

Università degli Studi di Padova – Dipartimento di Ingegneria Industriale

Corso di Laurea in Ingegneria Chimica e dei Materiali

Deposizione di film sottili di Silicio via magnetron sputtering e loro caratterizzazione

Tutor universitario: Prof. Enrico Bernardo

Tutor aziendale: Dott. Gianluigi Maggioni

Padova, 18/11/2024

Laureando: Andrea Simonatto

Matricola 1225533

Il lavoro che vedremo di seguito, ovvero la deposizione e caratterizzazione dei campioni, nasce presso i Laboratori Nazionali di Legnaro dell' Istituto Nazionale di Fisica Nucleare.

L'obiettivo di questo lavoro è stato studiare ed applicare tecniche di deposizione e caratterizzazione su diversi campioni. Dopo aver effettuato i depositi in varie condizioni atmosferiche ed aver effettuato trattamenti termici, sono state analizzate le concentrazioni degli elementi nei film. Lo scopo finale è stato identificare le condizioni ottimali per ottenere film con caratteristiche ideali per applicazioni ottiche.

Figura 1: Fotografia dell' impianto di accelerazione di particelle 'AN2000' utilizzato per caratterizzare i campioni

Per effettuare le deposizioni sono state usate due tecniche appartenenti alla famiglia delle PVD:

1. **Magnetron sputtering** (atmosfera solo Ar) : Un target viene bombardato da ioni (generati in un plasma) che provocano la rimozione di atomi dalla superficie del target. Gli atomi rimossi vanno a depositarsi sulla superficie del substrato formando un film sottile.

2. Magnetron sputtering reattivo:

Usata per le deposizioni effettuate in atmosfera $Ar + H_2$ al 5%. Differisce dalla prima perché il gas reattivo (H_2) non reagisce solo con il substrato ma anche con il target influenzando il processo.

Figura 2: Rappresentazione della configurazione bilanciata di magnetron sputtering dove si può apprezzare il confinamento del plasma.

Figura 3: Impianto di deposizione

L'impianto di deposizione è composto da diverse componentistiche:

- Camera di deposizione composta da porta-campioni e due torce
- Sistema da vuoto composto da pompa volumetrica alternativa e turbo-molecolare
- Sistema di immissione di gas
- Sistema di raffreddamento ad acqua
- Sistema di alimentazione in radiofrequenza
- Sistemi di controllo delle condizioni di processo.

Figura 4: Impianto di deposizione in funzione dove possiamo vedere la generazione del plasma attraverso l'oblò

Si posiziona il porta-campioni in camera. Viene creato il vuoto $(10^{-6}mbar)$ e si inizia la procedura di deposizione. Si immette il gas di processo e si passa ad una fase di pre-sputtering. Si sposta il porta-campioni in posizione ed inizia la deposizione.

Figura 5: Schema sintetico dell'impianto di deposizione con in evidenza le pompe e le valvole usate per creare il vuoto

Terminata la deposizione si effettua il rientro e si estrae il porta-campioni. I campioni poi sono stati trattati termicamente dai 200°C ai 500°C.

Figura 6: Porta-campioni con i substrati di silicio incollati pre-deposizione

Principio di funzionamento:

Il campione da analizzare viene bombardato da un **fascio ionico** i cui ioni collidono con gli atomi bersaglio e vengono retro-diffusi verso un rivelatore allo stato solido che ne misura l'energia.

Figura 8: Andamento del coefficiente cinematico K in funzione della massa M_2 , fissato l'angolo di diffusione (θ).

Elastic Recoil Detection Analysis (ERDA)

La tecnica ERDA si basa sugli stessi principi fisici dell'RBS ma differisce per tre motivi:

- Il fascio di ioni ${}^{4}He^{+}$ presenta un angolo di 75° rispetto alla normale del campione ed il rivelatore è posto dietro al porta-campioni ad un angolo di 30° dalla direzione del fascio incidente.
- Viene posto un foglio di Mylar subito prima del rivelatore per bloccare gli ioni ${}^{4}He^{+}$
- Gli ioni analizzati sono i nuclei di H presenti nel film

Figura 10: Diagramma schematico della geometria ERDA

Figura 11: geometria completa dell'analisi ERDA con il filtro al Mylar per gli ioni ${}^{4}He^{+}e$ diversa angolazione del campione Questa tecnica viene principalmente usata per la **profilazione di elementi leggeri** (come H nel nostro caso).

Figura 12: Impianto dell' acceleratore di particelle "AN2000"

All'interno della camera troviamo:

- Porta-campioni con manipolatore
- Rivelatore di particelle allo stato solido al silicio.

Figura 13: Porta-campioni

La distribuzione dell'altezza dell'impulso, dopo essere stata amplificata, rappresenta lo spettro energetico delle particelle diffuse.

Figura 14: Rappresentazione schematica degli apparati usati per l'analisi ERDA ed RBS. In questo caso notiamo la configurazione RBS ma ruotando il campione, il rivelatore e ponendo il filtro al Mylar otteniamo la configurazione ERDA

Caratterizzare i campioni è stato possibile grazie all'acceleratore di particelle "AN2000" dove un fascio di ioni incidenti (ioni H^+ o ${}^{4}He^+$) accelerato viene convogliato lungo una linea del fascio, fino ad arrivare alla camera. Si riescono ad ottenere tensioni fino ai 2 MeV.

Per effettuare le analisi degli spettri sono stati utilizzati due programmi: **WinRobot** per l'analisi degli spettri RBS mentre **SIMNRA** per l'analisi degli spettri ERDA.

In entrambi i programmi, dopo aver effettuato le dovute operazioni preliminari di calibrazione, si passa alla simulazione degli spettri.

Figura 15: esempio di simulazione, in particolare della Dep. 943 prima della correzione dell'H tramite SIMNRA e senza trattamenti termici. Dalla simulazione si è ottenuto una concentrazione di H nel film pari al 12%. Figura 16: esempio di simulazione ERDA della Dep. 943 (as deposited) tramite il software SIMNRA. La concentrazione di H nel film risulta pari a 14,3%.
 No.
 Special

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

Figura 17: Simulazione della Dep. 943 dopo la correzione dell'H tramite SIMNRA (contenuto di H pari a 14,3%).

Deposizioni	Trattamenti termici	Dose Si $\left[10^{17} \frac{atomi}{cm^2}\right]$	[^H / _{Si}]	[<i>0</i> / <i>si</i>]	[^{Ar} / _{Si}]
Dep. 936	as deposited	8,9	0,069	0,045	0,004
	200°C	9,7	0,046	0,085	0,005
	200 - 300°C	9,9	0,041	0,067	0,004
	300 - 400°C	9,3	0,022	0,043	0,005
	300-400-450°C	9,0	0,017	0,082	0,006
	300-400-450-500°C	8,8	0,011	0,065	0,006
Dep. 937	as deposited	10,1	0,208	0,025	0,006
	200°C	9,5	0,185	0,125	0,004
	200 - 300°C	9,9	0,172	0,140	0,005
	300 - 400°C	10,1	0,035	0,072	0,004
	300-400-450°C	9,5	0,019	0,137	0,005
	300-400-450-500°C	8,9	0,012	0,107	0,004
Errore medio sulla dose		5%			

Tabelle: nelle seguenti vi sono riportati i dati ottenuti dallo studio a seconda del trattamento termico ai quali i campioni sono stati sottoposti. Inoltre i campioni 936 e 942 sono stati depositati in atmosfera di solo Ar mentre i campioni 937, 943 e 944 sono stati depositati in atmosfera di $Ar + H_2$ al 5%.

Deposizioni	Trattamenti termici	Dose Si $\left[10^{17} \frac{atomi}{cm^2}\right]$	[^H / _{Si}]	[<i>0</i> / <i>si</i>]	[^{Ar} / _{Si}]
Dep. 942	as deposited	25	0,049	0,027	0,007
	300°C	24	0,038	0,032	0,006
	300 - 400°C	23	0,019	0,010	0,006
	300-400-450°C	21	0,009	0,080	0,006
	300-400-450-500°C	20	0,008	0,040	0,006
	as deposited	25	0,183	0,089	0,004
Dep. 943	300°C	23	0,155	0,087	0,004
	300 - 400°C	25	0,048	0,061	0,004
	300-400-450°C	23	0,026	0,139	0,006
	300-400-450-500°C	23	0,020	0,107	0,004
Dep. 944	as deposited	24	0,191	0,056	0,005
	300°C	25	0,173	0,125	0,005
	300 - 400°C	25	0,061	0,132	0,004
	300-400-450°C	25	0,029	0,182	0,004
	300-400-450-500°C	25	0,026	0,135	0,004
Errore medio sulla dose		5%			

Errore medio sulla dose

Osserviamo il rapporto[H/Si]. Esso è pressoché stabile per le misure i cui trattamenti vanno da 'as deposited' a 300°C. Dopo i 300°C il rapporto [H/Si] cala drasticamente, perdendo una buona quantità di idrogeno.

Grafico 1: Andamento del rapporto [H/Si] dei campioni in funzione dei trattamenti termici effettuati con range di misura per tenere conto dell'errore.

Figura 20: Simulazione tramite SIMNRA per il calcolo dell'H per la Dep. 943 trattata termicamente a 300-400-450-500°C

Le analisi svolte hanno portato alle seguenti considerazioni: possiamo affermare che trattamenti dai 400°C a salire compromettono le concentrazioni di H. I campioni depositati in atmosfera $Ar + H_2$ al 5% risultano i più prestanti.

Problema: formazione di bolle sulla superficie del film nelle Dep. 936_400°C e 942_400°C.

Figura 21: immagine delle "bolle" presenti nel campione 936 a 400°C osservata al microscopio ottico (50x)

Criticità: limitata disponibilità ad eseguire deposizioni ed analisi.

Per ricerche future si potrebbe pensare di effettuare ai campioni trattamenti termici in vuoto per osservare se si verificano perdite di H nelle medesime proporzioni.