the global fitting
analysis including both the non-oscillating and oscillating contributions is summarised in Table
(4.1); moreover, we report the fitting traces in Figure (4.9) for the three selected coordinates already
discussed above (pinpointed with dots in Figures (4.2a) and (4.4b)).

Component index n 1 2 3 4 5 6
Frequency ωn [cm−1] 0 0 0 160 589 1357
Time constant τn [fs] 10 166 >1000 600 >1000 >1000

Table 4.1: Output parameters of the global fitting including the oscillating components for SQ in
acetonitrile (see Equation (3.3)).

0 200 400 600 800 1000
Time [fs]

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

N
or

m
al

iz
ed

 S
ig

na
l A

m
pl

itu
de

Signal
Fitting

(a) (15420, 15420) cm−1

0 200 400 600 800 1000
Time [fs]

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1
N

or
m

al
iz

ed
 S

ig
na

l A
m

pl
itu

de
Signal
Fitting

(b) (15420, 16720) cm−1

100 200 300 400 500 600 700 800 900 1000
Time [fs]

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

N
or

m
al

iz
ed

 S
ig

na
l A

m
pl

itu
de

Signal
Fitting

(c) (15420, 14760) cm−1

Figure 4.9: Experimental signal (blue dots) and fitting traces (red solid lines) at selected coordinates.
Both non-oscillating and oscillating components are included.

The reliability of the global fitting approach is demonstrated by the good agreement between
the frequencies of the oscillating components found by the fitting and those obtained through the
Fourier transform-based methodology discussed in the previous Section, as all of the three modes
considered find correspondence in the fitting output. Indeed, the fitting reveals three main beating
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components with frequencies of 160, 589, and 1357 cm−1, which correspond well to the values of
166, 574, and 1353 cm−1 of the FSC. An additional piece of information that could be extracted from
this kind of analysis is, along with the frequency of the beatings, also their dephasing times. In this
case, the long dephasing time of the oscillations (all in the ps time scale) confirms the vibrational
nature of these coherent beatings.

The amplitude associated with each frequency mode is plotted in the form of a 2D-CAS map,
which is conceptually analogous to the 2D-DAS but refers to the oscillating components. The signal
distribution in each 2D-CAS shows the coordinates where these oscillations contribute the most.
The 2D-CAS for SQ in acetonitrile are shown in Figure (4.10); for each, both R and NR datasets
are included and the frequency components are categorized as positive or negative. Positive and
negative frequencies correspond to beatings that affect the regions below and above the diagonal
in 2DES spectra, respectively [93].

(a) 160 cm−1 (b) 589 cm−1

(c) 1357 cm−1

Figure 4.10: 2D-CAS maps relative to the three main vibrational modes coupled with the electronic
transition for SQ in acetonitrile.
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Typically, the signal distribution in the 2D-CAS associated with each vibrational mode can be
explained by invoking the DHO model, as outlined in Chapter 1. According to this model, a vibra-
tional mode coupled with the resonant electronic transition should exhibit a chair-like distribution
of signals in the corresponding 2D-CAS. Already at a first qualitative inspection of the 2D-CAS
in Figure (4.10), it is clear that this model is not able to fully justify the amplitude distribution
recorded experimentally. One plausible explanation for this peculiar distribution can be achieved
by introducing a multi-vibrational mode coupled DHO model [27, 94]. This model applies when two or
more vibrational modes are anharmonically coupled and account for signal contributions at novel
and distinct coordinates. In addition to the anticipated chair-like pattern for the specific vibra-
tional mode, signals directly related to the coupling between modes emerge. These contributions
manifest at coordinates corresponding to the sum and difference of the frequencies of the coupled
modes [27]. This is illustrated in Figure (4.11), where the basic DHO patterns are highlighted in
blue while the additional contributions are marked in red. To fully explain these intricate patterns,
it is necessary to define the associated Feynman diagrams, a complex procedure that was already
undertaken in a precedent work within our group. For further details refer to [92], which discusses
the case of this specific sample.

The detection of clear signatures of multi-mode coupling in organic chromophores is notewor-
thy, as it is relatively uncommonly displayed in the literature [95, 96, 97, 98]. Furthermore, this
phenomenon points to a highly anharmonic behavior in the system under study, which was al-
ready noted through the presence of particularly fast spectral diffusion dynamics (see 2D-DAS
analysis in Section 4.2).

4.3.3 Time-Frequency Transforms

To gain insight into the time evolution of vibrational coherences, a TFT analysis was also con-
ducted. In relation to previous analyses, this approach can offer valuable insights into potential
shifts in the frequency of the beatings at a specific coordinate, depending on t2. This information
is particularly critical, as these behaviors are indicators of the presence of a CI, as described in Sec-
tion 1.6. Figure (4.12) shows the results obtained by applying the TFT analysis to the decay trace
extracted at a specific coordinate where, in agreement with the 2D-CAS analysis, we expected to
mainly capture the two lowest frequency modes at 160 and 589 cm−1. Indeed, the plot reveals two
main features, centered at the expected frequencies of about 160 cm−1 and 589 cm−1, that present
distinct temporal behaviors. The 160 cm−1 signal exhibits a notable evolution within the first 200-
300 fs, characterized by a red shift of the frequency alongside an increase in intensity, which then
decays after 300 fs. In contrast, the 589 cm−1 mode, which is less intense because of the particular
choice of the coordinate, remains constant, both in amplitude and frequency.

The time evolution of the lowest-frequency mode is distinctive and may indicate the presence
of a CI. As discussed in Section 1.6, it is expected that when a CI is present, the corresponding cou-
pling mode may experience a frequency shift during the crossing, followed by a notable decrease
in beating intensity once the CI is passed. In this case, the mode at 160 cm−1 appears to behave pre-
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(a) 160 cm−1

(b) 589 cm−1

(c) 1357 cm−1

Figure 4.11: 2D-CAS (absolute values) for each of the vibrational modes considered, for both R and
NR signals; positive and negative frequency contributions are summed. Vertical and horizontal
lines are traced at: ω0 (black), ω0± 160 cm−1 (green), ω0± 589 cm−1 (blue), ω0± 1357 cm−1 (ma-
genta). Yellow lines account for the mixed contributions: in (a) and (b) for ω0− 160 cm−1+ 589
cm−1, in (c) ω0− 589 cm−1 + 1357 cm−1. Blue circles represent the signal of the chair-like pattern,
red circles represent the signal arising from the multi-mode vibrational coupling. White (black)
outlines of the circles account for the positive (negative) frequency contributions.
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Figure 4.12: (Right) TFT analysis applied on the signal decay extracted at (15420, 14760) cm−1.
Among various TFT methods, here the smoothed-pseudo-Wigner-Ville (SPWV) transform is re-
ported, as it is considered the most reliable in terms of signal clarity [85]. (Left) FSC (indicated here
as ”power spectrum”) performed at the same coordinate, displayed for reference.

cisely as a coupling mode, exhibiting a significant change in its dynamic behavior approximately
after 200 fs. This timing aligns closely with the 166 fs attributed to the crossing of the CI. Moreover,
it is likely not a coincidence that its oscillation period (of about 200 fs) closely matches the 166 fs
time constant of interest, which is highly encouraging as it indicates the involvement of the nuclear
motions associated with this vibrational mode in the process itself [99]. A previous literature pa-
per noted that the overlap of timescales presents a challenge in distinguishing between vibrational
coherences that survive the CI crossing and those generated afterward [41]. While this issue is
particularly relevant in the 1D pump-probe measurements used by the authors of the paper [41],
it may not apply to the measurements in 2DES, where the intrinsic multidimensionality allows for
better separation of signals. Nonetheless, additional analysis was performed to address this issue.

4.3.4 Beating Map

Further insights, particularly regarding the phase variation of the wavefunction, can be obtained
using the so-called beating maps. Beating maps represent the coherent WP evolution resulting from
the subtraction of the population kinetics. These maps are obtained by plotting the oscillating
residue signal as a function of the detection frequency and t2, following data integration over the
excitation frequency. The result is shown in Figure (4.13).

The beating map displays nodes, each indicating a phase flip within the vibrational coherence.
For an excited-state WP, a single node is expected to be localized around the maximum of the
emission frequency. The node arises from the time evolution of the WP within the excited-state
PES. As the WP traverses the potential well, it causes depletion or enhancement of the oscillating
signal at different transition energies. Depending on which side of the PES the WP is positioned, the
resulting signal can be slightly red- or blue-shifted relative to the emission frequency, with a phase
flip occurring at the minimum. The red- and blue-shifted signals are temporally out of phase, thus
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creating the node through interference [100, 101, 102]. While this phase flip is a universal signature
of coherent vibrational oscillations, its microscopic origin is not always clear. A notable feature in
this map is the observed frequency shifts of the node at population times ∼< 160 fs [60].

Figure 4.13: Beating map of SQ in acetonitrile. The yellow, green, and orange lines highlight the
presence of the nodes and guide the eye in tracking their frequency shifts.

At early time delays, for t2
∼< 50 fs, the node (pinpointed by the yellow line in Figure (4.13))

gradually shifts towards the maximum of the emission frequency (located at about 15100 cm−1 =
662 nm, as shown in Figure (2.7)), likely reflecting the relaxation from the vertically excited FC con-
figuration [103]. Note that this timescale perfectly matches the first relaxation process identified
in the population dynamics (Section 4.2, Figure (4.4a)) and supports the attribution of the shortest
time constant to the electronic relaxation within the S1 band driven by spectral diffusion and relax-
ation from the FC state. Then, for 50 fs ∼< t2

∼< 150 fs, the node is found at the emission frequency
(15100 cm−1) as indicated by the green line. Finally, for t2

∼> 165 fs, it blue-shifts towards the ab-
sorption frequency (15400 cm−1) (orange line). These results indicate that the WP oscillates on the
excited state PES for the first ∼165 fs before transferring to the ground state, where it continues
to oscillate for the rest of the observed time window. This behavior suggests that the WP passes
through a CI in ∼ 165 fs. Notably, also this timescale aligns well with the findings of Section 4.2,
reinforcing the interpretation that the second time constant (Figure (4.4b)) corresponds specifically
to the crossing of a CI. As a general caution, it is important to note that the beating map shown
in Figure (4.13) includes contributions from all frequencies. This may result in a partial blurring
of the nodal lines and the associated phase shifts. We are currently conducting further analyses to
separate the different contributions and obtain a distinct beating map for each relevant vibrational
mode that is coupled to the electronic transition.
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4.3.5 Final Remarks

Overall, the oscillating signal analysis indicates that the system undergoes nonradiative decay
through a CI, with a characteristic time constant of 166 fs. Three primary vibrational modes are
coupled to the electronic transition. They appear to be all anharmonically coupled, resulting in
significant distortion in the central part of the molecule. This initial observation suggests that a
plausible reaction coordinate involves the molecular distortion from the p-SQ to d-SQ conforma-
tion. Such a reaction coordinate implies a sloped potential energy landscape, as it involves only
molecular twisting rather than an actual photoinduced reaction.
To describe the CI, we chose the minimal 2S2M framework. The relevant electronic states, S0 and
S1, were already identified as involved in the CI dynamics through the 2D maps, but further de-
tails on the two vibrational modes constituting the branching space were required. The beating
analysis, performed through various methodologies, suggested that the coupling and the tuning
mode should be identified with the 160 cm−1 and the 589 cm−1, respectively. These findings sup-
port both the appropriateness of the 2S2M model in this context and the roles of these modes in
defining the CI. More in detail, the 160 cm−1 mode likely acts as the coupling mode, as its am-
plitude is strongly damped following the proposed crossing time [104, 105]. This damping arises
from destructive interference at Qc = 0, caused by a π phase shift acquired by the wavepacket along
the two propagation pathways. Meanwhile, the 589 cm−1 mode presumably serves as the tuning
mode, driving the structural distortions essential for the conformational change and maintaining a
stable time evolution. The time behavior of this mode aligns with previous literature data, which
indicates that tuning modes are generally unaffected by the CI crossing [105, 41]. The detection of a
change in amplitude and frequency for the 160 cm−1 mode, as captured by the TFT analysis, offers
preliminary indirect evidence of the geometric phase effect. However, the predicted time constant
for the CI crossing is similar to the oscillation period of the coupling mode, which could result in
potential misinterpretations of the TFT results. [41]. Thus, caution is necessary before considering
this a definitive signature of the geometric phase effect. To address this limitation, we applied an
alternative approach using the beating map, which showed node shifts around the anticipated CI
crossing time. Initially, the node position indicated WP oscillation on the excited-state PES, later
shifting to the ground-state surface approximately 160 fs after excitation. This timeframe aligns
with the characteristic nonradiative decay period expected, confirming population transfer from
S1 to S0 via CI crossing. This type of signature has been previously used as strong evidence for the
Berry phase [60, 99].

4.4 Effect of the Environment and Substituents

This Section compares the results obtained for SQ in acetonitrile with the other datasets with the
aim of capturing possible effects of the solvent and of the molecular substituents on the overall
dynamics and particularly on the process involving the CI. We anticipate that, qualitatively, the 2D
maps, 2D-DAS, and 2D-CAS are substantially similar to those found for SQ in acetonitrile. The
only significant difference is in the time constants driving the relaxation dynamics.
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SQ in Methanol. The global fitting output parameters for SQ in methanol are reported in Table
(4.2).

Component index n 1 2 3 4 5 6 7
Frequency ωn [cm−1] 0 0 0 148 592 1056 (f) 1352
Time constant τn [fs] 10 193 >1000 500 1000 500(f) >1000

Table 4.2: Output of the global fitting analysis including the oscillating components for SQ in
methanol. The indication (f) stands for ’fixed’ as the parameters attributed to the solvent contribu-
tion were set before performing the fitting.

The main difference among the time constants extracted for SQ in acetonitrile and methanol is
in the second component, associated with the characteristic time required to cross the CI. The data
suggest that SQ exhibits a slightly slower crossing rate in methanol than acetonitrile. Changes in
the energy landscape caused by the solvent are typically attributed to either the dynamics of the
solvent [106] or its stabilizing effects on molecular structures. Since solvent dynamics usually occur
on a timescale that is much longer than the ultrafast processes being analyzed here, in the following
discussion we will focus solely on the stabilizing effects.
The main solvent properties affecting molecular behavior include polarity, viscosity, and hydrogen-
bonding capacity. Higher polarity can slow down the CI crossing by stabilizing the intermediate
geometries and therefore increasing the energy barrier along the crossing pathway, making the CI
less accessible [46]. Higher viscosity can similarly slow down the rate, primarily due to mechanical
friction [47]. However, in our case, we do not anticipate a significant dependence on polarity and
viscosity. This is mainly because the polarity and viscosity of acetonitrile and methanol are quite
similar, and because experimental evidence shows that short-time dynamics, such as CI crossing,
are only weakly affected by variations in polarity and viscosity [107, 108]. On the other hand, differ-
ences in the hydrogen-bonding network around the molecule have been found to appreciably affect
the CI crossing rate [48]. This network is expected to differ in the acetonitrile and methanol, as the
first is aprotic while the second is protic. Indeed, as discussed in Sections 2.1 and 2.2, methanol can
act as a donor and acceptor towards the hydroxyl groups of the peripherical rings. In methanol,
the formation of additional intermolecular H-bonds competes with the intramolecular H-bonds
that stabilize the planar structure [65]. Consequently, the presence of the protic solvent would
suggest a reduced stabilization of p-SQ, favoring molecular distortions and resulting in a lower
energy barrier to access the CI. On the other hand, the more extended H-bonds network formed
in methanol could lead to an overall more rigid system. In this scenario, a slowdown in the CI
crossing is predicted compared to more ’flexible’ environments [109]. Experimentally, we verified
that, in methanol, the CI crossing rate is slightly slower than in acetonitrile, suggesting that the ef-
fect of a ’more rigid’ environment may dominate. However, given the complexity of the intra- and
inter-molecular interactions at play, further investigations from the experimental and theoretical
perspectives are essential for a comprehensive understanding.

In the global fitting, a fixed vibrational mode with frequency ∼1050 cm−1 was included since
it was associated with a solvent contribution [67]; it is clearly visible in FSC in Figure (4.14). This
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mode can be easily attributed to the 1037 cm−1 Raman mode of methanol [110]. However, the
presence of this spurious beating contribution did not compromise the analysis of the sample, as
this mode does not overlap with any significant feature of the chromophores.
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Figure 4.14: Comparison between the normalized FSC of the R signal for SQ in acetonitrile (blue)
and methanol (orange). The intensity was normalized on the strongest peak for better comparison.
Relevant peaks are labeled.

DBSQ in Acetonitrile. As for the previous sample, the output of the global fitting analysis is
reported in Table (4.3).

Component index n 1 2 3 4 5 6
Frequency ωn [cm−1] 0 0 0 148 588 1519
Time constant τn [fs] 10 40 >1000 350 >1000 400

Table 4.3: Output of the global fitting analysis including the oscillating components for DBSQ in
acetonitrile.

In this sample, the second time constant is significantly lower than in previous cases. If we
assume that the photophysics of DBSQ is similar to that of SQ, it suggests that the crossing rate of
DBSQ in acetonitrile is much faster than that of SQ. This difference can be tentatively justified con-
sidering the different N-substituents on each of the molecules’ peripheral rings. Substituent effects
can be categorized as ’inertial’ or ’potential’ [56]. Inertial substituents are assumed to be electron-
ically inert chemical moieties, that serve to simply slow down (or speed up) specific vibrational
motions by increasing (decreasing) the effective mass along a particular vibrational coordinate.
Potential substituents, on the other hand, are considered to alter the underlying PESs, for exam-
ple by tilting relevant pathways along the energy surfaces and therefore redirecting efficiently the
wavepacket towards the CI, remarkably speeding up the rate of crossing [56]. Both inertial and po-
tential effects influence the branching space around the CI. Moreover, the supposed coupling mode
is related to the nuclear motion of substituents, explaining its significant weight in the overall CI
dynamics [111]. N-diisobutyl is lighter and the inductive effect predominates, as for any simple
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alkyl substituent. In contrast, N-dibenzyl is heavier and the electronic density can be redistributed
through the mesomeric effect. When inertial and potential effects coexist and resonance effects are
present, the potential effects generally dominate. Between inductive and mesomeric effects, the lat-
ter is more effective in directing nonadiabatic dynamics [112], by varying the slope of the pathway
towards the CI and ’pushing’ the WP along a particular coordinate [50]. With the distortion of the
molecule due to the twisting, a charge imbalance is likely produced within the molecule. Thus,
the N-dibenzyl substituent produces a greater overall stabilization along the reaction coordinate,
significantly speeding up the CI crossing [49].

Concerning the oscillating part, the primary distinction between SQ and DBSQ lies in the higher-
frequency coupled mode. As shown in Figure (4.15), DBSQ presents a 1519 cm−1 beating, which
can be reasonably attributed to the ∼1505 cm−1 mode found in the calculations [65]. This vibration
involves the motion of both the central core and the N-substituents, whereas the∼1350 cm−1 mode
in SQ corresponds solely to the breathing of the molecule’s central core. This observation further
suggests the significant impact of benzyl substituents on the overall dynamics, especially when
compared to simpler alkyl substituents.
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Figure 4.15: FSC for DBSQ in acetonitrile. Both R (blue) and NR (orange) contributions are reported
and the main vibrational signals are labeled. The spectral region below 100 cm−1 is not considered
due to the possible presence of artifacts.
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Conclusions

This Thesis project investigated the ultrafast dynamics of three commercially available symmetri-
cal squaraine dyes, aiming to explore relaxation pathways that may hinder charge separation and
transport, crucial processes to guarantee a good efficiency of these dyes as sensitizers in DSSCs.
The initial characterization of the linear optical behavior of SQ, DSPQ, and DBSQ provided valuable
insights into their excited-state properties, highlighting the significant role that specific vibrational
modes play in the electronic transitions.
This preliminary information was crucial in the interpretation of the data collected by 2DES, pro-
viding a solid framework for understanding the photophysical and dynamical properties of this
class of organic molecules. Through the application of several advanced data analysis methodolo-
gies, we successfully identified and characterized both population and coherence dynamics.

For all the studied samples, we found that the population relaxation is dominated by three
distinct decaying components:

i. A fast-decaying component with a time constant of about 10 fs, linked with the initial ultra-
fast relaxation from the vertically excited FC state toward a relaxed configuration, and also
accounting for spectral diffusion and pulse overlap effects.

ii. A second component with a time constant in the order of hundreds of fs, attributed to the
crossing of a CI, which enables the ultrafast nonradiative decay of the excited-state population
to the ground state. This second component demonstrates the greatest variability among the
studied samples, as it is highly dependent on the type of substituents present and the nature
of the solvent used.

iii. A final component with a much longer time constant (≫ 1 ps), associated with the overall
relaxation of the system back to the ground state.

The process most relevant to this Thesis is undoubtedly the second component. Several spectral
features support its association with a CI, including the analysis of the oscillating components. The
vibrational modes more strongly coupled with the electronic transition showed strongly anhar-
monic behavior and confirmed the presence of a CI with sloped topography, linked to the twisting
of the molecule from a planar to a distorted conformation of the molecule. This nonadiabatic pro-
cess involves the S0 and S1 electronic states, with the vibrational modes that define the branching
space identified, for SQ, in the strongly coupled ∼160 cm−1 and ∼590 cm−1 modes. These modes
are associated with the breathing of the donor moieties N-substituents and the twisting motion be-
tween the central rings.
From an application perspective, in DSSCs the presence of this nonradiative decay pathway could
be highly detrimental due to its efficient deactivation of the excited state. However, in our samples,
the deactivation via CI crossing accounted for only about 25% of the total decay, suggesting that
while this pathway exists, it would not significantly compromise the dyes’ effectiveness as sensi-
tizers.
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We also examined how environmental factors and dye substitution affect the CI crossing rate,
finding that modifications to the dye’s peripheral N-substituents produced the most significant
changes. This underscores the critical role of substituents in modulating CI dynamics and suggests
that lighter alkyl substituents could enhance DSSC performance.
Regarding the role of the solvent, we observed that while its effect was modest in our sample
solutions, the presence of a rigid network of hydrogen bonds that restricts nuclear motion and
molecular distortions could be a potential strategy. This approach may slow down the crossing of
the CI and promote deactivation through more effective pathways.

Several exciting developments are envisioned for this project in the future. First, a more sys-
tematic characterization of squaraines with a wider range of substituents is needed to confirm the
impact of molecular structure on the dynamics involved in the crossing of the CI. In this Thesis,
the investigation of solvent effects was limited to two very similar solvents (in terms of polarity,
viscosity, etc.) due to solubility and technical issues. However, exploring molecules with different
functionalizations may broaden the range of solvents that could be studied, providing a clearer
understanding of the role of the environment. This aspect is crucial when transitioning from a
laboratory solution to a real material that will be incorporated into a working device. Another
potential direction for future research would be to investigate squaraine aggregates, to determine
how changes in electronic properties due to aggregation might influence vibronic coupling and the
multi-mode interactions observed in monomeric forms.

In conclusion, the results presented in this Thesis represent a significant advancement in under-
standing the optical and electronic properties of this significant family of chromophores and shed
light on the subtle effects dominating their relaxation dynamics.
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