
Università degli Studi di Padova

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

Corso di Laurea Magistrale in Bioingegneria

Develpoment of new techniques for the automatic assessment
of retinal image quality

Candidato:

Silvia Gazzina
Matricola 1156869

Relatore:

Ch.ma Prof.ssa MariaPia Saccomani

Correlatore:

Dott. Enea Poletti

Anno Accademico 2018-2019

Contents

Abstract v

1 Introduction 1

2 Materials 5

3 Methods 9
3.1 Features Presentation . 9
3.2 Features extraction . 28
3.3 First method: Heuristics . 31

3.3.1 Introduction to heuristics 31
3.3.2 Threshold identification process 32
3.3.3 Heuristics-based algorithm construction 39

3.4 Second method: Support Vector Machines 41
3.4.1 Introduction to Support Vector Machines 41
3.4.2 Mathematical formulation 42

3.4.2.1 Hard margin SVM 43
3.4.2.2 Soft margin SVM 45
3.4.2.3 Kernel trick 46

3.4.3 Proposed procedure 48
3.5 Third method: Deep Learning 55

3.5.1 Introduction to Deep Learning and CNN 55
3.5.2 Proposed CNN architecture 56
3.5.3 CNN training and transfer learning procedure 58

4 Results 61

5 Discussions 65

Conclusions 69

References 71

iv Contents

Abstract

Retinal images acquired by means of digital photography are widely used for
analysis and evaluation of ocular fundus, since they provide in a non invasive
way key diagnostic information for the early detection of retinal pathologies,
such as diabetic retinopathy, glaucoma, macular degeneration and vascular
abnormalities [1]. Nonetheless, the clinical usefulness of an image is highly
dependent on its quality: our goal is to develop an automated system able
to perform a reliable and fast measurement of image quality. In this way, a
real time feedback regarding the quality of the acquired image can be given
to the operator and corrective actions can be taken immediately, avoiding
both waste of resources and inconveniences for the patients [2].

In particular, this work contains the development of three different ap-
proaches that attempt to solve the problem of retinal image quality assess-
ment in different ways: the objective is to analyze their own peculiarities
and drawbacks in order to understand which one is more suitable for the
embedding in an highly automated screening system.

All the methods have been trained and tested on CenterVue proprietary
data sets manually labeled by an expert human observer, which contain both
images acquired with Eidon and with a prototype of fundus camera still in
a development stage.

The results obtained strongly recommend the adoption of the SVM based
method, which presents an acceptable computational complexity and shows
the best performances in comparison with the other two methods developed.

vi Abstract

Chapter 1

Introduction

Retina is a multi-layered sensory tissue that lies on the back of the eye. It
contains millions of photoreceptors that capture light rays and convert them
into electrical signals. These signals travel along the optic nerve towards the
brain, where they are converted into images [3].

There are two types of photoreceptors in the retina: rod cells and cones.
The former are generally located at the periphery of the retina, and used
for scotopic vision. They are sensitive to changes in contrast even at low
light levels, so they are able to detect movement, but imprecise and insen-
sitive to color. On the other hand, cones are high precision cells capable of
detecting colors, and they are mainly concentrated in the macula, the area
responsible for photopic vision. The very central portion of the macula is
called fovea, which is where human eye is able to distinguish visual details at
its best. All the photoreceptors are connected to the brain through a dense
network of roughly 1.2 millions of nerves, that bundle together to leave the
eye through the optic nerve head, called optic disc [4]. In figure 1.1a) the
optic disc is clearly visible, together with the fovea and retinal blood vessels,
that supply oxygen and nutrients to retina’s inner and outer layers. There

(a) Healty retina (b) Pathological retina

Figure 1.1: Comparison of fundus images of an healthy and unhealthy patient

2 Introduction

are several pathologies that can affect the retina, an example of which is
introduced in figure 1.1b). Eye diseases such as diabetic retinopathy, age-
related macular degeneration, glaucoma and vascular abnormalities are very
serious conditions that can be easily detected by visual inspection of eye fun-
dus: digital fundus photography plays a key role in this scenario, because it
provides crucial diagnostic information in a rapid and non-invasive way [1].
Additionally, over the past few years health care systems have been strongly
oriented towards the development of telemedicine systems, in a view of large
scale screening programs. Thus, while the diagnosis is always performed by
an expert ophthalmologist, personnel with varying level of experience usu-
ally carries out images acquisition, subjectively evaluating if they are of
sufficient quality [5]. Hence, it is rather common that low-quality images
are mistakenly accepted, leading to the necessity of a reacquisition, which
is time consuming and expensive [6]. Moreover, image reacquisition implies
delayed diagnosis and treatment, which is potentially dangerous for the pa-
tient: obtaining the highest possible image quality is thus fundamental in
order to enable the clinician to make an accurate and reliable diagnosis and
avoid all the kinds of issues above mentioned.

(a) Poor illumination (b) Poor focus and field definition

(c) Lash artifact (d) Total eye blink

Figure 1.2: Examples of impaired retinal images

3

Besides, there are many factors that may impair retinal image quality,
degrading it to the point of rendering it ungradable. According to a study
performed by the University of Wisconsin-Madison [7], the parameters focus
and clarity, field definition, visibility of the macula, visibility of the optic
disc, and artifacts must be taken into account for the correct evaluation
of retinal image quality. The study found that image artifacts are mostly
caused by the occurrence of haze, presence of dust and dirt, partial occlusion
by eyelashes, improper cleaning of camera lens, uneven illumination over the
macula, uneven illumination of the optic disc and of image edges, and total
eye blink.

Moreover, image quality is an highly subjective concept, and its human
evaluation can vary broadly even among experts, especially when dealing
with images of borderline quality.

Thus, retinal image quality assessment is a very challenging task: con-
sequently, we decided to cope with it by developing three different method-
ologies, all with their strengths and drawbacks, in order to compare them
and understand which one could solve the problem at best.

In the following chapter a brief description of the data sets employed in
order to train and test all the methodologies developed is reported, together
with some details regarding acquisition instruments and their characteris-
tics. Subsequently, in chapter 3 the descriptors adopted and their extraction
process from images is explained. The remaining part of the chapter is ded-
icated to method’s exposure, whose results are then presented in chapter 4.
Ultimately, in chapter 5 a discussion of such results is reported, followed by
a brief description of the future perspectives.

4 Introduction

Chapter 2

Materials

Instruments and data sets

All retinal images employed in this thesis work have been acquired by means
of two different instruments designed and manufactured by CenterVue: the
true color confocal scanner Eidon and a new prototype of fundus camera,
which is still in a development stage. For this reason, in the following we
will give only a few information about its technical specifications so as to
make possible a comparison with Eidon, whose details are instead provided
in figure 2.1. The main technical differences among those two instruments
are regarding their confocality (because Eidon is more confocal than the
other fundus camera prototype), field of view (60◦ FOV Eidon and 45◦

FOV prototype) and resolution (14 MPixel Eidon instead of 8 MPixel pro-
totype). Moreover, their clinical target is quite different: Eidon is a diag-
nostic system, mainly used in specialized clinics by eye care professionals
for the detection of retinal pathologies, while this new instrument has been
mostly conceived for screening purposes. Consequently, it will be an highly
automated system so as it could be employed not only by highly trained
clinicians, but also by personnel with varying level of experience in less spe-
cialized environments.

As regards the data sets used in this work, they represent a very het-
erogeneous sample of retinal images population, since they are composed by
both healthy and pathological images of children, adults and elderly people.
Before their usage, all these images have been anonymized and manually
labeled as of good or bad quality by an expert human observer, as table 2.1
shows. This manual grading represents a fundamental pre processing step
on our data sets, since it is then used in the following by all the methods as
ground truth.

6 Materials

Figure 2.1: Eidon datasheet

Instrument Total Good Bad Size
Eidon 2242 1624 618 3680x3288

Prototype 322 177 145 3046x2630

Table 2.1: Data sets composition

Moreover, it is important mentioning that the numbers of table 2.1 are rel-
ative to the entire data sets, containing images acquired with various fields.
As regards the Eidon data set, we did not make any kind of distinction,
employing it all for the development of the deep learning-based method re-
ported in section 3.5, which requires a huge number of data to be properly

7

trained from scratch. On the contrary, we decided to cream off the data set
hosting images acquired with the prototype, selecting and considering only
the ones with central field (macula-centered). Consequently, we reduced
this data set to 181 images, respectively 95 of good quality and 86 of bad
quality. This choice is driven by the fact that we do not have a sufficient
number of images acquired with other fields to be used for the development
of the first two methods (cfr. sections 3.3 and 3.4), which rely on the ex-
traction of handcrafted features from various images’ ROI (cfr. 3.2). Thus,
with the adoption of such a reduced data set we are able in the end to ob-
tain statistical significant results for the comparison of all the methodologies
developed.

Finally, all the processing made have been carried out with Matlab
R2018b, running on an Inter Core i7- 2600 @ 3.40 GHz with 16 GB RAM
and an enabled GPU Nvidia GeForce GTX 1060-6GB.

8 Materials

Chapter 3

Methods

3.1 Features Presentation

The first two approaches developed for the automatic assessment of retinal
image quality rely on the identification of global and local features, which
are well correlated with human visual perception [2] and thus completely
interpretable. In particular, we decided to extract from images’ regions of
interest generic image quality descriptors, which are introduced in table
3.1. These parameters make use of simple statistical measures based on
image histogram to capture its overall quality content, avoiding eye structure
segmentation procedures, which are complex and error-prone especially in
case of images with poor quality [8].

Brightness

1st Quartile

2nd Quartile

3rd Quartile

Contrast

Kurtosis

Skewness

Focus

Entropy

3 Haralick features

Table 3.1: Descriptors used to determine image quality

As a matter of fact, although literature provides successful examples of com-
bined approaches [9], i.e. solutions that make use of both generic image
quality indicators and structure related parameters, in this pre processing
phase we wanted to keep the computational complexity low, in the view
of developing agile and fast methodologies that can be used in real time
applications.

10 Methods

Each descriptor is computed for the three color channels in different
regions of interest of the image, described in section 3.2. The only exception
is given by the focus descriptor, because it is computed at a global level
rather than on local regions of interest.

In order to better understand the role of each descriptor in highlighting
a specific image characteristic and to prove its sensibility to changes in such
characteristic, we applied several image processing operations intended to
simulate different scenarios of impaired image quality.

First of all, we selected the rectangular ROI shown in figure 3.1a) on
the original image to leave out its black edges, that are not of our interest
for quality assessment purposes. In this way we remove unimportant infor-
mation and include only pixels showing retinal data, simulating the regions
of interest selection process performed when the actual algorithms are de-
veloped. At the same time, we also considered a phantom image with a

(a) Rectangular ROI

(b) Gaussian distribution and original RGB histogram

Figure 3.1

Features Presentation 11

Gaussian pixel intensity distribution: as a matter of fact, as we can notice
from figure 3.1b), the pixel intensity distributions in the three color planes
of the original image are a bit asymmetric compared to it, so we want to
have a theoretical reference to which we can refer to.

Brightness

Brightness is a very simple and powerful descriptor used to capture image
quality, since it is related to the general level of illumination in an image. It
is simply computed by taking the mean value of pixels inside a ROI, and it
relies on the fact that evenly illuminated and bright images present a higher
average.
In order to show it, we added and subtracted the following constant val-
ues c = [0.1, 0.2, 0.3, 0.4, 0.5] to the phantom image and to the three color
channels of the original image. In terms of pixels intensity distribution, the
consequence is a shift of image histogram to the left or to the right without
changes of shape, but with a little saturation effect in 0 and 1, which are
our dynamic range’s limits. Moreover, we can notice from figure 3.3 how

Figure 3.2: Histogram shift

the brightness descriptor respectively decreases and increases compared to
its original value as the histogram is centered into darker and lighter val-
ues: underexposure and overexposure are both factors that contribute in
reducing image quality, and are well captured by this descriptor.

12 Methods

Figure 3.3: Brightness trend

Quartiles

In descriptive statistics, quartiles are values that divide a set of data into
four parts of equal size. Particularly, in this work we have considered:

� First Quartile: defined as the middle number between the smallest
value and the median of image’s pixel intensity distribution.

� Second Quartile: also called median, it divides image’s pixel intensity
distribution into two parts of equal size.

� Third Quartile: defined as the middle value between the median and
the highest value of image’s pixel intensity distribution.

In terms of image quality, quartiles bring an information similar to the one
carried by the brightness descriptor: as a matter of fact, adding and sub-
tracting the same constant values used to validate the brightness descriptor
to the three color channels of the original image and to the phantom Gaus-
sian image, we obtain the linear trends shown in figure 3.4.

Features Presentation 13

(a) First quartile trend

(b) Median trend

(c) Third quartile trend

Figure 3.4: Quartiles trend

14 Methods

Contrast

The contrast measure we adopt in this work is both visual effective and
simple, because it can be expressed by computing the standard deviation of
pixel intensities for each ROI and color channel of the image: low contrast
will reflect in low standard deviation, regardless of overall image brightness.
Conversely, sharp images will present a high contrast value. This concept
is exemplified in figure 3.5, where we can see how different contrast levels
affect image quality.

(a) Low contrast image (b) High contrast image

Figure 3.5: Examples of images with different contrast

In order to demonstrate that this descriptor is actually sensitive to
changes in image contrast, we applied the intensity transformation [10]
shown in figure 3.6 to the three color channels of the original image and
to the Gaussian phantom image, for various values of c.

Figure 3.6: Contrast stretching transformation

Features Presentation 15

The result of this operation in terms of image histogram is shown in
figure 3.7.

Figure 3.7: Changes in Gaussian image histogram for various values of c

In particular, we can notice that:

� for c < 1 the resulting image is smoother. The entire range of input
intensity values is mapped into a narrower range in output, so image
contrast is decreased.

� for c > 1 the resulting image is sharper. As a matter of fact, we map
image input intensity values range into all the available output values,
with a little saturation effect that becomes much more present as c
becomes greater than 1.

Then, we computed the contrast values of all the images derived by ap-
plying the transformation above introduced with various values of c, and
compared them with the contrast value of the original image. The results
obtained clearly show the ability of this descriptor in detecting image con-
trast changes, and are presented in figure 3.8.

16 Methods

Figure 3.8: Contrast trend

Kurtosis

This descriptor is defined as:

k =
E(x− µ)4

σ4
(3.1)

and is computed for each color channel of the original image and for the
Gaussian phantom image.

It is a measure of whether the histogram of pixel intensities is peaked or
flat with respect to a normal distribution, which has a kurtosis of 3. As a
matter of fact, as we can see from figure 3.9, data sets with high kurtosis
(greater than 3) tend to to decline rather rapidly, with long and fat tails, and
they often have a distinct peak near the mean. These types of distributions
are said to be leptokurtic. Vice versa, data sets with kurtosis less than 3
tend to have a flat top near the mean and shorter, thinner tails, so they
are said to be platikurtic. As a result, the former are more outlier-prone,
while the latter produce fewer and less outliers than the normal distribution
does. In terms of image quality, we noticed that this descriptor is sensitive
to both image resolution and lightness homogeneity, but it is hard to provide
a precise visual interpretation.

Features Presentation 17

Figure 3.9: Histogram of the Gaussian phantom image with mean = 0.5, variance
= 0.01 and different excess kurtosis

Figure 3.10: Sigmoid transformation

The transformation showed in figure 3.10 has been exploited to modify
both the Gaussian pixel intensity distribution and the three color channels’
histogram, in order to point out different excess kurtosis cases:

� α > 1: kurtosis decreases, since the central part of input values is
mapped into a wider portion of central output values. Furthermore,

18 Methods

darker (lighter) input values become even more darker (lighter) in
output.

� α = 1: identity transformation. Kurtosis remains the same.

� α < 1: kurtosis increases, as a wide part of central input values is
mapped into a narrower output range. Consequently, as pointed out
in figure 3.11b), we will have a more peaked distribution with heavy
tails.

(a) Decreasing kurtosis

(b) Increasing kurtosis

Figure 3.11: Different excess kurtosis cases

The resulting kurtosis trend is reported in figure 3.12.

Features Presentation 19

Figure 3.12: Kurtosis trend

Skewness

The skewness descriptor is defined as

k =
E(x− µ)3

σ3
(3.2)

and is computed for each color channel of the original image and for the
Gaussian phantom image.

It is a measure of symmetry, or more precisely, the lack thereof. We can
say that a distribution is symmetric if the two tails on both sides of the
mean are the mirror of each other: this is the case of a normal distribution,
which has a skewness of 0. Whereas, left-skewed distributions (also called
negatively skewed distributions) have a long left tail with respect to their
right tail, and are characterized by negative values of skewness. Lastly, right-
skewed distributions (otherwise known as positive skewed distributions) have
a long right tail compared to their left tail, and are characterized by pos-
itive values of skewness. We can appreciate it in figure 3.13. In terms of
visual interpretation, this descriptor is mainly associated with illumination
homogeneity in the image, which is another important factor to be taken
into account when assessing image quality.

In order to enlighten how this descriptor works, the gamma transfor-
mation introduced in figure 3.14 has been applied to the Gaussian phantom
image and to the three color planes of the retinal image, with different values
of γ.

As a matter of fact:

20 Methods

(a) Positive skewed distributions (b) Negative skewed distributions

Figure 3.13: Examples of skewed distributions

Figure 3.14: Gamma transformation

� for γ > 1: the mapping of input values is weighted towards lower
output values. Consequently, skewness increases.

� for γ = 1: each value of the input image is mapped into the same
intensity level in output. Skewness remains the same.

� for γ < 1: the mapping of input values is weighted towards higher
output values. Thus, skewness is decreased.

In the end, from figure 3.15 we can see how skewness changes as γ is mod-
ified. In particular, it is important to notice the different starting points of
the curves, relative to the initial skewness values of the distributions to which
they relate. The curve associated with skewness changes of the Gaussian
pixel distribution starts from 0, while the others are relative respectively to

Features Presentation 21

the red, green and blue channel of the retinal image, which are positively
skewed since the beginning. For this reason they have a positive starting
point, even if it is linked to the situation where the identity transformation
is applied.

Figure 3.15: Skewness trend

Focus

Focus is an essential descriptor to detect image blur, that even on its own
can significantly affect the quality of a retinal image. First of all, in order
to develop and test our focus measure, we artificially degraded a retinal
image blurring it with a Gaussian filter of increasing standard deviation
(σgauss). Then, we built up a Laplacian of Gaussian (LoG) filter trying
out various values of the parameter σLoG, so as to pick up the one with
best performances: namely, this filter must be able to highlight the vessel
component from the background together with the tiny details present in
the image, being at the same time insensitive to noise.

Subsequently, we convolved the original image and its blurred versions
with all the LoG filters candidates. The choice of σLoG = 2.3 turned out
being the best one for our problem, as exemplified from figure 3.16, because,
before the application of the Laplacian operator, it introduces an optimal
smoothing level in our image: as a matter of fact, it is sufficient to erase noise
while preserving image useful information. Moreover we can notice that
when the image is focused, the filter emphasizes all image characteristics
of our interest above listed, while, as soon as the image is out of focus, its
filtered version is smoothed and missing of sharp edges and details. It’s
worth mentioning that the LoG filter highlights regions of rapid intensity

22 Methods

(a) Detail of focused image filtered with
LoG (σLoG = 2.3)

(b) Detail of out of focus image filtered
with LoG (σLoG = 2.3)

Figure 3.16: Examples of LoG filtered images

changes, giving both positive and negative responses depending on whether
a dark edge is detected over a light region or vice versa. Since we are
actually interested in the absolute value of the variation and not in its sign,
we take the absolute value of pixels of the filtered image before computing
the focus descriptor, which is finally defined as the mean value of pixels of
the LoG filtered image. In figure 3.17 we can appreciate the power of this
descriptor in discriminating images with different focus levels: first of all, we
can notice how it is capable of revealing even little amounts of blur, because
there is a difference between the focus value associated with the original
image (σgauss = 0) and the image blurred with σgauss = 1, even if visually
the two images look almost the same. Besides, the focus value computed for
the original image is approximately 10 times greater than the one computed
for the image blurred with σgauss = 10.

Figure 3.17: Focus trend

Features Presentation 23

Entropy

Entropy is a statistical measure of randomness, that can be used to measure
image resolution and contrast. It is defined as:

H = −
∑

p log2(p) (3.3)

where p represents the probability of occurrence of each intensity level in
the image.

In order to understand how this descriptor works, we decided to start
from situations in which we know what to expect in terms of entropy (cases
of constant and uniform image) and we added two different types of noise:
salt and pepper and Gaussian.

As a matter of fact, from equation 3.3 follows that H = 0 for a constant
image, which is characterized from just one level of intensity occurring with
p = 1 allover the image. Whereas, H assumes its maximum value when
image has a pixels’ uniform distribution, i.e. when each intensity level occurs
approximately with the same probability.

In figure 3.18a) we can see how the entropy value of a constant image
varies when adding Salt and Pepper noise with increasing density: progres-
sively, from the only intensity level present in the image with p = 1, other
two intensity levels (0 and 1) are introduced with increasing probability.
Consequently, entropy grows from the initial value of 0. However, repeating
the same process but starting from a retinal image, we obtain the result
shown in figure 3.18b). Of course the starting point is far away from 0, since
a retinal image is characterized approximately by a Gaussian pixel intensity
distribution (especially the red channel), and so by a positive entropy level.

(a) Result of adding salt and pepper noise
with increasing density d to a constant im-
age

(b) Result of adding salt and pepper noise
with increasing density d to a retinal image

Figure 3.18: Examples of images with added salt and pepper noise of increasing
density

24 Methods

The behaviour noticed from figure 3.18b) is qualitatively similar to the
case of salt and pepper noise added to an image with an uniform distribution
of pixels, as we can see from figure 3.19. That’s because, as the salt and
pepper noise density is increased, the probability of occurrence of black and
white pixels increases as well with respect to the occurrence probability of
all the other intensity levels present in the image. As a result, the level of
randomness present in the image is reduced, as well as the entropy level.

Figure 3.19: Result of adding salt and pepper noise with increasing density d to an
uniform image

In the end, we added Gaussian noise with zero mean and increasing
standard deviation both to the constant and to the retinal image. In the
first case, the result obtained in terms of distributions is shown in figure
3.20: we can notice how an increasing number of intensity levels is assumed
by image pixels with increasing probability. For this reason, as confirmed
by figure 3.21a), the entropy level increases with respect to its initial value
of 0. The same behaviour can be traced in case of Gaussian noise added to
the retinal image, as we can see from figure 3.21b). The only difference from
the previous case is the starting entropy level, that of course in this case is
greater than 0.

Haralick features

Haralick features belong to the so called second order statistics, that inves-
tigate the relationship existing between pairs of pixels in an image. This is
opposed to the concept of first order statistics, that are instead measures
linked to the observation of a single intensity level in the image, regardless
of where it is placed. For this reason, Haralick features are related to the
texture information present in an image, that can be derived from the Grey
Level Co-occurrence Matrix (GLCM).

Features Presentation 25

Figure 3.20: Gaussian noise with increasing σ

(a) Result of adding Gaussian noise with
increasing σ to a constant image

(b) Result of adding Gaussian noise with
increasing σ to a retinal image

Figure 3.21

GLCM is a tabulation how of often a pixel with intensity level i falls
next to another pixel with intensity level j in an image, according to a spe-
cific spatial relationship: in particular, in this work we considered couples
of adjacent pixels (i.e. 1 pixel offset) along 4 fixed spatial directions, intro-
duced in figure 3.22. Moreover, because the computational effort required to
compute the GLCM for the full dynamic range of our images is prohibitive,
we scaled them in order to reduce the number of intensity levels from 256
to 8. In this way we also avoid ending up with a matrix full of 0, since it is
very unlikely that intensity levels very far away in the color scale occur next
to each other in the image. By making this choice we determine the size
of the GLCM too, which will be an 8x8 matrix for each spatial relationship
considered. Once the GLCM is computed, it is normalized by dividing up
each of its values for the sum of values of the matrix itself. This allows us
to express it as a probability table, even if in an approximate way.

26 Methods

Figure 3.22: Spatial relationships considered for the computation of GLCM, with
offset D = 1

Figure 3.23: Example of GLCM with horizontal spatial relationship

At this point it is possible to compute the Haralick texture features,
that are statistics measures defined as weighted averages of the normalized
GLCM cell contents [11]. In particular, we have considered:

Contrast h1 =
∑

i,j |i− j|2p(i, j)
This descriptor measures the local variations in the GLCM by us-
ing weights that increase as the distance from the GLCM diagonal
increases: thus, it assumes a value of 0 for a constant image.

Energy h3 =
∑

i,j p(i, j)
2

This descriptor provides the sum of squared elements in the GLCM:
an homogeneous image will be associated with an high value of this
descriptor, at the limit of the value 1 relative to a constant image.

Homogeneity h4 =
∑

i,j
p(i,j)

1+|i−j|
This descriptor is influenced by the homogeneity level of an image.
Because of the weighting factor (1 + |i− j|)−1, it gets small contribu-
tions from inhomogeneous areas, for which i 6= j. Thus, homogeneous
images will be associated with high values of this descriptor.

Features Presentation 27

where i and j are respectively row and column indexes, and p(i, j) is the
(i, j)-th element of the specified GLCM.

Ultimately, since we computed each of these measures for all the spatial
relationships considered, we came up with four values for each feature: the
final Haralick features are generated by taking the mean in all directions.

In order to get an insight of how these descriptors might vary, we added
different levels of Gaussian and salt and pepper noise to the three color
channels of the original image, to a constant image and to a Gaussian phan-
tom image. The results are shown in figure 3.24. The three descriptors are
clearly highly correlated, in particular we can appreciate this looking at the
trends of the Haralick contrast and homogeneity. However, we believe that
their combination can be useful when dealing with the problem of retinal
image quality assessment, since they are all very sensitive even to low levels
of noise added to images.

28 Methods

(a) Haralick contrast trend with increasing
Gaussian noise added

(b) Haralick contrast trend with increasing
salt and pepper noise added

(c) Haralick energy trend with increasing
Gaussian noise added

(d) Haralick energy trend with increasing
salt and pepper noise added

(e) Haralick homogeneity trend with in-
creasing Gaussian noise added

(f) Haralick homogeneity trend with in-
creasing salt and pepper noise added

Figure 3.24

3.2 Features extraction

Feature extraction is the first fundamental step we need to perform once
identified the descriptors of our interest: as a matter of fact, both the
heuristics-based algorithm and the SVM do not require as input the orig-

Features extraction 29

inal images, but a set of features associated with each image present in
the data set. Thus, the main goal of features extraction is to capture the
most relevant information carried by the original data while simultaneously
representing it into a much lower dimensional space [12].

More specifically, even though we decided to focus on images of both the
left and right eye with central field (cfr 2) when developing the algorithms,
in principle we would have to address the problem of retinal image quality
assessment also for images with nasal, temporal, superior and inferior field.
Since these kind of images show different retinal areas, they host in different
positions various anatomical landmarks: for example, images with temporal
field do not enclose the optic disc, but just the fovea and minor vessels, while
images with superior field host the fovea and the optic disc in their inferior
part, with a relative positioning depending on which eye is considered.

All this variability must be taken into account in order to provide valu-
able and non-redundant information to the classification algorithms: thus,
we designed dedicated regions of interest so as to appropriately deal with
all the sort of images that can be acquired.

In figure 3.25 we present all the cases of images introduced above, re-
spectively for the left and the right eye, together with the regions of interest
identified on them. In particular, we decided to employ rectangular ROI to
capture the information relative to the left, right, superior and inferior por-
tions of images with central field, and circular or elliptic ROI in all the other
cases. Moreover, these ROI have been designed manually by using paramet-
ric coordinates: thus, they are potentially suitable also for images acquired
by other instruments with different fields of view and characteristics.

Practically, in the view of developing a fully automated image quality
assessment system, we produced a framework which manages these pre pro-
cessing steps, from image identification to the generation of features vectors,
in a total automatic way. First of all, we prepared the images present in our
data set so that we can recognize directly from the file name their field and if
they are relative to the left or the right eye. Consequently, we have designed
the quality evaluation framework by making a loop in which the images are
loaded one at a time and then processed: in particular, after their identi-
fication, the pixels relative to the appropriate ROI are extracted and used
in order to compute all the descriptors introduced in 3.1. Hence, at every
iteration a features vector for a specific image is produced and temporarily
stored into a matrix, which is progressively filled row by row as images of
that same type are processed. Consequently, we end up with 10 different
matrices (one for each image type), which are then converted into tables
and written into separate Excel files in order to facilitate their readout.

30 Methods

(a) Central field, left eye (b) Central field, right eye

(c) Nasal field, left eye (d) Nasal field, right eye

(e) Temporal field, left eye (f) Temporal field, right eye

(g) Superior field, left eye (h) Superior field, right eye

(i) Inferior field, left eye (j) Inferior field, right eye

Figure 3.25

First method: Heuristics 31

3.3 First method: Heuristics

3.3.1 Introduction to heuristics

The first image quality assessment algorithm developed is the most simple
among all, because it exploits subsets of the quality descriptors introduced
in 3.1 to derive arguments and threshold values capable of discriminating
images of different quality.

In particular, with the view of comparing the performances of different
methods in solving a same problem, we focused on images of both the right
and left eye with central field, which are the same used to train the Support
Vector Machine classifier described in 3.4. In figure 3.26 we can see an
example of such images, along with the regions of interest identified on
them.

(a) Left eye, central field (b) Right eye, central field

Figure 3.26

Notably, the combination of these regions allow us to gain a picture of
the overall image quality, since all images’ significant areas are covered and
the black edges discarded [2]. Either way, the left and central ROIs of the
left eye and the right and central ROIs of the right eye are the ones to care
about the most from a diagnostic point of view, since they host the optic
disc and the fovea. These anatomical landmarks, together with the vessel
component, must remain clearly visible in order to allow the clinician to
make a reliable analysis of the fundus oculi.

For this reason, all the heuristics developed require that some specific
conditions are verified in at least those two regions and one among the three
left over. As a matter of fact, we believe that claiming a quality criterion
to be satisfied for all the regions of figure 3.26 is a too strict demand,
since very often our images show a good level of general quality but at the
same time some localized artifacts, such as partial occlusion by eyelashes in
their upper or lower part: nevertheless, this is not a sufficient motivation to
classify them as ungradable. Additionally, by making this choice we allow

32 Methods

the algorithm to be a little bit more versatile, in particular when dealing
with pathological images, which have completely different characteristics
from the healthy ones: an example of this is introduced in figure 3.26a),
where the pathological condition only affects the features computed in the
right and superior ROI.

3.3.2 Threshold identification process

First of all, before building the actual algorithm’s architecture, we tried
to identify reasonable threshold values for all the descriptors introduced in
section 3.1 and computed for each ROI of the image: as a matter of fact,
making meaningful and effective choices in this preliminary phase of the
algorithm is fundamental in order to develop decision rules that can both
work well on our data and be generalized.

With this in mind, we employed the same image processing techniques
used to validate our descriptors (as explained in section 3.1) in order to
modify in different ways a good quality image, which is used as reference,
and to generate new little training data sets, each holding that image itself
and several its impaired versions (for just one characteristic at a time). Sub-
sequently, we gave these modified images in input to the quality evaluation
framework introduced in 3.2, so as to compute the descriptors for every ROI
of our interest. Thereby we avoid using the features extracted from our
original data set to deduce descriptors’ threshold values and adjust them
on the basis of the specific patterns contained in it, because otherwise we
would enter the field of supervised approaches.

Moreover, since the original data set includes images classified as ungrad-
able for a combination of reasons, we believe it might be more accurate infer-
ring the threshold values for a descriptor on the basis of images we are sure
contain modifications in just that characteristic highlighted by that specific
descriptor.

Brightness threshold identification

The first artificial data set built and given in input to the quality evaluation
framework is composed by several darkened and lightened images compared
to the original one, which instead shows a good level of overall illumination
and for this reason is taken as reference. It is generated by respectively
adding and subtracting the constant values c = [0.1, 0.2, 0.3, 0.4] to the orig-
inal image, exploiting the same procedure adopted for the validation of this
descriptor (cfr. section 3.1).

First method: Heuristics 33

(a) Image darkened by adding c =
0.2

(b) Image darkened by adding c =
0.4

(c) Image lightened by subtracting
c = 0.2

(d) Image lightened by subtracting
c = 0.4

Figure 3.27: Examples of darkened and lightened images

On the basis of the visual result of this operation, which can be appre-
ciated in figure 3.27, we decided to adopt a threshold value only for the
underexposure case, because the lightened images show anyway a good level
of overall quality. In table 3.2 the threshold values adopted to discard un-
derexposed images are introduced. In particular, they are associated with
the brightness values of figure 3.27a).

Central field
tdark

Superior ROI 0.1328
Inferior ROI 0.1930
Nasal ROI 0.2215
Temporal ROI 0.1180
Central ROI 0.0729

Table 3.2: Threshold values for the brightness descriptor

34 Methods

Focus threshold identification

Another important artificial data set produced contains images progressively
out-of-focus, obtained by blurring an original image with a Gaussian filter
of increasing standard deviation σgauss = [4, 8, 12, 16, 20].

(a) Blurred image with σgauss = 4 (b) Blurred image with σgauss = 8

(c) Blurred image with σgauss = 16 (d) Blurred image with σgauss = 20

Figure 3.28: Examples of images with increasing artificial blur

The visual result of this operation is introduced in figure 3.28. Despite
the image smoothed with Gaussian filter of standard deviation σgauss = 4
(figure 3.28a)) could still be considered of good quality for some observers,
we prefer to be conservative and develop an algorithm with strict demands,
which will discard images even with a low level of blurring: for this reason,
we adopt as threshold value for this descriptor the focus value associated
with the image blurred with σgauss = 4: tfocus = 9.9715 ∗ 10−4.

Contrast threshold identification

Subsequently, we need to find appropriate threshold values for the contrast
descriptor, which is another key element helping us discriminating between
good and poor quality images. In order to do so, we produced a data set of
images with lowered contrast in comparison with the original one by simply
multiplying its pixel intensity distribution in the three color channels for the

First method: Heuristics 35

following constant values: c = [0.9, 0.8, 0.7, 0.6, 0.5]. The details about this
operation can be found in section 3.1, and some examples of images with
lowered contrast are shown in figure 3.29.

(a) Original image (b) Low contrast image (c = 0.7)

(c) Low contrast image (c = 0.6) (d) Low contrast image (c = 0.5)

Figure 3.29: Examples of images with lowered contrast

This data set has then been given in input to the quality evaluation
framework, so as to compute the contrast descriptor for all images’ ROIs.

Finally, in table 3.3 we present the threshold values chosen for each ROI,
below which we consider the image with a too low level of contrast to be
considered as of good quality. These values are associated with the contrast
level of image 3.29c).

Central Field
tcontr

Superior ROI 0.0436
Inferior ROI 0.0622
Nasal ROI 0.0900
Temporal ROI 0.0319
Central ROI 0.0405

Table 3.3: Threshold values for the contrast descriptor

36 Methods

Entropy and Haralick features threshold identification

The threshold values for the entropy descriptor and the Haralick features
have instead been derived starting from a data set of noisy images, produced
by adding Gaussian noise of increasing standard deviation σgauss to the
original good quality image considered as reference.

(a) Original image (b) Noisy image (σgauss = 0.03)

(c) Noisy image (σgauss = 0.05) (d) Noisy image (σgauss = 0.09)

Figure 3.30: Noisy images generated by adding Gaussian noise of increasing stan-
dard deviation to the original image

More specifically, we employed two different sets of standard deviation
values:

� σgauss1 = [0.001, 0.003, 0.005, 0.007, 0.009], to derive proper threshold
values for the Haralick features.

� σgauss2 = [0.01, 0.03, 0.05, 0.07, 0.09], to deduce threshold values for
the entropy descriptor.

This choice is driven by the considerations made in section 3.1, where we
noticed how the Haralick features are sensitive to much lower levels of noise
than the entropy descriptor: this is because, although we highlight modifi-
cations in their values using the same kind of mathematical trick, they are
actually sensitive to different image properties.

First method: Heuristics 37

In table 3.4 the threshold values chosen for the Haralick features are
introduced. In particular, an image would be considered of good quality
according to these descriptors if its Haralick contrast value is below th1, its
Haralick energy value is above th3, and its Haralick homogeneity value is
above th4.

Central field
th1 th3 th4

Superior ROI 0.74423 0.1136 0.7237
Inferior ROI 0.5851 0.1043 0.7557
Nasal ROI 0.4758 0.1236 0.7877
Temporal ROI 0.9464 0.1061 0.6906
Central ROI 0.7945 0.1006 0.7143

Table 3.4: Threshold values for Haralick features

Ultimately, in table 3.5 the thresholds values relative to the entropy descrip-
tor are introduced: on the only basis of this descriptor, an image would be
considered as of good quality if its entropy value is below tentr.

Central field
tentr

Superior ROI 7.3975
Inferior ROI 7.5563
Nasal ROI 7.6711
Temporal ROI 7.3457
Central ROI 7.2768

Table 3.5: Threshold values for the entropy descriptor

Skewness and kurtosis threshold identification

Skewness and kurtosis play a relative marginal role compared to descriptors
such as brightness or focus when dealing with the problem of discriminating
images with different quality.

As pointed out in section 3.1, they are useful when considered in combi-
nation with the brightness descriptor, so as we could theoretically have an
information regarding resolution and illumination homogeneity in an image.
However, they are not able to provide good and solid results when taken
into account alone, as we can appreciate by looking at figures 3.31 and 3.32,
which show different cases of images processed so as to modify their kurto-
sis and skewness values. In particular, these images belong to two different
artificial data sets:

� a data set of images with different kurtosis values with respect to
the one assumed by the original good quality image. Particularly,

38 Methods

in order to properly modify its pixel intensity distribution, we used
the sigmoid transformation introduced in figure 3.10 respectively with
α = [1.2, 1.4, 1.6, 1.8] to decrease the kurtosis value and with α =
[0.8333, 0.7143, 0.6250, 0.5556] to progressively increase it.

(a) α = 1.8 (b) α = 0.5556

Figure 3.31: Example of images with different kurtosis value with respect to the
original one

� a data set of images with different skewness values with respect to the
one assumed by the original good quality image. In order to do this, we
exploited the gamma transformation of figure 3.14 with the following
values for the parameter γ: γ = [1.5, 2, 2.5, 3, 3.5] to progressively
increase the skewness value, and γ = [0.6667, 0.5, 0.4, 0.3333, 0.2857]
to instead progressively decrease it.

(a) γ = 0.4 (b) γ = 0.2857

(c) γ = 2.5 (d) γ = 3.5

Figure 3.32: Example of images with different skewness value with respect to the
original one

First method: Heuristics 39

Even if the transformations applied to our original image modify its distri-
bution of pixels according to theory, visually the results are images which,
al least for the case of the kurtosis descriptor, can still be considered of good
quality: thus, it would be hard identifying from them proper threshold val-
ues. For this reason, we decided to avoid using the information carried by
the kurtosis descriptor, because we could not embed it efficiently into the
decision process of this first algorithm.

Besides, figure 3.32b) and 3.32c) show images with modified skewness
that can be considered borderline in terms of quality: consequently, we
decided to adopt their skewness values as thresholds when discriminating
between good and poor quality cases. Nevertheless, the considerations made
at the beginning about the marginal role played by this descriptor still hold,
so we decided to define these threshold values, which are introduced in table
3.6, only for the nasal ROI.

Central field
tskewneg tskewpos

Nasal ROI 0.3384 3.7177

Table 3.6: Threshold values for the skewness descriptor

In this way we make sure that specific cases of images with extreme skewness
values (not included into the range identified by the thresholds of table 3.6)
are detected and correctly classified as of bad quality.

3.3.3 Heuristics-based algorithm construction

Once appropriate and meaningful threshold values have been identified for
all the descriptors of our interest, it is necessary to combine the information
carried by each of them and consequently arrange the actual heuristics-based
algorithm’s structure.

Since the watchwords of this algorithm are simplicity and interpretabil-
ity, we built up an architecture with several nested conditions (all based on
combinations of our descriptors), in a way that allows to minimize the num-
ber of comparisons necessary to understand if an image can be considered
of good quality or not. Moreover, every time a classification is performed, it
is made clear by a brief description why a certain label (0 or 1) is attached
to a specific image. This implies that, in case of rejected image, a real time
feedback suggesting what is the cause of the reduced quality can be given to
the operator, and so a specific corrective action can be taken immediately.

More in particular, the core of the algorithm is built around conditions
on the brightness and the focus descriptor: as a matter of fact, we believe
that if an image is underexposed or overexposed and out of focus, it must
be classified as of bad quality regardless the value assumed by all the other
descriptors, which capture minor aspects of images. Thus, by making this

40 Methods

algorithmic choice, we assign immediately a label of 0 to all the images
which do not pass the test over the brightness and the focus descriptors in
the nasal, central and one of the remaining ROI of the image.

All the images which instead present a good level of general illumination
and focus must satisfy another condition before we assign them a label of
1, because image quality is an elaborate concept, and as such it cannot be
expressed by just two descriptors, no matter how much information they
bring. This condition combines the contrast descriptor, the entropy descrip-
tor and the Haralick features, and must again be satisfied for the nasal, the
central and one among the superior, temporal and inferior ROI (cfr 3.3.1).
If an image passes the test over this condition is finally classified as of good
quality, otherwise it is associated with a label of 0 even if the condition
over the brightness and focus descriptor was verified. If that is the case, a
message saying that the image has a too level of contrast and is too noisy
to be accepted is given to the operator.

Ultimately, the condition over the skewness descriptor has been put out-
side this main framework, because with a simple threshold-based algorithm
like this one we are not able to efficiently integrate it with the rest of our
descriptors. Anyway, we employ it separately in order to be able to identify
anyway extreme skewness cases, which must be rejected.

As a concluding remark, it’s worth noticing that even if the workflow of
this algorithm resembles the one of decision trees in machine learning, the
decisions taken here are not the result of a learning process, nor any infor-
mation regarding the classification error made by the algorithm is used to
modify its parameters and gain better performances. On the contrary, the
actual data set is never used in order to drive the threshold values identifi-
cation process introduced in 3.3.2, but only to test algorithm performances.

Second method: Support Vector Machines 41

3.4 Second method: Support Vector Machines

3.4.1 Introduction to Support Vector Machines

Support vector machines (SVM) are a supervised learning technique that can
be employed for both classification and regression purposes. Nevertheless,
they are most commonly used for classification problems, and as such this
is the task we will use them for in this work. In particular, as we need to
discriminate between good quality and poor quality images, we are in the
setting of a binary classification problem.

Additionally, since we are in a supervised learning context, we have at
our disposal a training set of labeled examples S = (x1, y1), ..., (xn, yn), each
consisting of a collection of features: xi ∈ Rd and yi ∈ {0, 1}.

The goal of SVM, as the one of any other supervised learning technique,
is to learn a model on the basis of the training set, able to predict the target
values (labels) of test samples, given only their features.

What makes SVM so unique is the way this objective is achieved: the
basic idea is to find the best hyperplane that separates all data points of
one class from those of the other class. Typically, if a data set is linearly
separable, there is an infinite number of possible separating hyperplanes,
but the best one picked up by SVM is that with largest margin between
the two classes, so the one that maximizes the distance to the closest data
points of both classes.

Figure 3.33: Different separating hyperplanes for the same data set

This concept is exemplified in figure 3.33. We can see that the green hy-
perplanes on the left are all possible choices, since they are able to perfectly
separate the training data in the two classes. However, we are interested
in classifier’s performance on the testing data rather than on the training
data: the choice of the maximum margin hyperplane of figure 3.33b) allows
a testing point to fall between the hyperplane itself and the outer dotted line

42 Methods

of the margin, and to be anyway correctly classified. Conversely, any green
hyperplane of Figure 3.33a) could not handle a situation like the one just
described (that besides is rather common in practice) without introducing
a misclassification error.

The maximum margin hyperplane is then identified by the so called
support vectors, that are the highlighted points in Figure 3.33b).

SVM can then also be successfully employed when the training data
are not linearly separable or in cases in which a linear decision boundary
does not exist in the original input space. Those situations require little
modifications of the hard SVM approach presented in 3.4.2.1, and they will
be addressed respectively in section 3.4.2.2 and 3.4.2.3.

3.4.2 Mathematical formulation

Our training data consist of the set S = (x1, y1), ..., (xn, yn) collected during
the features extraction step described in section 3.2. The labels yi can be
either 1 or 0, depending on the class to which the corresponding point xi

belongs. Moreover, each xi is a d-dimensional real vector containing the
features extracted from an image.

As explained in section 3.4.1, we want to find the maximum margin
hyperplane that allows to separate the points belonging to the two classes
we are dealing with (good quality vs poor quality images). First of all, we
start giving the following mathematical formulation of an hyperplane: it is
defined through w, b as the set of points such that H = {x|wTx + b = 0},
where w ∈ Rd is the normal vector to the hyperplane, and b is a real number.

Figure 3.34

The margin γ can then be defined as the
distance from the hyperplane to the closest
points of the two classes. Broadly speak-
ing, the distance of a generic point x to the
hyperplane H can be derived as follows: we
consider d as the vector of minimum length
that goes from H to x, and xP the pro-
jection of x onto H. Consequently, we can
write that:

xP = x− d (3.4)

Additionally, as we can see from Fig-
ure 3.34, d is parallel to w, so it can be
stated that, for some α ∈ R:

d = αw (3.5)

Furthermore, xP ∈ H, which implies:

wTxP + b = 0 (3.6)

Second method: Support Vector Machines 43

Substituting (3.4) and (3.5) into (3.6), we obtain that wT(x−αw) + b = 0.
It follows that:

α =
wTx + b

wTw
(3.7)

We can now define the length of d as:

‖d‖2 =
√

dTd =
√
α2wTw =

|wTx + b|√
wTw

=
|wTx + b|
‖w‖2

(3.8)

Finally, we can derive that the margin of H is:

γ(w, b) = min
x

|wTx + b|
‖w‖2

(3.9)

3.4.2.1 Hard margin SVM

The hard SVM rule can be expressed in terms of a constrained optimization
problem [13]:

max
w, b

γ(w, b)

s.t. ∀i yi(wTxi + b) ≥ 0
(3.10)

As a matter of fact, the objective is to maximize the margin under the
constraint that all data points lie on the correct side of the hyperplane. If
we substitute in (3.10) the definition of margin, we obtain:

max
w, b

1

‖w‖2
min
x
|wTx + b|

s.t. ∀i yi(wTxi + b) ≥ 0

(3.11)

At this point we can use the fact that the hyperplane is scale invariant :
γ(βw, βb) = γ(w, b), ∀β 6= 0. It means that w and b can be multiplied
by any constant value, but either way they are going to identify the same
hyperplane. Therefore, we make the following choice to fix the scale:

min
x

|wTx + b| = 1 (3.12)

The re-scaling expressed in (3.12) is an equality constraint, that substituted
in (3.11) leads to the following reformulation of the problem:

max
w, b

1

‖w‖2
s.t. ∀i yi(wTxi + b) ≥ 0,

min
x
|wTx + b| = 1

(3.13)

44 Methods

Finally, given the fact that maximizing 1
‖w‖2 is equivalent to minimizing

‖w‖2 and that, for the optimal solution, the two constraints of equation
(3.13) con be combined, we come up with the final formulation:

min
w, b

‖w‖2

s.t. ∀i yi(wTxi + b) ≥ 1
(3.14)

Consequently, hard SVM searches for w of minimal norm among all the
vectors that are able to separate the data and for which the constraint of
equation 3.14 holds: finding the maximum margin hyperplane boils down
finding w whose norm is minimal.

This new formulation is a quadratic optimization problem (the objective
is quadratic and the constraint is linear) known as the primal problem, that
can be efficiently solved using a quadratic programming (QP) code. Ex-
ploiting the theory of Lagrange multipliers, we can also look at this problem
from another perspective and derive the so called dual formulation, that will
be key in addressing the kernel trick of section 3.4.2.3. First of all, in order
to obtain the dual, we consider the Lagrange multipliers αi multiplied by
each constraint of (3.14), and we subtract these terms from the objective
function:

L =
1

2
wTw −

n∑
i=1

αi(yi(w
Txi + b)− 1) (3.15)

The goal is again to find the optimal values for w and b. Once α is fixed,
we can notice that the problem with respect to w is unconstrained and the
objective is differentiable. Consequently, we set the gradient of L to 0, and
we obtain for the optimal solution:

w =
∑
i

αiyixi (3.16a)∑
i

αiyi = 0 (3.16b)

In particular, equation (3.16a) shows that the vector w can be expressed as
a linear combination of the input data: consequently, it is never necessary to
compute the full vector w, we just need to know the values of αi,∀i = 1, ..n.

Finally, substituting (3.16a) and (3.16b) into equation (3.15), we obtain
the final dual formulation, that shows how the optimization problem only
depends on the inner product of input samples:

LD =
∑
i

αi −
1

2

∑
i

∑
j

αiαjyiyjxi
Txj (3.17)

This function has to be maximized over αi ≥ 0.

Second method: Support Vector Machines 45

3.4.2.2 Soft margin SVM

The problem with the hard SVM formulation is that it assumes the training
data to be linearly separable: it is a rather strong assumption, since in many
practical applications is not verified, and therefore there is not a solution to
the optimization problem previously stated. Soft SVM has been introduced
as a relaxation of the hard SVM rule, that allows the constraint of equation
3.14 to be violated for some of the examples in the training set: this is done
with the introduction of the so called slack variables ξi. These variables
allow the input data to be closer to the hyperplane, or even on its wrong
side, as we can see from Figure 3.35. The optimization problem is then

Figure 3.35: Soft margin SVM

restated in the following way:

min
w, b

‖w‖2 + C

n∑
i=1

ξi

s.t. ∀i yi(wTxi + b) ≥ 1− ξi,
∀i ξi ≥ 0

(3.18)

The objective is to jointly minimize the norm of w (corresponding to the
margin) and the average of ξi (corresponding to the violation of the con-
straints). The parameter C is a penalty parameter, that makes a trade off
between the two terms of the cost function: if it is set to a large value, it
means that it’s very expensive for the constraint to be violated, so the SVM
becomes very strict and tries to get all points to be on the correct side of
the hyperplane, at the expense of solution’s regularity. Vice versa, if C has
a small value, SVM admits more ”slack” and is more loose. The final result

46 Methods

is then a balance between the need of having a model that is both simple
and well explanatory of the useful information carried by the input data.

Even in this case of soft SVM we can derive a useful dual formulation,
following the same procedure adopted previously:

max
α1, ..., αn

∑
i

αi −
1

2

∑
i

∑
j

αiαjyiyjxi
Txj

s.t.
∑
i

yiαi = 0,

0 ≤ αi ≤ C

(3.19)

The only difference from equation (3.17) is the second constraint, that ba-
sically keeps the allowable values for the Lagrange multipliers in a bounded
region between 0 and C.

3.4.2.3 Kernel trick

In many practical classification problems it can happen that a linear deci-
sion boundary does not exist: such cases can still be handled with SVM, by
employing the so called kernel trick. It basically allows us to use the frame-
work of linear classifiers in a much higher dimensional feature space, with
on top a computationally efficient implementation. Formally, we can apply
the following feature transformation to our input training vector x ∈ Rd:
x 7→ φ(x), where φ(x) ∈ RD. Usually, D � d, because our objective is
to add dimensions capable of capturing non linear interactions among the
original features, in order to make them more expressive of the variance of
our data. Consequently, this new representation is very effective in decreas-
ing bias, since it makes the image of data linearly separable in the feature
space. In figure 3.36a) we can see an example of data non linearly separable
in the original input space: clearly, if we use the soft margin SVM classifier
in such a situation we would obtain miserable results in terms of perfor-
mances, as shown in figure 3.36b). By applying the simple feature mapping:
φ : (x1,x2) 7→ (x1,x2,x

2
1 + x2

2) data are projected into a 3D space, where
they become linearly separable and so a linear separating hyperplane can be
found (in this case a plane, as we can see from figure 3.36c)).

Second method: Support Vector Machines 47

(a) Data points in R2 (b) Failing of linear classifier

(c) Projection of data points in R3

Figure 3.36

However, the problem is that φ(x) might become very high dimensional
in practical applications, so performing its calculation and store it in memory
would be unbearable for computational issues. In addition, we would need
many more samples in order to learn a classifier in this higher dimensional
feature space.

A common solution to deal with this problem is the so called kernel trick,
that owes its name to the use of kernel functions: they enable us to work in
a high dimensional feature space without the need of expressing the explicit
mapping φ or even computing the entire vector φ(x). As a matter of fact, as
we can see from the dual formulation of equation (3.19), the classifier only
depends on the inner product computation between all pairs of samples.
Consequently, by applying the theory of maximum margin classifiers to the
mapped data set, we can reformulate (3.19) in the following way:

48 Methods

max
α1, ..., αn

∑
i

αi −
1

2

∑
i

∑
j

αiαjyiyjφ(xi)
Tφ(xj)

s.t.
∑
i

yiαi = 0,

0 ≤ αi ≤ C

(3.20)

Besides, we can define the kernel function as K(xi,xj) = φ(xi)
Tφ(xj): it

takes the feature vector x as input and directly returns the value of the inner
product of the mapped data points in a high dimensional feature space.
The main advantage of such a kernel function is that the complexity of
the optimization problem remains bounded by the dimensionality of the
input space, not the feature space, and for this reason the kernelized SVM
formulation is very computationally efficient.

3.4.3 Proposed procedure

In the following we show the adopted procedure and the reasoning at the
basis of the SVM framework adopted.

First of all, since SVM requires that each data instance is represented
as a vector of real numbers, we need to process our images in order to
extract from them the descriptors introduced in section 3.1. This is done
in a specific features extraction step, reported in section 3.2, whose output
is a table in which each row corresponds to an image and each column to
a feature computed for that image. Notably, the last column of this table
contains the labels assigned to the images by an expert human observer,
which will be used as ground truth when evaluating the performances of
this method.

Before starting the tuning phase of the algorithm, we need to perform
an important pre processing step, that consists in scaling the features: this
is also known as data normalization, and has a critical influence in all the
subsequent operations carried out by the machine learning algorithm. As a
matter of fact, if the range of data varies widely, this might lead to numeri-
cal difficulties during the calculations. Equations 3.17 and 3.19 clearly show
how the optimization problem only depends on the inner products between
data instances: consequently, we want to avoid having attributes in broader
numerical ranges dominating others in smaller numerical ranges. In partic-
ular, the normalization is performed by centering and scaling each column
of the table containing the training data by the weighted column mean and
standard deviation, respectively. Notably, the same scaling is then used for
the correspondent validation set when evaluating model performances (in a
cross validation setting).

Moreover, since we don’t have any missing value in the table, we don’t
need to perform additional pre processing steps or any kind of data cleaning,

Second method: Support Vector Machines 49

so the normalized table of data is ready to be used as input of our learning
algorithm.

The first matter we need to address after data pre processing is the
non linearity of our problem. As outlined in 3.4.2.3, the solution is kernel
based learning, so we need to make a proper choice of the kernel function.
Although we could define a custom kernel, the Gaussian one turned out
being notably suitable for our specific application, since it enables us to
operate in an infinite dimensional feature space:

K(xi,xj) = e−γ‖xi−xj‖2 = e−
‖xi−xj‖

2

σ2 (3.21)

with γ > 0.

In general, a kernel function can be interpreted in terms of similarity
measure between vectors: the Gaussian kernel expresses it as a decaying
function of the Euclidean distance between vectors. That is:

� the more xi and xj are close together, the more ‖xi−xj‖2 will be small
and K(xi,xj) moves towards 1.

� on the contrary, the more xi and xj are far away, the more ‖xi − xj‖2
will be large and K(xi,xj) get close to 0.

Thus, closer vectors have a larger Gaussian kernel (i.e. are more similar)
than farther vectors.

The parameter γ controls the spread of the Gaussian kernel and basically
defines how far the influence of each support vector reaches, so it is an index
exploited to weight the distance between vectors:

� the more γ is large, the more the Gaussian function is narrow and thus
selective: it is sufficient a little displacement of a sample point from
one of the support vectors to bring K close to 0.

� if γ is set to a small value, then the Gaussian function is less selective,
and thus K goes to 0 more slowly as the distance between points and
support vectors increases.

Consequently, γ has a nice interpretation as the reverse of the radius of a
sphere centered on the support vectors: all the points inside the sphere can
be considered similar to the support vector at the center. So the more γ
is large, the more the radius of each sphere is small, and thus the number
of points that will be considered similar to the support vector at the center
will be less. This concept is exemplified in figure 3.37. The choice of a
proper value for such a parameter is not a trivial task, since it takes into
account different aspects of the problem: for example, if we expect to have
a lot of noise affecting our features, it would be wise not to choose a too
large value for γ. As a matter of fact, as γ increases the more complex

50 Methods

(a) Data points (b) C = 1, γ = 0.1

(c) C = 1, γ = 5 (d) C = 1, γ = 30

(e) C = 1, γ = 50 (f) C = 1, γ = 100

Figure 3.37: Role of γ: decision boundaries for a non linear classification problem
with different hyper parameter values (C fixed, γ varied)

the model becomes: we can see this from the increasing number of support
vectors that are selected by the classifier to build the decision boundary in
figure 3.37. In the extreme case of γ = 100 all the points are considered
support vectors, and the training error goes down to zero: we are in a clear
overfitting condition.

Before moving to the explanation of the tuning phase of our algorithm,
it is important to address the role of the other important hyper parameter
of the algorithm, which is the penalty factor C introduced in 3.4.2.2. Since

Second method: Support Vector Machines 51

our problem has a huge number of features, we prefer to give an intuition of
what is the effect of different values of C with the same simple example used
above to understand the role of γ, but this time keeping γ fixed to 1 and
varying C. As we can see from figure 3.38, the more we increase C, the more

(a) Data points (b) C = 0.1, γ = 1

(c) C = 1, γ = 1 (d) C = 100, γ = 1

(e) C = 1000, γ = 1 (f) C = inf , γ = 1

Figure 3.38: Role of C: decision boundaries for a non linear classification problem
with different hyper parameter values (γ fixed, C varied)

costly becomes to violate the constraint of equation 3.18: consequently, the
classifier tries to become more flexible in order to get all points to the correct
side of the margin, at the expense of solution regularity. Conversely, with
small values of C we allow the model to misclassify some training data in

52 Methods

the interests of obtaining a smoother solution.
Once understood the role played by both C and γ with a simple example,

we now need to find the optimal hyper parameter values for our specific
problem, choosing their best possible combination. As a matter of fact, an
optimization procedure carried out over C and γ together is key in order
to build a classifier which not only works well on training data, but most
importantly is able to generalize to unseen data. Consequently, we decide
to devote half of our entire data set to this tuning phase of the algorithm:
with this choice of a sufficient large and thus representative sample of our
data we are confident that the couple (C, γ) picked in the end is entirely
reasonable. The approach adopted in this work for the hyper parameter
optimization is a telescopic grid search: basically, this method consists in
evaluating different combinations of (C, γ) values in order to find the one
with the best cross-validation accuracy.

More in detail, we further divide our ”tuning” set into K different folds:
for all the couples (C, γ) considered, each of these K folds is used in turn
to validate the classifier trained on the others K − 1 folds. At the end of
this cross validation process we come up with K measures of performances,
which can be averaged in order to produce a single error estimation for each
pair (C, γ). For our specific application we observed that a value of K = 2
is a proper setting in order to both obtain reliable performance measures
and avoid overfitting.

Another point that we need to take into account is that an exhaustive
search over C and γ can be really time consuming and expensive in terms
of computational power. For this reason we decide to start with a coarse
grid, so as to locate on that a ”good” region where it is worth focusing and
doing a finer search: these steps are shown in figure 3.39, where the areas
in which the misclassification error is lower are highlighted with shades of
blue.

According to the theory, we should now pick the couple (C, γ) associated
with the highest cross validation accuracy, which is placed on the dark blue
point on the top of the blue area of figure 3.39a), associated with the value
of C = 1.3895 and γ = 8.6851. Nevertheless, as we can see from that same
figure, there are many possible and reasonable choices for these parameters:
we prefer to be conservative and settle down approximately in the middle of
the blue area, instead of picking the couple that works best on our training
data, but is placed close to a region (the green one of figure 3.39b)) where
performances get quickly worse. In this way we certainly avoid achieving
high training accuracy and thus overfitting our data.

The next steps we need to perform after tuning algorithm’s hyper pa-
rameters are training the classifier and testing its performances. Ideally, this
last step should be carried out on a data set completely independent from
the ones exploited for model tuning and training, in order to get unbiased
performance measures. However, we can’t afford to discard any data, so

Second method: Support Vector Machines 53

(a) Coarse grid

(b) Finer grid

Figure 3.39: Grid search over C and γ with 2-fold cross validation

this approach is not suitable for our purposes: a possible solution would be
devoting a very small portion of data set for model tuning and then discard
it, but in this case we could hardly obtain reliable values for C and γ. Con-
sequently, we decide to adopt a strategy that allows us to employ all data
available, even if in this way we get performance measures that we can trust
approximately at 50%.

First of all, we put together again the ”tuning” data set with the rest of
our samples. Then, we perform 3 fold cross validation on this set keeping
the values of C and γ fixed to the one selected in the previous step, using
in turn each fold as validation set for the model trained on the other two
folds. Conceptually, we know that:

54 Methods

� one fold will be composed by data never seen by the algorithm before.
Consequently, the ”partial” performance measures derived from this
fold are completely trustworthy.

� one fold will instead contain data totally used for algorithm’s tuning.
Thus, we know that the performance measures resulting from this fold
are going to be overoptimistic.

� one fold will be composed by roughly half unseen data and half tuning
data. Therefore, we obtain a performance measure that, in terms of
reliability, is intermediate compared to the ones obtained in the other
two folds.

Nevertheless, the data set partition we select randomly divides the observa-
tions into 3 disjoint subsets, so we are not actually getting folds composed
as described above. However, the results obtained in practice are exactly
the same, because independently on how we divide the data, we know for
sure that half of them have been used by the algorithm and half are new for
it.

Third method: Deep Learning 55

3.5 Third method: Deep Learning

3.5.1 Introduction to Deep Learning and CNN

The third and last method that we want to develop in this work addresses the
retinal image quality assessment problem through a deep learning approach.
As a matter of fact, even if with the SVM-based method previously described
in section 3.4.3 we expect to gain good performances, in the last few years
deep learning has became progressively more integrated with ophthalmic
care [14], thanks to the remarkable performances demonstrated.

Basically, deep learning is a branch of machine learning that attempts to
model high-level abstractions in data by using multiple processing layers [15].
In particular when dealing with images, the tool of Convolutional Neural
Networks (CNN) is adopted, because it holds the important property of
translation invariance and allows us to contain the number of parameters the
network has to learn with respect to a fully connected neural network. As a
matter of fact, in order to use the conventional framework of neural networks
for image recognition, we would have to vectorize images before feeding them
as input to the network, consequently loosing all the information deriving
from their 2D structure. Moreover, in that scenario, each image pixel would
turn into a neuron of the network, and consequently the number of weights
and biases to learn would dramatically increase. On the contrary, with
CNN we can directly give the entire images as input to the network, which
then processes them with a succession of hidden layers, before producing
the final classification in output. This way to proceed strongly differentiates
this approach to both the heuristics and SVM-based methods previously
developed, which instead rely on handcrafted and well interpretable features
to extract useful information from data.

Nevertheless, CNN’s number of parameters is anyway huge, so a very
large data set is necessary in order to make the training of such a network
from scratch, with randomly initialized weights. For this reason, we designed
an architecture with a limited number of hidden layers, so as to be sure a
proper training could be performed with the number of data at our disposal.
The details about this designing phase of the network are reported in section
3.5.2. Then, in order to make a fair comparison between the performances
achieved with this method and the ones obtained with the previous two
approaches developed, we had to fine-tune the network so as it could be
able to classify images acquired with the prototype: section 3.5.3 reports all
the steps of this transfer learning process, together with the choices made
during network’s training.

56 Methods

3.5.2 Proposed CNN architecture

The deep convolutional neural network architecture adopted is shown in
figure 3.40, and it is composed by two convolutional layers, both followed by
a batch normalization layer, a ReLu activation function and a max pooling
layer. Then, there is a fully connected layer as last learnable layer before
the softmax function and the classification output.

Figure 3.40: CNN architecture developed

Basically, network structure starts with an image input layer, which
takes as input randomly selected patches of size 548x613x3 from our original
images. As a matter of fact, even if in general with CNN we are allowed
to give raw images in input to the network, so as it can learn on its own
significant features and patterns in data, we anyway performed some pre-
processing steps in order to reduce their initial size. This is because images of
Eidon data set employed to train the network are of size 3288x3680x3 pixels,
thus, without any kind of downsizing, intermediate storing of training data
batches resulted unfeasible both in terms of memory and speed requirements.

Consequently, we adopted the following solution: first of all, we selected
the squared ROI shown in figure 3.41 from all our original images, so as
to discard the black edges at their corners. Then, random patches of size
548x613x3 are cropped from these squared ROI and finally given in input
to the network, which thus is trained with images of dimension equal to
1
6 of their original size. This solution, as can be appreciated from figure
3.42, allows also to improve network’s ability to generalize and correctly
label images with some sort of distortion, given that these patches are taken
randomly and as such they show different retinal image areas.

These patches are then processed through a convolutional layer, consist-
ing of 16 learnable kernels of size 5x5: basically, such a layer applies sliding
convolutional filters to the input by computing the dot product between

Third method: Deep Learning 57

Figure 3.41: Squared ROI selected

Figure 3.42: Examples of random patches

the input itself and its weights, adding then a bias term. This operation
produces 16 feature maps, subjected to a batch normalization before going
through the ReLu activation function, which effectively removes negative
values from such features maps by performing a threshold operation. More
specifically, the normalization step placed between the convolutional layer
and the non linearity is performed in order to reduce network’s sensitivity
to weights and biases random initialization.

In the end, a max pooling layer performs a downsampling operation of
the feature maps previously produced so as to reduce their size and remove
redundant information, before giving them in input to a second convolutional
layer, this time consisting of 32 kernels of size 3x3, followed again by a
succession of batch normalization, ReLu and max pooling layers. By way of
illustration, figure 3.43 provides an example of features maps produced in
output by the second convolutional layer of the network.

58 Methods

Figure 3.43: Examples of features extracted by network’s second convolutional layer

The last layer with learnable weights is a fully connected layer, with a
number of outputs equal to 2, since we are dealing with a binary classi-
fication problem. This layer contains information on how to combine the
features extracted by network’s previous layers, and it is followed by a soft-
max layer and a classification layer, which respectively produce in output
class probabilities and final labels.

3.5.3 CNN training and transfer learning procedure

Once network’s architecture has been designed, the training step has been
performed by using the Eidon data set introduced in section 2, which in
particular consists of 2242 images manually labeled by an expert human
observer. We decided to devote 90% of these images to network’s training,
and the remaining 10% to network’s validation and testing phase.

In particular, the network has been trained by using the stochastic gradi-
ent descent algorithm (SGD), which updates network’s parameters (weights
and biases) in order to minimize a non-convex loss function [16, 17]: this
represents one of the major differences between this approach and the SVM
method introduced in section 3.4, which instead is a convex optimization
problem, and as such it is guarantee that the optimal solution is reached at
the end of the minimization process, regardless parameters’ initialization.
On the contrary, with neural networks parameters’ initialization matters,
and there are several options we need to properly set in order to find a good
solution.

More specifically, with the SGD algorithm the loss function is minimized

Third method: Deep Learning 59

by taking small steps in the direction of the negative gradient of the loss:

θl+1 = θl − α∇E(θl) (3.22)

where l represents the iteration number, α > 0 is the learning rate, θ is the
parameter vector and E(θ) is the loss function.

The gradient of the loss function, ∇E(θ), is evaluated by using a subset
of training set data, called mini-batch. Consequently, the result is just an
estimation of the real gradient, that instead would be computed by the stan-
dard gradient descent algorithm employing all the training data available.
Conversely, SGD takes a more noisy path towards the solution, thus avoid-
ing being trapped in bad local minima and saddle points. Each evaluation
of the gradient using mini-batch is an iteration, and, at each iteration, the
algorithm takes one step towards minimizing the loss function. The full pass
of algorithm over the entire training set across mini-batches is an epoch.

As regards our specific problem, we made the following choices in order
to properly train our network:

� the initial learning rate has been set to 10−2 and reduced by a factor
10 every 2 epochs. In this way, at the beginning (first two epochs) the
steps taken along gradient’s direction are pretty large, so as small local
minima are avoided. Once network’s starts learning, we periodically
reduce the size of these steps in order to properly converge to the
solution.

� the mini batch size has been set to 30: this choice is driven by the fact
that lower batch sizes led us to worse solutions in terms of accuracy,
but at the same time higher values caused memory problems and longer
training times.

� during network’s training, a validation step is performed at the end
of every epoch, in order to both understand if there are overfitting
problems (which would cause a gap between training and validation
error) and to stop the training if the validation loss does not decrease
after a number of epochs that we set to 15. This is second stop criterion
in addition to the one associated with the maximum number of epochs,
which has been set to 100.

Once the network has been trained, the following step consists in fine-
tuning its parameters so as to specialize it to the classification of images
acquired with the prototype instrument, which are different from the ones of
the Eidon data set, as explained in chapter 2. In this way, a fair comparison
can be made between the performances achieved with this method and the
ones relative to the heuristics-based and SVM algorithms, which instead are
trained with images acquired with the prototype from the beginning.

The intermediate usage of Eidon data set with this CNN-based method
has been necessary in order to properly train the network: as a matter of

60 Methods

fact, the prototype data set considered consists of just 181 images, and this
is not a sufficient number to make a proper CNN training, because, even if
the network has a simple architecture like the one we designed, its number of
parameters is anyway huge. For this reason, we adopted such data set only
for the transfer learning process, which allows to quickly transfer network’s
learned features to a new task by using a smaller number of training images.

In particular, we just updated fully connected layer’s parameters by using
the same training options previously reported, while keeping freezed all the
remaining weights and biases associated with the previous convolutional
layers: this is simply done by setting their learning rates to zero. In this
way, our network employs the rich features representations learned during its
actual training phase in order to extract information from the new images,
while at the same time learning how to combine such information into class
probabilities and labels by updating fully connected layer’s parameters.

Chapter 4

Results

This chapter presents the classification results of the three image quality
assessment algorithms developed and introduced in the previous sections.
In particular, we will perform this analysis following the same order adopted
for methods’ exposure, and using the same statistical measures to describe
the performances of all of them, so as to facilitate their comparison.

More specifically, we decided to report for each method the confusion
matrix, which is the starting point to compute all the statistical measures
we could be interested to, together with three specific indexes: sensitivity,
specificity and accuracy. This choice is driven by the fact that they are the
most widely used measures able to express in an immediate and effective
way how much good and reliable our classifiers are. Before giving their
actual formulation, it is important to clarify the terminology adopted for
our specific setting:

� True Positives (TP): number of images which have been evaluated as
of good quality by an human observer and correctly classified as such.

� True Negatives (TN): number of images which have been evaluated as
of bad quality by an human observer and correctly classified as such.

� False Positives (FP): number of images which are evaluated as of bad
quality by an human observer and wrongly classified in the class of
good quality images.

� False Negatives (FN): number of images which are evaluated as of
good quality by an human observer and wrongly classified in the class
of bad quality images.

Finally, sensitivity, specificity and accuracy have been computed according
to the following equations:

Sensitivity

TPR =
TP

P
=

TP

TP + FN
(4.1)

62 Results

Sensitivity, also called True Positive Rate (TPR), measures the pro-
portion of actual positives (good quality images) that are correctly
identified as such. The higher the sensitivity value, the less likely the
classifier will return FN results.

Specificity

TNR =
TN

N
=

TN

TN + FP
(4.2)

Specificity, also called True Negative Rate, measures the proportion of
actual negatives (bad quality images) that are correctly identified as
such. The higher the specificity value, the less likely the classifier will
return FP results.

Accuracy

ACC =
TP + TN

P +N
=

TP + TN

TP + TN + FP + FN
(4.3)

Accuracy measures the proportion of correctly classified images (both
TP and TN) among our total population of images. It represents the
ability of a classifier to correctly differentiate between good and poor
quality cases.

It’s worth mentioning that, even if neither sensitivity nor specificity are in-
fluenced by the prevalence of the good quality class over the bad quality
one [18], we used a balanced data set for all the methods developed: in
particular, as stated in chapter 2, we have at our disposal 181 images with
central field, divided in 86 bad and 95 good by an expert human observer.
These images represent a reduced version of the prototype data set, which
contains also images with other fields, for a total of 322 images (177 good
and 145 bad).

As regards the heuristics-based algorithm, the results introduced in table
4.1 have been obtained by computing all the descriptors defined in section
3.1 (except for the kurtosis one), for all images’ ROI and considering only
the value they assume in the green channel.

As a matter of fact, even if the quality evaluation framework described
in section 3.2 extracts each feature for all images’ color channels, with this
simple algorithm we would not get any benefit in including such sophisti-
cated information into the decision making process. Therefore, we chose to
employ the features computed for the green channel because it shows the
highest contrast with respect to the red and blue channel and it is the most
invariant to age (and this is a factor we need to take into account considering
the heterogeneous composition of our data sets).

63

True class
Good Bad Total

Predicted class
Good 64 32 96
Bad 31 54 85
Total 95 86 181

Table 4.1: Confusion matrix for the heuristics-based algorithm

On the other hand, the results relative to the Support Vector Machine
algorithm, introduced in table 4.2, are obtained by using the entire table of
features generated by the quality evaluation framework, which includes all
the descriptors computed for all images’ ROI and color channels.

True class
Good Bad Total

Predicted class
Good 74 14 88
Bad 21 72 93
Total 95 86 181

Table 4.2: Confusion matrix for SVM algorithm

As concerns the results relative to the CNN architecture developed, we
obtained a 72,45% training and 72,32 % testing accuracy using the Eidon
data set. However, in order to perform a fair comparison with the other
two methods, we would have to employ the same kind of images used for
both the heuristics-based and the SVM algorithms. For this reason, we fine
tuned our network with transfer learning, so as to specialize it for the task
of classifying images acquired with the prototype. In table 4.3 the confusion
matrix relative to such fine tuned network is reported. In particular, the
total number of images tested has been 181, in a cross validation setting
with 2 folds.

True class
Good Bad Total

Predicted class
Good 78 29 107
Bad 17 57 74
Total 95 86 181

Table 4.3: Confusion matrix for CNN architecture adopted

Finally, in table 4.4 the statistical measures of sensitivity, specificity and
accuracy are reported for each of the three methods developed, so as to
facilitate their comparison.

Method Sensitivity Specificity Accuracy

Heuristics 0.6737 0.6279 0.6519
SVM 0.7789 0.8372 0.8066
Deep Learning 0.8210 0.6628 0.7458

64 Results

Table 4.4: Methods performances comparison

Chapter 5

Discussions

Although literature provides many works related to the topic of automatic
retinal image quality assessment [20, 21, 22], no method or approach can
be considered established because better than the others, given the broad
range of different applications and aims associated with this research field.
For this reason, we considered appropriate not to discard a priori any kind
of solution: we started with the development of one simple algorithm based
on heuristics, whose details can be found in section 3.3.

This method presents several advantages, first and foremost its simplic-
ity, speed and interpretability: as a matter of fact, it does not fit in the
field of machine learning supervised techniques, and as such it does not re-
quire any sort of initial training, which can take a significant amount of
time. Moreover, its architecture has been optimized so as the minimum
number of comparisons is required in order to perform the classification of
an image. As regards its interpretability, all the threshold values chosen are
supported by strong and solid arguments based on the descriptors defined
and validated in 3.1, and so it is easy to understand why an image is clas-
sified into a certain category. This also implies that if we are not satisfied
with the classification results, either because the algorithm tends to be too
sensitive or too specific, it is possible to tune one or more of its parameters
to accordingly change its behaviour as desired, since all the choices made
are arbitrary and based on subjective evaluations. This point in particular
strongly differentiate the heuristics-based algorithm from all the supervised
learning techniques further developed, whose decisions are based on more
complex models and as such are not directly and easily manageable.

However, as any other technique, this method has also some drawbacks
arising from its intrinsic simplicity, which was the characteristic that made
us consider this algorithm as a good candidate in the first place. As a matter
of fact, finding reasonable and solid threshold values for all the descriptors
considered turned out being troublesome, especially for those based on sec-
ond order statistics, which express an information not directly visible into

66 Discussions

the images. In order to efficiently embed such an information, we would have
to employ more complex and sophisticated techniques, which would also al-
low more versatility when dealing with pathological images. This is in fact
another critical point of this heuristics-based algorithm, despite the choices
made during its designing phase so as to make it less strict and suitable for
a broad range of heterogeneous images. Furthermore, in the light of the re-
sults achieved by applying this algorithm to our specific data set, we decided
it was worth moving towards the development of a more elaborate approach.

The Support Vector Machine algorithm finds its place in this framework,
and it actually represents our preferred choice among the three methods de-
veloped, since it is complex enough to capture and explain the variability
present in our data set, while keeping the computational burden totally
affordable. Moreover, the number of hyper parameters we need to set is
limited to the only values of C and γ, for whose choice we adopted the well-
established technique of telescopic grid search, which ensures an exhaustive
search is performed. Additionally, the results obtained with this solution are
quite satisfactory, considering also that our data set includes several images
of borderline quality, which are an hard challenge even for an expert human
observer. Besides, as we can see from table 4.4, the algorithm is very spe-
cific, so we can consider it as a trustworthy detector of good quality, which
is one of the goals we wanted to achieve.

Lastly, the CNN architecture developed in this thesis work represents
the most complex solution adopted, that we considered in the first place
for the remarkable performances demonstrated and reported in literature.
However, in order to make possible its development, we had to make since
the beginning some specific and constrained choices, which certainly affected
the goodness of the results obtained in the end.

First of all, the number of data needed to train such a network is huge,
and our Eidon data set consists in a few thousands images, as pointed out in
chapter 2: this has limited our flexibility during network’s designing phase.
As a matter of fact, if we build a more complex architecture than the one
adopted and explained in section 3.5.2, the number of parameters that the
network would have to learn would be too high compared to the number of
data at our disposal. This restriction led us also to the necessity of cropping
the original images given in input to the network, so as to reduce them to
a size that it could manage. However, even if the choice of cropping the
images rather than downsampling them allows us to keep the focus infor-
mation and their original resolution, it is an undeniable drawback, whose
price is paid in terms of results: as a matter of fact, as we can see from table
4.4, the accuracy achieved by this classifier after the transfer leaning step is
75%, which is quite low is we think to the potentiality of this deep learning-
based methodology and to its complexity. Moreover, the results show also

67

that the algorithm tends to be more sensitive rather than specific, so the
number of false positive results is higher than the false negative ones: this
characteristic is opposite to the one we are seeking in a classifier, because
for our application we believe it would be more cost effective reacquire an
image wrongly rejected by our classifier rather than mistakenly accept and
thus classify a bad quality image as of good quality. Ultimately, the com-
putational power required and the time needed to train the network have
turned out being significant even with such a little architecture, so it has
been hard finding a successful trade off between these practical constraints
and the necessity of obtaining an accurate solution by ensuring a proper
convergence of the minimization algorithm.

These limitations, together with the general lack of interpretability of
this approach, made us incline towards a more simpler solution like the
SVM one, whose embedding into a screening-oriented instrument would be
easier and preferable, especially in the view of a real time usage.

68 Discussions

Conclusions

The main objective of this thesis has been addressing the problem of retinal
image quality assessment by adopting solutions which rely on methodologies
very different from each other, in order to compare them and determine
which one should be preferred in the view of an embedding in a highly
automated screening system.

In particular, we started our analysis with the heuristics-based algorithm,
which represents the simplest solution developed in this work, moving then
to the field of supervised machine learning techniques so as to investigate
the more sophisticated approaches based on SVM and CNN.

The results obtained clearly show the superiority of SVM on our data
set in comparison with the other methods, both in terms of performances
achieved and computational power required. As a matter of fact, the heuris-
tics based algorithm turned out being too simple to explain the variability of
our data and thus properly address such a complex problem, regardless its
advantages in terms of interpretability and quick computation. The strong
points of this heuristics based algorithm are instead the shortcomings of the
deep learning approach, which hence represents a quite opposite solution
to the problem: nevertheless, even the CNN architecture adopted does not
provide the results expected. In particular, with SVM the accuracy gained is
81%, in contrast with the 75% and 65% respectively obtained with the deep
learning approach and the heuristics based algorithm. In the light of these
results and arguments, SVM represents our final choice, even if further re-
finements are required in order to make this solution even more reliable and
accurate. In particular, this improvement will be achieved when more data
will be available, so as the model could be trained on a more representative
sample of retinal images population.

As well as regards the deep learning approach, a potential direction for
a future work oriented towards an improvement of the results obtained cer-
tainly relies on the need of more data. As a matter of fact, a more large
data set would allow the network a much complete and effective training
than the one performed in this work, together with more flexibility in terms
of designing choices. Either way, more computational power than the one we
have now at our disposal would be required in order to handle an eventual
increased complexity of network’s architecture and much longer and inten-

70 Conclusions

sive training. Furthermore, as suggested by [19], an immediate enhancement
could be obtained refining the pre processing step of this algorithm, so as
to give in input to the network not some random patches extracted from a
cropped version of our images, but patches centered on specific image areas
containing for example anatomical landmarks, that must remain visible for
quality assessment purposes. In this way, a more precise and structured
information could be given to the network, which will be trained on an
automatically more numerous data set. In the end, these patches would
be combined during algorithm’s testing phase so as to produce an unique
classification for the image to which they are associated.

Once adopted these solutions and gained better performances on a much
larger data set, it could be interesting developing a fourth approach, based
on a combination of deep learning and SVM, so as to complement their
strength and thus obtain an highly accurate solution for our problem. In
particular, we could employ the rich features representations learned by the
CNN architecture on a large and representative data set in order to train
the SVM model: in this way, we could also have a better insight of the
descriptive power of our handcrafted features in comparison with the ones
deriving from a completely black box approach as the deep learning one.

Bibliography

[1] Yu H., Agurto C. et al Automated image quality evaluation of retinal
fundus photographs in diabetic retinopathy screening. SSIAI, 2012

[2] Davis et al. Vision-based, real-time retinal image quality assessment.
22nd IEEE International Symposium on Computer-Based Medical Sys-
tems, 2009

[3] Cassin, B. & Solomon, S. Dictionary of Eye Terminology. Gainsville,
Florida: Triad Publishing Company, 1990

[4] Jonas, J.B., Schneider, U. & Naumann Count and density of human
retinal photoreceptors. Archive for Clinical and Experimental Ophthal-
mology 230: 505-510

[5] Costa P. et al. EyeQual: Accurate, Explainable, Retinal Image Quality
Assessment. 16th IEEE International Conference on Machine Learning
and Applications, 2017

[6] Paulus J. et al. Automated quality assessment of retinal fundus photos.
International Journal of Computer Assisted Radiology and Surgery, vol.
5, pp. 557-564, 2010

[7] Opt. Department of F.P.R.C. Visual Sciences of the University of
Wisconsin-Madison. ARIC Grading Protocol, 1995

[8] Dias P., Oliveira M. Retinal image quality assessment using generic
image quality indicators. Elsevier, 2012

[9] Pires Dias et al. Retinal image quality assessment using generic image
quality indicators. Elsevier, 2014

[10] Gonzalez RC, Woods RE Digital Image Processing. Addison Wesley,
US, 1992

[11] Haralick R.M. et al. Texture Features for Image Classification. IEEE
Transactions on Systems, Man and Cybernetics, vol. 3, pp. 610-621,
1973

72 Bibliography

[12] Gaurav Kumar et al. A detailed review of Feature Extraction in Im-
age Processing Systems. Fourth International Conference on Advanced
Computing and Communication Technologies, 2014

[13] Scholkopf B. et al. Learning with Kernels: Support Vector Machines,
Regularization, Optimization and Beyond. MIT Press Cambridge, MA,
USA, 2001

[14] Parampal S. Grewal et al. Deep learning in ophthalmology: a review
Canadian Journal of Ophthalmology, 2018

[15] Saha et al. Automated Quality Assessment of Color Fundus Images
for Diabetic Retinopathy Screening in Telemedicine. Journal of Digital
Imaging

[16] Bottou L., Stochastic Gradient Descent Triks. Springer, Berlin, Heidel-
berg, 2012

[17] Gardner W.A. Learning characteristics of stochastic gradient-descent
algorithms: A general study, analysis and critique Elsevier Signal Pro-
cessing, vol. 6, pp. 113-133, 1984

[18] Parikh et al. Understanding and using sensitivity, specificity and pre-
dictive values. Indian Journal of Ophthalmology

[19] Mahapatra D. et al, CNN based neurobiology inspired approach for reti-
nal image quality assessment. Conf Proc IEEE Eng Med Biol Soc. 2016

[20] Lee SC., Wang Y. Automatic retinal image quality assessment and
enhancement. Proceedings of SPIE Medical Imaging Processing,
3661:1581-1590. SPIE (Washington, DC 1999)

[21] Lalonde M., Gagnon L. et al Automatic visual quality assessment in
optical fundus images. Proceedings of Vision Interface 2001, Ottawa,
259-264

[22] Fleming AD et al. Automated Assessment of Diabetic Retinal Image
Quality Based on Clarity and Field Definition. Investigative Ophthal-
mology and Visual Science, vol. 47, pp. 1120-1125, 2006

