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ABSTRACT 

 

Cell-cell communication is a fundamental process that enables cells to respond to changes in 

their environment. Understanding these interactions may be an important achievement for 

comprehending biological complexity. 

This project aims to observe whether bioinformatics can have an important role in increasing 

the knowledge about these biological processes through computational methods applied to 

single cell RNA-seq data. Additionally the project addresses the absence in the field of a 

benchmark that may allow for better comparisons between the different tools to assess relative 

performances. 

  

For the execution of this project an high-resolution single-cell atlas is used. This atlas comes 

from the dissection of the non-small cell lung cancer (NSCLC) tumor microenvironment by 

integrating 1,283,972 single cells and originates from the Centre for Chemistry and 

Biomedicine (CCB) of Innsbruck. Three tools, namely scSeqComm, CellphoneDB, and 

NicheNet, are tested on this data, each employing distinct statistical frameworks for cell-cell 

communication analysis. They utilise a count matrix representing RNA molecule counts for 

genes in individual cells within a sample. The focus is on intercellular communication, 

specifically ligand-receptor pairing. 

 

Each method works with a specific proper framework and gives different outputs, therefore 

the comparison among them considers the time required for calculations and output 

generation, the number of ligand-receptor pairs identified, and the influence of using different 

databases for providing prior knowledge. 

In conclusion, this project demonstrates that bioinformatics and computational tools for the 

analysis of cell-cell communication may play an important role in advancing knowledge in 

this field. However, it acknowledges the ongoing need for substantial efforts to achieve 

reliable results applicable in clinical practice. 
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Chapter 1: Introduction 

 

1.1. Genomics 

 

An organism's genome may be thought of as the collection of all the instructions that code for 

the proteins required for reproduction, interaction with the environment, and survival [1]. 

However, protein expression, that is, the repertoire of proteins produced or expressible in 

response to a stimulus, allows distinct cells to take on particular and differentiated traits and 

activities [2]. In fact, cells not only contain instructions for protein coding but also 

information regarding the conditions under which proteins should be synthesized. The 

manifestation of this information is made possible by extremely intricate regulatory and 

control systems [3]. 

 

The integrated analysis of this vast amount of data (DNA, mRNA, and proteins) along with 

the quantification of metabolites and other substrates of interest, allows for the foundation of 

systems biology [4] on new and solid experimental grounds. Gene sequences, their expression 

and translation into proteins, the characteristics of these proteins and their functions 

collectively encode all the information required for a cell to function; as such, they represent 

the basic processes that occur prior to the systemic events that take place as a result of a 

disease or in response to an external stimulus [5].  

 

The purpose of studies in genetics, genomics, and proteomics is therefore to reveal the 

mechanisms underlying cellular processes with the aim of translating basic knowledge into 

increasingly sophisticated tools to diagnose diseases early, predict their progression, and, 

prospectively, develop personalized therapies targeted not to a population but to the needs of 

the individual. An important aid for all these scientific and technological advances has been 

the development of computational procedures and infrastructures for the management, 

analysis, and exploitation of the abundance of data generated by various molecular and 

cellular biology techniques [6].  
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1.1.1. Gene expression 

 

Gene expression (GE) refers to the process of the synthesis of a functional gene product, such 

as proteins, using the information provided by deoxyribonucleic acid (DNA) [7]. Ribonucleic 

acid (RNA) is synthesized from DNA through the process of transcription, which is part of 

the process of GE. Cells have the ability to modify the kind and quantity of GE as an 

organism grows or adapts to changes in its environment. Hence, studies of GE provide 

insights into cellular responses at a given point in time. Minor modifications in the regulatory 

pathways linked to changes in GE may account for significant phenotypic variations amongst 

organisms. Numerous factors have led to a rise in research into GE alterations. First, there is 

an increasing amount of clinical samples available from tissue repositories, as well as novel 

techniques for measuring GE from diverse tissues [8]. Second, a sizable collection of 

experimental GE data is openly accessible via databases. Third, the most advanced GE 

measurement tools (such as RNA sequencing [RNA-seq]) are getting more widely applicable 

and less expensive [9].  

 

Gene expression is the result of the transcription of DNA into RNA and the translation of 

RNA into proteins. These processes combine to produce unique molecules that carry out 

different tasks within the cell. Gene expression is strictly controlled and is impacted by a 

number of variables, such as cellular signals, developmental phases, and environmental 

stimuli. Both genes that are transcribed into messenger RNA (mRNA) and subsequently 

translated into proteins, as well as genes that are transcribed into RNA but not translated into 

proteins, such transfer and ribosomal RNAs, are considered expressed genes [10].  
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The steps involved in the expression of genes are transcription, RNA splicing, RNA export, 

and translation, as shown in Figure 1.  

 

Figure 1. Steps of the process of gene expression: transcription, RNA splicing, RNA export and translation. 

Image taken from [11]. 

 

During transcription, an RNA molecule is created by copying a gene's DNA sequence. The 

reason this phase is named transcription is that it entails rewriting, or transcribing, the DNA 

sequence in an analogous RNA "alphabet." The RNA molecule in eukaryotes needs to be 

processed in order to mature into a mRNA.  

During translation, a polypeptide's amino acid sequence is determined by decoding the 

mRNA sequence. The term "translation" refers to the process of translating the nucleotide 

sequence of mRNA into the entirely distinct "language" of amino acids. 

  

Because the balance between a protein's synthetic and degradative biochemical pathways 

determines how much of a given protein is present in a cell at any given time, control over 

these two processes is essential to understanding which proteins are present in cells and in 

what quantities. It's crucial to remember that, from a synthetic perspective, protein synthesis 

starts with transcription (DNA to RNA) and advances through translation (RNA to protein). 
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Furthermore, a cell's processing of freshly synthesised proteins and RNA transcripts has a 

significant impact on the amount of protein present. 

 

A cell's function is reflected in the types and quantities of mRNA molecules present in that 

cell. In fact, each cell produces thousands of transcripts per second. This statistic makes it not 

surprising that the main regulator of gene expression is often transcription, which starts at the 

very beginning of the process of making proteins.  

 

In a cell, only a portion of its genes are expressed at any given moment. Different cell types 

exhibit varying gene expression profiles, which can be attributed to the various transcription 

regulator sets present in these cells. While some of these regulators block or reduce 

transcription, others function to promote it. 

Normally, transcription starts when an RNA polymerase attaches itself to a DNA molecule's 

promoter sequence. This sequence is almost always located just upstream from the starting 

point for transcription (the 5' end of the DNA), though it can be located downstream of the 

mRNA (3' end).  

A few regulatory proteins have an impact on several genes' transcription. This happens 

because a cell's genome has several copies of the regulatory protein binding sites. As a result, 

regulatory proteins may have distinct roles for various genes. This is one way that cells can 

simultaneously coordinate the regulation of numerous genes. 

In eukaryotes, the regulation of gene expression is extremely intricate. Generally speaking, 

there are more regulatory proteins at play, and transcription promoter sites may be fairly 

distant from regulatory binding sites. Furthermore, the regulation of eukaryotic gene 

expression is typically mediated by many regulatory proteins working in concert, providing 

for increased control over gene expression. 

 

Cells need to be able to react to changes in their surroundings in order to survive. This 

plasticity depends on the control of transcription and translation, the two primary processes in 

the synthesis of proteins. In addition to being able to regulate which genes are translated, cells 

are also able to modify the activity of proteins and transcripts through biochemical 

processing. 

 

The processes that control GE include transcription, many epigenetic pathways, and 

posttranscriptional modifications. Regulation of GE, which is cell-specific and involves a 
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number of complex biochemical processes, is essential for the growth of the organism as well 

as its ability to respond to changes in its environment. Understanding the mechanisms that 

control GE is essential to being able to analyse GE data. 

One of the most significant mechanisms is related to transcription factors. Gene expression is 

controlled by fewer than 2,000 of these proteins [12], known as transcription factors, which 

have the ability to initiate and regulate transcription. Protein kinases activate induced 

transcription factors so they can attach to specific response elements. For instance, elevated 

blood hormone levels can trigger the activation of particular transcription factors by activating 

cell-surface receptors that in turn trigger a series of protein kinase-activated cell-signalling 

pathways [13]. The levels of GE can be altered by modifications in hormone levels, cell-

surface receptor expression, or transcription factor expression. By selectively transcriptionally 

regulating a subset of genes, transcription factors regulate the amounts of GE in a cell. 

Morphological alterations may result from transcription factor overexpression. 

 

1.2. Gene expression measure 

 

The most widely utilised laboratory techniques for determining GE levels are quantitative 

polymerase chain reaction (qPCR), DNA microarray, and RNASeq. This section explains 

different approaches and contrasts their advantages and disadvantages. 

 

1.2.1. qPCR 

 

qPCR, or quantitative polymerase chain reaction, is a real-time method used to measure gene 

expression [14]. It quantifies the amount of genetic material using a spectrophotometer, often 

using mRNA as the template. During qPCR, mRNA is converted to complementary DNA 

(cDNA) and then synthesized into double-stranded DNA, which undergoes exponential 

amplification. Fluorescent labels are added to track the amplification, with the fluorescent 

signal proportional to the amount of amplified DNA. The threshold cycle (Ct) value indicates 

when amplification is first detected above a baseline threshold, providing an estimate of gene 

expression level. A standard curve generated from a control DNA dilution allows for absolute 

quantification. Multiplex qPCR can detect multiple transcripts simultaneously. Advantages of 

qPCR include ease of use, relatively short quantification time (8–12 hours), and the ability to 
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detect multiple transcripts. However, limitations include the need for prior knowledge of 

target transcript sequence and the limited number of transcripts that can be quantified in each 

reaction, reducing throughput. 

 

1.2.2. Microarray 

 

For more than 15 years, microarrays have been a standard method for assessing GE [15]. This 

method measures many transcripts at once by using nucleic acid hybridization of cDNA 

strands [16]. In situ synthesized oligonucleotide microarrays and cDNA microarrays are the 

two primary forms of microarrays. In the first, short oligonucleotides are adhered to a chip 

surface, whereas in the latter, reverse-transcribed cDNA from mRNA is used. RNA 

extraction, reverse transcription to cDNA, labelling, hybridization with probes on a chip, 

washing, fluorescence signal detection, and data analysis are the various stages involved in 

microarray research. Benefits of microarrays include their ability to quantify several 

transcripts at once, their affordability, and the fact that they don't require prior knowledge of 

transcript sequences. However, they have limitations such as inability to test multiple tissue 

samples at once, time-consuming sample preparation, and dependence on specialized 

equipment and software for data processing. 

 

1.2.3. RNAsequencing 

 

RNA-seq is a method used to quantify the levels of different types of RNA in a sample by 

directly sequencing the RNA and counting the sequences. Unlike the other techniques such as 

qPCR, which quantifies RNA through amplification and dye intensity, and microarray, which 

quantifies RNA through template hybridization and dye intensity; RNA-seq offers several 

advantages. While several methods for sequencing RNA exist [17], they all share a similar 

overall process. The type of RNA sequenced depends on the objective of the study. For 

example, total RNA-seq attempts to measure all of the expressed RNA. Coding RNA can be 

enriched by poly(A) capture techniques, and small RNAs can be enriched through size 

selection and gel electrophoresis The RNA can be fragmented and adapters are ligated to the 

fragments before amplification and sequencing. RNA-seq allows for massive parallel 

sequencing of transcripts, enabling the detection of genomic alterations at single-nucleotide 
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resolution and offering a greater dynamic range for quantifying transcripts compared to 

microarray technology. However, RNA-seq has limitations such as higher cost per sample and 

greater computational and data-storage requirements for downstream analyses compared to 

microarray. Nonetheless, advancements in cheaper assays with increased sensitivity and 

easier-to-use data-storage procedures and analysis tools are continuously evolving [18].  

 

1.2.4.  Single cell RNA sequencing 

 

The study of RNA allows for the understanding of the functional components of cells and 

how their genes are used. The standard analysis, referred to as bulk RNA-seq, examines RNA 

expression in large populations of cells yielding an aggregate expression value. Due to the 

measurement's inability to reveal the variations among individual cells within a group, single-

cell RNA sequencing (scRNA-seq) has been developed in recent years and has allowed for 

modifications and improvements. This new approach allows us to study individual cells and 

learn more about the many types of cells [19]. 

 

Single-cell RNA sequencing is the gene expression profiling of singlet cells. It can show a 

large variety of cell types and subpopulation that were unseen with traditional experimental 

techniques, and it also led to the discovery of new information in regard to the cell 

composition. scRNA-seq describes RNA molecule with high resolution and on the genomic 

level allowing the comparison of single cell transcriptome. 

 

The essential steps in the scRNA-seq process (Figure 2) are single-cell isolation and capture, 

cell lysis, reverse transcription (conversion of their RNA into cDNA), cDNA amplification 

and library preparation. Among the stages involved in preparing libraries, single-cell capture, 

reverse transcription, and cDNA amplification present the greatest challenges. The rapid and 

diverse development of RNA-seq library preparation technologies has coincided with the 

emergence of numerous sequencing platforms. To better apply these techniques to clinical 

applications and make informed decisions in scientific research, it is crucial to understand the 

characteristics and uses of various single-cell RNA sequencing library preparation methods. 
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Figure 2. An overview of the single-cell RNA-sequencing procedures. (A) Isolation of the cells from tissue samples and 

capturing of the single cells, wrapping of each individual cell with a bead inside a nanoscale droplet (each bead contains 

unique molecular identifiers), (B) barcoding and amplification of complementary DNA (cDNA) and (C) library preparation 

procedure. After single-cell RNA sequencing (D), the snapshot data would be analyzed to present and classify the landscape 

of gene expression in cells of a heterogeneous population (E). Illustrative figure in (E) is generated with BioRender with 

license for publication. Image taken from [23] 

 

Single-cell isolation and capture is the process of capturing high-quality individual cells from 

a tissue, in order to extract precise genetic and biochemical information and enable the 

investigation of distinct genetic and molecular mechanisms [20].  Conventional transcriptome, 

epigenome, or proteome analyses performed on bulk RNA/DNA samples are limited to 

capturing the overall signal level from tissues/organs; they are unable to discriminate between 

distinct cell variants. Depending on the organisms, tissues, or cell characteristics, there are 

significant differences in the single-cell isolation and capture techniques [21]. 

Cell isolation can be accomplished by isolating whole cells, cell-specific nuclei or cell-

specific organelles, and even by separating the desired cells expressing specific marker 

proteins [22]. The most common techniques of single-cell isolation and capture include 

limiting dilution, fluorescence-activated cell sorting (FACS), magnetic-activated cell sorting, 

microfluidic system and laser microdissection. The key outcome of single capture, and 

particularly in high throughput, is that each single cell is captured in an isolated reaction 

mixture, of which all transcripts from one single cell will be uniquely barcoded after 

converted into complementary DNAs [23]. 
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When evaluating the single-cell RNA sequencing data, every cell is regarded as an individual 

sample, much like in the study of conventional bulk RNA-seq data. Because of systemic 

faults or technological disturbances, such as variations in sequencing depth and transcriptome 

capture rate for each cell, the expression levels between cells are not comparable, and the 

original expression matrix cannot be used directly for downstream analysis. The goal of 

normalisation is to guarantee cross-cell comparability and mitigate any bias or technological 

noise [24]. 

 

With hundreds of genes expressed in each of the tens of thousands of cells that make up a 

sample, the single-cell RNA sequencing data set is high-dimensional. The majority of genes 

in every cell are housekeeping genes because their existence tends to mask the true biological 

signals and they are characterised by no discernible changes in expression levels between 

cells. Genes with substantial cell-to-cell variance within the data set are referred to as highly 

variable genes. 

 

Apart from feature selection, one of the primary approaches for handling high-dimensional 

data is dimensionality reduction. Two rounds of dimension reduction are typically needed for 

single-cell RNA sequencing data: first, principal component analysis (PCA) dimension 

reduction, followed by visualization-related dimension reduction using either Uniform 

Manifold Approximation and Projection (UMAP) or t-distributed stochastic neighbour 

embedding (t-SNE). 

 

1.3. Cell atlases 

 

Single-cell RNA sequencing technology has become the state-of-the art method for 

understanding the heterogeneity and complexity of RNA transcripts within individual cells. It 

helps us see the various kinds of cells and what they do in complex structures like tissues and 

organs.  One important application of the scRNA-seq technology is to build a better and high-

resolution catalogue of cells in all living organism, commonly known as atlas, which is key 

resource to better understand and provide a solution in treating diseases.  

 

Researchers are producing enormous volumes of data as scRNA-seq technology develops, 

which calls for robust methods for analysing, interpreting, and storing this data. The usage of 
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single-cell data atlases is one such method that is becoming more and more popular. By 

developing these atlases, we will be able to better comprehend the cellular landscape and 

create therapies that are specific to the needs of each patient. 

Atlases offer an in-depth investigation of the patterns of gene expression in the cells that 

collectively make up a certain organ or tissue. These atlases are typically the result of 

cooperative efforts between several institutions and research organisations. They are useful in 

the identification of novel cell types, the study of gene expression patterns specific to 

particular cell types, and the organisation and functionality of cells in various tissues.  

A single-cell data atlas is a broad collection of single-cell transcriptomic data from various 

tissues or organisms, where each cell's gene expression profile is recorded. These atlases offer 

a big amount of resources for comprehending cellular variety and dynamics by enabling 

researchers to navigate and investigate the variability of cellular populations within certain 

tissues or developmental stages. 

These extensive resources enable previously unthinkable discoveries and are invaluable 

references for researchers globally. We will gain even more understanding of the complex 

world of cells as we develop and expand these atlases, opening the door to innovative 

treatment approaches and personalized medicine. 

 

An example of atlas is the The Human Cell Atlas [25]. Established in 2016, the Human Cell 

Atlas (HCA) is an international initiative. Fundamentally, the goal of the HCA is to offer an 

in-depth description of the human body's cellular constitution. The HCA provides a complete 

comprehension of the location, function, and patterns of gene expression of every cell in the 

human body by utilising state-of-the-art single-cell and spatial analytic techniques.  

For this reason, the HCA is a great resource for researching human biology in both health and 

illness. Researchers may learn what controls the development and activity of various cell 

types, how these cells interact with one another, and where these cells are distributed within 

tissues and the body thanks to the cellular reference maps produced by HCA. Then, 

researchers can study the biological changes that occur in disease and the therapeutic potential 

of these changes.  
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1.3.1. Atlas building 

 

The cells in a multicellular organism all have the same genetic code, but distinct 

transcriptome programmes found in tissues and organs are the result of nongenetic cellular 

heterogeneity, which is manifested through various combinations and patterns of expression. 

Cell types can be identified based on a globally similar transcriptome. The easiest method is 

to gather a lot of cells, sequence their transcriptomes, and use computer analysis to identify 

cell types that are comparable. Moreover, the analysis of transcriptional programmes 

throughout cellular differentiation is made possible by scRNA-seq during the course of 

development, which captures the variability of cellular development.  

 

While unsupervised clustering in a single scRNA-seq experiment can be used to characterise 

cell types and states, computational challenges arise due to the growing number of cells and 

associated batch effects. Large-scale single-cell transcriptome datasets produced with various 

technologies have systematic differences that are unique to a batch, known as batch effects. 

Although batch effects make it difficult to easily combine differently generated datasets, a 

single technology cannot sample the complexity of an entire organism at once. Therefore, a 

compilation of several studies integrated in a way that minimises technical error will be 

required to create complete single-cell datasets applying batch effect correction methods [26]. 

 

In Figure 3 we can see the steps for the construction of a whole-organism cell atlas. The 

figure shows that every cell in the body has the same genome but remarkably different 

functions, mostly because the associated epigenetic layer is different. Mammalian tissues and 

organs are composed of many different cell types that can vary in abundance and cell state, 

and this heterogeneity is not captured by bulk analyses. In contrast, single-cell analysis can 

uncover biological differences among cell populations, leading to a complete understanding 

of their function in the physiology of the organism. To achieve a nearly complete navigable 

map of all the cell types and states, one needs to combine gene expression information with 

information on proteins and cellular location, among other parameters. 
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Figure 3. Multistep construction of a whole-organism cell atlas. 

Image taken from [26]. 
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1.4. Cell-cell communication 

 

To better understand the contents of this thesis it is necessary to delve deeper into the concept 

of cell-cell communication, a fundamental aspect of cellular biology with significant 

implications for various physiological processes. By examining the intricate mechanisms and 

dynamics of how cells interact and exchange information, we seek to unravel the complexities 

underlying tissue balance, development, and disease progression.  

 

Intercellular communication represents the basis of systemic responses to environmental cues. 

One-to-one interaction between similar cells (homotypic interaction) or cells of different 

origins (heterotypic interaction) can regulate collective behavior, such as migration, or mount 

a coordinated response, such as antipathogenic activity [27]. 

 

Multicellular organisms rely on cell-cell interactions (CCIs) to regulate individual cell 

functions and develop tissue structure [28]. They also help to coordinate a variety of 

biological processes, including development, differentiation, and inflammation, as well as to 

maintain intercellular interactions. As shown in figure 4 a CCI happens when information is 

sent from one cell, known as the sender cell, to another, known as the target cell (or receiver 

cell), using signalling molecules. CCIs are caused by a variety of signalling molecules, 

including ions, metabolites, integrins, receptors, junction proteins, structural proteins, ligands, 

and extracellular matrix-secreted proteins. 

Lastly, it influences the expression of target genes and the function of transcription factors in 

the receiver cell. In recent years, the most prevalent scenario for the computational 

investigation of CCIs has been CCIs mediated by LR (Ligand-Receptor) interactions. 

 

 

 
Figure 4. Intercellular communication between sender cell and target cell. 

 Image taken from [29]. 
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Signaling molecules are often called ligands, a general term for molecules that bind 

specifically to other molecules (such as receptors). 

The message delivered by a ligand is frequently passed along via an intracellular network of 

chemical messengers (figure 5). In the end, it results in a modification of the cell, like a 

change in a gene's activity. As a result, the initial signal that was intercellular (between cells) 

gets transformed into an intracellular (within cell) signal that initiates a reaction. 

 

Figure 5. Schematization of information transfer in intracellular communication. 

 Image taken from [29]. 

 

Structural CCIs are supported by some molecules, for example cell adhesion molecules, 

whereas ligands such as hormones, growth factors, chemokines, cytokines and 

neurotransmitters mediate cell–cell communication (CCC). 

The signalling events behind CCC are often mediated by interactions of various types of 

protein, encompassing ligand–receptor, receptor–receptor and extracellular matrix–receptor 

interactions. 

Through appropriate receptors, receiver cells initiate downstream signalling that typically 

results in changed transcription factor activity and gene expression. These expression-altered 

cells participate in additional interactions with their surroundings. It is necessary to recognise 

the protein signals transmitted between cells in order to comprehend each cell's function 

within its immediate environment; determining the expression of messenger molecules and 

the related pathways is vital for knowing the direction, size, and biological significance of 

CCC. Furthermore, these proteins can't always be investigated in their natural environment, 

necessitating the use of specialised biochemical assays and in-depth domain expertise for the 
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direct measurement of the proteins driving CCC. Traditional assays of the underlying protein–

protein interactions (PPIs) include yeast two-hybrid screening, co-immunoprecipitation, 

proximity labelling proteomics, fluorescence resonance energy transfer imaging and X-ray 

crystallography [30-31]. Many connections between proteins that are secreted or expressed 

extracellularly to facilitate intercellular communication have been uncovered using these 

strategies. Studies like this can be strengthened further by proteomics and transcriptomics, 

since PPIs are supported by expression data. 

Although direct measurement of protein abundances makes proteomic technologies preferable 

for these analyses, RNA sequencing data sets are more abundant, simpler to obtain, and need 

less analysis. When it comes to determining the cell type of origin of proteins causing CCIs 

and measuring expression in uncommon cell types, single-cell RNA-seq is better than bulk 

analysis. Transcriptomics results need to be carefully analysed and verified to prevent false 

assumptions, but because of its widespread use and simplicity of analysis, several recent 

research have been able to deduce CCC from gene expression, producing plausible 

hypotheses in a variety of academic fields. For example, intercellular communication can be 

inferred from the coordinated gene expression of ligands and receptors [32]. 

 

1.4.1. Types of cell–cell interactions and communication 

 

Not all cell pairs exchange signals in the same way, nor are all sending and receiving cells 

next-door neighbours. 

Within multicellular organisms, chemical signalling falls into four fundamental categories 

(Figure 6): paracrine, autocrine, endocrine, and juxtacrine [32]. The distance a signal travels 

through an organism to reach its target cell is the primary distinction between the various 

signalling categories. 

 

Paracrine signalling 

Chemical messengers, or ligands that can diffuse through the space between the cells, are 

often released by nearby cells to facilitate communication. Paracrine signalling is the name 

for this kind of signalling in which cells exchange signals over comparatively short distances. 

Cells and their neighbours can coordinate activity locally thanks to paracrine signalling. 

Paracrine signals are utilised in a wide range of tissues and situations, but they are particularly 
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significant during development because they enable one group of cells to inform a nearby 

group of cells about which cellular identity to adopt. 

 

Autocrine signaling 

In autocrine signaling, a cell signals to itself, releasing a ligand that attaches to receptors on 

the cell's surface (or, depending on the signal type, to receptors inside the cell). Although it 

might seem strange for a cell to do this, autocrine signalling is crucial to a number of different 

processes. 

For example, autocrine signalling plays a crucial role in development by assisting cells in 

assuming and maintaining their correct identities. From a medical perspective, autocrine 

signalling is significant in cancer and is believed to be crucial for metastasis, or the process by 

which cancer spreads to other parts of the body. In many cases, a signal may have both 

autocrine and paracrine effects, binding to the sending cell as well as other similar cells in the 

area. 

 

Endocrine signaling 

Cells frequently employ the circulatory system as a message delivery network when they need 

to transfer signals over great distances. Long-distance endocrine signalling involves the 

production of signals by specific cells that are then transported by the circulation to target 

cells located in different regions of the body. Hormones are signals that originate in one area 

of the body and move via the bloodstream to distant locations. 

The thyroid, pituitary, hypothalamus, gonads (testes and ovaries), and pancreas are examples 

of endocrine glands in humans that release hormones. One or more hormones, many of which 

are master regulators of physiology and development, are released by each endocrine gland. 

 

Juxtacrine signaling 

Tiny channels called gap junctions in animals and plasmodesmata in plants are used to 

directly join adjacent cells. These water-filled channels allow small signaling molecules, 

called intracellular mediators, to diffuse between the two cells. Large molecules like proteins 

and DNA cannot fit through the channels without additional aid, but small molecules and ions 

can flow between cells. 

The current condition of one cell is communicated to its neighbour through the passage of 

signalling molecules. As a result, a cluster of cells can synchronise their reaction to a signal 

that might have reached only one of them. 
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Figure 6. Types of cell–cell interactions and communication.  

Image adapted from [32]. 

 

1.5. Bioinformatics analysis of cell-cell communication 

 

Inferring CCC from transcriptomics relies on gene co-expression, whereby one gene in a 

given pair comes from one interacting cell and the other gene comes from the second 

interacting cell. Several studies focused on intercellular signalling using co-expression of all 

genes or specific cell markers [33], the similarity between expression profiles [34] or the 

properties of regulatory networks [35]. However, most studies rely on literature-curated lists 

of interacting proteins, which facilitates the biological interpretation of results (Figure 7). 

Although several studies have used interactions between any class of cell-surface protein and 

secreted protein [36] the predominant class of interactions used for studying CCC are known 

ligands and their associated receptors. 

 

Complex extracellular responses start with the binding of a ligand to its cognate receptor and 

the activation of specific cell signaling pathways. Mapping ligand–receptor interactions is 

fundamental to understanding cellular behavior and response to neighboring cells. With the 

exponential growth of single-cell RNA sequencing, it is now possible to measure the 
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expression of ligands and receptors in multiple cell types and systematically decode 

intercellular communication networks that will ultimately explain tissue function in 

homeostasis and their alterations in disease. Identifying ligand–receptor interactions from 

scRNA-seq requires both the annotation of complex ligand–receptor relationships from the 

literature and a statistical method that integrates the resource with scRNA-seq data and selects 

relevant interactions from the dataset. 

 

Many computational tools have been developed to identify CCIs through scRNA-seq data 

integration under specific cellular and physiological conditions [37]. These CCI prediction 

tools, in general, follow a common pipeline, including cell-type classification, LR interaction 

inference, CCI network construction and CCI visualization. However, each tool has its 

specific emphasis and algorithmic details. 

 

 

Figure 7. General analysis workflow for inferring cell–cell interactions and communication. 

Image adapted from [32]. 
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In Figure 7 a general analysis workflow for inferring cell–cell interactions and 

communication is shown. First, samples or cells are analysed by transcriptomics to measure 

the expression of genes (step 1). Then the data generated are preprocessed to build a gene 

expression matrix, which contains the transcript levels of each gene across different samples 

or cells (step 2).  The term "count matrix for gene expression" refers to a fundamental data 

structure used in the analysis of gene expression data, particularly in the context of RNA 

sequencing experiments. In RNA-seq, the count matrix represents the raw data obtained from 

sequencing the RNA molecules present in a biological sample. Each row of the count matrix 

corresponds to a gene, while each column represents a sample (e.g., different cells, tissues, or 

experimental conditions). The entries of the matrix indicate the number of RNA sequencing 

reads that align to each gene in each sample. This count matrix serves as the input for the 

CCC analysis methods. 

Then the other input required by the methods is a database or a list of interacting proteins that 

are involved in intercellular communication that may be generated or obtained from other 

sources (step 3), often including interactions between secreted and membrane-bound proteins 

(commonly ligands and receptors, respectively).  

Only the genes associated with the interacting proteins are held in the gene expression matrix 

(step 4). Their expression levels are used as inputs to compute a communication score for 

each ligand–receptor pair using a scoring function (function f(L, R), where L and R are the 

expression values of the ligand and the receptor, respectively). Communication scores can be 

binary or continuous, each providing different insights into the signalling pathways that cells 

use. Binary scores are simpler, whereas continuous scores enable more precise quantification 

of intercellular signalling. In binary scoring, expression thresholding is widely used because 

of its easy implementation and interpretation. Through the process of thresholding expression 

values of both interacting partners in every ligand-receptor pair, it is possible to quantify all 

intercellular communication processes. If both genes are expressed above a threshold, the 

ligand–receptor pair is considered „active‟; otherwise it is „inactive‟ (assigning ones and 

zeros, respectively).  

Measurement of individual communication scores facilitates the study of CCC, exposing the 

roles of specific signalling mechanisms; however, it does not reveal the entire interaction state 

between cells. Thus, it may be desirable to use an aggregate score to define the interactions 

between pairs of cells [37]. To compute an overall state of interaction between the respective 

samples or cells an aggregation function is used (function g(Cell 1, Cell 2), where Cell 1 and 

Cell 2 are all communication scores of those cells or corresponding samples) (step 5). The 
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most common approach quantifies the number of active ligand–receptor pairs between cells 

(that is, the sum of binary communication scores). This score suggests which cells interact 

more strongly and enables the building of CCC networks to perform graph-based analyses.  

Finally, communication and aggregated scores can be represented to facilitate the 

interpretation of the results (step 6). In this sense, the tools also include powerful visualization 

features that facilitate the interpretation of results. Several of the more common visualization 

methods, such as heatmaps, dot plots, circos plots and interaction networks display data by 

directly plotting ligand–receptor co-expression patterns and communication scores providing 

higher-level intuition concerning overall CCI levels and the directionality of these effects 

between cell types. Thus, several tools not only quantify CCIs and CCC but also facilitate 

their analysis and interpretation.  

 

It is important to note that a number of studies have used different approaches to catalogue 

known ligand-receptor pairs. Despite the diversity of approaches employed, the most suitable 

metric for capturing the underlying biological phenomena remains uncertain. Furthermore, 

any method that depends on gene expression data is limited by the ligand-receptor list's 

exhaustiveness, which may result in the exclusion of other cellular communication channels. 

As a result, there is still a need for methods that can evaluate the whole potential for cell-to-

cell communication. 

 

In addition several computational approaches and methods have been developed to predict 

cell-cell interactions using ligand-receptor interaction detection. Although many of these 

techniques have been tested theoretically, little research has been done on how well modern 

LR-based CCI prediction tools function in practice and what kind of results they provide 

when used with publicly available single-cell RNA sequencing datasets. Existing comparative 

studies of CCI tools mainly report their advantages and disadvantages based on the theoretical 

analysis [37]. There is a lack of running assessments to understand the performance and 

effectiveness of the most recent CCI inference tools in real application scenarios [38]. 
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1.5.1. LR  databases 

 

The process of inferring intercellular communication from transcriptomics data relies on the 

concept of gene co-expression, in which one gene within a pair originates from one cell 

interacting with another gene from a second cell. This approach has been extensively explored 

in several studies, employing diverse methodologies such as examining co-expression patterns 

of all genes [39], assessing similarity between gene expression profiles [40], and analyzing 

regulatory networks [41]. 

A common strategy in these studies involves utilizing literature-curated lists of interacting 

proteins, with a particular emphasis on ligands and their corresponding receptors. These 

curated lists (Ligand-Receptor databases) serve as valuable resources for interpreting the 

biological significance of the observed interactions. Over time, numerous databases have been 

established, housing an extensive collection of ligand-receptor pairs. This wealth of data has 

greatly facilitated the comprehensive investigation of communication processes between cells. 

However, integrating data from multiple sources poses its challenges and validating predicted 

protein-protein interactions (PPIs) is crucial to ensure the reliability of the findings and to 

minimize the risk of false positives. 

Recent advancements in computational tools have addressed some of these challenges by 

incorporating information about multimeric proteins and interactions between ligand-receptor 

complexes. By considering subunit co-expression, these tools offer a more accurate 

representation of functional interactions, particularly for proteins that require multisubunit 

assembly for proper functioning. 

Furthermore, efforts have expanded beyond only focusing on ligand-receptor pairs to 

incorporate other aspects of CCC, including metabolite interchange and the activation of 

intracellular signaling pathways [42]. However, incorporating downstream signaling gene 

products and regulatory networks into the analysis requires additional information on ligand-

receptor pairs, which can be a labor-intensive process and may be sensitive to the quality of 

available databases. 

Despite these challenges, protein-protein interactions, especially ligand-receptor pairs, remain 

essential in deciphering CCC in various biological contexts. They serve as basic elements in 

understanding the intricate communication networks that govern cellular behavior and 

response. 
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Multi subunit database 

When a ligand-receptor pairs database is described as "multi subunit," it typically refers to the 

fact that the receptor complexes involved in cell signaling are composed of multiple protein 

subunits. 

In cellular signaling, ligands bind to receptors on the cell surface, initiating a cascade of 

intracellular events. Many receptors are not single proteins but rather complexes made up of 

multiple subunits. Each subunit plays a specific role in the receptor's function, such as ligand 

binding, signal transduction, or regulation of downstream pathways. 

Describing a ligand-receptor pairs database as "multi subunit" indicates that it includes 

information about such complexes, including the ligands that bind to them and the specific 

subunits involved in the receptor complexes. This information is crucial for understanding the 

intricacies of cell signaling pathways and how they regulate various cellular processes. 

 

1.6. Non-small cell lung cancer  

 

The Italian Association of Medical Oncology (AIOM) and the Italian Association of Tumor 

Registries estimated about 41,500 new cases and 33,836 deaths from lung cancer in Italy in 

2018, with a 5-year survival rate of 16% and a 10-year survival of 12% (11% for men and 

15% for women). Currently, lung cancer represents the third most common neoplasm in the 

overall Italian population, and it is the first cause of cancer death in men and the third in 

females, with significant differences observed across the different Italian regions [43].  

Although cigarette smoking is the main cause, anyone can develop lung cancer. Lung cancer 

is highly treatable, no matter the size, location, whether the cancer has spread, and how far it 

has spread. 

The lungs contain many different types of cells. Most cells in the lung are epithelial cells. 

Epithelial cells line the airways and make mucus, which lubricates and protects the lung. The 

lung also contains nerve cells, hormone-producing cells, blood cells, and structural or 

supporting cells. 

There are 2 main classifications of lung cancer: small cell lung cancer and non-small cell lung 

cancer (NSCLC). These 2 types are treated differently. 

 

NSCLC begins when healthy cells in the lung change and grow out of control, forming a mass 

called a tumor, a lesion, or a nodule. This can begin anywhere in the lung. The tumor can be 
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cancerous or benign. When a cancerous lung tumor grows, it may shed cancer cells. These 

cells can be carried away in blood or float away in the fluid, called lymph, that surrounds lung 

tissue. Lymph flows through tubes called lymphatic vessels that drain into collecting stations 

called lymph nodes. Lymph nodes are the small, bean-shaped organs that help fight infection. 

They are located in the lungs, the center of the chest, and elsewhere in the body. The natural 

flow of lymph out of the lungs is toward the center of the chest, which explains why lung 

cancer often spreads there first. When a cancer cell moves into a lymph node or to a distant 

part of the body through the bloodstream, it is called metastasis. 

 

There are different types of NSCLC. It is important to know the type of NSCLC because it 

can change treatment options. Doctors determine which type of NSCLC a person has based on 

the way the cancer looks under a microscope and the kind of cells the cancer starts in. 

 

Figure 8. Histology of a normal lung tissue. Image taken from [44]. 

 

The different types of NSCLC are: 

 

Adenocarcinoma (LUAD) 

This type of NSCLC begins in the epithelial cells that line the outside of the lungs. These cells 

make mucus. It is the most common type of lung cancer at about 40% of all NSCLC cases. 

 

Figure 9. Histology of lung adenocarcinoma. Image taken from [44]. 
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Squamous cell carcinoma (LUSC) 

This type of cancer starts in the squamous cells, which are flat cells that line the inside of the 

lungs. About 30% of all NSCLC cases are squamous cell carcinoma. 

 

Figure 10. Histology of squamous cell carcinoma. Image taken from [44]. 

 

Large cell carcinoma 

The cells in large cell carcinoma do not look like adenocarcinoma or squamous cell 

carcinoma, instead they look like large cells. This is the least common type of NSCLC and as 

diagnostic tools get better, more large cell carcinomas are being classified as adenocarcinoma 

or squamous cell carcinoma. 

 

Figure 11. Histology of large cell carcinoma. Image taken from [44]. 

 

NSCLC-NOS (not otherwise specified) or NSCLC undifferentiated 

It is a non-small cell lung cancer subtype that is difficult to classify. Due to overlapping 

features or insufficient data, doctors may find it difficult to definitively classify the tumor into 

particular histological subtypes, even after thorough testing, including histological inspection 

and molecular profiling. Consequently, tumors that are not easily classified into recognised 

subtypes like squamous cell carcinoma or adenocarcinoma are included in NSCLC-NOS. 
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Doctors can often classify NSCLC with a “stage” when giving a person their diagnosis. 

Staging is a way of describing where the cancer is located, if or where it has spread, and 

whether it is affecting other parts of the body. Doctors use diagnostic tests to find out the 

cancer‟s stage, so staging may not be complete until they finish all the tests. Knowing the 

stage helps your doctor decide what kind of treatment is best. The stage can also help predict 

your prognosis. The stage of NSCLC is described by a number, from 0 through 4 (Roman 

numerals I through IV). 

 

1.7. Aim of the project 

 

Gene expression profiling has found its natural placement and development in cancer: the 

disease most closely associated with progressive alteration of the cell's genome, through 

complex processes ranging from mutations to the loss or acquisition of different genes to 

alterations in transcription and translation processes. Given that a considerable proportion of 

genomic and proteomic research has focused on cancer patients, it becomes imperative, upon 

identifying patients at higher risk, to determine the most suitable therapy for each individual. 

In this regard, gene expression analysis plays a pivotal role in providing essential insights into 

how a patient may respond to a particular treatment. Moreover, genomic analysis enables the 

discovery of novel treatment targets by identifying a list of genes differentially expressed in 

tumor tissue compared to normal tissue, or in individuals with a better prognosis compared to 

those with a worse prognosis. This makes it possible to design new medications and evaluate 

how well they work as well as any possible negative effects while treating a particular 

pathology. 

 

Due to the recent advancements in single-cell technologies, a significant amount of single-cell 

RNA sequencing data has been publicly available. The investigation of CCIs at single-cell 

resolution, especially LR-based CCIs, was driven by the availability of these data. Dozens of 

computational techniques and tools have been developed to forecast CCIs. A large number of 

these tools have undergone theoretical reviews. Nevertheless, limited research has been 

conducted on the performances of existing LR-based CCI prediction algorithms and their 

outcomes when applied to publicly available scRNA-seq datasets. These approaches lack a 

comprehensive validation of predicted ligand-receptor interactions. Since there is no ground 
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truth, the challenge lies in validating and measuring the performances in terms of accuracy, 

sensitivity, and precision of the prediction made by these tools. Currently, there is no gold 

standard for the validation of these tools, as many of them differ in the number of ligand-

receptor pairs found and in the overlap of their results. Therefore, establishing a robust 

validation framework becomes essential to assess the reliability and consistency of the 

predictions generated by these tools. 

 

This highlights the absence in the field of a reference benchmark to compare the results 

obtained by individual algorithms; the only possibility is to compare the computationally 

obtained result with what has been derived from laboratory analyses and that is present in the 

literature. 

To close this gap, in this work, the aim is to test three computational methods for the analysis 

of intercellular communication on data from a scRNA-seq atlas created at the Centre for 

Chemistry and Biomedicine (CCB) in Innsbruck, containing gene expressions of non-small 

cell lung cancer cells. 

The three tools to be compared are scSeqComm [45], CellphoneDB and NicheNet [47].  

Initially, the atlas and the characteristics of the ligand-receptor pairs databases that will be 

used for comparison will be presented. Subsequently, the fundamental aspects of the CCI 

analysis structure of each individual method and the main differences between them will be 

shown. 

Importance is then given to the procedural choices and requirements adopted for this specific 

objective, focusing on the implementation aspects that differentiate each method. It is crucial 

to specify that the focus is on the results of intercellular communication, not intracellular 

communication, limiting observations to the ligand-receptor pairs that the methods are 

capable of providing at the end of the analysis. 

The specific communication of interest for the study is that which occurs in the tumor 

microenvironment and follows the direction from tumor cells, considered in this case as 

sender cells, towards immune system cells, considered as receiver cells. The methods were 

initially run on the entire available cellular atlas; subsequently, however, two subcategories of 

non-small cell lung cancer, LUAD and LUSC, were selected to verify if these two different 

types of tumor cells interacted differently with nearby immune system cells. 

These same operations were repeated for three different ligand-receptor pairs databases: 

Eferemova [46], Browaeys [47], and Jin [48]. To evaluate the performances of these three 
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methods, execution time, RAM memory space occupied, and the number of LR pairs obtained 

from each method were tracked. 

The results are presented at the end of the thesis in the form of Venn diagrams to evaluate the 

number of LR pairs calculated by each method and the overlap of the pairs found in common. 

Finally, only the pairs common to all three methods are visualized through circos plots, and to 

provide a clinical and functional context to the findings, a biological explanation of the most 

important LR pairs is provided. 

 

At the end, it will be recognized how the methods exhibit significant differences in their CCC 

analysis framework and how they have different goals. As a result, different strategies and 

techniques will need to be used to execute each of them, leading to different execution times 

and outcomes. However, the methods will still show a 10% agreement in the detected cell-cell 

communication, and scSeqComm will prove to be the method with the simplest and most 

intuitive application and implementability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



38 
 

 

 

 

 

 

 

  



39 
 

Chapter 2:  Cell-cell communication analysis of   

non-small cell lung cancer cell atlas 

 

2.1. NSCLC atlas 

 

The technical advances in single-cell RNA sequencing technologies enabled the dissection of 

the complex NSCLC tumor microenvironment (TME) in different stages, and numerous 

scRNA-seq NSCLC studies have identified a so far underestimated TME heterogeneity in 

early and advanced disease. Furthermore, these studies highlighted the importance of small 

cell populations in governing essential biological pathways such as immune cell activation or 

trafficking by tumor endothelial cells [49]. However, a major limitation of these studies is the 

limited number of analyzed patient samples per study. Moreover, the lack of genomic data as 

well as long-term follow-up data prevents comprehensive dissection of the biological 

heterogeneity and its potential contribution to therapy resistance and survival outcome. 

Technical and methodological variations between the different studies result in significant 

inconsistencies and knowledge gaps. As such, not all cell types (e.g., neutrophilic 

granulocytes) have been portrayed in the same depth and extension yet, posing an unmet need 

to characterize these populations as well. In NSCLC, it is well accepted that next to cancer 

cells, leukocytes compose the majority of cells within the TME. Particularly since 

immunotherapy is routinely used in clinical practice, in-depth characterization of the cancer 

immune cell compartment has been intensively pushed forward, and diverse cellular subsets 

have been profiled [50]. Previous compositional analyses by flow cytometry as well as 

histological work ups suggested that neutrophils compose a significant proportion of all 

tumor-resident leukocytes, with an estimated abundance ranging from 8% to 20%. 

Intriguingly, when looking at the scRNA-seq studies in NSCLC published over the last years, 

neutrophils are clearly under-represented. This discrepancy is most likely based on technical 

issues rather than on biological phenomena, but its clarification is of immense importance for 

the fundamental immunological understanding of NSCLC and for potential translational 

clinical investigations.  
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To overcome the above-mentioned hurdles, Salcher et al. [51] compiled major publicly 

available datasets into a comprehensive NSCLC scRNA-seq atlas covering 232 patients with 

NSCLC and 86 non-cancer controls. Additionally, given the scarcity of neutrophil single-cell 

data, they complemented the atlas by analyzing samples from 17 patients with NSCLC using 

a platform that captures cells with very low transcript count and carried out deep 

characterization of tissue-resident neutrophils (TRNs) including both tumor-associated 

neutrophils (TANs) and normal adjacent tissue-associated neutrophils (NANs).  

 

The results of the work done by the researchers is the generation of a core large-scale NSCLC 

single-cell atlas. 

First they developed a core NSCLC atlas by compiling scRNA-seq data from 19 studies and 

21 datasets comprising 505 samples from 298 patients. This comprehensive NSCLC single-

cell atlas integrates expert-curated, quality-assured, and pre-analyzed transcriptomic data from 

publicly available studies as well as their own dataset (UKIM-V) in early and advanced stage 

NSCLC of any histology.  

 

In total, the core atlas includes transcriptomic data from 212 patients with NSCLC and 86 

control individuals, comprising 196 tumor samples and 168 non-tumor control samples. Of 

the 212 patients with NSCLC, 156 were histopathologically annotated as lung 

adenocarcinoma (LUAD), 41 as lung squamous cell carcinoma (LUSC), and 15 were not 

otherwise specified (NSCLC NOS). NSCLC samples include tissue of the primary tumor (n = 

176) or metastasis (n = 45) that were obtained either by surgical resection or by computed 

tomography- and bronchoscopy-guided biopsies. They clustered the disease stages of the 

patients with NSCLC as early (UICC stage I–II) versus advanced (UICC III–IV) diseases, as 

not all studies provided sufficient information on tumor stages.  

Among the control samples, 89 were derived from distant non-malignant tissue of patients 

with lung tumors (annotated as normal_adjacent), of which 65 have a patient-matched tumor 

sample. Further, 10 samples were derived from non-tumor-affected lymph nodes of patients 

with NSCLC (annotated as normal) and 79 samples from patients without evident lung cancer 

history (annotated as normal). Of the control patients, 18 had a history of chronic obstructive 

pulmonary disease (COPD). Overall, the core atlas integrates 898,422 single cells, which are 

annotated to 12 coarse cell-type identities and 44 major cell subtypes or cell states (e.g., 

dividing cells) based on previously established canonical single-cell signatures including 
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169,223 epithelial cells, 670,409 immune cells, and 58,790 stromal and endothelial cells 

(Figure 12). They also annotated the cell-type composition for each dataset, the tissue of 

origin, and the patients within the core atlas. Previous scRNA-seq studies discriminated the 

clinically relevant types of LUSC and LUAD.  

 

 

Figure 12. Overview of the core NSCLC atlas and the epithelial, immune, and stromal/endothelial components depicted as 

uniform manifold approximation and projection (UMAP) plots. 

 Image adapted from [51]. 

 

From this available cell atlas, it was decided to proceed with the analysis of cell-cell 

communication by examining the communication occurring from tumor cells, considered as 

sender cells, to immune system cells, considered as receiver cells. Therefore, the immune 

system cells included in the analysis from the atlas are as follows. 

 

'B cell': also known as B lymphocytes, are a type of white blood cell that plays a critical role 

in the immune system. They are responsible for producing antibodies, which are proteins that 

recognize and neutralize foreign invaders such as bacteria, viruses, and other pathogens. 
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'DC mature': Mature dendritic cells (DCs) are a specialized type of immune cell that plays a 

crucial role in initiating and regulating immune responses. These cells are considered 

professional antigen-presenting cells (APCs), meaning they are adept at capturing, processing, 

and presenting antigens to other immune cells, such as T cells. 

 

'Macrophage': Macrophages are a type of white blood cell that plays a pivotal role in the 

immune system's defense against pathogens, tissue repair, and regulation of inflammation. 

They are highly versatile cells found throughout the body in various tissues, where they act as 

phagocytes, engulfing and digesting foreign particles, dead cells, and cellular debris. 

 

'Mast cell': Mast cells are a type of white blood cell that is primarily known for its role in 

allergic reactions and inflammation. They are found in connective tissue throughout the body, 

particularly near blood vessels and nerves, where they play a crucial role in the body's 

immune response. When activated, mast cells release a variety of mediators, including 

histamine, cytokines, and chemotactic factors, which play a central role in initiating and 

regulating inflammatory and allergic responses. 

 

'Monocyte': Monocytes are a type of white blood cell that is produced in the bone marrow and 

circulates in the bloodstream. They are considered part of the innate immune system and play 

several important roles in immune responses and tissue repair. When monocytes leave the 

bloodstream and enter tissues, they differentiate into macrophages. 

 'NK cell', Natural killer (NK) cells are a type of white blood cell that plays a critical role in 

the innate immune system's defense against viral infections and certain types of cancer. They 

are called "natural killers" because they have the ability to recognize and kill infected or 

abnormal cells without the need for prior activation or the presence of antibodies. 

 

'Neutrophils': Neutrophils are the most abundant type of white blood cell and play a 

fundamental role in the innate immune system's defense against infections. They are part of 

the body's first line of defense and are among the first immune cells to migrate to sites of 

infection or tissue damage. They perform phagocytosis, production of Reactive Oxygen 

Species (ROS), release of granules, formation of neutrophil extracellular traps (NETs). 

 

'Plasma cell': also known as effector B cells, are a specialized type of white blood cell that 

plays a central role in the adaptive immune response. They are derived from activated B cells 
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and are responsible for producing large quantities of antibodies, also known as 

immunoglobulins (Ig), that circulate in the bloodstream and target specific pathogens or 

foreign substances. 

 

'T cell': also known as T lymphocytes, are a type of white blood cell that plays a central role 

in the adaptive immune response. They are produced in the bone marrow and mature in the 

thymus gland, which is where they derive their name. T cells are critical for coordinating 

immune responses against specific pathogens and abnormal cells. They are characterized by 

the presence of T cell receptors (TCRs) on their cell surface, which allow them to recognize 

specific antigens presented by other cells. T cells can recognize a wide range of antigens, 

including those derived from pathogens, cancer cells, and even self-antigens in cases of 

autoimmune diseases. 

 

 'cDC': Conventional dendritic cells (cDCs), they act as professional antigen-presenting cells 

(APCs) that capture, process, and present antigens to T cells, thereby initiating specific 

immune responses. 

 

’pDC’: Plasmacytoid dendritic cells (pDCs) are a specialized subset of dendritic cells that 

play a crucial role in the immune system's defense against viral infections and regulation of 

immune responses. They are primarily known for their ability to produce large amounts of 

type I interferons (IFNs) in response to viral infections, which are essential for antiviral 

defense and immune activation. 
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2.2.  Ligand-Receptor databases used in this study 

 

Let's now examine the features of the databases that were used for the analyses related to this 

thesis project (Table 1). 

 

2.2.1. Database Efremova 2020 

 

A public database of ligands, receptors, and their interactions was established by Efremova et 

al. [46] to facilitate an in-depth, systematic investigation of the molecules involved in cell-cell 

communication. Their database is based on manual curation of particular groups of proteins 

involved in cell-cell communication, as well as annotation of receptors and ligands using 

publicly available resources. They incorporate subunit architecture to accurately describe 

heteromeric complexes, both for ligands and receptors. This is crucial because, contrary to 

what most databases and research utilise, cell-to-cell communication depends on multi-

subunit protein complexes. They created a SQLite relational database to combine all the data 

in a modifiable, distributable, and adaptable setting.  

The database stores a total of 978 proteins: 501 are secreted proteins and 585 are membrane 

proteins. These proteins are involved in 1,396 interactions; out of all proteins stored in 

CellPhoneDB, 466 are heteromers. There are 474 interactions that involve secreted proteins 

and 490 interactions that involve only membrane proteins. There are a total of 250 

interactions that involve integrins.  

 

 

Figure 13. Overview of Efremova database.  

Image taken from [46]. 
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2.2.2. Database Browaeys 2019 

 

Browaeys et al. [47] for their method called NicheNet created integrated networks considering 

a collection of ligand–receptor, intracellular signaling and gene regulatory interactions. 

Ligand–receptor interactions were collected from KEGG [52] (Kyoto Encyclopedia of Genes 

and Genomes), Ramilowski et al. [53] and IUPHAR Guide to Pharmacology [54] (via 

Harmonizome [55]). In addition to this, they predicted ligand–receptor interactions by 

searching in protein–protein interaction databases for interactions between genes annotated as 

ligands and receptors. 

The result is a database containing 12,659 LR pairs with annotation of sources and databases 

but it doesn‟t support protein multi-subunit structure.  

 

2.2.3. Database Jin 2020 

 

To construct a database of ligand-receptor interactions that comprehensively represents the 

current state of knowledge, Jin et al. [48] manually reviewed other publicly available 

signaling pathway databases as well as peer-reviewed literature. The majority of ligand–

receptor interactions were manually curated on the basis of KEGG [52] signaling pathway 

database. Additional signaling molecular interactions were gathered from recent peer-

reviewed experimental studies. They took into account not only the structural composition of 

ligand-receptor interactions, which often involve multimeric receptors, but also cofactor 

molecules, including soluble agonists and antagonists, as well as co-stimulatory and co-

inhibitory membrane bound receptors that can prominently modulate ligand-receptor 

mediated signaling events. To further analyze cell-cell communication in a more biologically 

meaningful way, they grouped all of the interactions into 229 signaling pathway families, 

such as WNT, ncWNT, TGFβ, BMP, Nodal, Activin, EGF, NRG, TGFα, FGF, PDGF, VEGF, 

IGF, chemokine and cytokine signaling pathways (CCL, CXCL, CX3C, XC, IL, IFN), Notch, 

and TNF. The supportive evidences for each signaling interaction is included within the 

database. 

The result is a human database containing 2,005 LR pairs that take into account protein 

complexes and functional annotations.   
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Table 1. Overview of available lists of ligand-receptor pairs in literature used in this thesis project. 

 

2.3. Computational tools compared in this study 

 

In the next paragraphs an overview of the three methods compared in this thesis is provided. 

 

2.3.1. scSeqComm 

 

scSeqComm [45] is a computational approach introduced to deduce, quantify, and delineate 

both intercellular and associated intracellular signaling pathways from single-cell RNA 

sequencing data. 

The primary innovation of this tool lies in the development of a novel methodology to identify 

and quantify intercellular signaling patterns derived from scRNA-seq datasets. This recently 

suggested scoring system supports the intricate multi-subunit structure of ligands and 

receptors present in modern ligand-receptor databases. It adopts a more conservative approach 

compared to conventional methods, with the specific aim of reducing and prioritizing 

experimental targets effectively. 

Furthermore, the computational framework is able to measure the impact of ongoing 

intracellular signaling within the recipient cells, focusing on the activation of established 

biological signaling pathways. By quantifying evidence of both intercellular and intracellular 

signaling, the method allows for the integration of these two components, resulting in a more 

robust inference of cellular communication from scRNA-seq data. 
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Additionally, genes associated with the identified cellular communication effects are 

leveraged to conduct integrated Gene Ontology (GO) enrichment analyses, facilitating the 

functional characterization of cell-cell communication effects. 

The proposed methodology is implemented in the R package called scSeqComm, accessible at 

the provided URL  https://gitlab.com/sysbiobig/scseqcomm. 

  

In Figure 14 a graphical overview of the scSeqComm R package is provided, illustrating its 

functionalities and workflow. 

 

Intercellular signaling  

The method requires as input a normalized scRNA-seq gene expression matrix with indication 

about cell clusters. 

To identify intercellular crosstalk across different clusters of cells, the method first assigns a 

score to each ligand and each receptor expressed in a specific cluster of cells. Then, for each 

known ligand–receptor pair between two groups of cells or within the same group, it infers an 

ongoing intercellular communication as a function of the ligand score and the receptor score.  

For each ligand or receptor gene (g) in a specific cluster (k), it calculates a score to measure 

how much the gene's expression level is higher compared to what would be expected by 

chance. It determines the expected distribution of average gene expression levels, using a 

permutation approach, by randomly shuffling the genes in the cluster and computing the 

average expression levels multiple times. This distribution follows a normal distribution, even 

if the original data is not normally distributed, thanks to the central limit theorem. The score is 

then calculated as the probability of observing values lower than the gene's average 

expression level when sampling from this normal distribution. This approach also considers 

factors like gene expression variability and the number of cells in the cluster. Additionally, if 

a ligand or receptor consists of multiple subunits, the score is computed as the geometric 

mean of the scores of its subunits. This ensures that if any subunit is inactive, the overall score 

will be zero. 

This scoring method helps understand the activity of signaling molecules like ligands and 

receptors in different groups of cells. But to consider ongoing cell communication, both the 

ligand and its matching receptor need to be active. So, a new score called the intercellular 

signaling score is introduced. This score, denoted as Sinter, measures the likelihood of 

ongoing communication between two cell clusters, k1 and k2, through a specific ligand-

receptor pair (l, r), where l is expressed in k1 and r is expressed in k2. The method calculates 

https://gitlab.com/sysbiobig/scseqcomm
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the  intercellular signaling score as the minimum score between the ligand and receptor scores 

thus implementing a 'fuzzy logical AND' operator, reflecting that communication is ongoing 

only when both are active. This method ensures that even if one gene's expression is much 

higher than the other, it doesn't overshadow the overall signaling intensity. However, different 

combinations of ligand and receptor scores might give the same intercellular signaling score. 

To address this, another score is introduced, the intracellular signaling score. 

 

Intracellular signaling 

As second step, scSeqComm quantify the intracellular signaling associated to cell–cell 

communication measuring the evidence of a transcriptional response in target genes regulated 

by known TFs and weighting the association between TFs and upstream receptors using 

available biological knowledge from signaling pathway databases and regulatory network 

databases. 

 

As third step, scSeqComm performs a GO enrichment analysis on target genes associated 

with the detected intracellular signaling to functionally characterize the effect of the detected 

cell–cell communication. The tool provides as output, in both a tabular and graphical form, 

the inferred evidence of ongoing intercellular and intracellular signaling, as well as the 

functional characterization from GO analysis. 
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Figure 14. Schematic overview of the scSeqComm pipeline. 

 Image taken from [45]. 
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2.3.2. CellphoneDB 

 

In CellPhoneDB v2.0 [46] multiple subunit architecture is taken into account for both ligands 

and receptors. Additionally, CellPhoneDB has assembled a LR database which contains 

multiple LR subunits. Significant LR interaction pairs are identified based on their respective 

cell-type enrichment's likelihood estimation. The CCIs unique to two cell types are ranked 

according to the number of meaningful LR interaction pairs. It is possible to build CCI-based 

networks to evaluate cellular crosstalk between various cell types. Runtime and memory 

consumption are decreased by using the cell subsampling technique. 

  

Using scRNA-seq data, this computational method finds interacting ligand-receptor couples 

that are biologically significant. Following the upload of the scRNA-seq data and the use of 

geometric sketching subsampling [56] (Figure 15a), cells that have the same cluster 

annotation are combined into a single cell state. Based on the expression of a ligand by one 

cell state and a receptor by another, it determines enhanced ligand–receptor interactions 

between two cell states. The mean gene expression and the proportion of cells expressing each 

gene in the cluster are computed (Figure 15b). It determines which ligand-receptor 

combinations exhibit considerable cell-state specificity by taking into account the expression 

levels of ligands and receptors inside each cell state and applying empirical shuffling (Figure 

15c,d). This produces possible cell-cell communication networks and predicts molecular 

interactions between cell populations via certain protein complexes, which may be visualised 

with the use of simple tables and charts (Figure 15e). Because some ligand-receptor pairings 

are widely expressed by the cells in a tissue, they are not indicative of specific communication 

between various cell states, which makes the specificity of the ligand-receptor interaction 

crucial. The computational code requires Python v.3.5 or higher and it can be found on 

GitHub at https://github.com/Teichlab/cellphonedb, and www.CellPhoneDB.org hosts an 

easy-to-use web interface. It is advised to use the first option for datasets larger than 10 GB. 

 

Statistical inference of ligand–receptor specificity 

To assess cellular crosstalk between different cell types, it has been used a statistical 

framework for inferring cell–cell communication networks from scRNA-seq data. The 

method predicts enriched receptor–ligand interactions between two cell types on the basis of 

expression of a receptor by one cell type and a ligand by another cell type. To identify 
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biologically relevant interactions, it looks for cell-type-enriched ligand–receptor interactions. 

Only receptors and ligands expressed in more than a user-specified threshold percentage of 

the cells in the specific cluster are considered for the analysis (default is 10% and it is the 

value that has been used also in this analysis). It then performs pairwise comparisons between 

all cell types in the dataset. First, it randomly permutes the cluster labels of all cells (1,000 

times by default) and determines the mean of the average ligand expression level in a cluster 

and the average receptor expression level in the interacting cluster. In this way it generates a 

null distribution for each ligand–receptor pair in each pairwise comparison between two cell 

types. It obtains a P value for the likelihood of cell-type enrichment of each ligand–receptor 

complex by calculating the proportion of the means that are as high as or higher than the 

actual mean. On the basis of the number of significant pairs, it then prioritizes interactions 

that are highly specific between cell types, so that the user can manually select biologically 

relevant ones. For multi-subunit heteromeric complexes, it requires that all subunits of the 

complex be expressed (using a user-specified threshold), and it uses the member of the 

complex with the minimum average expression for random shuffling. 

 

The results of the analysis are compiled in an output folder comprising four .txt files: 

significant_means.txt, pvalues.txt, means.txt, and deconvoluted.txt. Additionally, the 

visualization of the results can be facilitated through intuitive tables, plots, and network files 

provided by the package. 
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Figure 15.  Overview of the statistical method framework used in CellphoneDB to infer ligand–receptor complexes specific 

to two cell types from single-cell transcriptomics data.  

Image taken from [46].
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2.3.3. NicheNet 

 

NicheNet [47] is a computational approach, available on an R package, that aims to clarify the 

functional understanding of CCIs by assuming the functional impact of ligands in the sender 

cells on the expression of genes in the recipient cells, known as target genes. NicheNet 

combines data on gene regulatory interaction, signal transduction, and LR interaction to 

achieve that. The IUPHAR/BPS Guide to Pharmacology, Reactome, KEGG, and PPI 

databases were used to compile the LR interactions [52-55]. Individual interactions were 

arranged as weighted networks, and gene regulatory interactions were transformed into a 

weighted gene regulatory network. LR and signalling networks were joined to form a 

weighted ligand-signaling network. To combine several data sources, a weighted sum of the 

distinct networks was subsequently calculated. Network operations, such as PageRank, were 

applied to this integrated network to derive a prior model of ligand-target regulatory 

potential.  

 

When applying NicheNet to investigate communication between cells, this general prior 

model of ligand–target regulatory potential is combined with the gene expression data given 

as input.  NicheNet infers active ligand–target links between interacting cells by combining 

their expression data with this prior knowledge model on ligand–target links (Figure 16). 

 

The gene expression data from the atlas, once loaded into R, is structured as a Seurat Object 

[57], this means that to utilize NicheNet effectively, familiarity with the functions used to 

modify a Seurat object is essential. A Seurat object is a type of data structure employed in 

single-cell analysis. Seurat, widely used in R, offers a range of functionalities for exploring, 

visualizing, and analyzing data generated by techniques like single-cell RNA sequencing. In 

essence, a Seurat object represents a collection of single-cell data that has been preprocessed, 

normalized, and analyzed using Seurat's capabilities. It contains information about the cells, 

their genomic characteristics, and their relationships within a specific single-cell experiment 

[58]. 

 

After combining the expression profiles of interacting cells, NicheNet can prioritize the 

regulatory potential of ligands on the target genes. 
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First, NicheNet prioritises which sender cell ligands are most likely to have affected the gene 

expression in interacting receiver cells. This procedure, called ligand activity prediction, ranks 

ligands according to how well their prior target gene predictions correspond to the observed 

gene expression changes resulting from communication with sender cells. To then predict 

active ligand-target links, NicheNet searches for genes that are affected in receiver cells and 

are possibly regulated by these prioritized ligands as indicated with a high regulatory potential 

score. Finally, users can visualize possible signaling paths between ligands and target genes of 

interest to analyze why the model infers specific ligand–target links.  

 

As observed, the primary output obtained by applying NicheNet is the interaction between 

ligands and target genes. Only subsequently it is possible to obtain the ligand-receptor 

interaction, which is the one required for comparing the methods in this thesis. 

 

Figure 16. General workflow of NicheNet.  

Image adapted from [47]. 
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Chapter 3: Execution of cell-cell communication 

analysis methods 

 

3.1. Materials, tools and computing environment 

 

The CCB of Innsbruck is equipped with a computing infrastructure based on HPC (High-

Performance Computing). 

HPC, or High-Performance Computing, refers to the utilization of powerful computing 

systems capable of delivering significantly higher computational power and speed compared 

to traditional desktop or workstation computers. These systems typically consist of multiple 

interconnected processing units, such as CPUs or GPUs, working in parallel to perform 

complex calculations and data processing tasks. HPC systems are widely used in scientific 

research, engineering simulations, data analysis, and other computationally intensive 

applications where large volumes of data need to be processed or complex mathematical 

models need to be solved. They offer advantages such as faster processing times, the ability to 

handle massive datasets, and scalability to accommodate increasing computational demands. 

 

More specifically, what was utilized for this thesis work was the High Performance 

Computing Cluster (HPCC), which is a type of computing infrastructure composed of 

multiple interconnected computers, or nodes, working together to perform complex 

computational tasks at high speeds. This cluster is designed to handle massive amounts of 

data and perform computations much faster than traditional computers. 

 

This cluster is based on Linux, and its hardware characteristics are as follows: 

 

 1 x Head Node: zeus.icbi.local 

 64 CPU cores / 3.0 TB RAM 

 2 x 10 GBit ceph storage network, 1 x 1 Gbit cluster network 

 2 x 480 GB SSD RAID for system 

 2 x 1.6 TB SSD RAID for local scratch, OS/Tools mirror, backup 



56 
 

 10 x Compute Nodes: apollo-01 … apollo-10 

 44 CPU cores / 1.0 TB RAM 

 2 x 10 Gbit ceph storage network, 1 x 1 Gbit cluster network 

 2 x 480 GB SSD RAID for system 

 2 x 800 GB SSD RAID for local scratch 

 

The R and Python computing environments were already available on the cluster. 

The analyses conducted using R packages such as scSeqComm and NicheNet were performed 

entirely on the Head Node named Zeus, as well as the preparation of input data for 

CellphoneDB, which was carried out in Python.  

Regarding the CellphoneDB analyses instead, they were launched utilizing a scheduler 

organizing the work on the compute nodes Apollo. 

 

Specifically, the job scheduling system used is SGE (Sun Grid Engine). In practice, the Sun 

Grid Engine queuing system is valuable when there is a large number of tasks to execute and 

one wants to distribute them across a cluster of machines. For instance, it might be necessary 

to run hundreds of simulations/experiments with varying parameters. 

SGE operates by breaking down computational tasks into smaller units known as jobs and 

then assigning these jobs to available computing resources within the cluster or grid. It 

enhances resource utilization by scheduling jobs based on factors such as priority, resource 

requirements, and system load. 

Utilizing a queuing system in such scenarios offers several advantages: 

 

- Job Scheduling: It enables scheduling a virtually unlimited amount of work to be 

performed as resources become available. This allows submitting as many tasks (or 

jobs) as needed and letting the queuing system handle their execution. 

- Load Balancing: It automatically distributes tasks across the cluster to prevent any 

single node from becoming overloaded compared to others. 

- Queue Management: Jobs are submitted to queues, and SGE manages their execution 

based on queue configurations and policies. Queues can have different priorities, 

access controls, and scheduling policies to accommodate various user requirements 

and system constraints. 
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- Monitoring/Accounting: It provides the ability to monitor all submitted jobs and query 

which cluster nodes they're running on, their completion status, error encounters, etc. 

It also facilitates querying job history to track tasks executed on a given date, by a 

specific user, etc. 

 

The use of this job scheduling program, specifically for the analyses conducted with 

CellphoneDB, means that the computational times and RAM usage for this method cannot be 

directly compared with those of the other two methods. Indeed, since it was run on a different 

node of the cluster, it exhibits different CPU and RAM characteristics compared to the head 

node. However, as it will be shown in Chapter 4 which is dedicated to the results, 

CellphoneDB turns out to be a computationally demanding method, and its execution time 

will be much greater compared to that required by the other two methods, scSeqComm and 

NicheNet. 

 

When running R on an HPC cluster, the memory usage reported typically includes two main 

components: memory used by the session and memory used by the system. 

 

Memory used by the Session: 

This refers to the amount of memory consumed by the R session itself, including all objects, 

variables, functions, and data loaded into memory during the current R session. It reflects the 

memory footprint of the specific R process or instance running on the cluster. 

This memory usage is specific to the R session and is managed by R's memory management 

system. It includes all objects created and loaded into memory during the execution of R 

scripts or commands. 

 

Memory used by the System: 

This refers to the total amount of memory utilized by the operating system to run all processes 

and applications on the HPC cluster node, including the R session and any other concurrent 

processes. It includes memory used by the R session, as well as memory used by other system 

processes, background tasks, and system-level caching mechanisms. This memory usage is 

controlled and managed by the operating system's memory management system, which 

allocates and deallocates memory resources among different processes running on the node. 
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In summary, memory used by the session specifically pertains to the memory consumption of 

the R process or instance, while memory used by the system refers to the overall memory 

usage of the entire system, including the R session and other processes running on the cluster 

node so it provides an indication of the overall system workload and resource utilization, 

including the impact of the R session alongside other concurrent activities on the cluster node. 

 

3.2. Launching scSeqComm 
 

3.2.1.  Input data 

 

Firstly, to conduct the analyses with scSeqComm, it was necessary to install the package in 

the R environment. Following this, after loading the .rds file containing the NSCLC atlas, a 

dataframe was created with the first column containing cell names (“Cell_ID”) and the second 

column containing their assigned clusters. 

In particular, the cell clusters chosen for the analysis are those of the immune system  

previously described in Chapter 2. More precisely the intercellular communication of interest 

for the study involves tumor cells as sender cells and immune system cells as receiver cells.  

 

Subsequently, the relevant gene expression matrix was extracted from the file, and to handle 

the large size of the variable, it was converted to a more memory-efficient data.structure using 

„sparsetoBigMemory‟ function as suggested by the author. 

 

3.2.2.  Main function 

 

The main scSeqComm function that was used is called „scSeqComm_analyze‟. It takes as 

input the gene expression matrix, the previously created dataframe, the LR pairs database, the 

Transcriptional Regulatory Networks, and the Receptor-Transcription factor a-priori 

association, which are already included in the installed package. The function was launched 

using 20 cores and choosing "Wilcoxon" as the method for calculating the differential 

expression. The function performs the intercellular and/or intracellular communication 

analysis for the given scRNA-seq dataset. 
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3.2.3.  Output  

 

At this stage, the tool has provided as output the inferred evidence of ongoing intercellular 

and intracellular signaling in the form of intercellular and intracellular scores for the 

respective ligand-receptor pairs, and the result can be visualized, for example, in a table of 

scores as shown in Figure 17. The results of the analysis can be expressed both in tabular 

form, consisting of tables containing the ligand, the receptor, the LR pair, the ligand-

associated score, the receptor-associated score, the intercellular score, the intracellular score 

within the cluster expressing the receptor, and the respective cluster memberships of the 

ligand and the receptor. Additionally, the results can be represented graphically through 

heatmap visualization, aiding in the visualization of the scores. 

 

 

Figure 17. Subset of LR pairs to visualize their scores. 

 

Subsequently, in order to select the ligand-receptor pairs of greatest interest for the study, the 

focus was placed on the intercellular score, which is a number between 0 and 1 returned for 

each ligand-receptor pair, where a value of zero indicates minimal interaction, while a value 

of 1 indicates maximum interaction. 
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Figure 18. Histogram of intercellular scores for scSeqComm in the case of Efremova database and running on the entire 

atlas. 

 

After observing the distribution of scores in the histogram (Figure 18), it was decided to 

consider only the LR pairs with a score greater than or equal to 0.8 in order to select 

communications with the highest interactions. Furthermore, the pairs that would be missed by 

using a lower threshold, such as 0.5 (default), were not many compared to the pairs identified 

with a higher threshold. 
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3.3. Launching CellphoneDB 
 

3.3.1. Input data 

 

CellphoneDB requires an input metadata file that must be generated by the user, associating 

individual cells with their respective clusters identified by scRNA-seq data (e.g., using 

packages such as Seurat [57] and SCANPY [59]). This file consists of two columns: 'Cell', 

indicating the name of the cell; and 'cell_type', indicating the name of the considered cluster. 

Additionally, another file called Counts file is required as input, which contains scRNA-seq 

count data containing gene expression values. In this file, rows represent genes presented with 

gene name identifiers (Ensembl IDs, gene names, or hgnc_symbol annotation), and columns 

represent cells. 

 

These two files were created using the SCANPY Package installed on JupyterHub. Metadata 

file was produced in .txt format while Counts file called local.h5ad was produced as an 

anndata object from anndata Python package [60]. 

 

3.3.2. Creating SGE file 

 

The method requires being run on Python 3.5 or higher. Due to its computational complexity 

and the large number of cells present in the count matrix, it has been decided to execute the 

method using the facility‟s job scheduling system named SGE, as previously described in 

paragraph 3.1. 

 

Specifically, to launch the method, I first accessed the personal account @zeus.icbi.local 

within the cluster. Then, I installed and activated a Conda virtual environment in which I was 

able to install the CellphoneDB package. Subsequently, it was necessary to create an .sge file 

(reported in Figure 19), which is the document containing all the necessary information to 

properly execute the method using the SGE scheduler. 
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Figure 19. .sge file for CellphoneDB. 

 

This .sge file, in its SGE-specific tag lines, specifies the UNIX shell for running locally and 

specifies the UNIX shell for running in the queuing system. Additionally, it reserves 20 

CPU/cores in the SGE and executes the job from the current working directory. It also 

specifies the path for the output and finally activates the Conda virtual environment named 

cpdb previously created, runs the statistical_analysis method of CellphoneDB, and 

deactivates the virtual environment. 

The job script is submitted to the queuing system using the qsub function from the command 

window. 

 

3.3.3. Output 

 

CellphoneDB outputs 4 files in .txt format: significant_means.txt, pvalues.txt, means.txt, and 

deconvoluted.txt. From the returned output file pvalues.txt, only the ligand-receptor pairs with 

a p-value equal to or less than 0.05 were retained, and only the pairs annotated in a priori 

database as true ligands were kept. 
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3.4. Launching NicheNet 
 

3.4.1. Input data 

 

NicheNet requires a pre-established model based on prior knowledge of ligand-to-target 

signaling pathways. This is why the first step in running NicheNet involves creating a 

'ligand_target_matrix', which is specific to each individual database. This matrix is generated 

using a built-in function provided by the developers. 

 

The other input required by NicheNet is the Seurat [57] object containing the gene expression 

data from the atlas, which needs to be combined with this prior model. Once the Seurat 

package is installed in R, it is sufficient to load the local.rds file containing the atlas, which 

will be read as a Seurat object. 

 

3.4.2. Running analysis on Seurat object 

 

To enable the NicheNet package's functions to identify the cellular clusters as mentioned in 

section 2.1, it was first necessary to modify the 'Idents' of the Seurat object, which refers to 

the cell identification information assigned to each cell, setting the „cell_type_major‟ identity 

which was one of the identities already available in the Seurat object. 

Next, the calculation of the most highly expressed genes in the sender cell clusters ('Tumor 

cells') and in the receiver cells (the same clusters of immune cells previously described in 

Chapther 2) was performed using NicheNet package functions that also remove genes not 

expressed in at least 10% of the cells in each specific cluster. 

As a subsequent step, the method requires defining a gene set of interest: these are the genes 

in the receiver/target cell population that may be influenced by ligands expressed by 

interacting cells (e.g., genes differentially expressed upon cell-cell interaction). In order to 

accomplish this, genes that were differentially expressed in immune cells were analysed, 

taking into account the tissue sample, tumor vs healthy, as a condition.  

Once the target genes are identified, it is necessary to identify a set of potential ligands: these 

are ligands expressed by the sender cell population and bind to receptors expressed by the 

receiver/target population. Subsequently, NicheNet ligand activity analysis is performed 

(assessing how well a ligand can predict the observed differentially expressed genes 
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compared to the background of expressed genes), ranking the potential ligands based on the 

presence of their target genes in the gene set of interest. Among different measures for ligand 

activity (AUROC, AUPR, Pearson correlation coefficient), developers indicate Pearson 

correlation coefficient between a ligand‟s target predictions and the observed transcriptional 

response as the most informative measure to define ligand activity. Then, ligand-receptor 

pairs are inferred using the prior model. 

 

In NicheNet, it is also necessary, if one wants to maintain the clustering membership of LR 

pairs, to execute the code for each receiver cell cluster separately, and only afterwards 

combine the outputs, as otherwise NicheNet loses the clustering membership of LR pairs. 

 

3.4.3. Output 

 

Finally, it is possible to visualize signaling pathways between ligands and target genes of 

interest and analyze how the model deduces specific ligand-target connections. Two 

visualizations of NicheNet outputs are the heatmaps shown in the next two figures: the first 

(Figure 20) depicts the interaction between potential ligands and predicted target genes that is 

the main output from NicheNet analysis, while the second (Figure 21) illustrates the 

interaction between ligands and receptors. The strength of the interaction is determined by the 

previous model generated in the first phase, as demonstrated, for instance, in these two 

heatmaps, and it is computed for tumor-immune cells considered collectively without taking 

into account the various subpopulations of immune cells. 
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Figure 20. NicheNet heatmap of prioritized ligands vs predicted target genes. 

 

 

Figure 21. NicheNet heatmap of ligands and receptors interaction potential. 
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3.5. Comparative analysis: workflow and configuration 
 

For a more personalized and tailored representation of the information being presented, I 

proceeded with the analysis by collecting the results from each individual method and 

organizing them in a way that allows for easier visualization and comparison of the 

information derived from the respective analyses. 

 

All the tools require a curated LR interaction database in addition to gene expression data as 

input. scSeqComm and CellphoneDB also need the cell-type annotation as input. NicheNet 

performs cell type annotation by embedding certain cell-clustering procedures, such as Seurat, 

in its pipeline, and then assumes cluster-corresponding cell types. All of these tools output the 

predicted LR interaction pairs between cell types. Such LR pairs can then be used to construct 

CCI networks, suggesting the potential communication between cells. Additionally, all of 

them can provide visualization of CCIs. 

 

The initial analysis was conducted using gene expression data related to the entire atlas and 

the LR database Efremova as inputs. Subsequently, two subgroups of the entire atlas were 

created by dividing it into a subgroup containing LUAD cells and another subgroup 

containing LUSC cells. These subgroups were created using the functions of the Seurat object 

in R for scSeqComm and NicheNet, while for CellphoneDB, the SCANPY package in Python 

was utilized, working on the anndata object. The same analyses described in the previous 

paragraphs were then executed first on the LUAD subgroup and subsequently on the LUSC 

subgroup. 

Furthermore, these CCI analyses were repeated for the entire atlas, the LUAD subgroup, and 

the LUSC subgroup, also attempting to change the LR database given as input to the methods. 

Initially, the Browaeys database was used, and finally, the Jin database. 

 

Table 2 summarizes the analysis scenarios just described, indicating in the first two columns 

the input data used by the methods, and in the last column the analysis scenario, which 

specifies the analyzed dataset and, in parentheses, the ligand-receptor database. 
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Table 2. List of analysis scenarios conducted in this thesis. 

 

To compare the methods, computational times of scSeqComm and NicheNet were tracked 

using the system.time() function from R to measure the execution time of an expression, while 

in CellphoneDB, the elapsed time was visible from the command window. In addition to 

computational times, RAM usage for various operations required by the methods was tracked 

looking at the memory usage reports. 

 

However, the most important results concern the LR pairs obtained as output from the 

methods. To facilitate effective comparison, scripts were developed to collect the results and 

organize them into dataframes, which were then saved as .rds variables containing the 

necessary information. The dataframe consists of 9 columns:  

 

- int_pair : ligand-receptor pair. 
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- geneA: first gene of the pair. 

- geneB: second gene of the pair. 

- typeA: the type of the first gene, whether ligand or receptor. 

- typeB: the type of the second gene, whether ligand or receptor. 

- clustA: the cellular cluster membership of the first gene.  

- clustB: the cellular cluster membership of the second gene. 

- value: the intensity of the interaction. 

- p_value: the associated p-value for that LR pair. 

 

Using these dataframes, Eulero-Venn diagrams were generated, plotted with specific scripts 

that take the dataframes as input. Since a ground truth was not available, Eulero-Venn 

diagrams are essential to observe the difference in the quantity of LR pairs obtained from each 

of the three methods, also noting that LR pairs found in the intersection of the Eulero-Venn 

diagrams are those LR pairs common to all three methods. 

Instead, the difference in using different databases is observable in the quantity of ligand-

receptor pairs obtained as output, and the next chapter shows this through a histogram. 

 

At the end of the analyses, it seemed appropriate to examine in more detail the LR pairs found 

and analyze their significance. To do this, only the ligand-receptor pairs common to all three 

methods were visualized using a visualization method via circos links. Another dataframe was 

constructed containing only the LR pairs common to all three methods for the various analysis 

scenarios, and a package in R called "intercellar" [61]
 
was used. This package, when given 

the properly constructed dataframe as input, can perform a Gene Ontology in the function-

verse section and plot circos plots that connect the ligand-receptor pairs, highlighting their 

cluster membership. 

 

In section 4.3, the biological significance of some of these LR pairs will also be shown. 
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Chapter 4: Interpretation of the results 

 

4.1. Execution times and RAM monitoring 
 

Starting with scSeqComm, for this method, the main function 'scSeqComm_analyze' is the 

one that consumes the majority of the time the method takes to perform the analysis. From the 

image below (Figure 22), we can see that in this phase, the function first checks the input 

data, then conducts the analysis of intercellular communication, reporting the time it takes to 

calculate individual ligand and receptor scores as well as the S_inter scores. Subsequently, it 

also analyzes intracellular communication and reports the time taken for it. 

 

Figure 22. R console visualization during scSeqComm Entire Atlas (Efremova DB) analysis scenario. 

 

Time taken in analysis scenario Entire Atlas (Efremova DB) with the 'scSeqComm_analyze' 

function being run with 20 cores on the head cluster Zeus, is 5528 seconds. 

 

It has been observed that the time required for the analysis is consistently higher when 

analyzing the entire atlas because the larger the number of cells to consider, the longer the 
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analysis takes. Indeed, when the file of the entire atlas is loaded into R, it occupies 30.9 GB of 

RAM (892,296 cells and 17,811 genes), while the files of the LUAD subgroup (410,927 cells 

and 17,811 genes) and LUSC subgroup (92,430 cells and 17,811 genes) occupy 14 GB and 

3.1 GB, respectively. 

 

To give an example of the amount of RAM memory required to perform our scSeqComm 

analyses, let's consider the memory usage report example in the entire atlas scenario with the 

Efremova database: 

 

Figure 23. Memory usage report for scSeqComm analysis of entire atlas (Efremova DB) scenario. 

 

From this report in Figure 23, we can observe that the analysis required an approximate usage 

of 112 GB in terms of memory used by the session and 2227 GB of memory used by the 

system. 

 

Moving to CellphoneDB, this tool has proven to be the most computationally demanding. In 

fact, its statistical analysis method is expected to require approximately 1.5 hours for a dataset 

of around 10 GB, comprising 10,000 cells, according to the authors. 

For this project, the tool was executed on the HPC cluster, as explained earlier, leveraging the 

SGE scheduling system and setting 20 CPUs/cores. In the entire atlas (Efremova DB)  

scenario, the size of the dataset is approximately 900,000 cells.   
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What the method returned in the command window is shown below: 

 
[demarchi@zeus CellphoneDB]$ cat LOGS/cpdb_stat-3691086. log 

apollo-05. local 

[ ][CORE] [18/07/23-13:43:42] [INFO] Initializing SqlAlchemy CellPhoneDB Core 

[ ][CORE] [18/07/23-13:43:42] [INFO] Using custom database at /home/demarchi/ 

.cpdb/releases/v2.0.0/cellphone.db 

[ ] [APP] [18/07/23-13:43:42] [INFO] Launching Method cpdb_statistical_analysis_local_method_launcher 

[ ] [APP] [18/07/23-13:43:42] [INFO] Launching Method_set_paths 

[ ] [APP] [18/07/23-13:43:42] [INFO] Launching Method _load_meta_counts 

[ ] [APP] [18/07/23-13:46:23] [INFO] Launching Method _check_counts_data 

[ ][CORE] [18/07/23-13:46:23] [INFO] Launching Method cpdb_statistical_analysis_launcher 

[ ][CORE] [18/07/23-13:46:23] [INFO] Launching Method _counts_validations 

[ ][CORE] [18/07/23-13:47:01] [INFO] Launching Method get_interactions_genes_complex 

[ ][CORE] [18/07/23-13:47:34] [INFO] [Cluster Statistical Analysis] Threshold:0.1 Iterations:1000 Debug-

seed:-1 Threads:20 Precision: 3 

[ ][CORE] [18/07/23-13:49:41] [INFO] Running Real Analysis 

[ ][CORE] [18/07/23-13:49:42] [INFO] Running Statistical Analysis 

[ ][CORE] [19/07/23-00:12:44] [INFO] Building Pvalues result 

[ ][CORE] [19/07/23-00:12:46] [INFO] Building results 

[demarchi@zeus CellphoneDB]$ 

 

The output was obtained after around 10 hours and 30 minutes, as expected.  

As mentioned, this execution time cannot be directly compared to that required by 

scSeqComm and NicheNet since the method was run on a different cluster of the HPCC. 

However, there still remains a considerable difference in the times required by the methods. 

In fact, CellphoneDB requires approximately five times longer than the other two tools to 

obtain results. 

 

Lastly, regarding the NicheNet tool, since it requires the complete loading of the Seurat object 

contained in the .rds file to work on it, and given that the method is articulated in several 

sections, it has been decided to analyze the computational times for each section and then 

calculate the total time required by the method to obtain the outputs.  

 

The various steps of the method in the analysis scenario of the entire atlas (Efremova DB) 

take the following computational times: 

 

- Loading time for the local.rds file: 202 seconds 

- Seurat object modification time: 0.8 seconds 

- Ligand-target matrix creation time: 1610 seconds 

- Calculation time for most expressed genes: 2362 seconds 

- Calculation time for geneset of interest: 1528 seconds 



72 
 

- Calculation time for ligand activities: 4 seconds 

- Calculation time for each cluster: 1036 seconds 

 

By summing the times of the various implemented steps, it can be observed that the method 

requires approximately just under 2 hours to obtain the outputs. 

Regarding the other analysis scenarios, typically the method requires less time when using 

subsets of the Seurat object for LUAD and LUSC. Even when changing the databases, similar 

times are observed for the entire atlas and its subsets. 

 

Regarding the RAM memory requirement, let's examine the memory usage report of 

NicheNet in the analysis scenario of the entire atlas with the Efremova database (Figure 24). 

It can be observed that when running the method on the head cluster Zeus, it requires 

approximately 30 GB of memory to store the Seurat object on which to operate. Meanwhile, 

the memory usage by the system is similar to that required by scSeqComm. 

 

Figure 24. Memory usage report for NicheNet analysis of entire atlas (Efremova DB) scenario. 
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4.2. Results 

 

4.2.1. Agreement across methods 

 

It is now necessary  to graphically represent, in a clear and effective way to understand 

format,  the quantity of ligand-receptor pairs identified by each method and observe the 

overlap of the output results among the three different methods. To achieve this, Eulero-Venn 

diagrams have been constructed, which allow to easily visualize the number and percentage of 

common and non-common LR pairs in different scenarios (Figures 25-26-27). In these 

Eulero-Venn diagrams, the circles contain the LR pairs found by the methods, and each circle 

is represented with a different colour based on the method. The overlaps between the circles 

indicate the LR pairs shared by the methods, and the numbers observed in the figures indicate 

the number of LR pairs actually present in that area of the diagram; the percentage number 

indicates the percentage corresponding to that number of ligand-receptor pairs out of the total 

LR pairs found collectively by all three methods. 

 

The first observation is that the overlap is relatively light. The limited overlap occurs because 

all three tools have different objectives and therefore produce different measures, leading to 

their agreement falling only on a small number of ligand-receptor pairs. In the analysis 

scenario of the complete atlas with the Efremova database (Figure 25), both scSeqComm and 

CellPhoneDB manage to discover the highest number of LR pairs. Specifically, scSeqComm 

identifies a total of 62 pairs: this number includes 44 LR pairs detected exclusively by 

scSeqComm (depicted in the purple circle), in addition to 4 + 10 + 4 pairs overlapping with 

those obtained by the other 3 methods. Meanwhile, CellphoneDB identifies 50 LR pairs, 

consisting of the 35 pairs detected solely by CellphoneDB, along with 4 + 10 + 1 pairs shared 

with the other methods. 

Their overlap between scSeqComm and CellphoneDB is 14 pairs. This is where the biggest 

overlap occurs. 

NicheNet returns fewer pairs compared to CellPhoneDB and scSeqComm because this 

method has the primary objective, unlike the other two, of finding ligand-target gene 

connections. 
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Figure 25. Eulero-Venn diagram for the entire atlas (Efremova DB).  The overlaps between the circles indicate the LR pairs 

shared by the methods, and the numbers observed in the figures indicate the number of LR pairs actually present in that area 

of the diagram; the percentage number indicates the percentage corresponding to that number of ligand-receptor pairs out of 

the total LR pairs found collectively by all three methods. 

 

 

 

Figure 26. Eulero-Venn diagram for the LUAD subset (Efremova DB). The overlaps between the circles indicate the LR 

pairs shared by the methods, and the numbers observed in the figures indicate the number of LR pairs actually present in that 

area of the diagram; the percentage number indicates the percentage corresponding to that number of ligand-receptor pairs 

out of the total LR pairs found collectively by all three methods. 
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Figure 27. Eulero-Venn diagram for the LUSC subset (Efremova DB). The overlaps between the circles indicate the LR pairs 

shared by the methods, and the numbers observed in the figures indicate the number of LR pairs actually present in that area 

of the diagram; the percentage number indicates the percentage corresponding to that number of ligand-receptor pairs out of 

the total LR pairs found collectively by all three methods. 

 

Whether considering the entire atlas or the LUAD and LUSC subsets, as observed in Figures 

26 and 27, the overlap among the three methods remains quite similar in terms of the number 

of LR pairs found in common among the three methods showing an agreement of almost 

10%, this means that the number of cells considered in the input does not influence the 

analyses. 

What highlights the difference between the LUAD and LUSC subsets compared to the 

analysis performed for the entire atlas is seen in the number of pairs individually found by the 

methods. Specifically, scSeqComm and CellphoneDB find a lower number of LR pairs (54 

and 52 for LUAD, and 35 and 32 for LUSC, respectively). 
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4.2.2. Role of LR databases 

 

To appreciate the differences in using different databases, the following histograms (Figure 

28) were constructed for the analysis conducted on the entire atlas. These histograms allow us 

to understand the actual number of interactions returned as output. 

 

 

Figure 28. Histograms representing the number of LR pairs output by each method with the different databases using the 

entire atlas. 

 

It is easily identifiable that CellPhoneDB and scSeqComm are consistently the methods 

capable of finding the highest number of pairs. As expected, the highest number of pairs 

returned as output is obtained for all three methods with the Browaeys database, which 

initially contains the largest number of LR pairs. This indicates that the number of interactions 

returned as output depends on the ligand-receptor database chosen as input and the number of 

LR pairs it comprises. The greater the number of LR pairs provided as input, the greater the 

number of pairs obtained as output. However, in all cases, NicheNet is the method that returns 

the fewest LR interactions. 
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4.2.3. Detected cell-cell communication 

 

The quickest and most intuitive visualization of the ligand-receptor pairs obtained is provided 

by these circos plots, as previously mentioned, created using the intercellar package. In these 

plots, it can be observed how the ligand identified with HGNC nomenclature [62] is 

connected via an arrow to its corresponding receptor. Additionally, in a second outer circle, 

the ligand/receptor's cellular cluster membership is indicated with different colours. For this 

thesis purpose, the ligand belongs to the tumor cells, which represent sender cluster, while the 

receptor belongs to the immune cells, which represent receiver cell clusters. 

 

These circos plots depicting the analysis scenarios utilizing the Efremova database are worth 

examining. To facilitate visualization and avoid creating an excessively large circos plot, only 

the LR pairs that are found in common among all three methods, as seen from the Eulero-

Venn diagrams, are plotted. These pairs are also the ones with higher reliability and 

interesting biological significance. In Figure 29, we can observe the circos plot obtained for 

the analysis scenario of the entire atlas, while in Figures 30 and 31, respectively, for the 

LUAD and LUSC scenarios. 

 

Figure 29. Circos plot entire atlas analysis scenario (Efremova DB). 
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Figure 30. Circos plot LUAD analysis scenario (Efremova DB). 

 

 

Figure 31. Circos plot LUSC analysis scenario (Efremova DB). 
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4.3. Biological meaning 
 

These circos plots shown in the previous paragraph have enabled the identification of some 

ligand-receptor pairs of interest. In this paragraph, we will see how some of these pairs play a 

significant role in the organization of the tumor microenvironment. 

 

By conducting a research in the scientific literature, it has been observed, for example, that in 

non-small cell lung cancer, the interaction we can see in figure 29, between VEGFA and 

FLT1 plays a significant role in tumor growth and progression. VEGFA promotes the 

formation of new blood vessels (angiogenesis) in tumors, supplying them with nutrients and 

oxygen, and facilitating their growth and metastasis. FLT1, as a receptor for VEGFA, 

mediates the signaling pathways that contribute to angiogenesis and tumor vascularization. In 

NSCLC, overexpression of VEGFA and increased activity of FLT1 are commonly observed 

[63]. This dysregulated VEGFA-FLT1 axis promotes angiogenesis within the tumor 

microenvironment, leading to enhanced tumor growth, invasion, and metastasis. Additionally, 

VEGFA-FLT1 signaling can contribute to treatment resistance by facilitating the development 

of blood vessels that provide a route for tumor cells to escape therapy and metastasize to other 

organs. Targeting the VEGFA-FLT1 axis has been a therapeutic strategy in NSCLC. Drugs 

that inhibit VEGFA or FLT1, such as bevacizumab (a VEGFA antibody) or tyrosine kinase 

inhibitors targeting FLT1, have been used in combination with standard chemotherapy or 

other targeted therapies to disrupt tumor angiogenesis and improve treatment outcomes in 

NSCLC patients.  

The members of the VEGF family perform their functions by binding with their receptors. 

VEGF receptors are categorized into two types: tyrosine kinase receptors (VEGF receptors, 

VEGFR), which include VEGFR-1, VEGFR-2, and VEGFR-3, and neuropilin receptors 

(NRPs), which include NRP-1 and NRP-2. Evidence suggests that VEGF acts in tumors not 

only by promoting angiogenesis but also by directly working on cancer cells. VEGF can 

promote tumor development and progression by interacting with receptors expressed on tumor 

cells through autocrine and/or paracrine mechanisms. In addition to tyrosine kinases, NRPs 

can regulate the function and transportation of growth factor receptors and integrins, thus 

playing a crucial role in mediating VEGF action on tumor cells. However, studies showed that 

blocking endogenous VEGF with bevacizumab, the VEGF antibody, did not inhibit NSCLC 

cell line growth, suggesting that VEGF alone does not maintain lung cancer cell proliferation 

in vitro. The authors Zhao et al. [64] believe that the development of NSCLC is caused by a 
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combination of factors in the TME. Therefore, in a single cell line without tumor angiogenesis 

or TME, blocking VEGF alone does not effectively inhibit tumor cell growth.  It is probable 

that therapy targeting VEGF-VEGFR also acts on the TME to counteract the 

immunosuppression present there, thereby preventing the growth of tumours. The authors 

conclude that immunotherapy and VEGF-VEGFR-targeted therapy together may have more 

effective therapeutic effects on NSCLC. 

 

Now, considering another LR pair that has been found, CXCL1 and its receptor CXCR1, let‟s 

analyse the role of chemokines in NSCLC.  

Chemokines are a family of soluble proteins that direct the migration of leukocytes under 

physiological conditions and during inflammation. They are important in embryonic 

development, activation of the immune response, and in driving both physiological and 

pathological angiogenesis. 

For the past 20 years, there have been studies aimed at understanding the role of chemokines 

in the pathophysiology of cancer. It is currently accepted that the system of chemokines and 

their receptors has direct and indirect effects on the pathophysiology of cancer and that these 

molecules are important in the development and progression of the disease. Chemokines and 

their receptors are regulators of angiogenesis, which allows tumor growth and metastasis. 

Furthermore, chemokines and their receptors mediate the recruitment of cells of the immune 

system such as neutrophils to the tumor microenvironment. These cells actively modify the 

microenvironment; for example, macrophages are recruited by a pro-inflammatory 

environment and contribute to perpetuate inflammation.  

Aberrant angiogenesis occurs in cancer as a result of alterations in the expression of 

molecules controlling the process, such as the chemokines. 

Angiogenesis is important to support tumor growth, while infiltrating cells contribute to the 

tumor microenvironment through the secretion of growth factors, cytokines and chemokines, 

important molecules in the progression of the disease. Chemokines are important in 

development, activation of the immune response, and physiological angiogenesis. In addition, 

chemokines promote tumor cell survival, as well as the directing and establishment of tumor 

cells to metastasis sites. High levels of CXCL1 and CXCR1 expression correlate with 

advanced disease stage, increased tumor aggressiveness, and resistance to therapy [65]. 
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Chapter 5: Conclusion 

 

5.1. Discussion 
 

It is evident from the second and third chapters that the three approaches have different 

analysis strategies, which in turn lead to different implementation procedures needed to run 

the methods.  

 

For instance, scSeqComm performs an analysis of both intercellular and intracellular 

communication, employing a scheme focused on calculating scores for individual ligands and 

receptors, followed by computing an aggregate score to provide an indication of both 

intercellular and intracellular communication. On the other hand, CellphoneDB relies on a 

strategy that computes scores for statistically significant ligand-receptor specificity, utilizing a 

permutation test by randomly permuting cell labels, and it only provides an indication of 

potential ongoing intercellular communication. In contrast, NicheNet differs from the other 

two methods as its main goal is to search for links between ligands and target genes, with the 

analysis shifting to ligand-receptor pair identification only afterwards. 

 

In terms of implementation, scSeqComm proves to be a relatively intuitive computational 

method, as the input data is straightforward to create, and the method relies on a main 

function that takes variables such as LR databases already loaded in the R package, allowing 

users to obtain results for both intercellular and intracellular communication with a single 

function. CellphoneDB, in turn, requires input data that is relatively simple to create but it 

demands the availability of powerful computing machines and the use of dedicated servers, 

which means learning how to use new tools and technologies like job scheduling systems and 

conda environments. 

In contrast, NicheNet necessitates the creation of a prior model as input, complicating its 

implementation. Moreover, its analysis procedure, as seen, involves various steps and separate 

functions operating on a Seurat object, requiring proficiency in its manipulation. 
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From the previous chapter focused on interpreting the results, it is evident that in terms of 

execution times, the fastest methods are scSeqComm and NicheNet, taking approximately 2 

hours to provide outputs when analyzing an atlas comprising around 900,000 cells with 20 

CPU/cores on the head node. In terms of RAM usage, they are comparable. On the other 

hand, because CellphoneDB was started on a different HPCC cluster, its execution timings are 

not exactly comparable with those of the other two approaches, but they are significantly 

longer, taking about 10 hours and 30 minutes to analyse the atlas of about 900,000 cells. 

 

Regarding the results in terms of the quantity of LR pairs obtained as output, as mentioned, 

scSeqComm and CellphoneDB have proven to be the methods that find the greatest number 

of ligand-receptor pairs, while NicheNet, having a different primary purpose, is limited in 

finding a restricted number of ligand-receptor pairs as output. The three methods also exhibit 

a 10% agreement, as shown by the Eulero-Venn diagrams, meaning that 10% of the total LR 

pairs found by the methods are common to all three. This is valid for both altering the input 

LR database and analysing NSCLC subgroups. Moreover, changing the input LR database 

allows for finding a greater number of LR pairs if the LR database input was constructed with 

a higher number of LR pairs. 

 

The main challenges encountered during this thesis project pertain to adapting such a large-

scale atlas to the methods because many operations performed on the atlas require time, and 

attention must be paid to every characteristic and piece of information present in the atlas. 

Waiting for the required computation periods to view the findings of the analysis proved to be 

difficult as well, particularly as it was challenging to simply restart an operation after making 

a mistake. It was also necessary to gain familiarity with the three tools, comprehending the 

techniques they employ for processing data, their analysis frameworks through an 

understanding of the statistics supporting them, their outputs, and the requirements for proper 

implementation. This involved learning two distinct programming languages, R and Python, 

and knowing how to use SGE as well as the properties of a Seurat object. 

 

In accordance with the foregoing considerations, it might be safe to employ scSeqComm as a 

technique to carry out a preliminary analysis of cell-cell interaction, taking advantage of its 

simplicity of use and ability to produce results for both intracellular and intercellular 

communication analyses in a relatively brief period of time. With the 10% agreement, 

however, one possible recommendation would be to use all three tools and take into account 
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only the LR pairs that are found to be common to all three methods, as this thesis has shown 

and is supported by literature to be the most robust result. That is, if time permits for 

conducting the analyses. 

 

5.2. Conclusion 
 

This thesis work has highlighted the lack of running assessments to understand the 

performance and effectiveness of the most recent cell-cell interaction inference tools in real 

application scenarios, particularly in applying these tools to large scRNA-seq datasets. To 

address this gap, the objective was set to apply and compare three computational methods for 

cell-cell communication analysis on a large dataset originating from NSCLC. 

 

It was pointed that there is no benchmark reference in the literature and it was highlighted that 

each tool operates, based on the interaction strengths of ligands and receptors, with different 

analysis structure and each has its advantages and weaknesses.  

Results that allow for the comparison of the three methods in terms of execution times and 

RAM usage were presented. Then the focus was shifted on the most important findings, 

including the agreement across methods, the role of LR databases, and the detected cell-cell 

communication.  

 

The discussion in Section 5.1 has illustrated how the aim of the project of effectively 

comparing the computational aspects and the results obtained from the application of these 

three methods for analyzing cell-cell communication on a large-scale atlas has been achieved. 

Furthermore, an agreement of 10% among the results obtained from the methods has been 

observed, and it has been suggested to prefer scSeqComm for conducting an initial simple 

analysis of cell-cell communication.  

 

Moreover, it is worth noting that incredible advances are currently emerging in inferring cell-

cell interactions and communication from gene expression data. There is significant potential 

for future applications, particularly in biomedicine and biotherapeutics. However, it's 

important to acknowledge that each approach for inferring CCIs and CCC has its own 

assumptions and limitations. Therefore, when utilizing such strategies, it is crucial to be aware 

of their strengths and weaknesses and to select the most appropriate one for analyses. 
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Methodological and technological challenges remain, but many opportunities exist to increase 

our understanding of intercellular interactions. 
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