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Abstract

The axion of quantum electrodynamics (QED), which was proposed by Peccei and
Quinn to solve the strong charge-parity problem in the standard model (SM) of parti-
cle physics, is currently the best motivated cold dark matter (CDM) candidate. The
sensitivity required to probe its existence needs the utilisation of resonant detectors,
and in particular an high quality factor microwave cavity, which is readout by a very
low noise amplifier at the first stage of the electronic amplification chain. The cavity
is a cylinder cavity hosting a sapphire shell, designed to obtain high effective vol-
umes at high frequency and quality factors larger than those achievable with empty
copper cavities. Furthermore, the need to scan over a wider frequency range requires
the cavities to be tunable, via the opening of the copper cylinder with a clamshell
mechanism. The receiver that will be employed to readout the cavity is based on
a traveling wave parametric amplifier (TWPA), a superconducting amplifier devised
to introduce minimum noise, barely exceeding the standard quantum limit (SQL),
the level allowed by quantum mechanics.
In this thesis work I show the characterisation of the QUAX dielectric cavity and
the working principle of its tuning system at cryogenic temperature. The cavity is
then mounted at the lowest stage of the QUAX dilution refrigerator, immersed in a
8T magnetic field, and operated to search for axions with a mass of about 42 µeV.
After the characterization of the electronic amplification chain, the experiment is run
for a two-week period in two different ignitions: one used as a check for the tuning
mechanism and the second as the effective data taken. This procedure allowed a
scan of circa 3 MHz per day. After the run I analyzed the data using a procedure
similar to the HAYSTAC experiment for both the preventive analysis and the upper
limit estimation for the coupling constant gaγγ .
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Chapter 1

Introduction

The axion is a hypothetical particle that comes from a solution to a Standard Model
(SM) problem, called strong Charge-Parity (CP) problem, and which turns out to
have the ideal characteristics for a Cold Dark Matter (CDM) candidate, based on
the evidence in favour of dark matter in the context of cosmology[1]. Theoretical
models introducing the axion, also establish a particular relation between its mass
and coupling constant: to prove the validity of these theories, a sufficiently high
sensitivity is required in the experiments, forcing the choice of resonant experimental
solutions[2] for an expected axion mass at the µeV level[3]. This Chapter aims to give
an overview of the motivations for an axion search, the main experimental challenges
presented by the theories and a summary of the main experimental techniques.

1.1 Motivation for axion search

The existence of axions could potentially answer three major open questions in the
physical description of our universe: the strong CP problem, the matter-antimatter
asymmetry, and the composition of Dark Matter (DM).

The strong CP problem arises from the expected but unobserved CP violation in
strong interactions predicted by the SM of particle physics. The CP violation is in
fact expected to be governed by the parameter θQCD: this parameter is also shown
to be proportional to the neutron electric dipole moment (EDM)[4]. However, many
extremely sensitive measurements were not able to detect the neutron’s EDM, sug-
gesting that θQCD is extremely small, and leading to the idea that strong interactions
should not allow CP violation. This possibility is the so-called strong CP problem.
The Peccei-Quinn (PQ) theory proposes a solution by introducing a new symmetry
involving a dynamic field called axion[5]. This mechanism drives θQCD to zero, thus
solving the strong CP problem and eliminating the expected neutron EDM.

The matter-antimatter asymmetry is another unresolved issue. Although the stan-
dard model predicts that matter and antimatter should have been created in equal
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amounts, if the initial conditions of the universe did not involve disproportionate
matter relative to antimatter, there is no mechanism in the Standard Model to suf-
ficiently explain this asymmetry. The conditions required to create an imbalance,
known as the Sakharov conditions[6], include CP violation: from an experimental
point of view the CP violation observed in weak interactions is insufficient to explain
the observed matter dominance. The PQ mechanism, and in particular the axion
field may also contribute to resolving this asymmetry, since a specific scenario called
axiogenesis suggests that the rotation of the PQ field in the early universe could
generate the excess of matter over antimatter.

Dark matter constitutes about 85% of the universe’s matter, as inferred with Cosmic
Microwave Background (CMB) angular power spectrum: acquired data perfectly
follow the CDM models and no other model is able to reproduce the same results
involving visible matter alone.[7] Various candidates for DM have been proposed,
with weakly interacting massive particles (WIMPs) being a prime focus in this field:
a large number of ultrasensitive experiments looked and is still looking for these
particles. Unfortunately, no WIMP has been detected up to now, and the experiment
sensitivity is soon going to be limited by the neutrino floor[8]. A second candidate
for CDM was then the weakly interacting sub-eV particles (WISPs), such as axions:
these newly introduced particles are considered to be the favored candidates for DM
because of their weak interactions, long de Broglie wavelengths, and the possibility
of forming a Bose-Einstein condensate (BEC), which aligns with some observations
of DM behavior.

1.2 A hard-to-be-found particle

Expected axion properties play a crucial role in experimental searches, with a partic-
ular attention to their interactions: as with other particles, axion experiments aim
to perform an indirect detection. For example the axion mass, which is linked to
the scale of symmetry breaking in the PQ mechanism, can be calculated based on
its mixing with SM pions. Other axion’s interactions involve photons, fermions, and
induce EDMs, making them detectable through modifications of Maxwell’s equations
and anomalous spin precession effects. Experimental searches for axions use these
interactions to set exclusion limits in specific sensitivity ranges. The parameter space
for axion mass and coupling strength is constrained by both theoretical models and
astrophysical observations. For instance, black hole superradiance[9] and supernova
cooling[10] provide upper and lower bounds on the axion mass, while observations of
star cooling[11][12] further constrain the axion-photon coupling. Two main families
of theoretical models, called Kim - Shifman - Vainshtein - Zakharov (KSVZ) and
Dine – Fischler – Srednicki – Zhitnitsky (DFSZ)[13], propose different mechanisms
for axion interactions with SM particles, impacting the predicted coupling strengths.
The models predictions for the theoretical minimal coupling are presented in Figure
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1.2 by the two oblique lines. These models give a reference values for the relation
between axion mass and coupling constant: experimental efforts, with ongoing and
future experiments, aim to narrow down this parameter space further and potentially
confirm the existence of axions or otherwise disprove these models.

1.3 Axion experimental search

Axion experimental search begins in 1983 when Pierre Sikivie showed Maxwell’s
equations modified in the presence of an axion[14]. In the same extent he proposed
to reveal axion dark matter bye measure of the photons produced in the axion decay
processes. Unluckily we expect a little percentage of axions to decay into photons,
due to the weakness of the interaction. This is the main challenge in experimental
axion search: we must deal with very small signals. The second problem of this
search is the lack of a theoretical prediction regarding the mass of this hypothetical
particle: the scanned range spans over several order of magnitudes, as one can see
in Figure 1.1. This implies different technologies to be employed, based on the type
of axion interaction that they rely on.

Figure 1.1: Different methods for axion search based on the expected energy in the
the most plausible range. They are divided based on the coupling: coupling with the
photon (green) and with the nuclear spins (purple) [3]

Experimental efforts mainly rely on the axion interaction with the electromagnetic
field, and in particular exploiting the conversion of axions into photons in the presence
of a strong magnetic field. We can in fact detect the emitted photons, whose energy
corresponds to the axion rest energy: the axion mass is then related to the photon
frequency by the Planck relation hν ≈ mac

2. This is the main process exploited by
axion detection with haloscopes, which are the most sensitive devices we are using
for the axion search in mass range from µeV to meV. They are made of a resonant
cavity immersed in a strong magnetic field and are suited for the detection of photons
that match the cavity frequency: if an axion converts into a photon of this frequency,
we expect them to populate the cavity. This should correspond to an increase of the
power signal above the system noise. For this reason we expect to have better results
when the cavity and the other components introduce the smallest possible amount
of noise: we need to operate at ultra-cryogenic temperatures to suppress thermal
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noise, and use low-noise amplifiers. Some of such experiments worth mentioning
are RBF–UF (Rochester-Brookhaven-Fermilab–University of Florida) [15], ADMX
(Axion Dark Matter eXperiment) [16], HAYSTAC (Haloscope at Yale Sensitive to
Axion CDM) [17], CAPP (Center for Axion and Precision Physics Research) [18]
and QUAXaγ (QUaerere AXion) [19], which are presented in Figure 1.2.

Figure 1.2: Close-up of the axion-photon coupling upper limits for different experi-
ments in the radio frequency region [20] for the converted axion mass

Other experiments use different approaches to detect axions, all relying on the mea-
sure of the axion interaction processes, but using other techniques, that can be
divided based on the type of interaction:

• Among the experiments that rely on axion-photon coupling, we have to men-
tion Helioscopes, where axions sourced by the Sun could be detected: dipole
magnets oriented toward the Sun are used to convert axions into photons,
which can be measure via x-ray detectors. Among experiments of this kind,
CAST (CERN Axion Solar Telescope) is worth mentioning[21]. A different con-
ceptual approach is used to detect axions coming from all over the universe,
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since one can look for axions that have been converted into photons: many
experiments rely on astrophysical observations using both space and ground
telescopes. This experiment has excluded axions to gaγγ ≈ 10 gKSVZ

aγγ in the
range of mass [10−2 : 102] eV.

• Another coupling possibility is for the axion to couple with the spin of fermionic
particles: in particular experiment QUAXae[22] is using a magnetized sample,
in which axion interactions excite the uniform magnetization mode, the Kittel
mode. The magnetic mode is coupled to a specific microwave cavity mode to
allow for transduction from magnetic excitations in the material to detectable
photons in the cavity.
This experiment has excluded axions to gae ≈ 103 gKSVZ

ae in the range of mass
[41.4 : 42]µeV corresponding to frequencies [10.00 : 10.17] GHz.

• The last possibility is to measure the axion oscillating field through the measure
a time-varying torque on nuclear spins: this effect can be seen either directly or
via generation of an oscillating nuclear electric dipole moment (EDM). For both
the cases, magnetic resonance techniques can be used to detect such an effect.
The pilot experiment in this field is Cosmic Axion Spin Precession Experiment
(CASPEr) [23].
This experiment has excluded axions to gaNN ≈ 102 gKSVZ

aNN in the range of mass
[10−12 : 10−6] eV corresponding to frequencies [103 : 108] Hz.

An important characteristic for these experiments is the sensitivity that they
reach, since the most relevant axion models require it to be very high. Another
fundamental characteristics for resonant experiments is the scan rate, defined as the
velocity at which we can probe the axion parameter space at a fixed sensitivity: due
to the huge energy span and the restricted probed range, this quantity determines
the parameter space area that the experiment is able to probe.

1.4 Thesis structure

The thesis structure is as follows: in Chapter 2 I will introduce the main theoretical
aspects of axions, from the most relevant models and the interaction with photons,
as long with a theoretical introduction to resonating cavities and how to couple
with its modes. In Chapter 3 I will present the experimental setup, describing
working principle of its key components. Chapter 4 will finally describe the data-
taking process, as performed in the May-June 2024 data acquisition, and present the
performed analysis, after a theoretical introduction on the transition from time to
frequency domain.
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Chapter 2

A bit of theory

In this Chapter, we aim to introduce the main theoretical aspects of both conception
and implementation of the experiment. We start from a brief explanation of the the-
oretical introduction of the axion as a candidate particle and its physical constraint.
Then we will briefly describe the experimental main detector, the resonating cavity,
from a theoretical point of view. The implementation of the cavity will be described
in Chapter 3.

2.1 Axion models and properties

In quantum chromodynamics (QCD), the theory that describes the strong interac-
tions within the Standard Model of particle physics, the strong CP problem presents
an important theoretical challenge. This problem arises from the possibility of a
CP-violating term in the QCD Lagrangian density, and in particular in the θ-term:

Lθ =
g2

32π2
θF a

µνF̃
µνa, (2.1)

where F a
µν is the gluon field strength tensor, F̃µνa is the corresponding dual, g is

the QCD coupling constant, and finally θ is a parameter that quantifies the amount
of violation: in particular, if θ is non-zero, CP violation is introduced in the strong
interactions. However, experimental results imply that θ must be extremely small,
and in particular of the order of 10−10 or less. This contribute comes from two
different terms and there is no reason for them to cancel out to such an extent: the
absence of an explanation for this balance is known as the "strong CP problem"[24].

2.1.1 Peccei & Quinn solution

A solution to the strong CP problem was proposed by Peccei and Quinn in 1977,
who introduced a new global U(1) symmetry, that we will refer as U(1)PQ. This
symmetry, known as the Peccei-Quinn (PQ) symmetry, is spontaneously broken at
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an energy scale fa, giving rise to a new boson, the axion. The idea behind this model
is the introduction of a symmetry whose effect is to suppress the inserted Lagrangian
term, and in particular the introduction of a new component of the type:

LPQ =
g2

32π2
a(x)

fa
F a
µνF̃

µνa (2.2)

where a is the axion field. The idea is then for the axion to dynamically oscillate to a
value that cancels the θ term in the vacuum averages. In particular one finds out that
the Peccei-Quinn potential must have a minimum for the axion field corresponding
to a = faθ in order to solve the strong CP problem.

Now the presence of an axion potential generated through non-perturbative QCD
effects introduces a mass for the axion particle:

ma =
∂2Va
∂a2

⃓⃓⃓⃓
a=faθ

∼
Λ2

QCD

fa
(2.3)

where ΛQCD ∼ 200 MeV is the QCD confinement scale.

2.1.2 KSVZ and DFSZ models

The theoretical prediction of the Peccei and Quinn which expected the axion to have
a mass around the electroweak scale have been disproved by the experiments. Thus,
the axion currently pursued is light and weakly interacting and the reference models
are KSVZ and DFSZ:aA thorough review of axion models is given in [13].

In both these models, axions are predicted to interact very weakly with ordinary
matter, making them difficult to detect. Their interactions are primarily through
their coupling to photons, gluons, and fermions. The axion-photon coupling is par-
ticularly interesting for experimental searches, and in particular for the purposes of
this work, with the related term in the SM Lagrangian as:

Laγγ =
1

4
gaγγaFµνF̃

µν (2.4)

where Fµν is the electromagnetic field strength tensor, while gaγγ is the axion-photon
coupling constant, which can be expressed as:

gaγγ =
αgγ
π
√
χ
ma (2.5)

where α is the fine structure constant, χ is the zero-temperature QCD topological
susceptibility such that χ ∼ (77.6MeV)4 and finally gγ is a dimensionless coupling
parameter, whose value is expected to be −0.97 or 0.36 respectively for the KSVZ
and the DFSZ model.

16



As a consequence to the coupling term, and in particular equation 2.4, if an axion is
immersed in a strong static magnetic field, then it can interact with a virtual photon
provided by the field. This process is visualized in Figure 2.1 and is called inverse
Primakoff effect, in which a real photon is generated with an energy corresponding
to the axion mass, namely Eγ = mac

2

Figure 2.1: Feynman diagram of axion decay into photons: axion conversion in
vacuum (left) and inverse Primakoff effect in a static magnetic field Bo (right) [25]

2.1.3 Cosmological and Astrophysical hints

As briefly explained in the introduction, axions also play a significant role in cos-
mology and astrophysics, since, if they are sufficiently light and stable, they are the
primary candidates for the Cold Dark Matter (CDM). The energy density of axions
produced in the early universe via the misalignment mechanism is given by:

ρa ∼ maf
2
aθ

2
i (2.6)

where θi is the initial misalignment angle. This means that, depending on the value
of fa, axions could make up a significant fraction of the cold dark matter in the uni-
verse. In addition, axions can impact stellar evolution, since they can be produced
in stars and escape without interacting further, leading to an additional channel for
energy loss in the stellar evolution. This axion cooling effect has been constrained
by observations of stars and supernovae, providing important bounds on axion prop-
erties. In particular axion masses lower than ma ∼ 20µeV are excluded.

If we assume the axions to constitute dark matter, we refer to the isothermal sphere
model to derive other properties of importance for detector design[26]. In this frame-
work, axion velocities follow a Maxwell-Boltzmann (MB) distribution, and their spec-
tral energy distribution can be derived as:

f(E) =
2√
π

√
E

(︃
3

ma⟨v2⟩

)︃3/2

e
− 3E

ma⟨v2⟩ (2.7)

where ⟨v⟩ is the average axion velocity. In the earth’s reference frame ⟨v⟩ ≈ 220
km/s and the expected quality factor is of the order of 106, as shown in Figure 2.2.
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Figure 2.2: Axion flux spectrum on Earth [27]

This quality factor must be known in order to perform the correct analysis, as we
will further discuss in Chapter 4.

2.2 Resonant cavities

The central component of the experiment is a microwave cavity, which is used as a
fine frequency selector for the axion detection: the requirements for such a cavity
are to be tunable, i.e. to have an adjustable frequency, and a very small linewidth,
corresponding to an high quality factor. In order to understand the properties of
these resonators, one must start from the description of the electromagnetic field in
a resonant cavity, and in particular with the solution of Maxwell’s equations within
a defined volume: these equations are constrained by boundary conditions imposed
by metallic walls. The wave equation in the vacuum is then expressed as:(︃

∇2 − 1

c2
∂2

∂t2

)︃(︃
E
B

)︃
= 0 (2.8)

Now, if we consider a waveguide with constant cross-section and perfectly conducting
walls, which we consider in principle to be true, the boundary conditions are:

E · n̂ = 0, B× n̂ = 0 (2.9)

where n̂ represents the normal vector to the boundary surface. In cylindrical coor-
dinates (z, ρ, φ), wave solutions travelling along the z-axis can be expressed as:

E = E(ρ, φ)ei(kz−2πνt), B = B(ρ, φ)ei(kz−2πνt) (2.10)
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where k is the wave vector, ν is the wave frequency and t is the time. The imposition
of these solutions into the wave equation transforms it into the eigenvalue equation:(︃

∇2
⊥ +

(2πν)2

c2
− k2

)︃(︃
E
B

)︃
= 0 (2.11)

where usually the derivative term is summarized with γ2 ≡ (2πν)2

c2
− k2, containing

all the physical information on the equation and where ∇2
⊥ = ∇2 − ∂2

∂z2
.

The general solutions to this formula form an orthogonal set:

⟨E2,B2|E1,B1⟩ =
1

2

(︃∫︂
d3xϵ0ϵ(x)E

∗
2 ·E1 +

∫︂
d3x

1

µ0
B∗

2 ·B1

)︃
(2.12)

where ϵ(x) is the space-dependent dielectric constant and some solutions are preferred
to other: in particular, solutions are categorized as Transverse Magnetic (TM) if
Bz = 0 or Transverse Electric (TE) if Ez = 0.

Each mode has a specific value of resonant frequency and well defined E and
B field profiles. To the present work purposes it is central to know all the cavity
modes that might interfere (mode mixing) during the cavity frequency tuning with
the axion-sensitive mode: in particular those who might couple with the antennas.
In fact the interference usually lowers the revealer’ sensitivity to zero in some specific
frequency ranges, making it impossible for us to acquire data in that specific range.

For a TM solution, the transverse fields can be rewritten as functions of Ez:

E⊥ = ± ik

γ2
∇⊥Ez (2.13)

where the positive case applies to the waves travelling in the +ẑ direction, while the
negative case refers to backward traveling waves.

But we want to describe a cavity and not a waveguide: we must also have to consider
a constraint in the ẑ direction, which is physically implemented via two perfect con-
ductors in the planes z = 0 and z = d. The effect of the introduction of these plates is
the creation of standing waves between them: by imposing the boundary conditions
presented in equations 2.9, one can find that the solutions of the electromagnetic
wave equation for the TM modes are:

Ez = ψ(ρ, φ) cos

(︃
πl

d
z

)︃
, l = 0, 1, 2, . . . (2.14)

Now we can move to the cylindrical geometry, since cavities used in haloscopes are
usually cylindrical, both for simplicity in the making and for the physical symmetries.
In this condition, solutions can be written using Bessel functions Jm(ρ) [28]:

E(mnl)
z =E0 cos

(︃
lπz

d

)︃
Jm

(︂umnρ

R

)︂
cos(mφ) (2.15)

νnml =
c

2π

√︄(︂umn

R

)︂2
+

(︃
lπ

d

)︃2

(2.16)
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In literature, modes are then named after these solutions: for instance the magnetic
transverse mode presented is named TMmnl mode. Usually cavities that we use in
the laboratory are not simple cylinders, due to the presence of dielectric components
and the tuning mechanism, which results in a more complex design. In these cases,
numerical solutions are computed in order to understand the behaviour of electro-
magnetic waves in the cavity. These modes can be perceived as perturbations of the
theoretically calculated mode, and therefore are usually named in the same way, for
instance TMmnl mode.

The choice of the mode is very important, since the power of the axion signal is
proportional to the form factor, defined as:

Cmnl ≡
|
∫︁
d3xEmnl · ẑ|2

V
∫︁
d3xϵ(x)|Emnl|2

≤ 1 (2.17)

where V is the cavity internal volume. If now we assume to have a magnetic field
oriented in the ẑ direction B = B0ẑ and a mode with electric field Eω, then the form
factor can be rewritten as:

C =

⃓⃓∫︁
V d

3xEω ·B
⃓⃓2∫︁

V d
3x |B|2

∫︁
V d

3x ε|Eω|2
(2.18)

From the definition of the form factor, naturally another quantity is derived, called
effective volume, and defined as:

Veff = V · C (2.19)

This effective volume, as one can see from equation 2.18, can be physically described
as the volume where there is an alignment of the electromagnetic radiation and the
external magnetic field. This quantity is relevant, since the power deposited on the
cavity by the axion wind is proportional to the effective volume: this means that
all cavity modes have different axion-sensitivity and that the choice of the mode is
relevant for the construction of the cavity and the wanted sensitivity. In particular,
in an empty cavity, the form factor is maximal for the TM010 mode, commonly used
in haloscope experiments.

2.2.1 Important quantities

Cavities are then classified based on their interaction with the electromagnetic radi-
ation, and in particular some quantities have been introduced in order to describe
their behaviour. In particular, we want to introduce some quantities that the cavity
must satisfy in order to be used in axion search.
In order to determine the useful parameters, it is important to understand that in
a resonator, the radiation in a specific frequency range is allowed to go back and
forth with a small power loss Pc. The most important parameters are the resonating
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Figure 2.3: (a) Measurement system; (b) Equivalent circuit of a loop coupled cavity

frequency ν0 and the quality factor Q, which characterizes these losses in a resonator,
defined as:

Q ≡ 2πν0U

Pc
(2.20)

where U is the energy stored in the resonator and Pc the power lost via Joule heating.
These two quantities can be retrieved by means of:

U =
1

2
ϵ0

∫︂
V
|E|2 d3x =

1

2µ0

∫︂
V
|B|2 d3x (2.21)

Pc =
1

2µ20
Rs

∫︂
S
|B|2 d2x (2.22)

These quantities, Q, ν0 are important for the choice of the resonator, but then one
must also keep into consideration the fact that we must coupling to the cavity mode:
this means that other losses will enter into play, as we will discuss in Section 2.3

2.3 Coupling to the cavity mode

To readout the cavity signal, transmission lines are coupled to the cavity mode
through antennas with coupling coefficient β, defined as the ratio between the power
extracted by the antenna Pa and the power internally dissipated by the cavity Pc,
namely:

β ≡ Pa

Pc
(2.23)

The interaction between the cavity and the antennas can be seen as an electronic
circuit, in which the resonator is an RLC-series circuit, while the antennas are some
RL-series circuits, coupled with the cavity [29]. The scheme for the description of the
cavity-antennas interactions involves two ports and can be analysed using a two-port
Spectrum Analyzer, as shown in Figure 2.3. The equivalent circuit elements can be
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related to the cavity characteristic parameters:

ν0 =
1

2π
√
LC

resonating frequency (2.24)

Q =
1

R

√︃
L

C
quality factor (2.25)

βi =
Rai

R
couplings with i = 1, 2 (2.26)

We can then evaluate the scattering matrix for this equivalent circuit and see that
we can introduce another important quantity for the interaction between the cavity
and the antennas, which is the loaded quality factor QL defined as:

QL ≡ 2πν0U

Pc + Pa1 + Pa2
(2.27)

which is related to the unloaded quality factor Q, i.e. the quality factor of the
unperturbed cavity, and to the coupling quality factors Q1 and Q2 as:

1

QL
=
1 + β1 + β2

Q
(2.28)

=
1

Q
+

1

Q1
+

1

Q2
(2.29)

where Q1,2 are the quality factors of the couplings with the antennas:

Qi ≡
2πν0U

Pei
=
Q

βi
i = 1, 2 (2.30)

The power transfer between the two ports is described by a Lorentzian function, with
a central resonating frequency ν0. The loaded quality factor can then be evaluated
thanks to the Full Width at Half Maximum (FWHM) ∆ν, defined as the frequency
range in which the transmitted power is higher than half its maximum value:

QL =
ν0
∆ν

(2.31)

Given the link between quality factors and linewidths, we can also link the latter
quantity to the cavity linewidth ∆νc, as:

∆ν = ∆νc +
κ1
2π

+
κ2
2π

(2.32)

where κi are the coupling rates, defined as:

κi ≡
2πν0
Qi

(2.33)

As it will be detailed in the following, the cavity parameters ν0, Q and β need to be
monitored during data acquisition.
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2.4 Deposited power in the cavity

The calculation of deposited power in a resonant cavity is crucial for the compre-
hension of the energy quantities at play: the deposited power defines the goodness
of the apparatus for a set value of the introduced noise.

The starting point for this calculation are the modified Maxwell equations, where the
axion-photon interaction is introduced through an additional term, that in particular
is mediated by the yet introduced axion-photon coupling gaγγ . This term leads to
the formation of an inhomogeneous wave equation for the electric field E:

∇2E− ∂2E

∂t2
= −gaγγB0

∂2a(t)

∂t2
ẑ. (2.34)

where a(t) represents the time-dependent axion field. Note that in this derivation
the external magnetic field is B0 is considered spatially homogeneous, i.e. with
B(x) = B0ẑ [17], as the axion field varies.
To solve this wave equation in the cavity, we need to introduce the cavity’s resonant
modes, characterized by orthogonal sets of electric and magnetic fields, denoted by
em and bm respectively. These modes must obviously satisfy the wave equation:(︁

ω2
m +∇2

)︁
em(x) = 0 (2.35)

where ωm is the frequency of the m-th mode. These em and bm form a basis for
all the electric and magnetic fields within the cavity: they can then be expanded in
terms of these modes, as:

E(x, t) =
∑︂
m

Em(t)em(x) (2.36)

Substituting the mode expansions into the wave equation and applying the orthog-
onality condition, we obtain a simplified equation for the mode amplitudes Em(t):(︃

ω2
n +

∂2

∂t2

)︃
En(t) = gaγγB0

κn
λn

∂2a(t)

∂t2
(2.37)

where κn is a geometrical factor related to the cavity mode and λn = 2πc
ωn

. The
resulting equation is similar to that of an undriven harmonic oscillator with resonant
frequency ωn without a damping term. To take into account losses in the cavity
walls, a damping term is added on the left-hand-side: the damping coefficient for a
mode with resonant frequency ωn and quality factor Qn is its linewidth, thus the
introduced term is of the form (ωn/Qn)∂tEn. This leads to the frequency-domain
expression: (︃

ω2
n − ω2 − i

ωωn

Qn

)︃
En(ω) = gaγγB0

κn
λn
ω2a(ω) (2.38)
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which allows to derive the expression for the amplitude of the electric field:

En(ω) = gaγγB0
κn
λn

ω2a(ω)

ω2
n − ω2 − iωωn

Qn

(2.39)

Now, using Parseval’s theorem[30] we can derive the energy stored in the cavity as:

Un =
1

2
⟨En(t)

2⟩
∫︂
V
d3x

(︁
|en(x)|2 + |bn(x)|2

)︁
(2.40)

= λn

∫︂ ∞

−∞

dω

2π
|En(ω)|2 (2.41)

=
g2aγγB

2
0κ

2
n

λn

∫︂ ∞

−∞

dω

2π

ω4|a(ω)|2

(ω2
n − ω2)2 + ω2ω2

n
Q2

n

(2.42)

Finally we can assume that the axion signal is sharply peaked compared to the
resonant mode, i.e. Qa ≫ Qn ≫ 1, and that the axion frequency ωa is close to
the cavity’s resonant frequency ωn. Under these conditions the integral simplifies,
leading to a Lorentzian-like dependence of the energy on the frequency detuning
δωa = ωn − ωa:

Un = g2aγγB
2
0V Cnml

Q2
n

1 +
(︂
2Qnδωa

ωn

)︂2

ρa
m2

a

(2.43)

where ρa = m2
a⟨a⟩2 is the DM local density and Cmnl = κmnl/(V λmnl) is the previ-

ously defined form factor. For a mode with frequency ωc and related loaded quality
factor QL = Q0/(1 + β) we can derive the total signal power:

Psig = ωc
U

QL

β

1 + β
(2.44)

= U0
β

1 + β

QL

1 +
(︂
2QLδωa

ωc

)︂2 Cmnl 2πωc (2.45)

where we U0 is a constant with dimension of energy:

U0 = g2aγγ
ℏ3c3ρa
2πµ0m2

a

B2
0V (2.46)

Some considerations are worth mentioning: as first the signal power linearly depends
on the cavity volume V , and in particular with the effective volume Veff = V Cmnl.
This means that, for a given frequency, we can increase the cavity’s height, at least
until mode crowding limits the range that can be probed. Furthermore, since Cmnl

quantifies the overlap between the cavity mode and the applied magnetic field, lower
modes such as TM010 are preferred. Most importantly, in the condition of a cavity
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with an elevated height w.r.t the radius (d≫ R) and consideringQ to be independent
on the frequency, as the resonant frequency νc = 2πωn is inversely proportional to
the cavity radius, namely νc = c·u

2πR , the signal power scales as Psig ∝ ν−1
c . In facts

cavities with a smaller radius yield higher frequencies but reduce the overall volume:
therefore for a fixed frequency, other optimizations must take place, as the insertion
of dielectric materials, in order to improve the signal power and the scan rate.

2.5 Noise Temperature and Scan rate

In axion haloscope experiments, given the wide area of the parameter space to be
probed and the restricted frequency range that one can probe with a resonator, it is
important to take into account the time needed for the experiment to be run. For this
reason a critical parameter has been introduced, called scan rate df

dt : it refers to the
rate at which the experiment can probe different axion masses within a given time
period, for a specific sensitivity or signal-to-noise ratio (SNR). Given the uncertainty
in the axion mass, it is essential to design experiments that can effectively scan across
a wide frequency range while maintaining an high sensitivity. The scan rate depends
on several factors, regarding the apparatus design, the amount of time needed and
axion properties.

A key parameter is the system noise temperature Tsys, also called Johnson–Nyquist
noise. It is a measure of the noise power relative to the thermal noise at a given
temperature, mathematically defined as:

Tsys =
Pnoise(∆ν)

kB∆ν
(2.47)

where kB is the Boltzmann constant, ∆ν is the frequency range over which the mea-
sure is made and the system noise power Pnoise includes contributions from both the
physical temperature of the cavity and electronic noise[31]. Since we are comparing
the system power to the noise generated by a source at a specific temperature, we
are assuming it to follow a Gaussian distribution, whose fluctuations are expected
to follow the Dicke’s equation:

σD = kBTsys
∆ν

∆t
(2.48)

once sampled for a time interval ∆t. The signal-to-noise ratio (SNR), and in partic-
ular, from the Dicke radiometer equation, we know that:

SNR =
Psig

σD
=

Psig

kBTsys

√︃
∆t

∆ν
(2.49)

where Psig is the signal power expected by an axion in the ∆ν frequency range, as
retrieved in Section 2.4. The expression can be inverted to highlight the amount of
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time required to reach a fixed SNR value for any bandwidth ∆ν:

∆t =

(︃
SNR kBTsys

Psig

)︃2

∆ν (2.50)

From this formula we can see that the the optimal value for the frequency resolution
is ∆ν = ∆νa the axion linewidth: this can easily be explained since, if we take a
smaller resolution, then the axion power is divided in many frequency regions and we
are not improving the ratio between power and frequency, while if we take a bigger
resolution, then we are introducing only noise power. From this formula we can then
retrieve the scan rate as:

∆ν

∆t
=

(︃
Psig

SNR kBTsys

)︃2

(2.51)

This formula tells us the importance of both reducing the system noise temperature
and increasing the signal power, in order to optimize scan rate for a fixed SNR: this
will lead to the optimized scan over the parameter space. In particular the experi-
ment has been designed in order to increase the scan rate as much as possible. In
particular the cavity has been realized in order to maximise the effective volume and
to have a quality factor as high as possible. Furthermore, since the signal power scales
quadratically with B0, superconducting magnets are typically employed in haloscope
search with field amplitudes in the range 8− 12 T. These are commercially available
magnets, but it is worth mentioning that there are experiments using custom mag-
nets that could go up to 18 T[32]. This increment in the magnet power therefore
improves the scan rate. Moreover, tuning the cavity’s coupling parameter β allows
for optimization of the signal extraction, with critical coupling β = 1 providing an
optimal balance between power extraction and energy storage. Unluckily, this choice
of β is quite poor for signal power and scan rate: the optimal value in this sense is
reached using β = 2, forcing experiments to work in this condition.
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Chapter 3

Experimental setup

In this Chapter, we will describe in detail the main experimental components and
their working principle. An haloscope is in fact mainly comprised of three principal
components: a resonating cavity, a refrigerating system able to keep the cavity at
cryogenic temperatures and finally an electronic chain for signal amplification and
readout.

3.1 Haloscope in a nutshell

The axion haloscope has proven to be the most successful experimental design in
the search for Cold Dark Matter (CDM) axions, for its good performances on the
signal-to-noise ratio (SNR). Thanks to its resonant working principle, the haloscope
is a very sensitive detector, making it perfect for high-sensitivity measurements: it
allows to resonantly enhance the signal and to isolate it from sources of noise at a
specific frequency.
We owe the introduction of the axion haloscope to Pierre Sikivie, who, in 1983, pro-
posed that the interaction of axions with the electromagnetic field mediated by pions
could be utilized for axion detection in the presence of strong magnetic fields [14].
The power spectrum of the resulting signal is extremely sharp and, as briefly de-
scribed in Section 2.1, could be approximated by a Maxwell-Boltzmann distribution.
The basic idea is to enhance the power transfer by using a microwave resonant cavity
tuned to the frequency corresponding to the axion mass, given by:

νa =
Ea

h
=
mac

2

h
≈ 0.1− 100 GHz (3.1)

where the upper/lower bounds are constraints of the physical implementation, i.e.
the dimension of the cavity. The effect of the resonating cavity is the integration of
the signals over time, as described in Section 2.4, which results in an amplification
of the collected signal by a factor equal to the loaded quality factor of the resonant
mode, as long as it is not higher than the equivalent quality factor of the axion power
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spectrum. This deposited power is then detected as excess power during the analysis
of the noise spectrum of the apparatus, as we will describe in Chapter 4.

Figure 3.1: Schematic apparatus of an axion haloscope, where HTE stands for the
Room temperature electronic chain, LTE stand for the Cryogenic electronic chain
and SO is the Source Oscillator. Credits to [33]

The fundamental elements of an axion haloscope, as depicted in Figure 3.1, are the
following:

• Microwave tunable cavity: the principal component of the system is a high
quality factor superconducting tunable cavity, which is a cylindrical hole in a
superconducting material, as described in Section 2.2. The signal selected by
the cavity frequency is collected through a tunable antenna, which can achieve
critical or more-than-critical coupling conditions, where we recall that they are
respectively met for β ∼ 1 and β ≳ 1. The most important characteristic
for haloscope cavities is then a mechanisms to tune the measurement mode’s
frequency: this allows to scan among a frequency range larger than a single
cavity linewidth, and is therefore the key principle of these haloscopes;

• Cryogenic electronic chain: it comprises low noise microwave amplifiers
and RF components such as circulators, isolators, and filters. In order to have
optimal SNR, it is important to have a first amplification at cryogenic level,
since the first amplifier is the one introducing the biggest amount of noise. In
fact the total noise temperature of the amplification chain for the gains Gi and
the equivalent noise temperatures Tn,i for the i-th amplification constituent,
can be evaluated as:

Tamp = Tn,1 +
Tn,2
G1

+
Tn,3
G1G2

+ · · · (3.2)
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where it is straightforward that the first amplification stage is the most relevant,
since it is not attenuated by the previous amplifiers.

• Room temperature electronic chain: this section of the electronics re-
ceiver includes amplifiers, low-pass filters, and an Analog-To-Digital Converter
(ADC). A component typically used to down-convert the frequency of signals
in microwave receivers is the mixer: this allows for data size reduction with-
out losing any physically relevant informations. Data are finally converted to
digital in the ADC and stored: frequency spectra can be reconstructed us-
ing the Fourier Transform of the saved signals in the phase and quadrature
components;

• Strong magnet: given the squared dependence of the axion deposited sig-
nal with the strength of the magnetic field, as described in Section 2.4, a
very strong magnet is needed. Given the mode profile in a cylindrical cavity,
a solenoidal shaped magnet is used: it completely surrounds the cavity and
provides a uniform strong magnetic field in all the cavity volume. As super-
conducting electronics, and in particular the TWPA, are not compatible with
the intense magnetic field required in this search, they are actively screened
by an additional coil whose aim is to suppresses the main B0 field. Additional
protection to these component is ensured by enclosing them within boxes of
cryoperm, which acts as a further passive screen. Usually, for the vicinity to
the cavity, a superconducting magnet is used;

• Cryogenic vessel: The cavity and cryogenic receiver’s components are oper-
ated inside a wet dilution refrigerator with 50 mK base temperature. Only the
cavity, the circulator and the first stage of amplification are attached to this
lowest temperature stage as shown in Figure 3.6a, in order to ensure the am-
plifier to work properly and to suppress the thermal photons coming from the
cavity. The second amplifier is connected to the plate at liquid helium temper-
ature THe = 4.2 K; the superconducting magnet is fully immersed in the same
liquid helium bath to ensure operation of the magnet below the superconductor
coil critical temperature.(1)

The previously described components must be carefully chosen in order to have the
highest possible axion sensitivity, which in fact depends on various factors, including
the quality factor of the resonating cavity, the strength of the magnetic field and the
thermal noise of the system. In the high-frequency regime considered in this work,
which is at around 10 GHz, a careful optimization of these parameters is required
in order to achieve a sufficient sensitivity: each component is then tested in the
calibration procedure, in order to satisfy the required characteristics.

(1)The magnet is typically made in NbTi, whose critical temperature is in the range [6 : 9] K
depending on the magnetic field [34]
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3.2 Tunable cavity

In Section 2.2 we described the working principle of a resonating cavity and its
characteristic parameters: in this Section we will give a description of the cavity we
used and its features. We used a cavity containing a cylindrical dielectric, which
allows to have an effective volume 10 times higher with respect to an empty cavity,
for the search of axions at higher frequencies, around 10 GHz.

As pointed out in Section 2.4, cavities used for axion detection are required to max-
imize the overlap between the electric field and the external magnetic field, and in
particular the effective volume. This condition is satisfied by the TM010 mode of
the cylindrical cavity: in fact it allows to have a stronger field along the entire ra-
dial component compared to higher-order modes, as shown in Figure 3.2a. For this
reason it is the mode used in conventional haloscopes.
To date, haloscope experiments have probed the range [600 MHz : 1 GHz] at DFSZ
sensititivy with cavities of several tens of liters and magnets with a bore of tens
of centimetres[35]; similar experiments are approaching the KSVZ sensitivity in the
range [1 : 5] GHz [36][37]. In the interval down to 100 MHz experiments still involve
the use of large cavities and magnets. In fact, for lower frequencies, bigger cavities
are required, and in particular magnets able to create a strong and uniform magnetic
field with a bore bigger than the cavity diameter: this represents the main challenge
in low-mass axion search. At frequencies above 5 GHz, the main limitation is set
by the unfavourable scaling of the scan rate with respect to the probed frequency:
df
dt ∝ f−4. Other solutions are required to compensate this scaling and therefore
allowing to work in this frequency range.

To probe for higher frequency axions with relevant sensitivity, one might consider
higher order TM modes in the cylindrical resonator. However, their C factor is too
small as shown in Table 3.1:

Cavity mode C-factor
TM010 0.61
TM020 0.12
TM030 0.17

Table 3.1: Value of the C-factor for the first three TM modes in an empty cavity

This result is explained by the presence of negative lobes in the electric field be-
haviour, as shown in Figure 3.2a: the presence of electric fields opposite to the
external magnetic field, significantly reduces the effective volume, and consequently
the sensitivity.
The effect of these negative lobes can be diminished by inserting properly shaped
dielectric shells: the idea is to reshape the electric field profile placing the dielectric
material in correspondence of the lobes, thanks to the high value of its dielectric
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constant ϵr = ϵ0κr. The optimal dielectric shape for the suppression of negative
components in the cavity fields is an hollow cylinder, also called shell, as shown
in Figure 3.2b: thanks to this particular object, larger effective volumes at given
frequency can be accomplished compared to the conventional ones. Furthermore
larger quality factor can also be obtained in certain configurations, as the resulting
field profile is such that ohmic losses are smaller at the copper boundaries.

(a) Modes of the cylindrical cavity (b) Dielectric position in cavity

Figure 3.2

The effect of the insertion of the dielectric material on the TM030 mode is visible in
Figure 3.3 for the insertion of one or two concentric dielectric shells. One can clearly
see that this insertion strongly affects the electric fields radially and consequently
the effective volume, allowing for the axion search at higher frequency w.r.t. the use
of TM010 mode. In our experiment, the chosen material for the dielectric component
is the sapphire, with κsapphire ∼ 11.5.

Figure 3.3: Mode TM030 profiles with and without the insertion of one (left) or two
(right) dielectric shells [38]
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3.2.1 Cavity Tuability

The goodness of an haloscope also relies on its ability to scan the maximum possible
frequency range, since the axion mass is unknown. Many techniques have been
introduced and all of them require to mechanically interact with the cavity in order to
perturb the measurement mode and therefore alter its frequency. The main technique
used up to now required the insertion of some dielectric rods from one of the cavity
endings. These rods changed the field in the terminal part of the cavity, altering the
mode and in particular its frequency.

Figure 3.4: Cavity used, showing the aperture into two halves and the return springs

The resonator used in this work can be tuned by opening the external copper cylinder
with a clamshell mechanism: the external copper body is in fact divided into two
halves cut along the cylinder axis, which are radially separated while joined at a
fixed edge[39]. The mechanism controlling the opening angle relies on a 2.2 meters
long stainless steel wire that connects a high-resolution stepper motor (Mod. PI M-
230.2SS) operated at room temperature, to a conical wedge used to separate the two
copper shells. The force applied by the wedge is balanced by four springs mounted
next to it, as shown in Figure 3.4, and near the top and bottom cavity endcaps. As
might be expected, in this type of mechanism hysteresis effects have to be taken into
account when the cavity is opened starting from the closed position, corresponding
to a null opening angle. As shown in Figure 3.5, the mechanism performs well, i.e.
there is linearity between stepper motor position and opening angle, and therefore
the frequency, but there are "jumps" that might be ascribed to sudden relaxations
of the spring system. For these frequency intervals, rescan needs to be considered
to ensure a uniform data acquisition in the planned axion mass interval. In future
realizations of this apparatus, we are considering to replace the wire with a tiny
rod to open the cavity, which is a more conventional rigid system: in particular the
realization of a reliable mechanical apparatus is required to ensure a correct scan.

The clamshell principle represents a more challenging fabrication in order not to
consistently change the quality factor, but allows to span across a range that is a
hundred times wider w.r.t. the rods implementation. In the present apparatus a
tuning range of approximately 60 MHz was demonstrated, which allowed to probe
for axion masses in the range 41.3÷ 42.6 µeV. In principle, a much broader range of
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Figure 3.5: Scan of the cavity frequency using the stepper in the closing direction,
i.e. from the opened condition (red) to the closed one (blue): (a) shift of the cavity
frequency with the stepper set to 0.05 mm sized steps, with; (b - g) the resulting
blocks separated by the jumps, which show an almost linear behaviour

approximatively 200 MHz might be accomplished with this mechanism, as shown by
the results of finite-difference method simulations. The probed frequency range can
be confronted with the ∼ 6 MHz range obtained using dielectric rods with a previous
version of this cavity[40].

This difference strongly supports this newly introduced mechanism and shows that
the cavity tuning represents one of the most important challenges for haloscopes
optimization: other mechanisms have been probed [39] but all of them suffer the
same reliability problem, given the presence of hysteresis at cryogenic temperatures.
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3.3 Electronic chain

The electronic chain is mainly divided in two parts: the cryogenic part (Figure 3.6a),
which is responsible for the amplification of the detected signals at low temperatures,
and the room temperature part (Figure 3.6b), which is on the other hand responsible
for the signal digitalization. The two parts are connected via some switches (Figure
3.8), that allow us to change the configuration of input/output between the three
lines of the two parts without any human intervention: this set of switches, as we
will later see, is of fundamental importance in the calibration of the system. In
particular, the electronic is comprised of three lines (L1, L3, L4) for the connection
to the cavity: three lines are needed for the Noise Temperature evaluation, as will
explained in Section 3.5, and for the antenna’s coupling evaluation.
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3.3.1 Cryogenic setup

This circuit is responsible for the amplification of the signal from the cavity to the
room temperature detection devices. It is mainly comprised of the following compo-
nents: a Traveling Wave Parametric Amplifier (TWPA), a High Electron Mobility
Transistor (HEMT), three circulators Ci, some attenuators, two antennas and finally
a wide set of cables connecting them. The setup is divided in three main stages, de-
pending on their temperature, which can be 100 mK, 4 K or THe, temperature of the
liquid helium. I will briefly describe the comprising component’s working principle in
this Section, while a complete description of the TWPA functioning will be given in
Section 3.4. Names and the connections between components of this Section follow
the graphical description given in Figure 3.6a.

The HEMT amplifier is a type of field-effect transistor (FET) widely used in high-
frequency, low noise, and high gain experiments. The HEMT operates based on the
principle of high electron mobility in a junction between two semiconductor layers
with different bandgaps. At the interface of these two materials, a two-dimensional
electron gas (2DEG) forms due to the difference in bandgaps: this constraints elec-
trons to a very thin layer. This 2DEG is characterized by high electron mobility
owing to the high purity of the semiconductor crystal. The working principle of
a HEMT is the following: a voltage applied to the gate terminal allows to control
the electron flow through the 2DEG. In particular the gate voltage modulates the
density of the 2DEG, thereby controlling the current flow between the source and
drain terminals. Due to the high electron mobility, the HEMT has faster switching
times and lower noise: thus it can operate at very high frequencies, and in particular
in the range of GHz we are interested in, with minimal signal degradation. These
devices are able to reach a noise temperature of Tn ∼ 4 K while amplifying the signal
of 30− 40 dB in a frequency range of even 6 GHz[41].

The microwave circulator is a non-reciprocal passive device that aims to channel
the direction of signal flow among multiple ports. In a three-port circulator, signals
are forced to flow from port 1 to port 2, from port 2 to port 3, and from port 3
back to port 1, in a unidirectional manner. The working principle relies on electro-
magnetic wave propagation and magnetism: in the inner part of the circulator lies
a ferrite material placed in a magnetic field, which causes the material to exhibit
non-reciprocal properties. When a microwave signal enters the circulator, the fer-
rite material, influenced by the external magnetic field, creates a rotating magnetic
field within the device. This rotating field interacts with the electromagnetic wave,
effectively guiding it to the next port in the sequence.
A microwave circulator, like C1 in Figure 3.6a, is crucial in systems that require
the separation of transmitted and received signals using the same antenna: in fact
it can direct the transmitted signal coming from line L3 to the antenna A1 while
simultaneously routing the received signal to line L4 for processing, without inter-
ference. Two other circulators, namely C2 and C3, are essential for the isolation of
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Figure 3.7: Photo of a circulator (a) and typical circuit scheme symbol (b)

the 100 K stage from electronic noise coming from the HEMT: signals that could
be injected back into the line are thermally dissipated on a 50Ω resistance, while
signals following the inverse path do not encounter this dissipation.

In order to ensure the cryogenic temperature reach, a wide set of attenuators is
placed on line L1 and L3. In coaxial cables, in fact, thermal photons coming from
higher temperature regions can enter the lower temperature ones: attenuators are
therefore essential to stop thermal photons from passing. An attenuator at stage
i with attenuation Ai is able to reduce the noise photon occupation number ni(ω)
according to the formula:

ni(ω) =
ni−1(ω)

Ai
+
Ai − 1

Ai
nBE(Tatt,i, ω) (3.3)

where ni−1 is the noise photon occupation number at the previous stage and nBE(Tatt,i, ω)
is the average number of photons per mode ω at thermal equilibrium at the attenua-
tor temperature Tatt,i. This quantity is defined from the Bose Einstein distribution:

nBE(Tatt,i, ω) =
1

e
ℏω

kBTatt,i − 1
(3.4)

Two last components worth mentioning are the two antennas A1 and A2. The first
one is a tunable antenna, that we can move using another stepper motor at room
temperature, whose working principle is the same used for the cavity aperture. It is
crucial for this antenna to reach both the overcoupled regime, since a coupling factor
β = 2 is required during the measure in order to maximize the scan rate, and the
critical regime with β = 1 in order to evaluate the cavity properties. The second
antenna, positioned on the bottom of the cavity, is fixed and undercoupled, with a
coupling factor β ≪ 1.
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3.3.2 Room Temperature setup

The room temperature setup is located in the acquisition station and the instrument
it is comprised of, as shown in Figure 3.6b, are: a Signal Generator (SG1) and a Noise
Source (NS) connected to line L1, a Pump, and another Signal Generator (SG2) are
connected to line L3 and finally a Spectrum Vector Analyzer (SVA), a Mixer, a
Local Oscillator (LO), two filters and the Analog to Digital Converter (ADC) are
connected to line L4.

The Signal Generators are devices used to produce electrical signals with varying
waveforms, frequencies, and amplitudes: in our setup they are used for testing and
debugging the cryogenic setup. It works by generating a stable and precise output
signal, which can be configured as sine, square, triangle, or other complex waveforms,
and with a variable frequency: in particular it is important for its ability to generate
signals at different precise frequencies. For the goals of our experiment, the SA
connects to one of them in a master-slave connection and uses it as input signal in
lines L1 and L3. Another SG is used as a reference for the data acquisition: a signal
of fixed power and frequency is injected from line L1 during the experiment. This
last signal will be referred as "reference peak", since it is expected not to change
its power and frequency over time, and is used to track the gain changes during the
data acquisition.

The Spectrum Vector Analizer is used to measure and analyse the frequency
spectrum of electrical signals, providing measurements of the signal’s amplitude,
phase, and frequency characteristics. This is a better instrument with respect to
a basic spectrum analyzer, since the latter only measures the magnitude of signals
across a frequency range. Our SVA is in fact better, since it can perform a complex
signal analysis, which is invaluable for the design and test of our experimental setup.
The working principle of the SVA involves mixing the input signal with a local
oscillator (LO) to convert the signal to a lower intermediate frequency (IF), where it
can be more easily processed. This process allows the analyzer to cover a wide range
of frequencies with high precision. The vector aspect of the analyzer comes from its
ability to decompose the signal into its in-phase (I) and quadrature (Q) components,
which represent the signal in a complex plane. Thanks to this conversion, the SVA is
able to measure both the amplitude and phase of each frequency component within
the signal.

The Local Oscillator is able to generate a stable and precise periodic signal at
a specific frequency: this reference signal is used to mix with incoming signals to
produce intermediate frequencies (IF). Local oscillators are usually the most stable
electronic devices, and are therefore used also as a reference for the frequency by
other devices.

The Mixer is the device responsible for the down-conversion of the electronic signal,
which in the present case entails conversion from about 10 GHz to a few MHz. The
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mixer, thanks to its nonlinear characteristics, takes as input the radio frequency and
local oscillator signals, with frequency fRF and fLO respectively, and give in output
signals at frequencies fRF + fLO and fRF − fLO. The sum is discarded, while the
difference, known as the intermediate frequency (IF), is kept for further processing.
This down-conversion is particularly important for the following procedures, given
the higher reliability of electronic components for lower frequencies, and for the data
saving, since we can sample the signal at lower frequencies and therefore reduce the
data to store by a factor 2000.

The low-pass Filters are electronic passive components that suppress all the signals
at higher frequencies. In our case, once the signal is down-converted, two low-pass
filters with a passband of 1.7 MHz are inserted in the line L4, just before the signal
digitalization. In particular our filter is a 8-poles filter, which means that, even for
signals that are slightly above the passband frequency, the suppression is -160 dB
per decade.

The Analog to Digital Converter is the device responsible for converting con-
tinuous analog signals into discrete digital values. In the ADC an analog signal is
sampled at regular intervals of time and each sample is quantized into a correspond-
ing digital value. The precision of this conversion is determined by the resolution of
the ADC itself, that in our case is expressed in terms of 16 bits. The possible discrete
values are in the range [−215 : 215 − 1], corresponding to the voltage values [−1 : 1]
V: for an higher precision, input signals are calibrated so that signals entering the
ADC cover the widest possible voltage range.

3.3.3 Switches

A set of switches is placed between the cryogenic environment and the room tem-
perature electronics: these components aim to connect the correct cryogenic line to
the correct room temperature one. Thanks to the introduction of these switches, we
are able to perform measurements without connecting and disconnecting cables once
the experiment is running, resulting in a much higher reliability of the results.

3.4 Travelling Wave Parametric Amplifier (TWPA)

Traveling Wave Parametric Amplifiers (TWPAs) are crucial components in the field
of quantum information processing. As said in equation 3.2, the first stage of the
amplification chain is the most important: it has to introduce the smallest amount of
noise and the highest possible gain in the widest allowed frequency region. TWPAs
are able to trade-off these requirements and represent the best-known fit as first stage
of the amplification chain.

The most important parameter for the required amplifier is the ability to provide
amplification with minimal added noise. TWPAs are then particularly valued since
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Figure 3.8: Schema for the switches circuit, connecting the cryogenic environment
(top) to the room temperature electronics (bottom). Different colors define different
configurations used for the calibration of the cryogenic experimental apparatus.

they can introduce the minimum level of quantum noise, usually called Standard
Quantum Limit (SQL). This device noise temperature is evaluated to be around 0.6
K, which allowed to reach a noise temperature of [1.2 : 1.6] K at the cavity level
during the experiment.

As an amplifier another key characteristic is to increase the power of an input sig-
nal, ideally without introducing significant distortion: the gain is therefore another
important parameter. It is defined as the ratio between output and input signal
amplitude and denoted as G(ωs), given its dependence on the signal frequency. In
Figure 3.9a the gain profile of the TWPA used in the present work is shown.
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Given the haloscope requirement to probe for wide frequency regions, another im-
portant parameter is the bandwidth, defined as the frequency range over which the
gain remains above a certain threshold, which is usually Gmax/2 in linear units or
Gmax − 3 dB in logarithmic units. Other devices, such as Josephson Parametric Am-
plifiers (JPA), can still reach noise temperatures at the SQL and have gains up to 40
dB, but the TWPA can ensure this reach for a bandwidth more than 4 GHz wide.

(a) TWPA gain profile presenting the two
amplifications for signal and idler

(b) JTWPA amplificator

(c) Gain along the JJ chain

Figure 3.9: TWPA characteristics: (a) Broad band gain profile for the TWPA at
a fixed working point, after the subtraction of the passive losses (b) Simplified cir-
cuit representation of a Josephson Traveling Wave Parametric Amplifier (JTWPA)
where the phase-match amplification process is governed by the LC circuits (in red)
and each Josephson Junctions inductors LJ and shunted capacitances C0 (c) Signal
amplification along the transmission line [42]

3.4.1 Traveling Wave Amplification Mechanism

Parametric amplification in TWPAs arises from nonlinear interactions within the
medium through which the signal travels. These interactions are typically modeled
using the concept of wave mixing, which can occur through either three-wave mixing
(3WM) or four-wave mixing (4WM). In three-wave mixing, a high-frequency pump
wave at frequency ωp interacts with a signal wave at frequency ωs, generating an
idler wave at a difference frequency ωi = ωp − ωs. This process conserves energy by
transferring it from the pump to the signal and idler waves, effectively amplifying the
signal. Four-wave mixing, on the other hand, involves the interaction of two pump
photons with a signal photon, creating an idler photon while conserving the total
energy: 2ωp = ωs + ωi. As the previous process, 4WM results in the amplification
of the signal, but occurs in media with third-order nonlinearities. In Figure 3.9a are
visible two maxima in the gain profile in correspondence of the frequency of signal
and idler: the pump frequency is set to be in the minimum in between.

40



The distinguishing feature of a TWPA is its use of a traveling wave structure, where
the signal, pump, and idler waves propagate together along a nonlinear transmission
line, such as one based on a Josephson junction array, as the one presented in Fig-
ure 3.9b. Unlike parametric resonant amplifiers, which have bandwidth constraints
due to the presence of the cavity in their circuit scheme, TWPAs offer a broadband
amplification. In a TWPA, the gain is achieved by the continuous interaction of the
signal with the pump wave over a long distance, allowing for a cumulative amplifi-
cation effect: the idea is graphically introduced in Figure 3.9c. The phase matching
between the signal, pump, and idler waves is critical for maintaining efficient energy
transfer throughout the amplifier’s length. The nonlinear properties of the trans-
mission line, typically enhanced by the use of superconducting materials, allow for
strong amplification over a wide frequency range, with gains often exceeding 20 dB
and bandwidths extending over several gigahertz. As visible from the spectral gain
shape in Figure 3.9a, gain ripples are present in the working region. For axion search,
due to the reduced cavity linewidth, the presence of these ripples does not character-
ize a problem: the TWPA electronic inputs can be changed in order to work on a gain
local maximum, whose gain does not consistently change in the selected frequency
region.

3.4.2 Preparation of the TWPA

The efficiency in the matching between pump and signal photons is determined by
three parameters: the bias flux, which is controlled by the DC current through a
superconducting coil, which changes the input signals amplification along the many
JJs, and the pump amplitude and frequency. It is then important to change these
three parameters each time the scanned frequency is modified, in order to optimize
the TWPA performances for that specific frequency range.

A preliminary value of the bias current is given by the constructor, in our case it
was set to IDC = 1.3 mA: the optimization mainly involves the pump frequency and
amplitude setting. The pump frequency in fact is not fixed by design in a reversed
Kerr TWPA, allowing flexibility in matching it to the signal frequency of interest:
the characteristic TWPA gain profile exhibits two lobes, with many gain ripples as
one can see in Figure 3.9a, and the pump frequency is usually chosen so that the
signal frequency is within one of these gain maxima. The pump amplitude is then
optimized to achieve maximum gain without driving the TWPA to saturation. This
is done by gradually increasing the pump power until the gain reaches a plateau,
indicating the onset of saturation, and then reducing it slightly to maintain linear
operation with an high gain. A slight adjustment of the bias current, usually of the
order of 10µA, along with the other parameters, can be performed in order to further
increase the gain within the non-saturating region. The optimization process ends
when, in a non-saturating region, the maximum gain, that in our case was around
20−22 dB on average, is reached: the unpredictable behaviour of the gain w.r.t. the
choice of these parameters causes this optimization not to be automatable.
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At each cavity frequency that we set, i.e. at each resting point in the cavity aperture,
the TWPA performances, namely the gain and the temperature noise, need to be
monitored. In the frequency range probed in the present thesis, which is approxi-
matively 15 MHz, small adjustments of the parameters were done at each step: the
usual change was about 10µA for the bias current, 300 kHz for the pump frequency,
corresponding to the cavity frequency shift, and 0.1 dB for the pump amplitude.
Sometimes, due to the small cavity frequency shift w.r.t. the TWPA region corre-
sponding to the maximum gain, these parameters were kept unchanged.

3.5 Noise Temperature

Noise temperature is a measure of the noise power introduced by an amplifier relative
to the thermal noise at a given temperature, as described in Section 2.5. For any
new TWPA working point corresponding to a different cavity aperture, once the
TWPA is correctly operational, it is possible to proceed with the measurement of
both gain and noise temperature of the receiver chain with the method described in
the following.

The idea is to use a Signal Generator (SG) to inject calibrated signals in lines L1 and
L3, as defined in Section 3.3, and measuring the output spectra at points P1 and P4
with the Spectrum Analyzer (SA). The procedure, fully described in [43], allows to
measure the noise temperature at the cavity output, without the need of switches
at cryogenic temperature or calibrated noise sources. It involves the measurement
of three transmission power spectra: from point P1 to point P4 (S41), from point
P3 to point P4 (S43) and finally from point P3 to point P1 (S13). To minimize
errors on both gain and noise temperature, we inject a few values of input power far
from the saturation point[42]. Using a linear regression for these detected powers, an
estimation of the three gain lines is obtained: g1 from point P1 to antenna A1, g3 from
point P3 to antenna A1 and g4 from antenna A1 to point P4. All the measurements
of this kind are performed at the resonating frequency if in transmission, otherwise
a slightly detuned frequency is used. The important quantity for the experiment’s
purpose is g4, since it represents the gain from the antenna to the data acquisition
electronics, which is the complete detection chain’s gain.

From g4 one can then evaluate the equivalent system noise temperature Tsys of the
detection chain at point A1, thanks to spectra S41 and S43, and their relation:

P xy
n = g4kBTsysB + NoiseSA (xy) = {14, 34} (3.5)

where kB is Boltzmann’s constant, B is the SA’s resolution bandwidth and NoiseSA
is the SA’s noise, which is of the order of hundreds of fW, being negligible in these
kind of measures.
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3.6 Fano Interference

Fano interference is typically observed in wave scattering experiments when a reso-
nantly scattered signal interferes with background paths, such as port-to-port leak-
age, impedance mismatches, or other device imperfections. In microwave resonator
measurement setups, these background paths are inherently present, and the finite
circulator isolation is a dominant source of background interference. In our exper-
iment the presence of signals different from the expected ones forces the study of
these phenomena.

In single-port reflection measurements, the measured signal SΣ
11 is given by the in-

terference between a part of the reflected signal and the scattered signal. This
phenomenon is briefly shown in Figure 3.10(b) for the reflection of the signal, but
a similar phenomenon can occur also in the case of a transmitted signal, as shown
in Figure 3.10(c). In both the cases it can can be expressed in the complex phasor
language as: {︄

Reflected: SΣ
11 = (1− b)S11 + beiφ

Transmitted: SΣ
21 = (1− b)S21 + beiφ

(3.6)

where b and ϕ are respectively the amplitude and the phase of the background path
relative to the resonant signal. This interference can result in systematic distortions
of the resonator response, making it difficult to extract an accurate value for the
internal quality factor. Away from resonance, the reflection coefficient S11 equals
unity, but the measured baseline |SΣ

11| oscillates by ±b as a function of φ, which
depends on the optical path length between the interfering signals.

The presence of Fano interference is a major phenomenon in hanger-type transmis-
sion measurements, i.e. where three cables are connected together in a T-junction
without the presence of a circulator. Here the two-port crosstalk gives rise to the
leakage signal beiφ. Even with the insertion of a circulator, the resulting amplitude
lineshapes show dips and peaks at various degrees of asymmetry depending on the
relative background phase φ, as can be seen in 3.10(d, e). It is important to under-
line that measuring a symmetric lineshape is no guarantee for the absence of Fano
interference. For instance, in hanger-type transmission measurements, asymmetric
amplitude lineshapes are commonly interpreted as a result of impedance mismatches,
but their absence doesn’t assure a correct impedance match.

For the purposes of this thesis, a typical resonating process with a dephasing con-
tribute is described via a typical Fano function for a lossy two-port system [44]:

f(ω) = t2d ·

(︂
q + ω−ω0

γ

)︂2

1 +
(︂
ω−ω0

γ

)︂2 + α (3.7)
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where td is the amplitude, ω0 is the resonating frequency, γ is the frequency width
of the resonance, α is the offset and q is the shape factor describing the interference
between the resonant and non-resonant scattering pathways. This latter parameter
is very important for the correct shape of the figure, since it quantifies the amplitude
asymmetry of the signal: it is therefore directly connected with the interference phase
φ, as presented in Figure 3.10(e). Three discrete values of q are worth mentioning:
q = 0 corresponds to a deep (green in Figure), q = 1 corresponds to a perfectly
asymmetric function (blue in Figure) and finally q → ∞ corresponds to a peak (red
in Figure). To these three conditions are connected the relative dephasing of the
signal: φ = 0, π/2, π respectively.
Equation 3.7 is the fitting function we are going to use in this work to interpret
and estimate any resonating process, and in particular, their power spectra. Due to
physical conditions, some simplification of the formula can be made: for a signal that
is transmitted through the cavity, we can assume that no dephase occurs, leading to
the imposition of q → ∞, which corresponds to a Lorentzian profile. On the other
hand, for a signal that is reflected at the entrance of the cavity, we can assume that
an opposite phase is introduced, corresponding to the imposition of q = 0 in the
Fano formula.
Unluckily for us, these simplifications can not be used, since even a small impedance
mismatch can affect the fit, introducing systematic errors in the parameters of inter-
est: furthermore, for a complete description of the reflection signal, one must take
into account also the coupling with the antennas.
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Figure 3.10: Origin and symptoms of Fano interference in microwave resonator mea-
surements. (a) Schematic depiction of Fano interference in wave scattering experi-
ments. (b) Single-port reflection measurements where finite circulator isolation con-
stitutes a dominant background path. (c) Hanger-type transmission measurements
with two-port crosstalk. (d) Background interference pattern showing amplitude os-
cillations as a function of the interference phase φ and (e) resulting Fano figure. [45]
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Chapter 4

Data acquisition and analysis

In this last Chapter, will briefly describe the data acquisition procedure for an halo-
scope experiment, and in particular the one followed during the May-June 2024
QUAXaγ run. The data acquisition process can be divided into the following proce-
dural steps:

• preventive controls before the run: mainly check that the electronic components
do not introduce distortions to the final power signal;

• a number of steps are done with the positioner, sufficient to shift the cavity
frequency of a quantity comparable to a linewidth (around 300 kHz);

• the cavity transmission and reflection spectra are recorded;

• optimization of the TWPA gain as described in detail in Section 3.4.2;

• noise temperature evaluation as detailed in Section 3.5;

• acquisition of a spectrum with noise generated by a thermal source input from
line L1 to the cavity, as shown in Figure 3.6b;

• scientific data taking, with a live output of the acquired spectrum;

• control of the cavity temperature;

• data upload on the cloud.

The data analysis procedure is inspired by the analysis introduced by the HAYSTAC
experiment[46], applicable to data acquired with a detector bandwidth that is much
larger than the linewidth of the searched signal Qc ≪ Qa. An example of analysis
devised for experiments with cavity quality factor comparable or larger than Qa is
reported in [47]. The performed analysis will follow the steps:

1. Use the cavity reflection and transmission spectra to identify possible compro-
mised runs, that will be excluded from further analysis;
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2. Evaluate the spectra for each run, combining the signals in phase and quadra-
ture for each run. Correct then the spectra taking into account the frequency
dependence of the TWPA gain and the filters’ effect; finally, using the reference
peak information, compensate for the gain behaviour over time;

3. Average together all raw spectra aligned according to IF frequency, in order to
spot compromised IF bins, which will be cut from further analysis. Divide then
each run into smaller chunks and fit the spectrum shape retrieving the expected
cavity frequency, then use this behaviour to spot cavity frequency shifts: runs
that experience a shift in the cavity frequency are divided accordingly;

4. Divide each spectrum by the average baseline and use a Savitzky-Golay(SG)
filter to remove the spectral structure in each normalized distribution, then
subtract 1. The obtained processed spectra are dimensionless and described
by Gaussian statistics;

5. Divide each spectrum by the axion conversion power and multiply them by
the average noise, in order to obtain a set of rescaled spectra. Then combine
them together, aligning them by the RF frequency and taking the optimally
weighted sum bin per bin, obtaining the combined spectrum;

6. Use a weighted average of adjacent bins to rebin the combined spectrum, ob-
taining the grand spectrum;

7. Set a threshold on the SNR of the grand spectrum: all bins exceeding this
threshold are flagged as axion candidates.

For all the axion candidates, a rescan at that specific frequency is needed: after the
candidate has been excluded, the grand spectrum is used to evaluate an upper limit
on the coupling constant gaγγ .

4.1 Data acquisition

In this Section we will briefly describe the data acquisition procedure followed dur-
ing the May-June 2024 QUAXaγ run following the steps described in the preface of
this Chapter. The experimental procedure to run the QUAX experiment is partly
automated as the data acquisition procedure is well known. Thanks to the switches
presence, the data acquisition is highly automated and in particular three main pro-
grams have been written: one for the evaluation of the noise temperature (NTp),
one for the data taking procedure and saving (DTp) and finally one for the cavity
transmission and reflection spectra acquisition (SAp). Other steps, as the TWPA
optimization and the cavity tuning, still have to be performed by an operator: these
actions are difficult to automatize for their non-linear nature and the unpredictable
behaviour that we described in Sections 3.4.2 and 3.2.1 respectively. As a conse-
quence of this, also LO and reference frequency have to be set by hand.
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4.1.1 Cavity tuning and control

As a first step in the run procedure, we need to tune the cavity to the correct
frequency: as a trade-off between sensitivity and gain time, we decide to acquire at
intervals of one linewidth for cavity frequency. This means that in principle we want
to move of exactly a FWHM from one measure to the following one: in particular,
for a cavity frequency of νc ∼ 10 GHz and a loaded quality factor in the range
QL ∈ [30000 : 50000], one linewidth is expected to be in the range ∆ν ∈ [200 : 333]
kHz. The stepper allows to tune the cavity of up to the desired quantity, but it is
not reliable in the shift, as previously described in Section 3.2.1.

After the operator has completed the frequency change, cavity spectra in trans-
mission and reflection are acquired. In the spectra acquisition program (SAp), the
procedure is as follows:

• For the transmission, a −10 dBm input is injected from line L1 and detected
from line L4: transmission spectrum is therefore named S14. The SVA prelim-
inarily sweeps in the expected frequency range and takes the maximum power
value as the approximate value of the cavity frequency: then it scans for the
frequencies in a 2 MHz range centred in the approximative central frequency
and acquires it with a 25 kHz resolution.

• For the reflection, a −15 dBm is injected from line L3 and detected from
line L4. Similarly to the transmission procedure, the spectrum S34 recorded
at the SVA is first used to identify the minimum power position for reflection
as the cavity frequency: thus reset the instrument parameters to get a centred
spectrum with the same 5 MHz resolution.

Once the cavity frequency is known with a precision at the order of kHz, the LO
frequency is set 1 MHz below the cavity one. Similarly the reference peak is set 0.2
MHz below the LO frequency:

fLO ∼ fc − 1MHz fref = fLO − 0.2MHz (4.1)

The ADC samples at a rate of fADC = 4.4 MHz, thus the maximum signal frequency
range is [−2.2 : 2.2] MHz according to the Nyquist-Shannon theorem[48]: therefore
it is reasonable to set the difference between LO and the cavity frequency at 1 MHz
for its centrality in the positive range. The reference peak position has indeed been
chosen such that it is out of the cavity influence, but not enough to behave differently
w.r.t. the cavity for what concerns the TWPA performances over time.

4.1.2 Thermal and actual run

Once the TWPA is optimized for the current cavity frequency, the noise temperature
program (NTp) can be launched. Then a 10000K noise source, whose output noise
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is amplified to compensate for the input lines loss, is switched on and the output
signal is fed to the mixer-ADC line: the data taking program (DTp) is now run.
The DTp acquires the ADC output as a time series: these data can be converted in
the frequency space(1) and allow for a better estimation of the loaded quality factor
and the cavity frequency, since the Signal to Noise Ratio (SNR) in the frequency
domain is much higher than the one retrieved in the previous acquisitions.
The acquisition time for this step is of approximatively 19 seconds: for a more precise
signal we should acquire data for a longer amount of time, but these 19 seconds are
sufficient for the detection of possible problems: in fact, during this run, a rough
analysis of the spectrum is shown on the computer and, most of the times, we are
able to spot errors. These runs will be referred as "Thermal" runs in the following
of this thesis, due to the presence of the thermal source.

The thermal source is then switched off and the DTp is launched again: the system
automatically records a number of spectra decided by the operator based on the
required SNR, as we recall from equation 2.50. In addition, the available liquid he-
lium or the availability of data taken in the same region need also be considered for
the correct integration time estimation. In the May 2024 run, we collected data for
1900, 3800, 7600, 15200 or 19000 seconds, based on the previously mentioned param-
eters, while in the June 2024 run, we restricted this choice between 3800 and 19000
seconds. These runs will be referred as "Vacuum" runs in the following of this thesis,
due to the absence of inputs in the cavity: the signal coming from it is expected to
be only due to axion conversion.
Also during this run, for the sake of comprehension of the experiment behaviour,
a primary analysis is performed under-sampling the raw data. When errors occur,
usually the run is interrupted and the data are conserved until the error occurrence.

4.1.3 Data stream and saving

The acquired data, which is the time series of ADC output, are divided into files
containing 223 samples and saved locally. Each sample is comprised of both the in-
phase component and the quadrature one: the dimension of each of them is ld = 2
bytes = 16 bits. Thus the total dimension of each file is approximatively Mfile ∼ 33.6
MB. The ADC is also sampling at a fixed frequency fADC = 4.4 MHz, which means
that every second it is able to acquire 4.4 · 106 samples: each saved file corresponds
then to tfile = 1.9 s(2) of run. The incoming data are then saved in binary files locally
and, after the completion of a single run, both the thermal and the actual data are
uploaded on the cloud: binary files are then saved for future analysis and no data is
thrown away.

(1)This procedure can be easily performed using the Fast Fourier Transform (FFT) algorithm,
that will be further discussed in Section 4.3. For the purpose of this Chapter, we only need to know
that the time series acquired with the ADC can be transformed back to the frequency space.

(2)The time needed for a single run has been determined by the number of such saved files
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The entire data acquisition process for the May-June 2024 runs covered a total range
of 15 MHz, considering a two-linewidth frequency region per run, divided in three
main frequency regions, for a total of approximatively 4.9 TB.

4.2 Cavity behaviour

As a first analysis, we need to know the cavity characteristics: a fit has been per-
formed on the reflection and transmission spectra, in order to have more reliable
parameters. The expected power spectrum shape can be retrieved by the Fano for-
mula, as described in Section 3.6, imposing the shape factor q to infinity for the
transmission and equal to zero for the reflection, leading to the following results:

• The transmitted power expected profile follows a Lorentzian function centered
in the cavity frequency f0 = fc:

T (f ;A,Γ ) = L(f) = A
Γ/2

(f − f0)2 + (Γ/2)2
(4.2)

where A is the intensity nearby the maximum, Γ is the FWHM (Full Width at
Half Maximum) and f0 is the frequency relative to the peak. Thus QL, being
a quality factor, corresponds to the ratio between signal peak frequency f0 and
its FWHM:

QL =
f0
Γ

(4.3)

• The expected profile for the power reflected on the cavity is given by the follow-
ing function [49], with the minimum corresponding to the cavity absorption,
which occurr at resonance, meaning at the cavity frequency f0 = fc:

R (f ;A, β,Q0) = A
(β − 1)2 +

(︂
Q0

(︂
f
f0

− f0
f

)︂)︂2

(β + 1)2 +
(︂
Q0

(︂
f
f0

− f0
f

)︂)︂2 (4.4)

where A is the intensity of the background and both the antenna coupling
factor β and the cavity quality factor Q0 are made explicit.

As the spectra in transmission and reflection are not fitted by the functions 4.2 e
4.4, we have to take into account possible mismatches due to the utilization of a
circulator, see Section 3.6. The acquired spectra are then fitted by:

T (f ;A,Γ, q) =

⃓⃓⃓⃓
A

Γ/2− i(f − f0)
− iq

⃓⃓⃓⃓2
(4.5)

R (f ;A, β,Q0, q) =

⃓⃓⃓⃓
⃓⃓A β − 1 + iQ0

(︂
f
f0

− f0
f

)︂
β + 1 +Q0

(︂
f
f0

− f0
f

)︂ − iq

⃓⃓⃓⃓
⃓⃓
2

(4.6)

51



An example of the reflected and transmitted power spectra is presented in Figure
4.1 with the relative fit. For the transmission the Lorentzian fit is presented: giving
a justification in the introduction of the q parameter.

Figure 4.1: Measures in transmission (a) and in reflection (b) for run 655 with
respective fit and estimated parameters

In Figure 4.2 we compare the values of loaded quality factor QL and the cavity
resonance frequency fc obtained by fitting with eq 4.5 and 4.6 respectively the data
in transmission and reflection, acquired during the whole QUAXaγ run. The coupling
coefficient β from fits in reflection, still coming from equation 4.6, is shown in the
lower panel. Before judging the results, we must say that the fit errors cannot be
trusted, since different initial parameters lead to different results of the fit. In the
frequency difference plot, shown in Figure 4.2a, the error bars are the fit errors, much
smaller than the discrepancy between the frequencies, which spans across a 20 kHz
range approximatively, that can then be taken as the fit resolution.
On the other hand, quality factors do have a different behaviour: even though we
can’t trust the fit errors, the quality factors evaluated in reflection and transmission
cannot be considered compatible, as one can see from Figure 4.2b. One can clearly
see that those evaluated in reflection are systematically smaller than the transmission
ones: this discrepancy could be explained by an elevated value of the undercoupled
antenna w.r.t. the expected value β ≪ 1.

4.3 Power spectra

The next step in the analysis is to build the spectra starting from the in phase I and
in quadrature Q signal components; from these we are able to retrieve the complex
signal as:

C = i
I

η
+Q · η (4.7)
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Figure 4.2: Comparison between the parameters of the fits in the transmission and
reflection configurations: (a) frequency difference fTc − fRc and (b) loaded quality
factor QL. (c) Behaviour of the antenna coupling factor β that explains the oscilla-
tions of the quality factor

where i is the imaginary component and η is a correction factor that we have to
introduce in order to take into account the different losses on the two channels. The
value of η2 is retrieved experimentally using an amplified thermal source as input; we
divide the in-phase component and quadrature one, in order to preserve the norm.
Now we can go from the time domain to the frequency one, but some theoretical
clarifications are needed.

4.3.1 Spectral Estimation from Finite-Duration Observations: the
Bartlett Method

The power spectrum of a signal provides information about how the signal’s power is
distributed across different frequency components. The transition to frequency space
is important for stationary random processes, since it allows to perform calculations
that are faster and easier than the one performed directly on the time signal. In par-
ticular, we assume that, in the data acquisition time window, the acquisition process
is a stationary process. Under this assumption, if we take the continuous signal xc(t)
with the property of being finite-energy, meaning that E =

∫︁∞
−∞ |xc(t)|2 dt < ∞,
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then we can say that, for Parseval’s theorem:

E =

∫︂ ∞

−∞
|xc(t)|2 dt =

∫︂ ∞

−∞
|Xc(F )|2 dF (4.8)

where Xc(F ) =
∫︁∞
−∞ xc(t)e

−i2πFtdt is the Fourier Transform of the signal. This
particular operation, thanks to the Fast Fourier Transform (FFT) algorithm is much
more efficient to be evaluated in the frequency domain. In this Section we want
to describe how much this quantity is affected by the presence of a discretized and
finite signal, under the assumptions to work with ergodic signals, i.e. signals whose
statistical properties can be estimated from a single, sufficiently long realization of
the series, and whose properties are consistent across different realizations.

Here, we target the construction of the energy density spectrum of the signal Sxx(F )
and the autocorrelation function Rxx(τ) defined as:

Sxx(F ) = |Xc(F )|2 =
⃓⃓⃓⃓∫︂ ∞

−∞
xc(t)e

−i2πFtdt

⃓⃓⃓⃓2
(4.9)

Rxx(τ) =

∫︂ ∞

−∞
x∗c(t)xc(t+ τ)dt (4.10)

where it is important to note that these two quantities are Fourier Transform pair,
since: ∫︂ ∞

−∞
Rxx(τ)e

−i2πFτdτ = Sxx(F ) (4.11)

Under the consideration of signal xc(t) sampled at a constant frequency Fs the se-
quence x(t) is obtained. The introduced quantities can be rewritten in terms of the
discrete signal:

Rxx(k) =
∞∑︂

n=−∞
x∗(n)x(n+ k) Sxx(f) =

∞∑︂
k=−∞

Rxx(k)e
−i2πkf (4.12)

where k and f are the discretized variables for space x and frequency F .

Now, in a real case scenario, the introduced quantities are affected by the finite
duration of the signal: this finite nature of the data sequence introduces several
complications that can affect the accuracy and reliability of the spectral estimates.
The basic problem is that a truncation of the signal in time distorts its spectral
content. This distortion, known as spectral leakage, occurs because the truncation
introduces discontinuities at the edges of the observation window, which affect the
Fourier transform used to estimate the spectrum. In particular, when estimating
the power spectrum from a finite-duration observation, the length of the data record
significantly influences the quality of the estimated spectrum. Ideally, for stationary
signals, whose statistical properties do not change over time, longer data records
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yield better spectral estimates. However, in cases where the signal is non-stationary,
a long data record might not be appropriate, as the signal’s statistical properties
might change within the observation period.

To consider the effect of signal finite duration, we assume to observe a signal for
a finite time T , leading to a finite-length sequence x(n) of N = T/Fs samples.
From this finite series we are able to estimate the power density spectrum via the
calculation of the so-called peridogram:

Pxx(f) =

⃓⃓⃓⃓
⃓
N−1∑︂
n=0

x(n)e−i2πfn

⃓⃓⃓⃓
⃓
2

=
1

N
|X(f)|2 (4.13)

where X(f) is the Discrete Fourier Transform (DFT) of the sequence x(n). However,
even though it is an unbiased estimate, the periodogram is a poor estimator since
its variance does not vanish for N → ∞.

A commonly used method to reduce variance of the obtained spectral estimate is
the Bartlett method, in which the original N point data sequence is divided into
K non-overlapping data segments of length M = N/K. The periodogram is then
computed for each segment xk(n):

Pxx,k(f) =
1

M
|Xk(f)|2 (4.14)

where Xk(f) is the DFT of the k-th segment. An estimate of the power spectrum is
then obtained by the average of these peridograms:

Pxx,B(f) =
1

K

K∑︂
k=1

Pxx,k(f) (4.15)

which has a reduced variance compared to using a single peridogram.
It is possible to prove that the variance of this estimate is null in the limit N → ∞
due to the averaging process.

It is important to note that the Bartlett method results in a loss of frequency reso-
lution due to the shorter data segments. Since the single periodogram is computed
from a segment of lengthN , the frequency resolution is∆f = 1

N , thus for the Bartlett
method ∆fB = K

N . In general, an increase of parameter K shortens the segments
and improves the variance at the cost of a resolution decrease.
Clearly, there is a trade off between the number of averages and resolution. Here, as
we deal with long data sequences, and to obtain more accurate averages is preferred
over higher frequency resolution in the final spectra. In particular we deal with N =
o(1010) with a potential frequency resolution of ∆f = o(10−3) Hz: since the axion
signal linewidth is of the order of 10 kHz, we can avevrage up to o(107) peridograms
and still have a resolution that allows us to spot an excess power at the frequency
corresponding to the axion signal. The key point of the Bartlett method is then an
improvement of the power resolution, meaning a reduction of the frequency noise.
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4.3.2 Preliminary spectrum evaluation and time fluctuations

Thanks to the Bartlett method, we are able now to move from the time domain to the
frequency domain for the time series of any run. In order to have an optimized data
analysis, we decided to divide the time series into segments of M = 16384 samples
each. This choice is in agreement with the dimension of the created time series files,
as defined in Section 4.1.3, allowing us to average K = 512 peridograms for each
saved file. This peridogram dimension has been chosen since it is small enough for
the analysis, leading to a bin width BW of:

BW =
1

tM
=
fADC

M
≃ 268.6Hz (4.16)

where tM is the time required to acquire M time samples and fADC is the ADC
sampling rate.
For each file, corresponding to 2 s-duration data acquisition, an averaged estimate is
generated and saved for further analysis. Each Fourier Transform (FT) is therefore
defined in the range [−fADC/2 : fADC/2]. The typical spectrum obtained averaging
peridograms for a Thermal (blue) run and a Vacuum (red) run is presented in Fig-
ure 4.3. The shown spectra are centred at zero frequency, corresponding to the local
oscillator frequency fLO, while the cavity peak is centred approximately at 1 MHz.
Then, at frequencies near to zero, some small peaks are visible in the spectrum:
they are the result of IF processes and the power value in these bins is unreliable.
Frequency region [−200 : 200] kHz is neglected for further analysis. Note the fil-
ters’ effect, that will be further discussed in Section 4.3.3, that suppress spectral
components above ∼ 1.7 MHz.

Figure 4.3: Example of the reconstructed spectrum for the thermal (blue) and vac-
uum (red) runs in the down-converted frequency range: we highlighted the reference
peak, only visible in the vacuum runs, and the cavity frequency of resonance, de-
modulated at about 1 MHz
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The spectrum displays also the peak corresponding to reference signal, exactly 200
kHz below fLO. This signal is sent using SG1 from line L1, as shown in Figure 3.6b,
to monitor the receiver gain. As detailed in Section 4.3.3 in case the TWPA exhibits
instabilities during the acquisition, we are able to modify the spectra according to
the measured gain variation. In Figure 4.4 we show the result of integration in 1 kHz
window centred around the signal reference peak frequency for each block in run 668.
The data can be smoothed by application of the Savitzky-Golay filter (SG), based on
a third degree polynomial function and an integration window of about two minutes.
The Savitsky-Golay is a digital filter able to perform a smoothing of the data by
fitting successive subsets of adjacent data points with a low-degree polynomial using
least squares[50]. Each averaged spectrum is then divided by the normalized value
of the smoothed curve retrieved using the SG filter: this will create spectra that are
not affected by the TWPA gain instabilities over time.

Figure 4.4: Time evolution of the reference peak power with the Savitsky-Golay filter
smoothing (a) and the same after correction (b)

4.3.3 Accounting for spectral modulations

Additional effects that need to be taken into account to reconstruct the power spec-
trum at the cavity output are the TWPA gain dependence on frequency and the
filter cuts. In practice, for each run, we estimate both the TWPA gain and the filter
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attenuation. The spectrum is then divided by these values at each frequency value.
Other additional effects, introduced by other receiver components, are responsible
for other non-uniform signal amplitude w.r.t. frequency: they can be taken into
consideration for a more accurate spectrum reconstruction at the cavity exit. These
effects have been estimated to be under 1% of the power and are therefore neglected.

The TWPA amplifier gain, as previously detailed in Section 3.4.1, exhibits significant
ripples. Even though the spectra cover a rather small frequency window of around
∼ 5 MHz, when the TWPA gain is large, it can not be considered as constant in the
frequency range near to the cavity. In order to evaluate its gain over the frequency,
we select the TWPA resonance peak in the aforementioned frequency region and
we fit it using the typical Fano resonance formula: we are not interested on the
parameters of the fit, but only on the resonance profile.
Given the presence of a deep at the cavity frequency, we introduced a systematic
procedure: we perform a preliminary fit on the gain profile, in order to have a first
raw estimation of the resonance parameters. Then we select the region [fG − 3σG :
fc−5σc]∪[fc+5σc : fG+3σG], where fc, fG are respectively the cavity and the TWPA
gain maximum frequency, and σc, σG their standard deviations: in this window we
can perform the final fit, as shown in Figure 4.5(right). The introduction of this
frequency window aims to suppress the zones of the gain that disturb the correct
behaviour of a resonance, due to the TM030 and TM031 cavity modes absorption. In
Figure 4.5(left) one can clearly see the absorption due to the aforementioned modes,
represented by the two deeps.

Figure 4.5: TWPA gain profile. (a) Full data plot, including data corresponding
to the TM030 mode frequency, visible at the max of TWPA gain and of the TM031

mode, around 1.5 MHz higher. (b) Plot without the data points around TM030 and
TM031 mode frequency, and related Fano figure fit curve.

As concerns the low pass filters, cutting at 1.7 MHz, we cannot rely on the gain profile
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supplied by the manufacturer. The measured transfer function we used for spectra
reconstruction is shown in Figure 4.6. This component’s effect is to progressively
suppress frequencies above 1.8 MHz, slightly higher than the manufacturer’s predic-
tions, while lower frequencies signals are attenuated by less than 10%. The 8-poles
nature of the filter should in principle ensure a constant gain decrease for frequencies
above 1.8 MHz, but Figure 4.6 shows the presence of a slight deflection from the
constant decrease at about 2.2 MHz. This effect can be explained by an electronic
phenomenon called aliasing, for which two different frequency components, one the
multiple of the other, become indistinguishable if sampled at a too low frequency.

Figure 4.6: Behaviour of the 1.7 MHz low-pass filter in the down-converted range

4.4 Data quality cuts

Once the spectra have been corrected, a further step is to check the integrity of the
data. The runs in which we are not able to reliably evaluate the power spectrum, as
for instance those in which the cavity frequency was not stable during the acquisition,
are flagged. In the data acquisition process, we used to check the cavity frequency
before and after the vacuum run, to check if whether the cavity frequency varied.
We can however monitor the cavity frequency during the overall acquisition to learn
more about the sources of the change. This is accomplished using the vacuum spectra
relative to a time series’ sequence of approximatively 38 s, i.e. averaging together 20
files’ spectra.
For a better cavity frequency estimation, we can use the spectral power expected
behaviour as a fitting formula for each 38 s spectrum, as introduced in previous
Sections. In order to take into account also a slight frequency dependence of the
ADC, a linear trend is added to the Lorentzian profile, resulting in the formula:

F (ν) = g2
|ν − a+ ib|2
|ν − c+ id|2 + f(ν − c) (4.17)

where a, b, c, d, f, g are fitting parameters. In this model the cavity frequency co-
incides with the parameter c: representative results of this parameter’s behaviour
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among the run are reported in Figure 4.7. A few runs are characterized by a random
distribution of c (see for instance panel a, run 696), in five runs jumps are observed
at some point (panel b, run 700), and for four of them an almost continuous drift is
shown (panel c and d, runs 648 and 702 respectively).

Figure 4.7: Behaviour of the cavity frequency of resonance, demodulated at 1MHz,
obtained by fitting the vacuum spectra with equation 4.17. They have been classified
as: (a) random in a reasonable range, (b) experiencing a jump, (c) showing a shift
and (d) experiencing both a shift and a jump

Thanks to this analysis we were able to spot three runs with significant frequency
instabilities, in addition to those flagged during the data acquisition. Given the
different cavity frequency, we decided to operate as follows: runs experiencing a
jump are divided into chunks corresponding to the different cavity positions, while
in the other cases spectra remain unchanged, due to lack of information of what
really happened during the acquisition.

The second cut is to be performed on the spectrum bins. One common issue is the
contamination of the intermediate frequency (IF) arising from narrowband interfer-
ence in the mixer, which leads to a systematic presence or absence of signal in these
fixed bins. This effect can distort the statistical properties of the spectra, which are
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the target of our analysis. In order to mitigate these effects, a systematic procedure
is employed to identify and remove these contaminated IF bins from the data.[17]
The first step is to take the average of each 1000 blocks, in order to obtain all groups
of the same size: averaging enhances the visibility of any sharp features due to
narrowband interference. Then each spectrum is truncated in the interval [0.3 : 1.7]
MHz, which includes a sufficient number of bins on either side of the cavity frequency.
This allows for application of the SG filter with reliable values also on the boundaries.
Now we want to identify very sharp peaks corresponding to the IF frequency, and
therefore we need to use a low-pass filter. For this reason we apply a Savitzky-Golay
(SG) filter with a polynomial degree of 6 and a 50 kHz window on the averaged
spectra. As previously described, the SG filter smooths the data by preserving large-
scale spectral features, therefore we can identify interference contaminated bins by
looking at the statistics. We then divide the averaged spectrum by the SG filter
output and subtract one: the result is a transformed spectrum, whose statistics is
Gaussian with a mean of zero and a standard deviation σIF , defined as:

σIF = (NIF∆νbτ)
−1/2 (4.18)

where NIF is the number of spectra in the group, ∆νb is the bin width and τ is
the observation time per bin. We can then look at bins that exceed a predefined
threshold, set at 4.5σIF , which are then flagged as potentially contaminated by
interference. Given the large number of bins involved, which in the restricted range
is 5212, it is statistically unlikely that more than a tiny fraction exceeds this threshold
due to random fluctuations, and they are therefore considered significant.
Finally, we consider that interference may affect not only individual bins but also
adjacent bins, due to the possible leakage at similar frequencies: bins adjacent to
those flagged by the threshold are also marked as contaminated. This is a purely
conservative approach, but for the axion search, a single bin is irrelevant, and a more
reliable power estimate is preferred.
This process is iterative: at each step we identify contaminated bins and calculate
the spectral baseline. Typically, only two or three iterations are needed to converge,
resulting in a robust identification of all contaminated bins. After processing each
group of spectra, the results are compared and the final list of contaminated bins
is retrieved using the majority rule on the lists of single groups and contains 36
bins. Given the unreliability of these flagged bins in their power estimation, they are
excluded in all the power spectra.

4.5 Axion discrimination

Once the spectra have been corrected and the problematic bins have been removed,
the data are ready for the search of possible axion signals. In haloscope search,
we expect the axion signal to appear as a small narrowband power excess at some
frequency. From a statistical point of view, we test the null hypothesis H0, which
assumes the absence of an axion signal.
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In order to spot a signal, the main idea is to look for excess power on some bins
corresponding to the axion linewidth, previously evaluated in Section 2.1.3. From a
practical point of view, we evaluate the spectrum baseline and look at the residuals
behaviour. In presence of an axion signal, we expect to have a detectable statistical
anomaly and therefore we will be able to reject the null hypothesis H0 of pure noise.

Two main approaches are used in literature to evaluate the spectral baseline: using
the predicted behaviour of the spectra, or using a general low-pass filter, and in our
case the Savitzky-Golay (SG) filter, with a sufficiently large window.

The first approach is more reliable, since it allows to completely describe the physical
system and to perform a more robust statistical analysis. The expected behaviour
of the spectrum near to the cavity can be physically described by equation 4.17
in the absence of axion conversion: this formula can be used to fit the spectrum
and therefore provide the expected behaviour of the power baseline. Furthermore
a χ2 test can be performed on this expected distribution, with the null hypothesis
being the absence of axion signal. This approach is expected to work within a small
frequency window, as previously devised in previous QUAXaγ runs [51], but fails if
applied to experiments in which the condition Qa ≫ QL applies. Wider frequency
windows require more sophisticated equations to correctly predict the ADC frequency
attenuations and fitting function 4.17 fails. In our experiment the cavity quality
factor is much lower than the axion one, and a frequency window of at least 500 kHz
is required in order to contain the relevant frequencies amplified by the cavity: this
window is too large to take into account the variations in power baseline, therefore
we are obliged to use the second approach and evaluate the spectral baseline using
the SG filter.

The second approach requires the SG filter to use a sufficiently large integration
window: since we want to detect axion excess power, an eventual presence of an
axion signal must be ignored by the filter, while the cavity shape still has to be
appreciated. A frequency window of approximatively 50 kHz has been chosen for
the filter usage. The analysis, after the baseline evaluation using SG filter, is similar
to the one used for the identification of out-of-statistics bins in Section 4.4: once
each spectrum has been divided by the average, we can divide it by the baseline and
subtract one. In Figure 4.9 the steps needed to obtain the normalized power excess
spectrum are shown.

The result of this operation is the creation of a spectrum whose statistics is Gaus-
sian in the absence of axion conversion, with mean zero and standard deviation
σp = 1/

√
∆νbτ , with ∆νb bin width and τ total integration time. So, in order to

check if there is an axion signal in a normalized spectrum, we perform a χ2 test on
the Gaussian distribution of the residuals. In this case, one should observe out-of-
statistics points in the histogram, which would concur to a significant increment of
the χ2 value for the same amount of degrees of freedom (d.o.f.). In order to have
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a more reliable fit, we divide the residuals by the expected standard deviation, and
therefore we expect the residuals behaviour to have mean zero and standard deviation
equal to one. For each run a histogram is created and the χ2 of the fitting Gaussian
distribution is evaluated. A typical output is presented in Figure 4.8, where the
obtained Gaussian fitting parameters µg and σg are compatible with the expected
values.

Figure 4.8: Histogram of power excess normalized to its expected standard deviation
σp with the relative fit and the highlighted bins contributing to the χ2

This analysis has been performed on all the averaged spectra, meaning for every run
and for every block in the run, if the run has been divided as described in Section 4.4.
With a selected significance threshold of Pα = 0.01, we find that the null hypothesis
H0 is not rejected for each run, as indicated by the reported values in Table 4.1.(3)

4.6 Combining spectra: the grand spectrum

Up to now, we’ve been dealing with individual spectra referring to a fixed cavity
frequency, here we want to combine them to produce an overall spectrum in the
entire frequency range probed in a process known vertical combination. Bins
belonging to different spectra but corresponding to the same frequency range will be
combined to obtain the best SNR. In particular, as the range of each individual raw
spectrum is three times the cavity linewidth, for a given frequency we can combine
bins coming from at least three different spectra.

(3)In more sophisticated analysis, one should take into account the e effects of the SG filter on the
spectra statistics: for the purpose of this thesis, we considered it to introduce no impacting effect

63



Run χ2 d.o.f p-val
602 40 45 0.67
605 58 57 0.44
606 62 57 0.31
607 64 57 0.04
609 56 56 0.46
611 28 57 1.0
612 49 57 0.75
614 56 57 0.51
616 53 57 0.62
617 44 57 0.89
619 51 57 0.7
621 52 57 0.65
622 56 57 0.53
624 56 57 0.51
626 62 57 0.3
628 66 57 0.19
630 23 45 1.0
632 40 49 0.82
634 39 49 0.85
636 52 46 0.25
636 35 46 0.87
636 37 46 0.81
636 28 46 0.98

Run χ2 d.o.f p-val
638 43 42 0.42
640 59 47 0.11
642 20 45 1.0
644 28 46 0.99
644 32 46 0.94
644 44 46 0.56
646 47 46 0.42
646 52 46 0.26
646 36 46 0.87
648 62 46 0.06
650 64 45 0.04
652 51 45 0.24
654 43 46 0.61
656 30 49 0.99
658 64 57 0.24
660 55 57 0.57
662 54 57 0.59
664 63 57 0.26
666 46 57 0.86
668 61 57 0.34
670 37 57 0.98
672 46 56 0.84
674 59 57 0.4

Run χ2 d.o.f p-val
676 67 55 0.12
678 56 57 0.53
680 69 57 0.14
682 40 57 0.95
684 59 57 0.41
686 69 57 0.14
688 52 53 0.5
690 53 55 0.54
692 50 57 0.72
694 57 57 0.46
696 38 56 0.96
698 59 57 0.39
700 73 56 0.07
700 59 56 0.35
702 57 56 0.44
702 55 56 0.5
704 48 55 0.74
706 63 57 0.27
708 69 57 0.13
710 73 55 0.05
712 48 51 0.58
712 64 51 0.1
714 62 57 0.32

Table 4.1: Values of the χ2 test performed on the power excess histograms, compared
to the number of degreed of freedom (d.o.f.) and the relative p-value calculated.

The first step of this procedure requires to go back from the IF to the Radio Frequency
(RF), then we can check how many spectra are overlapping on the same RF. This
change of variable is necessary to correctly align the spectra. We can then group
bins corresponding to the same frequency and we can take a weighted average of
them. As these bins belong to spectra acquired under different conditions, primarily
noise temperature and cavity parameters, we first have to rescale each spectrum,
obtaining the so-called rescaled spectrum δsi , where the j-th bin of the i-th spectrum
is evaluated as:

δsij =
hνciNi∆νbδ

p
ij

Pij
) (4.19)

where δpij is the j-th bin of the i-th initial spectrum, νci is the cavity frequency of
the i-th run, ∆νb is the bin size, Ni is the system noise defined as:

Ni =
kBTi
hνci

(4.20)
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Figure 4.9: Steps required for the subtraction of the baseline using the SG filter: (a)
spectrum of a single run with the flagged bins coming from the IF rejection proce-
dure, (b) normalized spectrum with the SG output superimposed and (c) residuals
behaviour of the normalized power spectrum divided by σp

where kB is the Boltzmann constant and Ti is the noise temperature.(4) Finally Pij is
the total conversion power that we would obtain from a KSVZ axion signal confined
to the j-th bin of the i-th spectrum:

Pij = U0

⎛⎜⎝νci βi
1 + βi

Ci
QLi

1 +
(︂
2(νij−νci)

νci

)︂2

⎞⎟⎠ (4.21)

where Ci is the C-factor, QLi, βi are cavity-dependent and U0 is a constant energy
factor defined as follows:

U0 = g2γ
α2

π2
ℏ3c3ρa
Λ4

QCDµ0
B2

0V (4.22)

where gγ is the KSVZ coupling factor and α is the fine structure constant. Residuals
of the spectrum are rescaled accordingly as:

σsij =
hνciNi∆νbσ

p
ij

Pij
(4.23)

(4)This system noise can be further corrected by introducing a dependence on the bin of each
spectrum, based on the varying noise temperature, but here we take this variation to be small.
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Figure 4.10: Behaviour of the combined spectrum δc with a colour palette in order
to highlight the integration time per a specific bin

With the rescaled spectrum we can reliably assess the sensitivity of each bin. As they
can be considered as independent Gaussian random variables, we can average them
using a Maximum Likelihood (ML) approach, which provides a statistically optimal
way to combine data from different sources with varying degrees of reliability. Thanks
to this averaging, we are able to create the so-called combined spectrum δc, which is
mathematically retrieved using a weighted average whose weights are evaluated as:

wij =

(︂
σsij

)︂−2

∑︁
i′
∑︁

j′

(︂
σsi′j′

)︂−2 (4.24)

where the denominator ensures normalization. Then the ML estimate of the mean
and standard deviation for each combined spectrum bin j can be retrieved using the
usual weighted average:

δcj =
∑︂
i′

wi′jδ
s
i′j (4.25)

(︁
σcj
)︁2

=
∑︂
i′

w2
i′j

(︁
σci′j

)︁2 (4.26)

A visual representation of the obtained combined spectrum is presented in Figure
4.10. As a further proof, we show the Gaussian distribution of the signal to noise
ratio, defined as: SNR = δcj/σ

c
j in Figure 4.11
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Figure 4.11: Gaussian distribution of the signal to noise ratios, showing that the
estimated parameter are in accordance with those expected from a random variable

It is then common in haloscope data analysis to rebin the combined spectrum in
order to have bins that could in principle contain most of the axion deposited power,
usually using the expected signal linewidth ∆νa as bin dimension. At ∼ 10 GHz
frequency, ∆νa ∼ 10 kHz ≫ BW , thus we can merge adjacent bins to further
improve the sensitivity. This procedure is also known as horizontal combination
and brings to the so-called grand spectrum.

The grand spectrum is the ultimate spectrum, since it allows to reach the best
possible SNR, given the acquired data. In particular we are interested in the grand
spectrum signal to noise ratio SNRg: a threshold on SNRg is set and bins exceeding
this threshold are flagged as potential axion signals. The grand spectrum SNR can
be retrieved as:

SNRg
l =

∑︁qf (l)

q=qi(l)
δcq

(︁
σcq
)︁−2√︂∑︁qf (l)

q=qi(l)

(︁
σcq
)︁−2

(4.27)

where qi(l) = l·F and qf (l) = (l+1)F are respectively the initial and final integration
points for a single grand spectrum bin l and F is the number of bins that we are
integrating.
It is important to note that the axion search analysis conducted in this thesis work
is simplified as the axion frequency distribution has not been considered.

In our evaluation, as the axion signal is expected to have a linewidth of 10 kHz at
10 GHz, we integrate across F = ⌊∆a/BW ⌋ = 37 bins with a bin width BW ≃ 268
Hz. In Figure 4.12 we plot the grand spectrum SNR, in which an axion candidate
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was found at 10.201934 ± 0.000005 GHz for a SNR threshold fixed to Θ = 3.455.
With the threshold set to this value, as suggested by [17], a signal candidate with
SNRC = 5.1 is flagged with a 95% CL: this represent a compromise between the
number of rescan candidates and the probability of detecting the axion, if present,
as one can see in Figure 4.13.

Figure 4.12: Grand spectrum SNR with the axion frequency candidate highlighted

Figure 4.13: Schematic illustration of the relationship between the SNR target
SNRC = 5.1 and the rescan threshold Θ = 3.455. The solid black curve repre-
sents the expected standard normal distribution of the grand spectrum bins. The
dashed blue curve, a Gaussian distribution with unit standard deviation and mean
equal to SNRC , represents the expected distribution of excess power in a single
grand spectrum bin containing an axion signal. The threshold Θ, corresponding to
the dot-dashed vertical line, defines the grey shaded region which represents the res-
can candidates.
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A sanity check for the grand spectrum is reported in Figure 4.14, where the grand
spectrum residuals’ histogram is well fitted by a Gaussian curve, whose mean is
compatible with zero. There are however some limitations in the present analysis
as we see that the obtained standard deviation σg is smaller than 1. This might be
ascribed to the following reasons:

• we did not consider correlations between adjacent bins;

• the attenuation of the SG filter has not been considered;

• we neglected the axion frequency distribution in the grand spectrum evaluation

These aspects need to be taken into account to improve on the present analysis.

Figure 4.14: Gaussian behaviour of the grand spectrum signal to noise ratio SNRg,
having mean compatible with zero and standard deviation lower than one, as ex-
pected for the reasons described in the text [17]

4.7 Upper limit

During this thesis, it was not possible to rescan the frequency interval in which an
axion candidate was found. In the full probed range from 10.202 GHz to 10.212
GHz, with exclusion of this small interval, we were able to set new limits on the
axion-photon coupling coefficient gaγγ . This limit has been set for other four smaller
frequency ranges, the same we show in Figure 4.12 for the grand spectrum.

The axion signal power for KSVZ axions PKSVZ in the QUAX experiment is:

PKSVZ =
g2γνcB

2
0C030V

ρDM

β

1 + β

QLQa

QL +Qa
≈ 8.7× 10−24 W (4.28)
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where the used parameters are: C030 = 0.4, ⟨B2
0⟩ = 50.2 T, V = 1.05 cm3, β ∼ 1.7,

QL ∼ 28000 and νc ∼ 10 GHz.

A rough estimation of the SNR that we have for this KSVZ axion needs the aver-
age noise estimation. Since the noise power in the detector is given by the Dicke
radiometer equation, we estimate the residual standard deviation, σ′res, of the noise
power for an optimal bin width matching the axion linewidth as:

σ′res ≈ σDicke

⃓⃓⃓
∆ν=∆νa

= kBTs

√︃
∆ν

∆t
≈ 1.5× 10−23 W (4.29)

evaluated for an integration time of 19000 seconds.

Given these quantities, the SNR for KSVZ axions is calculated approximatively:

SNRKSVZ =
PKSVZ

σ′res
≃ 0.5 (4.30)

This SNR value indicates that the detector’s sensitivity is insufficient for a direct
detection of the KSVZ axion, as the expected SNR is below unity.

To evaluate the upper limit, we follow an analysis which is very similar to the grand
spectrum one: we aggregate power excesses from overlapping frequency bins across
different runs and then we evaluate the most likely value of g2aγγ (denoted as g2aγγ,calc.)
for each frequency, assuming that the true mean value is consistent across all runs:

g2aγγ,calc. =

∑︁
ij

δsijTij

σ2
res,i∑︁

ij

T 2
ij

σ2
res,i

(4.31)

where: δsij is the known j-th bin of the i-th run residual, σres,i is the standard
deviation of the i-th run residuals, and finally Tij is the axion expected power in the
j-th bin of the j-th run. The corresponding standard deviation is:

σ2(g2aγγ,calc.) =
1∑︁

ij

T 2
ij

σ2
res,i

(4.32)

To establish the 90% C.L. upper limit on gaγγ , we compute it as:

gaγγ,CL =

⎧⎨⎩
√︂

0.28σ(g2aγγ,calc.) if g2aγγ,calc. < −σ(g2aγγ,calc.)√︂
g2aγγ,calc. + 1.28σ(g2aγγ,calc.) if g2aγγ,calc. > −σ(g2aγγ,calc.)

This condition ensures the physical constraint that g2aγγ cannot be negative, and
the computation incorporates the statistical uncertainty of the measurement. The
results of such calculation in the probed frequency ranges is presented in Figure 4.15
in which the KSVZ coupling constant is also reported.
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Figure 4.15: 90% CL upper limit on the coupling constant in the scanned frequency
ranges. The dashed black line indicates the KSVZ coupling constant expected value.
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Chapter 5

Conclusions

This thesis has been conducted within the QUAXaγ (QUest for AXions) experimental
program, which aims to probe the existence of galactic axions in the high frequency
range (∼ 10 GHz) using a tunable dielectric cavity and an ultrasensitive cryogenic
receiver. In this experiment, axions can be detected by exploiting their interaction
with photons in the presence of a strong magnetic field. Axions convert to photons
via the inverse Primakoff effect inside a microwave resonator, which gives a resonant
enhancement of the signal.

The microwave cavity used in the experiment is a copper cylinder hosting a sapphire
shell, which enables high effective volumes at high frequencies while maintaining high
quality factors. This is crucial for enhancing the detector sensitivity to potential
axion signals. The cavity is comprised of two halves that are separated by means
of a clamshell mechanism, which has been demonstrated to allow cavity frequency
tuning across the range 10.153− 10.212 GHz.
A Traveling Wave Parametric Amplifier (TWPA) is used as the first step in the signal
amplification chain. TWPAs are superconducting amplifiers designed to introduce
minimal noise, barely exceeding the standard quantum limit. These components,
only recently introduced in the context of haloscope searches, are important as they
reduce the noise temperature of the system and in turn improve the overall haloscope
sensitivity.

To run an haloscope experiment, it is preferred to develop a fully automatic routine
for data acquisition. For the QUAX experiment, computer programs have been
developed to evaluate the receiver noise temperature and to measure the cavity
parameters, mainly frequency and quality factor, within the run routine. This a
necessary step, as the cavity frequency is modified by the tuning mechanism to probe
for different axion masses. In addition, the TWPA amplifier operational parameters
need also to be adjusted at each cavity tuning step due to the frequency dependence
of its gain and instabilities.
Another computer program has been devised for collection of raw cavity spectra when
all the RF sources have been switched off. Both in-phase and quadrature signals
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are acquired by the ADC, after the frequency down-conversion at the intermediate
frequency (IF). These are the data of interest for the axion search, which are analysed
to set limits in the axion-photon exclusion plot in case a signal is not found.

In this thesis, data acquired during a two-week duration experimental run, in May-
June 2024, have been analysed. The steps of the analysis procedure entail a pre-
liminary analysis of the raw spectra to identify compromised spectra and specific
bins affected by IF noise. These spectra are excluded from further analysis. Spectra
are then prepared for the excess noise search, through normalization to the aver-
age baseline and successive removal of the spectral structure via the Savitzky-Golay
filter, a commonly used smoothing algorithm. A set of dimensionless processed spec-
tra described by a Gaussian distribution is therefore generated. Finally, through
so-called vertical and horizontal combination procedures, the processed spectra are
then aligned in frequency to construct a single, grand spectrum across the whole
scan range.
Even though the analysis is missing some steps, including the assessment of the
expected axion signal through the axion energy distribution, the grand spectrum
has been used to set a preliminary limit on the axion-photon coupling constant.
No axion candidate signal has been found in the probed frequency range of 10.202−
10.212 GHz, corresponding to axion masses of 42.19 − 42.23µeV, as long as other
four smaller frequency regions, for a total covered range of ∼ 15 MHz. The minimum
found value sets a limit gaγγ,CL < 1.8 · 10−14 GeV−1, which is almost at the level of
the benchmark KSVZ axion models.

Planned upgrades, which will regard both the hardware, as for instance a more
reliable tuning mechanism and a more powerful magnet, and the software (control
and acquisition computer programs) of the experiment, will allow for improving both
the sensitivity and the search speed of 3 MHz/day that were accomplished in the
experimental run presented in this thesis.
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