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Abstract

In this thesis, we study the Matroid Center problem which, given a set 𝑊 of
points from a metric space and an integer 𝑘 < |𝑊 |, requires to find a subset
𝑆 ⊂ 𝑊 of 𝑘 centers such that the maximum distance of a point of 𝑊 from 𝑆 is
minimized, and 𝑆 is an independent set of a specified matroid. In particular, we
consider the partition matroid, which can be used to model fairness constraints,
and the more general transversal matroid. For both matroids we devise the first
approximation streaming algorithms under the sliding window model, which, at
any time, are able to efficiently compute a solution to Matroid Center for the latest
window of points of the stream. The algorithms exhibit a (3 + 𝜖)-approximate
ratio, where 3 is the best approximation attainable in sequential polynomial
time and 𝜖 ∈ (0, 1) is a user-defined accuracy parameter. The analysis of the
algorithms is carried out in terms of the dimensionality of the data, and it shows
that, for low dimensional data the required working memory and processing
time are asymptotically and significantly smaller than the window size.





Sommario

In questa tesi, studiamo il problema del Matroid Center, il cui obiettivo è trovare,
dato un insieme 𝑊 di punti presi da uno spazio metrico e un intero 𝑘 < |𝑊 |,
un sottoinsieme 𝑆 ⊂ 𝑊 di 𝑘 centri tale per cui la distanza massima di un punto
di 𝑊 da 𝑆 sia minimizzata e 𝑆 sia un insieme indipendente di una matroide
specificata. In particolare, esaminiamo i casi relativi alla matroide di partizione,
che può essere utilizzata per modellare vincoli di equità, e alla più generale
matroide trasversale. Per entrambe le matroidi costruiamo i primi algoritmi
di approssimazione per il modello di calcolo a finestre scorrevoli, i quali, in
qualsiasi momento, sono in grado di calcolare in modo efficiente una soluzione
del Matroid Center per l’ultima finestra di punti dello stream. Questi algoritmi
presentano un fattore di approssimazione pari a (3 + 𝜖), dove 3 è la migliore
approssimazione ottenibile sequenzialmente in tempo polinomiale e 𝜖 ∈ (0, 1)
rappresenta un parametro di precisione definito dall’utente. L’analisi degli
algoritmi viene effettuata in termini di dimensionalità dei dati e mostra che,
per dati a bassa dimensionalità, la memoria di lavoro richiesta e il tempo di
elaborazione sono asintoticamente e significativamente inferiori alla dimensione
della finestra.
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1
Introduction

In recent years, the explosive growth of data has presented both opportu-
nities and challenges for various domains, such as finance, marketing, logistics
and many others. With the increasing availability of large datasets and the un-
interrupted growth in computing capabilities, the need to extract meaningful
information and patterns has become more critical than ever.

Unsupervised learning, a branch of machine learning whose objective is
to gain insights into the data without relying on labeled examples or prede-
fined outputs, plays a crucial role in addressing these challenges. One of the
fundamental primitives of unsupervised learning is clustering, which aims at
partitioning data points into distinct groups such that points within the same
cluster are more similar to each other than to those in other clusters. Clustering
has found applications in various fields, including image analysis, customer
segmentation, anomaly detection, recommender systems and many more.

With the expanding necessity of working with massive amounts of data,
traditional clustering algorithms became impractical. Sequential clustering al-
gorithms often require to work with the entire dataset, which is not feasible
when dealing with vast volumes that exceed the memory capacity of a single
machine. Moreover, big data is frequently generated in a continuous streaming
fashion, with data arriving sequentially and requiring real-time processing, as
opposed to being stored and processed in batches. This sparked the need to
develop new techniques that could handle the huge amounts of data efficiently
and adaptively.

The streaming model, as well-known in the literature [12], offers a powerful
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paradigm for processing massive, continuously arriving data streams. Unlike
batch processing, where the entire dataset is available upfront, streaming algo-
rithms operate on data that arrives in small portions, or mini-batches, and is
processed in real-time. This model has gained significant attention due to its
ability to handle efficiently the velocity and volume challenges of big data. By
processing data in a streaming fashion, it became possible to analyze large-scale
datasets incrementally, avoiding the need to store and load the entire dataset
into memory.

In the context of clustering [1, 2], the streaming model is particularly rel-
evant and valuable. Streaming clustering algorithms can handle continuous
data streams, adapt to changes in the data distribution, and provide real-time
insights into the evolving clusters. These algorithms typically employ approx-
imation techniques and memory-efficient data structures to update the set of
centers or other relevant parameters on-the-fly. By continuously processing the
incoming data, streaming clustering algorithms can maintain up-to-date cluster
representations and capture the underlying structures in real-time.

The sliding window model [9] is a variation of the streaming model that is
particularly useful for handling big data in real-time analysis. In this model, data
is processed as a continuous stream, but instead of considering it in its entirety,
a fixed-size window is maintained, and only the most recent data within the
window is considered for analysis. The window moves along with the arrival
of new data, discarding older data points that fall outside the window. By
applying clustering algorithms to the data within the sliding window, it becomes
possible to identify and track evolving clusters or patterns over time. This is
particularly relevant in domains where data evolves dynamically, such as social
media analysis, sensor data processing, or network traffic monitoring. The
sliding window model enables real-time clustering, facilitating the extraction of
valuable insights and timely responses to changing data patterns in large-scale
streaming data scenarios.

One clustering task that has been thoroughly researched both in the sequen-
tial and the big data settings is the 𝑘-Center Problem, also called Facility Location
problem. Given a ground set of points 𝑊 from a general metric space and an
integer 𝑘 < |𝑊 |, the objective of this task is to find a subset 𝑆 of 𝑊 of size 𝑘,
called centers, which minimizes the maximum distance between the points in𝑊
and the set 𝑆. Since this problem is known to be NP-Hard, many approximation
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CHAPTER 1. INTRODUCTION

algorithms have been designed for the different computing models cited above
[1, 8, 11, 14, 15].

As machine learning algorithms increasingly impact various aspects of our
society, from hiring decisions to loan approvals and many others, it has become
crucial to address the ethical implications and unintended consequences of these
systems. For this reason, extensive research has gone into designing fairness-
aware algorithms and into transforming already existing ideas into procedures
capable of returning fair solutions. One area where fairness concerns have
gained significant attention is algorithmic clustering, both in the sequential
setting [5, 6] and in the case of massive amounts of data [13, 7]. Traditional
clustering algorithms often overlook the potential for bias and unfairness in their
results, since their only focus is optimizing a certain objective cost function. Fair
clustering, instead, aims to ensure that clustering algorithms not only produce
accurate and meaningful results but also consider fairness criteria and mitigate
potential biases. This is usually done by introducing constraints in the kind of
solutions that can be chosen.

A constrained version of the very well known 𝑘-Center problem is the Ma-
troid Center problem, which uses the mathematical concept of matroid to model
additional constraints and limit the possible solutions for a given instance. In
particular, given a matroid 𝑀𝑊 = (𝑊, 𝐼𝑊 ) with a set of points 𝑊 from a metric
space as ground set, the objective of this constrained task is to choose an in-
dependent set 𝑆 ∈ 𝐼𝑊 of the selected matroid which minimizes the maximum
distance between the points in𝑊 and 𝑆. The Matroid Center problem can work
with all the different types of matroids, from the most specific to the most gen-
eral one. If we decide to limit ourselves to the use of the Partition Matroid, where
the ground set of points𝑊 is partitioned into a set of categories 𝐴 and a subset
𝑆 of 𝑊 is considered an independent sets only if it contains at most a certain
number of points for each category in 𝐴, then we can call this specialized case
of Matroid Center problem also Fair 𝑘-Center (FKC) problem.

At the moment, for what concerns the sliding window model, the literature
contains very good algorithms for the 𝑘-Center problem [8, 14, 15], but does not
provide good approximations for the more general Fair 𝑘-Center and Matroid
Center problems. For this reason, we decided to embark on the search of good
solutions for both these problems. In order to facilitate ourselves, we will first
investigate the FKC problem alone and then, once a good approximation has
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been found, try to adapt the solution obtained for that particular case to more
general settings. As we will see later, this will translate to generalizing from the
partition matroid case to the transversal matroid case.

It is in this context that we give some more details on the problems and the
model used by looking at the state of the art for the various cases.

1.1 Previous work

As we mentioned previously, approximation algorithms for the Fair 𝑘-Center
and the Matroid Center problems under the sliding window model have yet
to be developed as of the time of writing. For this reason, we will not be
able to compare directly the algorithms we designed with other state of the
art solutions for the same problem and the same model. Still, we present
here the best solutions known to date respectively for the unconstrained 𝑘-
Center problem under the sliding window model and for the Matroid Center
problem in streaming settings. This way, later in the chapters, we will be able
to appreciate how close the results contained in this thesis are with respect to
the approximation factor to the best solutions for the other models. Moreover,
we will be able to compare in term of performances our solutions with the best
known for the 𝑘-Center problem in the sliding window model and see how well
we dealt with the additional constraints.

The 𝑘-Center clustering problem has been studied under multiple compu-
tational models. In the sequential model the problem is known to have an ef-
ficient polynomial 2-approximation and is known to be (2 − 𝜖)-inapproximable
unless 𝑃 = 𝑁𝑃 [11]. Regarding the streaming and MapReduce models, the best
known solutions were developed by [1], which contains a (2+ 𝜖)-approximation
for both cases, with 𝜖 ∈ (0, 1) a user-defined accuracy parameter. Instead,
for what concerns the sliding window model, the state of the art was devel-
oped by [14], which contains a (2 + 𝜖)-approximation with working memory

𝑂

(
𝑘 log (Δ)

log (1+𝛽)
(

32(1+𝛽)
𝜖

)𝐷𝑊𝑡 ) , where 𝛽 > 0 is a chosen parameter, Δ is the aspect

ratio of the stream and 𝐷𝑊𝑡 is the doubling dimension for the window. As we
can see, in the last case the working memory is bounded by a function of the
doubling dimension of the window 𝐷𝑊𝑡 , which means that for low dimension-
ality data we can obtain very good solutions with high efficiency. It is important
to note that [14] does not use the doubling dimension 𝐷𝑊𝑡 in its procedures,
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CHAPTER 1. INTRODUCTION

but only to carry out the complexity analysis, which means that it can adapt
obliviously to the parameter.

On the other hand, for what concerns the Matroid Center problem, in the
sequential settings we know the problem is 3-approximable [3, 4]. Instead,
regarding the streaming model, the (3 + 𝜖)-approximation algorithm contained
in [2] represents the state of the art for the problem. As in the case of [14], the
algorithm blindly adapts to the dimensionality of the data, while its analysis
was carried out in terms of the doubling dimension of the stream.

1.2 Summary of contributions

The contributions of this work are the following:

• We review the known approximation algorithms present in the literature
representing the state of the art for the 𝑘-Center problem under the sliding
window model and the state of the art for the Matroid Center problem in
streaming settings.

• We study the Matroid Center problem under the sliding window model
and, in particular, we investigate the cases of partition and transversal
matroids.

• For the partition matroid case, we design the first (3 + 𝜖)-approximation
algorithm for the sliding window model capable of working with general
metric spaces and adapting obliviously to the dimensionality of the data,
as captured by the concept of doubling dimension. It is important to
highlight that this solution not only represents the state of the art for the
Matroid Center problem under partition matroid constraints in sliding
windows, but is also the first algorithm ever to approximate the problem
for this computational model.

• We formally prove the correctness of the proposed algorithm and demon-
strate it achieves a (3 + 𝜖) approximation factor, an accuracy comparable
to the best known algorithm for the sequential settings. Furthermore, we
present tight asymptotic bounds on both the working memory and the
running time of its procedures in terms of the doubling dimension of the
window, which means that the working memory for low dimensionality
data is proven to be drastically inferior to the size of the window.
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1.3. STRUCTURE OF THE THESIS

• We further improve the previous result by developing two additional ideas
capable of dealing with a more general type of matroid called transversal
matroid. In fact, we show that the first refined algorithm works correctly
with the transversal matroid and obtains formally a (3+ 𝜖)-approximation
at the cost of slightly worst time and space requirements. Finally, we
present a second refined heuristic algorithm capable of working with
the transversal matroid, obtaining the same approximation factor with
asymptotically better performances and whose correctness has only been
conjectured with the help of some empirical examples.

1.3 Structure of the thesis

The thesis is organized as follows. Chapter 2 describes the notions necessary
to present the central results of this thesis. Chapter 3 describes and analyzes
our (3 + 𝜖)-approximation algorithm for the 𝑘-Center problem under partition
matroid constraints, also called Fair 𝑘-Center problem. Chapter 4 presents two
improved versions of the standard algorithm, able to obtain the same approxi-
mation factor under the more general transversal matroid constraints. Finally,
Chapter 5 terminates the thesis with some concluding remarks.
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2
Preliminaries

Before moving to the actual algorithms proposed in the paper, we need to
introduce some important concepts used in order to formalize the problems, the
framework and the notation employed in the proofs. We will start by introduc-
ing the computational framework. Then, we will present some mathematical
concepts that will be useful to formalize the problems and to carry out the proofs
of correctness and complexity. Finally, we will introduce the actual problems
we are trying to solve and present the state of the art under some interesting
models, starting from the simpler 𝑘-Center clustering problem and then moving
to more generalized versions.

2.1 Sliding Window Model

We start by introducing the computational scenario in which the algorithms
were developed. It is an important variant of the streaming model, called sliding
window model, presented in [9].

In the standard streaming framework, the computation is performed by
a single processor with a small working memory and the input is provided
as a continuous, possibly unbounded, stream of objects (points, in our case)
arriving one at each time step, which is usually too large to fit in the working
memory. Under the sliding window model, at each time 𝑡, a solution to the
problem of interest should be computable for the pointset 𝑊𝑡 represented by
the last 𝑁 points arrived in the stream, where 𝑁 , referred to as window length,
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2.1. SLIDING WINDOW MODEL

is a predetermined value known to the algorithm. More formally, for each
input point 𝑝, let 𝑡(𝑝) denote its arrival time. At any time 𝑡, we have that
𝑊𝑡 = {𝑝 | 0 ≤ 𝑡 − 𝑡(𝑝) < 𝑁}. Since 𝑁 can still be much larger than the working
memory size, the goal in this setting is to guarantee the quality of the solution
while storing an amount of data substantially smaller than the window length.

At this point we introduce two additional quantities for the stream 𝑆 and
the window 𝑊𝑡 which will be essential in the analysis of the two algorithms.
Consider now a stream 𝑆 of points from a metric space with distance function
𝑑𝑖𝑠𝑡(·, ·), and with a sliding window of length 𝑁 . We define the aspect ratio Δ

of 𝑆 as the ratio between the maximum distance and the minimum distance of
any two points of S (Δ = 𝑚𝑎𝑥𝐷𝑖𝑠𝑡

𝑚𝑖𝑛𝐷𝑖𝑠𝑡 ). Similarly, at any time 𝑡, we define the aspect
ratio Δ𝑊𝑡 of the current window 𝑊𝑡 as the ratio between the maximum and the
minimum distance of any two distinct points in𝑊𝑡 (Δ𝑊𝑡 =

𝑚𝑎𝑥𝐷𝑖𝑠𝑡𝑊𝑡
𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑊𝑡

).
The time and space performance of our algorithms will be analyzed in terms

of 𝑘, 𝑁 , Δ𝑊𝑡 , 𝜖, 𝛽 and of the dimensionality of the points in the current window.
Since the target applicability of our algorithms to arbitrary metric spaces, we
will make use of the following, general notion of dimensionality.

2.1.1 Doubling Dimension

Definition 2.1 (Metric Space) A metric space is an ordered pair (𝑊, 𝑑) where 𝑊
is a ground set of points and 𝑑𝑖𝑠𝑡(·, ·) is a distance function on 𝑊 , i.e. a function
𝑑𝑖𝑠𝑡 : 𝑆 × 𝑆 → R, such that the following properties are true ∀𝑥, 𝑦, 𝑧 ∈ 𝑆:

• 𝑑𝑖𝑠𝑡(𝑥, 𝑦) ≥ 0;

• 𝑑𝑖𝑠𝑡(𝑥, 𝑦) = 0 only if 𝑥 = 𝑦;

• 𝑑𝑖𝑠𝑡(𝑥, 𝑦) = 𝑑𝑖𝑠𝑡(𝑦, 𝑥) (symmetry);

• 𝑑𝑖𝑠𝑡(𝑥, 𝑧) ≤ 𝑑𝑖𝑠𝑡(𝑥, 𝑦) + 𝑑𝑖𝑠𝑡(𝑦, 𝑧) (triangle inequality).

Let𝑊𝑡 denote the set of points from a metric space. For any 𝑥 ∈𝑊𝑡 and 𝑟 > 0,
let the ball of radius 𝑟 centered at 𝑥, denoted as 𝐵(𝑥, 𝑟), be the subset of points
of𝑊𝑡 at distance at most 𝑟 from 𝑥. The doubling dimension of𝑊𝑡 is the smallest
𝐷 such that any ball 𝐵(𝑥, 𝑟), with 𝑥 ∈𝑊𝑡 , is contained in the union of at most 2𝐷

balls of radius 𝑟
2 suitably centered at points in𝑊𝑡 . The following important fact,

which we will use in the analysis is:
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CHAPTER 2. PRELIMINARIES

Lemma 2.2 (Doubling Dimension) Let 𝑊𝑡 be a set of points from a metric space
and let 𝑌 ⊆ 𝑊𝑡 be such that any two distinct points 𝑎, 𝑏 ∈ 𝑌 have pairwise distance
𝑑𝑖𝑠𝑡(𝑎, 𝑏) > 𝑟. If 𝑊𝑡 has doubling dimension 𝐷, then for every 𝑅 ≥ 𝑟 and any point
𝑥 ∈𝑊𝑡 , we have |𝐵(𝑥, 𝑅) ∩ 𝑌 | ≤ ( 4𝑅

𝑟

)𝐷 .

The doubling dimension 𝐷𝑊𝑡 for the current window 𝑊𝑡 will be required only
in the analysis of time and space complexity for the algorithms, but will never
be used explicitly by the proposed solutions.

2.2 Matroid, general definition and specializations

After introducing the computational model, we move to the definition of ma-
troid. This mathematical concept is used to formalize the additional constraints
added to the 𝑘-Center problem.

Let𝑊 be a ground set (a window in our case) of elements from a metric space
with distance function 𝑑𝑖𝑠𝑡(·, ·) satisfying the triangle inequality. A matroid
on 𝑊 is a pair 𝑀𝑊 = (𝑊, 𝐼𝑊 ), where 𝐼𝑊 is a family of subsets of 𝑊 , called
independent sets, satisfying the following properties:

• the empty set is independent (∅ ∈ 𝐼𝑊 );

• every subset of an independent set is independent (hereditary property,
∀𝑋′ ⊆ 𝑋 : 𝑋 ∈ 𝐼𝑊 =⇒ 𝑋′ ∈ 𝐼𝑊 );

• if 𝐴, 𝐵 ∈ 𝐼𝑊 and |𝐴| > |𝐵|, then ∃𝑥 ∈ 𝐴 \ 𝐵 such that 𝐵 ∪ {𝑥} ∈ 𝐼𝑊
(augmentation property).

An independent set is maximal if it is not properly contained in another
independent set (𝐴 ∈ 𝐼𝑊 , ∀𝑥 ∈ 𝑊 \ 𝐴 : 𝐴 ∪ {𝑥} ∉ 𝐼𝑊 ). A basic consequence
of the augmentation property is that all the maximal independent sets for a
matroid 𝑀𝑊 = (𝑊, 𝐼𝑊 ) must have the same size, which we denote as rank of
the matroid 𝑟𝑎𝑛𝑘(𝑀𝑊 ). This notion of maximality can be naturally extended
to any subset of the ground set. Namely, for 𝑊 ′ ⊆ 𝑊 , an independent set
𝐴 ⊆ 𝑊 ′ of maximum size among all independent sets contained in 𝑊 ′ is called
a maximal independent set of𝑊 ′ and all maximal independent sets of𝑊 ′ have
the same size. We define the rank of a subset 𝑊 ′ ⊆ 𝑊 , denoted as 𝑟𝑎𝑛𝑘(𝑊 ′),
to be the size of a maximal independent set in 𝑊 ′. An important property
of the rank function is called submodularity: for any 𝐴, 𝐵 ⊆ 𝑊 it holds that
𝑟𝑎𝑛𝑘(𝐴 ∪ 𝐵) + 𝑟𝑎𝑛𝑘(𝐴 ∩ 𝐵) ≤ 𝑟𝑎𝑛𝑘(𝐴) + 𝑟𝑎𝑛𝑘(𝐵). Given the previous notions,

9
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we can define more formally the rank of the matroid 𝑟𝑎𝑛𝑘(𝑀𝑊 ) as the rank of
its ground set 𝑟𝑎𝑛𝑘(𝑊). Given a matroid 𝑀𝑊 = (𝑊, 𝐼𝑊 ) and a subset 𝑊 ′ ⊆ 𝑊 ,
we define a restriction of 𝑀𝑊 to 𝑊 ′ as 𝑀𝑊′ = (𝑊 ′, 𝐼𝑊′) where 𝐼𝑊′ = {𝑋 ∩𝑊 ′ |
𝑋 ∈ 𝐼𝑊 }. It is easy to see that 𝑀𝑊′ is also a matroid.

Next, we present a lemma taken from [2] that provides a useful property of
matroids which will be used to prove the correctness of the proposed algorithms.
Its proof is contained in the paper cited above.

Lemma 2.3 (Extended augmentation property) Let 𝑀𝑊 = (𝑊, 𝐼𝑊 ) be a matroid.
Consider the independent set𝐴 ∈ 𝐼𝑊 , a subset𝑊 ′ ⊆ 𝑊 and an independent set 𝐵 ⊆ 𝑊 ′

which is maximal within𝑊 ′. If ∃𝑦 ∈𝑊 ′ \𝐴 such that 𝐴∪ {𝑦} ∈ 𝐼𝑊 , then ∃𝑥 ∈ 𝐵 \𝐴
such that 𝐴 ∪ {𝑥} ∈ 𝐼𝑊 .

Finally, before moving to the presentation of the problems, we need to intro-
duce two particular types of matroid called partition matroid and transversal
matroid [10]. They will be used to generalize the 𝑘-Center problem by con-
straining the possible subsets of points we can chose as centers. In fact, by using
the partition matroid we will be able to allow only solutions that select the set
of centers in a fair and distributed fashion between a set of given categories.
Similarly, by using the transversal matroid we will allow only solutions that
take at most one point for each category in a set of (possibly non-disjoint) cate-
gories and do not take the same point as representative of two different groups
simultaneously.

Definition 2.4 (Partition matroid) Let𝑊1, ...,𝑊ℓ be a partition of the ground set𝑊
(∪ℓ𝑖=1𝑊𝑖 = 𝑊,∀1 ≤ 𝑖 < 𝑗 ≤ ℓ : 𝑊𝑖 ∩𝑊𝑗 = ∅). Moreover, let 𝑘1, ..., 𝑘ℓ be positive
integers. Then the family

𝐼𝑊 = {𝑋 ⊆ 𝑊 : ∀ℓ𝑖=1 |𝑋 ∩𝑊𝑖 | ≤ 𝑘𝑖} (2.1)

satisfies the independence axioms. The corresponding matroid 𝑀𝑊 = (𝑊, 𝐼𝑊 ) is called
a partition matroid.

Definition 2.5 (Transversal matroid) Let 𝐴 = {𝐴1, ..., 𝐴ℓ } be a family of (possibly
non-disjoint) categories of the ground set 𝑊 , with 𝑊 = ∪ℓ𝑖=1𝐴𝑖 , and consider the
bipartite graph (𝑊, 𝐴;𝐸) where 𝐸 consists of all edges {𝑠𝑖 , 𝐴 𝑗} with 𝑠𝑖 ∈ 𝐴 𝑗 , for
1 ≤ 𝑖 ≤ |𝑊 | and 1 ≤ 𝑗 ≤ ℓ . Define 𝐼𝑊 as the family of subsets 𝑋 ⊆ 𝑊 corresponding
to the left endpoints of some matching in the above graph. Then, 𝑀𝑊 = (𝑊, 𝐼𝑊 ) is a
transversal matroid based on𝑊 .

10
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It is easy to see that the partition matroid can be viewed as a specific case of
transversal matroid, where, for each category 𝑖 = 1, ..., ℓ of the partition matroid,
we have 𝑘𝑖 equivalent categories of points in 𝐴.

Figure 2.1: On the left the partition matroid with colored categories, on the right
the equivalent transversal matroid.

2.3 Definitions of the problems

At this point we have all the notions needed in order to introduce the actual
problems we are trying to solve. We start by presenting the basic 𝑘-Center
clustering problem.

2.3.1 𝑘-Center problem

Consider a pointset𝑊 from some metric space with distance function 𝑑𝑖𝑠𝑡(·, ·).
For any point 𝑝 ∈𝑊 and any subset 𝐶 ⊆ 𝑊 we use the notation

𝑑𝑖𝑠𝑡(𝑝, 𝐶) = min
𝑞∈𝐶 𝑑𝑖𝑠𝑡(𝑝, 𝑞) (2.2)

and define the radius of 𝐶 with respect to𝑊 as

𝑟𝐶(𝑊) = max
𝑝∈𝑊

𝑑𝑖𝑠𝑡(𝑝, 𝐶). (2.3)

For a positive integer 𝑘 < |𝑊 |, the 𝑘-Center problem requires to find a subset
𝐶 ⊆ 𝑊 of size 𝑘 which minimizes 𝑟𝐶(𝑊). Note that any subset 𝐶 ⊆ 𝑊 of size 𝑘
induces immediately a partition of 𝑊 into 𝑘 clusters by assigning each point to
its closest center (with ties broken arbitrarily). We say that 𝑟𝐶(𝑊) is the radius
of such clustering and define

𝑂𝑃𝑇𝑘,𝑊 = min
𝐶⊆𝑊,|𝐶 |=𝑘

𝑟𝐶(𝑊) (2.4)

11
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to denote the radius achieved by an optimal solution to the problem.
In the standard sequential setting, it is well-known that for general metric

spaces the 𝑘-Center problem is NP-Hard, admits a 2-approximation algorithm
and, for any 𝜖 > 0, it is not (2−𝜖)-approximable unless 𝑃 = 𝑁𝑃. The well-known
greedy sequential algorithm by Gonzalez [11], provides a 2-approximation to
the 𝑘-Center problem running in 𝑂(|𝑊 |𝑘) time.

The current state of the art for sliding window, developed by [14], maintains
information about a carefully selected subset of points of the current window
𝑊𝑡 , from which, at any time 𝑡, a coreset 𝑇 ⊆ 𝑊𝑡 can be extracted and a solution
to the 𝑘-Center problem can be efficiently computed by running a sequential
(approximation) algorithm on 𝑇.

2.3.2 Robust Matroid Center problem

The Robust Matroid Center problem is a variant of the 𝑘-Center problem
with outliers. Its definition makes use of the concept of matroid previously
introduced and can be formalized as follows.

Let 𝑀𝑊 = (𝑊, 𝐼𝑊 ) be a matroid with rank 𝑘 defined over the set of points
𝑊 and let 𝑧 be an integer with 0 ≤ 𝑧 ≤ |𝑊 |. The Robust Matroid Center (RMC)
problem on 𝑀𝑊 with parameter 𝑧 requires determining an independent set
𝑆 ∈ 𝐼𝑊 minimizing

𝑟(𝑆,𝑊, 𝑧) = min
𝑋⊆𝑊 :|𝑋 |≥|𝑊 |−𝑧

max
𝑖∈𝑋

𝑑𝑖𝑠𝑡(𝑖, 𝑆) (2.5)

We use the tuple (𝑀𝑊 = (𝑊, 𝐼𝑊 ), 𝑧) to denote an instance of RMC and let
𝑂𝑃𝑇𝑀𝑊 ,𝑧 denote the cost of its optimal solution. It is immediate to see that the
objective function 𝑟(𝑆,𝑊, 𝑧) corresponds to the (|𝑊 | − 𝑧)-th smallest distance
of a point of 𝑊 from 𝑆. In other words, the best solution is allowed to ignore
the contribution of the 𝑧 most distant points, which can be regarded as outliers.
Note that if the matroid (𝑊, 𝐼𝑊 ) has a rank 𝑘, any feasible solution 𝑆 ∈ 𝐼𝑊 has
size at most 𝑘. In the case where 𝑧 = 0 we denote𝑂𝑃𝑇𝑀𝑊 = min𝑆∈𝐼𝑊 𝑟 (𝑆,𝑊, 0) as
the cost of the optimal solution. Also, note that the standard 𝑘-Center problem
is a special case of the RMC problem where 𝑧 = 0 and the set 𝐼𝑊 of independent
sets consists of all subsets of size at most 𝑘 (𝐼𝑊 = {𝑋 ⊆ 𝑊 : |𝑋 | ≤ 𝑘}).

The state of the art on sequential solutions for the problem is the 3-approximation
algorithm presented in [3, 4].

12
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2.3.3 Fair 𝑘-Center problem, partition and transversal matroids

The special case of Partition Matroid can be used to model fairness constraints
where the points of 𝑊 are naturally subdivided into 𝑚 ≤ 𝑘 groups and fair
solutions to 𝑘-Center are sought which include at most 𝑘𝑖 points from the 𝑖-th
group, for given 𝑘𝑖’s such that

∑𝑚
𝑖=1 𝑘𝑖 = 𝑘. The Fair 𝑘-Center (FKC) problem

is a special case of the RMC problem where 𝑧 = 0 and the partition matroid
𝑀𝑊 = (𝑊, 𝐼𝑊 ) is used.

It is important to note that we will also investigate another special case of
the RMC problem similar to FKC where, instead of the partition matroid, the
transversal matroid is used, since it models an even more general case of 𝑘-
Center clustering and we believe it is analogously approximable in the sliding
window model.

Figure 2.2: Example of Fair 𝑘-Center clustering with centers 𝐶.
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2.4 Relevant existing algorithms

In this section, we will provide a short overview of the current state of art
solutions for the 𝑘-Center problem under the sliding window model and the
Matroid Center problem in streaming settings. The main reasons we present
these solutions is that they were a great source of inspiration for our proposed
algorithms and were especially helpful in understanding how to deal with the
constraints of both the model and the problem.

2.4.1 𝑘-Center in sliding windows

There are two pivotal works related to the approximation of the 𝑘-Center
problem under the sliding window model. The first of the two papers, written
by Cohen-Addad [8], provided a (6 + 𝜖)-approximation and presented novel
techniques for dealing with sliding windows and guaranteeing a maximum
distance between the points in the window and the set of centers. The second
article, developed by Pellizzoni-Pietracaprina-Pucci [14], built upon those ideas
and was capable of improving the final result to a (2 + 𝜖)-approximation which
is, as of today, the state of the art for 𝑘-Center clustering. This improvement
was obtained at the expense of a small bump in storage needs and running
time performances, as highlighted by the experiments contained in the paper.
Since the latter is an improvement of the former, we will limit ourselves to the
presentation of the most comprehensive one [14].

The paper used the system of guessing of the optimal radius for the problem
initially presented by [8].

14
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Figure 2.3: Example of the geometric progression Γ with parameter 𝛽 = 0.3
used in [8, 14] to provide a set of guesses of the optimal radius 𝑂𝑃𝑇𝑘,𝑊𝑡 for the
𝑘-Center problem on the window𝑊𝑡 .

For each guess of the optimal radius the algorithm kept six different support
structures. Three validation sets𝐴𝑉𝛾, 𝑅𝑉𝛾 and𝑂𝑉𝛾 and three additional coreset
sets. These validation sets were used to decide if their guess 𝛾 was in fact a good
one or a bad one and, in the second case, from which time step the guess could
be taken into consideration again knowing the number of centers 𝑘. The coreset
sets 𝐴𝛾, 𝑅𝛾 and 𝑂𝛾, instead, were used to compute the final solution.

We conclude this section with a graphical example on how the three struc-
tures 𝐴𝑉𝛾, 𝑅𝑉𝛾 and 𝑂𝑉𝛾 used by [8] and [14] should look like when the guess
𝛾 is a good one i.e. |𝐴𝑉𝛾 | ≤ 𝑘.

(a) Initially, only one point exited 𝐴𝑉𝛾,
all the points in𝑊𝑡 are all still at distance
at most 4𝛾 from 𝑅𝑉𝛾 ∪ 𝑂𝑉𝛾

(b) Another point exits 𝐴𝑉𝛾, its repre-
sentative becomes an orphan, the points
are still covered by 𝑅𝑉𝛾 ∪ 𝑂𝑉𝛾, a repre-
sentative is swapped
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(c) A third point exits 𝐴𝑉𝛾 and another point becomes the new representative for
an attraction 𝑣-point still alive

Figure 2.4: Example of clustering for a given 𝛾 using the algorithm proposed by
Cohen-Added [8] and subsequently improved by Pellizzoni-Pietracaprina-Pucci
[14]

2.4.2 Matroid Center in streaming settings

For what concerns the streaming model, the best approximation algorithm
for the Matroid Center problem is given by [2]. In particular, in this paper they
obtained a (3 + 𝜖) approximation factor for the Robust Matroid Center problem,
which is a generalized version of the problem we are interested in also capable
of working with outliers.

In order to better understand the solution, we will now terminate this section
with a short presentation of the algorithm designed by [2]. The proposed
algorithm can be divided in two separate parts. In the first part, the aim is finding
an 𝜖-coreset for the stream on which, in the second part, a good sequential
solution can be computed. Since the sequential computation of the solution
requires simply to run an efficient 3-approximation algorithm [3, 4] on the 𝜖-
coreset, we will focus on how this coreset is obtained.

Let us now consider the simplest case of partition matroid as presented in
Definition 2.4 and let us use some graphical examples to facilitate the under-
standing of the various steps needed to create the 𝜖-coreset:

• Initially, given the stream 𝑆 of points, we find an estimate of the optimal
radius 𝑂𝑃𝑇𝑘,𝑆 for the standard 𝑘-Center problem;

16
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• Once 𝑂𝑃𝑇𝑘,𝑆 is found, we chose a subset (a net) 𝑇′ of points at distance
greater than 𝜖′𝑂𝑃𝑇𝑘,𝑆 from each other, where 𝜖′ is a parameter chosen
shrewdly to obtain the 𝜖-coreset (𝜖′ = 𝜖

1+2·𝛼 where 𝛼 = 3);

• We cluster the points in the stream using as centers the subset 𝑇′ chosen
previously;

• For each cluster of points, we compute a maximal independent set for the
(partition) matroid;

17
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• We return as 𝜖-coreset 𝑇 the union of these maximal independent sets.

18



3
Sliding window algorithm for

𝑘-Center under partition matroid
constraint

3.1 Description of the algorithm

The solution we developed for the FKC problem is built upon previous results
already present in the literature. In particular, we based our work on [14] for
what concerns the actual procedures to run and the support structures used.
Moreover, we exploited the result presented by [2] in order to generalize the
solution from the 𝑘-Center to the Matroid Center problem.

As in [14], our algorithm works on guesses of the optimal radius 𝑂𝑃𝑇𝑘,𝑊𝑡

for the 𝑘-Center problem on the window 𝑊𝑡 . In order to limit the space and
time required to run, these guesses are chosen from a geometric progression of
type Γ = {(1 + 𝛽)𝑖 : blog(1+𝛽)𝑚𝑖𝑛𝐷𝑖𝑠𝑡c ≤ 𝑖 ≤ dlog(1+𝛽)𝑚𝑎𝑥𝐷𝑖𝑠𝑡e} for a given
parameter 𝛽 > 0. For each of these guesses 𝛾 ∈ Γ we use six support structures,
which are divided in:

• three validation sets 𝐴𝑉𝛾, 𝑅𝑉𝛾 and𝑂𝑉𝛾, used to decide which 𝛾 is the best
guess of 𝑂𝑃𝑇𝑘,𝑊𝑡 ;

• three coreset sets 𝐴𝛾, 𝑅𝛾 and 𝑂𝛾, used to obtain a good representative of
𝑊𝑡 on which the sequential algorithm A for the FKC problem can be run
and return a (3 + 𝜖)-approximate solution for𝑊𝑡 .

19



3.1. DESCRIPTION OF THE ALGORITHM

With the intention of facilitating the description of the procedures, we will
refer to the points contained within the validation sets as 𝑣-points, while we will
refer to the ones in the coreset sets as 𝑐-points.

Among the validation sets, we have:
• The set𝐴𝑉𝛾 of attraction 𝑣-points, which contains a covering net of points at

distance greater than 2𝛾 and which, when 𝛾 is a valid guess of the optimal
radius 𝑂𝑃𝑇𝑘,𝑊𝑡 for the 𝑘-Center problem, represents a possible solution of
radius at most 2𝛾 (𝑟𝐴𝑉𝛾(𝑊𝑡) ≤ 2𝛾);

• The set 𝑅𝑉𝛾 of representative 𝑣-points 𝑟𝑒𝑝𝑉𝛾(𝑣), one for each 𝑣 ∈ 𝐴𝑉𝛾,
representing the newest points at distance not greater than 2𝛾 from their
respective 𝑣 (𝑑𝑖𝑠𝑡(𝑣, 𝑟𝑒𝑝𝑉𝛾(𝑣)) ≤ 2𝛾);

• The set 𝑂𝑉𝛾 containing old representative 𝑣-points, also called orphan 𝑣-
points, whose respective attraction 𝑣-points expired or got deleted from
𝐴𝑉𝛾 at time steps previous to the current one.

On a similar note, all the coreset sets 𝐴𝛾, 𝑅𝛾 and 𝑂𝛾 closely mirror the be-
haviour of their respective validation sets, but with a few important distinctions.
In particular, as was done in [14], instead of requiring the attraction 𝑐-points to
be at distance greater than 2𝛾, we require them to be at distance exceeding
𝛿𝛾
2 , where 𝛿 is a chosen parameter. By setting 𝛿 cleverly, we can obtain, at the

expense of a slight deterioration in performance, a much finer coverage for the
points in the window 𝑊𝑡 and consequently a much better coreset. The second
important difference is related to the meaning of the coreset sets 𝑅𝛾 and 𝑂𝛾. In
our case, in contrast with what was done in [14] where, for each 𝑎 ∈ 𝐴𝛾, they
keep a representative 𝑐-point 𝑟𝑒𝑝𝐶𝛾(𝑎), we maintain a set of points at distance
at most 𝛿𝛾

2 from each attraction 𝑐-point. This is done so to have, not a single
good alternative close to each 𝑎 ∈ 𝐴𝛾, but a good set of them. Specifically, with
inspiration from [2], we decided to keep an independent set of points close to
each of these 𝑎 ∈ 𝐴𝛾 from which later a coreset can be extracted and a solution
computed sequentially. Since all the points can be divided into categories, we
will denote 𝑟𝑒𝑝𝐶 𝑖𝛾(𝑎′) as the subset of representatives 𝑟𝑒𝑝𝐶𝛾(𝑎′) for 𝑎′ ∈ 𝐴𝛾 of
category 𝑖 (note that ∀𝑖 = 1, ..., ℓ : |𝑟𝑒𝑝𝐶 𝑖𝛾(𝑎′)| ≤ 𝑘𝑖).

To sum up, our proposal consists of two procedures:
• UPDATE(𝑝), which describes the processing that needs to be done at each

time step 𝑡 when a new point 𝑝 enters the window 𝑊𝑡 and another point
expires;
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• QUERY(), which, if invoked at time 𝑡, returns a (3+𝜖)-approximate solution
for the FKC problem on𝑊𝑡 by running the sequential algorithm A on the
coreset 𝑇 = 𝑅𝛾 ∪ 𝑂𝛾.

In order to run correctly the procedures need some variables. These are
set to 𝛿 = 𝜖′

(1+𝛽) and 𝜖′ = 𝜖
(1+2𝛼) , given the parameter 𝜖 ∈ (0, 1) and given an

𝛼-approximation sequential algorithm for the FKC problem. In conclusion, the
pseudocode for the two procedures is the following:

Algorithm 1 UPDATE(𝑝)
1: Let 𝑝 ∈𝑊𝑖 and let 𝑟𝑒𝑝𝐶 𝑖𝛾(𝑝) = 𝑟𝑒𝑝𝐶𝛾(𝑝) ∩𝑊𝑖

2: for each 𝛾 ∈ Γ do
3: for each expired 𝑣 ∈ 𝐴𝑉𝛾 do
4: 𝐴𝑉𝛾 = 𝐴𝑉𝛾 \ {𝑣}
5: 𝑅𝑉𝛾 = 𝑅𝑉𝛾 \ {𝑟𝑒𝑝𝑉𝛾(𝑣)}
6: 𝑂𝑉𝛾 = 𝑂𝑉𝛾 ∪ {𝑟𝑒𝑝𝑉𝛾(𝑣)}
7: for each expired 𝑎 ∈ 𝐴𝛾 do
8: 𝐴𝛾 = 𝐴𝛾 \ {𝑎}
9: 𝑅𝛾 = 𝑅𝛾 \ 𝑟𝑒𝑝𝐶𝛾(𝑎)

10: 𝑂𝛾 = 𝑂𝛾 ∪ 𝑟𝑒𝑝𝐶𝛾(𝑎)
11: for each expired 𝑞 ∈ 𝑂𝑉𝛾 do
12: 𝑂𝑉𝛾 = 𝑂𝑉𝛾 \ {𝑞}
13: for each expired 𝑜 ∈ 𝑂𝑉𝛾 do
14: 𝑂𝛾 = 𝑂𝛾 \ {𝑜}
15: 𝐸𝑉 = {𝑣 ∈ 𝐴𝑉𝛾 | 𝑑𝑖𝑠𝑡(𝑝, 𝑣) ≤ 2𝛾}
16: 𝐸 = {𝑎 ∈ 𝐴𝛾 | 𝑑𝑖𝑠𝑡(𝑝, 𝑎) ≤ 𝛿𝛾

2 }
17: if 𝐸𝑉 == 0 then
18: 𝐴𝑉𝛾 = 𝐴𝑉𝛾 ∪ {𝑝}
19: 𝑟𝑒𝑝𝑉𝛾(𝑝) = 𝑝

20: 𝑅𝑉𝛾 = 𝑅𝑉𝛾 ∪ {𝑟𝑒𝑝𝑉𝛾(𝑝)}
21: if |𝐴𝑉𝛾 | > 𝑘 + 1 then
22: 𝑣𝑜𝑙𝑑 = arg min𝑣∈𝐴𝑉𝛾 𝑇𝑇𝐿(𝑣)
23: 𝐴𝑉𝛾 = 𝐴𝑉𝛾 \ {𝑣𝑜𝑙𝑑}
24: 𝑅𝑉𝛾 = 𝑅𝑉𝛾 \ {𝑟𝑒𝑝𝑉𝛾(𝑣𝑜𝑙𝑑)}
25: 𝑂𝑉𝛾 = 𝑂𝑉𝛾 ∪ {𝑟𝑒𝑝𝑉𝛾(𝑣𝑜𝑙𝑑)}
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26: if |𝐴𝑉𝛾 | > 𝑘 then
27: 𝑡𝑚𝑖𝑛 = min𝑣∈𝐴𝑉𝛾 𝑇𝑇𝐿(𝑣)
28: for each 𝑎 ∈ 𝐴𝛾 do
29: if 𝑇𝑇𝐿(𝑎) < 𝑡𝑚𝑖𝑛 then
30: 𝐴𝛾 = 𝐴𝛾 \ {𝑎}
31: 𝑅𝛾 = 𝑅𝛾 \ 𝑟𝑒𝑝𝐶𝛾(𝑎)
32: 𝑂𝛾 = 𝑂𝛾 ∪ 𝑟𝑒𝑝𝐶𝛾(𝑎)
33: for each 𝑞 ∈ 𝑂𝑉𝛾 do
34: if 𝑇𝑇𝐿(𝑞) < 𝑡𝑚𝑖𝑛 then
35: 𝑂𝑉𝛾 = 𝑂𝑉𝛾 \ {𝑞}
36: for each 𝑜 ∈ 𝑂𝛾 do
37: if 𝑇𝑇𝐿(𝑜) < 𝑡𝑚𝑖𝑛 then
38: 𝑂𝛾 = 𝑂𝛾 \ {𝑜}
39: else
40: for each 𝑣 ∈ 𝐸𝑉 do
41: Set 𝑟𝑒𝑝𝑉𝛾(𝑣) = 𝑝 in 𝑅𝑉𝛾

42: if 𝐸 == 0 then
43: 𝐴𝛾 = 𝐴𝛾 ∪ {𝑝}
44: 𝑟𝑒𝑝𝐶𝛾(𝑝) = {𝑝}
45: 𝑅𝛾 = 𝑅𝛾 ∪ 𝑟𝑒𝑝𝐶𝛾(𝑝)
46: else
47: 𝑎𝑎𝑑𝑑 = arg min𝑎∈𝐸 |𝑟𝑒𝑝𝐶 𝑖𝛾(𝑎)| (break ties arbitrarily)
48: Set 𝑟𝑒𝑝𝐶𝛾(𝑎𝑎𝑑𝑑) = 𝑟𝑒𝑝𝐶𝛾(𝑎𝑎𝑑𝑑) ∪ {𝑝} in 𝑅𝛾

49: if |𝑟𝑒𝑝𝐶 𝑖𝛾(𝑎𝑎𝑑𝑑)| > 𝑘𝑖 then
50: 𝑜𝑟𝑒𝑚 = arg min𝑜∈𝑟𝑒𝑝𝐶 𝑖𝛾(𝑎𝑎𝑑𝑑) 𝑇𝑇𝐿(𝑜)
51: Remove 𝑜𝑟𝑒𝑚 from 𝑟𝑒𝑝𝐶𝛾(𝑎𝑎𝑑𝑑) in 𝑅𝛾

22



CHAPTER 3. SLIDING WINDOW ALGORITHM FOR 𝐾-CENTER UNDER PARTITION
MATROID CONSTRAINT

Algorithm 2 QUERY()
1: for increasing values of 𝛾 ∈ Γ with |𝐴𝑉𝛾 | ≤ 𝑘 do
2: 𝐶 = ∅
3: for each 𝑞 ∈ 𝐴𝑉𝛾 ∪ 𝑅𝑉𝛾 ∪ 𝑂𝑉𝛾 do
4: if (𝐶 == ∅) or 𝑑𝑖𝑠𝑡(𝑞, 𝐶) > 2𝛾 then
5: 𝐶 = 𝐶 ∪ {𝑞}
6: if |𝐶 | > 𝑘 then
7: Break and move to the next guess

8: if |𝐶 | ≤ 𝑘 then
9: return A(𝑅𝛾 ∪ 𝑂𝛾 , 𝑘)

3.2 Analysis

In this section we will develop the proofs needed in order to guarantee that
the algorithm is correct and that it returns a (3 + 𝜖)-approximation for the FKC
problem. In addition, at the end of this section we will analyze the space and
time complexity of the algorithm.

In order to simplify its analysis, we first introduce a general notation that
helps us characterize the evolution over time of all the support structures used by
the algorithm. We will denote a general structure 𝑋 at the end of the execution
of UPDATE(𝑝) at time step 𝑡 as 𝑋𝑡 . For example, we will specify 𝐴𝑉𝛾,𝑡 , 𝐸𝑉𝑡 and
𝑟𝑒𝑝𝐶𝛾,𝑡(𝑣) as the structures 𝐴𝑉𝛾, 𝐸𝑉 and 𝑟𝑒𝑝𝐶𝛾(𝑣) at time 𝑡.

Now that the final piece of notation is fixed, we will present first a simple
property for the sets of attraction points and then, secondly, a set of invariants
needed in order to prove that the distance of each point from 𝑅𝑉𝛾 ∪ 𝑂𝑉𝛾 and
from 𝑅𝛾 ∪ 𝑂𝛾 is bounded under some conditions.

Lemma 3.1 Let 𝑣′ = arg min𝑣∈𝐴𝑉𝛾,𝑡 𝑡(𝑣) for a given 𝛾 ∈ Γ (resp. 𝑎′ = arg min𝑎∈𝐴𝛾,𝑡 𝑡(𝑎))
and let𝑊𝑡 be the window at time 𝑡. Then, we have that ∀𝑞 ∈𝑊𝑡 with 𝑡(𝑞) ≥ 𝑡(𝑣′) (resp.
𝑡(𝑞) ≥ 𝑡(𝑎′)): 𝐴𝑉𝛾,𝑡(𝑞) ⊆ 𝐴𝑉𝛾,𝑡 ∪ 𝐴𝑉𝛾,𝑡(𝑣′)−1 (resp. 𝐴𝛾,𝑡(𝑞) ⊆ 𝐴𝛾,𝑡 ∪ 𝐴𝛾,𝑡(𝑎′)−1).

Proof Since the same argument can be made for both 𝐴𝑉𝛾,𝑡(𝑞) and 𝐴𝛾,𝑡(𝑞), we
only carry out the proof for the former. Consider a generic 𝛾 ∈ Γ. The main
reason we can deduce the property specified in the lemma is that the behavior
of 𝐴𝑉𝛾,𝑡′ (how points enter and exit the set) over time 𝑡′ is equivalent to the
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behaviour of a queue. In fact, we always remove only the oldest point in 𝐴𝑉𝛾,𝑡′

at time step 𝑡′ and add only points newer than all the points already present in
the set 𝐴𝑉𝛾,𝑡′. Thus, since the set of points in a queue at an intermediate time
𝑡(𝑣′) − 1 < 𝑡(𝑞) ≤ 𝑡 is a subset of the union of the set of points in the queue at
two different instants, we can conclude that 𝐴𝑉𝛾,𝑡(𝑞) ⊆ 𝐴𝑉𝛾,𝑡 ∪ 𝐴𝑉𝛾,𝑡(𝑣′)−1.

Figure 3.1: A visual example of the lemma described above

Lemma 3.2 Let 𝑣′ = arg min𝑣∈𝐴𝑉𝛾 𝑡(𝑣) be the oldest point in 𝐴𝑉𝛾, if it exists. For
every 𝛾 ∈ Γ, the following properties hold after the end of each execution of procedure
UPDATE(𝑝), with respect to the window𝑊𝑡 at time step 𝑡:

(1) ∀𝑞 ∈𝑊𝑡 with 𝑡(𝑞) ≥ 𝑡(𝑣′) we have that 𝑑𝑖𝑠𝑡(𝑞, 𝑅𝑉𝛾 ∪ 𝑂𝑉𝛾) ≤ 4𝛾;

(2) ∀𝑞 ∈𝑊𝑡 with 𝑡(𝑞) < 𝑡(𝑣′) we have that if |𝐴𝑉𝛾 | ≤ 𝑘 then 𝑑𝑖𝑠𝑡(𝑞, 𝑅𝑉𝛾∪𝑂𝑉𝛾) ≤
4𝛾.

Proof Let 𝛾 be a generic guess in Γ.
We prove the two properties presented in the lemma by distinguishing on

the size of the set 𝐴𝑉𝛾,𝑡 at time step 𝑡:
• If |𝐴𝑉𝛾,𝑡 | = 0, then it is certain that 𝑊𝑡 = ∅ since the first point in the

window is always added to 𝐴𝑉𝛾,𝑡 . In this case the properties are true
(∀𝑞 ∈𝑊𝑡 with𝑊𝑡 = ∅).

• If |𝐴𝑉𝛾,𝑡 | ≥ 1, consider 𝑣′ = arg min𝑣∈𝐴𝑉𝛾,𝑡 𝑡(𝑣) the oldest point in 𝐴𝑉𝛾,𝑡 in
the window 𝑊𝑡 at time 𝑡. In this case we can partition the points in the
window𝑊𝑡 given the time 𝑡(𝑞) they entered:
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– ∀𝑞 ∈ 𝑊𝑡 with 𝑡(𝑞) ≥ 𝑡(𝑣′) we have that 𝑑𝑖𝑠𝑡(𝑞, 𝑅𝑉𝛾 ∪ 𝑂𝑉𝛾) ≤ 4𝛾.
Assume, by contradiction, that there exists 𝑞′ ∈ 𝑊𝑡 with 𝑡(𝑞′) > 𝑡(𝑣′)
such that 𝑑𝑖𝑠𝑡(𝑞′, 𝑅𝑉𝛾,𝑡 ∪ 𝑂𝑉𝛾,𝑡) > 4𝛾 (the point cannot be trivially
𝑞′ = 𝑣′). This implies that:

(A) we have 𝑑𝑖𝑠𝑡(𝑞′, 𝑅𝑉𝛾,𝑡) > 4𝛾 and in turn 𝑑𝑖𝑠𝑡(𝑞′, 𝐴𝑉𝛾,𝑡) > 2𝛾 at
time 𝑡;

(B) we have 𝑑𝑖𝑠𝑡(𝑞′, 𝑂𝑉𝛾,𝑡) > 4𝛾 at time 𝑡, which means that at time
𝑡(𝑣′)−1 we have 𝑑𝑖𝑠𝑡(𝑞′, 𝑅𝑉𝛾,𝑡(𝑣′)−1) > 4𝛾 and 𝑑𝑖𝑠𝑡(𝑞′, 𝐴𝑉𝛾,𝑡(𝑣′)−1) >
2𝛾. (points can be in 𝑂𝑉𝛾,𝑡 only if they where one of the rep-
resentatives, or their substitutions in close proximity, of the last
𝑘 + 1 points that exited 𝐴𝑉𝛾,𝑡 . These points must have been in
𝐴𝑉𝛾,𝑡(𝑣′)−1).

Since𝐴𝑉𝛾,𝑡(𝑞′)−1 ⊆ 𝐴𝑉𝛾,𝑡∪𝐴𝑉𝛾,𝑡(𝑣′)−1 then we have that∀𝑣 ∈ 𝐴𝑉𝛾,𝑡(𝑞′)−1 :
𝑑𝑖𝑠𝑡(𝑞′, 𝑣) > 2𝛾 at time 𝑡(𝑞′). This implies that at time 𝑡(𝑞′) the point
𝑞′ should have been added to 𝐴𝑉𝛾,𝑡(𝑞′). Finally we can conclude that,
since 𝑡(𝑞′) ≥ 𝑡(𝑣′), 𝑞′ would still be in 𝐴𝑉𝛾,𝑡 (an absurdity, it cannot
happen).

– ∀𝑞 ∈ 𝑊𝑡 with 𝑡(𝑞) < 𝑡(𝑣′) we have that 𝑑𝑖𝑠𝑡(𝑞, 𝑅𝑉𝛾 ∪ 𝑂𝑉𝛾) ≤ 4𝛾 if
|𝐴𝑉𝛾 | ≤ 𝑘. Assume, by contradiction, that there exists 𝑞′ ∈ 𝑊𝑡 with
𝑡(𝑞′) < 𝑡(𝑣′) such that 𝑑𝑖𝑠𝑡(𝑞′, 𝑅𝑉𝛾,𝑡 ∪ 𝑂𝑉𝛾,𝑡) > 4𝛾. This implies that
𝑑𝑖𝑠𝑡(𝑞, 𝑂𝑉𝛾,𝑡) > 4𝛾. Since |𝐴𝑉𝛾,𝑡 | ≤ 𝑘we have that�𝑣 ∈ 𝐴𝑉𝛾,𝑡(𝑣′) with
𝑡(𝑣′) > 𝑡(𝑣) > 𝑡−𝑁 otherwise it would be in𝐴𝑉𝛾,𝑡 and 𝑣′ would not be
the oldest point in𝐴𝑉𝛾 in the window𝑊𝑡 (no point is eliminated from
𝐴𝑉𝛾,𝑡 in the window 𝑊𝑡 since |𝐴𝑉𝛾,𝑡 | ≤ 𝑘). This implies that all the
orphans in𝑂𝑉𝛾,𝑡 were representatives of points in 𝐴𝑉𝛾,𝑡(𝑞′)−1. In turn
it means that 𝑑𝑖𝑠𝑡(𝑞′, 𝑅𝑉𝛾,𝑡(𝑞′)−1) > 4𝛾 and 𝑑𝑖𝑠𝑡(𝑞′, 𝐴𝑉𝛾,𝑡(𝑞′)−1) > 2𝛾.
The point 𝑞′ should have been added to 𝐴𝑉𝛾,𝑡(𝑞′) at time 𝑡(𝑞′) and,
since |𝐴𝑉𝛾,𝑡 | ≤ 𝑘 would still be in 𝐴𝑉𝛾,𝑡 at time 𝑡 (an absurdity, it
cannot happen).

An argument, with reasoning similar to the previous one for 𝑅𝑉𝛾∪𝑂𝑉𝛾, can
also be made for 𝑅𝛾 ∪ 𝑂𝛾. The resulting statement is presented, without proof,

25



3.2. ANALYSIS

in the following lemma:

Lemma 3.3 Let 𝑎′ = arg min𝑎∈𝐴𝛾 𝑡(𝑎) be the oldest point in 𝐴𝛾, if it exists. For
every 𝛾 ∈ Γ, the following properties hold after the end of each execution of procedure
UPDATE(𝑝), with respect to the window𝑊𝑡 at time step 𝑡:

(1) ∀𝑞 ∈𝑊𝑡 with 𝑡(𝑞) ≥ 𝑡(𝑎′) we have that 𝑑𝑖𝑠𝑡(𝑞, 𝑅𝛾 ∪ 𝑂𝛾) ≤ 𝛿𝛾;

(2) ∀𝑞 ∈𝑊𝑡 with 𝑡(𝑞) < 𝑡(𝑎′)we have that if |𝐴𝑉𝛾 | ≤ 𝑘 then 𝑑𝑖𝑠𝑡(𝑞, 𝑅𝛾∪𝑂𝛾) ≤ 𝛿𝛾.

After introducing two sets of very important invariants, we present here an
adapted version of [[2], Lemma 3], whose proof is a straightforward refitting of
the one already present in the previous paper and which we have consequently
decided to omit.

Lemma 3.4 Let 𝑊𝑡 be the window of points at time step 𝑡. Suppose that the coreset 𝑄
with proxy function 𝑝 : 𝑊𝑡 −→ 𝑄 satisfies the following conditions, for a given 𝛾 ∈ Γ:

(C1) For each 𝑞 ∈𝑊𝑡 , 𝑑𝑖𝑠𝑡(𝑞, 𝑝(𝑞)) ≤ 𝛿𝛾;

(C2) For each independent set𝑋 ∈ 𝐼𝑊𝑡 there exists an injective mapping𝜋𝑋 : 𝑋 −→ 𝑄

such that:

• {𝜋𝑋(𝑖) : 𝑖 ∈ 𝑋} ⊆ 𝑄 is an independent set (∈ 𝐼𝑄);

• for each 𝑖 ∈ 𝑋, 𝑑𝑖𝑠𝑡(𝑖,𝜋𝑋(𝑖)) ≤ 𝛿𝛾

Then:

(P1) There exists a solution of the Matroid Center problem on 𝑀𝑄 = (𝑄, 𝐼𝑄) of cost at
most 𝑂𝑃𝑇𝑀𝑊𝑡

+ 2𝛿𝛾;

(P2) Every solution 𝐹 of the Matroid Center problem on𝑀𝑄 of cost 𝑟𝐹 is also a solution
of cost at most 𝑟𝐹 + 𝛿𝛾 on 𝑀𝑊𝑡 .
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Since the FKC problem is just a specialization of the Matroid Center problem,
this lemma also works in our case. However, it is presented in the more general
setting of the Matroid Center problem because it will be used also for the case
with the transversal matroid in Chapter 4.

In order to facilitate our work in the next chapter and allow ourselves to
create a more general theorem capable of guaranteeing the correctness and the
approximation factor in both the partition matroid and the transversal matroid
cases, let us now introduce two additional lemmas which will be proved sepa-
rately for the two types of matroid but that can be used in the same fashion in a
unique general theorem of correctness based on the work developed by [2].

Lemma 3.5 Let 𝑝 be the point that enters the window 𝑊𝑡 at time step 𝑡. We have that
𝑝 always enters 𝑅𝛾,𝑡 at time 𝑡 = 𝑡(𝑝), for all 𝛾 ∈ Γ.

Proof Consider a generic 𝛾 ∈ Γ. When 𝑝 enters the window 𝑊𝑡 (𝑡 = 𝑡(𝑝)) we
have 𝐸𝑡 = {𝑎 ∈ 𝐴𝛾,𝑡−1 : 𝑑𝑖𝑠𝑡(𝑝, 𝑎) ≤ 𝛿𝛾

2 }. Let us distinguish two cases depending
on the size of 𝐸𝑡 :

• If 𝐸𝑡 == ∅, then the point 𝑝 is added to 𝐴𝛾,𝑡 and its set of representatives
is initialized to 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑝) = {𝑝} ⊆ 𝑅𝛾,𝑡 .

• If 𝐸𝑡 ≠ ∅, the point 𝑝 is at distance 𝑑𝑖𝑠𝑡(𝑝, 𝑎) ≤ 𝛿𝛾
2 from all 𝑎 ∈ 𝐸𝑡 . Let

us consider the attraction 𝑐-point 𝑎𝑎𝑑𝑑 = arg min𝑎∈𝐸𝑡 |𝑟𝑒𝑝𝐶 𝑖𝛾,𝑡−1(𝑎)| chosen
by the procedure UPDATE(𝑝) at time step 𝑡 and its set of representatives
𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎𝑎𝑑𝑑). Independently of what happens at lines 49-51 of procedure
UPDATE(𝑝) we know that 𝑝, being the latest point to enter the window,
will never be the one eliminated. As a consequence we know that it will
still be in 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎𝑎𝑑𝑑) ⊆ 𝑅𝑉𝛾,𝑡 at the end of the procedure.

At this point, we can conclude that 𝑝 is always added to𝑅𝛾,𝑡 at time 𝑡 = 𝑡(𝑝).

Lemma 3.6 Let 𝑊𝑡 be the window at time 𝑡. For each 𝛾 ∈ Γ, the following holds. Let
𝑎 ∈ 𝑆 be a point that entered 𝐴𝛾 at some point in time, stated 𝑎 ∈ 𝐴𝛾,𝑡(𝑎) (we denote
𝑎 as a point in the stream 𝑆 and not in the window 𝑊𝑡 because we need to specify the
behaviour of all sets 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎), even those orphaned whose 𝑎 ∉ 𝑊𝑡). For 𝑡 ≥ 𝑡(𝑎) we
have:

• If 𝑎 ∈ 𝐴𝛾,𝑡 , then 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) is a maximal independent set for𝑊𝑡(𝑎) = {𝑥 ∈𝑊𝑡 :
(𝑑𝑖𝑠𝑡(𝑎, 𝑥) ≤ 𝛿𝛾

2 ) ∧ (𝑡(𝑎) ≤ 𝑡(𝑥))}.
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• If 𝑎 ∉ 𝐴𝛾,𝑡 , then 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) is a maximal independent set for 𝑊𝑡(𝑎) = {𝑥 ∈
𝑊𝑡 : (𝑑𝑖𝑠𝑡(𝑎, 𝑥) ≤ 𝛿𝛾

2 ) ∧ (𝑡(𝑎) ≤ 𝑡(𝑥) ≤ 𝑡)} where 𝑡 ≤ 𝑡 is the time step 𝑎 was
removed from 𝐴𝛾 (𝑎 ∈ 𝐴𝛾,𝑡−1 but 𝑎 ∉ 𝐴𝛾,𝑡). Note that 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) is a subset of
𝑟𝑒𝑝𝐶𝛾,𝑡−1(𝑎) of points still not expired.

Proof Consider a generic 𝛾 ∈ Γ. This lemma will be proved by induction on the
time step 𝑡.

• Base case, 𝑡 = 𝑡(𝑎).
By the design of procedure UPDATE(𝑎), we known that 𝑎 ∈ 𝐴𝛾,𝑡 and
that 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) = {𝑎}. Furthermore, given that 𝑎 ∈ 𝐴𝛾,𝑡 is the first point
𝑥 ∈ 𝑊𝑡 to enter at time 𝑡 ≥ 𝑡(𝑎) and at distance 𝑑𝑖𝑠𝑡(𝑎, 𝑥) ≤ 𝛿𝛾

2 from 𝑎,
we have 𝑊𝑡(𝑎) = {𝑎}. As a result of these observations, we can conclude
that 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎), being equal to 𝑊𝑡(𝑎) and containing only one point, is a
maximal independent set for it.

• Inductive case 1, 𝑡 > 𝑡(𝑎) and 𝑎 ∈ 𝐴𝛾,𝑡 .
By inductive hypothesis, we assume 𝑟𝑒𝑝𝐶𝛾,𝑡−1(𝑎) to be a maximal inde-
pendent set for 𝑊𝑡−1(𝑎). Our objective is to prove that, at the end of time
step 𝑡, 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) remains a maximal independent set for𝑊𝑡(𝑎).
Let 𝑢 be the point that expired from 𝑊𝑡 and 𝑝 the point that entered 𝑊𝑡

at time step 𝑡. If 𝑎 ∈ 𝐴𝛾,𝑡 , then we must have that 𝑢 ∉ 𝑟𝑒𝑝𝐶𝛾,𝑡−1(𝑎) and
that 𝑢 ∉𝑊𝑡(𝑎) otherwise 𝑎 would have expired at time 𝑡 and not be in 𝐴𝛾,𝑡

(𝑢 ∈𝑊𝑡(𝑎) implies 𝑡(𝑢) ≥ 𝑡(𝑎)).
We can distinguish 2 cases:

– If 𝑝 ∉𝑊𝑡(𝑎), then we have that𝑊𝑡(𝑎) =𝑊𝑡−1(𝑎) and that 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) =
𝑟𝑒𝑝𝐶𝛾,𝑡−1(𝑎). Clearly, given that at time step 𝑡 nothing changes for
the two sets connected to 𝑎, we can conclude that 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) is still a
maximal independent set for𝑊𝑡(𝑎).

– If 𝑝 ∈ 𝑊𝑡(𝑎), then we have that 𝑊𝑡(𝑎) = 𝑊𝑡−1(𝑎) ∪ {𝑝} and that
𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) ⊆ 𝑟𝑒𝑝𝐶𝛾,𝑡−1(𝑎) ∪ {𝑝}. As we can see from lines 49-51 of
procedure UPDATE(𝑝), we remove a point 𝑜 ∈ 𝑟𝑒𝑝𝐶𝛾,𝑡−1(𝑎) only if
we have 𝑘𝑖 points of its category newer than him. Since we can never
have more than 𝑘𝑖 points in the same category 𝑖 = 1, ..., ℓ inside an
independent set, it follows that 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) remains maximal for𝑊𝑡(𝑎).
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• Inductive case 2, 𝑡 > 𝑡(𝑎) and 𝑎 ∉ 𝐴𝛾,𝑡 .
By inductive hypothesis, we assume 𝑟𝑒𝑝𝐶𝛾,𝑡−1(𝑎) to be a maximal inde-
pendent set for 𝑊𝑡−1(𝑎). Our objective is to prove that, at the end of time
step 𝑡, 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) remains a maximal independent set for𝑊𝑡(𝑎).
Let 𝑢 be the point that expired from 𝑊𝑡 and 𝑝 the point that entered 𝑊𝑡

at time step 𝑡. Since 𝑎 ∉ 𝐴𝛾 (𝑡 = 𝑡(𝑝) ≥ 𝑡), we are sure that 𝑝 ∉ 𝑊𝑡(𝑎),
therefore𝑊𝑡(𝑎) =𝑊𝑡−1(𝑎) \ {𝑢}.
We can have 2 different situations:

– If 𝑢 ∉ 𝑟𝑒𝑝𝐶𝛾,𝑡−1(𝑎), then 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) = 𝑟𝑒𝑝𝐶𝛾,𝑡−1(𝑎). In turn this means
that the maximal independent set 𝑟𝑒𝑝𝐶𝛾,𝑡−1(𝑎) for 𝑊𝑡−1(𝑎) still exists
in 𝑊𝑡(𝑎) (𝑟𝑎𝑛𝑘(𝑊𝑡(𝑎)) = 𝑟𝑎𝑛𝑘(𝑊𝑡−1(𝑎)) =

��𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎)
��). As a result,

we can say that 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) remains a maximal independent set for
𝑊𝑡(𝑎).

– If 𝑢 ∈ 𝑟𝑒𝑝𝐶𝛾,𝑡−1(𝑎), then 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) = 𝑟𝑒𝑝𝐶𝛾,𝑡−1(𝑎) \ {𝑢}. In this
case, given that we always kept the newest points for each cate-
gory 𝑖 = 1, ..., ℓ (at most 𝑘𝑖 of them), it means that 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) ∩
𝑊𝑖 = 𝑊𝑡(𝑎) ∩ 𝑊𝑖 . Since the number of points in 𝑊𝑡(𝑎) for cate-
gory 𝑖 is smaller than

��𝑟𝑒𝑝𝐶𝛾,𝑡−1(𝑎) ∩𝑊𝑖
��, it logically follows that

𝑟𝑎𝑛𝑘(𝑊𝑡(𝑎)) = 𝑟𝑎𝑛𝑘(𝑊𝑡−1(𝑎)) − 1. Therefore, having |𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎)| =
|𝑟𝑒𝑝𝐶𝛾,𝑡−1(𝑎)| − 1, we can conclude that the set 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) continues
to be a maximal independent set for𝑊𝑡(𝑎).

In summary, we can state that 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) is a maximal independent set for
𝑊𝑡(𝑎) for every 𝑡 ≥ 𝑡(𝑎).

At this point, we have all the necessary concepts needed in order to prove
the core results for the paper where we show the algorithm is correct and
returns a (3 + 𝜖)-approximation for the FKC problem. As done for Lemma 3.4,
the following results are presented in the more general setting of the Matroid
Center problem because they will be used also for the case with the transversal
matroid in Chapter 4.

Theorem 3.7 Let 𝜖 ∈ (0, 1) and 𝛽 > 0. Suppose that an 𝛼-approximation algorithm
A for the Matroid Center problem is available. When procedure QUERY() is run at
time step 𝑡, the selected coreset 𝑇 = 𝑅𝛾∪𝑂𝛾 exhibits properties (P1) and (P2) of Lemma
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3.4 with 𝛿 = 𝜖′
(1+𝛽) and 𝜖′ = 𝜖

(1+2𝛼) . Hence, the solution 𝐹 returned by running A
on instance 𝑀𝑇 of the Matroid Center problem is an (𝛼 + 𝜖)-approximate solution to
instance 𝑀𝑊𝑡 of the Matroid Center problem.

Proof In order to prove this theorem we will first prove that the coreset 𝑇 =

𝑅𝛾 ∪ 𝑂𝛾 chosen by procedure QUERY() at time step 𝑡 is of the type required by
Lemma 3.4. Then, we will use the properties of that lemma to bound the solution
returned by the algorithm and insure that it is actually an (𝛼+ 𝜖)-approximation
to instance 𝑀𝑊𝑡 of the Matroid Center problem.

We start by proving that coreset 𝑇 = 𝑅𝛾 ∪ 𝑂𝛾 satisfies condition (C1) of
Lemma 3.4. By design of procedure QUERY() at time step 𝑡, the coreset 𝑇 is
returned only if |𝐴𝑉𝛾 | ≤ 𝑘 and |𝐶 | ≤ 𝑘. Knowing that |𝐴𝑉𝛾 | ≤ 𝑘 and taking
advantage of both point (1) and point (2) of Lemma 3.3, we can say that

∀𝑞 ∈𝑊𝑡 : 𝑑𝑖𝑠𝑡(𝑞, 𝑅𝛾 ∪ 𝑂𝛾) ≤ 𝛿𝛾 (3.1)

and conclude that condition (C1) is satisfied by 𝑇.
To prove condition (C2) of Lemma 3.4 for 𝑇 = 𝑅𝛾 ∪𝑂𝛾, consider an arbitrary

𝑋 ∈ 𝐼𝑊𝑡 . We must show that there exists an injective mapping 𝜋𝑋 : 𝑋 −→ 𝑇

such that:
• {𝜋𝑋(𝑜) | 𝑜 ∈ 𝑋} ∈ 𝐼𝑇 (the set of mapped points form an independent set

of 𝐼𝑊𝑡 and are a subset of 𝑇);

• ∀𝑜 ∈ 𝑋 : 𝑑𝑖𝑠𝑡(𝑜,𝜋𝑋(𝑜)) ≤ 𝛿𝛾 (equivalent to say that 𝑜 and 𝜋𝑋(𝑜) are at
distance ≤ 𝛿𝛾

2 to at least one attraction 𝑐-point in common).
Let 𝑋 = {𝑥𝑢 | 1 ≤ 𝑢 ≤ |𝑋 |}. We will define the mapping 𝜋𝑋 incrementally

one element at the time. Suppose that we have fixed the mapping for the first
ℎ ≥ 0 elements of 𝑋 and assume, inductively, that 𝑌(ℎ) = {𝜋𝑋(𝑥𝑢) | 1 ≤ 𝑢 ≤
ℎ} ∪ {𝑥𝑢 | ℎ < 𝑢 ≤ |𝑋 |} is an independent set (∈ 𝐼𝑊𝑡 ) of size |𝑌(ℎ)| = |𝑋 |. For
1 ≤ 𝑢 ≤ ℎ we have that 𝑑𝑖𝑠𝑡(𝑥𝑢 ,𝜋𝑋(𝑥𝑢)) ≤ 𝛿𝛾.

Consider now 𝑥ℎ+1, by design of the procedure UPDATE(𝑝) and Lemma 3.5,
when the point 𝑥ℎ+1 entered the window at some time 𝑡(𝑥ℎ+1), it was certainly
added to 𝑅𝛾,𝑡(𝑥ℎ+1) (it enters at least one 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑥ℎ+1)(𝑎′) for a certain point 𝑎′ ∈
𝐴𝛾,𝑡(𝑥ℎ+1)).

At this point, let us distinguish between two cases:
• If 𝑥ℎ+1 ∈ 𝑅𝛾,𝑡 ∪ 𝑂𝛾,𝑡 , then we can simply set 𝜋𝑋(𝑥ℎ+1) = 𝑥ℎ+1. Hence,
𝑌(ℎ + 1) = 𝑌(ℎ) and 𝑑𝑖𝑠𝑡(𝑥ℎ+1,𝜋𝑋(𝑥ℎ+1)) = 0 ≤ 𝛿𝛾.
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• If 𝑥ℎ+1 ∉ 𝑅𝛾,𝑡∪𝑂𝛾,𝑡 , then we still have that, at time 𝑡(𝑥ℎ+1), the point entered
a certain 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑥ℎ+1)(𝑎′) for some 𝑎′ ∈ 𝐴𝛾,𝑡(𝑥ℎ+1) with 𝑑𝑖𝑠𝑡(𝑎′, 𝑥ℎ+1) ≤ 𝛿𝛾

2
(𝑎′ ∈ 𝐸𝑡(𝑥ℎ+1)). Using the result that 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎′) is a maximal indepen-
dent set for 𝑊𝑡(𝑎′) of Lemma 3.6 combined with the extended augmen-
tation property (Lemma 2.2), we can find 𝜋𝑋(𝑥ℎ+1). In particular, let us
set: 𝐴 = 𝑌(ℎ) \ {𝑥ℎ+1}; 𝑦 = 𝑥ℎ+1; 𝑊 ′ = 𝑊𝑡(𝑎′); 𝐵 = 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎′). Since
∃𝑥ℎ+1 ∈ 𝑊 ′ \ 𝐴 such that 𝐴 ∪ {𝑥ℎ+1} ∈ 𝐼𝑊′ and 𝐵 is maximal for 𝑊 ′, then
∃𝜋𝑋(𝑥ℎ+1) ∈ 𝐵\𝐴 such that𝐴∪{𝜋𝑋(𝑥ℎ+1)} ∈ 𝐼𝑊′. Hence,𝑌(ℎ+1) = (𝑌(ℎ)\
{𝑥ℎ+1}) ∪ {𝜋𝑋(𝑥ℎ+1)} and, given that 𝑑𝑖𝑠𝑡(𝑥ℎ+1, 𝑎′) ≤ 𝛿𝛾

2 , we also have that
𝑑𝑖𝑠𝑡(𝑥ℎ+1,𝜋𝑋(𝑥ℎ+1)) ≤ 𝑑𝑖𝑠𝑡(𝑥ℎ+1, 𝑎′) + 𝑑𝑖𝑠𝑡(𝑎′,𝜋𝑋(𝑥ℎ+1)) ≤ 𝛿𝛾

2 + 𝛿𝛾
2 ≤ 𝛿𝛾.

After |𝑋 | iterations of the above inductive argument, we have that the map-
ping 𝜋𝑋 is completely specified and exhibits the following properties:

• 𝜋𝑋 is injective because each 𝑥𝑢 has been substituted by another specific
point in 𝑅𝛾 ∪ 𝑂𝛾 (using the extended augmentation property);

• {𝜋𝑋(𝑥𝑢) | 1 ≤ 𝑢 ≤ |𝑋 |} ⊆ 𝑇 = 𝑅𝛾 ∪𝑂𝛾 is an independent set (∈ 𝐼𝑇) since it
is constructed to still be an independent set at each ℎ ≥ 0;

• for 1 ≤ 𝑢 ≤ |𝑋 | we have 𝑑𝑖𝑠𝑡(𝑥𝑢 ,𝜋𝑋(𝑥𝑢)) ≤ 𝛿𝛾 since at each ℎ ≥ 0 the two
points 𝑥ℎ+1 and 𝜋𝑋(𝑥ℎ+1) either represent the same point or are at distance
≤ 𝛿𝛾

2 from the same attraction 𝑐-point.
This concludes the proof of condition (C2) for coreset 𝑇.
Now, given that the coreset 𝑇 = 𝑅𝛾 ∪ 𝑂𝛾 chosen by procedure QUERY() at

time step 𝑡 satisfies conditions (C1) and (C2) of Lemma 3.4, we can imply that it
also exhibits properties (P1) and (P2) of that lemma.

By property (P1) of Lemma 3.4, we can say that the optimal solution to 𝑀𝑇

has cost at most 𝑂𝑃𝑇𝑀𝑊𝑡
+ 2𝛿�̂� where �̂� is the guess chosen by the procedure

QUERY(). In the worst case the procedure returns 𝑇 = 𝑅𝛾 ∪ 𝑂𝛾 for a guess �̂�

such that 𝑂𝑃𝑇𝑘,𝑊𝑡 < �̂� ≤ 𝑂𝑃𝑇𝑘,𝑊𝑡 (1 + 𝛽) ≤ 𝑂𝑃𝑇𝑀𝑊𝑡
(1 + 𝛽). This is true because

the algorithm stops when it finds not more than 𝑘 points at distance greater
than 2𝛾 for a certain guess 𝛾 and this is certain to happen when the guess is
greater than the optimal radius 𝑂𝑃𝑇𝑘,𝑊𝑡 . In fact, we cannot find 𝑘 + 1 points
at distance greater than 2𝑂𝑃𝑇𝑘,𝑊𝑡 from one another, otherwise we would have
that in the optimal clustering at least two of these points would be in the same
cluster, which is impossible given the triangular inequality. Moreover, by the
design of the geometric progression Γ, the first guess �̂� greater than 𝑂𝑃𝑇𝑘,𝑊𝑡

is always at most 𝑂𝑃𝑇𝑘,𝑊𝑡 (1 + 𝛽) and, since a solution for the Matroid Center
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problem on 𝑀𝑊𝑡 is also a solution for the 𝑘-Center problem on𝑊𝑡 , we have that
�̂� ≤ 𝑂𝑃𝑇𝑘,𝑊𝑡 (1 + 𝛽) ≤ 𝑂𝑃𝑇𝑀𝑊𝑡

(1 + 𝛽).
This implies that in the worst case the cost of the optimal solution for the

Matroid Center problem on 𝑀𝑇 is at most 𝑂𝑃𝑇𝑀𝑊𝑡
+ 2𝛿�̂� ≤ (1 + 2𝜖′)𝑂𝑃𝑇𝑀𝑊𝑡

.
Hence, the solution 𝐹 computed using algorithm A has always cost 𝑟𝐹 ≤
𝛼(1 + 2𝜖′)𝑂𝑃𝑇𝑀𝑊𝑡

= (𝛼 + 𝜖 2𝛼
1+2𝛼 )𝑂𝑃𝑇𝑀𝑊𝑡

. By property (P2) of Lemma 3.4 the
solution 𝐹 to 𝑀𝑇 is also a solution to 𝑀𝑊𝑡 for the Matroid Center problem with
cost at most 𝑟𝐹 + 𝛿�̂� ≤ 𝑟𝐹 + 𝜖

1+2𝛼𝑂𝑃𝑇𝑀𝑊𝑡
≤ (𝛼 + 𝜖)𝑂𝑃𝑇𝑀𝑊𝑡

which concludes the
proof.

Corollary 3.8 procedure QUERY() can be used to compute a (3 + 𝜖)-approximate
solution to any instance 𝑀𝑊 , for any fixed 𝜖 ∈ (0, 1) and 𝛽 > 0.

Proof Using the sequential 3-approximation algorithm for the Matroid Center
problem by [3] and using Theorem 3.7 we obtain a (3+ 𝜖)-approximate solution
to 𝑀𝑊 for a fixed 𝜖 ∈ (0, 1) and 𝛽 > 0.

Now that the correctness and the approximation ratio for the algorithm have
been formally proven, we move to the study of its time and space complexity.
In order to do so, we will use two separate theorems.

Theorem 3.9 At any time 𝑡 during the processing of the stream 𝑆, the sets stored in the
working memory (i.e 𝐴𝑉𝛾, 𝑅𝑉𝛾, 𝑂𝑉𝛾, 𝐴𝛾, 𝑅𝛾 and 𝑂𝛾 for every guess 𝛾) contain

𝑂

(
𝑘2 log (Δ)

log (1 + 𝛽)
(
32
𝛿

)𝐷𝑊𝑡 )
(3.2)

points, overall, where 𝐷𝑊𝑡 is the doubling dimension of the current window 𝑊𝑡 and Δ

is the aspect ratio of the stream 𝑆.

Proof Consider an arbitrary time 𝑡. Since |Γ| = 𝑂
(

log (Δ)
log (1+𝛽)

)
, it is sufficient to

show that for every 𝛾 ∈ Γ the aggregate size of the sets of validation points is
𝑂(𝑘), instead for the sets of coreset points is 𝑂

(
𝑘2 ( 32

𝛿

)𝐷𝑊𝑡 ) .
We first show that |𝐴𝑉𝛾 | = |𝑅𝑉𝛾 | ≤ 𝑘 + 1. By construction, at each time step

𝑡 the procedure UPDATE(𝑝) keeps the size of 𝐴𝑉𝛾 under control by eliminating
the oldest point in the set if it contains more than 𝑘+1 points. Moreover, we know
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that 𝑅𝑉𝛾 contains exactly one representative 𝑟𝑒𝑝𝑉𝛾(𝑣) for each attraction 𝑣-point
𝑣 ∈ 𝐴𝑉𝛾, which limits the number of points it can contain to the cardinality of
𝐴𝑉𝛾 (at most 𝑘+1). Indeed, when a point is removed from𝐴𝑉𝛾, its representative
is moved to 𝑂𝑉𝛾. After this we can conclude that |𝑅𝑉𝛾 | = |𝐴𝑉𝛾 | ≤ 𝑘 + 1.

For what concerns the bound on 𝑂𝑉𝛾, let us consider the sets 𝑂𝑉𝛾,𝑡 and
𝐴𝑉𝛾,𝑡 at time step 𝑡 and let us distinguishing three cases given the size of the
attraction set:

• If |𝐴𝑉𝛾,𝑡 | = 0, then it is certain that 𝑊𝑡 = ∅ since the first point in the
window is always added to 𝐴𝑉𝛾,𝑡 . In this case |𝑂𝑉𝛾,𝑡 | = 0 ≤ 𝑘 + 1.

• If |𝐴𝑉𝛾,𝑡 | ≥ 1, consider 𝑣′ = arg min𝑣∈𝐴𝑉𝛾,𝑡 𝑡(𝑣) the oldest point in 𝐴𝑉𝛾,𝑡 in
the window𝑊𝑡 at time 𝑡.

– If |𝐴𝑉𝛾,𝑡 | ≤ 𝑘, then �𝑣 ∈ 𝐴𝑉𝛾,𝑡(𝑣′)−1 also in 𝑊𝑡 , otherwise it would
have been added to 𝐴𝑉𝛾,𝑡 and 𝑣′ would not be the oldest point in
𝐴𝑉𝛾,𝑡 in the window 𝑊𝑡 . In this case all points in 𝑂𝑉𝛾,𝑡 must have
been representative for points not in𝑊𝑡 anymore and, since we always
have at each time step at most 𝑘 + 1 representatives, we must have
that |𝑂𝑉𝛾,𝑡 | ≤ 𝑘 + 1.

– If |𝐴𝑉𝛾,𝑡 | = 𝑘 + 1, then �𝑞 ∈ 𝑂𝑉𝛾,𝑡 such that 𝑡(𝑞) < 𝑡(𝑣′) (all points
older than 𝑣′ are eliminated during the procedure UPDATE(p)). In
this case, since |𝐴𝑉𝛾,𝑡(𝑣′) | ≤ 𝑘 + 1 and 𝑣′ ∈ 𝐴𝑉𝛾,𝑡(𝑣′), we know that
there could have been at most 𝑘 representatives newer than 𝑣′ (with
𝑡(·) > 𝑡(𝑣′)) for the points in 𝐴𝑉𝛾,𝑡(𝑣′) \ {𝑣′}. The number of 𝑂𝑉𝛾,𝑡

then must be limited to 𝑘.

Thus, we can conclude that |𝑂𝑉𝛾 | ≤ 𝑘 + 1.
Next, we show that |𝐴𝛾 | ≤ 2(𝑘+1) ( 32

𝛿

)𝐷𝑊𝑡 and |𝑅𝛾 | = |𝑂𝛾 | ≤ 2𝑘(𝑘+1) ( 32
𝛿

)𝐷𝑊𝑡 ,
where𝐷𝑊𝑡 is the doubling dimension of the current window𝑊𝑡 . From the proof
above we know that there are at most 𝑘 + 1 points in each of the sets 𝐴𝑉𝛾, 𝑅𝑉𝛾

and 𝑂𝑉𝛾. By construction, we also know that the distance between any two
points in 𝐴𝛾 is greater or equal to 𝛿𝛾

2 . Given point (1) and point (2) of Lemma
3.2, we have that ∀𝑎 ∈ 𝐴𝛾: 𝑑𝑖𝑠𝑡(𝑎, 𝑅𝑉𝛾 ∪ 𝑂𝑉𝛾) ≤ 4𝛾, which means that the
attraction 𝑐-points in 𝐴𝛾 can be all enclosed in at most 2(𝑘 + 1) balls of radius
4𝛾. By Lemma 2.2, in each of these 2(𝑘 + 1) balls, there can be at most

( 32
𝛿

)𝐷𝑊𝑡
points of 𝐴𝛾, which implies that |𝐴𝛾 | ≤ 2(𝑘 + 1) ( 32

𝛿

)𝐷𝑊𝑡 .
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3.2. ANALYSIS

Next, we show that |𝑅𝛾 | ≤ 2𝑘(𝑘 + 1) ( 32
𝛿

)𝐷𝑊𝑡 . This bound on 𝑅𝛾 follows from
the fact that 𝑅𝛾 contains one set of representatives 𝑟𝑒𝑝𝐶𝛾(𝑎) for each 𝑎 ∈ 𝐴𝛾 and
from the fact that, given the partition matroid constraints, the maximal rank of
an independent set of𝑊𝑡 is

∑𝑚
𝑖=1 𝑘𝑖 = 𝑘.

We are left to show that |𝑂𝛾 | ≤ 2𝑘(𝑘 + 1)(32
𝛿 )𝐷𝑊𝑡 . To do so we can use an

argument completely analogous to the one for |𝑂𝑉𝛾 |, with the only exception
that now we are now dealing with sets of representative of size at most 𝑘
instead of single points. In this spirit we decided to omit the actual step by
step reasoning that can be easily derived from the previous one for 𝑂𝑉𝛾 and
make the dissertation shorter.

Theorem 3.10 Procedure UPDATE(𝑝) runs in time

𝑂

(
𝑘2 log (Δ)

log (1 + 𝛽)
(
32
𝛿

)𝐷𝑊𝑡 )
(3.3)

while procedure QUERY() runs in time

𝑂

(
𝑘2 log (Δ)

log (1 + 𝛽) + 𝑘
2
(
32
𝛿

)𝐷𝑊𝑡
+ 𝑇A(𝑅𝛾 ∪ 𝑂𝛾)

)
(3.4)

Proof The complexity of UPDATE(𝑝) is dominated by the computation at lines
36-38 where, for each guess 𝛾 ∈ Γ, we remove all the orphans in 𝑂𝛾 older than
the oldest attraction 𝑣-point (in the worst case we could empty the entire 𝑂𝛾).
The claimed bound follows from Theorem 3.9.

For what concerns QUERY(), we observe that the complexity is dominated
by the size of 𝑇 = 𝑅𝛾 ∪ 𝑂𝛾, the time required by A(𝑅𝛾 ∪ 𝑂𝛾) to run and the
calculation of 𝐶 where, for each point 𝑞 ∈ 𝐴𝑉𝛾 ∪ 𝑂𝑉𝛾 ∪ 𝑅𝑉𝛾 we perform the
calculation 𝑑𝑖𝑠𝑡(𝑞, 𝐶), which can be accomplished in time 𝑂(𝑘2) (for at most
𝑂(𝑘) points we compute 𝑑𝑖𝑠𝑡(·, ·) in time 𝑂(𝑘)) for a given guess 𝛾 ∈ Γ.
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4
Adaptation to the transversal matroid

constraint

After finishing the last chapter, where we laid out the main concepts and
techniques used to deal with Fair 𝑘-Center clustering under sliding window con-
straints, we now move to the more general 𝑘-Center problem under transversal
matroid constraints, where we will slightly change our approach but retain the
same structure of the analysis. In order to investigate more broadly the prob-
lem, we decided to divide the presentation in two parts, one for each proposed
solution. The two ideas can be summarized as follows:

• The first one, under acceptable assumptions, keeps, for each 𝑎 ∈ 𝐴𝛾, a suf-
ficient number of points of each category in its vicinity, avoiding the actual
computation of the maximal independent sets (maximum matchings in
this case) but relying on the fact that they always exist within the set of
points kept;

• The second, under different reasonable assumptions, tries instead to incre-
mentally keep in memory a maximal independent set for each attraction
𝑐-point. While we are not able yet to formally proof the correctness of
this second solution, we conjecture it and show a number of empirical
examples supporting our conjecture.

In the next two sections we will present only the changes that must be applied
in the two cases in order to make the procedure UPDATE(𝑝) work with the more
general transversal matroid, instead of the partition matroid. Furthermore, we

35



4.1. FIRST PROPOSED SOLUTION

will see how generalizing Lemma 3.5 and Lemma 3.6 is sufficient to make the
updated procedures correct and maintain the same approximation factor with-
out formally re-proving the central results given by Theorem 3.7 and Corollary
3.8. Finally, we will provide updated time and space complexity bounds similar
to the ones in Theorems 3.9 and 3.10. This choice was made so to have a more
compact presentation of the generalized solutions, avoid repetitions and keep
the dissertation shorter.

4.1 First proposed solution

As briefly described before, our first idea on how to solve the 𝑘-Center
problem under transversal matroid constraints is based on keeping a certain
number of points for each attraction 𝑐-point and each category in the window
𝑊𝑡 . In order to set ourselves in a situation similar to the previous chapter,
let us reasonably assume that for the window 𝑊𝑡 and more generally for the
stream 𝑆 the number of (possibly non-disjoint) categories |𝐴| in the transversal
matroid 𝑀𝑊𝑡 = (𝑊𝑡 , 𝐼𝑊𝑡 ) is at most 𝑘. This implies that the set of edges 𝐸 in the
connected bipartite graph (𝑊𝑡 , 𝐴;𝐸) has size |𝐸 | ≤ 𝑘 |𝑊𝑡 |. By remembering the
technique used in the previous chapter to keep a maximal independent set for
each attraction 𝑐-point and by remembering the assumption we made on the
rank of the transversal matroid (𝑟𝑎𝑛𝑘(𝑀𝑊𝑡 ) = 𝑘), we understood that keeping 𝑘
points for each category and each 𝑎 ∈ 𝐴𝛾 is sufficient to find a good approximate
solution for the entire window. In particular, we saw that, in order to guarantee
that a maximal independent set is always contained in the set of points we keep
over time, we need to store the latest 𝑘 points that entered the window in each
case. We will structure 𝑟𝑒𝑝𝐶𝛾(𝑎) as a hash map with a bucket for each category
𝐴𝑖 ∈ 𝐴, which in turn will contain duplicates of points associated to that specific
category.

With this concepts in mind, we present now the generalized version of pro-
cedure UPDATE(𝑝):

Algorithm 3 UPDATE(𝑝)
for each 𝛾 ∈ Γ do

Omitting pseudocode ...
Consider the following lines as numbered from 42 to 55
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CHAPTER 4. ADAPTATION TO THE TRANSVERSAL MATROID CONSTRAINT

if 𝐸 == 0 then
𝐴𝛾 = 𝐴𝛾 ∪ {𝑝}
for each 𝐴𝑖 ∈ 𝐴 do

if 𝑝 ∈𝑊𝑡 ∩ 𝐴𝑖 then
Add 𝑝 to the bucket of 𝑟𝑒𝑝𝐶𝛾(𝑎) associated to 𝐴𝑖 in 𝑅𝛾

𝑅𝛾 = 𝑅𝛾 ∪ 𝑟𝑒𝑝𝐶𝛾(𝑝)
else

for each 𝑎 ∈ 𝐸 do
for each 𝐴𝑖 ∈ 𝐴 do

if 𝑝 ∈𝑊𝑡 ∩ 𝐴𝑖 then
Add 𝑝 to the bucket of 𝑟𝑒𝑝𝐶𝛾(𝑎) associated to 𝐴𝑖 in 𝑅𝛾

if 𝑟𝑒𝑝𝐶𝛾(𝑎) ∩ 𝐴𝑖 > 𝑘 then
𝑜𝑟𝑒𝑚 = arg min𝑜∈𝑟𝑒𝑝𝐶𝛾(𝑎)∩𝐴𝑖 𝑇𝑇𝐿(𝑜)
Remove 𝑜𝑟𝑒𝑚 from the bucket of 𝑟𝑒𝑝𝐶𝛾(𝑎) associated
with 𝐴𝑖 in 𝑅𝛾

At this point, in order to argue for the correctness and the approximation
ratio of the proposed solution, we only need to present the updated versions
of Lemma 3.5 and Lemma 3.6. Once those two results are formally proven, we
will be obtain what we want by re-using Theorem 3.7 and Corollary 3.8 with the
updated versions of the two lemmas.

Lemma 4.1 Let 𝑝 be the point that enters the window 𝑊𝑡 at time step 𝑡. We have that
𝑝 always enters 𝑅𝛾,𝑡 at time 𝑡 = 𝑡(𝑝), for all 𝛾 ∈ Γ.

Proof Consider a generic 𝛾 ∈ Γ. As for the partition matroid case, when 𝑝

enters the window 𝑊𝑡 (𝑡 = 𝑡(𝑝)) we have 𝐸𝑡 = {𝑎 ∈ 𝐴𝛾,𝑡−1 : 𝑑𝑖𝑠𝑡(𝑝, 𝑎) ≤ 𝛿𝛾
2 }.

Let’s distinguish two cases depending on the size of 𝐸𝑡 :

• If 𝐸𝑡 == ∅, then the point 𝑝 is added to 𝐴𝛾,𝑡 and its set of representatives
𝑟𝑒𝑝𝐶𝛾,𝑡(𝑝) contains 𝑝 in each of the buckets associated with one of its
categories. Knowing there must be at least one category for each point, we
can trivially conclude that 𝑝 ∈ 𝑅𝛾,𝑡 .

• If 𝐸𝑡 ≠ ∅, the point 𝑝 is at distance 𝑑𝑖𝑠𝑡(𝑝, 𝑎) ≤ 𝛿𝛾
2 from all 𝑎 ∈ 𝐸𝑡 . This

means that there exists at least one attraction 𝑐-point 𝑎 ∈ 𝐴𝛾,𝑡 at distance
not more than 𝛿𝛾

2 . Let’s consider this generic 𝑎 ∈ 𝐴𝛾,𝑡 (it will be true for
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4.1. FIRST PROPOSED SOLUTION

all 𝑎 ∈ 𝐸𝑡) and its set of representatives 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎). Independently of what
happens at lines 53-55 of procedure UPDATE(𝑝) we know that 𝑝, being the
latest point to enter the window, will never be the one eliminated. As a
consequence we know that it will still be in 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) ⊆ 𝑅𝑉𝛾,𝑡 at the end
of the procedure.

At this point, we can conclude that 𝑝 is always added to𝑅𝛾,𝑡 at time 𝑡 = 𝑡(𝑝).

Lemma 4.2 Let 𝑊𝑡 be the window at time 𝑡. For each 𝛾 ∈ Γ, the following holds. Let
𝑎 ∈ 𝑆 be a point that entered 𝐴𝛾 at some point in time, namely, 𝑎 ∈ 𝐴𝛾,𝑡(𝑎) (we denote
𝑎 as a point in the stream 𝑆 and not in the window 𝑊𝑡 because we need to specify the
behaviour of all sets 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎), even those orphaned whose 𝑎 ∉ 𝑊𝑡). For 𝑡 ≥ 𝑡(𝑎) we
have:

• If 𝑎 ∈ 𝐴𝛾,𝑡 , then 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) contains a maximal independent set for 𝑊𝑡(𝑎) =

{𝑥 ∈𝑊𝑡 : (𝑑𝑖𝑠𝑡(𝑎, 𝑥) ≤ 𝛿𝛾
2 ) ∧ (𝑡(𝑎) ≤ 𝑡(𝑥))}.

• If 𝑎 ∉ 𝐴𝛾,𝑡 , then 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) contains a maximal independent set for 𝑊𝑡(𝑎) =

{𝑥 ∈ 𝑊𝑡 : (𝑑𝑖𝑠𝑡(𝑎, 𝑥) ≤ 𝛿𝛾
2 ) ∧ (𝑡(𝑎) ≤ 𝑡(𝑥) ≤ 𝑡)} where 𝑡 ≤ 𝑡 is the time step 𝑎

was removed from 𝐴𝛾 (𝑎 ∈ 𝐴𝛾,𝑡−1 but 𝑎 ∉ 𝐴𝛾,𝑡). Note that 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) is a subset
of 𝑟𝑒𝑝𝐶𝛾,𝑡−1(𝑎) of points still not expired.

Proof Consider a generic 𝛾 ∈ Γ. This lemma will be proved by induction on the
time step 𝑡.

• Base case, 𝑡 = 𝑡(𝑎).
By the design of procedure UPDATE(𝑎), we known that 𝑎 ∈ 𝐴𝛾,𝑡 and that
𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎), if considered as a set, contains only 𝑎. Furthermore, we know
that 𝑊𝑡(𝑎) = {𝑎}. If follows that 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎), being equal to 𝑊𝑡(𝑎) and
containing only one point, contains a maximal independent set for it or,
equivalently, a maximum matching between the points in 𝑊𝑡(𝑎) and 𝐴 in
the connected bipartite graph (in practice a single edge between 𝑎 and one
of its categories).

• Inductive case 1, 𝑡 > 𝑡(𝑎) and 𝑎 ∈ 𝐴𝛾,𝑡 .
By inductive hypothesis, we assume 𝑟𝑒𝑝𝐶𝛾,𝑡−1(𝑎) contains, when consid-
ered as a set, a maximal independent set for 𝑊𝑡−1(𝑎). Our objective is
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to prove that, at the end of time step 𝑡, 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) contains a maximal
independent set for𝑊𝑡(𝑎).
Let 𝑢 be the point that expired from 𝑊𝑡 and 𝑝 the point that entered 𝑊𝑡

at time step 𝑡. If 𝑎 ∈ 𝐴𝛾,𝑡 , then we must have that 𝑢 ∉ 𝑟𝑒𝑝𝐶𝛾,𝑡−1(𝑎) and
that 𝑢 ∉𝑊𝑡(𝑎) otherwise 𝑎 would have expired at time 𝑡 and not be in 𝐴𝛾,𝑡

(𝑢 ∈𝑊𝑡(𝑎) implies 𝑡(𝑢) ≥ 𝑡(𝑎)).
We can distinguish 2 cases:

– If 𝑝 ∉𝑊𝑡(𝑎), then we have that𝑊𝑡(𝑎) =𝑊𝑡−1(𝑎) and that 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) =
𝑟𝑒𝑝𝐶𝛾,𝑡−1(𝑎). Clearly, given that at time step 𝑡 nothing changes for the
two sets connected to 𝑎, we can conclude that 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) still contains
a maximal independent set for𝑊𝑡(𝑎).

– If 𝑝 ∈ 𝑊𝑡(𝑎), then we have that 𝑊𝑡(𝑎) = 𝑊𝑡−1(𝑎) ∪ {𝑝} and that
𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎), if considered as a set, is a subset of 𝑟𝑒𝑝𝐶𝛾,𝑡−1(𝑎) ∪ {𝑝}. As
we can see from lines 53-55 of procedure UPDATE(𝑝), we remove a
duplicate of point 𝑜 ∈ 𝑟𝑒𝑝𝐶𝛾,𝑡−1(𝑎) for one of its categories (in one
bucket) only if we have 𝑘 newer points in 𝑟𝑒𝑝𝐶𝛾,𝑡−1(𝑎) ∪ {𝑝} for that
specific category. Since we can never have more than 𝑘 edges in a
maximum matching between the points in𝑊𝑡(𝑎) and 𝐴 (we assumed
𝑟𝑎𝑛𝑘(𝑊𝑡) = 𝑘 for all time step 𝑡), it follows that storing at most 𝑘
edges connected to each category 𝐴𝑖 ∈ 𝐴 and each attraction 𝑐-point
is sufficient to always find the maximum matching possible in𝑊𝑡(𝑎).
We can conclude that 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) contains a maximal independent set
for𝑊𝑡(𝑎).

• Inductive case 2, 𝑡 > 𝑡(𝑎) and 𝑎 ∉ 𝐴𝛾,𝑡 .
By inductive hypothesis, we assume 𝑟𝑒𝑝𝐶𝛾,𝑡−1(𝑎) contains, when consid-
ered as a set, a maximal independent set for 𝑊𝑡−1(𝑎). Our objective is
to prove that, at the end of time step 𝑡, 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) contains a maximal
independent set for𝑊𝑡(𝑎).
Let 𝑢 be the point that expired from 𝑊𝑡 and 𝑝 the point that entered 𝑊𝑡

at time step 𝑡. Since 𝑎 ∉ 𝐴𝛾 (𝑡 = 𝑡(𝑝) ≥ 𝑡), we are sure that 𝑝 ∉ 𝑊𝑡(𝑎),
therefore𝑊𝑡(𝑎) =𝑊𝑡−1(𝑎) \ {𝑢}.
We can have 2 different situations:

– If 𝑢 ∉ 𝑟𝑒𝑝𝐶𝛾,𝑡−1(𝑎), then 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) = 𝑟𝑒𝑝𝐶𝛾,𝑡−1(𝑎). In turn this means
that the maximal independent set contained in 𝑟𝑒𝑝𝐶𝛾,𝑡−1(𝑎) continues
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to exist in 𝑊𝑡(𝑎) (𝑟𝑎𝑛𝑘(𝑊𝑡(𝑎)) = 𝑟𝑎𝑛𝑘(𝑊𝑡−1(𝑎)) =
��𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎)

��). As a
result, we can say that 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) still contains a maximal independent
set for𝑊𝑡(𝑎).

– If 𝑢 ∈ 𝑟𝑒𝑝𝐶𝛾,𝑡−1(𝑎), then, when considered as a set, we have that
𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) = 𝑟𝑒𝑝𝐶𝛾,𝑡−1(𝑎) \ {𝑢}. In this case, given that we always
kept the newest points (at most 𝑘 of them) for each category 𝑖 = 1, ..., ℓ
and each attraction 𝑐-point, it means that all the points in𝑊𝑡(𝑎) with
categories associated to 𝑢 that entered after 𝑡(𝑢) are stored in the
buckets of 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) reserved for those categories. Therefore, we can
conclude that 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) continues to contain a maximal independent
set for𝑊𝑡(𝑎).

At this point, we can state that 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) contains a maximal independent
set for𝑊𝑡(𝑎) for every 𝑡 ≥ 𝑡(𝑎).

One note worth mentioning about Lemma 4.2 is that, differently to what
happens in Lemma 3.6, we only proved that 𝑟𝑒𝑝𝐶𝛾(𝑎) contains a maximal in-
dependent set for 𝑊𝑡(𝑎) instead of actually being a maximal independent set.
Given this difference, in Theorem 3.7 we need to change the set 𝐵 used by the ex-
tended augmentation property from 𝐵 = 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎′), to 𝐵 equal to the maximal
independent set contained in 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎′). Apart from this detail, Theorem 3.7
and Corollary 3.8 can be re-used to prove the correctness and the approximation
factor of the updated procedures.

After presenting the two updated lemmas, let us now move to the study of
the time and space complexity for the two procedures.

Theorem 4.3 At any time 𝑡 during the processing of the stream 𝑆, the sets stored in the
working memory (i.e 𝐴𝑉𝛾, 𝑅𝑉𝛾, 𝑂𝑉𝛾, 𝐴𝛾, 𝑅𝛾 and 𝑂𝛾 for every guess 𝛾) contain

𝑂

(
𝑘3 log (Δ)

log (1 + 𝛽)
(
32
𝛿

)𝐷𝑊𝑡 )
(4.1)

points, overall, where 𝐷𝑊𝑡 is the doubling dimension of the current window 𝑊𝑡 and Δ

is the aspect ratio of the stream 𝑆.

Proof The bounds on the size of the support structures remain the same for
the validation sets and for 𝐴𝛾. The only difference can be found in the bounds
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on 𝑅𝛾 and 𝑂𝛾, because instead of keeping a set of maximum size 𝑂(𝑘) for
each attraction 𝑐-point in 𝐴𝛾, we keep an hash map of size at most 𝑂(𝑘2) (the
maximum number of duplicated points). Given this reason, we can state that,
at any time 𝑡, the overall number of points stored in the working memory is
𝑂

(
𝑘3 log (Δ)

log (1+𝛽)
( 32
𝛿

)𝐷𝑊𝑡 ) .

Theorem 4.4 Procedure UPDATE(𝑝) runs in time

𝑂

(
𝑘3 log (Δ)

log (1 + 𝛽)
(
32
𝛿

)𝐷𝑊𝑡 )
(4.2)

while procedure QUERY() runs in time

𝑂

(
𝑘2 log (Δ)

log (1 + 𝛽) + 𝑘
3
(
32
𝛿

)𝐷𝑊𝑡
+ 𝑇A(𝑅𝛾 ∪ 𝑂𝛾)

)
. (4.3)

We avoid the proof of Theorem 4.4 since the complexity of UPDATE(𝑝)
and QUERY() only change because of updated bound on the working memory
contained in Theorem 4.3.

4.2 Second proposed solution

After completing the first proposed solution, we move to our second idea on
how to approximate efficiently the 𝑘-Center problem under transversal matroid
constraints. Unfortunately, unlike the results in the previous chapter and in
the previous section, which were rigorous in all their facets, we were not able
to prove the formal correctness of this additional generalized version of the
algorithm. In particular, we were not able to construct the proof of the updated
Lemma 3.6 for this case. However, we still decided to present it given its attractive
space and time requirements and given some empirical evidence which justifies
a conjecture of correctness.

As we did in the previous section, we will present only the changes that must
be applied to the procedure UPDATE(𝑝) and the space and time complexities of
the procedures as we did in Theorems 3.9 and 3.10.

In order to set ourselves in the same situation as in the previous cases, let
us reasonably assume that each point in the window 𝑊𝑡 and more generally in
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the stream 𝑆 can be assigned to at most a constant number of categories. This
implies that the set of (possibly non-disjoint) categories 𝐴 for the window 𝑊𝑡

in the transversal matroid 𝑀𝑊𝑡 = (𝑊𝑡 , 𝐼𝑊𝑡 ) and the connected bipartite graph
(𝑊𝑡 , 𝐴;𝐸) can be very large, but the set of edges 𝐸 has size |𝐸 | = 𝑂(|𝑊𝑡 |) given
that each point in 𝑊𝑡 , when considered as a vertex, has constant degree. Let us
also remember that we assumed for the transversal matroid 𝑀𝑊𝑡 = (𝑊𝑡 , 𝐼𝑊𝑡 ), as
for the case of partition matroid, to have rank 𝑟𝑎𝑛𝑘(𝑀𝑊𝑡 ) = 𝑘. These properties
will be useful to maintain the bound on the size of the support structures and
to limit the time and space complexity of the two procedures for the algorithm.

With these ideas in mind, we first present the generalized version of proce-
dure UPDATE(𝑝):

Algorithm 4 UPDATE(𝑝)
for each 𝛾 ∈ Γ do

Omitting pseudocode ...
𝐸 = {𝑎 ∈ 𝐴𝛾 | 𝑑𝑖𝑠𝑡(𝑝, 𝑎) ≤ 𝛿𝛾

2 }
Omitting pseudocode ...
if 𝐸 == 0 then

Omitting pseudocode ...
else

Consider the following lines as numbered from 47 to 54 ...
for each 𝑎 ∈ 𝐸 do

if 𝑟𝑒𝑝𝐶𝛾(𝑎) ∪ {𝑝} ∈ 𝐼𝑊𝑡 then
Set 𝑟𝑒𝑝𝐶𝛾(𝑎) = 𝑟𝑒𝑝𝐶𝛾(𝑎) ∪ {𝑝} in 𝑅𝛾

else
for each 𝑟 ∈ 𝑟𝑒𝑝𝐶𝛾(𝑎) with increasing values of 𝑇𝑇𝐿(𝑟) do

if (𝑟𝑒𝑝𝐶𝛾(𝑎) \ {𝑟}) ∪ {𝑝} ∈ 𝐼𝑊𝑡 then
Set 𝑟𝑒𝑝𝐶𝛾(𝑎) = (𝑟𝑒𝑝𝐶𝛾(𝑎) \ {𝑟}) ∪ {𝑝} in 𝑅𝛾

break

Before moving to the study of the empirical correctness for the solution, we
are going to present the updated versions of Lemmas 3.5 and 3.6, giving the
proof for the former but lacking one for the latter.

Lemma 4.5 Let 𝑝 be the point that enters the window 𝑊𝑡 at time step 𝑡. We have that
𝑝 always enters 𝑅𝛾,𝑡 at time 𝑡 = 𝑡(𝑝), for all 𝛾 ∈ Γ.
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Proof Consider a generic 𝛾 ∈ Γ. When 𝑝 enters the window 𝑊𝑡 (𝑡 = 𝑡(𝑝)) we
have 𝐸𝑡 = {𝑎 ∈ 𝐴𝛾,𝑡−1 : 𝑑𝑖𝑠𝑡(𝑝, 𝑎) ≤ 𝛿𝛾

2 }. Let us distinguish two cases depending
on the size of 𝐸𝑡 :

• If 𝐸𝑡 == ∅, then the point 𝑝 is added to 𝐴𝛾,𝑡 and its set of representatives
is initialized to 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑝) = {𝑝} ⊆ 𝑅𝛾,𝑡 .

• If 𝐸𝑡 ≠ ∅, the point 𝑝 is at distance 𝑑𝑖𝑠𝑡(𝑝, 𝑎) ≤ 𝛿𝛾
2 from all 𝑎 ∈ 𝐸𝑡 . Let us

consider this generic 𝑎 ∈ 𝐴𝛾,𝑡 (it will be true for all 𝑎 ∈ 𝐸𝑡) and its set of
representatives 𝑟𝑒𝑝𝐶𝛾,𝑡−1(𝑎) at time 𝑡 − 1.

– If 𝑟𝑒𝑝𝐶𝛾,𝑡−1(𝑎) ∪ {𝑝} ∈ 𝐼𝑊𝑡 , then the new 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) is set equal to
𝑟𝑒𝑝𝐶𝛾,𝑡−1(𝑎)∪{𝑝}, hence it contains 𝑝 and the statement of the lemma
holds;

– If 𝑟𝑒𝑝𝐶𝛾,𝑡−1(𝑎) ∪ {𝑝} ∉ 𝐼𝑊𝑡 , then all categories associated with 𝑝 are
used in any matching between 𝑟𝑒𝑝𝐶𝛾,𝑡−1(𝑎) and the categories 𝐴
(𝑟𝑒𝑝𝐶𝛾,𝑡−1(𝑎) ∪ {𝑝} cannot be the left endpoints of a matching for
the bipartite graph (𝑊𝑡 , 𝐴, 𝐸)). Hence, for sure, 𝑝 can be substituted
with some point of 𝑟𝑒𝑝𝐶𝛾,𝑡−1(𝑎) in the for each loop of the "else"
branch (lines 51-54) and allow us to obtain a matching of equal size
containing 𝑝.

At this point, we can conclude that 𝑝 is always added to𝑅𝛾,𝑡 at time 𝑡 = 𝑡(𝑝).

Lemma 4.6 Let 𝑊𝑡 be the window at time 𝑡. For each 𝛾 ∈ Γ, the following holds. Let
𝑎 ∈ 𝑆 be a point that entered 𝐴𝛾 at some point in time, stated 𝑎 ∈ 𝐴𝛾,𝑡(𝑎) (we denote
𝑎 as a point in the stream 𝑆 and not in the window 𝑊𝑡 because we need to specify the
behaviour of all sets 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎), even those orphaned whose 𝑎 ∉ 𝑊𝑡). For 𝑡 ≥ 𝑡(𝑎) we
have:

• If 𝑎 ∈ 𝐴𝛾,𝑡 , then 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) is a maximal independent set for𝑊𝑡(𝑎) = {𝑥 ∈𝑊𝑡 :
(𝑑𝑖𝑠𝑡(𝑎, 𝑥) ≤ 𝛿𝛾

2 ) ∧ (𝑡(𝑎) ≤ 𝑡(𝑥))}.
• If 𝑎 ∉ 𝐴𝛾,𝑡 , then 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) is a maximal independent set for 𝑊𝑡(𝑎) = {𝑥 ∈
𝑊𝑡 : (𝑑𝑖𝑠𝑡(𝑎, 𝑥) ≤ 𝛿𝛾

2 ) ∧ (𝑡(𝑎) ≤ 𝑡(𝑥) ≤ 𝑡)} where 𝑡 ≤ 𝑡 is the time step 𝑎 was
removed from 𝐴𝛾 (𝑎 ∈ 𝐴𝛾,𝑡−1 but 𝑎 ∉ 𝐴𝛾,𝑡). Note that 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) is a subset of
𝑟𝑒𝑝𝐶𝛾,𝑡−1(𝑎) of points still not expired.
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As we said previously, unfortunately the second lemma lacks a formal proof
and for that reason we cannot guarantee the correctness and the approximation
ratio of the solution. To cope with this problem, we present now an empirical
study of correctness for Lemma 4.6, which is the only missing link in the chain
of results we need in order to guarantee the procedures are correct and return
a (3 + 𝜖)-approximation for the 𝑘-Center problem under transversal matroid
constraints.

The experiment we carried out consisted in checking, for a list of various bi-
partite graphs we can denote as (𝑊𝑡(𝑎), 𝐴;𝐸), which subsets of𝑊𝑡(𝑎) constituted
the left endpoints of a maximum matching, or equivalently a maximal indepen-
dent set for the corresponding matroid 𝑀𝑊𝑡(𝑎). Moreover, we checked which of
those subsets of points maintained maximality over time, that is, as time pro-
gressed and we removed points from the window, which maximal𝑋𝑡−1 ∈ 𝐼𝑊𝑡−1(𝑎)
implied 𝑋𝑡 ∈ 𝐼𝑊𝑡(𝑎) was still maximal. In the end we saw that, in general, the set
𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) always maintain maximality over𝑊𝑡(𝑎) as time progresses and often
it is the only subset of𝑊𝑡(𝑎) to do so.

Not being satisfied just by the description of the experiments, let us now
first present three graphical examples and subsequently give a reference to an
external notebook that programmatically checks the same ideas on additional
instances of bipartite graphs. Each graphical example will take an attraction
𝑐-point 𝑥1 and the corresponding set 𝑊𝑡(𝑥1) = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5} of points at
distance at most 𝛿𝛾

2 from 𝑥1, where 𝑡 is the time step exactly before 𝑥1 is removed
from 𝐴𝛾 (𝑡 = 𝑡 − 1, the time step in which 𝑊𝑡(𝑥1) contains the most amount of
points). In each figure, we will consider the squares at the bottom as the points
in𝑊𝑡(𝑥1) and the black circle at the top as the corresponding categories 𝐴.

For all three cases, we present two different set of figures:

• The first set shows how the heuristic solution 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑥1) for 𝑥1 ∈ 𝐴𝛾,𝑡

is computed one step at the time, following lines 48-54 of procedure
UPDATE(𝑝) as the window slides from 𝑡 − 4 to 𝑡.

• The second set instead exhibits all the maximal matchings for the bipartite
graph (𝑊𝑡(𝑥1), 𝐴;𝐸), highlighting their left endpoints in grey and the arcs
of the matching with dashed lines. Furthermore, for each figure, we show
at the bottom the time step for which the matching is not going to be
maximal anymore.

Now that we have a clear idea on what the graphical example contains, let
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us present them one after the other accompanied by short comments on what
we can extract from watching these figures.

Figure 4.1: First graphical example of the heuristic used in the second solution
for transversal matroid

As we can see above from Figure 4.1, for the single 𝑊𝑡(𝑥1) with 𝑥1 ∈ 𝐴𝛾,𝑡 ,
the heuristic builds the maximal independent set 𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) incrementally, sub-
stituting points only if the independent set cannot be enlarged further, namely,
at times 𝑡 − 3, 𝑡 − 1 and 𝑡. In order to show that, in this example, our solution
is actually the best we can hope for, we presented below Figure 4.2, containing
all the maximal matchings for 𝑊𝑡(𝑥1). Notably, we can see that all the maximal
matchings for 𝑊𝑡(𝑥1) decrease in size at most when our choice does. Further-
more, we see that the heuristic choice is the only one capable of maintaining a
maximal matching at all time steps 𝑡′ ≥ 𝑡, instead all the other possibilities at
some point are not capable anymore of maintaining maximality.
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Figure 4.2: First graphical example of all the maximal matchings and their left
endpoints for𝑊𝑡(𝑎)

Next, let us present another example. In this case, differently to what hap-
pened in the previous one, we can see that the subsets of categories {𝐴1, 𝐴2}
may never be covered entirely by a matching. This happens because there are
more categories for a subset of points than the number of points we can use to
cover them. Formally this is a result of the Hall’s Marriage theorem [16], whose
modified statement is presented here for completeness.

Theorem 4.7 (Hall’s Marriage Theorem) Let 𝐺 = (𝑊𝑡(𝑥1), 𝐴;𝐸) be a finite bipar-
tite graph. An 𝐴-perfect matching (also called an A-saturating matching) is a matching
which covers every category in 𝐴. For a subset of categories 𝑋 ⊆ 𝐴, if we consider
𝑁𝐺(𝑋) as the neighborhood of 𝑋 in G (the set of neighbor points in𝑊𝑡(𝑥1) for 𝑋), then
a 𝑋-perfect matching exists (a matching which cover every category in 𝑋) if and only
if for every subset 𝑊 ⊆ 𝑋 we have |𝑊 | ≤ |𝑁𝐺(𝑊)|, which means having at least |𝑊 |
neighbor points in𝑊𝑡(𝑥1) for each𝑊 .

In our case in order for {𝐴1, 𝐴2} to be covered entirely we must have at least
two neighbor points, but as we can see we only have one. That being said,
even if a maximal matching of size four does not exist, we can still assert that
𝑟𝑒𝑝𝐶𝛾,𝑡(𝑎) is the only subset of points capable of keeping a maximal matching
as time advances and the set𝑊𝑡(𝑎) shrinks starting from 𝑡′ = 𝑡 forward.

46



CHAPTER 4. ADAPTATION TO THE TRANSVERSAL MATROID CONSTRAINT

Figure 4.3: Second graphical example of the heuristic used in the second solution
for transversal matroid

Figure 4.4: Second graphical example of all the maximal matchings for𝑊𝑡(𝑎)
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Below we add one last example without additional comments, since the same
conclusion obtained above can be drawn by looking at this case.

Figure 4.5: Third graphical example of the heuristic used in the second solution
for transversal matroid

Figure 4.6: Third graphical example of all the maximal matchings and their left
endpoints for𝑊𝑡(𝑎)

To conclude the empirical study of Lemma 4.6, we add here an external
resource where more instances like the ones above are considered and the same
conclusions are obtained. These additional experiments were done using Python
as programming language. The resulting source code can be found in the form
of a Python Notebook on GitHub: https://github.com/lorenzocappe/matroid-
center-sliding-window.
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Even though we cannot formally prove that our solution is correct, the above
examples allow us to conjecture that the technique satisfies Lemma 4.6, hence
we regard it as a promising heuristic

Finally, let us move to the study of the time and space complexity for the sec-
ond version of updated procedures. Since we assumed the rank of the transversal
matroid to be equal to 𝑘, the bounds on the size of the support structures remain
the same as the ones in Theorem 3.9. For this reason, we can avoid re-presenting
that theorem and focus on providing just an updated version of Theorem 3.10.

Theorem 4.8 Procedure UPDATE(𝑝) runs in time

𝑂

(
𝑘2 log (Δ)

log (1 + 𝛽)
(
32
𝛿

)𝐷𝑊𝑡 )
(4.4)

while procedure QUERY() runs in time

𝑂

(
𝑘2 log (Δ)

log (1 + 𝛽) + 𝑘
2
(
32
𝛿

)𝐷𝑊𝑡
+ 𝑇A(𝑅𝛾 ∪ 𝑂𝛾)

)
(4.5)

where the most expensive operation in UPDATE(𝑝) is the call to an oracle capable of
verifying if a subset 𝑋 ⊆ 𝑊𝑡 is an independent set of 𝑀𝑊𝑡 .

Proof The complexity of UPDATE(𝑝) is dominated by the computation at lines
47-54 where, for each guess 𝛾 ∈ Γ, we try to update the sets of representatives
for all the 𝑎 ∈ 𝐸. In particular, given a generic guess 𝛾, in the worst case we have
to update all sets of representatives there are (at most |𝐴𝛾 | = 𝑂(𝑘(32

𝛿 )𝐷𝑊𝑡 )). For
each set of representatives we try to augment the corresponding independent
set and, if not successful, we try to remove a single representative and augment
again the remaining subset. The claimed bound follows from the multiplications
of this single factors (𝑂(𝑘 · 𝑘(32

𝛿 )𝐷𝑊𝑡 · log (Δ)
log (1+𝛽))).

For what concerns QUERY(), we observe that the complexity is dominated
by the size of 𝑇 = 𝑅𝛾 ∪ 𝑂𝛾, the time required by A(𝑅𝛾 ∪ 𝑂𝛾) to run and the
calculation of 𝐶 where, for each point 𝑞 ∈ 𝐴𝑉𝛾 ∪ 𝑂𝑉𝛾 ∪ 𝑅𝑉𝛾 we perform the
calculation 𝑑𝑖𝑠𝑡(𝑞, 𝐶), which can be accomplished in time 𝑂(𝑘2) (for at most
𝑂(𝑘) points we compute 𝑑𝑖𝑠𝑡(·, ·) in time 𝑂(𝑘)) for a given guess 𝛾 ∈ Γ.

As we can see the bounds on time and space complexity for this second
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version of the generalized algorithm are a factor 𝑂(𝑘) better than the previous
one and for this reason we believe them to be more attractive.
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5
Conclusions

In this thesis, we made significant contributions to the field of approximation
algorithms for constrained clustering problems. We started by successfully
addressed the Fair 𝑘-Center problem under the sliding window model, obtaining
an efficient (3 + 𝜖)-approximation. We then moved to the study of the 𝑘-Center
problem under a transversal matroid constraint, a specific version of the Matroid
Center problem, and provided two different ideas on how to tackle the task
based on the ideas underlying our solution to the Fair 𝑘-Center problem. The
first proposed generalization provides a solution with formal guarantees of
correctness and approximation factor, but at the cost of more computationally
expensive procedures and slightly degraded working memory requirements.
The second approach, instead, obtains better performances in both working
memory and running time of the procedures, but lacks the formal guarantees
for correctness and approximation factor. In this case, we bridged the missing
gap with an empirical study of correctness.

We want to remark that this thesis does not tackle the more general Matroid
Center problem under the sliding window model, for which no efficient solu-
tion is available in the open literature, but our approach provides a valuable
contribution to the development of constrained versions of 𝑘-Center clustering
under the sliding window model, where fairness is taken into account starting
from the problem formulation and algorithms provide accurate equitable so-
lutions. We believe this thesis could provide a good starting point for further
generalizations.
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In the spirit of continuation, we can highlight two other more directions on
which research can move forward, as described below.

The first direction regards the search for robust solutions, which means
designing algorithms capable of tolerating the presence of a certain number
of outliers in the set of points. Often real-world data is much messier than
we expect. While synthetic datasets may be very well structured and contain
very clean data points, outliers are a common occurrence when acquiring data
from a noisy natural source, where environmental factors and errors in the
data acquisition stage cannot generally be ignored. In this light we ought to
consider solutions where a certain number of points can be excluded from the
computation. For an input parameter 𝑧, robust solutions for 𝑘-Center clustering
require to minimize the 𝑧 + 1-th largest distance between the points in the
universe and the set of centers, instead of the classical maximum distance of any
point from the set of centers. This allows us to ignore the distance of at most 𝑧
outliers from the set of centers and consider them as not representative for the
entire dataset. Robust solutions in the sliding window model are more difficult
to compute than in the classical streaming model since we do not only have to
take into account the incremental addition of points to the stream, but also the
falling of points outside the window.

The literature already contains results working on robust solutions for the 𝑘-
Center problem under the sliding window model, such as the work by Pellizzoni
et al. [15]. Adapting this solution is viable, at the expense of a small deterioration
in performance for the algorithm, and represents an interesting follow-up of the
research presented in this thesis.

The second regards the conduction of an exhaustive array of experiments
to thoroughly evaluate the actual performances of the proposed solutions in a
practical setting, and to compare them to other already known solutions. Two
very good examples of suites of experiments where evaluation and comparison
of the proposed solution are accomplished effectively are the two papers from
which this work originated [14, 2]. One of the possible experiments that can be
carried out is a study on the effect of the doubling dimension 𝐷𝑊𝑡 and aspect
ratio Δ on the performances for the two procedures. This could broaden our
perspective on which of the parameters influence the performances the most
and help us come up in the future with new designs that work better in practice.
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