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Abstract

This thesis presents a new approach towards de novo DNA assembly for short

reads. Its two main contributions are a novel, robust filtering scheme for noisy

reads that outperforms the (accuracy of the) widely used Sasson’s filter, and a

novel assembly algorithm that, minimizing space and maximizing locality of ac-

cesses, runs faster than all state-of-the-art algorithms even when on substantially

cheaper hardware.

The thesis is organized as follows. Chapter 1 provides a brief introduction

to sequencing technologies and existing assembly algorithms. Chapter 2 presents

our filtering scheme, and experimentally evaluates its accuracy (comparing it to

that of the Sasson’s filter); this is joint work with G. Bilardi, F. Peruch and M.

Schimd. Chapter 3 introduces our assembly algorithm, and provides a theoretical

analysis of its correctness and asymptotic performance; this is joint work with E.

Peserico. Chapter 4 experimentally evaluates the performance of our assembly

algorithm combined; this is joint work with F. Bogo. Finally, Chapter 5 sum-

marizes our results and examines directions of future research before concluding

with the Bibliography.

Keywords: DNA, SOLiD, colour, filter, Sasson, assembly, de novo, Velvet,

Abyss, locality, hash, memory.
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Chapter 1

DNA sequencing and assembly:

an overview

This Chapter provides an overview of current state-of-the-art techniques in DNA

sequencing and assembly. After introducing some preliminary notions (Section

1.1), we review the most widely employed DNA sequencing techniques (Section

1.2) and assembly algorithms (Section 1.3).

1.1 Preliminaries

This Section introduces some terminology and defines some essential concepts.

We assume the reader has basic familiarity with the field of molecular biology, and

provide only a few specialized definitions. This preliminary and general “glos-

sary” will be integrated by more specific notions during discussion, when needed.

First, we introduce the technical notions of DNA primers, DNA templates and

base-pairs. Then, we clearly distinguish between DNA sequencing and assembly

procedures, highlighting the differences and the relationships between the two.

While discussing sequencing and assembly, we provide the auxiliary definitions of

read, contig and k−mer.

A DNA primer is a short strand of chemically synthetized nucleotides, that

serves as a starting point for DNA synthesis. Many of the laboratory techniques

of biochemistry and molecular biology that involve DNA polymerase – such as

DNA sequencing – require DNA primers. A DNA template is a recombinant DNA

molecule made up of two regions: a binding zone (usually an adaptor sequence to

which a primer can bind) and a target sequence (typically an unknown portion
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to be sequenced). Genomes usually present a double-stranded DNA. A base pair

(bp) corresponds to a linked pair of two nucleotides on opposite complementary

strands; in particular, adenine forms a base pair with thymine and guanine forms

a base pair with cytosine. The size of an individual gene or of an organism’s

entire genome is often measured in base pairs.

The goal of DNA sequencing is mapping the sequence of the nucleotides in a

molecule of DNA, typically using biochemical methods. Starting from the 1970s,

several sequencing technologies have been proposed (see [41] for a survey). In gen-

eral, they can not read whole genomes in one run, but rather read small pieces

of between 20 − 1000 bases (b), depending on the technology used. These frag-

ments are commonly called reads. DNA assembly aligns and merges the reads

into longer composite sequences (known as contigs), in order to reconstruct the

original (much longer) DNA sequence [12]. For efficiency, most assemblers gener-

ally introduce the notion of k−mers. A k−mer is a sequence of k bases (where k

is a positive integer); usually, only consecutive bases are used. k−mers allow an

efficient discovery of overlapping reads (that is, matching reads which should be

aligned or merged into the same contig): reads with high sequence similarity share

k−mers in their overlapping regions, and shared k−mers are generally easier to

find than overlaps. Fast detection of shared k−mers dramatically reduces the

computational cost of assembly, especially compared to all-against-all pair-wise

read alignment. As we shall see in Subsection 1.2.4, k turns out to be a crucial

parameter: it affects both efficiency and accuracy of the assembly process.

We distinguish two types of assembly [29]: mapping assembly and de novo

assembly. Mapping assembly aligns and merges reads (or k−mers) against an

existing backbone sequence, building a sequence that is similar but not necessar-

ily identical to the backbone sequence itself. Mapping is useful when reads need

comparing against a reference sequence – e.g., when comparing (reads from) an

individual genome with a related genome. Mapped reads can reveal small-scale

population differences such as substitutions and indels [18]. De novo assembly

aligns and merges reads (or k−mers) to create full-length (sometimes novel) se-

quences. It refers to reconstruction in its pure form, without consultation of

previously resolved sequences. In terms of complexity and time requirements, de

novo assemblies are orders of magnitude slower and more memory intensive than

mapping assemblies.
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1.2 Sequencing technologies

In this Section, we describe the most widely employed sequencing techniques

developed during the last 40 years. First, we provide an overview of these tech-

niques – adhering to the classical distinction between first generation sequencing

(Subsection 1.2.1) and next generation sequencing (Subsection 1.2.2). We em-

phasize how this distinction depends not only on temporal considerations (the

former were developed a quarter of century ago, the latter became commercially

available only in the last decade), but also on performance aspects (such as read

length, bases per second, and costs). Then, we distinguish between sequenc-

ing data provided in base space and in colour space (Subsection 1.2.3) Finally,

we discuss the opportunities and challenges these techniques present to de novo

assembly (Subsection 1.2.4).

1.2.1 First generation sequencing

“First generation” sequencing methods are essentially two: the Maxam–Gilbert

(or chemical degradation) method [26] and the Sanger (or chain termination)

method [37,38]. They have been developed in the late 1970s and share a common

approach. Both methods generate, in different ways, a nested set of single–

stranded DNA fragments; these fragments are then separated according to their

size by an electrophoresis procedure on high–resolution polyacryalmide gel.

[26] introduces the first widely employed DNA sequencing technique – the

Maxam–Gilbert method – in 1976. In a nutshell, this procedure determines the

nucleotide sequence of a terminally labeled DNA molecule by breaking it at each

repetition of a base (adenine, guanine, cytosine or thymine) with chemical agents.

It employs four different chemical cleavages, each specific to a base. The lengths

of the labeled fragments then identify the positions of that base. This method

presents three major drawbacks: its technical complexity (making it unsuitable

for standard molecular biology kits), extensive use of hazardous chemicals and,

mostly, difficulties with scaling (it permits the extraction of no more than 100

bases from the point of labeling) [27].

The Sanger method [37, 38] is more efficient and generates raw data that is

easier to interpret. The Sanger method dominated the industry for almost two

decades and led to a number of monumental accomplishments, including the
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completion of the only finished–grade 1 human genome sequence.

Since its first, complete formulation in 1977 [38], the Sanger method has re-

mained conceptually unchanged. It utilizes a DNA polymerase 2 to synthesize a

complementary copy of a single–stranded DNA template in the presence of chain–

terminating (inhibitor) nucleotides – the didexynucleotides (ddNTPs). ddNTPs,

when incorporated, determine termination of the chain growth: in this way, the

DNA synthesis reaction is randomly terminated whenever a ddNTP is added

to the growing nucleotide chain. This produces truncated fragments of varying

lengths, with an appropriate ddNTP at their terminus. The fragments are sepa-

rated by size using polyacrylamide gel electrophoresis and the terminal ddNTPs

are used to reveal the DNA sequence of the template strand.

Since the early 1980s, significant technical improvements have made the Sanger

method both more precise and more efficient [27]. The use of fluorescently la-

belled DNA molecules allowed automatic detection of ddNTPs by laser-based

technology; breakthroughs in polymer biochemistry increased sequencing effi-

ciency. These advances in sequencing technology contributed to the relatively

low error rate, long read length, and robust characteristics of modern Sanger

sequencers. Nowadays, a commonly used automated high-throughput Sanger se-

quencing instrument from Applied Biosystems 3, the ABI 3730xl 4, can produce

up to 96 kb in a 3-hour run. Despite the many advances in the chemistry-

related technologies and the robust performance of instruments like the 3730xl,

the Sanger sequencing is relatively expensive; its application to large sequencing

projects has remained beyond the means of the typical grant-funded investiga-

tor. Next generation sequencing technologies address, to different degrees, this

limitation.

1.2.2 Next generation sequencing

In the last few years, the Sanger method has been partially supplanted by the so

called “next generation” sequencing (NGS) technologies. These newer technolo-

1a finished–grade sequence refers to a sequence exhibiting high base coverage as well as few

errors and gaps.
2a polymerase is an enzime enabling the polymerization of new DNA from an existing DNA

template.
3 www.appliedbiosystems.com
4 www.appliedbiosystems.com/products/abi3730xlspecs.cfm
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gies shift away from the classic Sanger method for genome analysis. They com-

bine various ad-hoc template preparation and sequencing techniques with intesive

data analysis (in particular, with elaborate alignment and assembly methods).

The major advantage of NG sequencing is a dramatic increase in cost-effective

sequence throughput: in some cases, sequencers can produce in excess of one

billion reads per instrument run [28]. This enormous – and cheap – volume of

data comes at the expense of a shorter reads and often lower accuracy. Here,

we discuss these advantages and disadvantages briefly reviewing the most popu-

lar, commercially available technologies: Roche/454, Illumina/Solexa, Polonator,

Helicos BioSciences HeliScope and ABI SOLiD.

Roche/454 An inherent limitation of Sanger sequencing is the requirement of

cloning into bacterial hosts the DNA fragments to be sequenced. This cloning step

is prone to errors, lengthy and quite labour intensive. The 454 technology [25] –

the first next–generation sequencing technology released to the market in 2005 –

circumvents the cloning requirement by taking advantage of a highly efficient in

vitro DNA amplification method, the Emulsion Polymerase Chain Reaction.

Emulsion PCR amplifies DNA inside water droplets in an oil solution. Each

droplet contains a single DNA template attached to a primer bead; droplets act

as individual amplification reactors, producing clonal copies of a unique DNA

template per bead. Each template-containing bead is subsequently transferred

into a well of a picotiter plate and the clonally related templates are analysed

using a pyrosequencing reaction [30]. The use of the picotiter plate allows hun-

dreds of thousands of pyrosequencing reactions to be carried out in parallel, mas-

sively increasing the sequencing throughput. The pyrosequencing approach is a

sequencing-by-synthesis technique measuring the release of inorganic pyrophos-

phate (PPi) by chemiluminescence. The template DNA is immobilized, and so-

lutions of ddNTPs are added one at a time; the release of PPi, whenever the

complementary nucleotide is incorporated, is detectable by the light produced by

a chemiluminescent enzyme present in the reaction mix. The sequence of DNA

template is determined from a “pyrogram”, which shows the order of correct

nucleotides that have been incorporated.

This technology provides intermediate read length and price per base com-

pared to Sanger sequencing on one end, and to later NGS techniques on the other.
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The current 454 platform 5 marketed by Roche Applied Science 6 is capable of

generating 80 − 120 Mb of genome sequence in 200 − 300 bp reads in a 4-hour

run.

Illumina/Solexa The Illumina/Solexa approach [3] achieves cloning-free DNA

amplification in two steps. First, it attaches single-stranded DNA fragments to

primers through chemical adapters; then, it amplifies these DNA templates so

that local clonal colonies are formed (“solid-phase bridge” amplification). After

the amplification step, approximately 1000 clonal copies of a single template

molecule are obtained. These copies are sequenced in a massively parallel fashion

using a DNA sequencing-by-synthesis approach. Four types of ddNTPs – labeled

with fluors of four different colours – are added to clonal copies. Such ddNTPs

allow the distinction among the different bases at any given sequence position.

Compared to pyrosequencing, the Illumina approach produces shorter se-

quence reads; hence, it cannot resolve short sequence repeats. In addition, due to

the use of modified DNA polymerases and reversible terminators, it may intro-

duce a significant number of substitution errors [28]. Typically, the 1G genome

analyzer 7 from Illumina, Inc. 8 is capable of generating 35 bp reads and produc-

ing at least 1 Gb per run (in 2− 3 days).

Polonator The Polonator G.007 instrument 9 relies on polony sequencing [42].

Polony sequencing technology is open and provides freely available software and

protocols; it was ultimately incorporated into the Applied Biosystems SOLiD

platform 10. In a nutshell, polony sequencing relies on an accurate multiplex

sequencing technique that can be used to “read” millions of immobilized DNA

sequences in parallel. As in Roche/454, it employs emulsion PCR in order to

obtain clonal colonies of an initial DNA template – such clones are then sequenced

in parallel through enzymatic ligation reactions. We explain the sequencing-by-

ligation scheme in greater detail when discussing the SOLiD technique, below.

5www.my454.com
6www.roche-applied-science.com
7www.illumina.com/systems/genome_analyzer_iix.ilmn
8www.illumina.com
9www.polonator.org/instrument/

10www.appliedbiosystems.com/absite/us/en/home/applications-technologies/

solid-next-generation-sequencing.html
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Helicos Biosciences HeliScope Helicos BioSciences 11 was the first group

to commercialize a single-molecule sequencer, the HeliScope [46]. It requires no

cloning or amplification in template preparation and, unlike the other NGS tech-

niques, utilizes a one-colour termination method. The Helicos terminators are

labeled with the same dye and dispensed individually in a predetermined or-

der. Fluorescence imaging techniques allow the production of one-colour images,

highlighting the sequencing data. While the lack of cloning mechanisms ensures

non-bias representations of DNA templates, the adopted sequencing method in-

troduces high error rates compared with other terminator chemistries.

ABI SOLiD SOLiD (Supported Oligonucleotide Ligation and Detection sys-

tem) [32] from Applied Biosystems incorporates polony sequencing in order to

achieve massively parallel sequencing by ligation.

Construction of sequencing templates for analysis on the SOLiD instrument

begins with an emulsion PCR amplification step, similar to that used in the

454 technique. The amplification products are transferred onto a glass surface

and a four-colour sequencing-by-ligation scheme is then applied to them – the

same scheme adopted in polony sequencing. Through enzymatic ligation reac-

tions, primers obtained during amplification are anchored to polymers labelled

with four different fluorescent dyes. To the extent that the ligase discriminates

for complementarity between polymers and bases, the fluorescent signal allows

to infer the identity of the corresponding base. Using the four-dye encoding

scheme, each position is probed twice; the identity of each nucleotide is deter-

mined by analysing the colour resulting from two successive ligation reactions.

The two-base encoding scheme introduces robustness. In particular, it enables

the distinction between a sequencing error and a sequence polymorphism: an

error would be detected in only one particular ligation reaction, whereas a poly-

morphism would be detected in both. Newly released SOLiD instruments are

capable of producing 1− 3 Gb of data in 35 bp reads over an 8-day run.

1.2.3 Base space and colour space

NG sequencers provide output data encoding it in base space or in colour space.

11www.helicosbio.com
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The base space representation is the most common one. According to this

encoding scheme, reads are sequences of characters; each character represents one

nucleotide (i.e., A, C, G or T). It is common to refer to the individual characters

in a read as base calls (to highlight the fact that, due to the presence of errors, a

base call not correspond to an actual base).

SOLiD platforms introduced a novel, more effective way of representing se-

quenced data. Data are collected in colour space, a special type of two-base

encoding. To reconstruct a DNA sequence, a further conversion is then required.

Reads are sequences of colours ; each colour is encoded by a digit. There are four

possible digits: 0, 1, 2 and 3. Each digit corresponds to a colour call. Each colour

is a di -base; it encodes one base in relation to its preceding base.

In particular, each colour can be conceptually interpreted as a representation

of the interstice between bases. Table 1.1 shows the translation from di-bases to

colours.

A C G T

A 0 1 2 3

C 1 0 3 2

G 2 3 0 1

T 3 2 1 0

Table 1.1: Di-base to colour translation table.

This two-base encoding requires dual interrogation of each base during SOLiD’s

sequencing process, helping to distinguish sequencing errors from true polymor-

phisms. In general, it is possible to gain robustness to error by switching from

colour space to base space and viceversa; many assemblers for the SOLiD plat-

form form alignments in colour space and then test their validity by conversion

to base space.

1.2.4 NGS and de novo assembly: main challenges

NGS platforms can provide an enormous volume of data at a very low cost when

compared against common Sanger sequencers. Unfortunately, this cost-effective

throughput comes with two main drawbacks: much shorter reads and harder
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retrieval of mate pairs [28]. Short reads probably constitute the more serious

problem.

Table 1.2.4 directly compares the NGS technologies discussed in the previous

Subsection, showing for each read length, data per run (in Gb), and run time.

Platform Read length (b) Gb per run Run time (days)

Roche/454 330 0.45 0.35

Illumina/Solexa 75 18 4

Polonator G.007 26 12 5

BioSciences HeliScope 32 37 8

ABI SOLiD 75 30 7

Table 1.2: Read length, Gb per run and run time of the most popular NG se-

quencers.

In general, while Sanger sequencing allows reads of up to 1000 bp, today’s

NGS reads rarely exceed lengths of 400 bp (Roche/454), and in many cases only

allow reads of 100 bp (Illumina/Solexa and SOLiD) or less. Short reads poses

novel challenges to de novo assembly. Shorter reads deliver less information per

read, increasing the computational complexity of assembling reads into a longer

DNA sequence. In particular, this shortcoming is an issue in sequencing new

genomes and in sequencing highly modified segments – e.g, segments discovered

in cancer genomes or in regions of structural variation.

A partial solution to short reads is oversampling the target genome with

short reads from random positions. By providing higher coverage, NGS attempts

to guarantee sufficient (detectable) overlap between reads. Unfortunately, this

approach has some limitations. First, NGS can not always ensure a uniform

coverage of the target sequence. Coverage variation is introduced by chance, by

variation in the number of clones of source DNA molecules, and by compositional

bias introduced by sequencing technologies during chemical treatments. While

very low coverage introduces gaps in assembled sequences, coverage variability

invalidates coverage-based statistical tests, and diminishes the effectiveness of

coverage-based diagnostics. Furthermore, as a side effect, oversampling may both

undermine assembly accuracy and intensify computational issues related to large

data sets.
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The huge number of reads and their short length make read accuracy critical

for an effective assembly. For Sanger-sequenced contigs, the PHRED method

[10, 11] is well established; for next generation technologies, no similar, well-

defined approaches exist. In general, sequence quality and base accuracy remain

highly uncertain.

Sanger platforms can deliver paired-end reads (or mate pairs) – that is, pairs

of reads with an estimated constraint on their relative orientation and separation

in the target sequence. Mate pairs’ separation and orientation estimate is usu-

ally provided to assembly software through so-called libraries of reads. Early NG

sequencers offered only unpaired reads; recently, however, platforms started sup-

porting paired-end protocols. Thus, while early NG assembly software targeted

only unpaired reads, more recent software exploits mate pairs in order to improve

assembly effectiveness.

In general, this information can be of great help in reconstructing the dis-

tribution of fragment sizes. Also, a sufficient variety of mate pairs’ separations

can allow one to resolve low coverage read sets into single contigs, even if those

contigs will sport “holes” whose contents are unknown and whose size is known

only approximately. Finally, mate pairs can be of great help when dealing with

repeated sequences [34] (see below).

Segments sharing perfect repeats can be indistinguishable, especially when

repeats are longer than the reads. Careful repeat separation involves correlating

reads by patterns in the different base calls they may have. This approach may

be aided somewhat by high coverage but is seriously hampered by high error rates

in extracted fragments. Repeat resolution depends on the presence of “spanner”

reads – that is, single reads spanning a repeat instance with a long enough unique

base sequence on either side of the repeat.

In some cases, repeats longer than the reads can be resolved by spanning

mate pairs. Complete resolution usually requires two resources: pairs straddling

the repeat with each end in unique sequence and pairs with exactly one end in

the repeat. Sequencing errors may severely undermine the effectiveness of this

approach. Assemblers must tolerate – to some extent – imperfect sequence align-

ments, in order to avoid missing true joins. However, excessively low thresholds in

error tolerance lead to false positive joins. False-positive joins can induce chimeric

assemblies (i.e., multiple valid solutions) and invalidate the correctness of whole

10



contigs. The assessment of an adequate sequencing error tolerance threshold is a

problem especially when dealing with reads from inexact (polymorphic) repeats.

Probably, only a decrease in the error-rate provided by NGS platforms could

definitively increase the accuracy at which assembly software may operate.

1.3 De novo assembly algorithms

We divide de novo assembly algorithms into two broad categories, both based on

graphs: Overlap/Layout/Consensus (OLC) methods and de Bruijn Graph (DBG)

methods. All these methods rely on overlapping k−mers belonging to different

reads, and the choice of k is crucial. The probability that a true overlap spans

shared k−mers depends on the value of k, the length of the overlap, and the rate

of error in the reads. An appropriate value of k should be large enough that

most false overlaps do not share k−mers by chance, and small enough that most

true overlaps do share k−mers. Further, the choice should be robust, taking into

account variations in both read coverage and accuracy.

1.3.1 Overlap/Layout/Consensus assemblers

The OLC approach is typical of Sanger-data assemblers, such as Celera Assembler

[31], Arachne [2] and PCAP [16]. We include it for completeness.

OLC assemblers try to organize the retrieved reads into the original DNA

sequence by creating an overlap graph. An overlap graph represents the sequenc-

ing reads and their overlaps. Conceptually, the graph has nodes to represent the

reads and edges to represent the overlaps. Paths through the graph are the po-

tential contigs, and paths can be converted into a sequence. There are two ways

to force paths to obey the semantics of double-stranded DNA. If the graph has

separate nodes for read ends, then paths must exit the opposite end of the read

they enter. If the graph has separate edges for the forward and reverse strands,

then paths must exit a node on the same strand they enter.

Roughly speaking, OLC assembly is made up of three phases:

1. all-against-all, pair-wise read comparisons are performed. The assembly

software pre-computes k−mer content across all reads, selects overlap can-

didates (i.e., reads sharing at least one k−mer), and finally estimates align-

ments using the k−mers as alignment seeds. The computational cost of
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this operation is usually mitigated through heuristic algorithms (such as

the seed and extend heuristic [29]).

Three parameters severely affect the effectiveness of overlap discovery: the

value of k, the minimum overlap length and the minimum percent identity

required for an overlap. Larger parameter values lead to higher accuracy

but may generate shorter contigs. In particular, these parameters affect

robustness in the face of base calling error and low-coverage sequencing.

In order to improve efficiency, overlap discovery can run in parallel by use

of a matrix partition;

2. construction and manipulation of the resulting overlap graph leads to an

approximate sequence layout;

3. multiple sequence alignment (MSA) determines the precise layout and then

estimates the final sequence. There is no known method for efficiently

reaching the optimal MSA consensus. Therefore, this phase uses progressive

pair-wise alignments and runs in parallel, partitioned by contig. This phase

is expensive in terms of both computational complexity and memory usage:

all the base calls must be loaded into memory.

The OLC approach carries three main limitations, which make it not well

suitable for NG sequencers. First, it can effectively incorporate a large amount

of overlaps (connections) of various length only in presence of long-read data.

Second, its computational complexity is very high, due to the all-against-all pair-

wise read comparisons. Finally, when dealing with high-coverage data, it also

requires large amounts of memory – since during the third phase it must keep in

memory all the replicated sequences and thus an amount of data proportional to

the input size rather than just to the genome size.

1.3.2 De Bruijn Graph assemblers

This Subsection briefly reviews the assembly approaches most widely used in

conjunction with NG sequencing: the de Bruijn graph (DBG) assemblers. These

approaches all rely on de Bruijn graphs and on a special kind of DBG specializa-

tion – the k−mer graphs.
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Figure 1.1: Representation of the read atgctcgga by a k−mer graph (k = 5):

nodes correspond to the 5 distinct k−mers starting at each base, while edges

connect any pair of k−mers overlapping by k − 1 bases in the read.

De Bruijn graphs were originally used to represent strings from a finite alpha-

bet. Nodes represent all possible fixed-length strings; edges represent suffix-to-

prefix perfect overlaps.

A k−mer graph is a form of de Bruijn graph. Its nodes represent all the

fixed-length subsequences drawn from a larger sequence; its edges represent all

the fixed-length overlaps between subsequences that were consecutive in the larger

sequence. In early formulations [35], one edge is drawn for each k−mer starting at

each base (excluding the last k−1 bases); in this way, the nodes represent overlaps

of k−1 bases. In other formulations [47], there is one node representing the k−mer

starting at each base. An edge links any pair of nodes if the two k−mers the nodes

represent are subsequent in at least one read. In other words, the edges represent

overlaps of k − 1 bases. The two representations are fundamentally equivalent.

By construction, the graph contains a path corresponding to the original se-

quence (see Figure 1.1): sequence assembly is performed by finding a path travers-

ing all edges (i.e., an Eulerian path). k−mer graphs directly represent the input

reads. Each read induces a path; reads with perfect overlaps induce a common

path. Thus, perfect overlaps are detected implicitly without any (expensive)

all-against-all pair-wise comparisons.

Redundancy and erroneous base calls in NG sequencers data may induce

anomalous features in the resulting k−mer graphs. In particular, there are four

kinds of anomalous features: spurs, bubbles, converging-diverging paths and cycles

(see Figure 1.2). Spurs are short, dead-end divergences from the main path; they

are induced by sequencing errors toward one end of a read. Bubbles are paths

that first diverge, then converge; they are induced by sequencing errors toward
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Figure 1.2: Complexity induced in k−mer grahps by redundancy and erroneous

base calls: spurs (a), bubbles (b) and converging-diverging paths (c).

the middle of a read. Converging-diverging paths are paths first converging into

a common shared subsequence and then diverging; they are induced by repeats

in the sequenced data. Cycles are induced by repeats too.

Most DGB assemblers share a core set of common features:

� graph construction to represent reads and merge them into a longer se-

quence;

� error detection and correction based on sequence composition of the reads,

during ad-hoc pre-processing or post-processing phases;

� removal of error-induced paths such as spurs or bubbles;

� collapse of polymorphism-induced complexity given by bubbles;

� reduction of converging-diverging paths to consensus sequences;

� in some cases, use of extra information outside the graph: mate pairs may

simplify path reduction and act as constraints on path distance and path

reduction.

During the last few years, several (and in most regards, similar) approaches

have been proposed: Euler [35], Velvet [47], AllPaths [4, 23], SOAPdenovo [21],
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ABySS [43]. Here, we focus on the most significant (and probably most widely

employed) two: Velvet and ABySS. After describing Velvet and ABySS in more

detail, we provide some final considerations valid for all DGB assemblers.

Velvet Velvet [47] is a DBG assembler proposed in 2008. The software targets

de novo assembly from short reads from the Solexa platform. A newly released

extension provides compatibility with SOLiD reads.

Velvet begins with the construction of a k−mer graph. Then, it applies a

series of heuristics in order to reduce graph complexity. Extensive use of graph

simplifications and other tricks simplify calculations and compress the amount of

treated data without loss of information.

Velvet enters a simplification phase (which essentially consists in singleton

elimination) during graph construction and again several times during the as-

sembly process. A well-established parameter determines the minimum number

of occurrences in the reads for a k−mer to qualify as a graph node. Spurs are

removed iteratively. Bubbles are searched using a breadth-first approach, fanning

out as much as possible, starting at nodes with multiple out-going edges. Since the

assembly of real data can generate bubbles within bubbles, an exhaustive search

for all bubbles is impractical. The search is bounded to make it tractable. In

general, the criterion determining the target path is the higher read multiplicity:

a consensus algorithm is usually adopted. This approach may lead to elimination

of real sequence differences due to polymorphism in the original DNA as well as

to over-collapse of near-identical repeats. Graph complexity is further reduced

by read threading. This removes paths representing fewer reads than a thresh-

old. This operation risks removing low-coverage subsequences but it is thought

to remove mostly spurious connections induced by convergent sequencing errors.

The final graph reduction involves mate pairs. In a nutshell, Velvet operates

on pairs of long contigs (simple paths) connected by mate pairs. Using the long

contigs as anchors, it tries to fill the gap between them with short contigs. It

gathers short contigs linked to the long contigs, and applies a breadth-first search

through the DBG for a single path linking the long contigs and by traversing the

short contigs.

Several “simplifying” iterations may be run per data set to optimize selection

of three critical parameters: the value of k, the minimum frequency fk−mer ex-

pected by a “genuine” k−mer, the estimated coverage c of the genome. fk−mer
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determines which k−mers are pruned a-priori. c controls spurious connection

breaking.

To sum up, Velvet aims at providing a complete implementation of DBG

assembly. It does not perform any error-correction preprocessing; however, it

does have an error-avoidance read filter. Its heuristics exploit several aspects:

graph topology, read coverage and – even if the approach could be still improved

– mate pairs. However, locality is not adequately exploited by Velvet. Until

now, the prohibitive memory requirements have precluded the use of Velvet in

assembling very large genomes.

ABySS ABySS [43] is a distributed, parallel implementation of DBG assembly

developed starting from 2009. It attemps to explicitely address memory limita-

tions of DBG approaches in large genome assembly.

Storage required by the k−mer graph’s nodes and by any computation over

them is distributed over a computational grid formed by several interconnected

nodes. In general, the overall storage capacity of such a grid is quite large. The

algorithm tries to exploit CPU parallelism, partitioning the assembly problem

into multiple independent instances and then merging the results.

ABySS uses a compact representation of the k−mer graph. Each graph node

represents a k−mer and its reverse complement. Assembly partitions are per-

formed at the level of individual graph nodes. Each graph node is processed

separately; for efficiency, many graph nodes are assigned to each CPU. The as-

signment of a graph node to a CPU is accomplished by converting the k−mer

to an integer. The formula is strand-neutral, so that a k−mer and its reverse

complement map to the same integer. However, this approach does not guaran-

tee that neighbouring k−mers are necessarily mapped to the same CPU. Each

graph node keeps 8 bits of extra information: representing the existence or non-

existence of each of the four possible one-letter extensions at each end. In this

way, the graph edges are represented implicitly.

Paths along nodes are followed in parallel, starting at arbitrary graph nodes

per CPU. From any node, ABySS finds its successor elegantly: the node’s last k−1

bases, plus a one-base extension indicated by an edge, is converted numerically

to the address (including CPU assignment) of the successor node. When a path

traverses a node on a different CPU, the process emits a request for information.

Since inter-CPU communication is typically slow, the process works on other
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graph nodes while waiting for the response.

In order to compress the amount of processed data, ABySS essentially adopts

the same graph simplification heuristics already proposed by Velvet – introducing

a high degree of parallelism. Spurs shorter than a fixed threshold are iteratively

removed. Bubbles are discovered (and eventually removed) by bounded search;

paths supported by the highest number of reads are preferred. After obtaining the

contigs from the final graph, ABySS performs a post-processing phase. During

this phase, it exploits information about mate pairs in order to merge contigs into

longer sequences.

As of 2011 ABySS is considered the most scalable and efficient assembly soft-

ware for SOLiD short reads.

Considerations DBG assemblers provide a fairly robust approach to assembly.

They rely to some extent on a set of overlaps between the input reads, representing

such overlaps by means of a directed graph.

DBG algorithms resemble old OLC approaches in many regards – the dif-

ferent graph representations adopted are similar, if not equivalent. The great-

est difference between DBG and OLC approaches is their computational effi-

ciency, which is strictly related to the sequencing technology they address. While

OLC techniques directly incorporate connections (overlaps) of varying length,

k−mer graphs are limited initially to short connections of uniform size (i.e., the

shared k−mers). In general, DBG algorithms avoid computationally expensive

all-against-all pair-wise read comparisons; furthermore, they avoid loading all the

(replicated) sequences associated with high-coverage sequencing and thus tend to

have a memory footprint proportional to the size of the genome times the size of

ak−mer (rather than to the size of the input – which can be substantially larger

when coverage is high).

1.3.3 Open issues

NG sequencers offer a huge amount of sequenced data with high throughput and

low costs. This data is provided by fragments of sequenced genome – the reads.

Reads are usually short. Further, no NG technology ensures error-free products:

reads always contain an amount of erroneous base (or colour) calls. These short-

comings are usually addressed by ensuring high coverage and redundancy. There-
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fore, de novo assembly algorithms must face two challenging problems: noisy data

and storage and computational efficiency.

Noisy data is a crucial problem. All DBG approaches are extremely sensitive

to sequencing errors – every wrong base call may introduce up to k erroneous

nodes. Sequencing errors may induce false positive and false negative overlaps.

Almost all current techniques employ pre-processing steps to filter or correct

unconfirmed portions of reads, as well as post-processing to repair graphs by

smoothing and threading. In general, these techniques are computationally ex-

pensive. We address this problem by introducing a novel, effective approach to

read filtering. Chapter 2 presents our filtering technique in detail.

Current DBG assemblers proliferated with the introduction of short reads.

In general, they target uniformly sized reads in the 25-100 bp range; they rely

on redundant, high coverage data to mitigate this shortcoming. This requires

assemblers to deal with an impressive amount of data – posing strict constraints

on storage and computational efficiency. This is unlikely to change in the near

future. Almost certainly, data volume will continue to increase as sequencing

costs decline. The next-generation technology will surely be applied to larger

and larger genomes [8]. Reads of the near future may be intermediate-sized,

matching more closely the expectations of OLC assemblers. Even very long reads

may become feasible, while short reads may become even more affordable.

Our novel, locality-aware assembly algorithm presented in Chapters 3 and 4,

with its very low memory requirements and cache-efficient data access, is a perfect

match for the requirements of current – and future – sequencing technologies.
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Chapter 2

Robust filtering of sequenced

data

This Chapter introduces an innovative technique for filtering reads (i.e., for dis-

tinguishing between reads with and without errors) in colour space. We validate

the effectiveness of our scheme both theoretically – through formal analysis and

direct comparison against other commonly utilized schemes – and experimen-

tally – performing extensive experiments over a SOLiD dataset containing more

than 50 million reads. After briefly contextualizing the filtering problem and

presenting a widely employed technique (Sasson’s filter), Section 2.1 introduces

our scheme, the probabilistic filter. Section 2.2 experimentally compares Sasson’s

method against ours; in particular, we show how the latter clearly outperforms

the former over a wide range of crucial parameters (such as the k−mer length).

2.1 Filtering SOLiD output

Filters aim at discriminating between correct and erroneous reads. In general, ef-

fective filters help assemblers in both bounding resource consumption and improv-

ing final output quality. After contextualizing the filtering problem for SOLiD

technology output (Subsection 2.1.1), we describe the commonly used Sasson’s

filter (Subsection 2.1.2). Then, we present our probabilistic filter in its basic

formulation (Subsection 2.1.3). Finally, we extend our technique with a prepro-

cessing phase in order to improve its effectiveness (Subsection 2.1.4).
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2.1.1 SOLiD reads and quality values

SOLiD platforms do not prefilter low-quality reads. All identified reads, even if

with poor quality, are reported after primary analysis. This becomes a crucial

problem when dealing with de novo assembly of short read sequences, which are

highly sensitive to sequencing errors. Further, the elimination of reads containing

errors may noticeably improve efficiency of assembly procedures. A common

approach is to mitigate these errors prior to assembly, making use of additional

information provided by SOLiD output – the quality values.

The sequencing errors commonly observed are of two types: polyclonal/cor-

related errors and independent, erroneous colour calls [44]. Polyclonal and cor-

related errors occur when the entire read is of poor quality or missequenced.

Polyclonal reads may lead to assembled sequences which are hybrid, with no

match in the true genome. Single colour call errors are independent and can

occur multiple times in the sequence also leading to an inaccurate sequence.

The probability of single colour call errors can be calculated by means of qual-

ity values (QVs). The SOLiD platform outputs two types of files after primary

analysis: a sequence file in colour space (see Chapter 1) and a quality file con-

taining the corresponding QVs. QVs are calculated by training the sequencing

process parameters (such as image intensity and a noise to signal value) against

several annotated datasets. In a nutshell, they represent the probability for colour

calls to be inaccurate: the higher the QV, the higher the confidence in the colour

call accuracy. More specifically, given a quality value qi for the ith colour call, its

error probability pi is given by:

pi = 10−
qi
10 (2.1)

Consequently, 1 − pi represents the probability for the ith colour call of being

correct. Quality values are theoretically drawn from the [0,∞) interval but, in

practice, values above 40 are rarely obtained.

2.1.2 Sasson’s filter

Sasson’s filter [39] attempts to optimize the assembly preprocessing phase by

identification and removal of reads containing errors for the SOLiD platform. In

order to do this, it makes intensive use of the QVs provided from the SOLiD’s

primary analysis.
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In a nutshell, its goal is to eliminate low-quality reads and thus pass only

high-quality data into the assembly applications. Sasson’s filter targets both the

types of errors that can occur during SOLiD sequencing: polyclonal/correlated

errors and erroneous colour calls (see Subsection 2.1.2).

The working principle it follows is quite straightforward; it implements a

simple boolean filter that discriminates correct reads on the basis of a set of filter

conditions – such as polyclonal analysis or error analysis quality values thresholds.

When applied to an input dataset containing n reads, it generates two output

sets:

� the set Rf of reads satisfying the filter conditions;

� the set Rf̄ of reads violating the filter conditions.

Obviously |Rf |+ |Rf̄ | = n.

An adequate assessment of filter conditions is crucial. In general, filter con-

ditions depend on a set of tunable parameters. In the following, we will refer to

these parameters with the following notation:

� α is the quality value threshold for polyclonal analysis;

� `c is the maximum number of colours below α tolerated;

� β is the quality value threshold for error analysis;

� ec is the maximum number of colours below β tolerated;

� t is the number of colours considered for error analysis. Only the first t

colours of the read are considered for error analysis, and only the first 10

are for polyclonal analysis.

Filter conditions immediately follow from these parameters. In particular, a m-

length read r constituted by colours c1 . . . cm satisfies filter conditions if and only

if both the following statements hold:

� At most `c colours in c1 . . . c10 have quality values smaller than α;

� At most ec colours in c1 . . . ct have quality values smaller than β.

Some experimental results obtained by this setup will be reported in Section

2.2.
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2.1.3 Probabilistic filter

Our approach adopts a probabilistic perspective. In a nutshell, we consider the

error probability associated to each colour call (see Equation 2.1); on this basis,

we estimate the expected number ñ of error free reads in the whole dataset. In

its basic version, our filtering scheme directly utilizes the QVs provided by the

SOLiD’s primary analysis. In its extended version, it adjusts such QVs during a

preprocessing phase; we shall discuss this extension in Subsection 2.1.4.

Our probabilistic filter relies on a series of simple hypotheses and consists of

three main steps. First, we assign every read a error probability pr; then, we sort

all the reads in the input dataset according to their error probabilities; finally,

we estimate a filtering threshold discriminating the correctness of any read.

Our approach makes a series of assumptions:

� error probabilities are independent from each other. Therefore, within a

single read, any quality value is an assessment on the reliability of the

corresponding colour only ;

� the quality value assigned to a given colour is independent from the colour

itself. That is, given a quality value qi associated with the colour ci, we may

state that ci is wrong with probability pi (where pi is calculated according

to (2.1)) and correct with probability 1 − pi. For instance, let us suppose

that ci is equal to 1; if the quality value qi for ci is equal to 20, then we

have that pi = 0.01. Consider now that ci is equal to 3, while qi remains

unchanged; the estimated probability qi would remain unchanged as well.

It is important to observe that neither of these two assumptions is completely

true in practice. However, with these two assumptions we can construct a simple

model for the overall error probability pr for a m-long read r = c1c2 . . . cm that

is easily tractable and (as we shall see later in this Chapter) not too inaccurate.

Since (single colour) error probabilities are independent, we calculate pr as follows:

pr = 1−
m∏
i=1

(1− pi) (2.2)

Clearly r is correct with probability equal to 1− pr.
Error probabilities associated to reads – and not only to colours – let us adopt

a well defined sorting criterion for reads. In particular, given any pair of reads
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r and s, we state that r is better than s if and only if pr < ps. In this way, we

organize all the reads belonging to the input dataset into an ordered list. The

better the read, the lower is the probability that it contains no errors.

As a final step, we define a threshold value as a rank in the list. Reads ranked

better are considered error free; reads ranked worse are considered to contain

errors. Our threshold rank is obtained in a very simple but effective fashion. It

simply corresponds to the expected number of error free reads. More precisely,

consider a sequence of n reads r1, r2, . . . , rn. On the basis of our assumptions,

given any pair i, j, pri and prj are independent. The expected number ñ of correct

reads is:

ñ =
n∑

i=1

pri (2.3)

Our filtering threshold is then set equal to ñ.

2.1.4 Preprocessing k−mers

We improve the effectiveness of our probabilistic filter by introducing a prepro-

cessing phase. In a nutshell, we try to guess whether different reads are actually

samples of the same region in the original genome – that is, if they are “twin”

reads. We perform this guess by looking for identical k−mers belonging to dis-

tinct reads. Then, we use the retrieved information in order to adjust the quality

values of the colour calls in twin reads. As we shall see, this preprocessing can

noticeably improve the performance of our filtering scheme.

Our preprocessing phase focuses on k−mers rather than on reads. The whole

input dataset is decomposed into k−mers; then, an all-against-all comparison

is performed among these k−mers, partitioning them into equivalence classes

of identical k−mers (note that two k−mers may be identical but have different

quality values associated to their colours).

For a generic set of m identical k−mers belonging to m distinct reads, let qji

be the quality value associated to the ith colour ci in the jth k−mer. We assign

to the ith colour of the m k−mers a partial pseudoquality qi equal to the sum of

the m qualities of that colour in the m k−mers:

qi =
m∑
j=1

qji (2.4)
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Then, we recalculate the error probability of each read by utilizing the partial

pseudoqualities, instead of the qualities, of the colours appearing in its k−mers.

Note that multiple k−mers taken from the same read may “cover” the same colour

– for example, the 3rd colour in a read with r ≥ k + 2 colours falls for k ≥ 3

within 3 k−mers (starting, respectively, with the first, second and third colour

of the read). The maximum partial pseudoquality becomes the pseudoquality of

the corresponding colour in the read. We then recompute for each read its error

probability using the pseudoqualities of its colours instead of the actual qualities,

and, as in Subsection 2.1.3, rank the reads and discard those below the rank

threshold – which, importantly, is not recomputed.

Thus, if we have multiple copies of the same k−mer, we assess the probability

that the ith colour is incorrect as the product of the probabilities that it would be

incorrect in each copy of the k−mer (remember that the quality is proportional

to the logarithm of the error probability). Note that, in addition to disregarding

error correlations between different reads (as in our basic probabilistic filter), this

both underestimates and overestimates the real error probability. The underesti-

mation stems from disregarding the evidence of k−mers that are not quite, but

almost, identical, and in particular coincide on a given colour. The overestima-

tion stems from the fact that only positive evidence contributes to our probability

estimation – in other words, as the number of reads grows, the probability of wit-

nessing a large number of copies of every k−mer, whether “correct” or not, also

grows. However, we are interested only in a ranking of the various reads, which

mitigates the effects of the two errors.

Finally, note that the assessment of the pseudoquality of a colour in a read as

the maximum of the pseudoquality of the colour in the corresponding k−mers is

also a very simplistic heuristic that handwaves the necessity of carefully balancing

the strong positive correlations between the pseudoqualities of a colour in partially

overlapping k−mers. But, again, the “unbiased” nature of this error paired with

our interest only in the ranking of the various reads suggests its effects might be

limited; and in the next Subsection we show this is indeed the case.
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2.2 Experimental evaluation

This Section compares the effectiveness of Sasson’s filter against that of our filter

in discriminating correct reads. After describing the dataset our experiments

rely on, we present the results obtained by Sasson’s filter and by our “basic” and

“extended” probabilistic filter.

Dataset The input dataset we adopt is a 600× 1 of the DH10B fragment of Es-

cherichia Coli, provided by the Applied Biosystems SOLiD System Open Source

Software Tools framework 2. It contains 57254192 reads, paired in half as many

mate pairs. Each read is 50 bases long.

Sasson’s filter results We run Sasson’s filter with the following parameters

(see Subsection 2.1.2 for an exhaustive description of them):

α = 25 β = 10 `c = 3 ec = 2 t = 2

These values correspond to the recommended ones [39]. Table 2.2 summarizes

the results we obtained, also represented in Figure 2.1 and Figure 2.2

Reads Pairs

Filtered reads 7242058 7242058

Aligned reads 4076674 1509278

% of aligned reads 56.291% 20.8405%

Table 2.1: Reads filtered and aligned by the Sasson’s filter.

Filtered reads denote reads satisfying the filter conditions; aligned reads de-

note reads matching actual subsequences belonging to the original genome. We

provided the alignment results for single reads and for mate pairs as well. Only

half of the filtered reads are actually aligned reads. Further, note that only

7M reads (about 12.9% of the entire dataset) are contained in the filter output

dataset. However, these values do not take into account orphan reads – that is,

reads which satisfy the filter conditions but whose associated mate violates the

conditions themselves.

1600× denotes the estimated (provided) coverage
2http://solidsoftwaretools.com/gf/project/
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Figure 2.1: In red (the largest slice of the pie) the fraction of reads discarded

by Sasson’s filter. In green (the lowest of the two smaller slices of the pie) the

fraction of filtered reads actually aligning to the reference genome.

Basic probabilistic filter results Results obtained by our filter are provided

in Figure 2.3. The solid curves are obtained by first sorting reads and then

counting at position i (on the x-axis) how many reads, out from the i top ranked,

align to the reference. The green dash and dots curve is the theoretical value

obtained using (2.3) with pri obtained from (2.2). Note how the two curves are

similar but do not perfectly match; the gap between red and blue curves suggests

a pessimistic estimation of the quality values by the sequencer.

The dotted blue line represents an ideal “perfect” filter that would rank any

error free read better than any read containing at least one error; slightly less than

20% of all reads turn out to be error-free (i.e. perfectly aligned to the genome).

Note that the best 20% of all reads according to the probabilistic filter capture

about two thirds of these error-free reads.

Extended probabilistic filter results We performed a preliminary exper-

iment in order to evaluate the actual effectiveness of our preprocessing phase.

We divided all the reads belonging to the input dataset into 255 classes – on

the basis of the error probabilities obtained from their pseudoquality values. For
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Figure 2.2: In red (the largest slice of the pie) the fraction of reads discarded by

Sasson’s filter. In green (the smallest slice of the pie) the fraction of reads that

are not discarded and can be aligned to the reference genome together with their

mate.

each of these classes, we counted the number of reads it contains and the number

of aligned reads it contains. Figure 2.4 shows the results obtained upon a sub-

set of the 600× E. Coli dataset containing a million reads (approximately 10×
coverage). Figure 2.5 and Figure 2.6 present the results we have obtained for a

subset of 5M reads (approximately 50× coverage) and for the whole dataset. We

performed multiple experiments, adopting different values for k.

Values drawn in Figure 2.6 are reported in Table 2.2, for a k−mer length equal

to 25. Considering only the reads belonging to the 255th class (which is the best

one), we have a set of about 8 million reads (slightly more than 14% of the whole

600× dataset). Interestingly, reads belonging to this class align to the reference

genome in more than 95% of the cases.

On the basis of these results, we performed a series of experiments using our

extended probabilistic filter. We compared the results we have obtained against

27



Quality class Occurrences Alignments Percentage of Alignments

0 758002499 177477 0.000234

1 22673312 89559 0.003950

2 10075851 37948 0.003766

3 5905308 33773 0.005719

4 4337040 10048 0.002317

5 3385776 8944 0.002642

6 3067492 8471 0.002762

7 2281080 7816 0.003426

... ... ... ...

108 18595 4067 0.218715

109 13043 3626 0.278004

110 12896 3719 0.288384

... ... ... ...

255 8055499 7658329 0.950696

Table 2.2: Occurrences and alignments of reads clustered according to their qual-

ity classes. Percentage of alignment corresponds to the ratio between alignments

and occurrences.
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Figure 2.3: Theoretical (dash and dots line) vs. measured (solid) values for the

number of correct reads. The dotted line represents an hypothetical perfect filter.

those provided by the “basic” filter and by the ideal perfect filter for different

values of k. Here, we present the results obtained on the whole dataset (see

Figure 2.10) and on subsets of 500K reads (approximately 5× coverage – see

Figure 2.7), 5M reads (approximately 50× coverage – see Figure 2.8) and 20M

reads (approximately 200× coverage – see Figure 2.9).

In addition to a function corresponding to that of Figure 2.3, each figure also

shows (below) what is effectively the function’s derivative – the fraction of reads

ranked at a given percentile that can be aligned to the genome. Note that for the

perfect filter this means the totality of all reads up to the percentage of correct

reads (≈ 20%) and no reads beyond the point. For comparison, we also show the

results of Sasson’s filter.

The more is the size of the dataset to filter, the higher is the impact of pre-

processing. In any case, preprocessing introduces an improvement; but its effects

are not evident when the coverage is small (5×). There is a simple explanation

for this. Even if k−mers, being significantly shorter than a read, have a lower

error probability, the majority of k−mers of 20 or more colours are incorrect. The
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Figure 2.4: Number of occurrences, alignment and percentage of aligned reads

in a set of 1M reads after applying the extended probabilistic filter.

effects of preprocessing only begin to show when at least a few (“correct”) copies

of each k−mer are present and can boost each other’s pseudoqualities, which does

not happen at 5× coverage.

The case shown in Figure 2.10 (with k = 15) deserves particular attention. A

slight, but noticeable degeneration in the overall performance appears. k−mers

of this length are sufficiently short that the “same” k−mer begins to have a

significant probability of appearing in two unrelated reads – and in particular

between an error-free one and one containing at least one error. This allows

a minor fraction of incorrect reads to see the pseudo-quality of their colours

boosted by the identical k−mers of a correct read, bringing their rank within the

acceptance threshold.
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Figure 2.5: Number of occurrences, alignment and percentage of aligned reads

in a set of 5M reads after applying the extended probabilistic filter.
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Figure 2.6: Number of occurrences, alignment and percentage of aligned reads

in the whole input dataset after applying the extended probabilistic filter.
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Figure 2.7: Comparison among perfect (dotted line), basic and extended prob-

abilistic filters over a set of 500k reads, for different values of k (solid curves).

“Sass” depicts the behaviour of Sasson’s Filter.
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Figure 2.8: Comparison among perfect (dotted line), basic and extended proba-

bilistic filters and Sasson’s filter over a set of 5M reads, for different values of k

(solid curves). “Sass” depicts the behaviour of Sasson’s Filter.
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Figure 2.9: Comparison among perfect (dotted line), basic and extended proba-

bilistic filters and Sasson’s filter over a set of 20M reads, for different values of k

(solid curves). “Sass” depicts the behaviour of Sasson’s Filter.
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Figure 2.10: Comparison among perfect (dotted line), basic and extended prob-

abilistic filters and Sasson’s filter over the whole dataset, for different values of k

(solid curves). “Sass” depicts the behaviour of Sasson’s Filter.
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Chapter 3

A novel algorithm for de novo

DNA assembly

This Chapter introduces a novel algorithm for de novo DNA assembly, and pro-

vides a theoretical evaluation. Compared to existing algorithms, our algorithm

focuses on a careful exploitation of the memory hierarchy; this allows it to run

considerably faster and on cheaper hardware than the competition. The algo-

rithm is fairly complex; thus, to ease the burden on the reader, after a brief

review (in Section 3.1) of the notation and terminology used throughout the rest

of the Chapter we begin by presenting (in Section 3.2) and analyzing (in Sec-

tion 3.3) a simplified version of our algorithm that assumes no repeated k−mers

in the target DNA and works in base space (rather than in colour space). We

then show (in Section 3.4) how this assumption can be lifted with only a modest

performance overhead; and we sketch how the algorithm can be easily translated

to colour space, and parallelized. All results in this Chapter are of a theoretical

nature. The implementation details and the experimental performance evaluation

can be found in the following Chapter.

3.1 Notation

Throughout the rest of the Chapter, we denote by:

� r the length of a read;

� k the length of a k−mer; this means that the number of different k−mers

in a read is r − k + 1, which we assume is of the same order as r;
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� g the length of the genome;

� n the total number of reads;

� c = n·r
g

the coverage of the genome; we assume c >> 1 (values between 10

and 1000 are all realistic with modern short read technology).

All sizes are expressed in bases. Two bits are sufficient to represent a base,

but in some cases, including many “standard” formats used in DNA-databases, a

full 1 byte char is used to represent a base. This does not change the asymptotic

complexity of the analysis, but it can mean a substantial performance difference

in practice – see the next Chapter for more details.

Finally, given a generic set (of not necessarily distinct) k−mers S, we denote

by ρ(S) the set of reads with at least one k−mer in S. We shall also abuse the

notation slightly and denote, for any give k−mer s, by ρ(s) the corresponding

read.

3.2 Assembly in the absence of repeated k−mers

As briefly mentioned in Chapter 1, one fundamental limitation of algorithms

based on k−mers and De Bruijn graphs is high memory consumption paired with

fairly “scattered” accesses to the memory space. In a nutshell, this depends on

the fact that the De Bruijn graph approach generates, for each read, r − k + 1

k−mers, each of which then requires random access in a memory space of size

Θ(k · g) (since the De Bruijn graph has one node, corresponding to a k−mer, for

each base in the genome). The goal of our algorithm is twofold: to reduce the

number of k−mers generated (and stored), and to increase the spatial locality of

accesses.

To do so, we examine only a small fraction of all the k−mers at a time. In

particular, we assume the existence of a hash function that, roughly speaking,

maps the set of all k−mers uniformly into the set of the first h non-negative

integers with h ≈ k. More formally:

Definition 1. Consider a set R of n reads. Denote by K the set of all (not

necessarily distinct) n(r − k + 1) k−mers of R. Consider a function Hh : K →
0, . . . , h− 1. Hh is a balanced h−hash for R if, for each i = 0, . . . , h− 1,
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1. |H−1
h (i)| ≤ 2|K|

h

2. |ρ(H−1
h (i))| ≥ |R|

2
(min(1, r−k+1

h
)).

Note that a balanced h−hash will not, in general, exist for every possible set

of reads in a genome; in fact, it may not even exist for any set of reads of a

particular genome (this is obvious in the case of a genome consisting of a single

base repeated g times). However, if both bases and reads within the genome

are sufficiently “well distributed” there are many simple heuristics that appear

to work well (see the next Chapter 4). We can now define the crucial notion of

(level i) anchor.

Definition 2. Consider a set R of n reads. Let K be the set of all (not necessarily

distinct) n(r − k + 1) k−mers of R, and let H be a balanced h−hash for R. A

k−mer x is an anchor at depth i for its read if H(x) = i.

A high level view of our algorithm is as follows. First, it chooses a balanced

h−hash, with h ≈ k. The exact choice of h makes no difference in terms of

asymptotic performance as long as it is within a constant factor of k. Next,

our algorithm partitions all reads based on the depth of their deepest anchor(s).

Then, it begins by merging those reads anchored at level h − 1 into contiguous

snippets of DNA, which we call (depth h − 1) bundles, with the property that

every read anchored at depth h − 1, and no other, falls entirely within a level

h− 1 bundle. The algorithm then repeats the process at depth h− 2, considering

those reads whose anchors all lie at depth h−2 or less; it then attempts to merge

the depth h− 1 and depth h− 2 bundles. This process of “bundling” reads and

merging bundles is then repeated out all the way to depth 1.

Let us now look in greater detail at the creation of the depth h−1 bundles. All

reads involved have at least one depth h− 1 anchor; we refer to those with more

than one such anchor as bridge reads. Note that sharing a bridge is a symmetric

relationship between depth h − 1 anchors; the reflexive and transitive closure of

such a relationship partitions the set of all depth h−1 anchors, and the individual

partitions coincide with what we refer to as bundles. More formally:

Definition 3. A depth i bundle is a non-empty set B of depth i anchors, such

that, for any two depth i anchors x′ and x′′ sharing a bridge, x′ ∈ B → x′′ ∈ B.
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Algorithm 1 A high level view of our algorithm

Choose a balanced h−hash with h = Θ(k)

for all reads do

Determine a read’s deepest anchor(s)

end for

for i=h− 1, . . . , 0 do

Merge reads anchored at depth i (and not deeper) into temporary i-bundles.

Merge temporary i-bundles and final (i+ 1)-bundles into final i-bundles.

end for

In a dual fashion, this also partitions the reads anchored at depth h− 1, with

each read being “attached” to a single bundle (since all its anchors belong to the

same bundle).

Note that the genome implicitly defines a total ordering between different an-

chors – the order in which we would encounter them if we scanned the genome e.g.

from left to right. To assemble the bundles, the algorithm maintains a compact

data structure associated to each (depth h− 1) anchor; these data structures are

kept in a hash table indexed by the anchors themselves. Each entry holds:

1. The anchor.

2. Up to r − k bases to the left of the anchor (which we refer to as the left

support of the anchor).

3. Up to r− k bases to the right of the anchor (which we refer to as the right

support of the anchor).

4. A pointer to the depth h− 1 anchor in the same bundle immediately to the

left, if it exists and has already been identified.

5. A pointer to the depth h− 1 anchor in the same bundle immediately to the

right, if it exists and has already been identified.

6. The offset between the anchor and the anchor of the previous point (note

that this offset is between 1 and r− k – and if it is less than h− 1 the two

anchors may partially overlap)
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For efficiency reasons, the right support of an anchor is truncated at the

beginning of the next anchor to the right (if any); if the next anchor to the right

has offset r − k or less it is omitted entirely. Similarly, if the next anchor to the

left has been identified, the left support is omitted (any intervening bases are

recorded in that anchor’s right support). Whenever a new read is processed, its

anchor(s) are examined; the corresponding entries are entered into the hash table

or, if already present, possibly updated in terms of support and/or pointers.

Algorithm 2 Temporary depth i bundle formation

for all reads anchored at depth i and no deeper do

for all depth i anchors in read do

if anchor is in HashTable then

update anchor

else

insert anchor in HashTable

end if

end for

end for

Merging depth i temporary bundles with depth i + 1 final bundles to obtain

the depth i final bundles is extremely easy, and hinges on the notion of extremal

read.

Definition 4. The extremal reads of a bundle B are the leftmost and rightmost r

bases of B (note that these two sequences may coincide, if the bundle spans only

r bases; and that in any case each corresponds to an actual read merged into the

bundle).

All one has to do is to add to the depth i bundling process, all reads that are

currently extremal for some depth i + 1 bundle and are also anchored at level i.

If one such extremal read shares an anchor with a read anchored at depth i, the

respective bundles are merged. All final depth i + 1 bundles and all temporary

depth i bundles that are not merged at this stage become final depth i bundles,

too. Note that, in practice, this step only requires one to carry out the extremal

read merge mentioned above; although we are conceptually “promoting” bundles,

this requires no actual updates to the data structures.
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Algorithm 3 Final depth i bundle formation

for all extremal reads of final depth i+ 1 bundles anchored at level i do

attempt merge into a temporary depth i bundle, linking the two bundles.

end for

3.3 Theoretical analysis

This Section provides a theoretical analysis of our algorithm, proving its correct-

ness and providing asymptotic bounds on its performance. The cornerstone of

our correctness analysis is the following:

Theorem 1. Every final depth i bundle represents a contiguous sequence of bases

that does not overlap with any other final depth i bundle nor with any temporary

depth j bundle with j < i save possibly for its extremal reads.

Proof. To prove that every final depth i bundle represents a contiguous sequence

of bases, consider two genome positions corresponding to two bases b′ and b′′ both

in the same bundle. If b′ and b′′ both belong to the same depth i read anchored

to some anchor in the bundle, the result is immediate. Otherwise, they belong

to two distinct reads with depth i anchors x′ and x′′ both in the same bundle.

By the definition of bundle, there exists a sequence of anchors x1, . . . , xm such

that x′ = x0, x′′ = xm, and there exists a bridge read zi in the bundle between

xi and xi+1 for all positive i less than m. Then, denoting by wi the infix of

zi between xi and xi+1, the sequence x1, w1, . . . , xm−1, wm−1, xm is a sequence of

contiguous bases in the bundle stretching from x′ to x′′. Therefore, the bundle

holds a sequence of contiguous bases stretching between b′ and b′′.

Moreover, there is a sequence of contiguous bases stretching from any anchor

x′ in the same read as b′ and any anchor x′′ in the same read as b′′, with the

property of being r − k spaced – i.e. the distance between the leftmost bases of

two consecutive anchors in the sequence is at most r − k, the length of a read

minus that of a k−mer. Note that in an r − k-spaced sequence, any contiguous

subsequence of length r (or greater) contains at least one full anchor. This helps

us prove that the sequence of contiguous bases corresponding to a final depth i

bundle does not overlap with that of any other final depth i bundle, except for

(at most) the bases in their respective extremal reads.

Suppose the overlap did indeed happen, and suppose that a base of the first

bundle b′ that is not part of its extremal reads were part of a read (extremal
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or not) in the second bundle b′′. Then, there would exist a (contiguous) r − k-

spaced subsequence of the genome represented by the first bundle beginning with

an anchor entirely to the left of b′′ and ending with an anchor entirely to the

right of b′′. Thus, any read of the second bundle containing b′′ would contain at

least one full anchor from such a sequence; and thus, by the definition of bundle,

would be part of the first bundle.

By the same argument, we can easily prove that a final depth i bundle does

not overlap with any temporary depth j < i bundle, expect for (at most) the

bases in their respective extremal reads. Were it not the case, there would be a

read from depth j bundle containing a full depth i anchor from the final depth i

bundle.

Armed with Theorem 1, we now proceed to show that a sufficiently “dense”

read set will allow the reconstruction of the full genome. In particular, we can

prove the following:

Theorem 2. Assume there is a sequence of reads z1, . . . , zm, such that, for 1 ≤
i < m, the leftmost base of zi+1 is to the right of the leftmost base of zi, but to the

left of its (k − 1)th rightmost base. Then our algorithm at some point produces a

bundle containing all of z1, , . . . , zm.

In other words, if there is a sequence of reads, with each immediately to

the right of the previous, but overlapping by at least a k-mer, then the entire

portion of the genome spanning from the first to the last of those reads is fully

reconstructed by our algorithm; and in particular, if the first read holds the

first base of the genome and the last read the last base, the entire genome is

reconstructed.

Proof. We begin with two simple observations. First, since every k−mer is an

anchor at some depth, every read will eventually become part of some bundle.

Second, since bundles never split, if two reads share the same final depth j bundle,

they will also share the same final depth ` bundle for all ` < j. Then, since zi

and zi+1 for 1 ≤ i < m share at least one k−mer, they share a depth j anchor

for some j anchor, and thus will become part of the same final depth ` bundle

for all ` < j.

We now proceed to examine the time and space requirements of our algorithm.

The first step in this direction is to introduce a simple model for our hardware.
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This is crucial, because modern computing devices are not well-described by the

“classic” RAM-model, where every operation and/or access to an elementary

datum has cost 1. Instead, the memory system of any such device is usually

formed by several layers of progressively larger size but also progressively higher

access cost (in terms of both time and energy); with the ratio between sizes

and access costs spanning several orders of magnitude. Furthermore, the size of

the elementary data unit that can be accessed at different levels1 can also vary

considerably – from a few bytes at the processor register level, to a megabyte or

more at the disk level.

Striking a balance between simplicity and accuracy, we shall assume that our

machine is formed by 3 layers of storage. The first is the processor cache, of

capacity Cp, whose elementary data unit is a single integer, and with access cost

1 – the same cost of carrying out an elementary operation such as an integer

comparison or an arithmetic operation. The second is the (main) memory, of

capacity Cm >> Cp, whose elementary data unit is the cache line of size Bm >>

1 integers, and with access cost Am (with Am

Bm
>> 1). The third is the disk,

of capacity Cd >> Cm, whose elementary data unit is the disk block of size

Bd >> Bm, and with access cost Ad(with Ad

Bd
>> Am

Bm
).

We assume that the input initially resides on disk; and similarly that the

output must eventually be written to disk. Note that the input is c times larger

than the output, and thus it dominates the total cost if the output can be written

sequentially – a total cost that in this case is Θ(Ad

Bd
· cg).

The first crucial observation in the analysis of our algorithm is the following:

Lemma 1. The space required by a bundle is within a constant factor of the space

required by the sequence represented by the bundle.

Proof. The proof is immediate noting that:

1. Each base appears at most once in the bundle outside of the anchors.

2. If we are using a balanced h−hash with h = Θ(k), the total size of the

anchors of a bundle is on average within a constant factor of the size of the

sequence represented by the bundle.

1With elementary data unit we mean the largest datum that can be accessed at a cost at

most a factor 2 larger than accessing a single bit.
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3. There are at most O(1) pointers per anchor.

4. The size of a pointer can be kept to O(lg g)) bits; while the size of a k−mer

must be at least Θ(lg(n)) bits to avoid repeated k−mers. Thus, the size of

a pointer is within O(1) times that of a k−mer.

In practice (see the following Chapter) it turns out that the constant factor

is relatively small – about a factor 10 (and it could be reduced further with more

aggressive optimizations). This means the main memory of a typical PC is suf-

ficient to assemble a human genome (≈ 3 ∗ 109 bases, i.e. less than 1GB). The

crucial point is that the size of any bundle depends only on the size of the asso-

ciated genomic subsequence, and is independent of the number of reads involved

– higher coverage does not mean higher space occupation, since multiple reads

are “squeezed” together. Note that, because of Theorem 1, one can effectively

assemble the bundles of different, temporary depths in parallel, without worrying

about interference. Thus, we have proved the following:

Theorem 3. Disregarding the storage required to hold the input, the space required

by our algorithm is O(g) – i.e. proportional to the genome size, independently of

the coverage or of the size of the k−mers.

Note that, in contrast, “standard” De Bruijn algorithms require space that

is Θ(kg) – since they must store, independently, each of the g k−mers of the

genome. In practice, this means our algorithm uses an order of magnitude less

space than the state of the art competition!

We now turn our attention to the total time required. To simplify the analysis,

we make two (realistic) assumptions. First, we assume that the size of a k−mer

is O(1) times the size of an integer. This is realistic, in that k−mers should

be chosen as small as possible while still avoiding k−mer repetitions – which, as

pointed out in the proof of Lemma 1, is approximately the size of a machine word.

Second, we assume that r = O(Bm) – i.e. a read is relatively small compared to

the size of a cache line. Considering that a typical processor cache line may be

128 or 256 bytes, while even with Sanger technology reads rarely exceed a few

hundred bases, this second assumption is realistic, too.

We can then easily prove the following:
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Theorem 4. For a sufficiently large memory capacity Cm = O(g) our algorithm

performs O( c·g
Bd

) accesses to disk; O(n) accesses to memory; and O(n(r − k))

accesses to the processor’s cache.

Proof. The condition on the main memory size is essentially that all the bundles

should fit in main memory (see Theorem 4). If this is the case, the Theorem

follows easily from the following observations:

1. Each read is read once from disk into main memory.

2. Since reads can be read sequentially, one can read Bd/r reads at a time,

amortizing the disk access cost.

3. Similarly, the genome can be written sequentially in output, amortizing the

disk access cost and making the output cost ≈ 1/c times the input.

4. The first time a read is accessed, its r−k k−mers are computed and hashed;

this requires a total of O(n(r − k)) accesses to the processor’s cache.

5. The cost to “tie” a read to a bundle of appropriate depth is O(1) accesses to

main memory (since a read has, on average, O(1) maximum depth anchors),

for a total of O(n) accesses.

6. On average, at each depth a fraction bounded away from 0 of all reads

become non-extremal reads of final depth bundles, and can thus need be

considered no further. Therefore the total number of accesses of the algo-

rithm can be bound to within an O(1) factor of the accesses at maximum

depth.

It is interesting to compare the results from Theorem 4 with those of “stan-

dard” De Bruijn graph algorithms. The latter perform (asymptotically) the same

number of accesses to disk (assuming the main memory is sufficiently large –

namely Θ(k) times larger than in our case): basically in both cases the disk is

accessed only to load the input and output the assembled genome. They also

perform asymptotically the same number of processor accesses, i.e. r − k per

read (to extract the k−mers). But they perform Θ(n(r − k)) accesses to main

memory (asymptotically as many as to the processor cache) vs. our Θ(n). Thus,
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if memory accesses are the bottleneck, our algorithm is faster by up to a factor

Θ(r − k).

Another way of seeing it is that our algorithm concentrates the accesses in

such a way as to maximize their locality (hence the title of this work), and thus,

although performing the same number of accesses, all but a fraction 1
r−k are cache

accesses, whereas those of “standard” De Bruijn graph algorithms are predomi-

nantly memory accesses.

3.4 Extensions

This section shows how our algorithm can be extended to deal with repeated

k−mers, parallelized, and translated to colour space.

Repeated k−mers. Most genomes sport fairly long sequences that appear

more than once. Thus, even if k−mers are sufficiently long to avoid “accidental”

repeats of k−mer in two totally unrelated sequences, it is crucial to be able to deal

with repeated k−mers. The fundamental issue in this case is that, if repeated

k−mers are present, the genome no longer appears as a linear sequence of bases,

but instead as an oriented “graph of bases”, with loops indicating a repeated

sequence.

This can lead to ambiguities: for example, the sequence< s0, s, s1, s, s2, s, s3 >

cannot be distinguished from the sequence < s0, s, s2, s, s1, s, s3 > if the subse-

quences s1, s2 and s are all sufficiently long compared to the size r of a read.

Sometimes mate pair information can be used to solve the ambiguity, but not

always; in many cases, one simply has to accept that the output will not be a

linear sequence of bases, but instead a labeled, oriented graph. Nodes are labeled

with linear sequences of bases, and a node v has an arc to another node u if the

sequence associated to v is immediately followed, in the genome, by the sequence

associated to u. Obviously nodes with a single incoming arc or a single outgoing

arc can be collapsed.

With this caveat, our algorithm can work in an almost identical fashion. The

crucial difference is that, in case of a divergence (the same k−mer appearing fol-

lowed by two different bases in two different reads) one must chose one of the two

continuations as the “main” one, and instead have the other continuation become

the prefix of a new linear sequence. Symmetrically, in case of a convergence (the
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same k−mer appearing preceded by two different bases in two different reads),

one must choose one of the two converging sequences to be the “main” one that

will continue into the k−mer, and have the other become the suffix of a new

linear sequence. This adds only some minor bookkeeping to our algorithm, and

does not asymptotically change its complexity.

Parallelization. Our algorithm is particularly easy to parallelize, though

care must be taken to avoid having the parallelization process destroy our care-

fully built locality: in other words, it often makes no sense to perform two opera-

tions on the same datum on two different processors, because the time required to

move the datum to the second processor far outweighs the advantage of carrying

out the two operations in parallel. Thus, different parts of the computation can

be parallelized at different points in the memory hierarchy.

To parallelize the computation at the cache level, one can exploit the si-

multaneous multi-processing and multi-threading capabilities of the individual

processor core – in a nutshell,the ability of modern processors to carry out up

to w operations in parallel (today typical values of w fall into the 2 − 16 range,

although the higher end of the range is growing) as long there are no data or con-

trol dependencies. This is ideal for carrying out the computation of the different

k−mers of a read, and can yield up to a min((r − k), w) speedup if the cache

accesses are the bottleneck.

To parallelize the computation at the memory level, one can process reads

in parallel, although care must be taken to avoid conflicts. Also, if access to

the memory is the bottleneck, this parallelization must take place across differ-

ent motherboards – adding the load of multiple cores or processors to the same

memory controller will, if anything, deteriorate performance.

Finally, should the I/O be the bottleneck, one can certainly parallelize it

across an array of disks.

Colours vs. bases. Some sequencing technologies (notably SOLiD of Ap-

plied Biosystems) produce sequences not of bases, but of “colours” – in a nutshell

sequences with the same information content, but where each bit depends on

multiple bases (see Chapter 1). While this tends to provide greater resilience to

errors, it is also creates numerous problems when errors do appear, because the

effects of a single error can propagate to large distances.

It should be noted, however, that in the absence of errors, one can operate
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in colour space exactly as in base space. And since our approach decouples error

correction/detection from the actual assembly, it can be automatically translated

to colour space with virtually no modifications.
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Chapter 4

Assembler implementation and

experimental results

In order to experimentally prove the effectiveness of our assembly algorithm, we

actually implemented it. This Chapter describes the design and implementation

of our SyntAssemblerII software and evaluates its performance both in compu-

tational time and resource consumption. Section 4.1 describes the guidelines we

followed during the development of our software and provides an overview of its

architecture. Section 4.2 illustrates the experimental setup which brought to the

results presented in Section 4.3. In these last two Sections we provide context to

the performance of our assembler by performing a direct comparison with Velvet,

a widely employed de novo assembler.

4.1 Assembler implementation

In this Section, we describe the tools we adopted during the development of our

assembler, briefly motivating our choices (Subsection 4.1.1). Then, we provide

an overview of the SyntAssemblerII architecture (Subsection 4.1.2).

4.1.1 Development tools

We developed our assembler in C++, since C++ provides a combination of both

high-level and low-level language features. In particular, it offers both the power-

ful semantics typical of object-oriented languages, paired with very low level data

manipulation. Furthermore, C++ provides the developer with direct memory
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management; given the typical memory footprint of de novo assembly computa-

tion problems, this clearly turns out to be a highly desirable feature.

During development, we followed some Extreme Programming methodologies

such as Test Driven Development (TDD) and Keep It Simple Stupid! (KISS).

Test Driven Development (TDD) requires the developer to set up a suite of unit

tests. The purpose of these tests is to check the correct execution of (almost)

every single program method, before writing the actual code. More precisely, the

development process in TDD relies on the iteration of a very short development

cycle. Every iteration consists of two steps. First, the developer identifies a

desired improvement or a new function, and designs an automated test case for

it (obviously, the test case will fail at this stage). Then, the code to pass that

test is produced and finally refactored in order to match acceptable standards.

Every iteration enriches the software with novel functionalities.

Although TDD could seem an excessively time consuming methodology, it is

really effective in preventing bugs: due to the isolation of single test cases, one

can immediately identify the portion(s) of code no longer work after a modifi-

cation of the existing code base. And since TDD requires developers to think

of the software in terms of small units, with each small unit written and tested

independently, the resulting code is highly modularized, flexible and extensible .

The philosophy of TDD naturally leads to the so called Keep It Simple Stupid

(KISS) software design methodology. KISS practice focuses on making easily

understandable (ideally self-explanatory) objects and methods. In general, this

speeds up the revision of already written portions of code and their integration

with new ones. KISS principle states that most systems work better if they are

kept simple – simplicity should be a key goal in design and unnecessary complexity

should be avoided at all costs.

Our choice for a development environment was Eclipse [13] with its CDT

plugin for C/C++ development. The unit tests suite is powered by CUTE [14]

(C++ Unit Testing Easier). CUTE features an Eclipse plugin; this noticeably

speeds up the time required for writing a test case and subsequently executing the

suite. When simple unit testing was not enough – e.g., in memory leak detection

and correction – we used Valgrind [9].

Our assembler is made up of approximatively 6000 lines of code – plus ap-

proximately 10000 lines of code for the unit test suite. Its development required
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approximatively 400 hours (270 spent writing code and 130 hours spent debug-

ging).

4.1.2 Architecture overview

The methodologies we adopted led to a simple and effective software design. In

particular, there are four main classes:

� ContigInterpreter: objects of this class handle reads and, more in gen-

eral, genomic subsequences. They provide immediate conversions from the

“1-byte-per-symbol” representation to the “2-bit-per-symbol” one and vice-

versa, by using a specifically designed internal data compressor. Since the

possible colours (or bases) are only four, they can be unambiguously rep-

resented using only two bits. Further, ContigInterpreter objects em-

bed methods managing the “fusion” and comparison operations between

genome (sub)sequences. “Fusion” is obtained by merging two (or more)

subsequences into a single one which covers their whole span.

� AnchorPoint: the goal of these objects is to provide a quick reference to

an anchor (a special k−mer selected by the means of a hash, as described

in Chapter 3) and to the reads anchored to it. It provides methods to tie a

subsequence to this anchor, recording little additional information in order

to simplify the selection of those subsequences which extend the anchor’s

support (while the others can be discarded).

� AnchorBundle: this class provides wrap objects. They translate a set of

AnchorPoint instances into bundle abstractions and take care of linking

the various AnchorPoint with each other. Objects of this type also provide

utility methods able to join more bundles into a single one. Finally, this

class includes methods to retrieve the bundle support (using the “fusion”

methods of ContigInterpreter).

� BundleManager: objects of this type track all bundles (i.e., all the Anchor-

Bundle objects) and anchors (i.e., all AnchorPoint objects) encountered

during the assembly procedure. They handle the processing of genome sub-

sequences, by attaching them to the correct AnchorPoint(s) and joining

them into a single AnchorBundle when needed.

53



Our assembler instantiates objects from these classes in order to execute a simple

procedure. After reading the input data from the disk, it instantiates a Bundle-

Manager object and uses it to handle the first (deepest) anchoring depth. Then,

it retrieves from this manager the support for the anchors at this depth. A new

BundleManager is instantiated for the input that is not anchored at this depth,

and is used to carry out the computation at the next depth. This procedure goes

on until all depths are covered and the final depth 0 bundles are written to the

output.

Figure 4.1: The ContigInterpreter class provides a smart representation of

genomic subsequences, avoiding the need of storing unnecessary information.

We emphasize how a key aspect of our software design is the abstract concept

of contig, implemented through the ContigInterpreter class (see Figure 4.1 ).

Recall the theory developed in Chapter 3: while at each depth the continuous

sequences of bases or colours (which we call contigs are expected to grow, the

overlapping zones are localized only in the extremal reads. Thus, we do not

have hold information about the “middle” portion of a contig, as the software

“ascends” to lesser depths. But this information is not lost: it can be retrieved
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by considering the original contigs which where merged into the new contig.

4.2 Experimental setup

The first set of experiments involved testing the quality of different candidates

for h−hashes. We evaluated three different fast hash functions over the set of all

k−mers in the E. Coli genome, one k−mer for each distinct starting position in

the genome. The evaluation was in terms of both speed and key distribution.

We then performed a set of experiments on a synthetic colour-space genome

of 10 million bases. Its error-free reads contain no repetitions longer than 25

colours. From these reads, we extracted a sequence of subsets. One of these

subsets was made of 1250000 “consecutive”, partially overlapping reads, in order

to grant the possibility of a complete reconstruction of the original genome. The

other subsets were constituted by 2, 5, 6, 15, 25, 50 and 75 millions of randomly

positioned reads. Despite the random positioning, due to their high coverage, the

last three subsets contain enough information to reconstruct the original genome.

Another set of experiments was performed on the same synthetic colour-space

genome to compare the number and length of contigs obtained from our software

and our competitors. In this set of tests we also measured the number of bases

from the original genome left uncovered by the set of contigs that the different

software produced in output. These experiments were performed on sets of ran-

domly positioned reads resulting in coverage respectively equal to 5×, 10×, 15×,

20×, 25×, 30× and 35×.

All tests were performed on a commodity Personal Computer equipped with

an Intel Core i7-2720QM CPU, with clock frequency of 2.20 GHz, an amount of 8

Giga Bytes of DDR III 1.333MHz RAM and a S.ATA II Hard Disk with capacity

of 320 Giga Bytes, disk spin speed of 7200RPM and a 16 Mega Bytes buffer.

Initially, on the synthetic genome we run our assembler, Velvet [47] and ABySS

[43]. Unfortunately, we could not gather a significant amount of experimental

results for ABySS: it succeeded in the assembly task only in one of the presented

cases (the small set of sequential reads). In this case, ABySS correctly produced

one contig of 9999991 bases (only 9 from the original genome are missing) in 102

seconds. For this reason, in the following Section we consider only our assembler

and Velvet.
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4.3 Experimental results

The first and the second hash functions we tested were based on Knuth’s well

known multiplicative hash [17], that effectively multiplies each k−mer (read as

an unsigned integer) by
√

5−1
2

, takes the fractionary part and multiplies that by

h, rounding down. The first function set h to 32; the second to 31. Using a

power of 2 instead of a prime for h yielded, as expected, a lower quality hash

(see Figures 4.3 and 4.3) but a faster execution time (5 seconds vs. 8 to execute

1010 hashes). The third function we tested involved multiplying a k−mer by a

smallish prime – in our case 2043, small enough that the result still fit within a

64 bit word but much larger than k – and taking the result modulus 31. This

third hash had a quality comparable to the better of the two hashes based on

Knuth’s method (see Figures 4.3) and was slightly faster (7 seconds to execute

1010 hashes).

Figure 4.2: Distribution of E. Coli’s k−mers according to Knuth’s multiplicative

hash, into 31 sets.

In terms of performance of SyntassemblerII, the experimental results support

the theoretical analysis carried out in Chapter 3. Memory usage is a crucial

parameter when dealing with de novo assembly. Figure 4.5 shows how the larger

is the size of input set, the larger are the memory requirements of Velvet. Instead,

our software maintains a constant occupation, due to the proportionality to the

size of genome (which obviously is the same for all the tests). In particular, we can

focus on the red line; the green one incorporates a 500 Mega Bytes Input/Output
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Figure 4.3: Distribution of E. Coli’s k−mers according to Knuth’s multiplicative

hash, into 32 sets.

Figure 4.4: Distribution of E. Coli’s k−mers into 31 sets, by multiplying each

k −mer by 2043 and taking the result modulus 31.

buffer to improve disk access performance – by introducing some optimizations,

this buffer could be reduced or even avoided.

One of the major strengths of our approach resides in a clever data represen-

tation and in the subsequent input size reduction. We store only data bringing

actual, useful information and discard all unnecessary and repeated reads (e.g.,

reads coming from oversampled regions of the the original genome). In Figure 4.6,

the blue line shows how the input size dramatically decreases during our assem-
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Figure 4.5: Comparison between SyntAssemblerII (with I/O buffering – higher

solid line – and without I/O buffering – lower solid line) and Velvet (dotted line)

memory usage peaks in function of the input size.

bler execution, depth level by depth level. This is one of the keys leading to the

performance shown in Figure 4.8 and Figure 4.5. As a side effect, it affects the

disk occupation after a run is performed (see Figure 4.7).
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Figure 4.6: Shrink of input size for every depth level during execution. The

initial size is 2.9GBytes, corresponding to 50 million reads.

Since our software carefully manages memory memory and makes use of a

clever data representation, during the assembly process it has to deal with sub-

stantially less data – which in turn reduces its running time. Figure 4.8 compares

our software’s running time with that of Velvet – the sharp increase in Velvet’s

at 75 million reads is probably due to its outstripping the main memory capacity

and having to resort to frequent accesses to disk. In a nutshell, our software

clearly outshines Velvet in terms of raw performance: it exhibits shorter execu-

tion times and smaller memory and disk footprints – thus running faster even

when on cheaper hardware.

Last but not least, when dealing with an input set with small coverage, our

software provides a surprisingly higher quality output than Velvet. As the dataset

coverage increases, the number of genome subsequences produced as output by

our software drops more rapidly than that produced by Velvet (indicating a more

rapid convergence to a single, unfragmented genome) – see Figure 4.9. Similarly,

the size of the longest assembled subsequences grow more rapidly – as can be
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Figure 4.7: Comparison between the memory footprint of two sets of 50 and 75

million randomly positioned reads: initial input size, memory occupation after

one pass by our software and after one pass by Velvet.

observed in Figure 4.10. And while Velvet’s output always leaves many bases

uncovered, our program reaches a 100% coverage (even if scattered among the

contigs) as soon as the input allows this (see Figure 4.11).

Let us consider a single example. On a 6 million read input, Velvet completed

execution providing 100 contigs. Among these 100 contigs, the longest one was

about 498938 bases long and the total number of bases from all the contigs in

output was 9999682. This means that 318 bases are missing in the final output.

Our software completed the task by giving only 2 contigs: the first 9274904 bases

long and the second 725115 bases long. The total number of bases was 10000019

and simple inspection showed that the two contigs overlapped exactly on 19

bases. That is, no bases from the original genome are missing and a complete

reconstruction is possible with little additional work.
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Figure 4.8: Comparison between SyntAssemblerII (solid line) and Velvet (dotted

line) computation times as a function of the input size.
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Figure 4.9: The number of contigs obtained as output from some execution of

our software and Velvet.

Figure 4.10: Size of the longest contig obtained as output from some execution

of our software and Velvet.
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Figure 4.11: The number of bases not covered by the output of assembly process

(in logarithmic scale).
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Chapter 5

Conclusions and future work

This thesis presented a two-pronged approach to more efficient de novo DNA

assembly.

The first, preliminary contribution is an improved filter for noisy reads (which

technically can be of use even outside de novo assembly – e.g. in mapping). A

simple filter based on a probabilistic model of a read’s errors already outperforms

Sasson’s filter (the “industry standard”) on the E.Coli genome. But the true

power of our approach emerges when exploiting (unlike Sasson’s filter) cross-read

information with medium to high coverage: at 50× coverage our filter has almost

perfect accuracy in identifying error-free reads. In this regard, it is important

to observe that such a level of coverage is the minimum necessary, anyway, to

provide reasonable guarantees that every base in genome is covered by at least

one error-free read. A crucial advantage of such a high quality filter is that it

removes many of the complications that dealing simultaneously with errors and

colour-based reads entails: without errors, assembly in base and colour space

essentially coincide.

The second contribution of this thesis is an algorithm for de novo DNA as-

sembly that vastly outperforms state-of-the-art algorithms based on De Bruijn

graphs. From a theoretical point of view, the memory used by our algorithm is

a factor Θ(k) less (where k is the k−mer size – at least 15− 25 to allow correct

reconstruction of a genome). Furthermore, while our algorithm performs asymp-

totically the same number of operations as the competition, it maximizes the

locality of those accesses: the number of non-cache accesses is reduced, again, by

a factor Θ(k) (meaning that, if the ratio between the access cost of cache and

main memory and cache is ε, our algorithm runs min(k, 1/ε) times faster).

The advantages of our algorithm are not, however, purely theoretical. A sim-
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ple implementation in C++ of our algorithm that required only a few hundred

hours of coding vastly outperforms a state-of-the-art assembly software like Vel-

vet, that has been under development for several years. Our assembler runs

several times faster, and sports a memory footprint several times smaller (and

thus requires considerably cheaper hardware to run). Also, it seems that the

“cleaner” approach of our algorithm provides better quality output with a higher

coverage of the genome.

There are many directions in which this work may be extended. In terms

of filtering, the greatest challenge is probably to move from error detection to

error correction. In our tests, less than a read out of 5 was completely error

free; but those reads with 1 or 2 errors can still provide valuable information. In

this regard, the cross-read approach of our extended probabilistic filter appears

particularly promising.

In terms of assembly, while our algorithm correctly deals with repeated k−mers,

support for them in the actual software is still at an early stage of development.

Our software also does yet not incorporate information from mate pairs to assist

in the scaffolding of low coverage read sets – though adding this functionality

seems to pose relatively few challenges and, in fact, would seem extremely easy

to develop in our “anchor and bundle” framework. Yet another interesting line of

research would be to experiment with “dynamic” k−mers: in a nutshell, as the

number of distinct subsequences grows at every iteration, the minimum length

of k−mers to avoid mistakenly “stitching” together unrelated subsequences can

decrease – allowing one to reduce fragmentation in the case of low coverage read

sets. And there are still many optimizations that can be incorporated in the

software to further reduce by a factor 2 − 4 at least both the running time and

the memory footprint.

Finally, we would stress that many of the techniques and results in this thesis

should be relatively easy to “port” to the investigation of other problems in com-

putational genomics, such as mapping onto a reference genome or transcriptome

analysis.
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