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Chapter 1

Introduction

The birth of modern cosmology dates back to the second decade of the 20th
century, when Einstein formulated his theory of General Relativity. Einstein
equations, together with the Cosmological Principle, which states that the
Universe is both homogeneous and isotropic, allowed the formulation of the
Standard Hot Big Bang Model. It was Friedmann in 1922 who derived
mathematically the equations describing the evolution of a homogeneous
and isotropic Universe, which are a a set of two equations

.\ 2
2_ (G _8 o Kk
H _<a> —377Gp ol (1.0.1)
H+H2—é——%7TG( + 3p) (1.0.2)
= =—37G(p+3p), 0.

where a(t) is the scale factor, p and p are the density and the pressure of
the fluid constituting the Universe and k is the curvature parameter which
can be +1,0,—1 depending on whether the shape of Universe is a closed
3-sphere, flat or an open 3-hyperboloid. Usually we refer to this kind of
cosmological model which evolution is given by the Friedmann equations
and which metric is the Robertson-Walker metric as Friedmann-Robertson-
Walker (FRW) Universe. One of the most interesting point of this model,
which was initially difficult to acknowledge, is that our Universe is evolving.
The first proof of the expansion of our Universe came in 1929 when Hubble
observed that the Galaxies were moving away from the Earth, then in 1965
the discovery of the Cosmic Microwave Background (CMB) radiation was
immediately considered as another good evidence of an evolving Universe
which was hotter and denser in the past. However, even though the Hot
Big Bang model had achieved great successes like predicting light-element
abundances produced during cosmological nucleosynthesis and explaining
how the CMB cooled, some problems remained unsolved: the cosmological
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1. Introduction

horizon, the question of why the Universe is so close to being flat and the
monopoles problem. The general features of these problems are:

e Horizon problem: CMB photons, which are propagating freely since
they decoupled from matter at the moment of last scattering, appear
to be in thermal equilibrium at almost the same temperature (AT /T ~
107%). The most natural explanation for this is that the Universe
has indeed reached a state of thermal equilibrium through interactions
between the different regions before the last scattering, this means
that the cosmological scales we can now see must have been casually
connected before the decoupling of radiation from matter. But this is
not possible in the Standard Hot Big Bang model, in fact there was no
possibility for the regions that became casually connected recently to
interact before the last scattering because of the finite speed of light.

e Flatness problem: this problem regards the value of the density of the
Universe. We define the ratio between the density of our Universe p
and the density of the Universe if it would be flat p. = 3H?/(87G) as
Q = p/pe. The first Friedmann equation can be written in the
form

||
a?H?
In the Standard Hot Big Bang model we expect that a?H? decreases,
hence ) moves away from one, for example

0—1| = (1.0.3)

Matter domination |Q — 1] o #2/3,

Radiation domination | — 1]  t.

So this means that if the Universe is flat then it stays flat forever
otherwise the discrepancy between our Universe and the flat Universe
would increase in time, in other words {2 = 1 is an unstable critical
point. From the observations we know that today |Q(tpew) — 1| < 1072
[1], so we can say that our Universe is very close to be a flat one. This is
quite surprisingly because it means that in the past 2 must have been
much closer to one, moreover there are not known reason for which
the Universe density should be exactly p.. On the other side, if in the
primordial Universe there was a tiny departure of ) from 1, it would
have been magnified during billions of years of expansion to create a
current density very far from the critical one.

e Monopoles problem: modern particle theories predict a large variety
of "unwanted relics", which would violate observations. These are
very massive particles which can be produced in the primordial Uni-
verse like magnetic monopoles, domain walls, supersymmetric particles
(gravitino). We expect a huge contribution to the density of the Uni-
verse from these particles for two reasons: they are massive and they
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must be produced in great quantities (Kibble mechanism) [2]. So we
would expect from them to become the dominant material in the Uni-
verse. However our observations don’t show any contribution to the
density of the Universe from these particles so during the history of
Universe something must have happened that in some way erased the
contribution of cosmic relics.

These problems were the signal that new physics was needed and this led
Guth to the formulation in 1980 of a new theory that was able to overcome
these problems: cosmological inflation [3, 4] [5]. It consists of a period of
accelerated expansion in the very early Universe, 10~34s after the Big Bang.
Mathematically this request of accelerated expansion translate into the fol-
lowing condition on the scale factor ¢ > 0. Since the result of the Standard
Hot Big Bang model were undeniable, inflation wasn’t proposed as an alter-
native model to describe our Universe but just as an epoch which takes place
in the very early Universe, then comes to an end and it is followed by the
conventional behaviour. The inflationary solutions to the problems outlined
above are

e Horizon problem: inflation ensures that the portion of the Universe
which was casually connected in the past was bigger than it is now.
This allows an homogenization of the property of the Universe also on
large scales. In other words the region of the Universe we can see after
(even long after) inflation is much smaller than the region which would
have been visible before inflation took place.

e Flatness problem: during the period of accelerated expansion the den-
sity parameter €2 is brought back to one since {2 — 1 decreases expo-
nentially. So, if €2 is close enough to it at the end of inflation, it will
stay very close to it right to the present, despite being repelled from
one as soon as inflation ends and starts the FRW Universe predicted
by the Standard Hot Big Bang model.

e Monopoles problem: the accelerated expansion epoch in which consists
the inflationary model dilutes the density of unwanted relics. The
result is that the contribution of these unobserved particles to the
Universe density is negligible. Obviously this require that between the
end of inflation and the beginning of the FRW Universe occurs the
process of reheating which turns the energy density of the Universe
into conventional matter without creating the unwanted relics.

The observations helped to constrain the duration of the inflationary epoch.
From the request that the cosmological scales of the order of the ones which
we observe now are casually connected and the value of 2 predicted by the
theory corresponds to the one observed [I], we inferred that inflation must
have lasted at least 60 + 70 e-folds.
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The power of inflation not only resides in the fact that it was able to
answer the question left unresolved by the Hot Big Bang model, but it also
provided some predictions which we recently found to be totally compatible
with the measurements of the WMAP [6] and Planck [7] satellites. Firstly
the inflationary paradigm tells us how an homogeneous and isotropic FRW
Universe arises and in second place it provides an extremely appealing ex-
planation for the formation of structure on large scales and the inhomo-
geneities of the CMB (AT/T ~ 107°) through the generation of primordial
perturbations. Microscopic quantum fluctuations get stretched by inflation-
ary expansion to macroscopic scales, larger than the horizon, so no causal
physics can affect them. Thus after a perturbations exits the horizon re-
mains frozen with constant amplitude until it re-enters the horizon at a later
time, when inflation has ended. One of the most important success of the
inflationary theory is its prediction of almost scale invariant power spectrum
of primordial fluctuations [8 9] [10].

Since Guth proposal of an inflationary epoch [3], the theory of inflation
has been studied and developed with great efforts |11}, 12] [13] 14}, 15]. Now
the usual way to treat inflation is through a scalar field called the inflaton
which under specific conditions on its potential acts like an effective cosmo-
logical constant (slow-roll inflation). The primordial perturbations are gen-
erated by the fluctuations of this field around its vacuum state and they are
then promoted to classical perturbations at the time of horizon exit. These
scalar perturbations induce small perturbations in the local density, which
grow because of gravitational collapse and ends up by building the large scale
structures we observe today in the Universe. On the other side we have small
perturbations of the metric that, in the same way of the inflaton perturba-
tions, when stretched outside the horizon they become classical producing
anisotropies in the CMB. The BICEP2 experiment [16, [I7] claimed to have
detected for the first time in 2014 these tensor perturbations or primordial
gravitational waves.

Nowadays inflation is considered a central paradigm in cosmology but
there are still many aspects which are unknown, for example the potential of
the inflaton. To unravel these pending questions we can count on experimen-
tal data, which precision is increasing greatly. An example is the detection of
primordial gravitational waves, cited above, by BICEP2 which, if confirmed
by other experiments, will set bounds on the energy at which inflation took
place (~ 10'® GeV) and hence put constraints on the potential of the in-
flaton. The CMB spectrum is the most useful observable, in its shape are
encoded large amounts of information even on the very early Universe.

A key role in a further understanding of the physics of inflation is played
by the ratio between the tensor modes and the scalar ones, which is usu-
ally called r. This quantity tells us in which proportion scalar and tensor
perturbations were produced in the early Universe and it is of paramount
importance in order to catalogue the possible inflationary models. Hence a
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better measure of r will help to understand the correct model [I§]. Moreover
for a single-field slow-roll inflation the tensor to scalar ratio is linked to the
tensor spectral index n; by r = —8n;, which is called consistency relation.
If the experiments confirm this relation it would be an indisputable proof
of the fact that inflation has actually been driven by a single scalar field
otherwise it would mean that we need to consider alternative scenarios in
which maybe there are more fields |19, 20]. The most challenging part from
the experimental point of view, is to increase the accuracy in the measure of

While on one side we are receiving new experimental data with growing
accuracy, on the other side we need theoretical models which help us to
interpret those data. For this reason, in the last years, many efforts were
spent on building several models for inflation, in particular great attention
was dedicated in the construction of an effective field theory (EFT) for single-
field inflation. This approach is very useful because it allows to write a very
general theory relying only on the symmetries of the system and for which the
leading contribution can be encoded in a finite number of operators. Moved
by these recent developments in this field, this Thesis was conceived with
the aim of understanding the basis of this new EFT approach to inflation
and with the purpose of evaluating how the consistency relation r = —8ny
is modified in this scenario.
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This Thesis is divided into five parts.

In Chapter [2] we will study the theory of cosmological perturbations,
we will see how the perturbations are defined in cosmology and their
geometrical interpretations. We will also discuss the important issue
of the gauge dependence of the perturbations. In conclusion we will
analyse what the Einstein equations predict for the evolution of the
perturbations.

In Chapter [3| we will focus on the dynamics of inflation, we will intro-
duce the inflaton field and study the slow-roll inflation. We will also
calculate the power spectra for both scalar and tensor perturbations.
The last step will be explicitly finding the important relation between
the ratio of the two power spectrum 7 and the spectral index of tensor
perturbation n;: the so called consistency relation r = —8ny.

In Chapter [4 we will consider one of the most recent approach to the
study of inflationary perturbations: the effective field theory approach
[86, OT]. This approach consists in writing the most general action for
the inflaton perturbations starting from the underlying symmetries.
Once we will have write the theory in its most general form we will
check that particular models already studied in the literature can be
found by setting the parameters of the theory to particular values and
we will compute the power spectra.

In Chapter [5| we will see how the different terms of the effective action
modify the consistency relation introduced for the slow-roll inflation.
This calculation is intended to be something original since in the lit-
erature there are no example of explicit calculations of a "generalized
consistency relation" which takes into account the different operators
that appear in the effective action.

In Chapter [6] we summarize the results found and we discuss them.

Finally, we set the notations used throughout this Thesis. We choose the
metric with the following signature (—, +,+, +). We will use the dot above
a function to indicate the derivative with respect the cosmic time ¢ while we
will use the apostrophe to indicate the derivative with respect the conformal
time 7 which is defined in the following way:

dt
= [ —. 1.0.4
r= [ (1.0.4)
So if we have a function f the derivatives are expressed as
. df ,_df df
f=S F=S fi=af = (1.0.5)
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With V,, we call the covariant derivative. The Hubble rate H is defined as
the ratio .
=2, (1.0.6)

a

and we introduce also the conformal Hubble parameter
H=aH, (1.0.7)

which will be helpful to express some results while dealing with cosmological
perturbations. When dealing with the perturbations in Chapter [2, we will
generally use a number between parenthesis to indicate the order of the
perturbation. We use this notation in order to avoid misunderstandings
between the component of the tensors and the order of the perturbation.



Chapter 2

Cosmological perturbations

The first question we are going to answer in this section is: why do we need
to study perturbations in cosmology? The main point which led to develop
this formalism is the ineffectiveness of a homogeneous model in describing
the complexity of the actual distribution of matter and energy in our ob-
served Universe where stars and galaxies create clusters and superclusters of
galaxies across a wide range of scales. The Standard Hot Big-Bang Model
successfully described many observational characteristics of our Universe: its
expansion and consequent cooling, the abundances of light nuclei, the CMB
freely propagating since the last scattering. Even though these results out-
lined the effectiveness of this model, newer observations strongly reinforced
the need for a further step: the presence of non-baryonic matter (dark mat-
ter), the structure of the Universe on large scales, the presence of anisotropies
in the CMB indicating that the early Universe was not completely smooth.
To understand these facts it is necessary to go beyond the Standard Model
of Hot Big-Bang. Nevertheless there are few exact solutions of General Rela-
tivity that incorporate spatially inhomogeneous and anisotropic matter and
hence geometry. For this reason small perturbations are the right tools to de-
scribe anisotropies (we know they are of order AT/T ~ 107°) and structures
formation on large scales.

In order to answer the opening question, a better description of the real
physical Universe forced to include in the theory the perturbation approach.
We start from a spatially homogeneous and isotropic FRW model as a back-
ground solution with simple properties, within which we can study the in-
creasing complexity of inhomogeneous perturbations order by order.

Throughout the study of cosmological perturbations we will encounter
different types of perturbations, such as scalar, vector and tensor perturba-
tion modes, which play different roles in the evolution of the early Universe.
These perturbations were produced during inflation as quantum fluctuations
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of the field leading inflation and then they evolved; for example scalar per-
turbations of the metric coupled to the density of matter and radiation and
they are responsible for the most of the inhomogeneities and anisotropies
in the Universe. These primordial perturbations slowly increased in ampli-
tude due to gravitational instability to constitute the structures we see today
on large-scales in the Universe. In a non expanding background this would
have led to an exponential instability, while in an expanding Universe the
gravitational force is counteracted by the expansion, so there is a power-law
growth of perturbations instead of an exponential one. Inflation also gen-
erated tensor fluctuations in the gravitational metric, the so-called gravity
waves. These are not coupled to the density (for more details see [2I]) and
so are not responsible for the large-scale structure of the Universe, but they
induce perturbations in the CMB.

In our analysis of perturbations we will encounter the so called gauge
issue which is directly inherited from the theory of General Relativity. If
we call Mg the background manifold with Robertson-Walker metric (FRW)
and My, the manifold of the "real" physical Universe with little inhomo-
geneities and anisotropies, then a generic map ¢ is called a gauge if it links a
point in the background to the corresponding physical one by adding a little
perturbation:

MQ — Mphys

O5 Do) = ponys (1) = po(t) + 0p(@, 1)

(2.0.1)
where pg(t) can be for example the background value of the matter density. A
gauge transformation, let it call v, is a change in the correspondence between
background and physical points, keeping the background coordinates fixed.
So if ¢1 and ¢o are two different gauge choices which associate two different
points in M,,,s to the same point in Mg then 9 can be represented by

o5}

P2
MO Mphys

Figure 2.1: gauge transformation.

Obviously physics is invariant under gauge transformations and so we
can choose every time the most suitable gauge to work with, to make eas-
iest the calculations process. Because of the freedom in the choice of the
gauge, not all the perturbed metrics correspond to perturbed space-times:
it is possible to obtain an inhomogeneous form for the metric g, (Z,t) in
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a homogeneous and isotropic space-time by an inconvenient choice of coor-
dinates. Hence it is important to be able to distinguish between physical
(geometrical) inhomogeneities and mere coordinates artefacts. In this situa-
tion using gauge-independent variables, which are independent by the choice
of gauge, is helpful because it gives an exact physical interpretation in the
sense that these variables represent the same physical quantity in each gauge.
For example also in electromagnetism we encounter the same problem and
it is clearly easier to work with the electric and magnetic fields rather than
the gauge-dependent scalar and vector potentials.

The pioneering work on perturbations in FRW cosmological model is the
one of Lifshitz in [22] and summarized by Lifshitz and Khalatnikov in [23].
Then the subject was studied by many authors, the texts [24], 25| 26] treat
cosmological perturbations in some details. The gauge-invariant approach
was pioneered by Bardeen in [27) 28] and by Gerlach and Sengupta in [29].
Then this gauge-invariant approach to the problem was studied extensively
in [30% 3], 132), [33], it has been applied to construct a self-consistent quantum
theory of metric perturbations in |34} B35], to investigate eternal and stochas-
tic inflation in [36, 37, [38], to follow the dynamics of inflationary Universe
models in [39] and to analyse the stability of inflation in higher derivative
theories of gravity in [40]. Den and Tomita have extended the gauge invariant
formalism to anisotropic cosmologies [41] 42]. A gauge invariant formalism
based on the 341 Hamiltonian form of the General Relativity was developed
by Durrer and Straumann in [43]. Most of the works done during all these
years in the field of cosmological perturbations are reviewed in [44].

2.1 Defining perturbations

First of all we recall the assumptions we are going to make:

e our Universe can be described at zero order by a homogeneous and
isotropic Friedmann-Robertson-Walker (FRW) space-time;

e we consider a flat Universe.

So, according to our assumptions, the background space-time is described
by a flat FRW metric which we can write as

ds* = a®[ — dr® + §;;dz"da’], (2.1.1)

where a = a(7) is the scale factor. We recall that 7 is the conformal time
which is linked to the cosmic time ¢ by t = [ a(7)dr.

Another consequence of these assumptions is that we can decompose the
physical quantities into a homogeneous background part, depending only on
the cosmic time or alternatively the conformal time, and an inhomogeneous

10
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perturbations. If we consider a generic tensorial quantity, we can hence write
it in agreement with our assumptions as

T(7,%) = To)(7) + 6T (7, &) (2.1.2)

where T(g) is the background value, 67" is the perturbation and 7 is the
conformal time. Moreover the perturbation part can be further expanded as
a power series

0T (7,E) =Y —6T () (7, E) (2.1.3)

where the subscript n denotes the order of the perturbations and € is a small
paramete]l] Clearly this series contains an infinite number of terms but one
has to take into account only a few depending on the situation: if the aim is
to study linear perturbation theory then it is enough to consider only first
order terms (the ones proportional to €) and neglect the others, otherwise it
would be necessary to consider also higher order perturbations. From now
on we will omit the small parameter e.

It is convenient to slice the space-time manifold into a one-parameter
family of spatial hypersurfaces of constant time, which is the standard 3+1
split of space-time. This foliation was firstly introduced by Darmois in 1927
and popularized by Arnowitt, Deser and Misner [45] and for further details
one can read the reference [46]. The foliation is given by spatial hypersurfaces
of given conformal time and we call it time slicing while we refer to the
identification of spatial coordinates on each hypersurface as the threading.
As a consequence of this slicing, we can split our tensorial quantities into
spatial and temporal parts as following.

2.1.1 Split of vectors

We can split any 4-vector into a temporal and a spatial part
Vi = (VO VY. (2.1.4)

Note that the temporal part V? is a scalar on spatial hypersurfaces. The
spatial part can be further decomposed into a scalar part V and a vector
part Vviec,

Vi=§V;+ VL, (2.1.5)
where V. ; = 9V/027 while the vector part satisfies V,%./0x* = 0. The
derivatives are defined with respect to the flat space metric of the back-

ground. The names "scalar" and "vector" parts were introduced by Bardeen

!The index labelling the perturbation order will be always written inside parenthesis
and from now on it will appear indiscriminately as high or low index basing only on the
presence of other indices.

11
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in [27] and are due to the transformation behaviour under a change of coor-
dinates of V and V. on spatial hypersurfaces [47]. The decomposition of
a vector field into a curl-free and a divergence-free part in Euclidean space
is known as Helmholtz theorem. Furthermore we have more constraints in
our case because we are working on a FRW Universe which is in particular
isotropic. As a consequence at zeroth order in perturbations there can’t be
spatial vector part otherwise there would be a preferred direction while there

can be a non vanishing temporal part:

Voy 20, Vg =0. (2.1.6)

Consequently we expect a non zero vector part only at first or higher order
in perturbations.

2.1.2 Split of tensors

As for vectors, we can decompose a rank-2 tensor into a time part and spatial
part but now there are also mixed time-space parts. We take for example
the metric tensor g, which by definition is symmetric and hence has only 10
independent components in 4 dimensions. First we split our metric tensor
into a background part and a perturbed one using (2.1.2))
_(0) 2

G = G + 69 = a”(T)Nuw + 69y, (2.1.7)
and then we split the perturbation into different parts labelled scalar, vector
and tensor according to their transformation properties on spatial hypersur-
faces. Thus we can write the perturbations for the metric tensor as:

8900 = —2a°¢, (2.1.8)
5901' = a2Bi, (2.1.9)
59@']’ == QCLZCU. (2110)

As stated before, we can further decompose the 0i and the ij perturbations
as:

B; =B ;- S, (2.1.11)

1
Cij = —¢dij + E i + Fi j) + §hij, (2.1.12)
with F; ;) = %(FH + sz) After all these decompositions we end up having
four scalar perturbations ¢, B, ¢, and E, two vector perturbations .S; and F;
and only one tensor perturbation h;;. Each 3-vector, such as B ;, constructed

from a scalar is necessarily curl-free B |; j = 0. Instead vector perturbations
are divergence-free. Finally there is h;;, a tensor contribution which has the

12



2.1. Defining perturbations

following properties:

hij = hji simmetric,
hi 7 =0 transverse, (2.1.13)
ht=0 traceless.

In terms of degrees of freedom, we have four of them coming from the four
scalar functions, six from the two spatial vectors and nine from the tensor
function. But there are also constraints to take into account: two for the
divergence-free constraints on the vector functions and seven for the symmet-
ric, traceless and transverse constraints on the tensor function. Subtracting
the number of constraints from the number of degrees of freedom we are left
with ten degrees of freedorrﬂ which are exactly the number of independent
component in a symmetric 4-dimensional tensor like the metric g,,,,. The rea-
son for splitting the metric perturbations into scalars, vectors and tensors is
that the governing equations decouple at linear order and hence we can solve
each perturbation type separately. At higher order this is no longer true as
outlined in [48, 49]. The choice of variables to describe the perturbed metric
is not unique, already at first order there are different conventions in the lit-
erature for the split of the spatial part of the metric. Here we are following
the notation of Mukhanov et al [50] so that the metric perturbation ¢ can be
identified directly with the intrinsic scalar curvature of spatial hypersurfaces
at first order. Note that the metric perturbations written in (2.1.8}{2.1.10)
include all orders. If we write out the metric tensor up to second order in
perturbations we have:

goo = —a’ (1 + 20 + ¢(2)>a
1
2
goi =a (B(m + §B(Q)i)a
gij = a2 (513 + 20(1)@' + C(Q)ij), (2114)

where the first and second order perturbations B(y); and C(1);; and B(g); and

Cl(2)ij can be further split according to (2.1.11)) and (2.1.12). The contravari-

ant metric tensor follows from the constraint ¢*¥g,, = %, which up to the
second order gives:

gOO — —CL_2 (1 _ 2¢(1) — ¢(2) —+ 4¢%1) — B(l)kB(T))

, . 1. . .
01 -2 i i 7 ki
o = a”?(Bg + 2B — 200 Ba) — 2By C)
i —2( g5 ij ij ik j % j
g7 = a72(§7 =20 — 20§ +achcd - ByB).  (2115)

2 Actually only six are physical degrees of freedom because, as we will see later, there
is a freedom in the choice of the gauge and choosing a specific gauge we fix four degrees
of freedom.

13



2.2. Geometry of spatial hypersurfaces

The detailed calculation of the contravariant metric tensor is carried out in
Appendix [7-I] When lowering and raising spatial indices of perturbations
we use the background spatial metric §%.

2.2 Geometry of spatial hypersurfaces

In the perturbed metric given before we can define a vector field orthogonal
to hypersurfaces of constant 7:

Ny =a-—— (2.2.1)

where « is a normalization constant. Let’s check some of the properties of
this vector field:

or or
or Ot or 1 or a?
Hn, = o = a? I 2.2.
T G 81'# 0 ( a? 8:1:()) a?’ (223)

which tell us that this vector field is time-like. To evaluate the components of
the vector field up to the second order in perturbations we use the constraint

, 0T Ot
'y, = =a’g" = -1 2.2.4
e (22.9)
from which we get a? = — (goo) ~!. Now we simply use the expression for g%

at the second order in perturbations written in the first equation of ([2.1.15|)
and we get

N

a=+ [a” (1 — b1y + 463y — By Bryi ¢(2))} 2 (2.2.5)

which we can formally rewrite as o = & a(1+z)~'/2 where z is small because

contains inside all the perturbations terms; so expanding in Taylor series we
get

1 . 1 3
2 7 2
This means that we can write our vector field as
1
Ny = ( + oq) ¢ O B(l)B it ¢(2 ) (2.2.7)

where we choose the minus sign in front in order to have the temporal com-
ponent negative. In the FRW background this vector field coincides with
the 4-velocity of matter, while in the perturbed space-time need no longer to
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2.2. Geometry of spatial hypersurfaces

coincide with it at any perturbation order. The next step is the calculation
of the contravariant vector field:

» 1 3 1
nt = g"n, — n® = ¢g"ng = a [1 — o) + §¢(21) — 50 —

2 2

1 A
n =g nygy—=—— B(l) — ¢(1)B(1) + iB(Q) — 2B(1) kC(l) .
(2.2.8)

Observers moving along the hypersurface orthogonal vector field n* have a
vanishing 3-velocity with respect to the spatial coordinates * when the shift
vector B is zero. We will refer to these as orthogonal coordinate systems;
in this case the threading is orthogonal to the slicing.

The covariant derivative of any time-like unit vector field n, can be
decomposed uniquely as follows [51]:

1
Ny = §9 Puw + 0p + wpw — iy, (2.2.9)
where P,,,, is the spatial projection tensor orthogonal to n* given by
Pp,z/ = gp,y + n/»ln’/’ (2210)
0 is the overall expansion rate given by
0 =n’,, (2.2.11)
o is the (traceless and symmetric) shear
1 onB 1
O = 3PP (Mo + 1) = 50 P, (2:2.12)

wyy is the (antisymmetric) vorticity
1
W = 3PP (Maip = nia), (2.2.13)

and a,, is the acceleration

ay = nyn’. (2.2.14)
On spatial hypersurfaces the expansion, shear, vorticity, acceleration coincide
with their Newtonian counterparts in fluid dynamics [52], 53].

The projection tensor Py, is the induced 3-metric on the spatial hyper-
surfaces, and the Lie derivative, which we denote by £, of P, along the
vector field n* is the extrinsic curvature of the hypersurface embedded in
the higher dimensional space-time [51], [54]. The extrinsic curvature of the
spatial hypersurfaces defined by n,, is thus given by
1
3
At first order we can easily identify the metric perturbations with geometrical
perturbations of the spatial hypersurfaces or the associated vector field, n,,
as shown in [44].

1
Ky = 58P = Py = 50 Py + O (2.2.15)
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2.3. Energy-momentum tensor for fluids

2.3 Energy-momentum tensor for fluids

Einstein equations for General Relativity tells us that the geometry of the
space-time and its energy content are strictly related. This implies that a
small perturbation in the matter content of the Universe affects the metric
tensor and hence the geometry of the space-time. The energy-momentum
tensor for a perfect fluid with density p, isotropic pressure p and 4-velocity
ut is given by

Tyw = (p + p)upuy + pYpuw- (2.3.1)

2.3.1 Single fluids

The background value of a single fluid energy-momentum tensor is necessarily
of the perfect fluid form, this means we can write it as

T = (p(o) + po))ul ul”) + p(oyg ') (2.3.2)
with py = p)(7), Py = P)(T) and ugo) = 0, because the fluid in the
background is at resdﬁ As regards the perturbation, we can identify two
different contributions: one which keeps the energy-momentum tensor of the
perfect fluid form and another one which adds an anisotropic contribution.
Before writing these two contributions to 07}, we focus on the 4-velocity of
matter which is defined by
o

dr’

where 7 is the proper time comoving with the fluid, and it is subject to the
constraint

(2.3.3)

wu, = —1. (2.3.4)
The spatial components of the 4-velocity are

_det_adrt _1di_ 1, (2.3.5)

T dr  adr adr a

ul

Here ' are the comoving coordinates while 7% are the physical ones. On the
background the velocity of the fluid vanishes (as a consequence of isotropy)
so v’ = vzl) + %022) contains only perturbations, hence

In order to get the temporal components of u* we need to use the constraint
(12.3.4)) ‘ .
guutu” = goouu® + 2go;u’u’ + giju'e) = —1, (2.3.7)

3If the background value of the velocity is different from zero it would means that
there is a preferred direction in the background which is in contrast with our assumption
of isotropy.
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2.3. Energy-momentum tensor for fluids

which gives the second order equation on the variable u°
goouu + 2gpiu’u’ + GijU wd +1=0, (2.3.8)

which is solved by

o —goiu’ = v/(goiu’)? — goo(gijuiui + 1). (2.3.9)
goo

Now we must write each term up to second order in perturbations and we

find
0 1 ]‘ % %
W =~ (1= 60) — 500 + ¢ ).U(l)+B(1)iv(l)>. (2.3.10)

Lowering the indices with the metric tensor we find

1 1
uy = —a<1+qﬁ( + 2<b qﬁ byt 5 )kvﬁ)),

1

As usually the spatial part of the velocity can be split into a scalar part and
a vector part

vt =60 + 0l (2.3.12)

vec*

Note that v* is the 3-velocity of matter defined considering the spatial co-
ordinates z°, and so it is not the velocity with respect to the hypersurface
orthogonal vector field n?, except in orthogonal coordinate systems for which
B =0.

At this point we can go back to writing the perturbations of the energy-
momentum tensor. We pointed out that this perturbation can be written as
the sum of two contributions; the first one, which preserves the perfect fluid
form, can be written as

Tw/ = T;(LB) + 5T;w = (p + p)uuu,, + PGuv (2-3~13)

which differs from ((2.3.2) by the fact that now p = p(g) + dp, p = p(o) + op,
Juv = g,(g,) + g, and uy, has the expression derived in ([2.3.11)). The other

contribution can be written as an anisotropic stress tensor
0Ty = Ty (2.3.14)

This anisotropic stress tensor obviously vanishes on the background and it
can be split into first and second order parts in the usual way

1
Ty = T(1)pw + iﬂ(g)wj, (2.3.15)
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2.3. Energy-momentum tensor for fluids

and it is subject to the constraints

T’ =0, mh, = 0. (2.3.16)

The anisotropic stress vanishes for a perfect fluid or minimally coupled scalar
fields, while when it is not null it contributes only to the perturbations
because its value on the background is zero. The equations ([2.3.16)) constrain
the stress tensor at each perturbation order:

order 0: w(o)uyul(’o) =0 — Ty =0,
order 1: W(l)“yu”o) + W(O)u,}ul(’l) = ﬂ(l)#ougo) =0— T(1)u =0,
‘ 0
i =~ = 0
order 2: W(Q)“Vul(jo) + W(l)uyul(’l) + W(O)Ml,u’&) = 7'('(2)“0’&?0) + W(l)uiu?l) =
= 7T(1)0i”f1) +5T@)00 = 0 — m(2)00 = 0,
9y = —T(a)0 = 0- (2.3.17)
The second of equations ([2.3.16)) guarantees that the anisotropic stress tensor
is traceless. In the same way as we did with the perturbation of the metric in
Section [2.1] we can decompose the anisotropic stress tensor into a traceless
scalar part II, a vector part II; and a tensor part II;;, at each order according
to [47]
1
3

In conclusion the energy-momentum tensor for a single fluid can be written
as [53] 55 56]

1
mi = a? [Ty — V2165 + 5 iy + 1) + ;. (2.3.18)

Ty = (p + P)upti + PYuv + T (2.3.19)

We follow [55] in defining the proper energy density as the eigenvalue
of the energy-momentum tensor and the 4-velocity u* as the corresponding
eigenvector

THu” = —put. (2.3.20)

The components of the energy-momentum tensor on the background are
T(o%o = —P(0)s
Tigyi =0,
T(Oi)j = 8'p(0), (2.3.21)
while at first order we have
6T(1())0 = _5P(1)a
0 _
0T(qy; = (p(o) +P(o)) (v(m + B(m),
i i —2_i
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2.3. Energy-momentum tensor for fluids

which we obtained from (2.3.19) considering first order perturbations at
most. If we also take into account the second order perturbations we find:

0 k k
0T(2)0 = —0p(2) — 2(/)(0) +p(o>)”<1>k (”(1) + B(1>)7
8T = (o) + P(0)) [U(Q)i + Bayi + 4C)vfy) — 20(1) (U(l)i + 23(1)1)} +
2 (ok k
+2 (5P(1) + 519(1)) (U(l)i + B(l)i) T3 <B(1) + U(1))7T(1)ik,

0T(9); = )0 + —57(o); = Clymyn + 2(P0) +P0) vy (v + Boy)-
(2.3.23)

Note that for simplicity of presentation we have not split perturbations into
their constituent scalar, vector and tensor parts in the above expressions.

We will see that quantities like the density, pressure and 3-velocity are
gauge-dependent and this implies that they change along with the choice of
the gauge. On the contrary it is possible to show [47] that the anisotropic
stress is gauge-invariant at first order but becomes gauge-dependent at sec-
ond order.

2.3.2 Multiple fluids

The cosmological fluid consists of many components (photons, baryons, neu-
trinos, ...) so it is necessary to consider a energy-momentum tensor for
multiple fluids. In this case the total energy-momentum tensor is the sum of
the energy-momentum tensor of the individual fluids, labelled by the index
o

T = ZT(*;”). (2.3.24)

The density and the pressure of the total fluid are related to the single
components ones by

p= Z’O(O‘)’ (2325)

P=) P (2.3.26)

For each of the fluid we can define the local energy-momentum transfer 4-
vector Q’(’a) through the relation

VTl = Qo) (2.3.27)

where V, is the covariant derivative. From the above relation we see that
the local energy-momentum tensor, T(’fl "), is locally conserved only for non-
interacting fluids, for which Q’(’a) = 0. The fact that the energy-momentum
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2.3. Energy-momentum tensor for fluids

tensor describing the matter content of the Universe must be covariantly
conserved together with equation (2.3.27]) implies that

> Q=0 (2.3.28)

Following [55] [57] we split the energy-momentum transfer 4-vector using the
total fluid velocity u* as

h = Qo+ flh. (2.3.29)

where @) () is the energy transfer rate and f(“a ) the momentum transfer rate,
subject to the constraint
uuf(*;) =0. (2.3.30)

Writing this constraint at various perturbations order we find that

0 0 k
fy@ =0, F@)@) = 2/ (1)) <’U(1)k + B(l)k>. (2.3.31)

We then find the temporal components of the energy transfer 4-vector to be
1
0 —
Q(o)(a) - EQ(O)av
1
0 —
Q(l)(a) = E <5Q(1)a - ¢(1)Q(0)a>,

1
0 2
Qo)) = 3, [5Q(2>a + Q(0)a (3%) - ¢(2>) — 2¢(1)0Q 1)+t

2
+ <’U(1)k + B(l)k) (af(kl)(a) + Q(o)avéﬁl)>:| s (2.3.32)

where Q gy, 0Q(1)a and 6Q (o), are the energy transfer to the a-fluid in
the background, respectively at first and at second order. For the spatial
components of the energy transfer 4-vector, the momentum part, we get at
first and second order

i 1 i L
Quy@ = ;90av() + 3 f(1)(@)>
Qo)) = 5, | 7 /@@ T Q1) + Q)a (”(2) +200) By — 40(1>k“(1>) )
(2.3.33)

where f(i1)(a) and fg2) () ATC the spatial parts of the momentum transfer rate
at first and second order.

Note that the homogeneous and isotropic FRW background excludes a
zeroth order momentum transfer. The spatial momentum transfer vector of
order n can be further decomposed into a scalar and a vector part

Fimy@) = 0" fay@yi + Fimy(a)- (2.3.34)
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2.4. Energy-momentum tensor for scalar fields

2.4 Energy-momentum tensor for scalar fields

2.4.1 Single field
A minimally coupled scalar field is specified by the Lagrangian density
1 12
L=—59"0up0up = V(p), (2.4.1)

where the minus sign in front of the kinetic term is necessary for the scalar
field in order to have a positive kinetic energy for our choice of the metric

signature.
The energy-momentum tensor is defined as
oL
T/“’ = —2W + guyﬁ, (242)
which for our scalar field ¢ becomes
1
T = g 0uptue — 04 (3070000 + V() ). (243)

Comparing ([2.4.3)) to the energy-momentum tensor of a perfect fluid (2.3.19)

we can identify the non-linear 4-velocity, density, and pressure of the scalar

field as in [58]

Uy = 78“@ ,
|9 0 pdp 4|
p=—g""0apdsp+V,
p= —gaﬂﬁagoag(p -V (2.4.4)

Note that the anisotropic stress m,,, is identically zero for minimally coupled
scalar fields.

Splitting the scalar field into a homogeneous background field and a per-
turbation

p(1,2") = () (T) + dp(T, ), (2.4.5)
and using the definitions above we find for the components of the energy-
momentum tensor of a perturbed scalar field at linear order

ov

1 _ _
TG = —5a7¢(g) — Vo) +a” ¢ (¢<1)90/<o> - 6<;5’(1)) ~ 9%

T?=—a? (ﬁpl(o)f)ﬁ@a)),
T; = [QG 06 = Vioy — %5@(1) +a" %) (580/(1) - ¢(1)80/(o))} %,
(2.4.6)

where V(o) = V(¢(0)) and the prime denotes the derivative with respect to
the conformal time 7.
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2.5. Gauge transformations

2.4.2 Multiple fields

For N minimally coupled scalar fields, labelled by the index I, the Lagrangian
density is given by

1
L= 5 S (@ Ouprduer) ~ V(pr. ... on). (24.7)
I

The energy-momentum tensor is

1

T = [%wfhw - §gwgaﬁ datp10per| — gV (2.4.8)
I

Similarly to the energy-momentum tensor for a single field, we can identify

the non linear 4-velocity, density and pressure of each one of the scalar fields

as in [57]

wn = Ower
D= 1998 0a 10501
pry = —9""0ap10501,
Py = Qaﬁaaw@ﬂw- (2.4.9)

Again we can split the scalar fields ¢ into a background and perturba-
tions

p1(ma") = )1(1) + Spayr(r, ') + ... (2.4.10)
and similarly the potential
oV
V((PI) = V(SO(O)I) + 87%(80(0)[)&0(1)[ 4+ ... (2.4.11)

2.5 Gauge transformations

A problem which arises in cosmological perturbation theory is the presence
of spurious coordinate artefacts or gauge modes in the calculation. The
gauge issue was resolved in a systematic way by Bardeen in [27]. The gauge
issue arises in any approach to General Relativity that splits quantities into
a background and a perturbation. In fact, although General Relativity is a
covariant theory, i. e. manifestly independent by the coordinate choice, split-
ting variables into a background part and a perturbation is not a covariant
procedure and therefore introduces a coordinate or gauge dependence. By
construction this only affects the perturbations, the background quantities
remain the same in the different coordinate systems.

We know from the study of General Relativity that solutions of the Ein-
stein equations

1
G = Ry = 595w R =87 G T, (2.5.1)
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2.5. Gauge transformations

are invariant under diffeomorphism (the gauge transformation of General
Relativity). Consequently, if g, is a solution for a particular choice of T},
acting with a diffeomorphism we find g,, which is a solution for TW. The
mathematical relation between g,, and g, is

- oxP 0x°
G (T) = @@gm(m)- (2.5.2)

Now we consider an infinitesimal coordinate transformation
t — H =¥ — &, (2.5.3)

described by four functions & of space and time. For this infinitesimal
transformation we can rewrite the left term of (2.5.2)) as

G (Z) = G (2 — £(2)) = G (2) — %‘qgﬁ” (2)E + O(£?). (2.5.4)

Using again (2.5.3|) we can also rewrite the right part of (2.5.2)):

ok och  OzP Y%
o =00 " s o = Ot g T OE), (2:5.5)
hence
. oEP OE°
) = (3, + 55@) (07— 555@)) o)
= 0@ + 2 g @) + L (@) g (@) + OE).  (25.6)
- gMV €T 81‘“ €T gpu X axll T gug' T . KON

Putting together the equations (2.5.4) and (2.5.6) we find

G () = guu(x)-kgii(x)gpu(x)—kgi(az)gug(x)—k%‘(];; ()EAO(£2) (2.5.7)

which is the expansion of the Lie derivative along the vector &* acting on
G (T):

G (%) = g (T) + Legpn (). (2.5.8)
This tells us that the Lie dragging relates the metric tensor evaluated in the
coordinate point x# with the transformed metric tensor under a diffeomor-
phism evaluated in the same coordinate point. Actually the relation
holds only at first order in £, however it can be generalized [59]: if we take
the function 7' (which can be a scalar, vector or tensor) and taking into
account also the terms O(£?) we get:

T(z) = e%T(x)

=T(x)+ LT (x) + %EET(x) +... (2.5.9)
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2.5. Gauge transformations

Since background quantities are not affected by gauge transformations we
can easily write the relation between perturbations in different gauges up to

second order from ([2.5.9)

5T () = T(a) ~ To)(x) = T(a) + LT () + 38T () ~ Tigy(a)
=0T (z) + £T(z) + %SET(@”). (2.5.10)

There are two mathematically equivalent approaches to the problem: the
passive and active methods

e Active: we study how perturbations change under mapping, where
the map directly induces the transformation on the perturbed quan-
tities. First we fix the coordinates on the background manifold My,
we call them for example z where the b stands for background. Any
diffeomorphism D : Mg — Mys induces a system of coordinates on
the physical manifold M,,s via D : :Ef — a#. For a given diffeo-
morphism D we define the perturbation 07 of the generic function T
(scalar, vector or tensor) defined on My, s as

5T(p) = T(p) - Tjo) (D~ (1)), (2.5.11)

where T{g) lives on the background. A second diffeomorphism D in-
duces a new set of coordinates T# on Myp,s via D : xfj — Z* and a
different 67"

0T (p) = T(p) — T0) (D" (1)), (2.5.12)

where T is the value of T in the & coordinates. In this approach,
the gauge transformation 07'(p) — 67T (p) is generated by the change
of correspondence D — D between the manifolds M and Mphys-
We can associate to this change in the correspondence the change of
coordinates x# — I induced on M,y},s. We can think of the gauge
transformation as a one to one correspondence between different points
on the background. In fact D sends a background point b; to a point
in the physical manifold, for example ¢: D(b;) = ¢. As regards D, q
won’t be the image of b7 but rather of another point in the background,
for example by. So we can write

D(b1) = ¢ = D(ba), (2.5.13)
which can be rewritten as
b =D (D(b2)) = D(ba). (2.5.14)

The map © takes each point of My in a fixed coordinates system and
sends it to another point in that coordinate system as shown in the
figure below.
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2.5. Gauge transformations

MO Mphys

Figure 2.2: gauge transformation.

The starting point in this approach is the exponential map that
allows us to immediately write down how a function 7" transforms up
to second order. The vector field generating the transformation, £ is
up to second order

1
& =&+ 580 (2.5.15)

so the exponential map can be expanded up to second order as
S_4g. iz 4lg (2.5.16)
€= ¢ T 9~ T g™ e

From equation (2.5.16)) we get that tensorial quantities transform as

T(0) = T(0)
0T 1) = 0T (1) + Ly Ti0)
g 2
6T(2) - 6T(2) + Sg(Q)T(O) + 25(1)T(0) + 2£€(1)5T(1)‘ (2.5.17)

Passive: we specify the relation between two coordinate systems di-
rectly and then calculate the change in the metric and matter variables
when changing from one system to the other. First of all we choose
some system of coordinates x* on the physical space-time manifold
Myhys. The background is defined by assigning to all functions 7" on
Mphys a background value T{g)(z#) which is a fixed function of the co-
ordinates. Therefore in a second coordinate system T* the background
function T{g)(7#) will have exactly the same functional dependence on
Z#. The perturbation §7 in the system of coordinates z* is defined as

6T (p) = T (z*(p)) — T o) (z"(p)). (2.5.18)

Similarly, in the second system of coordinates, the perturbation of T'
is

6T (p) = T(i*(p)) — Ty0) (" (p)). (2.5.19)

Here T(i“ (p)) is the value of T in the new coordinate system at the
same point p of Myyp,s. The transformation 6T'(p) — 0T (p) is called
the gauge transformation associated with the change of variables x#* —
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2.5. Gauge transformations

z" on the manifold Mpp,s. Applying the exponential map (2.5.9) to
the functions x#, coordinates of the physical point ¢, we get the relation
between the old coordinate system z* and the new one Z# [49]

- €>\8%
Tt (q) = e” 2" laxt(q)

= o(q) — 1y (0) + 5 (D&l @)y (0) — ) ())- (25.20)

Now we consider a quantity, like the total density p that is a scalar
under diffeomorphism which means it remains the same under a change
of coordinate system

p(zH) = p(at). (2.5.21)
Because we are interested in the transformations of the perturbations
we split the density as usual p = p(g) + dp. Now expanding both sides
of equation (2.5.21]) up to first order in perturbations we find

p(a") = p(o)(2°) + dpgr)(2")

PE) = p(o) (E°) + Op1y (&) (2.5.22)
and using equation ([2.5.20]) to write Z* in function of z* we get
FE) = pioy(2%) — ploy (B0 (27) + py (24). (2.5.23)
Thus we obtain the transformation rule at first order
py = 6p(1) + Ployéthy- (2.5.24)

Another important invariant is the line element ds? which allows us to
deduce the transformation properties of the metric tensor:

ds® = g, d3t'dz" = g, datdz”. (2.5.25)

Both approaches, the active and the passive one, are equivalent. From the
point of view of physics, the active allows to understand how the amplitudes
of the perturbations depend on the correspondence between background
manifold Mgy and physical manifold Mypp,s. Instead the passive approach
allows to connect the gauge transformation with the choice of the system of
coordinates on My, in which the perturbations are described. However we
decide to follow the active approach, instead for further developing of the
passive approach see for example [31] [60].

2.5.1 Scalar perturbations

First of all we split the generating vector £ into a scalar temporal part o)
and a spatial scalar and vector part, 51y and ’721), according to

éﬁ) = (O‘(l)vﬁu),i +’7€1)>7 (2.5.26)
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2.5. Gauge transformations

where the vector part is divergence free, amfl) = 0. Now we consider a four

scalar, like the energy density p = p() + dp(1) + %5p 9). We expect to find
again the relation found in the passive approach , in fact both the
approaches are equivalent. In the active approach the transformation for a
quantity like dp is given by the second equation of where the Lie
derivative is equal to [53]
Lep = EX0np. (2.5.27)
The result is R
5p(1) =dpa) + p/(o)a(l), (2.5.28)
which is exactly what we found in the passive approach. We see that the
first order density perturbation is fully specified by prescribing the first order
temporal gauge o).
At second order we do the same: firstly we write the generating vector
£é) as
€)= (a@)v By + 7?2))7 (2.5.29)

where the vector part is divergence free, 8k7é€2) = 0. Then we take the third
equation of (2.5.17]) and using the expression for the Lie derivative above we

get
0p(2) = p) + Plo)(2) + 1) (PQ’O)O«D + Ploya(ny + 25p’(1>)+
k k

+ (25p(1) + pl(o)a(l)) ,k (5(1), + 7(1)). (2.5.30)
This time vector-like terms appear: 7?1) and the gradient ﬁ(l)k . At second
order scalar perturbations are coupled to vectors. The gauge is specified only
once a(1), (2, B(1) and 7%1) are specified.
2.5.2 Vector perturbations

This time we use again the splitting defined before for the generator of gauge
transformations £* and the second equation of (2.5.17]), but in this case the

Lie derivative is equal to [53]
LV = Vol + Vol (2.5.31)

Hence the vector perturbations transform at first order under a gauge trans-
formation as

OV (1) = Vi + Vg o) + V(o),\f(A1)w (2.5.32)

where we used the fact that on the background V(g = Vo), (7) and V{g); = 0.
For the specific example of the 4-velocity, defined in (2.3.11f), we find

U(1y; + B(m = vy + By — o), (2.5.33)
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2.5. Gauge transformations

As we have done for the vector perturbation of the metric B; in (2.1.11))
we can decompose v; in its scalar and vector part and hence, using the
transformation relation for B; which we will derive below in ([2.5.42)), we can

divide the above equation ([2.5.33)) into

) = vy — By

Tyee(1) = Uree(1) — V(1)- (2.5.34)

The next step is to find the relations for the vector perturbations in two
different gauges at second order. This time we need the third equation of

(2.5.17) and (2.5.29), the result is:
o1 2 A
Vo = Vo + Vo + Vi@ + V0@ + Viouwaéin+
+ 2V, + Voo (5?1)a<1m + a(l))\g()\l),u> +
+ 2(51/(1)% A + SVanEd), M). (2.5.35)

Focusing again on the 4-velocity and following a similar procedure as at first
order, we find that the second order

where x; contains the terms quadratic in the first order perturbations and it
is given by
Xij = €(1yi (2¢(1) +ay) + 27'104(1)) — amyély — Enéuin T EHEWikt
— 204(1) (Uzl)i + HU(l)i) + 2”(1)i,k5£§1) - 2Ué§1)§(l)i,k‘> (2.5.37)

where H = aH = a’/a and we used the transformation relation of the metric
perturbation B(s); that we will write explicitly later.

2.5.3 Tensor perturbations

Now we can calculate how the first order metric perturbations change under
a gauge transformation. dggg is a 4-scalar so its transformation relation can
be obtained dealing only with scalars. Once we know that the Lie derivative
acts on a tensor like the metric as

Legur = G & + gin&y + 9, (2.5.38)
it is easy to verify using (2.5.26)), (2.1.14) and the second of (2.5.17) that

= (1) 0 0
0900 = 59(()(1)) + 59(()0?05?1) + 259(()0)5?1),0

= 6g((]%)) — 2a3Ha(1) - 2a20/(1)

= 59(%) — 2a27-[a(1) - 2a2a/(1). (2.5.39)
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2.5. Gauge transformations

Actually 6 g(()(l)) = —2a2d>(1), thus from the equation above we can directly read

how the scalar perturbation ¢ transforms under a gauge transformation:
$a) = ¢y + Haq) + oy (2.5.40)

The next step is to find the transformation law for the 0i part of the met-
ric. The change of the component dgg; is slightly more involved, since this
component contains scalar and vector perturbations. We therefore have to
compute the overall transformation of this metric component using
and then split the result in the various components.

(1)

590; = 996,

=09y + 59(()?))5?1),1 + 591&3)551),0
= 59(()? + a25ij (B(mj + '7({)) - a2a(1)7i, (2.5.41)

and hence, from 69(()1) = azB(l)i, we get

By = Bayi + Bl1y T Y1y — Q)i (2.5.42)

But Byy); consists of a vector divergence-free part S(;); and a scalar part B(y),
explicitly B(1); = B(1),; — S(1);- The transformation law (2.5.42)) only tells
us how the whole vector Bj); transforms and so