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Preface

Abstract
Smart contracts running on blockchain platforms are critical components of decen-
tralized applications (dApps). Often, smart contracts manipulate valuable assets,
so that the correctness and security of the code is a main concern. A programming
error in a smart contract can lead to huge capital losses.

The recently developed Move language seems to be a step forward in term of
smart contracts security and correctness. Move introduces the use of linear types to
represent resources (like financial assets) in the language, in a way that permits to
detect at compile time common errors on the manipulation of resources. In Move,
the programmer can’t successfully compile a program that loses a coin or forges a
copy of a coin by mistake.

We provide a bird’s eye comparison between Move, applied to the Sui blockchain,
and Solidity, used in Ethereum, with the aim of better understanding the errors
preventable by Move’s linear types. Doing so, we give a clean explanation of the
move semantics in Move. We formalize the operational semantics and the type
system of a core subset of the Move language we call FM, which includes linear
types, and we prove the language enjoys a Resource Preservation property similar
to the the Resource Safety property stated and proved by Blackshear at al. for the
Move bytecode. We mechanize the proofs we have done for FM with approximately
3000 lines of code in Agda, a proof assistant based on Martin-Löf intuitionistic type
theory. In the formalization we clarify what does it mean to use a resource and
how the type system constraining the use of variables by programmers, with linear
typing, can guarantee resources are correctly used at runtime.
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Document Structure
The document is organized as follows:

• In Chapter 1 we give a brief introduction to the blockchain technology and
to smart contracts programming. We overview the Ethereum and the Sui
blockchain platforms, and their main on-chain programming languages that
are respectively Solidity and Move, from the perspective of a smart contract
developer. We discuss the peculiar characteristics of Move language (particu-
larly linear types) and the errors it can prevent that Solidity cannot.

• In Chapter 2 we formalize the core language FM giving its syntax, operational
semantics and typing rules. At the beginning of the chapter we define a simple
blockchain model in which we immagine FM to be executed, to give a concrete
application context to the language.

• In Chapter 3 we state and discuss the properties of FM we have proved. The
chapter is divided in two main sections: Basic properties and Resource Safety.
The goal of the former is to prove a closed and well-typed term can’t evolve
into a stuck term at runtime (Theorem 1). The goal of the latter is to prove
the Resource Preservation theorem (Theorem 2).

• In Chapter 4 we present the mechanization of FM in the Agda proof assistant.

• In Chapter 5 we draw some conclusions and discuss possible future works.
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Chapter 1

Smart Contracts Programming

1.1 Introduction
In recent years, blockchains and smart contracts, are receiving a lot of attention.
New platforms and programming languages continue to emerge proposing new solu-
tions to the problems plaguing the blockchain environment. One of the main prob-
lems is the security and correctness of smart contracts developed using blockchain
specific programming languages (on-chain languages), that constitute the backend
of decentralized applications (dApps). Often, smart contracts manipulate valuable
assets, so that a vulnerability in the code can lead to huge capital losses. Exam-
ples are the DAO attack in 2016, where an amount of ethereum worth 50 million
USD was stolen exploiting a reentrancy vulnerability, the Parity wallet bug in 2017,
where 31 million USD were loss, and the MyEtherWallet hack in 2018, where 17
million USD were stolen [10, p. 2].

The Move language, burn with the Diem blockchain and later inherited by the
Aptos and Sui blockchains, seems to be a step forward in term of smart contracts
security and correctness. As main novelty, Move introduces the use of linear types
to represent resources (like financial assets) in the language, in a way that permits to
detect at compile time common errors on the manipulation of resources. Assets like
cryptocurrencies and NFTs are represented in Move as C-like structs, and the type
system guaranties that instances of these structs are not duplicated or lost during
the execution of the smart contract. In Move, the programmer can’t successfully
compile a program that loses a coin or creates a copy of a coin by mistake. This is
a powerful feature for a blockchain programming language.

We provide a bird’s eye comparison between Move, applied to the Sui blockchain,
and Solidity, the most popular blockchain programming language, used in the
Ethereum blockchain. In particular, we try to understand how the use of linear
types in Move can improve the correctness of smart contracts, with respect to Solid-
ity. Doing so, we provide a new viewpoint on the move semantics of Move, clarifying
the mechanism underlying the linear types in the language.

We formalize the operational semantics and the type system of a subset of the
Move language we call FM, which includes linear types. For the core language
FM, in addition to proving the standard properties expected from a well-defined
operational semantics and type system, inspired by the Resource Safety theorem

8



in the formalization of the Move bytecode [7], we prove an equivalent Resource
Preservation theorem. The Resource Preservation theorem states that: in a program
that compiles without errors, resources (assets in particular) can’t be duplicated or
accidentally lost at runtime. The formalization gives a better understanding of what
does it mean to use a variable and a value (in particular a resource) stating precisely
what are the operations that use (or consume) a value. We have found this concept
not very clear in the literature, and our work attempts to shed some light on it. In
addition, the core language FM takes from Move the linear typing mechanism only,
separating it from the ownership/access-control mechanism which is left for future
work. This helps to clarify the role of linear types in Move, that is what are the kinds
of error prevented in Move that we can attribute to linear typing, and to understand
the potential of linear types in the context of smart contracts programming.

We mechanize the proofs we have done for FM in approximately 3000 lines of
Agda code. Agda is a proof assistant (like Coq) based on Martin-Löf intuitionistic
type theory [18]. In particular, two important theorems we have proved using Agda
are the Type Preservation lemma (Lemma 6) and the Resource Preservation lemma
(Lemma 10). The code in Agda is not only a formal proof of the correctness of the
type system and the operational semantics of FM, but is also a framework for future
extensions of the language and for the investigation of new language properties.

1.2 Introduction to blockchains
Nowadays the term blockchain is overloaded of meanings and it is used in different
contexts to denote different things. It is therefore necessary to make some clarifica-
tions that may seem trivial.

Blockchain - A blockchain is a particular kind of distributed data structure for
storing information [13]. A blockchain is composed of a sequence of blocks, each
containing a set of data and a reference to the previous block. The blockchain is
append-only, that is, it grows from a root block, called “genesis block”, and new
blocks can only be added at the end of the chain. Cryptography and a consensus
protocol are used to establish the order between blocks. The information stored in
the blockchain is composed by the data contained in all its blocks. A blockchain can
store any kind of information. The cryptographic mechanisms used in a blockchain
are commonly used in other contexts, such as in PKI (Public Key Infrastructure)
and in Secure Boot of embedded systems.

Blockchain system - A modern blockchain system, such as Ethereum, Sui, Aptos
and Solana, is a platform which uses a blockchain to store its state [19]. A blockchain
system can be thought of as one massive global computer where anyone can store
data and execute code paying a fee. The global computer is distributed across
a network of nodes, with no central authority, which cooperate to maintain the
system. In a similar way to what happens in a standard PC, the blockchain system
can execute programs on demand which update its state. Users of the system request
the execution of programs by sending transactions to the network. A transaction
is a message signed by the sender, which contains instructions for the system. The
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blockchain data structure of a blockchain system is also called ledger.
In what follows we will use the term blockchain to refer both to the data structure

and to the system. It will be clear from the context which of the two meanings we
are referring to.

The state of a blockchain is synchronized across the nodes of the network and
each state update must be agreed upon by the nodes. A consensus algorithm is used
to reach consensus on state updates. As a first approximation, when a transaction
is forwarded to the network, each node executes it and compares the resulting state
with the state produced by other nodes. If the majority of the nodes agree on the
next state in which the system should evolve the state update is applied.

Smart contract - As in the filesystem of a standard PC, the ledger may contain
both data and programs. Programs stored in the ledger and invoked by transactions
are called smart contracts. Usually, blockchains are born with a predefined set
of smart contracts providing basic functionalities, while new and original smart
contracts are developed by users who deploy them sending special transactions to
the network. We say a smart contract is deployed on-chain.

Smart contracts are written in a blockchain specific programming language.
Some blockchains support multiple languages, such as Solana which supports both
Rust and C/C++, while others, sometimes due to their peculiar characteristics,
only one, such as Sui and Aptos which support only Move. Some programming
languages for smart contracts are general purpose, such as Rust, while others are
devised specifically for the blockchain environment, such as Move and Solidity.

Languages used to write smart contracts are also called on-chain languages, to
distinguish them from off-chain languages, which are used to write client side applica-
tions that interact with the blockchain reading the ledger and sending transactions.
Off-chain languages are general purpose, like JavaScript, Python, Dart and run on a
client side untrusted environment, while on-chain languages run on the blockchain
trusted environment (the virtual machine).

Virtual machine - The blockchain executes the bytecode of a program in a virtual
machine. Each blockchain may define its own virtual machine with a custom instruc-
tion set. Compared to the instruction set of a standard CPU, the instruction set of
a blockchain is usually simpler and more limited. Generally, blockchain programs
don’t need great performance because they don’t implement complex logic and al-
gorithms [15]. Instead, they must be secure and reliable because they manipulate
valuable assets. A simple and well formalized ISA (Instruction Set Architecture)
is easier to implement and to verify, and it simplifies the writing of compilers for
languages that target the blockchain. Many security bugs have been found within
the Solidity compiler1, and new bugs continue to be found in the Vyper compiler2,
which is a python-like smart contract language for Ethereum.

dApp - On-chain and off-chain languages are used together to write decentralized
applications, or dApps. A dApp is not much different from a traditional webApp.
In both cases we have a client side application, which runs on the user’s device, and

1https://docs.soliditylang.org/en/develop/bugs.html
2https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-22419
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a server side application, which runs in a centralized server in the case of a webApp
while it runs on a network of nodes in the case of a dApp. In a dApp, the backend
is written with an on-chain language while the frontend with an off-chain language.

Transaction fees - Generally, users must pay a fee, in the blockchain native cur-
rency, to execute a transaction and the fee is proportional to the amount of code
executed by the transaction. The fee may also depend on other factors, such as on
the congestion state of the network: the more the network is congested the higher
the fee. Due to this costs, and due to the latency introduced by the consensus
algorithm, decentralized applications are difficult to scale. The more the users of
a dApp, the more the transactions that must be executed, the higher the network
congestion, the latency and the fees. Research is ongoing to mitigate this problem
[26] [16] [11].

Smart contract Use cases - Blockchains are predominantly used to store, transfer
and manipulate digital assets which are digital equivalents of physical (often valu-
able) objects. In a world where finance is mainly managed by banking institutions
that can’t keep up with the technological progress, blockchains would like to be a
decentralized, secure and democratic alternative for the management of financial
assets [19]. The most common example of digital asset is the cryptocurrency. Dig-
ital assets can be divided in fungible and non-fungible (NFT). Fungible assets are
interchangeable, like a penny that is indistinguishable from another penny, while
non-fungible assets are unique, like a painting. The ledger of a blockchain is mainly
used to keep track of the assets owned by each user.

Smart contracts are mainly used to implement applications in which an agree-
ment between untrusted parties is needed [17]. As an example, an online marketplace
(such as Amazon) is an intermediary the buyer and the seller rely on to conclude
a sale. The buyer trusts the marketplace (but not the seller) to receive the goods
he has paid for, and the seller trusts the marketplace (but not the buyer) to receive
the payment. The buyer is sure that his order and his money will not be lost. The
seller is sure that he will get his money when the customer’s receipt of the product
has been confirmed. A smart contract establishes a trusted, reliable and regulated
environment in which untrusted users can interact with each other. The blockchain
ledger is a root of trust.

To name a few, a smart contract can implement a marketplace, a crowdfunding
campaign, an auction, a lottery or a monthly payment. The paper [3] written by
Bartoletti at al., to which we made a small contribution, shows the implementation
of some of those use cases in different blockchains and programming languages.

Motivation - The economic value of assets manipulated during the execution of
transactions can be high, thus the correctness of the code executed is crucial. A
bug in a smart contract can lead to the loss of millions of dollars. Furthermore,
since the bytecode of each smart contract (sometimes even the source code) is freely
accessible by anyone due to the public nature of the ledger, and since the blockchain
programming environment can still be considered relatively new, it is not difficult
to find bugs [29]. One of the main problems that developers in this sector complain
about is the lack of adequate tools and programming languages that can help them
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prevent potentially disastrous errors [31].
Motivated by these observations we decide to explore the world of blockchain

programming languages. The initial objective was that of understanding what are
the fundamental characteristics a language aimed at the blockchain environment
should have. A good language should help the developer write correct programs by
preventing the most serious and common errors. Since smart contracts are rarely
complex [15], it would be reasonable to prefer a simple language, with clear and
predictable semantics and with good security properties. After this analysis we
decided to focus on the Move language to deeply understand how it uses linear
types to prevent certain kinds of errors in the manipulation of resources (in particular
assets). For this purpose, we have formalized the FM core language.

Our focus remains on the language and errors that can be identified at compile-
time, with an appropriate type system. We will not deal with and consider other
issues typical of blockchains, such as the efficiency of consensus algorithms, scala-
bility, privacy, etc.

This chapter proceeds by providing an overview of two different blockchains:
Ethereum which today is probably the biggest and the most used, and Sui which is
quite novel in the scene and introduces interesting features at the language level.

1.3 Ethereum

SMART CONTRACT

Address: 0x02

can call can call

can callcan call

BYTECODE

functions

ETH balance

STORAGE

state variables

SMART CONTRACT

Address: 0x03

BYTECODE

functions

ETH balance

STORAGE

state variables

BOB

ETH balance

Address: 0x01

OTHERS

ALICE

ETH balance

Address: 0x04

GLOBAL STATE

Figure 1.1: A simplified model of Ethereum. Bob and Alice are EOAs (Externally
Owned Accounts) representing two users of the system. Each of them has its own ETH
balance. Two different smart contracts are deployed on chain, each with its own balance,
bytecode and storage. Any EOA can invoke functions of any contract. The balance of
each address, together with the bytecode and the storage of each contract, compose the
global state of Ethereum .

Apart from Bitcoin, that has limited capabilities (in terms of programmability)
compared to those of modern blockchains, Ethereum is probably the best known
and most used. It was launched in 2015 by Vitalik Buterin and partners, its native

12



contract nftSeller

STORAGE

  ETH balance

  counter = 3

  ownedNfts : BOB   -> [

                struct Nft {

                  number = 1,

                  refound = 5 }]

              ALICE -> [

                struct Nft {

                  number = 2,

                  refound = 2 }]

function buyNft() payable

function returnNft(uint number) 

BOB (Address)

ALICE (Address)

associated with

GLOBAL STATE

Figure 1.2: A possible state of an instance of the nftSeller contract (Listing 1) after some
transactions. Bob bought the NFT with the number 1, paying 5 Wei (1 Wei = 1018 ETH)
for it, while Alice bought the NFTs with number 2 paying 2 Wei. The counter of the
contract is 3.

currency is the Ether (ETH), at the time this is written it counts 6795 nodes and
it has a market cup of 303 billion USD 3. The number of nodes and the market cup
fluctuate heavily over time but their order of magnitude can be useful to understand
the size and importance of Ethereum.

In Figure 1.1 we show a simplified model of Ethereum. Accounts in Ethereum
are entities that can interact with the system. There are two types of accounts:
Externally Owned Accounts (EOA), which are controlled by users, and Contract
Accounts, which are controlled by smart contracts. Each account has a unique
address, which is a 160-bit identifier, and a balance in ETH. EOAs send transactions
to the network to transfer ETH and to invoke functions exposed by smart contracts.

Smart contracts - A smart contract has a balance in ETH, a bytecode fragment,
which is the code executed by the Ethereum Virtual Machine (EVM) when the
contract is invoked, and a persistent storage. The storage is a private memory area
the contract can use to store data that persists between different invocations of the
contract. The storage may save the list of users registered to a service, the list of
items in a marketplace, or the state of a game. The balance, the bytecode and the
storage of a contract are written in the ledger and contribute to the definition of
the global state of the system. The bytecode of a contract is immutable while the
balance and the private memory can change during the contract lifetime.

Solidity - The majority of Ethereum smart contracts are written in Solidity, a
feature reach object oriented language with a C++ like syntax. In Listing 1 we
show a toy example of a Solidity contract. Pretending that natural numbers are
assets worth owning, the contract let users buy unique natural numbers as NFTs.
A user can brag about owning the number 42. The minimum price of a number is
proportional to its value, so the base price of the number 42 is twice that of the
number 21. To buy a number, a user can pay the minimum price or more, as they

3https://www.kraken.com/prices/ethereum
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1 pragma solidity ^0.8.13;
2 contract nftSeller {
3 struct Nft {
4 uint number;
5 uint refound;
6 }
7

8 uint counter;
9 mapping(address => Nft[]) public ownedNfts;

10

11 constructor() { counter = 1; }
12

13 function buyNft() public payable {
14 require(msg.value >= counter, "Not enough Ether");
15 Nft memory nft = Nft(counter, msg.value);
16 ownedNfts[msg.sender].push(nft);
17 counter++;
18 }
19

20 function returnNft(uint number) public {
21 Nft[] storage Nfts = ownedNfts[msg.sender];
22 for (uint i = 0; i < Nfts.length; i++) {
23 if (Nfts[i].number == number) {
24 Nft memory nft = Nfts[i];
25 Nfts[i] = Nfts[Nfts.length - 1];
26 Nfts.pop();
27 (bool success, ) = msg.sender.call{value: nft.refound}("");
28 require(success, "Refound failed.");
29 break;
30 }
31 }
32 }
33 }

Listing 1: Example of Solidity contract. Users can buy unique natural numbers from
the contract and later delete the numbers they own to get their money back.
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prefers. When the user realizes that owning numbers is not a great deal, he can give
back the numbers he owns to get his money back.

The implementation of a Solidity contract is similar to the implementation of a
class in an object oriented language. The contract keyword, followed by the name
of the contract, starts the contract definition. The instance variable counter is part
of the contract storage and saves the next NFT number to be created. It is set to
1 when the contract is initialized at deploy time. The map ownedNfts is also part of
the contract storage and maps each user address to the NFTs it owns. Thus, the
storage of the contract is composed of the contract’s instance variables.

The nftSeller contract exposes two public functions to users: buyNft and returnNft.
The former is payable, which means it can receive ETH from the caller. If the caller
sends enough ETH, the function creates a new struct of type Nft (line 15), rep-
resenting the number-asset purchased by the caller, and adds it to the list of the
NFTs owned by the caller (line 16). The Nft struct records the amount of ETH paid
by the buyer in the refound field. The ETH received by the contract are added to
the contract balance. A user can invoke the returnNft function passing as input a
number (uint). If the number is found in the list of the NFTs owned by the caller
(line 23), the number is removed from the list and the user is refunded with the
amount of ETH he paid for that number (line 27). The contract sends ETH to the
sender calling msg.sender.call{value: amount}(""), where msg.sender is the address of
the sender and nft.refound is the amount of ETH to send.

A contract, like a class in OOP, can be instantiated multiple times, and each
instance has its own private balance, bytecode and storage. A smart contract pub-
lished on chain is thus an instance of a Solidity contract, like an object is an instance
of a class. The same Solidity contract can be deployed multiple times, by different
users at different addresses. Apart from small exceptions, the storage of a contract
instance can only be modified by the bytecode of the same instance. In Figure 1.2 we
show a possible state of an instance of the nftSeller contract after some transactions.

Solidity contracts can’t have class variables, that is variables shared by all the
instances of the same Solidity contract. The Solidity contract of which the smart
contract is an instance is not tracked on chain. Each contact is a standalone entity
with a copy of its bytecode.

A contract, during its execution, can invoke functions of other contracts, and can
create new contracts using the new keyword in the same way an object can allocate
other objects in OOP. A contract created by another contract is no different form a
contract created by an EOA: it is still standalone and it has no particular connection
with its creator. It is not possible to allocate contracts with a limited scope, like
a temporary object in OOP: all the contracts are allocated on the global state and
they persist until they are explicitly deleted. A contract can delete itself from the
blockchain by calling selfdestruct 4.

In Ethereum there is no built-in contract ownership mechanism. When a contract
is published, every account (both a user or a another contract) can call its functions
without restrictions. It is possible though to implement an access control mechanism
in the code of the contract. Each function, before doing its job, can check if the
caller is authorized to invoke the function, and if no, the contract can revert the

4https://docs.soliditylang.org/en/v0.8.24/introduction-to-smart-contracts.html
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transaction. When a transaction is reverted, the state of the system is restored to
the state before the transaction started, but the transaction is still recorded on the
ledger and the caller is charged for the gas used to execute the transaction. This
prevents a user from clogging the network with transactions that fail without paying
the price.

1.4 Sui

OWNED OBJECT

MODULE B

struct T1 {

  ...

}

- struct definitions

- functions

SHARED OBJECT

struct T2 {

  ...

}

IMMUTABLE OBJECT

struct T3 {

  ...

}

ADDRESS (BOB)

owned by

T1

& T1

&mut T1

ADDRESS (ALICE)

& T2

&mut T2

& T3

& T2

&mut T2

& T3

defined in

can
read/write
fields

OTHERS

MODULE A

- struct definitions

- functions

can call

can call

can call

can call

can call

GLOBAL STATE

Figure 1.3: A simplified model of Sui. Bob and Alice are two users of the system. Each
user owns some Sui objects that are Move structs. Two different modules are deployed on
chain and each module can modify only the structs defined in it. Functions of a module
can be invoked by any user. Only the owner of an owned object can consume it (passing
the object by value to the transaction, i.e. T1), while shared object and immutable object
are accessible (through a reference either mutable, i.e. &T2, or immutable, i.e. &mut T3) by
all users.

Currently, the Sui blockchain is new in the scene [25] [27]. It was launched in 2022 by
Mysten Labs, a group of former Meta (ex Facebook) employees. Sui native currency
is the SUI, at the time this is written it counts 403 validator nodes and has a market
cup of 899 million USD 5. Sui is derived from Diem [2], a blockchain developed by
Meta, announced in 2019 and recently abandoned. Sui shares some characteristics
with Aptos, another young blockchain, because as the former, the latter was born

5https://www.kraken.com/prices/sui
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struct Coin has key, store {
id: UID,
u64: amount,

}

struct Crowdfund has key {
id: UID,
endDonate: u64,
goal: u64,
receiver: address,
donations: Coin,

}

Figure 1.4: Definition of a Coin and a Crowdfund struct in Move.

from the ashes of Diem and was founded by former Meta employees. Both Sui and
Aptos are based on the Move language and the Move Virtual Machine (Move VM).

Benckmark - To better understand the Sui platform, we developed 11 smart con-
tract examples representing common use cases. The examples were developed for
the paper [3] written by Bartoletti at al., that carries out a qualitative evaluation
of the main smart contract languages and blockchain platforms. In the paper, a set
of significant use cases for smart contracts were selected and these use cases were
implemented in different languages and for different blockchain platforms, with the
goal of highlighting key differences, strengths and weaknesses of the languages and
platforms.

In Appendix A we show three of the use cases we have implemented for Sui, with
a brief description: Crowdfund, Auction and Escrow. The other use cases can be
found in the github repository [22].

Modules - Modules are the type of smart contracts supported by Sui. A Module
is a collection of functions and struct definitions.

Modules are developed in Sui Move, which is an adaptation of the original Move
language used by Diem. Sui Move mainly replaces the primitives to interact with
the global state that the original Move has, with different primitives that better fit
the Sui storage model [14]. The Move language used by Aptos, instead, is more
similar to the original one. For this reason, smart contracts written for Aptos 6, are
not compatible with Sui, and vice versa. In what follows, when we talk about Move
we always mean Sui Move, even though the feature of the language we are most
interested on, that is linear types, belongs to the core of the language and doesn’t
depend on the specific Move adaptation.

Modules are grouped in packages. A package, with all its modules, is compiled
off-chain and the bytecode of the package is deployed on-chain by a user sending it
to the network using a specific transaction. When a package is published it receives
a unique address and became immutable. A function published on-chain is identified
by the triplet: package address, module name and function name. In the same way
a struct definition (which is a type) published on-chain is identified by the triplet:
address of the package, module name and struct name.

Sui Objects - Accounts in Sui are the users of the platform and have an associated
32 byte unique address, which is the public key of the account. Addresses owns Sui

6https://aptos.dev/move/move-on-aptos

17



objects that represent assets (or more generally resources), such as coins and non
fungible tokens (NFT). A map stored on the ledger associates each address with
the objects it owns. A Sui object is represented in Move as a struct, which is very
similar to a C struct. Objects are created and published to the global state by
Modules during the execution of transactions. In Figure 1.4 we show the definition
of two structs in Move that can be published as Sui objects. On the left we have
the definition of a Coin struct representing a pile of coins, which is similar to the
definition of the native coin type in Sui (sui::coin::Coin). On the right we have
the definition of a Crowdfund struct, which stands for a crowdfund campaign (see the
Crowdfund use case in Appendix A.3). Each object has a unique identifier UID.

In Figure 1.3 we show a simplified model of Sui. In addition to owned objects,
which have a single owner, Sui provides two types of object that are not owned by
anyone: shared objects and immutable objects. A shared object is mutable while an
immutable object can’t be modified once published. Whether an object is owned,
shared or immutable depends on the way the object is published.

Global State - The user sending a transaction designates the objects to be provided
as input parameters telling their identifier (UID). Objects can be passed in input to a
transaction in three ways: by value, by mutable reference or by immutable reference.

• When an object is passed by value, it is removed from the global state and
the transaction can change the ownership of the object, modify or destroy it.

• When an object is passed by mutable reference it can’t be destroyed by the
transaction and its owner can’t be changed, but its content can be modified.

• When an object is passed by immutable reference the transaction can only
read the object.

We say a user use an object when he passes it in input to a transaction either
by value, by mutable reference or by immutable reference. Owned objects can be
used only by their owner, while shared objects and immutable objects can be used
by anyone. This access control mechanism is enforced by the Move VM and it is
represented in Figure 1.3 by the gray arrows.

Move - Move is a Rust-like procedural language [6]. As novelty, Move introduces
linear types for the implementation of resources. Resources by their nature are
scarce and valuable, so they should not be duplicated or accidentally lost. The
resource construct in Move is used to represent digital assets such as coins and
NFTs. By taking advantage of linear types, Move is able to prevent some common
programming errors related to the use of resources that other languages (such as
Solidity) are not able to detect. Move is purposely simple to be secure, easy to
understand for developers and easy to analyze for static analysis tools. It comes
with Move Prover [30]: a dedicated tool which allows to formally and automatically
verify some correctness properties of the modules logic. Even if we think the Move
Prover is an important tool that can be useful for reducing the number of bugs
in smart contracts, for rising the confidence in the correctness of the code and for
increasing the overall quality of smart contracts, we will not delve into it in this
work.

In Listing 2 we show a simple Move module defining a seller of numbers as NFTs
(the same example we saw for Solidity in Listing 1). It has no utility other than
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1 module package::nftSeller {
2 use sui::tx_context::{TxContext, sender}; use sui::object::{Self, UID};
3 use sui::transfer::{transfer, public_transfer, share_object};
4 use sui::sui::SUI; use sui::coin::{Self, Coin};
5

6 struct State has key {
7 id: UID,
8 counter: u64,
9 }

10

11 struct Nft has key {
12 id: UID,
13 number: u64,
14 refound: Coin<SUI>,
15 }
16

17 fun init(ctx: &mut TxContext) {
18 let state = State { id: object::new(ctx),
19 counter: 1,
20 };
21 share_object(move state);
22 }
23

24 public entry fun buyNft(state: &mut State, money : Coin<SUI>, ctx: &mut TxContext) {
25 assert!(coin::value(&money) == state.counter, 0); // Check if the amount is ok
26 let nft = Nft { id: object::new(ctx),
27 number: state.counter,
28 refound: move money,
29 };
30 state.counter = state.counter + 1;
31 transfer(move nft, sender(ctx));
32 }
33

34 public entry fun returnNft(nft: Nft, ctx: &mut TxContext) {
35 let Nft { id: id, number: _, refound: refound } = move nft;
36 object::delete(id);
37 public_transfer(move refound, sender(ctx));
38 }
39 }

Listing 2: Simple Move module defining a contract that sells numbers as NFTs.
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State      {

  id

  counter = 3

}

Nft    {
  id

  number = 2

  refound

}

Nft    {
  id

  number = 1

  refound

}

defined in
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fields

MODULE nftSeller

- struct definitions

- functions

can call can call

GLOBAL STATE

BOB (Address)

owned by

owned by

ALICE (Address)

Figure 1.5: A configuration of the objects created by the module nftSeller (Listing 2).
Bob bought and owns the NFT with the number 1, while Alice bought and owns the NFT
with the number 2. The counter inside the State of the module is 3, so the next NFT to
be sold will have the number 3.

showing the syntax and structure of a module.
The module name nftSeller is declared after the module keyword. Inside the scope

of the module we find some imports, which allow to use functions and structs defined
in other modules, two struct definitions and three functions. An instance of the State
struct is created during the initialization of the module, in the init function, to hold
the module’s state: the value of the next Nft object to create (counter). The init
function is called automatically when the module is published on-chain. The State
struct is then published (line 19) on the Sui global state as a shared object, so that
it is accessible by all the users of the system. Later, in Section 1.6, we will see in
detail the semantics of the move operator, that is applied to the state variable during
its publication. For now it is sufficient to know that (move x), where x is a variable,
denotes the value of x.

A user can call buyNft, passing as input a mutable reference to the unique and
shared instance of State, and a certain amount of Sui money (in the money variable).
Modules are stateless, so the state of the module (in the example the State instance),
if needed, must be passed as input to the function by the caller. The buyNft function
checks if the payed amount is enough and if so creates a new Nft struct. When we
create a new struct we say that we are packing the struct (e.g. line 18 and 26), while
when we decompose a struct in its components, as done in line 35 of Listing 2, we
say that we are unpacking the struct. buyNft sets the number field of the new Nft to
the current value of the counter, saves the money value in the refound filed of nft,
increments the counter and transfers the nft object to the sender of the transaction
(the user who called the function). The Nft struct is published on the global state
as an owned object, so that only its owner can use it (line 31).
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The owner of an Nft can delete it and obtain its money back by calling the
returnNft function, which takes as input a value of type Nft and returns nothing.
The Nft is unpacked inside the function (line 35) and the money in the refound field
are transferred to the sender (line 37). When the user calls returnNft, the Nft object
provided as input is removed from the global state. In Figure 1.5 is depicted a
possible configuration of the objects created by the nftSeller module.

Note that transferring an amount of money to an address (line 37) means as-
signing to that address the ownership of a Coin object. So addresses don’t have a
balance of money, but they own a set of Coin objects. Users can split and merge
the Coin objects they own to obtain Coin objects of the desired amount. A Coin is
actually a pile of coins.

Summing up, Sui objects are instances of Move structs. A module initializes
a struct, giving a value to all its fields, and publishes it as an owned, shared or
immutable object. The type of a Sui object is the fully qualified name of its struct
type, and it is recorded on-chain. Every address can own multiple objects of the
same type.

Objects can be transferred from address to address by means of transactions. If
we don’t consider exceptions, this transfer can only be done by calling a function
of the Module defining the object. In general, the structs defined in a Module can
be created, deleted, inspected, modified, and transferred only by the code of the same
Module. This ensures that properties of the structs which are invariant within the
Module, are also invariant at the system level. For example, in the nftSeller module
(Listing 2), the counter field of the State struct is initialized to 1 and it is always
incremented; so it is always greater than 0. This property is guaranteed by the code
of the module, and it is guaranteed at the system level because the counter field can
only be modified by the module. Whenever a value of type State is passed as input
to a function of the module, we can be sure the counter field is greater than 0.

Note that a function of a module different from nftSeller is allowed to receive as
input a mutable reference to the State instance (&mut State), but the only thing it
is allowed to do with that reference is to pass it as input to a function of nftSeller.
In particular, it can’t directly read or write fields of the State instance, and it can’t
destroy it.

The global state of the Sui system is composed by the set of modules with their
bytecode, the set of shared objects and the set of owned objects with the mapping
between object and owner.

1.4.1 Transaction example
The function buyNft of the nftSeller module can be executed by a client sending a
transaction to the Sui network with the content shown on the left of Listing 3. The
content of the transaction is show with a JSON-like syntax and it is not complete:
we listed only the fields that are relevant for our discussion. We assume the package
containing the function we want to call is published on-chain at the address 0x04.

Follows the explanation of the transaction fields:

• method: The task we want to perform in the transaction. In this case we want
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{ "transaction" : {
"method" : "moveCall",
"package" : "0x04",
"module" : "nftSeller",
"function" : "buyNft",
"type_arguments" : [],
"arguments" : [

"0x180", "0x283" ]
}}

{ "transaction" : {
"method" : "moveCall",
"package" : "0x04",
"module" : "nftSeller",
"function" : "returnNft",
"type_arguments" : [],
"arguments" : [ "0x873" ]

}}

Listing 3: On the left: content of a Sui transaction that calls 0x04::nftSeller::buyNft. On
the right: content of a Sui transaction that calls 0x04::nftSeller::returnNft.

- id = 0x180

- counter = 4

GLOBAL STATE (n)

moveCall

  0x04::nftSeller::buyNft(

    0x180,

    0x283)

TRANSACTIONState

- id = 0x283

Coin
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- id = 0x873

- number = 4

- refound =

Nft

- id = 0x180

- counter = 5

State

GLOBAL STATE (n+1)

sends

ADDRESS (BOB)
owned by owned by

transfer

Figure 1.6: The evolution of the Sui global state during the esecution of the transaction
shown on the left of Listing 3. The State (0x180) is passed by mutable reference to the
function, while the Coin (0x283) is passed by value. The transaction modifies the counter

filed of the State object and transfers a new Nft to the transaction sender.
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to call a function of a module. Another possible value is publish, which is used
to publish a Move package.

• package : The address of the package containing the function we want to call.

• module : The name of the module.

• function : The name of the function to call.

• type_arguments : The type arguments of the function. Move functions can be
generic, so they can take arguments that are types. In this case the function we
want to call is not generic, so the list is empty. Type arguments are specified
as strings: for example, the State type of the nftSeller module is denoted with
the string "0x04::nftSeller::State" (when the package containing the module
is at the address 0x04).

• arguments : The arguments of the function. 0x180 is the UID of a State object,
while 0x283 is the UID of a Coin<SUI> object. The two objects become respectively
the state and money parameters of the function. The last function argument (ctx
: &mut TxContext) is not specified in the transaction, because it is automatically
added by the Sui VM; it contains information about the transaction and the
sender. Note that, the fact that the state object is passed by mutable reference
to the nftSeller, while the money object is passed by value, is not specified in
the transaction. The user knows the signature of the function and calling it,
he accepts the way the function uses the objects passed as input.

In Figure 1.6, a diagram depicts the evolution of the Sui global state during the
execution of the transaction just described.

On the right of Listing 3 we show the content of another transaction that calls
0x04::nftSeller::returnNft. The function returnNft receives as argument the Nft ob-
ject with identifier 0x873, by value.

1.5 Other blockchains
We also did a preliminary study of Solana. The main goal of Solana is to solve
the performance problems of blockchains. Its main programming language is Rust,
a general purpose language for system programming. Although Rust is a recent
language with a type system that can be considered advanced, we soon noticed that
Solana does not use any particular feature to bring added value to the smart contract
programmer. Rust is used as a low-level language on par with C/C++. The Solana
API exposes many details of the underlying system, forcing the programmer to
deal with marginal aspects such as deserialization of function parameters or explicit
memory allocation for storing persistent data. We attribute this low level nature to
the fact that Solana wants to be scalable and fast, and therefore does not want to
allow itself the luxury of hiding implementation details. In our opinion, Solana does
not provide an adequate level of abstraction for the development of smart contracts,
and it is therefore not of interest for our work. For this reason we exclude it from
the study.

More information and comments about Solana can be found in [3].
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1.6 Move semantics
Move [6] [8] [24] is a strongly typed language where every variable and every value
has a type. In Move, a variable is bounded to a memory location that may contain a
value or not. A variable declaration creates a new empty memory location, while the
assignment operator writes a value into the memory location of the left-hand side
variable. There are programming languages, like Go or Java, where an uninitialized
variable assumes a default value, and there are languages like C where an unini-
tialized variable assumes an undefined value (an unpredictable value). In Move, a
variable that is not explicitly initialized has no value, and it cannot be used until it
is assigned a value. This can be seen at line 2 of the following example.

1 let x : u64;
2 let y = x; // ERROR: Invalid usage of unassigned variable 'x'
3 x = 1;
4 let y = x; // OK

In Move, the expressions (copy x) and (move x) retrieve the value of the variable x in
two different ways. The argument of the copy and move operators must be a variable.

Move - The expression (move x) evaluates to the value of x and clears its memory
location. (move x) steals somehow the value of x and makes the variable unusable
until it is assigned a new value. Using the move operator, a value can be moved from
a memory location to another. Every type of value can be moved. In the next code
snippet we have an error at line 3 because the value of x has been moved at line 2.
When the program reaches line 3, the variable x is empty and cannot be used.

1 let x : u64 = 1;
2 (move x);
3 (move x); // ERROR: Invalid usage of previously moved variable 'x'.

Copy - The expression (copy x) evaluates to the value of x and leaves its memory
location intact. Using the copy operator, a value can be duplicated. As we will see
later, not every type of value can be copied. We say a type has the copy ability if its
values can be copied. There are some types that can only be moved and so variables
of those types can never appear as argument of a copy operator. In the following
snippet the value of x is copied at line 2 and 3. The use of x at line 3 is valid because
the copy at line 2 leaves the memory location of x intact.

1 let x : u64 = 1;
2 (copy x);
3 (copy x); // OK

The Move syntax permits to write x alone, instead of (copy x) or (move x). The
compiler automatically converts x to (copy x) or (move x) depending on the type of x.
If x is of a copyable type, the compiler converts x to (copy x), otherwise it converts x
to (move x). If the programmer wants to move a value of a copyable type, he must use
the move operator explicitly. In any case, when a value is retrieved from a variable,
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it is always either a copy or a move. Note that The Move Book7, maintained by the
Move core team, states a different rule for the automatic conversion of x to (copy x)
or (move x). In particular it states that x is converted to (move x) when the type of
x is a struct with the copy ability, but this is not what we observed in the Sui Move
compiler.

Whether a variable contains a value or not when the program reaches a given
program-point its a runtime property. For example, in the following code, when the
program reaches line 8, x contains a value only if the guard g is false, otherwise it
is empty. Since the compiler can’t statically determine wether the true of the false
branch will be taken, it can’t be sure x can be used after the branch and it reports
an error. The compiler lets the programmer use a variable in a given program-point
only if it is sure in every possible execution path the variable contains a value when
the program reaches the program-point.

1 fun if_move(g : bool) {
2 let x : u64 = 1;
3 if (g) {
4 (move x); // The value of 'x' is moved away here.
5 } else {
6 (copy x);
7 };
8 (move x); // ERROR: Invalid usage of previously moved variable 'x'.
9 }

Drop - When an assignment writes a value into a non-empty memory location, the
old value is overwritten with the new value. The old value is lost and we say the
old value has been dropped. The assignment drops the value of the left-hand side
variable. In the code below, the value 8 is dropped at line 2, when the assignment
writes 9 into x.

1 let x : u64 = 8;
2 x = 9; // The value 8 is dropped.

Every variable, and by consequence every memory location, has a scope. The
scope of a variable is the portion of the program where the variable is visible. When
the scope of a location ends and the location contains a value, that value is no longer
accessible, therefore a value drop happens. The end of a scope drops the values of
all the variables whose visibility is bounded to that scope. In the code below, the
value 8 is dropped at line 3, when the scope of x ends.

1 {
2 let x : u64 = 8;
3 };

As we will see later, not every type of value can be dropped. We say a type has
the drop ability if its values can be dropped. When a variable has a non-droppable

7The Move Book: https://move-language.github.io/move/variables.html#inference
https://github.com/move-language/move/blob/main/language/documentation/book/src/variables.md
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x state x abilities copy x move x x = v { x }

empty - 3 3

empty copy 3 3

empty drop 3 3

empty copy + drop 3 3

full - 3

full copy 3 3

full drop 3 3 3

full copy + drop 3 3 3 3

Table 1.1: The operations that can be performed on a variable x depending on its
state and abilities. The operation indicated as { x } is the closing of the scope to
which x is bounded.

type, a value can be assigned to the variable only if its empty, and the scope to
which the variable is bounded can be closed only if the variable is empty.

To summarize, in Move, at every moment at runtime a variable is either empty
(doesn’t have a value) of full (has a value). As shown in Table 1.1, depending on the
type of the variable, and on its state (empty/full), some operations can be performed
or not: for example, (copy x) can be performed only if the type of x is copyable and
x is full, while x = <EXPR> only if x is empty or if it is droppable. The Move type
checker ensures that in every execution path those constraints are respected.

1.7 Abilities
In the previous section we said that not every type of value can be copied or dropped.
Wether this is possible or not depends on the abilities of the type. Types in Move
can have a mixture of 4 different abilities. Each ability enables some operations.
Those are the abilities and their meaning:

• copy: A value of a type with this ability can be copied.
• drop: A value of a type with this ability can be dropped.
• key: A value of a type with this ability can be published in the global state as

a top-level object. All the fields of a struct with the key or store ability must
have the store ability.

• store: A value of a type with this ability can be stored in the global state,
as part of another struct with the key or store ability. A type with the store
ability, but without the key ability, can’t be published alone in the global state.
In addition, an objects of a type with the store ability can be transferred
between accounts outside of the module defining the type, using the func-
tion public_transfer( <OBJ>, <DEST_ADDR> ) 8. Objects with the store ability
can be freely exchanged between users. As an example, the native type
sui::coin::Coin has the store ability. We used this feature in Listing 2 at
line 37, where we transferred the ownership of the Coin<SUI> value contained
in the Nft to the sender of the transaction.

8https://docs.sui.io/concepts/dynamic-fields/transfers/custom-rules
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All the primitive types, such as bool and u64, have the copy, drop and store ability,
but not the key ability. So a value of primitive type can’t be published alone in
the global state. This is reasonable since the global state should be populated of
resources (valuable assets mainly).

When the programmer defines a struct type, they must define also its abilities.
The list of abilities of a struct appears after the name of the struct and it is preceded
by the has keyword. In the snippet below we define a Coin type which is very similar
to the native coin type of Sui. It has the key and store abilities, such that it can
be published in the global state, it can be embedded in other types and it can
be freely exchanged between users but it doesn’t have the copy and drop abilities.
Copying a Coin in a program would be like creating a new coin out of nothing in the
physical world, which should be impossible. Dropping a Coin would be like physically
destroying the coin (intentionally or by mistake), which is doable but undesirable.

1 struct Coin has key, store
2 {
3 id: UID,
4 value: u64,
5 }

Move poses some constraints in the way structs with different abilities can be
composed. All the fields of a struct with the store, drop or copy ability must have
the same ability. It is easy to see how these constraints are reasonable: the store/-
copy/drop of a struct imply the store/copy/drop of all its fields. If we can’t copy
a Coin, we shouldn’t be able to copy an Nft containing a Coin (as in the Listing 2),
otherwise we would be able to copy the Coin. In addition, the Sui platform (not the
Move language) requires that all the structs with the key ability include an id field of
type sui::object::UID, which is the unique identifier of a struct instance in the global
state. Since UID is a non-copyable and non-droppable type, all the structs with the
key ability can’t be copyable or droppable. It follows that the all the objects in the
Sui global state are non-copyable and non-droppable structs with the key ability.

1.8 Errors preventable by Move’s Typing
Taking the “NFT seller” examples from the previous sections (Listing 1, and Listing
2), we can show that Move is able to prevent some errors, in the management of
valuable assets, that Solidity cannot.

Copy error - The Nft struct, both in the Solidity example and in the Move example
represent an asset. A user purchases a Nft which should be guaranteed to be unique
and which should be impossible to accidentally lose.

In Solidity, from a value of type Nft it is possible to create any number of copies
of the same value. It is therefore possible to mistakenly assign two copies of the same
asset to the same user, or to assign two copies of the same asset to different users.
The function buyNft of the module nftSeller can be modified as follows without
causing any error at compile time:
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1 function buyNft() public payable { //...
2 Nft memory nft = Nft(counter, msg.value);
3 ownedNfts[msg.sender].push(nft);
4 ownedNfts[msg.sender].push(nft);
5 //...
6 }

Two copies of the same Nft struct are added to the array of assets owned by the
user (ownedNfts[msg.sender]). While the error is obvious here, depending on the
complexity of the code that follows the asset creation, it may not always be so.

This kind of error can’t happen in Move because the type system prevents the
copy of a value of an asset type like Nft, which has not the drop and copy abilities
(described in Section 1.7). An attempt to publish the same asset twice, like the
following, is identified by the Move compiler.

1 public entry fun buyNft(state: &mut State, money : Coin<SUI>,
2 ctx: &mut TxContext) { //...
3 let nft = Nft { id: object::new(ctx), x: state.counter, refound: move money };
4 // ...
5 transfer(move nft, sender(ctx));
6 transfer(move nft, sender(ctx)); // <- compile error
7 }

The error reported by the compiler at line 6 is “Invalid usage of previously moved
variable ’nft’”, because the value of nft has been moved at line 5 and so nft is empty
at line 6. Note that there is no way to make this code compile, even if we try to use
the copy operator on nft instead of the move operator. The copy operator can’t be
used on variables of non-copyable type (such as Nft), and the compiler will report
the error “Invalid ’copy’ of value without the ’copy’ ability” if we try to do so.

Drop error 1 - In Solidity, it is possible to silently and accidentally lose a value
(an asset) of type Nft, causing in that way a loss for its owner. Assume, for example,
in the buyNft function the programmer wants to increment the counter by 1 when
the counter is less than 10, and by 2 otherwise. By doing this, he forgets to store
the newly created Nft resource somewhere, when the counter is less than 10:

1 function buyNft() public payable { //...
2 Nft memory nft = Nft(counter, msg.value);
3 if (counter < 10) {
4 counter ++;
5 } else {
6 counter += 2;
7 ownedNfts[msg.sender].push(nft);
8 }
9 }

The Nft asset in the nft variable is lost when the counter is less than 10 and nft goes
out of scope. In this case the buyer does not receive the asset. As before, the error
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is obvious here, but depending on the complexity of the function’s logic it may not
be so.

In Move, a value of an asset type can’t be accidentally lost; it can only be
explicitly unpacked, published or passed to another function, that in turn must do
one of these three things with the received value. If we try to replicate the same
error in Move, the compiler will identify it:

1 public entry fun buyNft(state: &mut State, money : Coin<SUI>,
2 ctx: &mut TxContext) { //...
3 let nft = Nft { id: object::new(ctx), x: state.counter, refound: move money };
4 if (state.counter < 10) {
5 state.counter = state.counter + 1;
6 } else {
7 state.counter = state.counter + 2;
8 transfer(move nft, sender(ctx));
9 }

10 } // <- compile error

The code above produces the following compile error: “The local variable ’nft’ might
still contain a value. The value does not have the ’drop’ ability and must be consumed
before the function returns”. When state.counter is less than 10, the value of the
nft variable would be dropped at the end of the function, and this is an error (as
explained in Section 1.7).

Note that in the Move version of buyNft the money parameter, which is an asset
of type Coin<SUI>, is moved (with the move operator) to the refound field of the Nft
struct (line 3). The body of the function is forced to use somehow the money asset
(in one of the three ways described above) before the function returns, otherwise
the compiler will report a drop error.

Drop error 2 - In Solidity an asset can also be lost when a variable pointing to
the asset is overwritten like in the following example:

1 Nft memory n1 = Nft(1, 0);
2 Nft memory n2 = Nft(4, 0);
3 n1 = n2; // <- n1 is overwritten and the asset Nft(1, 0) is lost

The Move equivalent doesn’t compile:

1 let n1 = Nft { id: object::new(ctx), x: 1, refound: coin::zero(ctx) };
2 let n2 = Nft { id: object::new(ctx), x: 4, refound: coin::zero(ctx) };
3 n1 = move n2; // <- compile error
4 n1 = copy n2; // <- compile error

The error is “Invalid assignment to variable ’n1’. The variable contains a value that
does not have the ’drop’ ability and must be used before you assign to this variable
again”.
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1.9 Substructural Type System
Move has a substructural type system that permits to define normal, linear, affine
and relevant struct types using abilities [21]. Each category of structs has different
constraints on the way its values can be consumed. We first explain what does it
mean to consume a value and then we will explain the 4 categories. There are only
two ways in which a struct value can be consume: it can be unpacked or it can be
published.

Unpack - A value is unpacked using let <STRUCT DEF> = <STRUCT>, like in the following
example which is extracted from Listing 2. The returnNft function receives a Nft as
input and unpacks it at line 9. After the unpacking the variable nft is empty.
The value retrieved from the variable is deconstructed by the let: the Nft value is
deleted but its fields, themselves values, are moved into newly created variables and
stay alive. In this case, the id and the refound fields (on the left-hand side of the
semicolon : ) are moved respectively into the id and refound variables (right-hand
side of the semicolon : ), while the x field is dropped using the _ - underscore name.
The underscore can be used only on droppable fields, like x that is a droppable u64.
After the unpack of nft, there exists no more a value of type Nft in the function. Note
how the fields of the struct being unpacked, if non-droppable, must be consumed
by the following code. Unpack consumes a struct value but it doesn’t consume the
value of its fields.

1 //...
2 struct Nft has key, store {
3 id: UID,
4 x: u64,
5 refound: coin::Coin<SUI>,
6 }
7 // ...
8 public entry fun returnNft(nft: Nft, ctx: &mut TxContext) {
9 let Nft { id: id, x: _, refound: refound } = move nft;

10 // ... do something with 'id' and 'refound'
11 }
12 // ...

Publish - As said before, in Sui, a value with the key ability can be published in the
global state as an owned, shared or immutable object. A function is available in the
module sui::transfer for each kind of publication: transfer(<OBJ>, <RECEIVER>) (and
public_transfer(<OBJ>, <RECEIVER>)), share_object(<OBJ>) and freeze_object(<OBJ>). All
the functions returns nothing and their parameters are self-explanatory.

When a struct is published, it is moved into the global state taking all its fields
with it. The published value is moved to the global state and so disappears from the
program and it can’t be manipulated anymore in the current transaction. Unlike
the unpack, the publish consumes the struct value and all its fields (recursively).
In the snippet below, again extracted from Listing 2, the share_object(counter) call
consumes the State value and the nested UID and u64 values.
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1 //...
2 struct State has key, store {
3 id: UID,
4 counter: u64,
5 }
6 // ...
7 fun init(ctx: &mut TxContext) {
8 let state = State { id: object::new(ctx), counter: 1, };
9 share_object(move state);

10 }
11 // ...

We can now explain the 4 categories of struct types. In Table 1.2 we show for each
combination of copy and drop abilities a struct can have, the category it is and the
constraints on the consumption of its values.

Move Abilities Kind of Type Value consumption
copy drop Normal Arbitrarily

drop Affine At most once
copy Relevant At least once
- Linear Exactly once

Table 1.2:

A struct copyable and droppable is a Normal type, like a Solidity or C struct. A
value of a normal type can be consumed arbitrarily many times: it can be unpacked
and published multiple times (included in other structs with the key ability) because
multiple copies of the same value can be created.

A struct non-copyable and non-droppable is a Linear type. The type system
guarantees each linear value is consumed exactly once in the program. As a conse-
quence, since all the Sui objects passed as input to a transaction are linear values, in
every valid transaction, each Sui object in input is consumed in one of three ways: it
is explicitly unpacked, it is published as a top-level object, or it is published as a field
of another object. The same holds for a linear value packed inside the transaction:
it must be consumed in exactly one of the three ways. Linear types are a good way
to represent valuable resources.

An affine value can be consumed at most once while a relevant value must be
consumed at least once. The utility of these types is more marginal in the blockchain
environment.
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Chapter 2

Formal Move FM

2.1 Introduction

GLOBAL STATE

- entry function

MODULE

- struct definitions

- functions

SYSTEM CODEBASE

TRANSACTION

MODULE

unpack

pack

A

B

B

E

E

A

publish

publish

move to

C

D

can call

PROGRAM

Figure 2.1: A diagram of a tranasction execution in the simplified blockchain model.
When the main function of the transaction module is called, resources A and B are moved
from the global state to the transaction. The transaction destroys resource B unpacking
it, republishes resource A and creates and publishes the new resource E.

Inspired by the Move language, and by its use in Sui and Aptos blockchains, we
define a small core language for smart contracts with linear and normal types. We
call it FM which stands for Formal Move.

Follows an explanation of the blockchain system in which we imagine the lan-
guage applied. However, we specify that the scope of this explanation is only to give
the reader additional context, to better understand the language and its use. Many
mechanisms mentioned below, such as the global state update and the execution of
multiple transactions in sequence, will not be explored in depth.

Figure 2.1 shows the system model. The state of the system (the global state) is a
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set of resources (linear values). Resources are not associated to accounts, and access
control mechanisms on resources are not considered. The global state is modified
executing transactions. When a transaction is invoked, some resources are moved
from the global state to the transaction, so that the transaction can use those
resources. The transaction, during execution, can publish resources that become
part of the global state. As a net result, a transaction removes some resources from
the global state (only during its invocation), and adds some resources to it.

This is similar to the Sui blockchain : a transaction can only manipulate resources
that have been provided to it, and when the transaction publishes a resource, it loses
control over the resource.

The system contains a fixed set of modules: the system codebase. Each module
contains struct and function definitions. We don’t model the possibility of adding
modules or updating existing ones. The system codebase can include any type of
smart contract or library.

A transaction is executed calling the main function of a transaction module
passing to it a list of resources taken from the global state, and a list of normal
values. The transaction module can be changed on each transaction execution, and
it contains only the main function definition (the main function plays the role of
the Programmable Transaction Block in Sui 1, or the Move Script in Aptos 2). The
main function can call functions defined in the system codebase with no restriction.
When a transaction terminates, the global state is updated, the transaction module
is replaced (if needed) and the next transaction can start.

Our language is used to write the system codebase and the transaction module.
The transaction execution happens on-chain and the system codebase is stored on-
chain.

1https://docs.sui.io/concepts/transactions/prog-txn-blocks
2https://aptos.dev/move/move-on-aptos/move-scripts/
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2.2 Syntax

Term t ::= v value
| x variable
| x.j select j-th field of x
| letx = t1 in t2 let binding
| callM.F [ t ] function call
| packM.S [ t ] constructor
| unpack txu = t1 in t2 deconstructor
| if t1 then t2 else t3

| pub t publish a resource
| execM t function body
| v.j select j-th field of v

Value v ::= n integer
| struct tkuM.S [ v ] struct value

k P K

Figure 2.2: FM Terms

Terms - The language is a core functional language with integers, structs and
functions. We say it is functional in the sense that there are no mutable variables,
but the language doesn’t have functions as first class values. Adding abstractions
could be an interesting aspect to explore in the future.

In Figure 2.2 we show all the terms of the language. The terms that can be
written by the programmer are a subset of the language terms, in particular, terms
with the underline can appear only at runtime and can’t be used by the programmer.

A value can be either an integer n or a struct struct tkuM.S [ v ] which is an
array of values v together with the fully qualified name of a struct type M.S and
an identifier k taken from a set of unique identifiers K. In M.S, M is the name
of a module and S the name of a struct defined in that module. The identifier k

plays a role in the dynamic semantics: it is used to trace the identity of a resource,
which will be useful to state and prove the resource preservation theorem (RPT) :
Theorem 2.

Struct fields don’t have names, they are identified by their position in the tuple.
A field can be selected using x.j, where x is a variable and j is the index of the field.
The term on which the selection is performed must be a variable. This is needed to
ensure resource preservation (Theorem 2). Although it may seem a limitation for

34



Type T ::= Int integer
| M.S struct name

Figure 2.3: FM Types

FD ::= fun F ( x : T ) : Tr ttbu function definition
SD ::= str S tJ , T u | str S tK , T u struct definition

MD ::= M t SD , FD u module definition
P ::= MD program

Figure 2.4: FM Program

the language expressiveness, it is not. The selection of a field of a generic term t

can be written equivalently as the term let x = t inx.j.
The let term letx = t1 in t2 binds t1 to the name x such that x can appear in t2.
Using callM.F [ t ], the programmer can invoke a function defined in any module.

M.F is the fully qualified name of the function, while t is the list of arguments. A
function can call itself recursively.

A struct of type M.S can be created using packM.S [ t ], where t is the list of
terms that, after being reduced to values, are assigned to the struct fields.

A struct t1 can be deconstructed (or unpacked) using unpack txu = t1 in t2. t1
is a term that reduces to a struct value, x is a vector of variable names: one for
each field of the struct, and t2 is the body of the unpack (the rest of the program).
During unpack, the struct t1 is eliminated and each field of the struct is bound to a
variable whose scope is the body t2.

The term if t1 then t2 else t3 behaves as usual: if t1 reduces to the integer 0 then
t3 is evaluated, otherwise t2 is evaluated.

The programmer can move a resource t to the global state using pub t. When
a resource is published, it is removed from the transaction and added to the global
state.

Types - Figure 2.3 shows the types of the language. FM has a single base type, the
integer. Other base types, like booleans, unit, etc. can be added easily. Since they
don’t add any interesting complexity or challenge to the language, we omit them for
simplicity. Every fully qualified struct name is also a type.

Programs - In Figure 2.4 we show the structure of a program and its components,
which are modules, structs and functions.

A function fun F ( x : T ) : Int ttbu is defined giving a name F, a list of parameter
names x with their types T, a return type Tr, and a term that is the body of the
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function tb. The function parameters may appear free in the body, but no other
variable is allowed to appear free in the body.

A struct definition str S tJ , T u contains a boolean flag (J or K) and a list of
types T, which are the types of the struct fields. The flag is used to say if the struct
is linear or not. True (J) means that the struct is linear (a resource), false (K)
means that the struct is normal. The programmer assigns the flag to each struct
they define.

A module M t SD , FD u wraps a list of struct definitions and a list of function
definitions. We assume all the struct and function names to be unique inside a
module. The module has a name M, so the fully qualified name of a function is M.F
and the fully qualified name of a struct is M.S. As we will see later, similarly to what
happens in Sui Move, values of type M.S can be packed, unpacked and inspected
only by functions defined in the same module M.

In our simplified model, the system codebase combined with the transaction
module forms a set of modules that we call a program P. The transaction module
is a special module tm that contains only the main function main as defined below:

FD0 = fun main ( x : T ) : Int ttbu main function
MD0 = tm t 0SD , FD0 u transaction module

With 0SD we denote the empty list of struct definitions. More in general, with 0Ω
we denote the empty list of elements of type Ω.

The main function must return an integer 3, while main function’s parameters
can be both linear or normal. The transaction is executed calling the main function
with some resources moved from the global state, and some custom normal values.
In Section 2.2.2 we will see some examples of transaction modules and how they are
executed.

As said before, underlined terms emerge only at runtime. The term execM t

encodes a running function call : the function body t executing in the module M.
The term v.j appears when the variable x of a selection x.j is substituted with the
value v by a substitution. Finally, a struct struct tkuM.S [ v ] can only be created
at runtime executing a packM.S [ v ], and can’t be written directly in the program.
This serves two purposes: first, it allows us to assign a unique identifier k to each
struct instance at the moment of its creation, and second, it allows us to check that
the module creating the struct is the same module defining the struct.

Linear & Normal Types - A type can be linear or normal (non-linear). The
function IsLinear(T), shown below, defines which are the linear types. Base types
are normal, while struct types are linear if they have the linear flag set to true
in their definition. For a more compact notation, we will write IsLinear(T) for
IsLinear(T) = J and ␣IsLinear(T) for IsLinear(T) = K.

3When we force the main function to return an integer, we don’t have to decide what to do if
a transaction returns a resource. All the resources passed to (moved to) the transaction must be
explicitly published or unpacked inside the transaction.
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IsLinear : Type Ñ Bool
IsLinear(Int) = K

IsLinear(M.S) = J when str S tJ , T u P M
IsLinear(M.S) = K when str S tK , T u P M

37



We define the set of free variables of a term t in the conventional way.

Free variables : Term Ñ Set Ď X

fv(n) = H

fv(x) = txu

fv(x.j) = x

fv(v.j) = fv(v) (=H)

fv(pub t) = fv(t)

fv(letx = t1 in t2) = fv(t1)Y (fv(t2)ztxu)

fv(callM.F [ t ]) = fv(t)

fv(packM.S [ t ]) = fv(t)

fv(struct tkuM.S [ v ]) = fv(v) (=H)

fv(unpack txu = t1 in t2) = fv(t1)Y (fv(t2)ztxu)

fv(if t1 then t2 else t3) = fv(t1)Y fv(t2)Y fv(t3)

fv(execM t) = fv(t)

fv(t) =
Ť

i fv(ti)

The definition of substitution is standard. All the occurrences of the variable y in t

are substituted with the value v.

Substitution : Term Ñ Term
nty := vu = n

xty := vu = v when x = y

xty := vu = x when x ‰ y

x.jty := vu = v.j when x = y

x.jty := vu = x.j when x ‰ y

v1.jty := vu = (v1ty := vu).j (= v1.j)

pub tty := vu = pub (tty := vu)

let x = t1 in t2ty := vu = letx = t1ty := vu in t2ty := vu
y ‰ x

callM.F [ t ]ty := vu = callM.F [ t ty := vu ]
packM.S [ t ]ty := vu = packM.S [ t ty := vu ]

struct tkuM.S [ v1 ]ty := vu = struct tkuM.S [ v1 ty := vu ]
unpack txu = t1 in t2ty := vu = unpack txu = (t1ty := vu) in (t2ty := vu)

@i.y ‰ xi

if t1 then t2 else t3ty := vu = if t1ty := vu then t2ty := vu else t3ty := vu

execM tty := vu = execM (tty := vu)
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2.2.1 Syntax Example

In Listing 4 we show a toy example of an FM module implementing the “NFT seller”
contract already show in the introductory sections of Ethereum and Sui (Listing 1
and Listing 2). To give a little bif of context, in Listing 5 we also show a portion
of an hypothetical modCoin module that implements a currency. To make the code
more readable, we added names to struct fields in struct definitions and we used
those names in selections. Furthermore, we used unqualified names for structs and
functions instead of fully qualified names when appropriate. Since we used unique
names for structs and functions there is no ambiguity.

In the example we assume the existence of three binary operators for integers
(arguments of type Tint only) we have not defined in the syntax : the logic and &&,
the comparator >= and the sum +. They behave as expected : a >= b returns 1 if a
is greater than or equal to b, 0 otherwise; a + b returns the sum of the two integer
operands; a && b returns 1 if both operands are different than zero, 0 otherwise.
In what follows, we may also assume the existence of other standard operators for
integers, such as <, >, -, *, /, etc. Those operators are not interesting and can be
easily added to the language, so we omit them in the formalization for simplicity.

Still to facilitate the understanding of the example we used the syntactic sugar
t1 ; t2 to sequence the terms t1 and t2 instead of using a let binding. The term t1 ; t2
is equivalent to letx = t1 in t2 with x chosen such that it is not free in t2.

The FM module modSeller in Listing 4 is similar to the Move counterpart (Listing 2).
The init function packs a State initializing its counter field to 1, and then publishes
it.

The buyNft function, when invoked by the blockchain runtime receives the state
of the module (state) and an amount of money (money). If the money is not enough
(line 16), the function republishes the resource it received and returns the error code
-1 (line 24-25). Otherwise it creates a new Nft resource moving inside it the money
(line 18). To update the counter field of the state struct, it unpacks the state (line
19), increments the counter field, and then packs a new updated State (line 20).
This is the only way to change a struct field in FM: the programmer must unpack
the struct, change the field, and then pack the struct again. Finally, the function
publishes the new State and the new Nft (line 21-22).

As in Move, the FM type system will prevent resource duplication and resource
loss errors. Forgetting to publish the new module state, removing for example the
pub newState at line 21, will result in a type error (a drop error). Republishing two
times the same amount of money, adding for example another pub money at line 25,
will result in a type error (a copy error).

When a user calls returnNft passing a Nft resource taken from the global state as
input, the nft is destroyed and the money within it is published (line 30).

As can be seen from the example, we have not defined and formalized an access
control mechanism in our model. Every user is allowed to use any resource from the
global state without restrictions. The study of a simple and flexible access control
mechanism and of its relationship with the language’s type system is left as future
work.
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1 modSeller {
2 str State { ⊤,
3 counter : Tint
4 }
5 str Nft { ⊤,
6 number : Tint,
7 refound : Coin
8 }
9

10 fun init () : Tint {
11 let counter = pack Counter [1] In
12 pub counter
13 }
14

15 fun buyNft(state : State, money : Coin) : Tint {
16 if (call modCoin.getValue [money] >= state.counter)
17 then
18 let nft = pack Nft [state.counter, money] In
19 unpack { counter } = state In
20 let newState = pack State [counter + 1] In
21 pub newState;
22 pub nft
23 else
24 pub counter;
25 pub money; -1
26 }
27

28 fun returnNft(nft: Nft) : Tint {
29 unpack { number, refound } = nft In
30 pub refound
31 }
32 }

Listing 4: A module that sells numbers as assets, written in FM.

1 modCoin {
2 str Coin { ⊤,
3 amount : Tint
4 }
5

6 fun getValue (coin : Coin) : Tint { coin.amount }
7 // ...
8 }

Listing 5: Fragment of an hypothetical coin module modCoin, written in FM.
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2.2.2 Transaction Examples
Assuming the system codebase of our system is composed by the modSeller and
modCoin modules seen in Section 2.2.1, in Table 2.1 and Table 2.2 we show two
examples of transaction modules that can be executed. Every transaction module
defines a single function (main) that receives as input a list of resources taken from the
global state and a list of normal values, and returns an integer value. The transaction
is executed calling the main function of the transaction module. The tables show
the transaction module code (written in FM), the global state values used in the
transaction, and the term that is reduced according to the FM operational semantics
(detailed in Section 2.3) to execute the transaction.

In Table 2.1 we show a transaction module a user can request to be executed
to buy a new number-asset. The main function receives a State resource and a Coin
asset from the global state and calls the buyNft function of the modSeller module
forwarding to it the State and the Coin. In the box “Global state input values” we
show two examples of values that may live in the global state and that can be used
in the transaction. The box “Transaction term” shows the term that is reduced
to execute the transaction. The box “Return value” shows the value returned by
the transaction and the box “Global state output values” shows the values that are
published in the global state after the transaction is executed.

In Table 2.2 we show a transaction module a user can request to be executed to
delete a number-asset and redeem the money inside it. The main function receives
a Nft asset from the global state and calls the returnNft function of the modSeller
module forwarding to it the Nft.
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Transaction module

tm {
fun main(state : State, money : Coin) : Tint {
call modSeller.buyNft [state, money]

}
}

Global state input values

- v1 = struct State [4]
- v2 = struct Coin [7]

Transaction term
call tm.main [ v1, v2 ]

Return value
0
Global state output values

- struct Nft [
4, // number
struct Coin [7] // refound

]

Table 2.1: Example of a transaction module a user can request to be executed to buy a
new number-asset.
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Transaction module

tm {
fun main(nft : Nft) : Tint {
call modSeller.returnNft [nft]

}
}

Global state input values

- v3 = struct Nft [
4, // number
struct Coin [7] // refound

]

Transaction term
call tm.main [ v3 ]

Return value
0
Global state output values

- struct Coin [7]

Table 2.2: Example of a transaction module a user can request to be executed to delete
a number-asset and redeem the money inside it.
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2.3 Operational Semantics
The operational semantics uses a call-by-value evaluation strategy, rather standard
and straightforward. The evaluation judgment M Q t Ñ t1 is read: “In module M,
t can do a step and go to t1”. There are terms that can do a step only in a specific
module. In particular, only the code of the module defining a struct can perform
operations on instances of that struct: only M can pack, unpack the struct M.S and
select its fields.

As previously said, a program is the set of modules formed by the fixed system
codebase and the transaction module (tm). The transaction module defines the main
function called main. The program is executed reducing the term call main [ v ] in the
transaction module tm. The vector v can contain resources taken from the global
state and normal values. The output of the execution is an integer value which may
indicate a success or a failure (but this is not required).

M Q t1 Ñ t1
1 E-letM Q let x = t1 in t2 Ñ let x = t1

1
in t2

E-let2M Q letx = v in t2 Ñ t2tx := vu

We start with the semantics of the let binding (E-let and E-let2 below). The term
t1 is first reduced to a value v and then the variable x is substituted with v in t2.
Note that, in the rule E-let, the module M in which let x = t1 in t2 can do a step
is the same module in which t1 can do a step. In general, in rules saying that a
term can do a step when one of its subterms can, the module in which the term can
do a step is the same in which the subterm can. There is a single rule we will see
later: E-exec, that let a term do a step in a module when its subterm can do a step
in another module. More simply, in all rules but E-exec, if an evaluation judgment
appears in the premises, it has the same module of the conclusion.

M Q ti Ñ t1
i E-pack

M Q packM.S [ v, ti, t ] Ñ packM.S [ v, t1
i, t ]

k P K is fresh E-packedM Q packM.S [ v ] Ñ struct tkuM.S [ v ]

In packM.S [ t ], the vector of terms t is first evaluated to a vector of values v by
E-pack. After this, the vector of values is packed into a struct term by E-packed.
The new struct is given a fresh identifier k taken from K. When we consider the
execution sequence M Q t Ñ‹ t1 (see Definition 1), each time E-packed is executed,
k is taken such that it is different from the identifiers initially present in t and
from the identifiers assigned by previous E-packed executions. Note how E-pack and
E-packed can be executed only by the module M in which the struct M.S is defined.
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M Q t1 Ñ t1
1 E-unpackM Q unpack txu = t1 in t2 Ñ unpack txu = t1

1
in t2

str S t b , T u P M |x| = |v| = |T|
E-unpackedM Q unpack txu = struct tkuM.S [ v ] in t2 Ñ t2tx := vu

The term unpack txu = t1 in t2 decomposes the struct t1 into its components. It is a
binder like letx = t1 in t2, but it binds multiple variables at once. All the variables
x appearing in the unpack body t2 are bounded by the unpack. The first variable of
x will be substituted with the first field of the struct, the second variable with the
second field, and so on. The programmer choses the names for the fields. The term
to be unpacked is first evaluated to a struct value by E-unpack. Then, E-unpacked
deletes somehow the struct value and substitutes in the unpack’s body the names
given to the struct fields (x) with the value of those fields (v).

M Q ti Ñ t1
i E-call

M Q callM2.F [ v, ti, t ] Ñ callM2.F [ v, t1
i, t ]

fun F ( x : T ) : Tr ttbu P M2 E-calledM Q callM2.F [ v ] Ñ execM2 tbtx := vu

M2 Q t Ñ t1

E-execM Q execM2 t Ñ execM2 t
1

E-executedM Q execM2 v Ñ v

In E-call and E-called we can see how a term executing in a module M, can
call a function defined in any module M2.F. When a function is called, the term
callM2.F [ v ] is substituted with execM2 tbtx := vu, where tb is the body of the
function M2.F. The term execM2 tbtx := vu remembers the module M2 in which
the function is defined, so that the function body can be evaluated in the correct
module.

The rule E-exec is used to do a step in the function body. When the body can
do a step in the module in which the function is defined (M2), we can do a step
in the module which is calling the function (M). Finally, when the function body
has become a value, E-executed is used to return the value to the caller. Note how
a sequence of nested function calls results (at some point of the computation) in a
term with nested exec terms. We can say exec is used to build up a stack of modules,
where E-called pushes a new module on top of the stack, while E-executed pops
the topmost module.

M Q t Ñ t1

E-publishM Q pub t Ñ pub t1
E-publishedM Q pub v Ñ 0

When a value is published, E-published simply removes that value from the program,
returning zero. The meaning of this apparently useless rule becomes clearer when
we will talk about the resource preservation theorem (RPT): Theorem 2. Values
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published during the execution will be tracked by the RU function (see Definition 5).
We remind that we do not model the global state for simplicity.

M Q t1 Ñ t1
1 E-ifM Q if t1 then t2 else t3 Ñ if t1

1
then t2 else t3

n ‰ 0 E-trueM Q if n then t2 else t3 Ñ t2

E-falseM Q if 0 then t2 else t3 Ñ t3

The semantics if the branching term is standard. The only thing to mention is that,
since we don’t have a boolean type, the guard is an integer. A guard equal to zero
is considered false, while a guard different from zero is considered true.

E-selectM Q struct tkuM.S [ v ].j Ñ vj

To conclude we have the rule E-select that selects the j-th field of a struct. The
value vj is the j-th field of the vector v = v1, .., vj, .., vn.

A table resuming of all the operational semantics rules is given in Appendix B.

Now that we have a complete definition of the single-step evaluation judgment, we
can define the multi-step evaluation judgment. The judgment M Q t Ñ‹ t1 is read:
“In module M, t can do a sequence of steps and go to t1”.

Definition 1 (Multi-step evaluation judgment).

M Q t Ñ‹ t

M Q t1 Ñ
‹ t2 M Q t2 Ñ t3

M Q t1 Ñ
‹ t3

Note that all the steps of a sequence are done in the same module M. With M fixed,
Ñ defines an homogeneous binary relation on the set of terms. Hence Ñ‹ is the
reflexive and transitive closure of Ñ.

2.3.1 Operational Semantics Examples
In this section we apply the operational semantics rules to show the execution of
some example terms. When we need it, we will use the modCoin and modSeller modules
defined in Section 2.2.1, that we rename respectively as MC and MS for brevity. So
for example, with MC .Coin we refer to the struct Coin defined in the module modCoin.

The first term we consider is:

MC Q packMC .Coin [ 5 ] E-packed
Ñ struct tk1uMC .Coin [ 5 ]
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It is a pack term packMC .Coin [ 5 ] that creates a new Coin struct with an amount of 5.
We evaluate this term in the module MC (the module containing the definition of
the Coin type), as highlighted at the beginning of the reduction sequence (MC Q ..).
Since 5 is already a value, the term evaluates to struct tk1uMC .Coin [ 5 ] according
to the rule E-packed. The key k1 is fresh, which in this context means that it is
different from all the keys present in the starting term packMC .Coin [ 5 ] and different
from all the keys generated by previous executions of the E-packed rule. Since there
are no keys in packMC .Coin [ 5 ], and no previous executions of the E-packed rule,
there is no restriction on the choice of k1.

Note that this evaluation step can’t be performed in a module different than
MC , since the E-packed requires the module in which the step is executed to be the
same module in which the struct being packed is defined.

The second term we consider is:

MC Q unpack tau = packMC .Coin [ 1 ] in a E-unpack
Ñ unpack tau = struct tk1uMC .Coin [ 1 ] in a E-unpacked
Ñ 1

It is an unpack term unpack tau = packMC .Coin [ 1 ] in a that unpacks a Coin struct.
The Coin struct is created in place by the term packMC .Coin [ 1 ], and then immedi-
ately unpacked. The body of the unpack is the variable a, which is bound to the
value of the amount field of the struct. The rule E-unpack can be applied because the
module in which the term is evaluated (MC) is the same module in which the Coin
struct is defined.

The next term we consider is:

MS Q let x = struct tk1uMS.Nft [ 4, struct tk2uMC .Coin [ 7 ] ] inx.0 E-let2
Ñ (struct tk1uMS.Nft [ 4, struct tk2uMC .Coin [ 7 ] ]).0 E-select
Ñ 4

A value of type Nft is bounded to the variable x and its first field (the 0th field),
which corresponds to the number field, is selected. We will see later that this term
is not well typed, because the linear value of type Nft is not explicitly consumed;
but for now we are only interested in the evaluation of the term. The rule E-let2 is
applied because the term being bound to the variable x is a value. The rule E-select
is applied because the term being selected is a struct with the requested field. The
rule E-select can be applied because the term is evaluated in the module MS, which
is the module in which the Nft struct is defined.
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We conclude with a function call:

M Q callMS.returnNft [ struct tk1uMS.Nft [ 4, struct tk2uMC .Coin [ 7 ] ] ]
E-called

Ñ execMS unpack tn, cu = struct tk1uMS.Nft [ 4, struct tk2uMC .Coin [ 7 ] ] in pub c
E-exec

Ñ execMS pub struct tk2uMC .Coin [ 7 ]
E-exec

Ñ execMS 0
E-executed

Ñ 0

The function MS.returnNft is called with an Nft struct as argument. When the
rule E-called is applied, the term evolves to the body of the function in which the
function parameter nft is substituted with the argument of the function, wrapped in
a execMS _ term. In the body of the function, we changed the names given by the
unpack to the fields of the struct, from number and refound, to n and c respectively,
for brevity. The variable n will be bound to the integer of the Nft, while c will be
bound to the Coin of the Nft.

Note that, in the second step, in module M we are able to execute the unpack of
the Nft struct, which is defined in module MS, thanks to the fact that the unpack is
wrapped by an execMS _ term. The term execMS t tells us the provenience of the
term t: the term t comes from module MS. Since the term t comes from module
MS, it is allowed to execute an unpack of a struct defined in MS.

The third step publishes the coin value struct tk2uMC .Coin [ 7 ] in the global state
and returns 0. Next, since 0 is a value, the rule E-executed can be applied, and the
term evaluates to 0.
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M {
str Coin { ⊤,
amount : Tint
}

fun doCopy(c : Coin) : Tint
{
let x = pub c In
pub c // <- error

}
}

module M {
struct Coin has key {
id : UID,
amount : u64

}

fun doCopy(c : Coin, ctx: &mut TxContext)
{
transfer(move c, sender(ctx));
transfer(move c, sender(ctx)); // <- error

}
}

Figure 2.5: A resource copy error in FM (left) and in Move (right).

2.4 Typing

2.4.1 Introductory examples
In the following, we explain two examples of errors our types system should prevent.
The first is a copy error while the second is a drop error.

In the first FM example on the left of Figure 2.5 we have the function doCopy
that takes as argument a linear value c of type Coin. The function publishes in the
global state the value associated to c twice (Here we used let bindings instead of
the sequence operator _;_ we introduced before, but note that the variable name
x is arbitrary and doesn’t appear in its scope). This is an error because the value
of c is linear and it can’t be copied. Publishing the same linear value twice would
create two copies of the value in the global state. On the right of Figure 2.5 we
have the same kind of error in Move: the programmer is trying to transfer twice the
Coin value of c to the sender of the transaction, calling transfer(move c, sender(ctx))
twice.

In the second FM example on the left of Figure 2.6 we have the function doDrop
with a parameter of type Coin, which is linear. The function does nothing with
the parameter and returns the value 0. This is an error because the value of c is
linear and it can’t be dropped. Within the function, the received Coin value must be
published, explicitly deconstructed with an unpack or passed to another function.
On the right of Figure 2.6 the equivalent Move error: at the end of the doDrop
function the scope of c ends and its value is dropped. This is not allowed because
the Coin type doesn’t have the drop ability.

In the next section we will see how the FM type system prevents these errors.

2.4.2 Linear Typing overview
To understand the mechanism underlying a linear type system we think useful the
following example. Let’s consider the term letx = tx in tb. In a conventional type
system the variable x can be used any number of times in tb. As a first approxima-
tion, we can say that using a variable in a term means making the variable appear
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M {
str Coin { ⊤,
amount : Tint
}

fun doDrop(c : Coin) : Tint {
0

} // drop error
}

module M {
struct Coin has key {
id : UID,
amount : u64

}

fun doDrop(c : Coin) : u64 {
0

} // drop error
}

Figure 2.6: A resource drop error in FM (left) and in Move (right).

in the term. So, in a conventional type system, there is no restriction on the number
of times a variable is used. In a type system with linear types, instead, the variable
x, if linear, must be used exactly once in tb. The type system enforces that every
linear variable is used exactly once. As a consequence, linear values at runtime
aren’t copied, aren’t lost but are used exactly once.

To do that, from the typing judgment of a term must be possible to deduce
what are the linear variables used by the term. As an example, in a standard type
system, if we know that Γ $ t : T is a valid judgment, we can say nothing about
the variables used by t. The term t may use all the variables in Γ multiple times,
or none of them. The typing judgment of a type system with linear types must be
more informative: it must tell us what are the linear variables used by the term
being typed. In that way, it can prevent the typing of a term like t1 op t2 when a
linear variable is used by both t1 and t2, and can prevent the typing of a term like
letx = tx in tb when x is linear and it is not used in tb.

To formalize a linear type systems there are mainly two approaches:

Context splitting - The first approach is based on context splitting. In this kind
of formalization the typing judgment has the classical form Γ $ t : T, but it includes
the information about the linear variables used by t: if Γ $ t : T is derivable, then
all the linear variables appearing in Γ are used exactly once in t. This means that,
for example, x : T $ 5 : Int is not derivable when T is linear, because the term 5
doesn’t use x, but it is derivable when T is normal.

The typing rule for a generic binary operator t1 op t2 would be something like:

Γ1 $ t1 : T1 Γ2 $ t2 : T2 Γ1 ‘ Γ2 T-op
Γ1 Y Γ2 $ t1 op t2 : T3

The types T1, T2 and T3 are not relevant. The relevant part is the relation ‘
appearing in the premises, and the union of the contexts in the conclusion Γ1 Y Γ2

(we assume contexts are sets of pairs tx : Tu). Two contexts Γ1 and Γ2 belong to
the relation ‘ if they satisfy the following two conditions:

• Γ1 and Γ2 contain the same normal variables, with the same types.
• The linear variables of Γ1 and Γ2 are disjoint.
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The relation ‘ checks the linear variables used by t1 are not used by t2, and vice
versa. The union of the contexts in the conclusion (Γ1 Y Γ2) collects the linear
variables used by t1 and t2, because those are the variables used by t1 op t2.

The strategy is called context splitting because, in many rules, the linear vari-
ables of the context in the conclusion are split among the contexts of the premises,
like in the T-op rule above: the linear variables of Γ1 Y Γ2 are split between Γ1 and
Γ2. This approach is more compact and elegant compared to the second one, but a
type checking algorithm can’t be easily derived from the rules [21, p. 11], and the
rules are not easy to implement in Agda [1], which is what we do in Chapter 4 to
have the computer verify the properties we have proved. For this reason, we followed
the second approach.

Input and output contexts - The second approach is based on input and output
contexts [21, p. 12] [1] [28]. The typing judgment has the form Γin $ t : T Ź Γout,
where Γin and Γout are called respectively input context and output context. The
difference between the two contexts tells us what are the linear variables used by t.
There are different ways in which the input context can be modified in an output
context to encode the variables used by t. One way is to remove from Γin the linear
variable used by t to obtain Γout. Another way is to obtain Γout marking somehow
the linear variables of Γin used by t.

In both cases, the typing rule of a generic binary operator t1 op t2 would be
something like:

Γ1 $ t1 : T1 Ź Γ2 Γ2 $ t2 : T2 Ź Γ3 T-op
Γ1 $ t1 op t2 : T3 Ź Γ3

The premises are chained together using input and output contexts. The output
context Γ2 of the first premise is used as input context for the second premise, such
that the variables used by t1 can’t be used by t2. Each subterm uses some of the
linear variables of the context and leaves back what remains.

In our formalization we use input and output contexts and we mark the used
linear variables.

2.4.3 FM Typing
In FM, a typing judgement has the following form:

M
loomoon

Module

Q Γin
loomoon

Input Env.

$ t : T Ź Γout
loomoon

Output Env.

M is a module name, Γin is the input context, t is the term we are typing with type
T and Γout is the output context. We can read the judgment like this : “In module
M, with input environment Γin, the term t has type T with output environment
Γout”.

Role of the module - Whether a term is well typed or not depends also on the
module in which we are typing it. There are terms that are well typed in a module
but not in another. For example, the term packM.S [ t ] is well typed only in M, the
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module in which the struct S is defined. This constraint enforces the fact that a
struct can be created, deconstructed and inspected (selecting its fields) only in the
module in which it is defined. Outside the defining module, the struct is opaque
and can only be moved around. The same constraints are imposed by Move as we
have seen in Section 1.4.

Context of usages - Input and output contexts are partial functions from variable
names to usages. A usage can be thought of as a pair of a type and a usability mark.
The usability mark can be in one of two states : usable (˝) or stale (‚).

Usage U ::= T˝ | T‚

Γ ::=H | Γ, x : U

The usability mark of a variable in the input context tells us if the variable can be
used in the term. When a variable is usable in the input context, it can be used in
the term we are typing. If a linear variable is usable ˝ in input and it is used in
the term, the same variable will be marked stale ‚ in the output context. When a
variable is stale ‚ in input, it can’t appear in the term we are typing.

The output context of a typing judgment is always a copy of the input context
but with the linear variables used by the term marked as stale ‚. This marking is
performed by the T-varL rule, as we see in Section 2.4.4, which is the only rule that
actually performs a modification of the context.

2.4.4 Typing rules

T-numM Q Γ $ n : Int Ź Γ

We start from the simplest rule which is the rule for typing numerical constants
T-num. A constant uses no variable, therefore the output context is the same as
the input context. Note that the input context may contain both usable and stale
variables. Here some example of derivable judgments:

M Q H $ 5 : Int Ź H
M Q x : T˝ $ 5 : Int Ź x : T˝

M Q x : T‚ $ 5 : Int Ź x : T‚

M Q x : T‚, y : T˝
2
$ 5 : Int Ź x : T‚, y : T˝

2

Γ(x) = T˝ ␣IsLinear(T)
T-varM Q Γ $ x : T Ź Γ

Γ(x) = T˝ IsLinear(T)
T-varLM Q Γ $ x : T Ź Γtx ÞÑ T‚u

There are two rules that allow to type a variable. The first T-var types a normal
variables (a variable with normal type). The variable must be usable ˝ in input,
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and it stays usable ˝ in output; the environment is not changed by the rule. The
second rule T-varL types linear variables. The variable must be usable ˝ in input,
and it is marked stale ‚ in output. This is the only rule that explicitly modifies the
environment.

Note that we can never say a variable, linear or not, is well typed, when the
variable is stale ‚ in input. Here some example of derivable judgments:

M Q x : T˝ $ x : T Ź x : T˝ when IsLinear(T)
M Q x : T˝, y : T˝

2
$ x : T Ź x : T˝, y : T˝

2
when IsLinear(T)

M Q x : T˝ $ x : T Ź x : T‚ when ␣IsLinear(T)
M Q x : T˝, y : T‚

2
$ x : T Ź x : T‚, y : T‚

2
when ␣IsLinear(T)

M Q Γ1 $ t1 : T1 Ź Γ2 M Q Γ2, x : T˝
1
$ t2 : T2 Ź Γ3, x : TÓ

1 T-letM Q Γ1 $ letx = t1 in t2 : T2 Ź Γ3

T-let is the first rule we see that gives a type to a term (let x = t1 in t2) with multiple
subterms (t1 and t2). The judgments in the premises are chained as mentioned in
the introductory Section 2.4.2: the output context Γ2 of the subterm t1 is used as
input context to type t2. If a linear variable was used by t1, it would be marked
stale ‚ in Γ2, and so the same variable couldn’t be used in t2.

The let binding introduces a new variable x with scope t2. If the type T1 of the
variable is linear, the rule checks the variable is used exactly once in t2. To do so,
the rule asks the body t2 to be well typed with an input context Γ2 expanded with
x : T˝

1
, and with an output context containing x : TÓ

1
. The symbol Ó is a function

(from Type to Usage) that marks a type T as usable (T˝) if the type is normal, and
stale (T‚) if the type is linear:

Definition 2.

mark : Type Ñ Usage
TÓ = T˝ when ␣IsLinear(T)

TÓ = T‚ when IsLinear(T)

• When T1 is linear, the typing judgement about t2 in the premises of the rule
assumes the form:

M Q Γ2, x : T˝
1
$ t2 : T1 Ź Γ3, x : T‚

1

The rule is asking the variable x to be used exactly once in t2, since that’s the
only case in which a judgment with this form can be derived.

• When T1 is normal, the typing judgement about t2 assumes the form:

M Q Γ2, x : T˝
1
$ t2 : T1 Ź Γ3, x : T˝

1

Since the usability mark of a normal variables is never changed by rules, the
rule is asking the usability mark of x to be coherent, that is: if x is usable in
input, x stays usable in output.
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str S t b , T u P M M Q Γ1 $ t : T Ź Γ2 T-pack
M Q Γ1 $ packM.S [ t ] : M.S Ź Γ2

fun F ( x : T ) : Tr ttbu P M2 M Q Γ1 $ t : T Ź Γ2 T-call
M Q Γ1 $ callM2.F [ t ] : Tr Ź Γ2

T-vecz
M Q Γ $ 0t : 0T Ź Γ

M Q Γ1 $ t : T Ź Γ2 M Q Γ2 $ t1 : T1 Ź Γ3 T-vec
M Q Γ1 $ t, t1 : T,T1 Ź Γ3

T-pack and T-call are similar because in both the rules a vector of terms t is typed
in the premises. While a term t has a type T, a vector of terms t has a vector of
types T. In T-pack the vector of terms must have a vector of types that matches
the types of the struct fields (see T in T-pack). In T-call the vector of terms must
have a vector of types that matches the types of the function parameters (see T in
T-call).

Note that in T-call, the module M2 in which the function F is defined can be
different from the module M in which callM2.F [ t ] is typed. Any function can be
called from any module. Contrary, in T-pack the module M in which the struct S
is defined must be the same module in which packM.S [ t ] is typed. A struct can be
packed only in the module in which it is defined.

The typing judgment for a vector of terms is constructed using T-vecz and T-vec.
Using T-vecz we can say 0t (the empty vector of terms) has types 0T (the empty
vector of types) when input and output contexts are the same. Using T-vec, if we
have a well typed vector of terms t with types T and using its output context Γ2 we
can type another term t1 with type T1, then we can type the vector [ t, t1 ] with types
[T,T1 ], using as input the input context of t, and as output the output context of
t1. The type judgment for a vector is essentially a chain of type judgments. The
output context of the previous term is used as input context for the next term. As a
consequence, a linear variable can be used at most by one of the terms in the vector.

str S t b , T u P M
M Q Γ1 $ t1 : M.S Ź Γ2 M Q Γ2, x : T˝

$ t2 : T2 Ź Γ3, x : TÓ

T-unpackM Q Γ1 $ unpack txu = t1 in t2 : T2 Ź Γ3

The rule T-unpack is similar to the rule T-let. unpack txu = t1 in t2 has two subterms
t1 and t2 that are typed in chain in the premises. The term t1 must be a struct either
linear or not. The body t2 must be well typed in the output context of t1 (that is
Γ2) expanded with one usable ˝ variable for each field of the struct (x : T˝ stands
for x1 : T˝

1
, .., xn : T˝

n). All the new variables with linear type must appear stale
‚ in output (x : TÓ stands for x1 : TÓ

1
, .., xn : TÓ

n). As an example, when the
struct being unpacked has two fields, the first normal and the second linear, we
have (T = T1,T2), (x : T˝

= x1 : T˝
1
, x2 : T˝

2
) and (x : TÓ

= x1 : T˝
1
, x2 : T‚

2
).
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M Q Γ1 $ t1 : Int Ź Γ2

M Q Γ2 $ t2 : Tb Ź Γ3

M Q Γ2 $ t3 : Tb Ź Γ3 T-ifM Q Γ1 $ if t1 then t2 else t3 : Tb Ź Γ3

In T-if the true branch and the false branch are typed with the same input context
Γ2; they must have the same type Tb, and the same output context Γ3. Requiring
both branches to have the same output context means requiring both branches to
use the same variables from the input context. If z P Γ2 and z is used by t2, then
z must be used by t3, and vice versa. Note that this does not prevent one branch
from creating and publishing new resources without the other branch having to do
the same.

M Q Γ1 $ t : T Ź Γ2 IsLinear(T)
T-pubM Q Γ1 $ pub t : Int Ź Γ2

The global state of our simplified blockchain model is made of resources only, so in
T-pub we require the term to be published (t) to be linear. The publish term has
always type Int because it always evaluates to 0.

M Q Γ $ x : M.S Ź Γ2

str S t b , T u P M
␣IsLinear(Tj)

T-selectXM Q Γ $ x.j : Tj Ź Γ

The rule T-selectX permits to select a filed of a struct only if the type (Tj) of the
field is normal. Since selecting a field is equivalent to making a copy of the field, a
linear field can’t be selected. A normal field can be selected from both a linear and
a normal struct.

The rule T-selectX is somehow special. It says x.j doesn’t use linear variables,
even in the case x is linear. The output context Γ2 of the premise, where x may
appear stale ‚, is not used in the conclusion. The input and output contexts of the
conclusion are both Γ. The variable x appearing in the term x.j is not considered
a use of x.

str S t b , T u P M2 M Q Γ $ v : T Ź Γ k P K
T-structM Q Γ $ struct tkuM2.S [ v ] : M2.S Ź Γ

M Q Γ $ v : M.S Ź Γ

str S t b , T u P M
␣IsLinear(Tj)

T-selectVM Q Γ $ v.j : Tj Ź Γ

M2 Q H $ t : T Ź H
T-execM Q Γ $ execM2 t : T Ź Γ

What we have seen so far are the rules for terms that can be used by the programmer
to write a program. We have also typing rules for terms that appear only at runtime:
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the terms underlined in Figure 2.2. Those rules are needed to prove the Lemma 6
(Type preservation).

While packM.S [ t ] can be typed only in the module M, struct tkuM2.S [ v ] can
be typed in any module. This means a struct can be created only inside its module,
but it can be moved around inside other modules. Note that the input and output
contexts both in the premise and in the conclusion of T-struct are equal to Γ. In
the premises of T-struct there is a typing judgment about a vector of values v.
Variables don’t appear in values, so the output context of a derivable judgment
about a value (or a vector of values) is always equal to the input context.

T-selectV is identical to T-selectX, except for the variable x that is replaced
by the value v and for the context Γ2 which is replaced by Γ (for the reason just
explained).

With T-exec we can type execM2 t, which stands for the execution of t in M2,
with type T and with the same input and output context Γ, when t has type T in
M2 with empty input and output contexts. The term t must be closed. When we
use this rule in Lemma 6 (Type preservation), t is the body of a function defined in
M2.

2.4.5 Well Formation

@ T P T. ␣IsLinear(T)
W-norm

str S tK , T u
W-lin

str S tJ , T u

M Q H, x : T˝
$ tb : Tr Ź H, x : TÓ

W-fun
M $ fun F ( x : T ) : Tr ttbu

M $ FD SD W-module
$ M t SD , FD u

Well formation rules state when a program, that is a set of modules, is well formed.
In our system, the system codebase together with the transaction module is a set of
modules that must be well formed for the transaction to be accepted for execution.

A definition of a normal struct (str S tK , T u) is well formed if all its fields are
normal. An asset (a linear value) can’t be embedded inside a normal value because
an asset can’t be copied and dropped, while a normal value can. If we copied a
normal value with an asset inside, we would copy also the asset. In the same way, if
we dropped a normal value with an asset inside, we would drop also the asset. On
the other hand, a linear struct can contain both linear and normal fields.

A function definition is well formed if the function body tb is well typed in the
module defining the function. The body must be well typed in a context containing
only the function parameters marked usable ˝ in input and marked Ó in output
according to the definition of the mark function (Definition 2). The linear parameters
of a function must be used in the function body.

A module is well formed if are so all its struct and function definitions. Finally,
a set of modules (like a program) is well formed if all its modules are well formed.
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2.4.6 Typing Examples
We see now some examples of well typed and ill typed terms. We can start showing
the two functions we have seen in the introductory section (Section 2.4.1) are ill
typed. To save space, we will use Tc to denote the type M.Coin. According to the
definition, a function fun F ( x : T ) : Tr ttbu defined in module M is well formed
when the following judgement is derivable:

M Q H, x : T˝
$ tb : Tr Ź H, x : TÓ

To prove the doCopy function is well typed, we have to prove:

M Q c : T˝
c $ let x = pub c in pub c : Int Ź c : T‚

c

The first premise of the rule T-let asks us to prove M Q c : T˝
c $ pub c : T Ź Γ2

for some type T and context Γ2. To obtain a judgement of that form we can only
use the rule T-pub, which poses the constraint T = Int. In turn, For the premise
of T-pub we have to prove M Q c : T˝

c $ c : T2 Ź Γ2 for some linear type T2. We
apply the rule T-varL, which is the only rule that can be applied in this case, and
we obtain T2 = Tc and Γ2 = c : T‚

c . So, for the first premise of the rule T-let form
which we started, we have derived M Q c : T˝

c $ pub c : Int Ź c : T‚
c , and no other

compatible judgement can be derived.
Now that we have an output context for the first premise, we can proceed to

the second premise of the rule T-let. For the second premise we have to prove
M Q c : T‚

c , x : Int˝ $ pub c : T3 Ź c : T‚
c , x : Int˝ for some type T3. We can only

use the rule T-pub, which poses the constraint T3 = Int. For the premise of T-pub
we have to prove M Q c : T‚

c , x : Int˝ $ c : T4 Ź c : T‚
c , x : Int˝ for some linear type

T4. This judgement can’t be derived, neither by using the rule T-varL nor the rule
T-var, because the variable c, to which we have to assign a type, appears stale ‚ in
the input context.

Follows the derivation tree. We use the symbol ˆ in the premises of a judgement
to indicate it is impossible to derive the judgement.

IsLinear(Tc)
T-varL

M Q c : T˝

c $ c : Tc Ź c : T‚

c
T-pub

M Q c : T˝

c $ pub c : Int Ź c : T‚

c

ˆ

M Q c : T‚

c , x : Int˝ $ c : T4 Ź c : T‚

c , x : Int˝

T-pub
M Q c : T‚

c , x : Int˝ $ pub c : Int Ź c : T‚

c , x : Int˝

T-let
M Q c : T˝

c $ letx = pub c in pub c : Int Ź c : T‚

c

Note that we can also prove the function is ill formed with another derivation tree,
where we start by typing the second premise of the T-let rule, and then we type
the first premise.

ˆ

M Q c : T˝

c $ c : Tc Ź c : T˝

c
T-pub

M Q c : T˝

c $ pub c : Int Ź c : T˝

c

IsLinear(Tc)
T-varL

M Q c : T˝

c , x : Int˝ $ c : T4 Ź c : T‚

c , x : Int˝

T-pub
M Q c : T˝

c , x : Int˝ $ pub c : Int Ź c : T‚

c , x : Int˝

T-let
M Q c : T˝

c $ letx = pub c in pub c : Int Ź c : T‚

c
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To prove the doDrop function is well typed, we have to prove:
M Q c : T˝

c $ 0 : Int Ź c : T‚
c

It is immediate to see this judgment can’t be derived: the only rule that can type
the term 0 is T-int, and T-int requires the input and output contexts to be equal.

ˆ
M Q c : T˝

c $ 0 : Int Ź c : T‚
c

Consider the following function:
fun branchIll(g : Tint, c : Coin) : Tint {

if g then
0

else
pub c

}

We expect the function to be ill typed (in any module M), because when the true
branch is taken, the linear value c is not consumed. When a function receives a linear
value, it must consume it in all possible execution paths. The following derivation
tree shows the function is ill typed. To save space, we write Γ1 for g : Int˝, c : T˝

c

and Γ3 for g : Int˝, c : T‚
c .

␣IsLinear(Int)
T-varM Q Γ1 $ g : Int Ź Γ1

ˆ
M Q Γ1 $ 0 : Int Ź Γ3 ...

T-ifM Q Γ1 $ if g then 0 else pub c : Int Ź Γ3

The ellipsis in the derivation tree indicates the premises of the rule T-if we have
not shown. The guard of the branch is a normal variable, so its typing gives an
output context equal to the input context Γ1. Using Γ1 as input context, we should
be able to derive a typing judgment for the true branch, where the output context
is Γ3. This is impossible since Γ1 ‰ Γ3, the true branch is the constant 0, and the
only rule that can type the constant 0 is T-int, which requires the input and output
contexts to be equal. There is no need to check if we are able to type the false
branch, because the true branch can’t be typed.

We can fix the function branchIll to make it well formed. We explicitly deconstruct
the linear value c in the true branch.
fun branchOk(g : Tint, c : Coin) : Tint {

if g then
unpack {a} = c in 0

else
pub c

}
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Follows the derivation tree. For space reasons, the derivation tree is divided in
different named parts. The name of the derivation tree, like DT1, is written of the
left of the root of the tree.

␣IsLinear(Int)
DT1 = T-varM Q Γ1 $ g : Int Ź Γ1

IsLinear(Tc) T-varLM Q Γ1 $ c : Tc Ź Γ3 M Q Γ3, a : Int˝ $ 0 : Int Ź Γ3, a : Int˝

DT2 = T-unpackM Q Γ1 $ unpack tau = c in 0 : Int Ź Γ3

IsLinear(Tc) T-varLM Q Γ1 $ c : Tc Ź Γ3DT3 = T-pubM Q Γ1 $ pub c : Int Ź Γ3

DT1 DT2 DT3 T-ifM Q Γ1 $ if g then (unpack tau = c in 0) else pub c : Int Ź Γ3

We conclude showing that the returnNft function defined in the modSeller module
(see Listing 4 and Listing 5) is well formed. We rewrite the function here changing
some variable names for convenience. In addition, to save space in the derivation
tree, we will write Tn for modSeller.Nft, Tc for modCoin.Coin, MS for modSeller and
MC for modCoin.
The rewritten function:

fun returnNft(w: Nft) : Tint {
unpack { x, r } = w In
pub r

}

The derivation tree proving returnNft is well formed:

IsLinear(Tn)DT4 = T-varLMS Q w : T˝

n $ n : Tn Ź w : T‚

n

IsLinear(Tc) T-varLMS Q w : T‚

n, x : Int˝

, r : T˝

c $ r : Tc Ź w : T‚

n, x : Int˝

, r : T‚

cDT5 = T-pubMS Q w : T‚

n, x : Int˝

, r : T˝

c $ pub r : Int Ź w : T‚

n, x : Int˝

, r : T‚

c

DT4 DT5 T-unpackMS Q w : T˝

n $ unpack tx, ru = w in pub r : Int Ź w : T‚

n
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Chapter 3

FM Properties

3.1 Basic properties
Before speaking about peculiar properties of the language, we have to prove some
basic properties (the standard properties expected from a well-formalized language).
The final goal of this section is to prove a closed and well-typed term can’t evolve
into a stuck term at runtime.

Lemma 1 (Simple facts). If M Q Γ1 $ t : T Ź Γ2 then:

1. dom(Γ1) = dom(Γ2)

2. type(Γ1(x)) = type(Γ2(x))

3. Γ1(x) = T‚ ùñ Γ2(x) = T‚

4. Γ2(x) = T˝ ùñ Γ1(x) = T˝

With dom(Γ) we denote the set of variables in the context Γ. With type(U) we
denote the type of the Usage U; for example, T˝ is a Usage whose type is T. The
properties 1) and 2) tell us the only thing that may change in input and output
contexts is the usage marker of variables. In the output context there are always
the same variables of the input context, and the type of each variable is the same.
The properties 3) and 4) show there are constraints on the way the usage marker of
a variable can change. If a variable is stale ‚ in input, it must be stale ‚ in output
too. If a variable is usable ˝ in output, then it certainly was also usable ˝ in input1.

Lemma 2 (Value type). If M Q Γ1 $ v : T Ź Γ2 then Γ1 = Γ2 and @ M2 and @ ∆
the following judgement is derivable:

M2 Q ∆ $ v : Tv Ź ∆

With this lemma we can change the module and the context in which we type a
value. Note that in the new derived judgment, there is the same context in input
and output. A value has no free variables and therefore does not modify the context.

1It would be possible to define a partial order relation on contexts and prove the output context
is always “greater” than the input context.
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Lemma 3 (Weakening). Given a Usage U and a variable x s.t. x R dom(Γ1),
if M Q Γ1 $ t : T Ź Γ2 then:

M Q Γ1, x : U $ t : T Ź Γ2, x : U

The typing judgment is preserved when we add a new variable to the input and
output contexts as long as the type and the usage marker of the new variable is the
same in input and output.

Lemma 4 (Strengthening). If M Q Γ1, x : U1 $ t : T Ź Γ2, x : U2, and x R fv(t),
then:

M Q Γ1 $ t : T Ź Γ2

Note that in the hypothesis of the Strengthening lemma, the usage marker of x in
input and output can be different. This makes the lemma more general, but actually,
when x is not free in t, the usage marker of x in input and output is always the
same. x P fv(t) is a necessary condition (but not sufficient) for the usage marker of
x to change.

Lemma 5 (Substitution). Given Mv Q ∆1 $ v : Tv Ź ∆2, the following two
properties hold:

1. If M Q Γ1, x : U $ t : T Ź Γ2, x : U with U = T˝
v or U = T‚

v

then M Q Γ1, x : U $ ttx := vu : T Ź Γ2, x : U

2. If M Q Γ1, x : T˝
v $ t : T Ź Γ2, x : T‚

v

then M Q Γ1, x : T‚
v $ ttx := vu : T Ź Γ2, x : T‚

v

The substitution lemma is probably the most interesting in this section. Note that
every valid typing judgment, where x belongs to the context, falls in one of the two
cases. The are two ways in which x can be marked in input (˝ or ‚), and two ways
in which it can be marked in output, for a total of four cases. Two cases are covered
by 1), and another case is covered by 2). The remaining case, where x is stale (‚)
in input and usable (˝) in output is impossible, as stated by Lemma 1 (Simple facts
3).

1) can be applied when x is normal, when x is not free in t or when x is linear
but it is not used in t (e.g. when t is a selection). 2) can be applied when x is linear
and it is used in t.

Lemma 6 (Type preservation). If M Q Γ1 $ t : T Ź Γ2 and M Q t Ñ t1 then:

M Q Γ1 $ t1 : T Ź Γ2

Lemma 7 (Progress). If M Q H $ t : T Ź H then, either t is a value or there
exists a term t1 such that M Q t Ñ t1.

Theorem 1 (No Stuck). If M Q H $ t : T Ź H and M Q t Ñ‹ t1 then, either t1

is a value or there exists a term t2 such that M Q t1 Ñ t2.

The No Stuck theorem is the final goal of this section. A closed and well typed term
can’t become stuck at runtime.

61



3.2 Resource Safety
What we want to be able to say is that, with this language, it is not possible to
use twice or accidentally lose a resource value. We have to precisely define what are
the resources available for a program and what are the resources created/used by
the program execution. We expect the execution to use only the resources available
by the program, and once a resource is used, we expect it to be no more available.
This satisfies the constraint “use a resource at most once”. In addition, we expect a
resource to stay available until it is used. A resource should not become unavailable
without being explicitly used. This satisfies the constraint “usa a resource at least
once”.

Definition 3. Given a term t, we define the resources of t as the multiset R(t).
The symbol Z denotes the multiset union.

R(n) = H

R(x) = H

R(x.j) = H

R(v.j) = H

R(pub t) = R(t)

R(letx = t1 in t2) = R(t1)ZR(t2)

R(callM.F [ t ]) = R(t)

R(packM.S [ t ]) = R(t)

R(struct tkuM.S [ t ]) = tku ZR(t) when IsLinear(M.S )
R(struct tkuM.S [ t ]) = R(t) when ␣IsLinear(M.S)

R(unpack txu = t1 in t2) = R(t1)ZR(t2)

R(if t1 then t2 else t3) = R(t1)ZR(t2)

R(execM t) = R(t)

R(t) =
Ţ

i R(ti)

Informally speaking, resources of a term are the linear-struct identifiers appearing
in the term (with their multiplicity). The only term that adds to R(t) is the struct
term, when the struct is linear.

There are two exceptional cases in which resource identifiers appear in the term,
but we don’t count them. The former is the selection and the latter is the branching.

In a selection v.j, we don’t consider resources appearing in v, because those
resources can never survive the evaluation. When a select term fully evaluates, the
resulting value has no resources.

The resources of an if t1 then t2 else t3 expression are defined as the resources of
the guard plus the resources of the true branch; the resources of the false branch are
not considered. Only one of the two branches survives the evaluation. The other
branch is discarded with all the resources it may contain. Actually, when one of the
two branches is chosen, resources of the discarded branch aren’t lost, because the
same resources are present in the other branch. We have proved that, as long as
the two branches of an if expression exist in a well formed program being executed,
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they have the same resources. For this reason, we can equivalently consider only the
resources of the false branch in the definition of R(if t1 then t2 else t3).

Definition 4. Given a step of evaluation π = M Q t Ñ t1, we define the resources
introduced by π as the multiset RI(π).

RI(E-packed) = H when ␣IsLinear(M.S)
RI(E-packed) = tku when IsLinear(M.S)

RI(E-let) = RI(M Q t1 Ñ t1
1
)

RI(E-pack) = RI(M Q ti Ñ t1
i)

RI(E-unpack) = RI(M Q t1 Ñ t1
1
)

RI(E-call) = RI(M Q ti Ñ t1
i)

RI(E-exec) = RI(M Q t Ñ t1)

RI(E-if) = RI(M Q t1 Ñ t1
1
)

RI(E-publish) = RI(M Q t Ñ t1)

RI(˚) = H

The asterisk ˚ in RI(˚) stands for all the rules of evaluation we have not explicitly
listed. With this definition we are saying a new resource is introduced in the program
when E-packed is executed to create a linear struct. The resource is k, the fresh
identifier given to the new struct.

Definition 5. Given a step of evaluation π = M Q t Ñ t1, we define the resources
used by π as the multiset RU(π).

RU(E-unpacked) = H when ␣IsLinear(M.S)
RU(E-unpacked) = tku when IsLinear(M.S)
RU(E-published) = R(v)

RU(E-let) = RU(M Q t1 Ñ t1
1
)

RU(E-pack) = RU(M Q ti Ñ t1
i)

RU(E-unpack) = RU(M Q t1 Ñ t1
1
)

RU(E-call) = RU(M Q ti Ñ t1
i)

RU(E-exec) = RU(M Q t Ñ t1)

RU(E-if) = RU(M Q t1 Ñ t1
1
)

RU(E-publish) = RU(M Q t Ñ t1)

RU(˚) = H

Publishing a resource uses the resource with all of its nested resources, while un-
packing a resource uses the resource being unpacked but not the nested resources.
When we publish a resource, the value, with all its sub-values, is moved to the global
state, and the program can no longer manipulate it. The program loses control of
the resource and has no way to regain it. To modify the same resource, another pro-
gram must be invoked passing the resource as an argument. When we deconstruct
a resource with an unpack, we destroy the resource, but we keep the values inside
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it (which may themselves be resources), and we can use those values in the body of
the unpack.

In summary, the function R(t) inspects the structure of the term t and tells us
what are the resources still available to the term, that is the resources the term
could use in subsequent computation steps. The functions RI(π) and RU(π) tell us
respectively what are the resources we consider introduced and used by the com-
putation step π. Imprecisely speaking, we will prove that when t do a step in t1,
the missing resources in t1 are exactly the resources used by the step, and the new
resources appeared in t1 are exactly the resources introduced by the step.

Since we want to talk about resources preserved in a program during multiple
computation steps, we extend the definition of RI and RU to sequences of steps.

Definition 6. Given a sequence of steps π‹ = M Q t Ñ‹ t1, we define the resources
introduced and used by π‹ as follows:

RI(M Q t Ñ‹ t) =H

RI(M Q t1 Ñ
‹ t2,M Q t2 Ñ t3) = RI(M Q t1 Ñ

‹ t2)ZRI(M Q t2 Ñ
‹ t3)

RU(M Q t Ñ‹ t) =H

RU(M Q t1 Ñ
‹ t2,M Q t2 Ñ t3) = RU(M Q t1 Ñ

‹ t2)ZRU(M Q t2 Ñ
‹ t3)

Lemma 8 (Resources of normal values). If Mv Q ∆1 $ v : Tv Ź ∆2 holds, and
␣IsLinear(Tv), then R(v) =H.

We are saying: a normal value has no resources. This is guaranteed by the hypothesis
of good formation for struct definitions: a normal struct can’t contain linear fields.

Lemma 9 (Resource substitution). Given Mv Q ∆1 $ v : Tv Ź ∆2, the following
properties holds:

1. Be U a use of Tv; If M Q Γ1, x : U $ t : T Ź Γ2, x : U, then
R(ttx := vu) = R(t)

2. If M Q Γ1, x : T˝
v $ t : T Ź Γ2, x : T‚

v, then
R(ttx := vu) = R(t)ZR(v)

3. If M Q Γ1, x : T˝
v $ t : T Ź Γ2, x : TÓ

v, then
R(ttx := vu) = R(t)ZR(v)

The property 3) follows immediately from the first two. I write it explicitly because
it comes in handy in proofs. When Tv is normal, v has no resources and TÓ

v = T˝
v, so

we can use the first property. When Tv is linear, TÓ
v = T‚

v and the second property
applies.

The property 2) states that if we have a well typed term that uses the linear
variable x, and we substitute x with a value v, the term we obtain has the same
resources as the original term t plus the resources of v.
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Lemma 10 (Resource preservation). If M Q Γ1 $ t : T Ź Γ2 and π = M Q t Ñ t1

then:
R(t)ZRI(π) = R(t1)ZRU(π)

Theorem 2 (Resource preservation). If M Q Γ1 $ t : T Ź Γ2 and π‹ = M Q t Ñ‹ t1

then:
R(t)ZRI(π

‹) = R(t1)ZRU(π
‹)

When a term t is well typed, and it evolves into t1, every resource present in t or
introduced by the computation is either still present in t1 or has been explicitly
used.
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Chapter 4

Mechanization in Agda

4.1 Introduction
Formalizing a language and proving its properties can be a difficult task. The proofs
of different lemmas and theorems are often similar to each other. When writing
proofs by hand it is easy to make mistakes, and it may be difficult to find them.
Agda1 is a proof assistant based on Martin-Löf intentional type theory [18] [9] that
allows to write machine verifiable formal proofs in a constructive way. In Agda,
we encoded the FM language syntax, the typing rules, the operational semantics
rules, and we proved the properties presented in Chapter 2. In particular, two of the
most important properties we proved are the Type Preservation lemma (Lemma 6)
and the Resource Preservation lemma (Lemma 10). To give an idea of how a proof
looks like in Agda, we included the proofs of the two properties just mentioned
respectively in Appendix D.3 and D.4. The Agda code fragments we present in this
chapter and in the appendices are most of the times incomplete. Refer to the github
repository of the project [23] for the complete code.

In Agda, according to Curry-Howard correspondence, we write propositions as
types and proofs as values of those types. “A formula has a proof if and only if
the corresponding type is inhabited” [21][p. 48]. The computer checks the correct-
ness of the proofs by type-checking the code. This increases confidence about the
correctness of the proof. Proving properties becomes a matter of writing code that
type-checks.

Agda is not only a useful tool to confirm the veracity of what already discov-
ered on paper, but it also forces to deal rigorously with every small formalization
detail. On one hand, this can be tedious because it distracts and makes the pro-
grammer lose the global picture, but on the other hand gives the programmer a
deeper understanding of the formalization.

We have tried to exploit the best of the two worlds (paper proofs and computer
proofs). We have first written the proofs on paper, and next to it, more slowly,
we have developed the Agda code. Having an outline of the proofs on paper was
essential for us to speed up the development in Agda. As said before, while working
in Agda, it is easy to get lost in the details, and having a paper proof to follow was
very useful.

1https://agda.readthedocs.io/en/latest/getting-started/what-is-agda.html
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For the sake of clarity, the Agda code snippets we present in this chapter may
be simplified, and may not be valid Agda code. When appropriate we remove some
details that would make the code harder to read and understand.

In the rest of the chapter, we will show and explain some parts of the Agda code
we developed. Even though we try to convey the main ideas without going into
too much detail, some familiarity with Martin-Löf type theory and Agda2 would be
helpful to the reader.

4.2 Encoding of Language Terms
The first step in the formalization of a programming language is the definition of its
terms. In Listing 6 we show the definition of the terms of FM in Agda. The first line
data Term : Set where declares the new type Term. The type Term has a constructor
for each kind of expression admitted by the language. Each constructor encodes a
different way to produce a value of type Term. Constructors are functions that take
arguments and return a value of the type they are a constructor of. The constructor
num_ has type (n : ℕ) → Term, that is, it is a function that takes a natural number n
and returns a Term. The constructor if_then_else_ takes three terms (t1, t2, t3) and
produces a new Term.

The underscore in constructor names is used to define mixfix operators3, such
that it is possible to write a conditional term in the form if t1 then t2 else t3 in
addition to the standard form if_then_else_ t1 t2 t3.
Here are some examples of Agda terms and their corresponding FM terms:

Agda term FM term
num 3 3
if (num 0) then (num 1) else (num 2) if 0 then 1 else 2
var 0 x

Let (num 3) In (var 0) letx = 3 inx

Note that variables are represented with indices, and not with labels. To avoid
having to deal with alpha-equivalence, that uselessly complicate the proofs, we use
a nameless representation of terms, where variables are indexes pointing to the
binder that introduced that variable, as detailed below. The constructor for the
variable term var_ takes a natural number and returns a term. Thus var 0 and var 3
are terms representing variables.

Since variables don’t have names, in binders don’t appear variable names. For
example, a let binding in FM has the form letx = t1 in t2, where x is a variable
name, while in Agda, it has the form Let t1 In t2, where there is no variable name.

Variables are indices pointing to binders. In FM we have three kinds of binders:
the let term, the unpack term, and the function definition. The variable var k
stands for “the variable introduced by the kth binder”. Binders are numbered from
the innermost to the outermost, starting from 0. For example, the FM term letx =

2https://plfa.github.io/Lambda/#lambda-introduction-to-lambda-calculus
3https://agda.readthedocs.io/en/v2.6.4.1/language/mixfix-operators.html
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1 data Term : Set where
2 num_ : (n : ℕ) → Term
3 var_ : (x : ℕ) → Term
4 Let_In_ : (t1 t2 : Term) → Term
5 call : (fid : FunId) → (ts : Vec Term n) → Term
6 if_then_else_ : (t1 t2 t3 : Term) → Term
7 pack : (sid : StrId) → (ts : Vec Term n) → Term
8 unpack_In_ : (t1 t2 : Term) → Term
9 _·_ : (t : Term) → (j : Fin Nsf) → Term

10 pub_ : (t : Term) → Term
11

12 struct : {n : ℕ} → (k : K) → (sid : StrId) → (ts : Vec Term n) → Term
13 exec : (M2 : Fin Nm) → Term → Term

Listing 6: FM terms.

3 inx corresponds to the nameless Agda term Let (num 3) In (var 0), while the term
letx = 3 in let y = 4 inx corresponds to Let (num 3) In Let (num 4) In (var 1).

Terms represented in this way are called De Bruijn terms4, and variable indices
are called De Bruijn indices. The interesting feature of this representation is that
the representation of a term is unique. The named term letx = 3 inx can be
equivalently represented as let y = 3 in y, while Let (num 3) In (var 0) is the only
way of representing the same term with de Bruijn indices.

4.3 Syntax Constraints
In Listing 7 we show the encoding of FM function definition, struct definition,
module and program in Agda. Str, Fun, Module and Program are all types, as Term is,
but are declared using the record keyword5. Records are Agda types for grouping
values together. A record has a number of fields, declared after the field keyword.
The record Str has two fields: isLin and fieldsT. The first field is a boolean that tells
whether the struct is linear or not. The second field is a vector of types, representing
the types of the fields of the struct. All the definitions correspond to those already
seen in Chapter 2.

To simplify the formalization in Agda, we imposed some constraints on the pro-
gram syntax. In particular we impose that, before writing a program, the program-
mer must declare 5 constant numbers: Nm, Ns, Nsf, Nf, Nfa, and the program is then
forced to respect the following constraints:

• The program must define Nm modules.

• Each module must define Ns different structs and Nf different functions.

• Each struct definition (of each module) must have Nsf fields.
4https://plfa.github.io/DeBruijn/#debruijn-intrinsically-typed-de-bruijn-representation
5https://agda.readthedocs.io/en/v2.6.4.1/language/record-types.html
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1 record Str : Set where
2 field
3 isLin : Bool
4 fieldsT : Vec Type Nsf
5

6 record Fun : Set where
7 field
8 argsT : Vec Type Nfa
9 retT : Type

10 body : Term
11

12 record Module : Set where
13 field
14 strs : Vec Str Ns
15 funs : Vec Fun Nf
16

17 record Program : Set where
18 field
19 mods : Vec Module Nm

Listing 7: Definition of an FM program and of its components.

• Each function definition (of each module) must have Nfa parameters.
Declaring those 5 numbers before writing a program, the language syntax can be
parameterized with them. By doing so, we are able to ensure that by construction,
all struct and function identifiers that appear in a program are valid: they point to
actually defined structs and functions. It would be impossible to write (in Agda) a
valid FM program where a function call is made to a function that does not exist,
or where we pack a struct that does not exist.

However, these constraints are not a limitation for the expressiveness of the
language. Any valid program that does not comply with these additional constraints
can be converted into a program that does. In fact, we can always add unused
fields to structs, unused parameters to functions, and unused struct and function
definitions to modules.

4.4 Encoding Operational Semantics
Operational semantics rules are encoded as constructors of the dependent type _∋_⇒_,
which is presented partially in Listing 8 (complete definition in Appendix D.1). _∋_⇒_
is a function that accepts three arguments: a module M and two terms t, t', and
produces a type. The type M ∋ t ⇒ t' corresponds to the proposition:

In module M, the term t can do a step in t'.
Each constructor of _∋_⇒_ encodes one of the evaluation rules presented in Chapter
2 and it is named according to the corresponding evaluation rule’s label. An ele-
ment of type M ∋ t ⇒ t' is a witness for the corresponding proposition. Therefore
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1 data _∋_⇒_ : Fin Nm → Term → Term → Set
2 -- ... cut content

3

4 Elet : M ∋ t1 ⇒ t1'
5 --------------------

6 → M ∋ (Let t1 In t2) ⇒ (Let t1' In t2)
7

8 Elet2 : Value t1
9 --------------------

10 → M ∋ (Let t1 In t2) ⇒ beta-red (t1 V.∷ []) t2
11 -- ... cut content

12

13 Ecall : {ts ts' : Vec Term n}
14 → M ∋ ts ⇒v ts'
15 --------------------

16 → M ∋ (call fid ts) ⇒ (call fid ts')
17

18 Ecalled : {f : Fin Nf}
19 → {ts : Vec Term n}
20 → ValueV ts
21 --------------------

22 → M ∋ (call (fId M2 f) ts) ⇒ exec M2 (beta-red ts (gBody M2 f))

Listing 8: Snippet of FM operational semantics rules. Complete definition in Ap-
pendix D.1

producing an element of type M ∋ t ⇒ t', using one of the constructors listed in the
definition (e.g. Elet or Ecall), corresponds to proving the associated proposition,
that is proving that the FM term t evolves to t' in module M.

The constructor Elet can prove Let t1 In t2 reduces in one step to Let t1' In t2
if we are able to provide a proof for M ∋ t1 ⇒ t1'. In Elet2, we see the use of the Value
predicate and the beta-red function. Value t1 encodes the proposition “The term t1

is a value”, while beta-red (t1 `∷ `[]) t2 replaces with t1, in t2, all the variables
pointing to this let binding. beta-red ts t2 is the equivalent of t2tx := tsu.

Ecalled and Ecall use the ValueV and the _∋_⇒v_ predicate. ValueV ts means “All
the terms in ts are values”, while M ∋ ts ⇒v ts' encodes the proposition “In module
M, the vector of terms ts can do a step in the vector of terms ts'”. In Ecalled, gBody is
a function that returns the body of the function given the module M2 and the index
f of the function (inside the module).

4.4.1 Using Operational Semantics
In Agda we can now prove that a term reduces in one step to another term. For
example, we prove that Let num 3 In var 0 reduces in one step to num 3 in any module,
i.e. the FM judgement M Q letx = 3 inx Ñ 3. We prove it by constructing an
Agda term pt3 and letting the proof assistant check it is a well typed term of type
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{M : Fin Nm} → M ∋ Let num 3 In var 0 ⇒ num 3.

1 pt3 : {M : Fin Nm} → M ∋ Let num 3 In var 0 ⇒ num 3
2 pt3 = Elet2 Vnum

The prove pt3 uses the Elet2 constructor passing to it Vnum, which is a proof that
num 3 is a value. Vnum is a constructor for the Value predicate and its type is
{n : ℕ} → Value (num n).

Using the definition of multi-step reduction _∋_⇒*_, and with the aid of some
utility functions, we can prove a term evaluates to another in a number of steps. The
term pt4 proves that Let (num 0) In (if (var 0) then (num 1) else (num 2)) reduces in
two steps to (num 2) in any module.

1 pt4 : {M : Fin Nm} → -- For any module M

2 M ∋ Let (num 0) In if (var 0) then (num 1) else (num 2) ⇒* num 2
3 pt4 = begin⇒
4 Let (num 0) In if (var 0) then (num 1) else (num 2) ⇒⟨ Elet2 Vnum ⟩
5 if (num 0) then (num 1) else (num 2) ⇒⟨ Eiffalse ⟩
6 num 2 ⇒∎

The begin⇒_, _⇒⟨_⟩_ and _⇒∎ functions are inspired by equality reasoning in Agda6.
The proof starts with the begin⇒ marker and ends with the ⇒∎ marker. On each
line but the last there is a term on the left and a proof on the right, this latter
surrounded by ⇒⟨ ... ⟩. When we want to prove that (M ∋ t ⇒* t'), the term on
the first line is t while the lonely term in the last line is t'. The proof on each line
proves that the term on the same line evaluates in one step to the term sitting in
the following line. The result is a chain of proofs of one-step reduction building up
a proof for multi-step reduction.

4.5 Encoding Environments
In Listing 9 we show the definition of the context and the usage-context in Agda.
A context Env for nameless terms is just a vector of types. The context doesn’t
contain bindings between variable names and types, as is usually the case, but only
types. Due to the adoption of De Bruijn indexes instead of variable names, the
order in which types appear in the context is important; note that this is not true
for standard contexts.

A value of type Usage T is the type T decorated with a marker chosen between ˝
and ‚. When T1 is a type, (T1 ∘) and (T1 •) are two elements of type Usage T1.

The usage-context UEnv is basically a vector of usages (types decorated with usage
markers). UEnv is a dependent type, with two arguments: an implicit argument l
of type ℕ, which is the length of the usage-context, and an argument of type Env l,
which is a context of length l. Implicit parameters7, those enclosed in curly braces,
are parameters that can be inferred by the type-checker, and they are not necessary

6https://plfa.github.io/Equality/#chains-of-equations
7https://agda.readthedocs.io/en/v2.6.4.1/language/implicit-arguments.html
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1 Env = Vec Type
2

3 data Usage : Type → Set where
4 _∘ : (T : Type) → Usage T
5 _• : (T : Type) → Usage T
6

7 data UEnv : {l : ℕ} → Env l → Set where
8 [] : UEnv V.[]
9 _u∷_ : {l : ℕ} {T : Type} {Δ : Env l}

10 → Usage T → UEnv Δ
11 → UEnv (T V.∷ Δ)

Listing 9: Context and usage-context.

to be passed explicitly. So, for example we can write UEnv Δ instead of UEnv {2} Δ
when Δ is a context of length 2.

Given a context Δ, a value of type UEnv Δ is a vector which contains the same
types of Δ decorated with a usage marker. Two values of type UEnv Δ are usage-
contexts containing the same types, in tha same order, but with possibly different
usage markers. In the following code snippet, Δ is an environment of length 2 and
Γ1 and Γ2 are two values with the same type UEnv Δ. The types contained in Γ1 and
Γ2 are the same types contained in Δ, but the usage makers are different.

1 Δ : Env 2; Δ = Tint ∷ CoinT ∷ []
2 Γ1 : UEnv Δ; Γ1 = Tint • u∷ CoinT • u∷ []
3 Γ2 : UEnv Δ; Γ2 = Tint ∘ u∷ CoinT • u∷ []

The usage-context is defined in this way because in the typing rules it is always
true that the input and output contexts contain the same types in the same order.
By using this definition of usage-context, we can ensure that this property of the
typing rules is encoded in the premises of the rules, and it is not necessary to prove
it separately.

4.6 Encoding Typing Rules
In Listing 10 we present a fragment of the definition of the dependent type HasType
(complete definition in Appendix D.2). The type HasType M Γ1 t T Γ2 corresponds to
the following proposition:

In module M, with input context Γ1, the term t has type T

and the output context is Γ2.

Each constructor of HasType encodes one of the typing rules presented in Chapter 2
and it is named according to the corresponding typing rule’s label. Tnum is the
constructor for the rule T-num, Tif for T-if, and so on. The two constructors Tnum
and Tif are functions that can be read this way:
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1 data HasType (M : Fin Nm) : UsageEnv Δ → Term → Type → UsageEnv Δ → Set where
2 -- ... cut content

3

4 Tnum :
5 --------------------

6 HasType M Γ (num n) Tint Γ
7 -- ... cut content

8

9 Tif : HasType M Γ1 t1 Tint Γ2
10 → HasType M Γ2 t2 T Γ3
11 → HasType M Γ2 t3 T Γ3
12 --------------------

13 → HasType M Γ1 (if t1 then t2 else t3) T Γ3
14 -- ... cut content

Listing 10: Snippet of FM typing rules. Complete definition in Appendix D.2.

• Tnum : For any module M, context Γ and natural number n the Tnum constructor
can output a proof that the term num n has type Tint in M with input and
output context Γ.

• Tif : If you provide a proof term showing the guard t1 is well typed, and
two values proving that both branches t1 and t2 are well typed, then the Tif
constructor can output a proof that the whole term (if t1 then t2 else t3) is
well typed. Note how the module is the same in all three premises and in the
conclusion, the input context for the two branches is the same and it is the
output context of the guard, the input context of the conclusion is the input
context of the guard, and the output context of the conclusion is the output
context of the two branches. The correspondence is one or to one with the
rule T-if.

4.6.1 Using Typing Rules
Using the type HasType, we can prove a term is well typed or prove that it is not.
For example, we can prove the variable x has type Int in any module M when the
input context is x : Int˝ (see pt1). We can also prove the same term can’t be typed
when the input context is x : T‚ (see pt2).

1 pt1 : {M : Fin Nm} → HasType M (Tint ∘ u∷ []) (var 0) Tint (Tint ∘ u∷ [])
2 pt1 = Tvar (Xz (λ ()))
3

4 pt2 : {M : Fin Nm} {T : Type} {Γ2 : UsageEnv (T ∷ [])}
5 → HasType M (T • u∷ []) (var 0) T Γ2
6 → ⊥
7 pt2 (Tvar ())
8
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9 -- pt2 ht = ? do a case split on ht

10 -- pt2 (Tvar htx) = ? do a case split on htx

11 -- pt2 (Tvar ())

In pt1 we use the Tvar constructor of the type HasType, which is the constructor
corresponding to the rule T-var. The argument of the Tvar constructor (Xz (λ ()))
proves that at the head of the input context there is a variable of type Tint marked
as usable (marked with a ˝).

In pt2 we are proving that for any module M, any type T and output context Γ2,
the term var 0 cannot be well typed (notice the → ⊥ at the end of the type) when
the input context is T • u∷ []. The proposition @M @T @Γ2 ␣(M Q x : T‚ $ x :
T Ź Γ2) is represented in Agda with the type of the function pt2. To prove the
proposition we have to implement the function pt2. The function has 4 parameters
(3 implicit and 1 explicit) and returns a value of type ⊥. For all possible values of
the parameters, the function must return a value of type ⊥. ⊥ is the empty type
with no constructors, so it is impossible to produce a value of type ⊥. What we do
then, is prove that the domain of the function is empty: there exists no value of
type HasType M (T • u∷ []) (var 0) T Γ2.

The proof is obtained, as described in code comments, by doing case split on the
explicit input argument of the function. Informally, with the first case split on ht,
which is the first explicit parameter of the function, Agda realizes a value of type
HasType M (T • u∷ []) (var 0) T Γ2 can only be in the form Tvar htx, because Tvar is
the only constructor that gives a type to a term in the form var n. Then, with the
case split on htx, Agda understands there is no constructor that can produce a value
of that type. Hence Agda substitutes htx with the absurd pattern ()8 and removes
the equal sign preceding the function body; there is no body to define because the
domain of the function is empty.

8https://agda.readthedocs.io/en/v2.6.4.1/language/function-definitions.html#absurd-patterns
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Chapter 5

Conclusions

The objective of this work was to formally study the correctness guarantees pro-
vided by state of the art typed languages for smart contracts. Although the main
concepts and ideas underlying a blockchain system are quite simple, each blockchain
manages smart contracts, users, access control, signature and storage in different
ways. Those differences are reflected in smart contracts programming languages and
frameworks in a way that complicates the programmer’s work. To be productive
and, more importantly, to develop correct and secure programs, the programmer
must deeply understand the platform and its underlying mechanisms. The rela-
tively narrow spectrum of use cases for blockchain programs let us think that a
cross-platform blockchain programming language that hides platform specific de-
tails could be developed.

Move seemed to be a step forward in this direction declaring itself as a platform-
agnostic language for writing safe smart contracts (declared in the homepage of
the github project1). Exploring it more deeply and understanding the differences
between its two main dialects: Sui Move and Aptos Move, we realized that Move is
not as portable as we would have liked. Despite of this, we think linear types, as
used by Move to represent resources (assets in particular), can be beneficial in the
smart contracts programming context, and our work supports this claim.

We gave a clean explanation of the move semantics of the Move language, and
a new viewpoint for reasoning about that. This view suggests to investigate in the
use of the framework of abstract interpretation in this context. It seems feasible to
think about a static analysis tool for other languages, that don’t have linear types,
that is able to detect the same errors in the manipulation of resources that Move
linear types can detect.

We have formalized a small part of the Move language, the core language FM,
and we have proved its typing and operational semantics rules guarantee a Resource
Preservation property (Theorem 2) which we consider valuable for the smart con-
tracts programmer. Furthermore, we validated our results using the Agda proof
assistant. We strongly believe a programming language for the blockchain environ-
ment deserves a clean and exact formalization with machine verifiable proofs about
its properties. Users of the blockchain trust the execution environment and its de-
clared properties when they interact with smart contracts that manipulate their

1https://github.com/move-language/move
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valuable assets. This trust should be supported by formal methods.
Move, in addition to be a high level language for writing smart contracts, is also

an executable bytecode language with resources. In [7] Blackshear et al. provide
a formalization of the Move bytecode and prove that “it enjoys resource safety, a
conservation property for program values that is analogous to conservation of mass
in physical world”. In our work we prove that a subset of the Move source-code
language, the core language FM, enjoys an equivalent property. Our work differs
form [7] in that we prove the resource safety property at the source code level, rather
then at the bytecode level, and we provide computer checked proofs of our results.
In [8] Blackshear et al. describe the Move Borrow Checker, a static analysis tool that
ensures the absence of memory violations in all Move bytecode programs, and they
prove its properties. In [20] Patrignani and Blackshear define and formalize robust
safety for Move programs. In [30] Zhong et al. describe the Move Prover, a tool
that can automatically verify programmer-written functional correctness properties
for Move procedures. The research community is active in the formalization of
blockchain platforms [5] [12] [4].

The formalization in Agda was a challenging, stimulating and time consuming
task. The mean mental effort per line of Agda code is high. We had to solve different
challenges an more than once we found ourselves stuck, and we had to change our
approach. These challenges, while interesting, are quite technical, and would require
a detailed explanation that is beyond the scope of this work. We had to think in a
constructive way, adapting our statements and proofs to the constructive nature of
Agda. We rediscovered fundamental concepts and properties under a different light,
learning how to leverage the Agda standard library.

Below we list some interesting topics that would merit further study:

1. Linear types in other languages. We have focused on the Move language
and on the way it uses linear types, but linear types could be added to other
languages. Solidity, for example, is the most used language for writing smart
contracts and may benefit from the addition of linear types. It would be
interesting to understand how linear types interact with Solidity language
features, and to check if some difference emerge between linear types in Solidity
and linear types in Move. Also the Solana platform, with its Rust based smart
contracts, could be a good candidate for the addition of linear types.

2. Imperative Move. Move is an imperative language, where variables have an
associated memory location that can be written with an assignment operator.
Thanks to this, Move can implement references and mutable data structures.
FM instead, is more like a functional language, where variables are bounded
to values at the time of their declaration and cannot be modified. It would be
interesting to understand in more detail what are the advantages and disad-
vantages, in the blockchain environment, of a primarily functional language.
One could formalize an imperative variant of FM, including references, to
compare it to the functional version.

3. Access Control. Access control is an important aspect of smart contracts
programming. As we have see in Section 2.2.1, our simplified blockchain model
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doesn’t have an access control mechanism. We should think of a flexible way to
manage access control to resources. In addition, one could look into whether
the type system can be used to prevent certain types of errors related to access
control.

4. Linear lambda functions. In Move and in FM there are no first class
function values, and linear typing is only applied to struct types. In general,
in a programming language with abstractions, like the one presented in [21,
p. 8], linear typing is also applied to function types. The type of a function
value can be linear or not, and the type system ensure a linear function is
consumed exactly once. Consuming a linear function means calling it. It
may be interesting to investigate if linear functions can be seen somehow as
resources and if they can be useful in the blockchain environment for the
creation of new programming patterns.
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Appendix A

Smart contract Use cases in Sui

A.1 Crowdfund
Specification
The Crowdfund contract allows users to donate native cryptocurrency to fund a
campaign. To create a crowdfund, one must specify:

• The recipient of the funds.

• The goal of the campaign, that is the least amount of currency that must be
donated in order for the campaign to be successful.

• The deadline for the donations.

After creation, the following actions are possible:

• donate: anyone can transfer native cryptocurrency to the contract until the
deadline.

• withdraw: after the deadline, the recipient can withdraw the funds stored in
the contract, provided that the goal has been reached.

• reclaim: after the deadline, if the goal has not been reached donors can
withdraw the amounts they have donated.

Code
1 module crowdfund::crowdfund {
2 use sui::tx_context::{TxContext, sender};
3 use sui::object::{Self, UID, ID};
4 use sui::transfer::{share_object, transfer, public_transfer};
5 use sui::coin::{Self, Coin};
6 use sui::clock::{Clock, timestamp_ms};
7

8 const ErrorBadTiming: u64 = 0;
9 const ErrorGoalReached: u64 = 1;
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10 const ErrorGoalNotReached: u64 = 2;
11 const ErrorInvalidReceipt: u64 = 3;
12

13 struct Crowdfund<phantom T> has key {
14 id: UID,
15 endDonate: u64, // After this timestamp, no more donations are accepted
16 goal: u64, // Amount of Coins to be raised
17 receiver: address, // This address will receive the money
18 money: Coin<T>,
19 }
20

21 struct Receipt<phantom T> has key {
22 id: UID,
23 crowdfundId: ID,
24 amount: u64,
25 }
26

27 public entry fun create_crowdfund<T>(goal: u64, receiver: address,
28 endDonate: u64, ctx: &mut TxContext)
29 {
30 let crowdfund = Crowdfund<T> {
31 id: object::new(ctx),
32 endDonate: endDonate,
33 goal: goal,
34 receiver: receiver,
35 money: coin::zero<T>(ctx),
36 };
37 share_object(crowdfund);
38 }
39

40 public entry fun donate<T>(crowdfund: &mut Crowdfund<T>, money: Coin<T>,
41 clock: &Clock, ctx: &mut TxContext)
42 {
43 assert!(timestamp_ms(clock) <= crowdfund.endDonate, ErrorBadTiming);
44

45 let receipt = Receipt<T> {
46 id: object::new(ctx),
47 crowdfundId: object::id(crowdfund),
48 amount: coin::value(&money),
49 };
50 coin::join(&mut crowdfund.money, money);
51 transfer(receipt, sender(ctx));
52 }
53

54 public entry fun withdraw<T>(crowdfund: &mut Crowdfund<T>, clock: &Clock,
55 ctx: &mut TxContext)
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56 {
57 assert!(timestamp_ms(clock) > crowdfund.endDonate, ErrorBadTiming);
58 assert!(coin::value(&crowdfund.money) >= crowdfund.goal, ErrorGoalNotReached);
59

60 let total = coin::value(&crowdfund.money);
61 let money = coin::split(&mut crowdfund.money, total, ctx);
62 public_transfer(money, crowdfund.receiver);
63 }
64

65 public entry fun reclaim<T>(crowdfund: &mut Crowdfund<T>, receipt: Receipt<T>,
66 clock: &Clock, ctx: &mut TxContext)
67 {
68 assert!(timestamp_ms(clock) > crowdfund.endDonate, ErrorBadTiming);
69 assert!(coin::value(&crowdfund.money) < crowdfund.goal, ErrorGoalReached);
70 assert!(object::id(crowdfund) == receipt.crowdfundId, ErrorInvalidReceipt);
71

72 let Receipt<T> {
73 id,
74 crowdfundId: _,
75 amount,
76 } = receipt;
77 object::delete(id);
78 let money = coin::split(&mut crowdfund.money, amount, ctx);
79 public_transfer(money, sender(ctx));
80 }
81 }
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A.2 Auction
Specification
The Auction contract allows a seller to create an auction based on the native cryp-
tocurrency and any participant to bid. To create the an auction, the seller must
specify:

• The minimum bid of the auction.

• The duration of the auction.

• The object of the auction, which in this case it is represented as a string.

After creation, the following actions are possible:

• start: after the auction creation, the seller can start the auction.

• bid: after the auction starts, any participant can bid an amount of native
cryptocurrency and transfer that amount to the contract until the duration
time elapses. In the event of a raise, the contract returns the old bid to the
participant.

• withdraw: at any time, participant can withdraw his bid if this is not the
currently highest one.

• end: after the deadline, the seller ends the auction and withdraws the highest
bid.

Code
1 module auction::auction {
2 use sui::tx_context::{TxContext, sender};
3 use sui::object::{Self, UID};
4 use sui::transfer::{share_object, public_transfer};
5 use sui::coin::{Self, Coin};
6 use sui::clock::{Clock, timestamp_ms};
7 use sui::dynamic_field;
8 use std::string::{String};
9

10 const StateWaitStart: u8 = 0;
11 const StateWaitClosing: u8 = 1;
12 const StateClosed: u8 = 2;
13

14 const ErrorInvalidState: u64 = 0;
15 const ErrorPermissionDenied: u64 = 1;
16 const ErrorBadTiming: u64 = 2;
17 const ErrorBidTooLow: u64 = 3;
18 const ErrorHighestBidderCantWithdraw: u64 = 4;
19
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20 struct Auction<phantom T> has key {
21 id: UID,
22 state: u8,
23 seller: address,
24 thing: String, // The thing being auctioned
25 endTime: u64, // After this timestamp, the auction is closed
26 highestBidder: address,
27 highestBid: u64,
28 }
29

30 public entry fun create_auction<T>(thing: String, minimumBid: u64,
31 ctx: &mut TxContext)
32 {
33 let auction = Auction<T> {
34 id: object::new(ctx),
35 state: StateWaitStart,
36 thing: thing,
37 seller: sender(ctx),
38 endTime: 0,
39 highestBidder: @0x00,
40 highestBid: minimumBid,
41 };
42 share_object(auction);
43 }
44

45 public entry fun start<T>(auction: &mut Auction<T>, duration: u64, clock: &Clock,
46 ctx: &mut TxContext)
47 {
48 assert!(auction.state == StateWaitStart, ErrorInvalidState); // Auction already started
49 assert!(sender(ctx) == auction.seller, ErrorPermissionDenied);
50

51 auction.state = StateWaitClosing;
52 auction.endTime = timestamp_ms(clock) + duration;
53 }
54

55 public entry fun bid<T>(auction: &mut Auction<T>, coin: Coin<T>, clock: &Clock,
56 ctx: &mut TxContext)
57 {
58 assert!(auction.state == StateWaitClosing, ErrorInvalidState); // Auction not started
59 assert!(timestamp_ms(clock) < auction.endTime, ErrorBadTiming);
60 assert!(coin::value(&coin) > auction.highestBid, ErrorBidTooLow);
61

62 let sender = sender(ctx);
63 // if a participant makes a new bid, the previous one is automatically withdrawn
64 if (auction.highestBidder == sender) {
65 let oldMoney = dynamic_field::remove<address, Coin<T>>(&mut auction.id, sender);
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66 public_transfer(oldMoney, sender);
67 };
68

69 auction.highestBidder = sender;
70 auction.highestBid = coin::value(&coin);
71 dynamic_field::add(&mut auction.id, sender, coin);
72 }
73

74 public entry fun withdraw<T>(auction: &mut Auction<T>, ctx: &mut TxContext) {
75 assert!(auction.state != StateWaitStart, ErrorInvalidState); // Auction not started
76

77 let sender = sender(ctx);
78 assert!(sender != auction.highestBidder, ErrorHighestBidderCantWithdraw);
79

80 let money = dynamic_field::remove<address, Coin<T>>(&mut auction.id, sender);
81 public_transfer(money, sender);
82 }
83

84 public entry fun end<T>(auction: &mut Auction<T>, clock: &Clock, ctx: &mut TxContext) {
85 let sender = sender(ctx);
86 assert!(sender == auction.seller, ErrorPermissionDenied);
87 assert!(auction.state == StateWaitClosing, ErrorInvalidState); // Auction not started
88 assert!(timestamp_ms(clock) >= auction.endTime, ErrorBadTiming); // Auction not ended
89

90 auction.state = StateClosed;
91 let money = dynamic_field::remove<address, Coin<T>>(&mut auction.id, auction.highestBidder);
92 public_transfer(money, sender);
93 }
94 }
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A.3 Escrow
Specification
The Escrow contract involves a buyer and a seller. The contract acts as a trusted
intermediary to protect the buyer from the possible non-delivery of the purchased
goods. The buyer is expected to deposit the required amount in the contract after
the contract initialization. The seller initializes the a new escrow by setting:

• The address of the buyer.

• The amount of native cryptocurrency required as a payment.

After the initialization, the contract allows one first action:

• deposit: with which the buyer deposits the required amount in the contract.

When the escrow is funded, one of the following two actions are possible:

• pay: with which the buyer can release the payment to the seller: in this case,
the whole contract balance is transferred to the seller.

• refund: that allows the seller to accept a buyer reclaim: in this case, the
contract issues a refund,transferring back the whole contract balance to the
buyer.

Code
1 module escrow::escrow {
2 use sui::tx_context::{TxContext, sender};
3 use sui::object::{Self, UID};
4 use sui::transfer;
5 use sui::coin::{Self, Coin};
6 use std::option::{Self, Option};
7

8 const StateWaitDeposit: u64 = 0;
9 const StateWaitRecipient: u64 = 1;

10 const StateClosed: u64 = 2;
11

12 const ErrorInsufficientAmount: u64 = 0;
13 const ErrorInvalidState: u64 = 1;
14 const ErrorUnauthorized: u64 = 2;
15

16 struct Escrow<phantom T> has key {
17 id: UID,
18 state: u64,
19 seller: address,
20 buyer: address,
21 amount: u64,
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22 payment: Option<Coin<T>>,
23 }
24

25 public entry fun create_contract<T>(amount: u64, buyer: address, ctx: &mut TxContext) {
26 let contract = Escrow {
27 id: object::new(ctx),
28 state: StateWaitDeposit,
29 seller: sender(ctx), // The creator is the seller
30 buyer: buyer,
31 amount: amount,
32 payment: option::none<Coin<T>>(),
33 };
34 // The object is shared such that both buyer and seller can access it
35 transfer::share_object(contract);
36 }
37

38 public entry fun deposit<T>(contract: &mut Escrow<T>, money: Coin<T>,
39 ctx: &mut TxContext)
40 {
41 assert!(contract.state == StateWaitDeposit, ErrorInvalidState);
42 assert!(sender(ctx) == contract.buyer, ErrorUnauthorized);
43 assert!(coin::value<T>(&money) == contract.amount, ErrorInsufficientAmount);
44

45 option::fill(&mut contract.payment, money);
46 contract.state = StateWaitRecipient;
47 }
48

49 public entry fun pay<T>(contract: &mut Escrow<T>, ctx: &mut TxContext) {
50 assert!(contract.state == StateWaitRecipient, ErrorInvalidState);
51 assert!(sender(ctx) == contract.buyer, ErrorUnauthorized);
52

53 let money = option::extract<Coin<T>>(&mut contract.payment);
54 transfer::public_transfer(money, contract.seller);
55 contract.state = StateClosed;
56 }
57

58 public entry fun refund<T>(contract: &mut Escrow<T>, ctx: &mut TxContext) {
59 assert!(contract.state == StateWaitRecipient, ErrorInvalidState);
60 assert!(sender(ctx) == contract.seller, ErrorUnauthorized);
61

62 let money = option::extract<Coin<T>>(&mut contract.payment);
63 transfer::public_transfer(money, contract.buyer);
64 contract.state = StateClosed;
65 }
66 }
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Appendix B

FM Operational Semantics

M Q t1 Ñ t1
1 E-letM Q let x = t1 in t2 Ñ let x = t1

1
in t2

E-let2M Q letx = v in t2 Ñ t2tx := vu

M Q ti Ñ t1
i E-pack

M Q packM.S [ v, ti, t ] Ñ packM.S [ v, t1
i, t ]

k P K is fresh E-packedM Q packM.S [ v ] Ñ struct tkuM.S [ v ]

M Q t1 Ñ t1
1 E-unpackM Q unpack txu = t1 in t2 Ñ unpack txu = t1

1
in t2

str S t b , T u P M |x| = |v| = |T|
E-unpackedM Q unpack txu = struct tkuM.S [ v ] in t2 Ñ t2tx := vu

M Q ti Ñ t1
i E-call

M Q callM2.F [ v, ti, t ] Ñ callM2.F [ v, t1
i, t ]

fun F ( x : T ) : Tr ttbu P M2 E-calledM Q callM2.F [ v ] Ñ execM2 tbtx := vu

M2 Q t Ñ t1

E-execM Q execM2 t Ñ execM2 t
1

E-executedM Q execM2 v Ñ v

E-selectM Q struct tkuM.S [ v ].j Ñ vj

M Q t1 Ñ t1
1 E-ifM Q if t1 then t2 else t3 Ñ if t1

1
then t2 else t3

n ‰ 0 E-if-trueM Q if n then t2 else t3 Ñ t2

E-if-falseM Q if 0 then t2 else t3 Ñ t3

M Q t Ñ t1

E-publishM Q pub t Ñ pub t1
E-publishedM Q pub v Ñ 0
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Appendix C

FM Typing Rules

standard rules

T-numM Q Γ $ n : Int Ź Γ

Γ(x) = T˝ ␣IsLinear(T)
T-varM Q Γ $ x : T Ź Γ

Γ(x) = T˝ IsLinear(T)
T-varLM Q Γ $ x : T Ź Γtx ÞÑ T‚u

M Q Γ1 $ t1 : T1 Ź Γ2 M Q Γ2, x : T˝
1
$ t2 : T2 Ź Γ3, x : TÓ

1 T-letM Q Γ1 $ letx = t1 in t2 : T2 Ź Γ3

str S t b , T u P M M Q Γ1 $ t : T Ź Γ2 T-pack
M Q Γ1 $ packM.S [ t ] : M.S Ź Γ2

str S t b , T u P M
M Q Γ1 $ t1 : M.S Ź Γ2 M Q Γ2, x : T˝

$ t2 : T2 Ź Γ3, x : TÓ

T-unpackM Q Γ1 $ unpack txu = t1 in t2 : T2 Ź Γ3

M Q Γ1 $ x : M.S Ź Γ2

str S t b , T u P M
␣IsLinear(Tj)

T-selectXM Q Γ1 $ x.j : Tj Ź Γ1

fun F ( x : T ) : Tr ttbu P M2 M Q Γ1 $ t : T Ź Γ2 T-call
M Q Γ1 $ callM2.F [ t ] : Tr Ź Γ2

M Q Γ1 $ t1 : Int Ź Γ2

M Q Γ2 $ t2 : Tb Ź Γ3

M Q Γ2 $ t3 : Tb Ź Γ3 T-ifM Q Γ1 $ if t1 then t2 else t3 : Tb Ź Γ3

M Q Γ1 $ t : T Ź Γ2 IsLinear(T)
T-pubM Q Γ1 $ pub t : Int Ź Γ2
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vector rules

T-vecz
M Q Γ $ 0t : 0T Ź Γ

M Q Γ1 $ t : T Ź Γ2 M Q Γ2 $ t1 : T1 Ź Γ3 T-vec
M Q Γ1 $ t, t1 : T,T1 Ź Γ3

runtime rules

str S t b , T u P M2 M Q Γ $ v : T Ź Γ k P K
T-structM Q Γ $ struct tkuM2.S [ v ] : M2.S Ź Γ

M Q Γ $ v : M.S Ź Γ

str S t b , T u P M
␣IsLinear(Tj)

T-selectVM Q Γ $ v.j : Tj Ź Γ

M2 Q H $ t : T Ź H
T-execM Q Γ $ execM2 t : T Ź Γ

well formation

@ T P T. ␣IsLinear(T)
W-non-lin

str S tK , T u

W-lin
str S tJ , T u

M Q H, x : T˝
$ tb : Tr Ź H, x : TÓ

W-fun
M $ fun F ( x : T ) : Tr ttbu

M $ FD SD W-module
$ M t SD , FD u
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Appendix D

FM Agda Fragments

D.1 Operational Semantics
1 data _∋_⇒_ where
2 Elet :
3 (ev : M ∋ t1 ⇒ t1')
4 --------------------

5 → M ∋ (Let t1 In t2) ⇒ (Let t1' In t2)
6

7 Elet2 :
8 (v : Value t1)
9 --------------------

10 → M ∋ (Let t1 In t2) ⇒ beta-red (t1 V.∷ V.[]) t2
11

12 Epack :
13 {s : Fin Ns}
14 {ts ts' : Vec Term Nsf}
15 → (ev : M ∋ ts ⇒v ts')
16 --------------------

17 → M ∋ (pack (sId M s) ts) ⇒ (pack (sId M s) ts')
18

19 Epacked :
20 {s : Fin Ns}
21 {ts : Vec Term Nsf}
22 → (k : K)
23 → (vs : ValueV ts)
24 --------------------

25 → M ∋ (pack (sId M s) ts) ⇒ (struct k (sId M s) ts)
26

27 Eunpack :
28 (ev : M ∋ t1 ⇒ t1')
29 --------------------

30 → M ∋ (unpack t1 In t2) ⇒ (unpack t1' In t2)
31
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32 Eunpacked :
33 {k : K}
34 {s : Fin Ns}
35 {ts : Vec Term Nsf}
36 → (vs : ValueV ts)
37 --------------------

38 → M ∋ (unpack (struct k (sId M s) ts) In t2) ⇒ beta-red ts t2
39

40 Ecall :
41 {ts ts' : Vec Term Nfa}
42 → (ev : M ∋ ts ⇒v ts')
43 --------------------

44 → M ∋ (call fid ts) ⇒ (call fid ts')
45

46 Ecalled :
47 {f : Fin Nf}
48 → {ts : Vec Term Nfa}
49 → (vs : ValueV ts)
50 --------------------

51 → M ∋ (call (fId M2 f) ts) ⇒ exec M2 (beta-red ts (toRun (gBody M2 f)))
52

53 Eexec :
54 (ev : M2 ∋ t ⇒ t')
55 --------------------

56 → M ∋ (exec M2 t) ⇒ (exec M2 t')
57

58 Eexecuted :
59 (v : Value t)
60 --------------------

61 → M ∋ (exec M2 t) ⇒ t
62

63 Eif :
64 (ev : M ∋ t1 ⇒ t1')
65 --------------------

66 → M ∋ (if t1 then t2 else t3) ⇒ (if t1' then t2 else t3)
67

68 Eiftrue : {g : ℕ}
69 → (nz : ¬ g ≡ 0)
70 --------------------

71 → M ∋ (if (num g) then t2 else t3) ⇒ t2
72

73 Eiffalse :
74 M ∋ (if (num 0) then t2 else t3) ⇒ t3
75

76 Eselect :
77 {k : K} {s : Fin Ns}
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78 {ts : Vec Term Nsf}
79 {j : Fin Nsf}
80 → (vs : ValueV ts)
81 --------------------

82 → M ∋ (struct k (sId M s) ts) · j ⇒ V.lookup ts j
83

84 Epub :
85 M ∋ t ⇒ t'
86 --------------------

87 → M ∋ (pub t) ⇒ (pub t')
88

89 Epub2 :
90 (v : Value t)
91 --------------------

92 → M ∋ (pub t) ⇒ num 0

91



D.2 Typing Rules

1 data HasType M where
2 Tnum :
3 --------------------

4 HasType M Γ (num n) Tint Γ
5

6 Tvar :
7 (htx : HasTypeX Γ1 x T Γ2)
8 --------------------

9 → HasType M Γ1 (var x) T Γ2
10

11 Tlet :
12 (ht : HasType M Γ1 t1 T1 Γ2)
13 → (hti : HasTypeI M Γ2 (T1 V.∷ V.[]) t2 T2 Γ3)
14 --------------------

15 → HasType M Γ1 (Let t1 In t2) T2 Γ3
16

17 Tpack :
18 {s : Fin Ns}
19 → {ts : Vec Term Nsf}
20 → (htv : HasTypeV M Γ1 ts (gFieldsT M s) Γ2)
21 --------------------

22 → HasType M Γ1 (pack (sId M s) ts) (Tst (sId M s)) Γ2
23

24 Tstruct :
25 {k : K} {s : Fin Ns}
26 {M2 : Fin Nm}
27 → {ts : Vec Term Nsf}
28 → (vs : ValueV ts)
29 → (htv : HasTypeV M Γ ts (gFieldsT M2 s) Γ)
30 --------------------

31 → HasType M Γ (struct k (sId M2 s) ts) (Tst (sId M2 s)) Γ
32

33 Tcall :
34 {M2 : Fin Nm}
35 → {f : Fin Nf}
36 → {ts : Vec Term Nfa}
37 → (htv : HasTypeV M Γ1 ts (gArgsT M2 f) Γ2)
38 --------------------

39 → HasType M Γ1 (call (fId M2 f) ts) (gRetT M2 f) Γ2
40

41 Tunpack :
42 {s : Fin Ns}
43 → (ht : HasType M Γ1 t1 (Tst (sId M s)) Γ2)
44 → (hti : HasTypeI M Γ2 (gFieldsT M s) t2 T2 Γ3)

92



45 --------------------

46 → HasType M Γ1 (unpack t1 In t2) T2 Γ3
47

48 Texec :
49 {M2 : Fin Nm}
50 → HasType M2 [] t T []
51 --------------------

52 → HasType M Γ (exec M2 t) T Γ
53

54 Tif :
55 (ht1 : HasType M Γ1 t1 Tint Γ2)
56 → (ht2 : HasType M Γ2 t2 T Γ3)
57 → (ht3 : HasType M Γ2 t3 T Γ3)
58 --------------------

59 → HasType M Γ1 (if t1 then t2 else t3) T Γ3
60

61 TselX :
62 {s : Fin Ns}
63 {j : Fin Nsf}
64 → (htx : HasTypeX Γ1 x (Tst (sId M s)) Γ2)
65 → (nLin : ¬ IsLinear (V.lookup (gFieldsT M s) j))
66 --------------------

67 → HasType M Γ1 ((var x) · j) (V.lookup (gFieldsT M s) j) Γ1
68

69 TselV :
70 {s : Fin Ns}
71 {j : Fin Nsf}
72 → (v : Value t)
73 → (ht : HasType M Γ t (Tst (sId M s)) Γ)
74 → (nLin : ¬ IsLinear (V.lookup (gFieldsT M s) j))
75 --------------------

76 → HasType M Γ (t · j) (V.lookup (gFieldsT M s) j) Γ
77

78 Tpub :
79 (ht : HasType M Γ1 t T Γ2)
80 → (yLin : IsLinear T)
81 --------------------

82 → HasType M Γ1 (pub t) Tint Γ2
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D.3 Proof of Type Preservation Lemma

1 type-preservation :
2 {Γ1 Γ2 : UEnv Δ}
3 → HasType M Γ1 t T Γ2
4 → M ∋ t ⇒ t'
5 → HasType M Γ1 t' T Γ2
6

7 type-preservation-vec :
8 {Γ1 Γ2 : UEnv Δ}
9 {ts ts' : Vec Term n} {Ts : Vec Type n}

10 → HasTypeV M Γ1 ts Ts Γ2
11 → M ∋ ts ⇒v ts'
12 → HasTypeV M Γ1 ts' Ts Γ2
13

14 type-preservation (Tlet ht hti) (Elet ev)
15 = Tlet (type-preservation ht ev) hti
16 type-preservation (Tlet ht hti) (Elet2 v)
17 rewrite htval⇒Γ1≡Γ2 v ht
18 = substi-multi (ht T∷ T[]) (v V∷ V[]) hti
19 type-preservation (Tpack htv) (Epack evf)
20 = Tpack (type-preservation-vec htv evf)
21 type-preservation (Tpack htv) (Epacked k vs)
22 rewrite htval⇒Γ1≡Γ2-vec vs htv
23 = Tstruct vs (value-type-vec vs htv)
24 type-preservation (Tunpack ht hti) (Eunpack ev)
25 = Tunpack (type-preservation ht ev) hti
26 type-preservation (Tunpack (Tstruct vs' htv) hti) (Eunpacked vs)
27 rewrite htval⇒Γ1≡Γ2-vec vs htv
28 = substi-multi htv vs hti
29 type-preservation (Tcall htv) (Ecall eva)
30 = Tcall (type-preservation-vec htv eva)
31

32 -- Here we use the hypothesis of well-formedness of the function we are calling

33 type-preservation (Tcall {M2 = M2} {f = f} htv) (Ecalled vs)
34 rewrite htval⇒Γ1≡Γ2-vec vs htv
35 = Texec (substi-multi htv vs (wellHti W M2 f))
36

37 type-preservation (Texec ht) (Eexec ev)
38 = Texec (type-preservation ht ev)
39 type-preservation (Texec ht) (Eexecuted v)
40 = value-type v ht
41 type-preservation (Tif ht1 ht2 ht3) (Eif ev)
42 = Tif (type-preservation ht1 ev) ht2 ht3
43 type-preservation (Tif ht1 ht2 ht3) (Eiftrue nz)
44 rewrite htval⇒Γ1≡Γ2 Vnum ht1 = ht2
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45 type-preservation (Tif ht1 ht2 ht3) Eiffalse
46 rewrite htval⇒Γ1≡Γ2 Vnum ht1 = ht3
47 type-preservation (TselV {j = j} _ (Tstruct vs htv) nLin) (Eselect _)
48 = htvLookup vs htv j
49 type-preservation (Tpub ht yLin) (Epub ev)
50 = Tpub (type-preservation ht ev) yLin
51 type-preservation (Tpub ht yLin) (Epub2 v)
52 rewrite htval⇒Γ1≡Γ2 v ht = Tnum
53

54

55 type-preservation-vec (ht T∷ htv) (E[ ev ] vs)
56 rewrite htval⇒Γ1≡Γ2-vec vs htv
57 = (type-preservation ht ev) T∷ (value-type-vec vs htv)
58 type-preservation-vec (ht T∷ htv) (t E∷ evv)
59 = ht T∷ type-preservation-vec htv evv
60
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D.4 Proof of Resource Preservation Lemma

1 Rsafety :
2 All tIsIf⇒Rt2↭Rt3 t
3 → HasType M Γ1 t T Γ2
4 → (ev : M ∋ t ⇒ t')
5 → RI ev L.++ R t ↭ RU ev L.++ R t'
6 Rsafety-vec :
7 {ts ts' : Vec Term n} {Ts : Vec Type n}
8 → AllV tIsIf⇒Rt2↭Rt3 ts
9 → HasTypeV M Γ1 ts Ts Γ2

10 → (ev : M ∋ ts ⇒v ts')
11 → RIv ev L.++ Rv ts ↭ RUv ev L.++ Rv ts'
12

13 Rsafety (all-let p a1 a2) (Tlet {t1 = t1} {t2 = t2} ht hti) (Elet {t1' = t1'} ev)
14 = lemma↭3 (R t2) (RI ev) (RU ev) (Rsafety a1 ht ev)
15 Rsafety a (Tlet {t1 = t1} {t2 = t2} ht hti) (Elet2 v)
16 =
17 begin
18 R t1 L.++ R t2 ↭⟨ ++-comm (R t1) (R t2) ⟩
19 R t2 L.++ R t1 ↭⟨ ++⁺ˡ (R t2) (↭-sym (++-identityʳ (R t1))) ⟩
20 R t2 L.++ (R t1 L.++ L.[]) ↭⟨ ↭-sym ↭1 ⟩
21 R (shift-back 0 (subst 0 t1 t2)) ∎
22 where
23 ↭1 = Rsubsti-multi (ht T∷ T[]) (v V∷ V[]) hti
24

25 Rsafety (all-pack p av) (Tpack htv) (Epack ev) = Rsafety-vec av htv ev
26 Rsafety a (Tpack {ts = ts} htv) (Epacked {M = M} {s = s} k x) with tyIsLin (Tst (sId M s))
27 ... | yes yLin = refl
28 ... | no nLin = refl
29 Rsafety (all-call p av) (Tcall htv) (Ecall ev) = Rsafety-vec av htv ev
30

31 -- Here we use the fact that the function is well formed, and that the gBody

32 -- of the function is an LTerm (a language term).

33 -- LTerms are a subset of Terms

34 Rsafety a (Tcall {M2 = M2} {f = f} {ts = ts} htv) (Ecalled vs)
35 = begin
36 Rv ts ↭⟨ refl ⟩
37 L.[] L.++ Rv ts
38 ↭⟨ ++⁺ʳ (Rv ts) (↭-sym (↭-reflexive (Rlterm≡[] (gBody M2 f)))) ⟩
39 R (toRun (gBody M2 f)) L.++ Rv ts
40 ↭⟨ ↭-sym (Rsubsti-multi htv vs (wellHti W M2 f)) ⟩
41 R (beta-red ts (toRun (gBody M2 f))) ∎
42

43 Rsafety (all-unpack p a1 a2) (Tunpack {t1 = t1} {t2 = t2} ht hti) (Eunpack ev)
44 = lemma↭3 (R t2) (RI ev) (RU ev) (Rsafety a1 ht ev)
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45 Rsafety a (Tunpack (Tstruct _ htv) hti) (Eunpacked {M = M} {t2 = t2} {k = k} {s = s} {ts = ts} vs)
46 with tyIsLin (Tst (sId M s))
47 ... | yes yLin = begin
48 k L.∷ (Rv ts L.++ R t2) ↭⟨ prep k (++-comm (Rv ts) (R t2)) ⟩
49 k L.∷ (R t2 L.++ Rv ts) ↭⟨ prep k (↭-sym (Rsubsti-multi htv vs hti)) ⟩
50 k L.∷ R (beta-red ts t2) ∎
51 ... | no nLin = begin
52 Rv ts L.++ R t2 ↭⟨ ++-comm (Rv ts) (R t2) ⟩
53 R t2 L.++ Rv ts ↭⟨ ↭-sym (Rsubsti-multi htv vs hti) ⟩
54 R (beta-red ts t2) ∎
55

56 Rsafety (all-exec p a) (Texec ht) (Eexec ev) = Rsafety a ht ev
57 Rsafety a (Texec ht) (Eexecuted v) = refl
58 Rsafety (all-if p a1 a2 a3) (Tif {t2 = t2} ht1 ht2 ht3) (Eif ev)
59 = lemma↭3 (R t2) (RI ev) (RU ev) (Rsafety a1 ht1 ev)
60 Rsafety a (Tif ht1 ht2 ht3) (Eiftrue nz) = refl
61

62 -- Here we use the tIsIf⇒Rt2↭Rt3 property

63 Rsafety (all-if p a1 a2 a3) (Tif {t3 = t3} ht1 ht2 ht3) Eiffalse = p refl
64

65 Rsafety a (TselV {j = j} v (Tstruct _ htv) nLin) (Eselect vs)
66 rewrite RnLin (htvLookup vs htv j) nLin (vLookup j vs) = refl
67 Rsafety (all-pub p a) (Tpub ht yLin) (Epub ev) = Rsafety a ht ev
68 Rsafety a (Tpub {t = t} ht yLin) (Epub2 v) rewrite l++[]≡l (R t) = refl
69

70 Rsafety-vec (all-vec∷ a av) (_T∷_ {ts = ts} ht htv) (E[ ev ] vs)
71 = lemma↭3 (Rv ts) (RI ev) (RU ev) (Rsafety a ht ev)
72 Rsafety-vec (all-vec∷ a av) (ht T∷ htv) (_E∷_ {ts = ts} {ts' = ts'} t evs) =
73 begin
74 RIv evs L.++ (R t L.++ Rv ts) ↭⟨ ++⁺ˡ (RIv evs) (++-comm (R t) (Rv ts)) ⟩
75 RIv evs L.++ (Rv ts L.++ R t) ↭⟨ ↭-sym (++-assoc (RIv evs) (Rv ts) (R t)) ⟩
76 (RIv evs L.++ Rv ts) L.++ R t ↭⟨ ++⁺ʳ (R t) (Rsafety-vec av htv evs) ⟩
77 (RUv evs L.++ Rv ts') L.++ R t ↭⟨ ++-assoc (RUv evs) (Rv ts') (R t) ⟩
78 RUv evs L.++ (Rv ts' L.++ R t) ↭⟨ ++⁺ˡ (RUv evs) (++-comm (Rv ts') (R t)) ⟩
79 RUv evs L.++ (R t L.++ Rv ts') ∎
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