Sfoglia per Relatore
Riconoscimento Anomalie tramite Approcci non supervisionati per macchine utensili industriali
2020/2021 DE ROSSI, GAIA
Rilevamento anomalie per macchine automatiche dell'industria dell'intrattenimento
2021/2022 PERONI, MARCO
Semi Supervised Learning Approaches for Semiconductors Defect Classification
2021/2022 RABAI, NADA
Tecniche di Deep Learning per l’Anomaly Detection sulle Risposte a Questionari Online
2020/2021 ORIOLO, ANDREA
Topic modelling approaches for digital marketing data
2020/2021 SARTI, GIOIA
Transfer learning approaches for industrial image classification
2020/2021 PAZZAIA, ALBERTO
Tuning Nitrogen-Vacancy Centers in Diamond using Reinforcement Learning
2022/2023 SHOJAEI, ARAM
Una tecnica di Domain Adaptation per l'analisi predittiva nell'industria manufatturiera di semiconduttori
2020/2021 ZANETTI, MARCO
Unsupervised Anomaly Detection: investigations on Isolation Forest
2021/2022 SAVARINO, VINCENZO
Unsupervised Learning of Discrete Sequences Representations for Clustering
2020/2021 ROTONDI, GIACOMO
'Unsupervised Machine Learning in Industry 4.0 Applications'
2020/2021 MUKAJ, BLEONA
You can now have a chance to beat your grandparents at Briscola thanks to Deep Reinforcement Learning
2022/2023 SINIGAGLIA, ALBERTO
Tipologia | Anno | Titolo | Titolo inglese | Autore | File |
---|---|---|---|---|---|
Lauree magistrali | 2020 | Riconoscimento Anomalie tramite Approcci non supervisionati per macchine utensili industriali | Unsupervised Anomaly Detection for Industrial Machine Tools | DE ROSSI, GAIA | |
Lauree magistrali | 2021 | Rilevamento anomalie per macchine automatiche dell'industria dell'intrattenimento | Anomaly detection for entertainment industry automatic machines | PERONI, MARCO | |
Lauree magistrali | 2021 | Semi Supervised Learning Approaches for Semiconductors Defect Classification | Semi Supervised Learning Approaches for Semiconductors Defect Classification | RABAI, NADA | |
Lauree magistrali | 2020 | Tecniche di Deep Learning per l’Anomaly Detection sulle Risposte a Questionari Online | Deep Learning Techniques for Anomaly Detection on Answers to Online Questionnaires | ORIOLO, ANDREA | |
Lauree magistrali | 2020 | Topic modelling approaches for digital marketing data | Topic modelling approaches for digital marketing data | SARTI, GIOIA | |
Lauree magistrali | 2020 | Transfer learning approaches for industrial image classification | Transfer learning approaches for industrial image classification | PAZZAIA, ALBERTO | |
Lauree magistrali | 2022 | Tuning Nitrogen-Vacancy Centers in Diamond using Reinforcement Learning | Tuning Nitrogen-Vacancy Centers in Diamond using Reinforcement Learning | SHOJAEI, ARAM | |
Lauree magistrali | 2020 | Una tecnica di Domain Adaptation per l'analisi predittiva nell'industria manufatturiera di semiconduttori | A domain adaptation approach to predictive maintenance for semiconductor manufacturing | ZANETTI, MARCO | |
Lauree magistrali | 2021 | Unsupervised Anomaly Detection: investigations on Isolation Forest | Unsupervised Anomaly Detection: investigations on Isolation Forest | SAVARINO, VINCENZO | |
Lauree magistrali | 2020 | Unsupervised Learning of Discrete Sequences Representations for Clustering | Unsupervised Learning of Discrete Sequences Representations for Clustering | ROTONDI, GIACOMO | |
Lauree magistrali | 2020 | 'Unsupervised Machine Learning in Industry 4.0 Applications' | 'Unsupervised Machine Learning in Industry 4.0 Applications' | MUKAJ, BLEONA | |
Lauree magistrali | 2022 | You can now have a chance to beat your grandparents at Briscola thanks to Deep Reinforcement Learning | You can now have a chance to beat your grandparents at Briscola thanks to Deep Reinforcement Learning | SINIGAGLIA, ALBERTO |
Legenda icone
- file ad accesso aperto
- file ad accesso riservato
- file sotto embargo
- nessun file disponibile