
ALGANT Master Program
Dipartimento di Matematica Fakultät für Mathematik

An Introduction to Blow-Ups of
Quasi-Smooth Closed Derived

Subschemes

Pier Federico Pacchiarotti
Unipd: 2014432 UR: 2311692

Advisors:
Prof. Dr. Marc Hoyois Prof. Remke Kloosterman

Academic year 2022/2023





Contents

Introduction 3

1 Preliminaries 5
1.1 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Ajoint Functor Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Representability Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Topics in Classical Algebraic Geometry 7
2.1 Regular Immersions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Classical Blow-Ups: the Affine Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Higher Commutative Algebra 13
3.1 Recollection on Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Animated Rings and Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Homotopy groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Base-Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3 The Presheaf of Animated Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.4 Animated Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.5 The Presheaf of Animated Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Comparison with Spectral Higher Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Flatness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Example: Localization of Animated Rings and Modules . . . . . . . . . . . . . . . . . 41
3.5 (Homotopy) Quotient Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6 Locally free modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6.1 (Almost) Perfect Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.6.2 Locally Free Modules of Finite Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.7 Universal Tensor Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.7.1 Construction: Derived Symmetric Algebra . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.7.2 Properties of Universal Tensor Algebra functors . . . . . . . . . . . . . . . . . . . . . . 61

3.8 The (Relative) Algebraic Cotangent Complex and Derivations . . . . . . . . . . . . . . . . . . 63
3.8.1 The Algebraic Cotangent Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.8.2 The Relative Algebraic Cotangent Complex . . . . . . . . . . . . . . . . . . . . . . . . 67
3.8.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 A primer on Derived Algebraic Geometry 73
4.1 Derived Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.1 Pre-Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.1.2 Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.1.3 Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.1.4 Examples of Relative Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Schemes as Animated Ringed Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2.1 Animated Ringed Spaces and Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2.2 The Spectrum of an Animated Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.2.3 The ∞-Category of Animated Schemes and the Universal Property of Spec . . . . . . 95
4.2.4 Functor of Points and the Comparison Theorem . . . . . . . . . . . . . . . . . . . . . 100

4.3 Vector Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.3.1 The Relative Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.3.2 Vector Bundles over Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4 The Conormal Sheaf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.4.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.5 Smoothness and Quasi-Smoothness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113



4.5.1 Smooth and Étale Morphisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.5.2 Quasi-Smooth Closed Immersions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.6 Cartier Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.6.1 Virtual Cartier Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.6.2 Generalized Cartier Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.6.3 Quotient Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.7 Blow-up of Quasi-Smooth Closed Derived Sub-Schemes . . . . . . . . . . . . . . . . . . . . . 120
4.7.1 The Blow-Up Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.7.2 Proof of the Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.8 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.8.1 Special Classes of Relative Virtual Cartier Divisors . . . . . . . . . . . . . . . . . . . . 136
4.8.2 Computation: Affine Charts of Blow-Ups . . . . . . . . . . . . . . . . . . . . . . . . . 137

A Animation 139
A.1 Detour on Sifted Colimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
A.2 The PΣ-Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
A.3 The Universal Property of PΣ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
A.4 Compact and Projective Objects Determine Free sInd-Completions . . . . . . . . . . . . . . . 150
A.5 Truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
A.6 The Model Theoretical Non-Abelian Localization . . . . . . . . . . . . . . . . . . . . . . . . . 156
A.7 Examples of Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

B Symmetric Monoidal ∞-categories 161
B.1 Cartesian Commutative Monoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
B.2 Commutative Monoids in Symmetric Monoidal ∞-categories . . . . . . . . . . . . . . . . . . . 166
B.3 Localization of Symmetric Monoidal ∞-categories . . . . . . . . . . . . . . . . . . . . . . . . . 170
B.4 Closed Symmetric Monoidal ∞-category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
B.5 A Symmetric Monoidal enhancement of the Straightening Theorem . . . . . . . . . . . . . . . 174

C The ∞-Topos of Sheaves 176
C.1 ∞-Topoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
C.2 Group Actions and Principal ∞-Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
C.3 Grothendieck sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
C.4 Topological Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
C.5 The ∞-Topos of Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

C.5.1 Sheaves Characterize Sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
C.5.2 Example: Finitary Sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
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Introduction

As commented by Toën in his review paper [38] on Derived Algebraic Geometry, ”Derived Algebraic Geometry
is an extension of algebraic geometry whose main purpose is to propose a setting to treat geometrically
’special’ situations (typically ’bad’ intersections, quotients by ’bad’ actions, . . . ), as opposed to generic
situations (transversal intersections, quotients by free and proper actions, . . . ).”
In such a formulation the influence of Grothendieck’s method is apparent: rather than confronting problems
directly, it is meaningful to create an ambient world in which statements can naturally find a solution.
Nevertheless, an even more relevant standpoint is the attitude towards problem-solving, which in practice
implies the existence of several notions of ”Higher” or ”Derived Algebraic Geometry”. These tend to feature
also different practical strategies and not always yield equivalent results. All of them are based on some notion
of ”Higher Algebra”, which again depends on the context at stake (see for instance the section ”Comparison
with Spectral Higher Algebra”). Philosophically speaking, there is no ultimate formalism, but each approach
has its own features, strengths and weaknesses. And even the limits of comparability among the several
approaches are not to be understood as a bug, but as an expression of different descriptive potentials.

In this dissertation, we choose to follow the theory developed by Lurie, Toen and Vezzosi in several contri-
butions - see for instance [26], [39], [40] and the voluminous Ph.D. Thesis by Lurie subdivided into several
volumes DAG-n. We refer the reader interested in historical details to the aforementioned review [38].
We will adopt the language of ∞-categories, and aim at attempting a maximally model independent expo-
sition. For such a reason, we extensively leverage on the construction of the ”non-abelian localization” - or
”animation” in the language of Scholze and Cesnavicius in [3] - to construct most of the objects of interest.

Our exposition aims at providing an (almost) self-contained introduction to the construction of blow-ups
of quasi-smooth closed ”derived” sub-schemes via ”animation”, as presented in [17]. We will extensively
discuss most of the prerequisites needed, since the literature available is sometimes rather intricate and many
statements are expressed in different formalisms.

Blow-ups are a recurring construction in algebraic geometry. Intuitively, one tries to resolve local ”bad
behaviours” (so singularities) of schemes at some closed ”centre”; this is achieved by successive local defor-
mations of it along the ”normal” direction which induce isomorphisms on its complement. This can be made
precise, for instance, via the celebrated Hironaka’s Theorem on the Resolution of Singularities.
In classical algebraic geometry, the blow-up at a closed subscheme - often called the ”centre” - is defined via
a universal property. It can always be constructed as the projectivization of the Rees algebra associated to
the ideal-sheaf which defines the closed immersion considered. The centre will then be deformed into the
”exceptional divisor”, i.e. the projectivized normal cone of its ideal-sheaf.
Such features are maintained in the∞-world, where the universal property is furthermore strengthened. The
construction has been discovered in several steps by Khan-Rydh [17], Hekking [13] and Hekking-Khan-Rydh
[18]. Subsequently, it has been enhanced by the three authors to greater generality; an overview of the state
of the art can be found, for instance, in Hekking’s Ph.D. dissertation.
Our goal is to provide an extensive introduction to Higher Algebra and Derived Algebraic Geometry in order
to present the first paper [17] in the series above, namely ’Virtual Cartier Divisors and Blow-Ups’ by A. Khan
and D. Rydh. Then, we will also compute some examples of blow-ups of quasi-smooth closed sub-schemes.
As is often the case in the∞-world, defining the objects of interest is highly non-trivial; in particular, here the
problem lied in the lack of a theory of graded algebras, which could have allowed for a generalization of the
classical construction similar in shape. The two authors paved the way towards it, which has been achieved by
Hekking in [13]. Indeed, they circumvented the algebraic problems by providing a more geometric description
of the blow-up in a ”nice” setting - namely considering blow-ups of quasi-smooth closed immersions, so
”derived” zero-loci of maps into affine spaces.
In such situations, it arises as the moduli stack solving the problem of classifying all squares which express
some relative ”homotopical” notion of effective Cartier divisors. The latter morally amounts to closed immer-
sions of ”derived” schemes which are locally cut-out by a single equation and lie over the canonical inclusion
of the origin into some affine space.
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The ”niceness” lies in the fact that, although ”derived” rings do not supply a Factor Theorem, such zero-loci
can be characterized locally by a universal property similar in spirit to that of ring quotients. For a closed
immersion, this turns out to be a very algebraic feature, which is controlled by both a compactness condition
and the local freeness of the associated conormal sheaf, whence the terminology ”quasi-smooth”.
Remarkable is that such a geometric approach via a moduli problem can actually be extended, so as to
construct blow-ups at arbitrary closed immersions. This is achieved in the subsequent paper [18].

In order to appreciate these subtleties, the exposition is organized as follows.
The first part is devoted to some foundational work. Initially, we review higher algebra as in SAG [26],25, but
we choose to present the theory independently of the model of spectra; in particular, we slightly contaminate
the exposition by providing the (almost complete) proofs of some statements in the introduction to the Ph.D.
thesis of A. Khan [15], so as to obtain presheaves of animated algebras CAlg∆ and modules Mod, MOD. The
construction of the latter is formal and - although at some steps it still remains conjectural - it should be
further generalizable. This also allows to construct symmetric monoidal structures on the ∞-categories of
modules and rings in a compatible way. We do not know references in the literature for such constructions,
but the ideas are all well-known to experts and many were suggested to the author by his advisor Prof. Marc
Hoyois.
Then, we introduce several useful constructions, among which of paramount importance are the ”(algebraic)
cotangent complex” and ”(homotopy) quotient rings”.
In view of the discussion above, let us remark that our exposition is not equivalent to the one via spectra.
However, animated Q-algebras retrieve connective rational E∞-rings, and in such a setting also the corre-
sponding connective module categories agree (see section 3.3 or [26],25.1.2). Strikingly, animated modules
over some animated ring A are not in general the module objects in the ∞-category CAlg∆A of A-algebras
(see [26],25.3.3).

Thereafter, again following Khan’s thesis, we approach Derived Algebraic Geometry as follows: the right Kan
extension of the previous constructions Mod and CAlg∆ amount to the presheaves of quasi-coherent modules
and algebras, while ”derived” (Zariski-)stacks are presented as a generalization of the formalism of ”functors
of points”. Then, we define several interesting classes of relative schemes and provide a comparison with
the more ”topological” perspective. So, we will finally be ready to introduce ”quasi-smoothness”, ”virtual
Cartier divisors” and to present the main section of the thesis on ”derived” blow-ups.

At the end, the dissertation will be concluded with three Appendices on ”Animation”, ”Symmetric Monoidal
∞-categories” and ”Sheaves and ∞-topoi”. Here we collect useful results on the topics from various sources
and translate them into our language.

As for the pre-requisites, on the categorical level we assume familiarity with the formalism of ∞-categories,
as exposed in Lurie’s [24] or in the more gentle introduction [20] by Land. Nevertheless, we will recall the
constructions needed whenever this allows relevant insights.
Moreover, due to time constraints, sometimes we had to reference statements without being able to provide
appropriate proofs. In particular this concerns facts about (pre-)stable categories - for which we refer to
Lurie’s [23],1, [21], or to the Appendix C in [26] - and symmetric monoidal structures - see [23] for an
exposition in the language of operads and [26] for the applications to the categories of quasi-coherent modules
and algebras needed.
For what concerns the more geometric parts of the essay, we adopted as main references [7], lecture notes
given by Prof. Guido Kings in Regensburg last Winter Semester and occasionally the Stacks Project [37]. We
assume the content of a standard two-semesters-long course on the theory of schemes, in particular about the
formalism of the ”functor of points”. Most of this will be generalized to the ”derived” setting. In particular,
whenever possible we will attempt a comparison between the∞-worlds and the classical one, as well as reduce
proofs to their classical analogues.
Finally, there are a few arguments with a more model-theoretic flavour or invoking spectral sequences;
however, this will be reduced to a minimum, so they can be safely skipped and we will not recall the notions
needed.
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1 Preliminaries

1.1 Conventions

In a sense that will become more precise in what follows, studying dag in the language of animated (com-
mutative) rings - or equivalently simplicial (commutative) rings á la Lurie - can be thought of as an (∞, 1)-
categorification of classical AG.
We will, then, extensively employ the language of ∞-categories, attempting a model independent study, in
the spirit of Gaitsgory and Rozenblyium (see [8]), and adopt the model of quasi-categories only when strictly
necessary. Our main sources are the comprehensive htt,[24] by Lurie as well as an introductory review of it
[20] published by Land. Such a formalism will be assumed to be a prerequisite, so that well-known results
will be reported freely. We will still elaborate on some more involved proofs whenever this might convey
deeper intuition.
For the rest of our dissertation let us fix three Grothendieck universes U ⊆ U ′ ⊆ U ′′. Unless otherwise
specified, all the choices of sets, the constructions of universals, etc. are to be understood as performed
within U , and hence involving (locally) ”small” categories or sets. We will omit the word ”small” in the
notation, whenever this does not involve any risk of confusion. On the contrary, the terminology ”large” and
”very large” will refer to constructions in U ′ and U ′′, respectively. Moreover, the work ”class” will be used if
we do not want to specify the size of our sets.
A list of some recurrent pieces of notation follows:

� CatX will denote the (X + 1, 1)-category of (X, 1)-categories, for 0 ≤ X ≤ ∞. In what follows, we
will refer to (∞, 1)-categories simply as ∞-categories. These can be grouped into the ∞-category
Cat∞, obtained (via one of the many equivalent constructions) as the homotopy-coherent nerve of the
Kan-enrichment of Cat = Cat1.

� We will denote the (homotopy-coherent) nerve by N and distinguish between the two only in the risk
of confusion.

� Let ⊆f.f. denote ’fully faithful embeddings’.

� Spc is our notation for the category of spaces. Such an∞-category arises for instance as the localization
of Kan - or equivalently ∞-groupoids Gpd∞ - at the class he of (weak) homotopy equivalences.

� When dealing with purely categorical contents, C ∈ Cat will denote a 1-category, whereas C ∈ Cat∞
will refer to an ∞-category. However, if clear from the context, we will prefer the notation C over C
also for ∞-categories.

� When needed, we will distinguish between (co)limits in Cat and Cat∞; to this extent, we write an
apex 1 when referring to the former and no apex otherwise. Unless otherwise specified, the expression
”homotopy (co)limits” will refer to (co)limits in Cat∞, and the adjective will be most often omitted.
Also, several classes of (co)limits will be considered. In general, by e.g. colimXXX we will mean a
colimit of shape from the family XXX. Moreover, let colim

−−−−−→
denote directed (or filtered) colimits.

� In the more geometrical context, let Sch denote the ∞-category of ”derived” schemes. On the other
hand, classical schemes form the ordinary category Schcl, which will will be retrieved as the essential
image of the functor (−)cl extracting ”classical underlying schemes”. We will drop the adjective ”de-
rived” and mean all schemes to be such; on the contrary, the attribute ”classical” will always highlight
when we perform constructions in Schcl.

� Moreover, we will call ”base-change” any fibred-product of schemes. It will always be specified if this
occurs along any special class of morphisms.
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1.2 Ajoint Functor Theorems

In the present section we will recall some useful adjoint functor theorems for presentable∞-categories, almost
verbatim generalizations of their 1-categorical analogous. Our main sources are Lurie in [24],4.3 and its review
by Land, as in [20],5.2.
First we need to introduce come piece of terminology about continuity properties of ∞-categories.

Definition 1.2.0.1. (colim-dense subcategory) A full subcategory C0 ⊆f.f. C in Cat∞ is called colim-dense
in case it colim-generates C, i.e. for each object x ∈ C there is a diagram p : K → C0 ⊆ C s.t. x ≃ colimK p.

Definition 1.2.0.2. (κ-filtered limit) For a regular cardinal κ, we define a κ-filtered colimit (or κ-directed
limit) colim

−−−−−→
κ a colimit indexed by a κ-filtered I ∈ Cat∞, i.e. an ∞-category I s.t. each diagram J → I over

a κ-small J ∈ sSet admits a cone J ⋆∆0 → I.

Such definitions highlight the key properties of a relevant class of ∞-categories, namely those which are
”accessible”. As we will see, the terminology comes from the fact that they are (almost) a locally small free
Indκ-completion of an essentially small ∞-category with κ-cpt objects; as such, the knowledge about their
’well-behaved’ properties can be ’accessed’ through their κ-cpt objects.

Definition 1.2.0.3. (Accessible ∞-category) Given a regular cardinal κ, we say that an ∞-category C ∈
Cat∞ is κ-accessible in case

� it is locally small;

� it admits κ-filtered colimits;

� it has an essentially small (i.e. equivalent to a small ∞-category) full subcategory C0 ⊆f.f. C which
consists of κ-compact objects and which generates C under κ-filtered colimits (so, it is colim

−−−−−→
κ-dense in

C).

We then say that C ∈ Cat∞ is accessible if it is κ-accessible for some regular cardinal κ.

A relevant subclass of accessible categories is that of the presentable ones:

Definition 1.2.0.4. (Presentable ∞-category) An ∞-category C ∈ Cat∞ is presentable if it is both acces-
sible and cocomplete.

As we will remark, such a class enjoys extremely rich properties. In what follows we will present two results
on the existence of adjoints for functors from e.g. presentable categories.
Although we will apply these theorems only to functors from presentable categories, we anyway present them
in greater generality, in analogy with the 1-categorical formulations. Notice that, again on the lines of such
a similarity, also in the ∞-world the construction of adjoints is almost tautological.

Theorem 1.2.0.5. (I Adjoint Functor Theorem, [20],5.2.2) Let C ∈ Cat∞ be locally small and cocomplete;
assume that it admits a full subcategory C0 ⊆f.f. C which is essentially small and colim-dense.
Then, for any locally small ∞-category D ∈ Cat∞, any functor F : C → D has a right adjoint iff it is
cocontinuous.

Theorem 1.2.0.6. (II Adjoint Functor Theorem, [20],5.2.14) Let C ∈ Cat∞ be (locally small) accessible
and complete; consider any D ∈ Cat∞ which is locally small, complete and such that each of its objects d is
κ-compact, for some (wlog uniform over obD) regular cardinal κ = κ(d).
Then, F : C → D has a left adjoint iff it is continuous and accessible (i.e. F preserves eventually continuous
directed colimits, which means that there is some cardinal κ such that F preserves ν-directed limits whenever
ν > κ.)

An almost direct consequence of the I Adjoint Functor Theorem (together with [24],5.3.4.13) is the following
result:
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Corollary 1.2.0.7. ([20],5.2.5) A locally small and cocomplete ∞-category C which is also colim-generated
by an essentially small subcategory is also complete. In particular, presentable categories are bi-complete.

The II Adjoint Functor Theorem (together with the same [24],5.3.4.13) then supplies also an almost converse
implication to the previous corollary.

Corollary 1.2.0.8. ([20],5.2.19) A complete and accessible ∞-category is also cocomplete and, hence, pre-
sentable.

1.3 Representability Theorems

We record here for future reference two highly non-trivial results on the (co)representability of functors from
a presentable ∞-category into spaces. As shown in Lurie’s [24],5.2.2, they can be used to prove the Adjoint
Functor Theorems for presentable categories.

Theorem 1.3.0.1. (Representability Criterion, [24],5.5.2.2) Let C ∈ Cat∞ be a presentable ∞-category. A
functor Cop → Spc is representable by some c ∈ C iff it preserves small limits, i.e. it takes small colimits in
C to limits in Spc.

Theorem 1.3.0.2. (Corepresentability Criterion, [24],5.2.2.7) Let C ∈ Cat∞ be a presentable ∞-category.
A functor C → Spc is co-representable by some c ∈ C iff it is accessible and preserves small limits.

2 Topics in Classical Algebraic Geometry

In view of our future discussion on blow-ups of quasi-smooth schemes, in this section we briefly review its
classical counterpart. We will start by introducing the notion of ”regularity” and sketch its connection with
the Koszul complex. Then, we will move to classical blow-ups of closed sub-schemes, with a main focus on
the case of the inclusion of the origin in the n-th affine space.
Our goal is to record the classical facts on which our ”derived” work grounds. So, this section is meant
both as some sort of recollection and as an occasion to stress on the viewpoint which we aim at generalizing.
Therefore, we have no claim of completeness. Our main references are [37], [17],2 and [7], but they are quoted
rather freely.

2.1 Regular Immersions

We start by recalling some classical facts about (Koszul) regular immersions. In order to avoid confusion, we
prefer to distinguish between the customary terminology of the StacksProject [37] and the one introduced
by Khan and Rydh in our main source [17] for regularity in the context of ”derived” schemes. As we will
observe soon, they will turn out to coincide for locally Noetherian schemes.

Definition 2.1.0.1. (Koszul complex, [17],2.1.1) Define the Koszul complex of a commutative ring A ∈
CRing to be the chain complex given by multiplication by any n-tuple of elements f := (f1, . . . , fn) ⊆ A:

� n = 1 : KoszA(f) := (f : A→ A) ∈ Ch(CRing) in homological degrees 1 and 0;

� n arbitrary: KoszA(f) := ⊗ni=1KoszA(fi) = ⊗ni=1(fi : A→ A).

Remark. For n = 1, the only non-trivial homology of the Koszul complex for f ∈ A are H0(KoszA(f)) =
A/Im(f) and H1(KoszA(f)) = AnnA(f) := Ker(f : A→ A).
Hence, f ∈ A is a non-zero divisor of A iff KoszA(f) → H0(KoszA(f)) ∼= A/f is a quasi-isomorphism, i.e.
KoszA(f) is acyclic in positive degrees. This motivates the following definition.

Definition 2.1.0.2. (Regular sequence, [37],15.30.1) A tuple (f1, . . . , fn) of elements in a commutative ring
A ∈ CRing is:

� Koszul regular iff KoszA(f1, . . . , fn) is acyclic in positive degree;
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� regular iff the module A/(f1, . . . , fn) ̸= 0 is non-trivial and, for each 0 ≤ m ≤ n and f0 := 0, fi is
regular in A/(f1, . . . , fm−1).

Remark. For n > 1, the second condition is stronger (see [37],15.30.2) and it does depend on the order of the
sequence. However, for a Noetherian commutative ring A they coincide whenever the sequence (f1, . . . , fn) ⊆
rad(A) (e.g. always for A Noetherian and local). Moreover, in such a case also the second condition does not
depend on the order of the sequence. For n = 1, the two conditions are the same.

Remark. (Free resolutions of quotients) For a sequence (f1, . . . , fn) ⊆ A ∈ CRing, the degree 0 homology
of the Koszul complex is isomorphic to the quotient of the ring by the ideal generated by the sequence:
H0(KoszA(f1, . . . , fn) ∼= A/(f1, . . . , fn). Then, KoszA(f1, . . . , fn)→ A/(f1, . . . , fn) supplies a free resolution
of the quotient whenever (f1, . . . , fn) is Koszul regular. In particular, this can be used to compute the values
of some derived functors at the quotient.

Lemma 2.1.0.3. (Properties of Koszul complexes, [17],2.1.2) Let A ∈ CRing be a commutative ring and
consider a sequence (f1, . . . , fn) ⊆ A. Then,

1. (Free resolutions of quotients): KoszA(f1, . . . , fn) → A/(f1, . . . , fn) supplies a free resolution of the
quotient whenever the sequence (f1, . . . , fn) is Koszul regular.

2. (Stability by extension of scalars): For any map ϕ : A→ B in CRing, there is a quasi-isomorphism of
chain complexes B ⊗A KoszA(f1, . . . , fn)→ KoszB((ϕf1, . . . , ϕfn) in Ch(B).

3. (Computing Koszul complexes): (f1, . . . , fn) is the datum of a map (f1, . . . , fn) : Z[t1, . . . , tn] → A

acting by ti ↦→ fi. Then, H∗
(︁
KoszA(f1, . . . , fn)

)︁ ∼= TorZ[ti]i∗
(︁
A,Z[ti]i/(ti)i

)︁
are (quasi-)isomorphic in

the derived category D(A).

Proof. (1) : For a sequence f := (f1, . . . , fn) ⊆ A ∈ CRing, the degree 0 homology of the Koszul complex is
isomorphic to the quotient of the ring by the ideal generated by the sequence. Then, consider the canonical
map KoszA(f)→ H0

(︁
KoszA(f)

)︁ ∼= A/(f).

(3) : Let t := (t1, . . . , tn) and f := (f1, . . . , fn) denote the n-tuples at stake. The Tor-groups can be computed
as H∗

(︁
A⊗Z[t]KoszZ[t](t)

)︁
via the free resolution KoszZ[t](t)→ Z[t]/(t) induced by the Koszul regular sequence

(t). Finally, the Koszul complex is stable under extension of scalars, so that the two chain complexes in the
statement are quasi-isomorphic as claimed. □

Definition 2.1.0.4. (Regular Immersion, [17],2.1.3) A closed immersion Z ↛ X of classical schemes in
Schcl is a regular immersion iff the corresponding OX -ideal-sheaf I is Zar-locally generated by a Koszul
regular sequence.

Remark. For X locally Noetherian, the ideal sheaf is locally Koszul regular iff locally regular, so we recover
the standard definition of a l.c.i. (or also ”regular”) immersion.

Remark. ([17],2.1.3) Let Z ↛ X be a regular immersion cut-out by the OX -ideal-sheaf I. Then, the
conormal sheaf NZ/X ∼= I/I2 is locally free of finite rank (since it is locally a base-change of Ω1

Z[t]
∼= Zn for

some indeterminates t = (t1, . . . , tn)), and the relative cotangent sheaf can be canonically identified with the
suspension of the latter: LZ/X ∼= NZ/X [1].

Proposition 2.1.0.5. (Properties of regular immersions) ”Being a regular immersion” is stable under com-
position, flat base-change and is local on the base.

Proof. We regard such properties as ”static shadows” of those of quasi-smooth closed immersions. In 4.5.2.2,ii
we will observe that a closed immersion of classical schemes is regular iff it is quasi-smooth; then, the stated
properties can be seen as follows. 4.5.2.2,i implies the first two: recall that taking the base-change of classical
schemes in Sch coincides with that in Schcl whenever it is performed along a flat morphism; as for the third
one, argue in view of the characterization of quasi-smooth closed immersions 4.5.2.3 together with 3.6.2.6. □
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A regular immersion of codimension 1 yields a prominent example of a closed subscheme, namely an effective
Cartier divisor.

Definition 2.1.0.6. (Effective Cartier Divisor) Let X ∈ Schcl be a classical scheme. Define an effective
Cartier divisor on X to be equivalently:

� ([37],31.13.1): a closed classical subscheme D ↛ X whose OX -ideal sheaf is an invertible OX -module.

� ([17],2.1.3): a classical scheme D equipped with a regular closed immersion D ↛ X of Krull codimen-
sion 1.

In what follows, all divisors will be assumed to be effective, so we will omit the latter specification. Moreover,
the following property characterizes Cartier divisors among all locally principal sub-schemes of X. We will
prove only one directions, since the other one is not needed.

Lemma 2.1.0.7. (Cartier divisors have dense complements, [7],IV-19) Let Z ↛ X in Schcl be a locally
principal subscheme. Then, Z is a Cartier divisor iff its complement X \ Z ⊆ X is schematically dense, i.e.
its schematic closure is the whole X.

Proof. Assume Z ⊆ X to be a Cartier divisor, and let’s show that its complement X \ Z is schematically
dense. The statement is local, so wlog X = Spec(R), and there exists some non-zero-divisor f ∈ R for
which Z = Spec(R/(f)) and X \ Z = Spec(R[f−1]). Notice that any closed subscheme Z ′ ⊆ X such that
X \Z ⊆ Z ′ \X corresponds to a factorization R↠ R/I(Z ′)→ R[f−1] of the localization map at f . However,
the latter is injective, because f is a non-zero-divisor; hence, for any such Z ′ it must hold Z ′ ∼= X, i.e. the
schematic closure of X \ Z in X is the whole ambient scheme. □

2.2 Classical Blow-Ups: the Affine Case

Now, let us briefly review the classical construction of the blow-up of a scheme at a closed subscheme. Our
main reference will be [7],IV, which will be quoted rather freely. In the rest of this dissertation, whatever
appears here will be denoted with an apex cl.
The blow-up of a closed immersion i : Z ↛ X of classical schemes is defined via a universal property as a
classifying classical scheme for Cartier divisors obtained as a base-change along i. The bulk of the work is
then to prove its existence.

Definition 2.2.0.1. (Classical Blow-Up, [7],IV-16) Let Z ↛ X be a closed immersion of classical schemes
in Schcl. Define the blow-up of X at Z, write πZ/X : BlZ(X)→ X, by the following universal property:

1. EZX := BlZ(X)×X Z ↛ BlZ(X) is a Cartier divisor;

2. πZ/X : BlZ(X) → X is universal (read ”terminal”) for property (1): given any other Cartier divisor

Z ×X S → S in Schcl/X , there exists a unique factorization of the structure map S → BlZ(X)→ X via
πZ/X .

In other words, if CaDiv/(Z,X) ⊆ Mor(Schcl)/(Z,X) denotes the subset of Cartier divisors i∗(S) ↛ S
over i : Z ↛ X - so sitting in a cartesian square together with the structural morphisms - then the
object-function of (πZ/X)∗ : Schcl/BlZ(X) → Schcl/X factors bijectively through CaDiv/(Z,X).

The universal Cartier divisor EZX := BlZ(X)×X Z is called the exceptional divisor of X at Z.

Example 2.2.0.2. (Degenerate cases) The definition is not empty; for instance consider the following de-
generate cases. For a classical scheme X ∈ Schcl:

� The blow-up of idX is the empty-scheme;

� The blow-up of ∅↛ X is X itself;
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� The blow-up of a Cartier divisor i : Z ↛ X is isomorphic to the scheme itself via the structure map

πX/X : BlX(X)
≃→ X.

Before delving into existence issues, the next Lemma records some features following directly from the
universal property.

Lemma 2.2.0.3. (Properties of the classical blow-up) Let i : Z ↛ X be a closed immersion. Then, the
following properties hold:

1. Assume the existence of the blow-up (BlZ(X), πZ/X). For any open U ↬ X, there is an isomorphism

BlU∩Z(U) ∼= π−1
Z/X(U) ⊆ BlZ(X).

2. Blow-ups can be determined locally over the base. More precisely, for any affine Zariski cover {Uα}α
for the base X, whenever existing the blow-ups {BlUα∩Z(Uα)}α can be glued to BlZ(X).

3. The structure map πZ/X induces an isomorphism BlZ(X) \ EZ(X)→ X \ Z ”away from Z”.

Proof. (1) : It follows from the locality on the base of both regular immersions and of the principality of the
ideal cutting out the source.

(2) : The transition morphisms are induced by the classifying property of blow-ups and restrict to isomor-
phisms on the (open) intersections by (1); then, their glueing enjoys the universal property of blow-ups, as it
follows from the locality on the base of both regular immersions and of the principality of the ideal cutting
out the source.

(3) : X \ Z ↬ X is an open immersion; hence, by (1) it holds:

BlZ(X) \ EZ(X) ∼= π−1
Z/X(X \ Z) ∼= Bl(X\Z)∩Z(X \ Z) ∼= Bl∅(X \ Z) ∼= X \ Z

□

The universal property of the blow-up of Z ↛ X is ”local on the base” over X, so even the simplest example
is already rather enlightening.

Theorem 2.2.0.4. (Blow-up of An at {0}) Let i : {0}↛ AnR = Spec(R[t1, . . . , tn]) in Schcl denote the closed
embedding of the origin into the n-th affine space over any ring R ∈ CRing. Then,

1. There exists the blow-up Bl{0}(AnR) ∼= ProjR(Sym
∗
R(t1, . . . , tn)) of AnR at {0}; it is the glueing datum

of the affine open charts Spec(Ak) ∼= AnR with Ak := R[tk , tr/tk : r ̸= k] along the identifications
{Ak[t−1

r ] ∼= Ar[t
−1
k ]}r ̸=k.

The structure map π{0}/An
R
: Bl{0}(AnR)→ AnR is the composite Bl{0}(AnR) ↛ AnR ×SpecR Pn−1

R → AnR.

2. E{0}(AnR) := π−1
{0}/An

R
({0}) ↛ Bl{0}(AnR) is the universal Cartier divisor over {0}↛ AnR in the sense of

the definition above.

Moreover, there is a canonical isomorphism E{0}(AnR) ∼= Pn−1
R
∼= P{0}(N{0}/An

R
) with the projectivization

of the conormal sheaf N{0}/An
R

∼= I/I2 for the ideal-sheaf I defining the inclusion of the origin.

3. The structure map π{0}/An
R

: Bl{0}(AnR) → AnR is a regular immersion, is proper, and induces an

equivalence with the base AnR ”away from the origin”: Bl{0}(AnR) \ E{0}(AnR)
≃→ AnR \ {0}.

Our aim for this section is to collect the results from the classical affine setting on which to ground the more
general proof later on. So, for convenience we will split the argument in several Lemmas and omit those
proofs, such as e.g. glueing arguments, which are shadows of∞-categorical phenomena and do not generalize.
Let’s start with a more explicit description of the affine charts above. It is the content of the following useful
although rather technical lemma.

Lemma 2.2.0.5. (Ak quotient of a regular sequence, [2],VII,1.8,ii) The rings Ak = R[tk , tr/tk : r ̸= k] can
be written as quotients by regular sequences.
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Proof. Let t := (t1, . . . , tn), y
k := (yr :̸= k) denote tuples of indeterminates, and define a tuple of relations

ρk := (ρr := tkyr − tr : r ̸= k). Let’s unwind the definition of the structural morphism γk : Spec(Ak)→ AnR
between R[t]-algebras:

γk : R[t1, . . . , tn] −→
R[t1, . . . , tn][yr]r ̸=k

(ρr := tkyr − tr : r ̸= k)
= Ak

tk ↦−→ tk

(∀r ̸= k) tr ↦−→ tr = tkyr

Then, observe that the sequence ρk ⊆ R[t, yk] is regular.
Indeed, it is an extract of the sequence (t, ρk) ⊆ R[t, yk], and the latter is regular, since it is obtained from
(t, yk) by multiplication with the invertible matrix M acting by the blocks: M1,1 := (Idn), M1,2 := (0n,n−1),
M2,1 := (−Idn−1,n), M2,2 := (tkIdn−1). □

We are now ready to provide the construction of the blow-up of the inclusion of the origin into the n-th affine
space.

Construction 2.2.0.6. (The Blow-Up Bl{0}(AnR)) Consider the affine schemes Spec(Ak) ∈ Schcl/An above as
lying under Spec(R(t1, . . . , tn)) for the map induced by the inclusion. As sub-algebras of R(t1, . . . , tn), the
localizations Ak[t

−1
r ] ∼= Ar[t

−1
k ] are canonically isomorphic R[t1, . . . , tn]-algebras, so that they yield a glueing

datum describing the patches of π : Y := ∪Spec(Ak) → AnR; the structural morphism π is induced by the
canonical inclusion R[t1, . . . , tn] ⊆ R(t1, . . . , tn), which is clearly compatible with the glueing datum.

Claim 1. The obtained glueing is Y ∼= ProjR(Sym
∗
R(t1, . . . , tn)).

Proof. Assume n > 1, otherwise it is trivial. In the proof, we will need the following tuples of indeterminates:
t := (t1, . . . , tn), T/Tk := (Tr/Tk : r ̸= k) and yk := (yr : r ̸= k). Let’s describe the second term. Recall first
that Sym∗

R(t)
∼= R[t]/J , where J is the ideal generated by all the relations (trTk − Trtk)r,k; here we let tr, Tr

denote the copy of the indeterminate tr in degree 0, 1, respectively.
Then, the affine chart D+(Tk) of the projectivization where Tk is invertible, is Spec(R[t][T/Tk]/Ik) with
Ik generated by the relations (tr − Tr/Tktk)r ̸=k. Consider the tuple of relations ρk := (ρr := tkyr − tr :
r ̸= k) ⊆ R[t][yk]; then the change of variables yk := T/Tk allows us to write Spec(R[t][T/Tk]/Ik) ∼=
Spec(R[t][yk]/(ρk)) ∼= Spec(Ak) as in 2.2.0.5. ■

So, we state the following Claim, which will be proved soon. We will start by verifying the first property in
the definition of a blow-up.

Claim 2. ([7],IV-18) The pair (Y, π) exhibits the blow-up Bl{0}(AnR).

Claim 3. ([7],IV-17) The exceptional divisor E := E{0}(AnR) exhibits a Cartier divisor E ↛ Y . In particular,

this supplies an isomorphism E ∼= Pn−1
R , since the two schemes have isomorphic Zariski atlases.

Proof. (Of Claim 2) Since ”being a Cartier divisor” is Zar-local on the base, the Claim amounts to Ek ↛
Spec(Ak) being a Cartier divisor for each k. This is true, because the exceptional divisor E := E{0}(AnR) can
be described on the atlas for the blow-up as the quotient Ek := E ×{0} Spec(Ak) = Spec(Ak/(tk)). So, we
are left to prove the following computation in CRing: for a tuple of indeterminates t := (t1, . . . , tn),

Ak ⊗R[t] R[t]/(t) ∼= Ak/(tk)

In order to see this, recall the action of the structure map γk from the previous Lemma 2.2.0.5 and observe
that (tk, ρr) = (tk, tr) for each r ̸= k; hence, one has the sought isomorphism: for a tuple of indeterminates
yk := (yr : r ̸= k), and relations ρk := (ρr := tkyr − tr : r ̸= k):

Ak ⊗R[t]
R[t]

(t)
∼=

R[t][yk]

(t) + (ρk)
∼=
R[t1, . . . , tn][y

k]

(tk) + (ρk)
∼=

Ak
(tk) ■

Sketch. (Of Claim 1) We need to check the universality of E ↛ Y among all Cartier divisors (f : S →
AnR , f−1(V (t1, . . . , tn)) ↛ S) over ({0},AnR).
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Up to a glueing argument, we can assume wlog that S := Spec(B) be an affine scheme represented by some
local R[t1, . . . , tn]-algebra B (with structure map f ♭ induced by f) and f−1({0}) ∼= Spec(B/(x)) for some
non-zero divisor x ∈ B.
Moreover, we can assume x = f ♭(tk) for some k. In order to see this, abuse notation and let t := (t1, . . . , tn)
denote the n-tuple generating the maximal ideal (t1, . . . , tn)B; let again (t)B denote the extension of the
maximal ideal (t) ⊆ R[t] under f ♭. by assumption, there is an equality (t)B = (x)B, which yields n-tuples
α, β ∈ Bn such that x = tα · f ♭(t) and f ♭(t) = βx, so that x = (tα · β)x. Now, being x ̸= 0 and B local,
an application of Nakayama’s Lemma yields that the product tα · β ∈ B× = B \ (t) must be a unit, i.e.
αkβk /∈ (t) for some k, iff αk, βk /∈ (t).
Hence, one can write (x) = f ♭(xk) up to a unit. In particular, we can write f ♭(t) = βf ♭(xk). Then, consider
the map ϕ♭ : Ak → B acting as ϕ♭(t/tk) ↦→ β. It gives rise to the sought commutative triangle f ♭ = b♭ ◦ π♭
with the structure map π : Y → AnR. Finally, by construction ϕ♭ is also the unique map (up to rescaling by
a unit of B) of R[t1, . . . , tn]-algebras which can sit in such a triangle. ■

Remark. In 3.8.3.2 we will compute N{0}/An
R

∼= Rn; then, the isomorphism of 2.2.0.6,ii follows from the very
definitions:

P(N{0}/An
R
) ∼= P(Rn) = Proj(Sym∗

R((R
n)∨)) ∼= Proj(R[t1, . . . , tn]) ∼= Pn−1

R
∼= E{0}(AnR)

The next construction is not necessary for our future arguments; however, in view of [7],IV-21 fosters intuition
on how blow-ups emerge.

Construction 2.2.0.7. (Bl{0}(An) as the closure of a graph, [7],IV-17) Let t := (t1, . . . , tn) denote the

n-tuple of indeterminates of R[t1, . . . , tn] and consider the map αt : AnR \ {0} ↪→ Pn−1
R induced by the

surjection
α♭t : O⊕n

An
R\{0} −→ OAn

R\{0}

a ↦−→ ta · t
More precisely, we are considering the first composite in the following factorization:

αt : Spec(R[t]) \ {0} −→ Proj(R[t]) ⊆
∐︂
k

Spec(R[tr/tk : r ̸= k])

where {Spec(R[tr/tk : r ̸= k]}k forms an affine Zariski atlas of the scheme Proj(R[t]) ∼= Pn−1
R .

Let graph(αt)k ⊆ AnR×Spec(R) Pn−1
R denote the graph of the restriction of αt to the open affine chart D(tk) =

Spec(R[t][t−1
k ]), and observe that it is isomorphic to Spec(Ak[t

−1
k ]); the latter is in turn a (schematically)

dense open of the blow-up Z.
Hence, we obtain a description of the blow-up Bl{0}(AnR) ∼= graph(αt) as the schematic closure of the graph

of the previous map into AnR ×Spec(R) Pn−1
R .

In particular, this supplies a factorization describing the structural map of the blow-up of ({0},AnR):
π{0}/An

R
: Bl{0}(AnR) ↛ AnR ×Spec(R) Pn−1

R → AnR
where the last composite is induced by the structural map R[t] ⊆ R[t]⊗R R(t).
Moreover, as a by-product we can explicitly describe the canonical identification π{0}/An

R
: Y \E ∼= AnR \ {0}

of 2.2.0.3,iii. Indeed, the latter can be obtained as the glueing of the isomorphism of charts DAn
R\{0}(tk) =

Spec(R[t][t−1
k ]) ∼= Spec(Ak[t

−1
k ]) = DY \E(tk).

Finally, the remaining properties of the structural morphism will be a consequence of the following construc-
tion.

Construction 2.2.0.8. (Bl{0}(An) as a closed regular subscheme of Pn−1
An ) As before, let t := (t1, . . . , tn),

y := (y1, . . . ,n ) and z = (z1, . . . , zn) denote n-tuples of indeterminates. By 2.2.0.5, for each 1 ≤ k ≤ n there
is a regular immersion into the (n− 1)-dimensional projective space over AnR:

Spec(Ak) ∼= Spec

(︃
R[t][yr : r ̸= k]

(ρr := tkyr − tr : r ̸= k)

)︃
↛ Spec(R[t][yr : r ̸= k]) ⊆ Proj(R[t][z]) ∼= Pn−1

An
R
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where we identified Spec(R[t][yr : r ̸= k]) ∼= Spec(R[t][zr/zk : r ̸= k]) with the k-th affine chart of the
projective space.
The regular immersions obviously glue on the intersections among charts, since - for each r ̸= k - inverting tr in
Spec(Ak) amounts to inverting yr. Thus, our construction glues to a closed immersion ι : Bl{0}(AnR) ↛ Pn−1

An
R

,

which is furthermore regular, since the latter notion can be checked Zar-locally on the base.

Moreover, the structural map Pn−1
X → X of the projective X-scheme is always proper and regular, so we are

left to check that the embedding ι above is proper. This can be done Zar-locally on the base by 4.1.4.22, and
there the three properties in the definition of properness are clearly satisfied by construction.

We close this brief review with a more general construction describing the blow-up of any closed immersion.
This will be based on the Rees algebra: given a ring R ∈ CRing and an ideal I ⊆ R, the Rees algebra of I
is the graded R-algebra defined as Rees(I) := ⊕n<ωIn, where we set I0 := R.
This construction can then be globalized as follows: let i : Z ↛ X be a closed immersion in Schcl, and let
I := Ker(i♭) ⊆ OX denote the defining ideal-sheaf; then, define the Rees algebra associated to I as the sheaf
of quasi-coherent algebras R(I) := ⊕n<ωIn ∈ QCohAlg(X), where we again set I0 := OX .

Theorem 2.2.0.9. (General construction of blow-ups, [7],IV-23) Let i : Z ↛ X be a closed immersion in
Schcl. Then, the blow-up of i is realized by the scheme BlZ(X) := ProjX(R(I)).

We will not prove the latter Theorem, because it will not be needed in our dissertation. Instead, let us
comment on how to retrieve the blow-up of {0} ↛ AnR as a particular case. The same reasoning applies to
an arbitrary regular immersion into a Noetherian scheme.

Example 2.2.0.10. (The affine case) Let i : {0}↛ An denote the regular closed immersion of the origin in
the n-th affine space, and let I denote the quasi-coherent ideal with global section (t1, . . . , tn). In 2.2.0.4 we
showed the isomorphism Bl{0}(An) ∼= ProjR(Sym

∗
R(I)).

On the other hand, as stated in [7],IV-26 (and proved for instance in [28],Ch.1,Thm.1) there is an isomorphism
Sym∗

R(I) ∼= Rees(I), because the sequence (t1, . . . , tn) ⊆ R[t1, . . . , tn] is regular. Hence, we retrieve the
description of the Theorem above.

3 Higher Commutative Algebra

In this section we attempt an introduction to ”higher algebra” in a model independent fashion and adopting
the language of animated rings with possibly no reference to the parent notion of E∞-rings. Our goal is to
develop the algebraic foundations of ”derived algebraic geometry”.
All the material presented is well-known to experts, and can be found for instance in the following sources:
[23] for what concerns higher algebra, [26],25 for an introduction to animated rings (called simplicial rings
by Lurie), and [15],0.4 for the statements regarding the existence of presheaves of animated algebras and
modules. The previous expositions have then been reviewed by Cesnavicius and Scholze in [3], where also
the terminology ”anima,-ae” (latin term for the English ”soul”) and ”animated widget” are introduced.
In the algebraic and geometric context, we will stick to the latter convention, in that the author finds it to
be more evocative in expressing an ’internalization’-like procedure of classical algebraic notions into the ∞-
category Ani of ”animae”, namely spaces. However, for the sake of consistency with the generally accepted
language of ∞-categories, we will continue to write Spc for the ∞-category of spaces in the most categorical
passages.

Disclaimer. Let us mention that many proofs have been expanded in full details and some of them have been
freely (so often without comments) more or less adapted to the chosen setting and goals. As a consequence,
the exposition, terminology or notation in the references provided might be slightly different. The author
takes up full responsibility for misunderstandings and wrong statements, and no claim of originality is made.

Aknowledgement. For what concerns many parts of the current exposition, the author is highly indebted to
his advisor, Prof. Hoyois, for the many introductory talks, prompts and insights that he has given to him on
the subject.
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3.1 Recollection on Animation

Definition 3.1.0.1. Let C ∈ Cat be a cocomplete category which is generated under 1-sifted colimits (in Cat)
by the small full subcategory of its compact projective (or strongly finitely presented, denoted by cpt+proj )
objects Csfp.
Define the animation of C by Ani(C) := PΣ(Csfp) = Fun×(N (Csfp)op ,Spc).
As we will recall, the latter will turn out to describe Ani(C) as the free ∞-sInd-completion of Csfp.

In other words, Ani(C) will be the smallest enlargement of C having all sifted colimits and satisfying the
universal property of sInd-completions:

[UP : Ani] : ∀A ∈ Cat∞ w/ colimsift , FunΣ
(︁
Ani(C), A

)︁ ≃−→ Fun
(︁
Csfp, A

)︁
where FunΣ denotes the full sub-∞-category spanned by those functors which preserve sifted colimits (see
A.3.0.2).

We include here just a short summary of the PΣ-construction and refer the unexperienced reader to the
related Appendix for further details.

Lemma 3.1.0.2. (Properties of Ani) There exists an animation assignment Ani as in the previous definition.
Moreover, for a cocomplete C ∈ Cat generated under 1-sifted colimits by its compactly projective objects, Ani
satisfies the following properties:

1. (A.2.0.2) Ani(C) is presentable, being it an accessible localization of the ∞-category of presheaves
P(Csfp). In particular, Ani(C) is bi-complete.

2. (A.7.0.2) Ani := Ani(Set) ≃ Spc, so that we can write Ani(C) = Fun×
(︁
(Csfp)op ,Ani

)︁
for each 1-

category C as before. In other words, we regard animated widgets as generalized cartesian widget-objects
in Ani.

3. (A.5.0.7) Post-composing with the truncation functor τ≤n : Ani → Ani (see the Appendix) to an
animated widget (Csfp)op → Ani induces a truncation functor τn : Ani(C) → Ani(C), which is left
adjoint to the canonical fully faithful inclusion Ani(C)≤n ⊆f.f. Ani(C) of (≤ n)-connected widgets. In
particular, for C ∈ Cat as before, there is a fully faithful inclusion C ⊆f.f. Ani(C) which identifies C
with the static (i.e. 0-truncated) widgets Ani(C)≤0 ⊆f.f. Ani(C).

Furthermore, by a closer inspection of Lurie’s PΣ-construction, we can further specialize the previous de-
scription:

Lemma 3.1.0.3. (A.3.0.2) In the previous setting, the universal property [UP : Ani] : FunΣ((Csfp)op , A) ≃
Fun(Ani(C), A) is realized by restriction along the factorization of the Yoneda embedding

j : Csfp
j
↪−→ Ani(C) = Fun×((Csfp)op ,Spc) ⊆f.f. Fun((Csfp)op ,Spc)

The essential image of j consists of those finite-product-preserving functors F : (Csfp)op → Spc s.t. F ≃
LKEj(F ◦ j), i.e. which are the left Kan extensions along j of their restrictions to the cpt+proj’s.
Moreover, assuming further that A has also finite coproducts, then any F ∈ Fun(Ani(C), A) preserves (finite)
coproducts iff its restriction F ◦ j to cpt+proj’s does so. Hence, in such a setting, F preserves all small
colimits iff its restriction F ◦ j does so.

We are now ready to characterize animations as free sInd-completions: Ani(C) is the the datum of a pre-
sentable ∞-category together with a Yoneda embedding of C as cpt+proj colimsift -generators, i.e. Ani(C) ≃
sInd(Csfp).

Lemma 3.1.0.4. (Ani(C) as sInd-completion, A.3.0.2 and A.4.0.3) Given a small finitely cocartesian C ∈
Cat, its animation Ani(C) can be characterized up to equivalence by:

� Ani(C) ∈ Cat∞ is presentable;

� the Yoneda embedding restricts to a fully faithful coproduct-preserving functor j : Csfp ⊆ Ani(C);
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� the essential image of the previous functor consists of those cpt+proj’s in Ani(C) which generate the
latter under sifted colimits.

Moreover, our assignment Ani shows some kind of functoriality over a suitable sub-graph of Cat supported
by a proper class:

Definition 3.1.0.5. Let F : C → D in Cat be a functor of cocomplete categories which preserves 1-sifted
colimits. Then, it can be animated to a functor Ani(F ) : Ani(C)→ Ani(D) such that

1. Ani(F ) preserves sifted colimits;

2. Ani(F )|Csfp : Csfp F→ D ⊆f.f. Ani(D) agrees with F on compact projective objects;

3. Ani(F ) commutes with π0 := τ≤0 in Cat∞, i.e. π0 ◦Ani(F ) = F ◦ π0.

Lemma 3.1.0.6. (Composition of animated functors, A.6.0.6) Let C, D, E in Cat be cocomplete and pro-
jectively generated. Consider a pair of composable functors F : C → D, G : D → E which preserve 1-sifted
colimits. Then,

� There exists a natural transformation (i.e. 2-cell) Ani(G) ◦Ani(F )→ Ani(G ◦ F ) in Cat∞;

� Assume further that

– either F (Csfp) ⊆ Ind(Dsfp) in D, i.e. F sends cpt+proj objects in C to directed colimits of cpt+proj’s
in D;

– or Ani(G)
(︁
F (Csfp)

)︁
⊆ E in Ani(E), i.e. the restriction of the composite of animated functors to

cpt+proj’s in C is again static;

Then, our comparison map is an isomorphism in Cat∞: Ani(G) ◦Ani(F )
≃→ Ani(G ◦ F ).

Remark. As mentioned in the Appendix, we can regard the PΣ-construction as a non-abelian localization
functor, and Ani(F ) as a left-derived functor of F .

3.2 Animated Rings and Modules

Let us introduce, now, the ∞-categories of animated commutative rings, modules and algebras. Our main
references for the current section are [26],25 and [3],5, of which we will merge notations. We will also drop
the adjective ”commutative”, meaning all the rings considered to be so.
We will define the ∞-category Ani(Z) = CAlg∆ of animated commutative Z-algebras and regard it as
the ’ambient category’ within which to define each of the ∞-categories CAlg∆R spanned by commutative
R-algebras for any arbitrary animated ring R.
However, differently from the classical case, in order to define the ∞-categories of animated modules over
arbitrary animated rings, we will perform a construction similar to that of quasi-coherent modules (see
3.2.5.11).
This will lead us to consider an∞-category of ”animated modules with their animated ring of scalars” together
with a canonical forgetful functor to the∞-category of animated rings. The fibres of such a construction will
turn out to be precisely the ∞-categories of modules over the corresponding animated rings; in particular,
such ∞-categories will be defined simultaneously and our construction will be functorial via the extension-
restriction of scalars adjunction.
We remark that one could define the ∞-categories of algebras over arbitrary animated rings in a similar,
but significantly simplified fashion (see 3.2.3.1). This is the case because algebra structures - as opposed to
module structures - can be expressed via slices, which makes it easier to functorially interchange them.
Our next step will be to endow the categories at stake with intrinsic as well as compatible monoidal structures,
so as to be able to perform also in the derived setting many useful constructions of classical algebraic geometry.
This will be carried on at the end of the dedicated Appendix B, where also the needed terminology is reviewed.
Finally, we will briefly compare our perspective with the better-studied - although not equivalent - notion of
E∞-rings.
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Definition 3.2.0.1. For a ring R ∈ CRing, let PolyR ⊆f.f. R-Alg ∈ Cat denote the full subcategory of
polynomial rings over R in finitely many variables.
Define the category of animated R-algebras by CAlg∆R := Ani(R-Alg) = PΣ(PolyR) ∈ Cat∞.

Notation. In what follows, we maintain the notation R also for the embedded copy of R ∈ CRing into the
∞-category CAlg∆R′ of the animated R′-algebras at stake. On the other hand, by writing S we will refer to
an arbitrary animated R′-algebra in such a category, so not necessarily living in the essential image of j.
As it will be made precise later on, such a slight abuse of notation will be proven to be consistent with
the theory developed, as well as motivated by the fact that the embedded essential copy of R′-Alg into
Ani(R′-Alg) is ’static’.

3.2.1 Homotopy groups

As a starting point of our digression, recall the following property of animation. Being animated rings
functors of∞-categories into Spc, truncation of spaces imports such a notion into Ani(CRing), thus allowing
us to define homotopy groups over the latter category. This will be achieved by means of a more general
construction, as introduced in [24],5.5.8.26 and presented in the Appendix on ’Animation’. Let us restate
the result in the language of animated algebras.

Construction 3.2.1.1. (Truncation and Homotopy groups of animated rings) Fix an integer n and let τSpc≤n
denote the n-truncation functor of spaces. It is left adjoint to the fully faithful inclusion of n-truncated spaces
⊆Spc, i.e. it sits in a Bousfield localization adjunction

τSpc≤n : Spc −⇀↽− τSpc≤n Spc :⊆Spc

Now, for any R ∈ CRing, we say that S ∈ CAlg∆R is n-truncated provided that the space MapCAlg∆
R
(X,S)

is n-truncated for each X ∈ CAlg∆R , iff for each X ∈ PolyR. Indeed, by A.2.0.4 each animated R-algebra
is the geometric realization of a simplicial object X ≃ colimsift X• with each Xm an arbitrary coproduct of
polynomial R-algebras, mapping spaces commute with colimits in the contravariant variable, and limits in
Spc preserve truncation properties.
Define the ∞-category of n-truncated animated R-algebras to be the full subcategory τ≤nCAlg∆R ⊆f.f.
CAlg∆R generated by the n-truncated objects.

Notice that the functor τSpc≤n preserves finite products, so that it induces a functor τ≤n ≃ (τSpc≤n )∗ : CAlg∆R →
CAlg∆R , which is again a (Bousfield) localization functor.
Its essential image consists of n-truncated objects and, as proven in [24],5.5.8.26, it is precisely τ≤nCAlg

∆
R .

Hence, we can identify τ≤n with the n-truncation functor of CAlg∆R , and we have the following Bousfield
localization adjunction

τ≤n : CAlg∆R
−⇀↽− τ≤nCAlg∆R :⊆

By the construction, we observe that the latter adjunction is then induced via post-composition by the former
one, so, since the right adjoint to τ≤n is essentially unique, one has that ⊆ ≃ (⊆Spc)∗.

On this streamline, define the homotopy groups of an animated R-algebra S to be

π∗(S) := π∗
(︁
MapCAlg∆

R
(R[t], S)

)︁
Observe that the truncation functors {τ≤n}n are compatible with such a notion of homotopy groups. In other

words, S ∈ CAlg∆R is n-truncated iff πi(S) ∼= 0 for each i > n. This follows from our previous observation on
the verification of n-truncatedness and from the fact that PolyR is generated by R[t] under finite coproducts.

Remark. As an application of the Whitehead Theorem together with the Yoneda Lemma, observe that π∗
- or better π∗

(︁
MapCAlg∆

R
(R[t],−)

)︁
- is a conservative functor, in that it detects isomorphisms of animated

rings, i.e. any morphism of animated rings which induces isomorphisms in homotopy must have been already
an equivalence itself in the ∞-category CAlg∆R . The digression at the end of this subsection will explain in
which sense this is not accidental.

Moreover, notice that we defined homotopy groups of an animated R-algebra S to be those of its ’underlying
space’ MapCAlg∆

R
(R[t], S) ∈ Spc. Let us make this somewhat more precise.
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Lemma 3.2.1.2. R = Map(−, R) = MapN (CRing)(−, R) ∈ CAlg∆R is essentially the initial animated ring.

Proof. R has the stated form by an application of A.3.0.6. The essential uniqueness follows from [20],4.1.3,
which states that the subcategory of initial objects is, if inhabited, a contractible ∞-groupoid. □

More generally, being R-Algsfp ∼= PolyR generated by R[t] under finite coproducts, an application of the
Yoneda Lemma allows us to completely describe any S ∈ CAlg∆R on points:

MapCAlg∆
R
(R[t1, ..., tn], S) ≃ S(R[t1, ..., tn]) ≃ S(R[t])n

Hence, intuitively, the information contained in S ”can be reconstructed” from its evaluation at R[t].
In view of this, the next definition generalizes both the fact that the underlying set of any S ∈ R-Alg
is HomCRing(R[t], S) ≃ for(S) and the analogous construction for symmetric monoidal ∞-categories as in
B.2.0.7.

Definition 3.2.1.3. (Underlying space) Given an animated R-algebra S ∈ CAlg∆R , we define its underlying
space forS to be its evaluation at the embedded copy R[t] ∈ CAlg∆R , namely

forS := MapCAlg∆
R
(R[t], S) ≃ S(R[t])

When it is clear from the context, we will just write S in place of forS.
The set of connected components of forS retrieves the static part of the animated R-algebra S:

S := π0(S) ∼= HomhoCAlg∆
R
(R[t], S) ≃ π0(forS)

Remark. By abstract nonsense, i.e. since π0 = τ≤0 has a right adjoint and by the fact that PolyR ≃ R-Alg
sfp

is static, it is straightforward to infer that the all of R-Alg ⊆f.f. Ani(CAlg∆R) is static. Furthermore, notice
that the static part of an animated ring coincides with the underlying space iff the animated ring itself is
static. In particular, this motivates our choice of not changing the notation for the (static) essential image
of CRing into Ani(CRing).

We close this subsection with a digression on a model theoretic approach to the definition of animated rings.
In particular, this motivates the last bit of terminology.

Digression: A model theoretic approach to the theory of Animated Rings.

As in the general abstract context of the PΣ-construction, the introduction of homotopy groups of animated
rings gives us a way to consistently define a useful class of weak equivalences on CAlg∆R . These turn out to arise
from the weak equivalences of a model structure on CRing with respect to which PΣ is a localization functor.
Let us expand on this. As observed in [22],4.1.2, an application of A.6.0.3 to the category s(R-Alg)proj of sim-
plicial commutative R-algebras endowed with the projective model structure yields a canonical equivalence of
∞-categories N (s(R-Alg)◦proj) ≃ CAlg∆R , where s(R-Alg)◦proj denotes the full subcategory of fibrant-cofibrant
objects.

Moreover, an extremely useful feature of homotopy groups is ”recalling” the algebraic information of animated
algebras. This will be made precise in the next result. For the sake of simplicity, we will state and prove it
for R = Z. As we will see in the next subsection, this will not cause any loss of generality.

Lemma 3.2.1.4. (Module structure on homotopy groups, [22],4.1.6) Let A ∈ Ani(CRing) be an animated
ring. Then, its homotopy groups πiA ∈ Grp are all π0A-modules, i.e. π∗(A) is a graded commutative ring.

Proof. Let us start by providing some context. As we have just observed, any animated ring A can be seen
as a homotopy equivalence class in sCRing◦proj represented by some fibrant-cofibrant simplicial ring A.
Moreover, the underlying space functor for : Ani(CRing)→ Ani ≃ Spc, given by evaluation at the free object
on the point (see A.7.0.2) lies under the forgetful functor θ : sCRingproj → sSetQuillen and can be obtained
by localizing the latter at weak homotopy equivalences.
Equivalently, we can obtain for by localizing the composite | − | ◦ θ : sCRingproj → CGHausQuillen at weak

homotopy equivalences; here |− | ≃ colimsift
∆op : sSet→ CGHaus denotes the geometric realization functor into
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compactly generated Hausforff spaces. And the equivalence of the two models comes from the fact that the
adjunction | − | : sSetQuillen

−⇀↽− CGHausQuillen :Sing(−) is a Quillen equivalence.
Since all the functors involved preserve finite products by construction, | − | : sCRing → CGHaus actually
Landds in the category CRing(CGHaus) of compactly generated topological Hausdorff rings. Thus, we can
extract from each animated ring A an underlying topological ring A.

Observe that in both sCRingproj and CRing(CGHausproj) there is a notion of graded commutative homotopy
ring associated to the objects at stake and with the expected properties: π∗A (see [11],I.7 for the simplicial
case) and the more classical π∗A (see e.g. [22],4.1.6 for the topological case); and they are compatible:

� given the suitable notion of sphere object, one posits π∗(−) = Hom(S∗,−);

� then, multiplication of elements with the same degree is induced under the Yoneda Lemma by the
algebra structure of the target, and

� one takes care of elements of different degrees by pre-composing with the smash product of spheres;

� finally, the graded-commutativity is induced by the fact that the natural map Sm+n → Sn+m swapping
the tuples of coordinates has degree equal to the sign of the associated permutation, namely (−1)mn.

Hence, we are left to show that all these notions of homotopy groups agree, namely that π∗A ≃ π∗A ≃ π∗A.
But this is now a direct consequence of our construction; being the topological one analogous, let us spell
out e.g. the simplicial case: an object A in an ”algebraic” simplicial model category sCRing ⊆ sSet with an
initial object ∆0 ≃ ∗ is isomorphic to the hom-set HomsSet(∆

0,A) ∼= HomsCRing(Z[∗],A), under the freeness
adjunction Z[−] ⊢⊆; then,

πnA ∼= HomsSet(Sn,A) ∼= HomsSet(Sn,HomsSet(∆
0,A)) ∼= HomsSet(Sn,HomsCRing(Z[x],A)

Finally, localization at weak homotopy equivalences yields MapSpc
(︁
Sn,MapAni(CRing)(Z[x], A)

)︁
≃ πn(A), as

desired. □

3.2.2 Base-Change

Our next aim is to include in our theory all animated commutative algebras and modules over any animated
ring. In order to achieve such a goal, we will import the classical constructions of restriction and extension
of scalars.

Definition 3.2.2.1. (Derived tensor product) Let it be given a span of morphisms of animated R′-algebras
S ← R→ T in CAlg∆R′ .
Define the derived tensor product of S and T over R as the colimit in CAlg∆R′ of such a span:

S ⊗LR T := colim(S ← R→ T )

Remark. The tensor product of animated rings is indeed well-defined, since the category of animated widgets
is always presentable, and hence in particular cocomplete.

We will now derive the classical base-change adjunction:

Lemma 3.2.2.2. (Change of base ring, [26],25.1.4) Given a morphism ϕ : R → R′ in CRing, extension of
scalars induces a map f := (−⊗R R′) : PolyR → PolyR′ , which in turn yields an adjunction in Cat∞ of the
form:

F ≃ LKEj(j ◦ f) : CAlg∆R
−⇀↽− CAlg∆R′ : (j ◦ f)∗ ≃ G

F is called extension of scalars, whereas G is the restriction of scalars.

Proof. Consider the extension of scalars f : PolyR → PolyR′ . Clearly, f and j preserve 1-sifted colimits and
CAlg∆R′ has sifted colimits, so we can apply Theorem 3.1.0.3,i) to j ◦ f , so as to obtain an essentially unique
F as in the following square.
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FunΣ(PolyR,CAlg∆R′)
≃−→ Fun(CAlg∆R ,CAlg∆R′)

jR′ ◦ f ↦−→ F | F ◦ j ≃ j ◦ f

Moreover, since f preserves finite coproducts, then by ibid,iii) also F does
so, and hence preserves all coproducts.

PolyR↙ ↖

j

↓↓

f
→→ PolyR′↙ ↖

j

↓↓
CAlg∆R

F →→ CAlg∆R′

Now, a functor into a cocomplete category preserves coproducts and sifted colimits iff it is cocontinuous.
Hence, we can conclude by the I Adjoint Functor Theorem 1.2.0.5 that F admits a right adjoint G : CAlg∆R′ →
CAlg∆R . As proved in 3.1.0.3,ii), F ≃ LKEj(F ◦ j), which is in turn equivalent to LKEj(j ◦ f). Hence, being
the right adjoint G to F essentially unique, it must be equivalent to the restriction (j ◦ f)∗. □

Remark. Consider the tensor product functor S ↦−→ S ⊗LR R′ in CAlg∆R and notice that it agrees with the
restriction of F to PolyR ≃ (R-Alg)sfp; hence, by [UP : Ani], they actually do define the same functor.
In other words, we can interpret (− ⊗LR R) as a derived functor with respect to PΣ, whence the adjective
”derived”. Moreover, since F ◦ j ≃ j ◦ f , one has that for any static animated R-algebra R′ and any vector
of indeterminates X, R[X]⊗LR R′ ≃ R[X]⊗R R′ ∼= R′[X], as expected.

Warning. ([22],4.1.16) Observe that, being it a homotopy colimit (where ’homotopy’ in our setting means
’∞-categorical’ or - equivalently - with respect to the aforementioned projective model structure on simplicial
algebras), the derived tensor product of two static animated R-algebras needs not be again static.
Indeed, by the Digression above on a model theoretical approach and the Dold-Kan correspondence, animated
rings can be regarded as fibrant-cofibrant chain-complexes in Ch≥0(CRing)proj, i.e. as equivalence classes of
non-negatively graded chain complexes valued in CRing with respect to the projective model structure; hence,
under such an identification, π∗(S⊗LRR′) ∼= TorR∗ (S,R

′) by [22],4.1.14. Therefore, in particular π0(S⊗LRR′) ≃
S ⊗R R′ retrieves the ordinary tensor product as the underlying ring, and - for the symmetric monoidal
structure on the ∞-category CAlg∆R of 3.2.3.1 - we observe that the left adjoint functor π0 : CAlg∆R → R-Alg
is a symmetric monoidal functor (in the sense of B.2.0.3).

Remark. G ≃ (j ◦ f)∗ acts as the restriction along the base-change of static animated polynomial rings
f : R[t] ↦−→ R′[t] (in turn induced by restriction along ϕ : R → R′), whence the analogy between G and the
operation of restriction of scalars.

Moreover, from the very definition of homotopy groups, restriction of scalars induces a canonical equivalence

π∗(G(S)) ≃ π∗(S)

which, in particular, in the static case π∗(G(R
′)) ≃ π∗(R′) allows us to canonically regardG(R′) ∈

(︁
CAlg∆R

)︁static
as a static object and then to (again canonically) identify it with the embedded copy of R′ ∈ R-Alg.
It becomes then reasonable to wonder whether we can actually relate animated algebras in CAlg∆R′ as slices
in CAlg∆R whenever we can regard R′ as an R-algebra. This is the content of the next result.

Lemma 3.2.2.3. ([26],25.1.4.2) Given ϕ : R → R′ in CRing, restriction of scalars induces a canonical
equivalence

G : CAlg∆R′ ≃ (CAlg∆R′)R′/
G−→ (CAlg∆R)G(R′)/ ≃ (CAlg∆R)R′/

Proof. In order to prove our result, we will use the extension of scalars F to provide a left adjoint F to G.
Then, we will show that such an adjunction is actually an equivalence via the following technical result.

Claim 1. ([23],pp.688) For a functor G : D → C in Cat∞, tfae:

1. G is an equivalence;

2. G is conservative and admits a left adjoint s.t. the unit of the adjunction is an equivalence.

3. G is conservative and admits a fully faithful left adjoint;
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Proof. We will work with the incarnation of quasi-categories.
(1) ⇐⇒ (2) : Let η and ϵ denote respectively the unit and counit of the adjunction GL ⊢ G. As in [20],5.1.14,
our adjunction is determined by the fact that unit and counit sit in the triangle identities; then, in particular
ηG◦GLϵ ≃ idG. Now, by the definition of unit, ηG is an equivalence, so that also Gϵ is such; by [20],2.2.2, the
latter amounts to the fact that Gϵ corresponds to point-wise equivalences, iff ϵ does so (G is conservative),
iff ϵ is itself an equivalence. Finally, recall that GL and G are mutually inverse equivalences iff both the unit
and counit are equivalences in the respective functor categories.
(2) ⇐⇒ (3) : As in the proof of [20],5.1.8, we see that G admits a fully faithful left adjoint GL iff the unit
of GL ⊢ G is an equivalence. ■

Now, let’s define the left adjoint to G. Recall that, for a static ring map R → R′, we canonically identified
R′ ≃ G(R′) ∈ CAlg∆R ; then, the unit η of the adjunction F ⊢ G induces a map η : F (R′)→ R′ in CAlg∆R′ .

Claim 2. Unwinding the definition of G, the latter admits a left adjoint F which acts on animated
R-algebras as the extension of scalars along η, namely F (A) := F (A)⊗LF (R′) R

′ on CAlg∆R .

Proof. Let’s recall the action of G on objects B ∈ CAlg∆R′ and let’s parallely define the one of F on
[R′ → A] ∈ (CAlg∆R)R′/:

� G : CAlg∆R′ → (CAlg∆R)R′/ such that

G : B
⊆↦−→ [R′ → B]

G↦−→ [G(R′)→ G(B)] ≃ [R′ → G(B)]

� F : (CAlg∆R)R′/ → CAlg∆R′ such that

F : [R′ → A]
F↦−→ [F (R′)→ F (A)]

⊆↦−→ [F (A)← F (R′)→ R′]
colim↦−−−→ F (A)⊗LF (R′) R

′

Since F , ⊆, colim respect colimsift , by [UP : Ani] the functor F |(Poly′
R)R′/

yields a well-defined animated

functor (with the claimed action on objects), so that we are left to prove that our candidate is indeed the
left adjoint to G.
In order to show this, let us first exhibit a wannabe adjunction natural equivalence ϕ. First, notice that the
latter can be written as a functor

ϕ : (CAlg∆R)R′/ × CAlg∆R′ → Fun
(︁
∆1, (CAlg∆R)R′/ × CAlg∆R′

)︁
Now, consider bi-functors Map(⋆,−) as in [20],4.2.5, and let ψR′/ : FR′/ ⊢ GR′/ denote the base-change
adjunction equivalence in the under-slice. Then, the following composition

ϕ := (Map(⋆,−) ◦ ⟨colim∗, id⟩) ◦ (Map(⋆,−) ◦ ⟨⊆, id⟩) ◦ ψR′/ ◦Map(⋆,−)
defines a functor of ∞-categories, and hence a natural transformation of the mapping spaces at stake.
Thus, by [20],2.2.2 it suffices to show that the natural transformation ϕ is a point-wise equivalence. To
this end, consider the following chain of equivalences of mapping spaces for [R′ → A] ∈ (CAlg∆R)R′/ and

B ∈ CAlg∆R′ :

Map(F [R′ → A], B) = Map(F (A)⊗LF (R′) R
′, B) ≃(1) Map([F (A)← F (R′)→ R′], B)

≃(2) MapF (R′)/(F (A), B)×MapF (R′)/(R
′, B)

≃(3) MapR′/(A,G(B)) ≃ Map([R′ → A], [R′ → G(B)])

where the numbered equivalences are so deduced. (1) : corresponds to the universal property of colim, as
in [20],4.3.4. (2) : amounts to the following manipulation of slice categories, which we perform again in
the incarnation of quasi-categories, even though it should follow from any reasonable model-independent
definition of a slice-category.
Let’s first fix some notation: call D := CAlg∆R′ and ϕ : Λ2

1 ≃ ∆{0,1} ∐︁
∆{1} ∆{1,2} → D the functor with

diagram [F (A)← F (R′)→ R′]. Then, as in [20],4.3.1, the lhs sits in the cartesian square
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MapD(ϕ,B) →→

↓↓

Fun(Λ2
1 ⋆∆

0,D)

⊆∗

↓↓
∆0

(ϕ,B) →→ Fun(Λ2
1,D)×D

Since (−⋆∆0) is a left adjoint (to the corresponding slice), the latter can be equivalently rewritten as follows:

MapD(ϕ,B) →→

↓↓

Fun(∆{0,1} ⋆∆0,D)×Fun(∆{1}⋆∆0,D) Fun(∆
{1,2} ⋆∆0,D)

⊆∗

↓↓
∆0 →→ Fun(∆{0,1},D)×Fun(∆{1},D) Fun(∆

{1,2},D)×D

where the lower horizontal arrow is now (ϕ,B) ≃
(︁
F|∆{0,1} ×F|∆{1} F|∆{1,2} , B

)︁
.

Moreover, (−× D) distributes with the fibred-product, so that we can regard the latter cartesian square as
a ’cube’ yielding the desired expression for MapD(ϕ,B).

Finally, (3) comes from the adjunction property of slices, which is a reformulation of [20],5.1.16. ■

Now, let’s show that G satisfies the assumptions of (the technical) Claim 1.

Claim 3. G is conservative.

Proof. π∗(G(B)) ≃ π∗(B), so G detects equivalences. ■

Claim 4. The unit u : id(CAlg∆
R)R′/

→ G ◦ F is an equivalence.

Proof. By [20],2.2.2 it suffices to check that the unit corresponds to point-wise equivalences, so fix A ∈
CAlg∆R and consider uA : A→ G ◦ F (A) under uR′ . We will prove our statements after two reduction steps.

First, we claim that wlog A ∈ ((CAlg∆R)R′/)
sfp is cpt+proj.

This is based on the following important technical result: given an adjunction F ⊢ G with the source of F
being generated by cpt+proj’s, F preserves cpt+proj’s iff G commutes with sifted colimits.
To see the latter, first recall that, as observed in [24],5.5.8.20, an object x of an ∞-category C with sifted
colimits is cpt+proj iff MapC(x,−) commutes with such colimits. Then, unwinding the definitions, for any
sifted diagram χ one has:

� Map(x, colimsift G(χ)) ≃(1) colimsift Map(x,G(χ)) ≃ colimsift Map(Fx, χ), where (1) comes from as-
suming x cpt+proj;

� colimsift Map(Fx, χ) ≃(2) Map(Fx, colimsift χ) ≃ Map(x,G(colimsift χ)) with (2) corresponding pre-
cisely to the fact that F preserves the cpt+proj object x.

Thus, the stated equivalence follows from an application of the Yoneda Lemma and the fact that Csfp ⊆f.f. C
is dense, so that checking the property of G against Csfp amounts to checking it against the whole of C.

Now, notice that F ≃ (− ⊗LR R′) does indeed preserve cpt+proj objects: by [24],5.5.8.25,ii), (CAlg∆R)
sfp

consists of (retracts of) j(PolyR) ⊆ EssIm(j), and those are sent by F to (retracts of) j(PolyR′) ≃ (CAlg∆R′)sfp.
Therefore, G commutes with sifted colimits, and the latter further implies that the functor ”evaluation of
the unit” u(−) : (CAlg∆R)R′/ → Fun

(︁
∆1, (CAlg∆R)R′/

)︁
preserves sifted colimits, as well.

Furthermore, a closer inspection of cpt+proj’s in (CAlg∆R)R′/ allows us to consider wlog only those animated

rings of the form A ≃ A0 ⊗LR R′ for a polynomial ring A0 ≃ R[X] ∈ CAlg∆R , with X being some finite tuple
of indeterminates.

Indeed, as G is conservative and preserves sifted colimits (because G does so), we can apply [23],4.3.7.18 to
infer that cpt+proj’s in the target CAlg∆R′ of F are retracts of EssIm(F |(CAlg∆

R)sfp
R′/

). The latter can now be

rewritten as F
(︁(︁
j(PolyR)

)︁
R′/

)︁
, because, as already recalled, (CAlg∆R)

sfp ≃ j(PolyR) and colimits in over-

categories commute with the forgetful functor. Then, F (A) for A cpt+proj is obtained up to homotopy by

21



applying F to an object of
(︁
j(PolyR)

)︁
R′/

; from the very definition of⊗L, the latter is wlog into j(PolyR)⊗LRR′,

as required.

Finally, as a last step we claim that uA is an equivalence for those animated rings as before.

In order to show this last part, we observe that the map uA induces the identity in homotopy:

R′[X] ≃ π∗(R[X]⊗LR R′) ≃ π∗(A)
π∗(uA)
−→ π∗(G ◦ F )(A) ≃ π∗(F (A))

≃ π∗(F (A)⊗LF (R′) R
′)

≃ π∗(F (A0)⊗LF (R) F (R
′)⊗LF (R′) R

′)

≃ π∗(F (A0)⊗LF (R) R
′)

≃ π∗(F (A0))

≃ π∗(R′[X]) = R′[X]

Indeed, the latter turns out to be a map in R′[X]-Alg ≃ π0(R′[X])-Alg, as observed in Lemma 3.2.1.4. ■

We are finally done by Claim 1.
□

As a corollary, we are now allowed to merge our notation and regard (compatibly) all categories CAlg∆R as
slice ∞-categories (R ↓ Ani(CRing)).

Corollary 3.2.2.4. ([26],25.1.4.3) For any R ∈ CRing, restriction of scalars induces an equivalence CAlg∆R ≃
Ani(CRing)R/.

3.2.3 The Presheaf of Animated Algebras

The previous Corollary hints us at the following generalization, so as to include in our theory arbitrary
’A-algebra structures’. It will be the content of the following definition-proposition.

Definition 3.2.3.1. For any A ∈ Ani(CRing), define the∞-category of animated A-algebras by CAlg∆A :=
Ani(CRing)A/. The present definition restricts to the previous one whenever A is representable.

More generally, there is a presheaf of animated algebras, say CAlg∆ : Ani(CRing)op → Cat∞, with
values in presentable closed symmetric monoidal ∞-categories and whose action on the 1-skeleton is:

� A ↦−→ CAlg∆(A) = CAlg∆A = CAlg∆A/

� (ϕ : A→ A′) ↦−→ (ϕ∗ : CAlg∆A′ → CAlg∆A) defines restriction of scalars along maps of animated rings.

Moreover, for each A ∈ Ani(CRing), CAlg∆A ≃ lim(CAlg∆R | R/A ∈ CRingopA/).

Before proving the existence of such a presheaf, let us state a useful Lemma, which will be applied very often
in what follows.

Lemma 3.2.3.2. Let C ∈ Cat∞ be a small ∞-category with finite products and consider its animation
PΣ(C). Let it be given any two presheaves F ,G in the latter, and consider sifted diagrams (wlog over the
same indexing simplicial set) p, q : K → Csfp whose colimits are F ,G, respectively. Then, there is a canonical
equivalence in Spc:

MapPΣ(C)(F ,G) ≃ lim
K

MapC(p, q)

In particular, any map ϕ : F → G can be seen as a limit of some natural transformation ψ : p → q; this is
well-defined up to contractible homotopy by [24],5.1.2.2.

22



Proof. Commit a slight abuse and let | − | := colimsift
K . The diagrams p, q as above exist by A.2.0.4. Then,

there is the following chain of equivalences:

MapPΣ(C)(F ,G) ≃ MapPΣ(C)(|p|, |q|) ≃(a) lim
K

lim
K

MapPΣ(C)(p, q) ≃(b) lim
K

MapPΣ(C)(p, q)

where: (a) : is because mapping spaces commute with limits in the first variable and then, EssIm(p) ⊆f.f. Csfp
implies that we can take out also the sifted-colimit in the covariant argument; (b) : K is sifted iff the diagonal
K → K ×K is cofinal. □

Proof. (Of 3.2.3.1) Let us define the functor of ∞-categories (CAlg∆)op : Ani(CRing) → Cat∞. We will
anticipate part of the argument of 3.2.5.11, although in a much simpler setting, due to 3.2.2.3.

Claim 1. The source functor ev0 : Fun(∆1,Ani(CRing))→ Ani(CRing) is a bi-cartesian fibration.

Proof. ev0 is a cartesian fibration as a consequence of Joyal’s Theorem. Alternatively, the following
proof applies as well. We are left to show that it is also a cocartesian fibration.
From the very definition, a pair of morphisms (ϕ : A → B , ϕ′ : A′ → B′) in Ani(CRing) is ev0-cocartesian
iff for each morphism of animated rings ζ : X → X ′, the following square of mapping spaces is (homotopy)
cartesian.

MapFun(∆1,Ani(CRing))([B → B′], ζ)

ev0

↓↓

(−)◦(ϕ,ϕ′) →→ MapFun(∆1,Ani(CRing))([A→ A′], ζ)

ev0

↓↓
MapAni(CRing)(B,X)

(−)◦ϕ →→ MapAni(CRing)(A,X)

By [29],3.3.18, a commutative square of spaces is (homotopy) cartesian iff the fibres of the vertical maps are
equivalent. So, taken any ψ ∈ MapAni(CRing)(B,X), let us compare the fibre over any ψ ↦→ ψ ◦ϕ. By 3.2.2.3,
we can write it as

(−) ◦ (ϕ′) : MapCAlg∆
B′
(B′, X ′)ψ → MapCAlg∆

A′
(A′, X ′)ψ◦ϕ

Then, the special choice ϕ′ = ϕ yields an ev0-cocartesian lift of ϕ : A→ B. ■

Hence, the source functor sits in a classifying cartesian square via the Straightening theorem, thus defining
a presheaf of ∞-categories, say (CAlg∆)op : Ani(CRing)→ Cat∞:

Fun(∆1,Ani(CRing))

ev0Cart∋
↓↓

→→ Cat∞//∗

πuniv

↓↓
Ani(CRing)

(CAlg∆)op →→ Cat∞

Notice that the action of the restriction of (CAlg∆)op|Poly is the declared one. Then, consider the left derived

functor as in A.3.0.2 of such a restriction; in other words, form the left Kan extension along the Yoneda
embedding j : Poly ↪→ Ani(CRing):

(CAlg∆)op1 ≃ LKEj
(︁
(CAlg∆)op|Poly

)︁
We are left to prove the equivalence (CAlg∆)op ≃ LKEj(CAlg∆|Poly)

op ≃ (CAlg∆)op1 . Let us postpone it and
discuss first how to conclude.
Provided that, the factorization j : Poly ↪→ CRing ↪→ Ani(CRing) induces an equivalence of left Kan
extensions: (CAlg∆)op ≃ LKEj

(︁
(CAlg∆)op|CRing

)︁
, where the latter is taken along j : CRing ↪−→ Ani(CRing).

Then, by inspection, one would obtain the expected action on animated rings:

(CAlg∆)op(A) ≃ colim
(︁
(CAlg∆)op(R) | R ∈ CRing/A

)︁
Hence, passing to the op-functor exhibits CAlg∆ ≃ RKEj(CAlg∆|CRingop ) as a right Kan extension, and

CAlg∆(A) ≃ lim
(︁
CAlg∆R | R ∈ (CRing/A)

op
)︁

Notice that everything is well-defined, in that all (co)limits considered are indeed small, since they are
computed on the∞-category of Grothendieck elements and Ani(CRing) has small mapping spaces. Moreover,
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by 3.1.0.2 each CAlg∆R is presentable for R static and small limits of presentable ∞-categories are again
presentable by [24],5.5.3.18; so, CAlg∆ would indeed take values in PrL, as stated.

Claim 2. CAlg∆1 takes morphisms in Ani(CRing) to ”restriction of scalars” functors. In other words, for any
animated ring A ∈ Ani(CRing), CAlg∆1 (A) ≃ CAlg∆A and, for any morphism of animated rings ϕ : A→ A′,

CAlg∆1 (ϕ) ≃ ϕ∗ acts as pre-composition by ϕ.

Proof. By construction, the restriction
(︁
CAlg∆1

)︁op
|Poly ≃

(︁
CAlg∆

)︁op
|Poly acts as stated; indeed, by 3.2.2.3 pre-

composition with any map ϕ : R → R′ in CRing induces a ”restriction of scalars” functor ϕ∗ : CAlg∆R →
CAlg∆R′ between the corresponding ∞-categories of animated algebras. Thus, we need to show that our
definition generalizes restriction of scalars as in 3.2.2.2 to arbitrary animated rings. Let ϕ : A → A′ denote
a morphism in Ani(CRing).
Being Ani(CRing) the sInd-completion of Poly, by A.2.0.4 there exist sifted-diagrams p : K → Poly/A
and p′ : K → Poly/A′ whose sifted colimit (in Ani(CRing) or equivalently in P(Poly) by A.2.0.2) retrieves

A ≃ p(∞) and A′ ≃ p′(∞); here p, p′ denote some choice (in the presentable ∞-category Ani(CRing)) of
colimiting cones for the diagrams above.
Now, we defined

(︁
CAlg∆1

)︁op
as a left Kan extension along the Yoneda embedding j : Poly ↪→ Ani(CRing),

so by construction it commutes with colimits of animated rings. Hence, we obtain(︁
CAlg∆1

)︁op
(A) ≃ colim

(︁
CAlg∆1

)︁op
(p)

and the same holds for p′ and A′. Moreover, according to 3.2.3.2, (up to equivalence) the map ϕ : A → A′

arises as the colimit ϕ ≃ ψ(∞) of some natural transformation ψ : p→ p′ in Ani(CRing).
Being a right Kan extension, CAlg∆1 commutes with all small limits in Ani(CRing)op , hence

CAlg∆1 (ϕ) ≃ CAlg∆1 (ψ(∞)) ≃ lim
K

CAlg∆1 (ψ) ≃ limMap(ψ,−) ≃ Map(limψ,−) ≃ Map(ϕ,−)
■

Claim 3. Define CALG∆ :=
∫︁
(CAlg∆)op1 . Then, being it the straightening of (CAlg∆)op, one has an

equivalence Fun(∆1,Ani(CRing)) ≃ CALG∆. In particular, CAlg∆ ≃ CAlg∆1 , as desired.

Proof. Both presheaves agree on their restriction to Poly, so the universal property of left Kan extensions
yields a comparison map α : (CAlg∆)op1 → (CAlg∆)op which restricts to an equivalence on static rings. We
wish to prove that α is an equivalence, which is true, by [20],2.2.2 and since α is point-wise such. ■

Finally, each category of animated algebras is closed symmetric monoidal. The proof is analogous to B.4.0.2,
so we need to show first, that each CAlg∆A be the animation of its set of cpt+proj-generators. The proof of
this is postponed to 3.2.3.4.
Provided that, the encoded tensor product of each (CAlg∆A)

⊗ will give point-wise left-adjuncts to the action

of CAlg∆(−) on morphisms. Therefore, transition morphisms of CAlg∆ will be linear with respect to the
symmetric monoidal structures considered. □

Lemma 3.2.3.3. (Animated Base-Change Adjunction) A morphism of animated rings ϕ : A → A′ induces
the symmetric monoidal animated base-change adjunction:

(−⊗LA A′) : CAlg∆A
−⇀↽− CAlg∆A′ :ϕ∗

As before, the left adjoint is called extension of scalars, while we refer to the right adjoint, which is a transition
map in CAlg∆, as restriction of scalars.

Proof. Recall that, by definition, ϕ∗ = CAlg∆(ϕ) acts as pre-composition by ϕ. Being categories of animated
algebras presentable, we want to show that ϕ∗ commutes with limits and is accessible, so as to apply the II
Adjoint Functor Theorem 1.2.0.6 and conclude the existence of a left-adjoint to it.
ϕ∗ clearly commutes with all small limits, so let us consider any filtered diagram F : I → CAlg∆A′ . We
wish (A → colimF ) ≃ colim(A → F ), but the latter holds, because filtered diagrams are weakly con-
tractible (A.1.0.4) and weakly-contractible colimits in an under-category are computed after forgetting the
slice-structure. Indeed, the forgetful functor from an under-category is evaluation at the target, which is a
left fibration and hence preserves weakly contractible colimits by [24],4.4.2.9.
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Therefore, we conclude the existence of a left-adjoint to ϕ∗, say F : CAlg∆A → CAlg∆A′ .

Claim. The left adjoint (−) ⊗LA A
′ to ϕ∗ is compatible with static restriction of scalar. Hence, the latter

adjunction indeed enhances base-change over a static ring.

Proof. Consider the following diagram, where the square of restrictions of scalars commutes by the
construction.

CAlg∆A

ϕ∗
R,A

↓↓

(−⊗L
AA

′)
→→ CAlg∆A′

ϕ∗
A,A′

←←

CAlg∆R

(−⊗L
RA)

↑↑

(−⊗L
RA

′) →→ CAlg∆A′
ϕ∗
R,A′

←←

Since adjunctions compose,

(−⊗LA A
′) ◦ (−⊗LR A) ⊢ ϕ∗R,A ◦ ϕ∗A,A′ ≃ ϕ∗R,A′

But then, the left-adjoint to ϕR,A′ is essentially unique, so that it must hold also (− ⊗LR A
′) ≃ (− ⊗LA A

′) ◦
(−⊗LR A), which is precisely the commutativity of the square of extensions of scalars. ■

Finally, as observed at the end of 3.2.3.1, after the next Lemma we will have that the ”base-change” adjunction
amounts to the fact that the symmetric monoidal structure on CAlg∆A is closed. □

We conclude this subsection with a presentation of ∞-categories of animated A-algebras by means of the
PΣ-construction. This is analogous to 3.2.5.14

Lemma 3.2.3.4. ([23],7.2.2.15) Let A ∈ Ani(CRing), and let PolyA := A⊗LZ Poly ⊆f.f. CAlg∆A denote the

∞-category spanned by a set of representatives of finitely generated polynomial A-algebras. Then, CAlg∆A ≃
PΣ(PolyA).

Proof. By 3.2.3.3, we can consider the base-change adjunction A⊗LZ (−) : Ani(CRing) −⇀↽− CAlg∆A :ϕ∗.
Since the right-adjoint ϕ∗ is conservative and preserves sifted colimits, and since Ani(CRing) is cpt+proj-
generated, by [23],4.7.3.18 we conclude that extension of scalars A⊗LZ (−) preserves and detects cpt+proj’s,

i.e. PolyA ≃ (CAlg∆A)
sfp, and that also CAlg∆A is cpt+proj-generated.

Thus, being PolyA essentially small by assumption, we can apply the PΣ-construction to it, and this yields

the whole category CAlg∆A . □

3.2.4 Animated Modules

Our next goal is to adopt the same strategy to define animated modules over static rings.

Definition 3.2.4.1. (Animated modules) For a ring R ∈ CRing, let FFreeR denote the 1-category of finite
free R-modules. Being it FFreeR ≃ Mod(R)sfp, we can define the presentable ∞-category of animated
R-modules by ModR := Ani(Mod(R)) = Fun×(FFreeopR ,Spc).

Moreover, it is straightforward to import all definitions and terminology provided insofar to the case of
animated modules. These will be used freely.
In particular, as expected the previously defined base-change adjunction extends to animated modules.

Lemma 3.2.4.2. (Base-Change Adjunction for Modules) By B.4.0.2, ModR can be endowed with a closed
symmetric monoidal structure Mod⊗R arising from Day convolution.
Given a morphism ϕ : R→ R′ in CRing, the encoded tensor product ⊗R yields an adjunction in Cat∞ of the
form

(−)⊗R R′ ≃ LKEj(j ◦ f) : ModR −⇀↽− ModR′ : [R′,−]
where f := (−)⊗R R′ : FFreeR → FFreeR′ is the restriction to the monoidal structure on Mod(R)⊗.
The functor (−)⊗RR′ is called extension of scalars, whereas ϕ∗ := [R′,−] is the restriction of scalars.

Again, restriction of scalars induces a canonical equivalence π∗(ϕ
∗M ]) ≃ π∗(M); so, in particular, in the

static case we can identify ϕ∗(R′)n ∈ (ModR)
static ≃ Mod(R) ∋ (R′)n.

Moreover, notice that the choice of the ’fixed argument’ is perfectly symmetric.
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Remark. The obvious functor ι|PolyR
: PolyR ↪−→ Mod(R) ⊆f.f. ModR forgetting the ring structure is

symmetric monoidal and extends to a symmetric monoidal forgetful functor for : CAlg∆R → ModR. See
3.7.1.2.

For the sake of completeness, we record here a stability result for the ∞-category of animated modules.
However, its proof will be a by-product of our subsequent constructions, so that it is postponed.

Lemma 3.2.4.3. (Mod is pre-stable) For each R ∈ CRing, the ∞-category ModR of animated R-modules is
pre-stable.

3.2.5 The Presheaf of Animated Modules

We will now define simultaneously ∞-categories of animated modules over any arbitrary animated ring, and
we will group them into the ∞-category Ani(CRMod) of ’animated modules together with their (animated)
ring of scalars’.
This turns out to be not only a formal exercise, since it implies strong compatibility properties of such
categories.
In view of our subsequent presentation of quasi-coherent sheaves of modules, we group them into the following
Theorem, of which we provide an almost complete proof.

Acknowledgement. The author is indebted to Prof. Marc Hoyois who suggested to look at [5],A for the
symmetric monoidal enhancement of the Straightening Equivalence; moreover, he also taught him about Day
convolution, as in [10] or [23],2.4.6, and its universal property [23],4.8.1.12.

Theorem 3.2.5.1. There exists an∞-category MOD over Ani(CRing) which enjoys the following properties:

� MOD can be endowed with a relative closed symmetric monoidal structure pr⊠1 :
∫︁
MOD⊠ → Ani(CRing)⨿

over the cocartesian Ani(CRing)⨿ extending the external tensor product via Day convolution. Its un-
derlying fibration is bi-cartesian and classifies the following point-wise adjoint functors, whose action
on the objects of Ani(CRing) retrieves the corresponding pr1-fibres of MOD.

– The straightened version MOD⊠ of pr⊠1 lies over the ”co-presheaf of animated modules”

MOD : Ani(CRing)→ PrL,⊗,pre−Ex

taking values in presentable pre-stable closed symmetric monoidal ∞-categories. Its action on
morphisms can be informally described by ”extension of scalars”.

– its op-straightened version is the ”presheaf of animated modules”:

Mod : Ani(CRing)op → PrL,lax,Pre−Ex

taking values into presentable pre-stable lax closed symmetric monoidal ∞-categories. Its action
on morphisms can be informally described by ”restriction of scalars”.

� The point-wise adjunction MOD ⊢ Mod generalizes the ”base-change” adjunction of 3.2.4.2. Units and
counits are monoidal natural transformations.

Moreover, restriction of scalars along any ϕ : A→ A′ in Ani(CRing) induces an equivalence in homo-
topy: informally, it allows to regard A′-modules as A-modules;

� Functors in Cat∞ with source MOD can be defined wlog on the animation of a 1-category C as in
3.2.5.2.

The proof of the Theorem is somewhat laborious and we divide it into multiple results of independent interest.
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MOD as Animation.

Proposition 3.2.5.2. (MOD as animation of CRMod, [26],25.2.1.2 revisited) Let CRMod denote the 1-
category whose objects are pairs (A,M ∈ Mod(A)) of a module together with the corresponding ring of
scalars and morphisms consist of arrows (ϕ, f) : (A,M) → (B,N) with ϕ : A → B a ring morphism and
f :M → ϕ∗N A-linear; equivalently, define its arrows as f : B⊗AM → N under the base-change adjunction.
Then, its cpt+proj’s are of the form (A := Z[X], An) for any finite tuple of variables X. Define the category
Ani(CRMod) := Fun×((CRModsfp)op ,Spc) of animated ”modules with rings of scalars”.

Proof. Let C denote the full subcategory of CRMod spanned by those objects of the form (A := Z[X], An)
for any finite tuple of variables X, say of length |X|. Since sifted colimits commute with finite products (see
A.1.0.6), clearly C generates CRMod under 1-sifted-colimits.

Notice that C is the closure under finite coproducts of the full subcategory of CRMod generated by C :=
(Z[t], 0) and D := (Z,Z). Indeed, it is easy to (explicitly) check that finite coproducts in CRMod are
computed component-wise: (A,M)

∐︁
(B,N) ∼= (A⊗B,M ⊕N).

Finally, we need to show that actually C ⊆ CRModsfp, and hence they are the same. By the properties of
cpt+proj’s, it actually suffices to check that the two generators C, D are cpt+proj.
Let p = (p′, p′′) : K → CRMod be a 1-sifted diagram, and recall that sifted colimits commute with finite
products A.1.0.6:

MapCRMod

(︁
(Z[t], 0), colimsift(p′, p′′)

)︁
≃ MapCRMod

(︁
(Z[t], 0), (colimsift p′, colimsift p′′)

)︁
Now, there is only one Z[t]-linear morphism from 0, so the latter amounts to

MapCRing

(︁
Z[t], colimsift p′

)︁
≃ colimsift MapCRing

(︁
Z[t], p′

)︁
≃ colimsift MapCRMod

(︁
(Z[t], 0), (p′, p′′)

)︁
which proves (Z[t], 0) ∈ CRModsfp. On the other hand, consider (Z,Z): since there is only one map of
commutative rings from Z,

MapCRMod

(︁
(Z,Z), (colimsift p′, colimsift p′′)

)︁
≃ MapAb

(︁
Z, for(colimsift p′′)

)︁
≃ colimsift MapAb

(︁
Z, p′′

)︁
and finally MapAb

(︁
Z, p′′

)︁
≃ MapCRMod

(︁
(Z,Z), (p′, p′′)

)︁
as before. □

Digression. By our construction, given any element of C its second component has always a module structure
on the first one. Sifted colimits of diagrams in C should still enjoy such a property by abstract non-sense,
since they are computed component-wise (see A.1.0.6). This will motivate the definition of ModA over any
animated ring A.
In a very special case, we are able to provide a more concrete proof of the fact that such a property enjoys
some colimit stability; perhaps such an attempt can be generalized to the setting of higher algebra via the
object of endomorphisms of [23],4.7.3.
Consider a filtered diagram p = (p′, p′′) : I → C consisting of static pairs (and hence also with a static
colimit). Then, we can check that colim

−−−−−→
p′′ ∈ Modcolim p′′ by means of the following observation: given a

Z-module M , denote by EndZ(M) the (non-commutative) ring of its endomorphisms; it is easy to check that
the (commutative) rings R ∈ CRing for which M can be endowed with an R-module structure are precisely
the sub-objects in CRing of the centre of EndZ(M).
Indeed, on the one hand, if M has an R-module structure λ : R×M →M , then, for each r ∈ R, the Z-linear
multiplication λr induces a Z-endomorphism ofM and the axioms of scalar multiplication yield λR ∈ CRing.
Conversely, for a commutative sub-ring R ≤ EndZ(M), λ : (f,m) ↦−→ f(m) determines a R-scalar structure on
M . So, under the assumption of stasis, p induces a filtered diagram q : I → Fun(∆1,CRing) which amounts
to a natural transformation ev1 ◦ p ↪−→ EndZ(ev2 ◦ p). The latter is point-wise a monomorphism and filtered
colimits commute with kernels, so that also the colimit of p will enjoy the desired property.

Let us define the ∞-category of animated modules over any arbitrary animated ring A.
In order to do so, observe first that Ani(CRMod) comes equipped with canonical split projections to
Ani(CRing), ModZ respectively, together with a ’common’ diagonal section, given as follows.
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Lemma 3.2.5.3. Ani(CRMod) is canonically equipped with projections pr1 := Ani(pr1) : Ani(CRMod) →
Ani(CRing), pr2 := Ani(pr2) : Ani(CRMod)→ ModZ; pr1 is split, with section induced by the diagonal map
diag := Ani(diag).
In particular, the objects of Ani(CRMod) can be written as pairs (A,M) for some M ∈ ModZ; moreover,
one has that M ∈ ModR for each R ∈ Poly/A in the slice over A.

Proof. With reference to the previous Proposition, the projection on the first component pr1 : C → Poly in
Cat1 induces a functor C → Poly ↪−→ Ani(CRing) under post-composition by the Yoneda embedding. Then,
the animation of the latter yields the sought Ani(pr1) : Ani(CRMod)→ Ani(CRing).
Similarly, one defines the projection on the second component Ani(pr2) : Ani(CRMod)→ Ani(ModZ).

Moreover, Ani(pr1) comes equipped with a canonical section, as induced by the diagonal inclusion Ani(diag) :
Ani(CRing)→ Ani(CRMod).
Indeed, post-composing Ani(pr1) to the animation of the following inclusion gives the identity:

Poly
diag−→ C ↪−→ CRing ×Mod(Z) ↪−→ Ani(CRing)×ModZ

We remark that the comparison natural transformation in Ani(CRing)→ Fun(∆1,Ani(CRing)) between the
composition and the identity functor can be defined by animating its action on Poly; then one can check
point-wise that the latter transformation is an equivalence, since left-derived functors preserve sifted colimits.

Furthermore, post-composition of Ani(diag) by Ani(pr i) yields Ani(CRing) ∋ A ↦−→ A ∈ ModZ, so that
Ani(diag) does actually act as the diagonal map.

In particular, the objects of Ani(CRMod) can be written as pairs (A,M) for some M ∈ ModZ . Such
a construction can be performed with PolyR, FFreeR in place of Poly, FFree, so we actually infer that
M ∈ ModR for any R ∈ Poly/A in the slice over A. Indeed, since restriction of scalars induces equivalences
in homotopy, we can identify the animated modules MR ≃MZ. □

In particular, Ani(diag) actually acts as the diagonal, and thus allows us to consider the pairs (A,AZ) as
objects of Ani(CRMod).

In view of 3.2.5.3, we would like to denote an arrow in Ani(CRMod) between (A,M) → (B,N) as a pair
(ψ, fR), where - for each R in Poly/A - we consider some map f : AR → NR in ModR.
In other words, for each suitable R we are writing arrows in Ani(CRMod) under the canonical maps
(prR1 , pr

R
2 ) : Ani(CRModR)→ Ani(CAlg∆R)×ModR.

Lemma 3.2.5.4. For each R ∈ CRing, the canonical functor (prR1 , pr
R
2 ) : Ani(CRModR)→ Ani(CAlg∆R)×

ModR is conservative.

Proof. In order to see this, consider the forgetful functors forR1 , for
R
2 : Ani(CRModR) → Spc induced by

evaluation at (R[t], 0) and (R,R), respectively. Since by A.2.0.2 colimits in Ani(CRModR) are computed
point-wise, we can study the action of forR1 and forR2 on objects at the level of the Yoneda embedding of
PolyR, where they yield the spaces lying under the first and the second component, respectively. Hence, by
left-deriving there are equivalences for ◦ prRi ≃ forRi , where for takes the corresponding underlying spaces.
So, we are left to prove that the product functor (forR1 , for

R
2 ) is conservative. Let η : F → G be a natural

transformation between ”animated modules with animated rings of scalars” such that (forR1 , for
R
2 )(η) is an

equivalence in Spc. Since CR := CRModsfpR is the closure under coproducts of (R[t], 0) and (R,R) and both
F,G take coproducts in CR to products, our assumption means that η is an equivalence point-wise, so we
conclude by [20],2.2.2. □

This justifies the notation above. We adopted a version relative to R, because we also would like to go
the other way around and ”reconstruct” the original map by such a presentation. Indeed, in a reasonable
category of ”modules with rings of scalars”, there should be a way of forgetting scalar structure, and hence
”identifying copies of the same” module via restriction of scalars. So, morally for the backward direction we
should keep track of all the successive ”forgetting steps”.
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The closed symmetric monoidal ∞-category Ani(CRMod)⊠.

Moreover, B.4.0.2 and the subsequent remark allow for a more intrinsic description of Ani(CRMod).

Proposition 3.2.5.5. (Ani(CRMod) closed symmetric monoidal) Ani(CRMod) can be endowed with a closed
symmetric monoidal structure Ani(CRMod)⊠ which extends via Day convolution the external product on
CRMod.

Informally, the encoded tensor product can be described as follows: for any F ,G ∈ Ani(CRMod), let p :=
(p′.p′′), q := (q′.q′′) : K → CRModsfp be the corresponding sifted resolutions (wlog from the same sifted
indexing simplical set); their tensor product is the localization of their sifted realization

F ⊠G := L ◦ |(p′, p′′)⊛ (q′, q′′)| ≃ L ◦ |(p′, p′′)⊠ (q′, q′′)|
where ⊛ denotes the Day convolution with respect to Spc× and the external product (CRModsfp)⊠, while
L : P(CRModsfp)→ Ani(CRMod) is the localization functor of A.2.0.2.

In particular, the closure part yields a ”base-change” adjunction which generalizes 3.2.4.2: for any morphism
of animated rings ϕ : A→ B, there is an adjunction

(−)⊠ diag(ϕ) : Ani(CRMod) −⇀↽− Ani(CRMod) :ϕ∗

Corollary 3.2.5.6. ((pr1, pr2) is symmetric monoidal) Ani(CRing)×ModZ ≃ Ani(Poly× FFree) admits a
closed symmetric monoidal structure via Day convolution of the external product, as in B.4.0.2.

Then, (pr1, pr2) : Ani(CRMod)⊠ →
(︁
Ani(CRing) × ModZ

)︁⊠ ≃ Ani(CRing)⊗ × Mod⊗Z is a symmetric
monoidal functor.

Proof. The animation of an additive category is an additive∞-category, namely finite coproducts in Ani(CRMod)
coincide with finite products. In view of A.1.0.6, this can be checked on CRModsfp. □

We are now ready to define modules over arbitrary animated rings.

Definition 3.2.5.7. (Animated Modules) Let A ∈ Ani(CRing) be an animated ring. Define the ∞-category
ModA of animated modules over A to be the fibre of pr1 : Ani(CRMod)→ Ani(CRing) over A.

Observe that a specialization of the generalized ”base-change” adjunction to ϕ = 1diag(A) supplies for a way
of reproducing the form of morphisms in CRMod.

Corollary 3.2.5.8. (Morphisms of Ani(CRing)) In particular, a morphism F → G in Ani(CRMod) amounts
to a pair (ϕ : A→ B, f) of maps in Ani(CRing) and ModB, respectively.

Proof. We will employ the notation of Appendix B. Let ψ : F → G be a morphism in Ani(CRing) ≃
Ani(CRing)⊠⟨1⟩ as in the statement. Let p := (p′, p′′), q := (q′, q′′) : K → CRModsfp be sifted realizations for

F ≃ |p| and G ≃ |q|, respectively; here | − | := colimsift
K . Then, consider the map

ψ ⊠ 1diag(|q′|) : F ⊠ diag(|q′|)→ G ⊠ diag(|q′|) ≃ G
As observed again in B.4.0.2, by construction we can compute ⊠-tensor-products via resolutions; hence, we
obtain a pair: for B := |q′|,

ψ ⊠ 1diag(B) =
(︁
ϕ : |p′| → |q′| , f : |q′ ⊗q′ p′′| → |q′′|

)︁
where ϕ : A := |p′| → |q′| =: B and f :M := |q′⊗q′p′′| → |q′′| =: N for animated modulesM,N ∈ ModB . □

The co-presheaf of modules MOD.

Lemma 3.2.5.9. (pr1 is bi-cartesian) pr1 : Ani(CRMod) → Ani(CRing) is a bi-cartesian fibration, since
each arrow ϕ : A→ B admits both a cartesian and a cocartesian lift in Ani(CRMod).
Moreover, the class of pr1-cocartesian edges is closed under ⊠-tensor product with objects in Ani(CRMod).
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Proof. We will prove only the cocartesian part, since the other one is analogous. The point being that we
can check such properties after (pr1, pr2).
We need to show that the, for each ϕ : A → B in Ani(CRing), there exists a morphism Φ : F → G in
Ani(CRMod) such that - for each X ∈ Ani(CRMod) - the following square of mapping spaces is (homotopy)
cartesian:

Map(G,X ) Φ∗
→→

pr1

↓↓

Map(F ,X )

pr1

↓↓
Map(B, pr1(X ))

ϕ∗
→→ Map(A, pr1(X ))

Set R := pr1(X ). By [29],3.3.18, a commutative square of spaces is (homotopy) cartesian iff the fibres of
the vertical maps are equivalent. So, taken any ψ ∈ MapAni(CRing)(B,R), let us compare the fibres over
ψ ↦→ ψ ◦ ϕ.
In view of 3.2.3.2, all mapping spaces are isomorphic to co-sifted limits of mapping spaces between diagrams
with values in either CRModsfp or Poly. Up to re-indexing, we can assume that the limits are all over the
same index set; moreover, being the diagonal of a sifted set cofinal, we obtain wlog the co-sifted limit of
a square of mapping spaces between diagrams as above. Now, limits commute with pull-backs, so we can
assume that all the objects in our diagram are indeed either in CRModsfp or Poly.
Then, in any given fibre we can check the property of being cartesian in the image of (pr1, pr2), so as mapping
spaces of Ani(CRing)×ModZ.
This forces pr2(Φ) : B⊗A pr2(G)→ pr2(F) to be an equivalence, and there are plenty of them. (See 3.2.5.17
for a more explicit proof of this last step; the proof applies to our case whenever it involves only modules on
static rings.) As a by-product, we also proved the following interesting result.

Claim. The conservative symmetric monoidal functor (pr1, pr2) : Ani(CRMod) → Ani(CRing) × ModZ
preserves and detects pr1-cocartesian and pr1-cartesian edges over Ani(CRing).

Finally, let’s show that pr1-cocartesian edges are closed under ⊠-tensor product with (the identity of) objects
in Ani(CRMod).
Let f : F → G be pr1-cocartesian in Ani(CRMod) and consider any other X ∈ Ani(CRMod).
Notice that, as a particular case of 3.2.5.6, there is an equivalence at the level of the encoded tensor products:

(pr1, pr2) ◦
(︁
(−)⊠ X

)︁
≃ (pr1, pr2)(−)⊠ (pr1, pr2)(X )

Then, we conclude by the Claim above and the generalized ”base-change” adjunction. □

Proposition 3.2.5.10. (Ani(CRMod) relative symmetric monoidal ∞-category) Consider the closed sym-
metric monoidal structure map p⊠ :

∫︁
Ani(CRMod)⊠ → ∆. Then, it factors through the symmetric monoidal

∞-category Ani(CRing)⨿ → ∆ by a cocartesian fibration pr⊠1 which exhibits Ani(CRMod)⊠ ∈ SymMonAni(CRing)⨿

as a relative symmetric monoidal ∞-category and retrieves pr1 as the underlying cocartesian fibration.

Proof. In view of [5],A.6 and the Lemma above, we are left to exhibit an inner fibration pr⊠1 lifting pr1. Fibre-
wise, define (pr⊠1 )⟨n⟩ ≃ prn1 by the Segal condition. One should prove that this extends to a factorization at
the level of the classifying functors, but we omit the argument, due to time constraints. □

Therefore, by B.5.0.3, there exists a co-presheaf MOD : Ani(CRing)→ SymMon taking values in presentable
closed symmetric monoidal ∞-categories. Its action can be informally described as follows:

� Obj: A ↦→ MOD(A) = Mod⊗A.

Here the symmetric monoidal structure is induced by Ani(CRMod)⊠ and (assuming 3.2.5.14 for now)
it retrieves the one of B.4.0.2; in particular, its encoded tensor product acts as follows: for each
M,M ′ ∈ ModA, one has M ⊗AM ′ = diag(A)∗(M ⊠M ′).

� Mor: (ϕ : A→ B) ↦→ (MOD(ϕ) : (−)⊠ diag(ϕ) : Mod(A)⊗ → Mod⊗B);
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The presheaf of modules Mod.

Now, being pr1 ∈ CoCart(Ani(CRing)) a cocartesian fibration, the Straightening Theorem provides a canon-
ical way of functorially defining all the ”restriction of scalars” functors on the fibres of Ani(CRMod).

Lemma 3.2.5.11. (The presheaf of animated modules) There exists a presheaf on Ani(CRing), say Mod,
with values in presentable pre-stable closed symmetric monoidal ∞-categories. Informally, Mod acts as
follows:

� Obj: Mod : A ↦−→ Mod(A) = ModA ≃ lim(ModR | R/A ∈ (CRing/A)
op)

� Mor: Mod : (ϕ : A → A′) ↦−→ Mod(ϕ) := (ϕ∗ : ModA′ → ModA) which generalizes restriction of
scalars.

Proof. By the Straightening Theorem [24],3.2, pr1 ∈ Cart(Ani(CRing)) is classified via a cartesian square by
a functor Ani(CRing)→ Cat∞; let’s call it Modop :

Ani(CRMod)

Cart∋pr1

↓↓

→→ Cat∞//∗

πuniv

↓↓
Ani(CRing)

Modop
→→ Cat∞

Notice that the restriction of Mod to Polyop acts informally as claimed.

Claim. Mod : Ani(CRing)op → Cat∞ takes colimits in Ani(CRing) to limits of ∞-categories.

Proof. Let p : K → Ani(CRing)op be a diagram of animated rings, and let p denote its limit cocone.
We wish to show that Modp = Mod(lim p) ≃ limMod(p). To this end, consider the following diagram of
cartesian squares:

Modp →→

↓↓

Modp →→

↓↓

Ani(CRMod) →→

pr1

↓↓

Cat∞//∗

πuniv

↓↓
K
↘ ↙ →→ K

p →→ Ani(CRing)op
Mod →→ Cat∞

By [24],3.3.4.2, being p a limit cocone of its restriction p, we have cartesian equivalences

limModp ≃ Mod♮p ⊆ Mod♮p(∞)

where we used the language of marked simplicial sets: for cartesian fibrations f : X♮ → S and g : Y ♮ → S,
X♮ denotes the pair (X,E) with E the set of f -cartesian edges of X, while h : X♮ → Y ♮ is a shorthand for a
morphism of cartesian fibrations h : f → g, i.e. a morphism h : X → Y which takes EX to EY . Moreover, such
a language endows sSet with a simplicial model structure, which we denote by sSet+; therefore, by ’cartesian
equivalence’ we mean a morphism of marked simplicial sets in sSet+ which becomes an isomorphism in
homotopy if we invert all distinguished edges (in this case, those which are cartesian).
Now, by [24],2.4.2.3 the base-change of a cartesian fibration is again cartesian, so we deduce that on the fibres
Modp and Modp(∞) of the bi-cartesian fibration pr1 one can mark as cartesian edges only the equivalences
(see [20],3.1.6 and the proof of 3.2.5.9).
Hence, in our case, the previous cartesian equivalence is indeed an equivalence of ∞-categories, as claimed.
■

Then, by A.3.0.2, Modop is the left Kan extension of its restriction to Poly.

Claim. Mod recovers the classical Grothendieck construction on the 1-skeleton.

Remark. Assume that the action of Modop on morphisms generalizes ”restriction of scalars” for animated
modules over static rings. Then, according to [8],I.1.4, we need to show that Modop acts on the 1-skeleton
as follows:

� Obj: triples (A ∈ Ani(CRing),Modop(A) ∋M);
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� Mor: pairs (ϕ, f) = (ϕ, (ϕ∗)op , f) : (A,ModA ∋ M) → (A′,ModA′ ∋ N) with ϕ : A → A′ in
Ani(CRing) and f :M → ϕ∗N in ModA.

Therefore, fibres in Ani(CRMod) would be described by the values of the classifying functor Modop , and thus
recover pr−1

1 (A) ≃ Mod(A) = ModA over any animated ring A; furthermore, the enhanced Straightening
construction (see [8],I.1.6) would yield pr−1

1 [ϕ : A→ B] ≃ ∪M,NMapModA
(ϕ∗M,N) over morphisms.

In particular, we are finally allowed to regard morphisms in Ani(CRMod) as pairs (ϕ, f) : (A,M)→ (B,N)
s.t. ϕ : A → B in Ani(CRing) and f : M → ϕ∗N in ModA, thus extending the notation for morphisms in
CRMod.

Proof. The factorization of the Yoneda embedding j : Poly ↪−→ CRing ↪−→ Ani(CRing) allows us to regard the
latter as a left Kan extension of Modop|CRing along the second embedding, so that we can describe the action

of its opposite Mod on the 1-skeleton of Ani(CRing)op as follows:

� Obj: For A ∈ Ani(CRing), one has ModA = Mod(A) = lim(ModR | R ∈ CRingopA/) ∈ PrL.

� Mor: For ϕ : A→ A′, one has Mod(ϕ) : ModA′ → ModA, where the latter will turn out to be the limit
of a diagram of restrictions of scalars corresponding to the diagrams of representables over A and A′.

Claim 1. Let ϕ : A→ A′ be a morphism in Ani(CRing). Then, we can enhance the base-change adjunction
for animated modules over static rings to an adjunction (−)⊗LA A

′ : ModA −⇀↽− ModA′ :ϕ∗.

Proof. Let p : CRing/A → Ani(CRing)/A be the diagram of representables over A and let p′ denote the one

over A′. As already seen, if ψ : p → p′ denotes the natural transformation of the two diagrams, the limit
map ψ(∞) is equivalent to ϕ (by 3.2.3.2) and induces ϕ∗ = Mod(ϕ) ≃ limMod(ψ), because the right Kan
extension Mod commutes with limits.
Being categories of animated modules presentable, we want to show that ϕ∗ commutes with limits and is
accessible, so as to apply the II Adjoint Functor Theorem 1.2.0.6 and conclude the existence of a left-adjoint
to it.

Claim 1.1. ϕ∗ : ModA′ → ModA preserves small limits.

Proof. Let us work in the incarnation of quasi-categories; however, let us remark that we need a model
only to devise the existence of a path-object ∆1, the fact that sSet is cartesian closed and the one that ’being
invertible’ is a property of natural transformations which can be checked point-wise.
Let F : I → ModA′ ≃ lim(Mod ◦ p′) be a diagram; under the limit adjunction, the following 1-simplices
correspond to each other:

F ∈ MapCat∞(I, lim(Mod ◦ p′)) ≃ MapFun(CRing/A′ ,Cat∞)(constI ,Mod ◦ p′) ∋ F̂

Then, by the universal property of limits, post-composition by the natural transformation ψ∗ = Mod(ψ) :
Mod ◦ p′ → Mod ◦ p induces

G ∈ MapCat∞(I, lim(Mod ◦ p)) ≃ MapFun(CRing/A,Cat∞)(const(I),Mod ◦ p) ∋ Ĝ

with G ≃ (limMod(ψ)) ◦ F ≃ Mod(ϕ) ◦ F .
Similarly, the well-defined limit functors lim′

I and limI yield:

lim′
I ∈ MapCat∞

(︁
Fun(I,ModA′), lim(Mod ◦ p′)

)︁
≃ MapFun(CRing/A′ ,Cat∞)

(︁
constFun(I,ModA′ ),Mod ◦ p′

)︁
∋ ˆ︃lim′

I

where we can describe informally the action of the latter natural transformation at the object R′
/A′ (see the

proof of [20],5.1.24):ˆ︃lim′
I : const

(︁
Fun(I, limMod ◦ p′)

)︁
−→ Mod ◦ p′ w/ ˆ︃lim′

I(R
′) : F → lim

I
FR′

where FR′ denotes the representative of F in Fun(I,ModR′). Then, an analogous reasoning holds for limI ∈
MapCat∞

(︁
Fun(I,ModA), lim(Mod ◦ p)

)︁
. The following observation will allow us not to distinguish between

limI and lim′
I , which amounts to the claim.
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Consider the following adjoint diagrams. It suffices to show the commutativity of the left-most square, which
would imply in particular limI G ≃ ϕ∗lim′

IF . This in turn corresponds to the fact that the right-most square,
which a priori lives in Cat(∞,2), actually commutes up to homotopy, and hence is indeed in Cat∞.

Fun(I,ModA′)
lim′

I →→

(ϕ∗)∗

↓↓

lim(Mod ◦ p′)

ϕ∗

↓↓

α

←↙
Fun(I,ModA)

limI →→ lim(Mod ◦ p)

const
(︁
Fun(I,ModA′)

)︁
(ϕ∗)∗

↓↓

ˆ︃lim′
I →→ Mod ◦ p′

α̂

←↙
ψ∗

↓↓
const

(︁
Fun(I,ModA)

)︁ ˆ︃limI →→ Mod ◦ p
In other words, we need to show that the possibly non-invertible 2-cell α̂ of natural transformations is an
equivalence. To this end, observe that α̂ can be regarded as a functor

α̂ : CRing/A′ → Fun(∆1 ×∆1,Cat∞)

and hence as a natural transformation ∆1 → Fun
(︁
∆1,Fun(CRing/A′ ,Cat∞)

)︁
, so we are left to check point-

wise that it is an equivalence. In other words, we want the canonical map

α̂(R′/A′) : ψ(R′)∗(lim
I
FR′)→ lim

I
(ψ(R′)∗FR′)

to be invertible, but this holds, because restriction of scalars of static rings commutes with limits. ■

Remark. We actually proved a more general result. In order to ease future referencing let us state it again
as a Lemma.

Lemma 3.2.5.12. (Multi-dimensional limits) Consider a natural transformation ψ : p→ p′ of diagrams in
Fun(I,Cat∞) over any arbitrary indexing category I, and let ϕ := ψ(∞) : p(∞) → p′(∞) denote the vertex
of a limit cocone of ψ.

Consider two diagrams of natural transformations H : Map(K, p(−)) → p and H′ : Map(K, p′(−)) → p′,
together with commutative squares ψ ◦ H ≃ H′ ◦ ψ∗.

Let H, H ′ denote the limit of the two functors over I. Then, also ϕ ◦H ≃ H ′ ◦ ϕ∗.

Claim 1.2. ϕ∗ : ModA′ → ModA preserves filtered colimits.

Proof. Analogous to the previous one: replace limI , ˆ︃limI by colim
−−−−−→I ,

ˆ︂colim
−−−−−→I (and the same with the

prime). Observe that this is indeed the only change, because we never used the universal property of limI or
colim
−−−−−→I until the very last step and again ψ∗ commutes object-wise with filtered colimits. ■

Therefore, we conclude the existence of a left-adjoint to ϕ∗, say F : ModA → ModA′ . In analogy with the
classical setting, call it (−)⊗LA A

′.
To conclude the proof of our claim, we are left to check that also the newly defined extension of scalars
functor is compatible with the base-change adjunctions over static rings. In particular, this will imply that
the ”base-change” adjunction at stake amounts to the closure property of the symmetric monoidal structure
induced by the fibre-wise restriction of Ani(CRMod)⊠.

Claim 1.3. The left adjoint (−)⊗LA A
′ to ϕ∗ is compatible with static restriction of scalar.

Proof. Consider the following diagram, where the square of restrictions of scalars commutes by the
construction.

ModA

ϕ∗
R,A

↓↓

(−⊗L
AA

′)
→→ ModA′

ϕ∗
A,A′

←←

ModR

(−⊗L
RA)

↑↑

(−⊗L
RA

′) →→ ModA′

ϕ∗
R,A′

←←

Since adjunctions compose,

(−⊗LA A
′) ◦ (−⊗LR A) ⊢ ϕ∗R,A ◦ ϕ∗A,A′ ≃ ϕ∗R,A′

But then, the left-adjoint to ϕR,A′ is essentially unique, so that it must hold also (− ⊗LR A
′) ≃ (− ⊗LA A

′) ◦
(−⊗LR A), which is precisely the commutativity of the square of extensions of scalars. ■
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Remark. In particular, the last Claim 1.3 will allow us to use such an adjunction in the proof of 3.2.5.14.

Finally, the construction of a symmetric monoidal structure on ModA and the proof of ModA pre-stable is
postponed. □

Corollary 3.2.5.13. (Restriction of scalars is conservative) Restriction of scalars is conservative.

Proof. By 3.2.4.2, Mod(ϕ) is conservative for any map ϕ : R → R′ of static rings. Now, let ϕ : A → B be
any morphism in Ani(CRing); by 3.2.3.2 we can assume that ϕ colimsift(ψ : p → q) for some natural trans-
formation of sifted realizations A ≃ |p| and B ≃ |q|. So, since Mod(−) preserves limits, and Mod(ψ) induces
point-wise isomorphisms in homotopy, it follows that also Mod(ϕ) does the same, hence it is conservative. □

Let us present an a-posteriori definition of the ∞-category ModA, for A ∈ Ani(CRing), which leverages on
the PΣ-construction and is rather enlightening. This is a translation in our language of the first part of
(3) =⇒ (1) in the proof of Lazard’s Theorem in [23],7.2.2.15.

Lemma 3.2.5.14. (ModA, [23],7.2.2.15) Let A ∈ Ani(CRing), and let FFreeA := A⊗LZ FFreeZ ⊆f.f. ModZ
denote the∞-category spanned by a set of representatives of finitely generated free A-modules. Then, ModA ≃
PΣ(FFreeA).

Proof. By 3.2.5.11, we can consider the base-change adjunction A⊗LZ (−) : ModZ −⇀↽− ModA :ϕ∗.
Since the right-adjoint ϕ∗ is conservative and preserves sifted colimits, and since ModZ is cpt+proj-generated,
by [23],4.7.3.18 we conclude that extension of scalars A⊗LZ (−) preserves and detects cpt+proj’s, i.e. FFreeA ≃
ModsfpA , and that also ModA is cpt+proj-generated.
Thus, being FFreeA essentially small by assumption, we can apply the PΣ-construction to it, and this yields
the whole category ModA. □

Once we have the base-change adjunction for animated modules over arbitrary animated rings, we can apply
B.4.0.2 to infer that the presheaf Mod does indeed take values into SymMonlax. The compatibility of the
various symmetric monoidal structures is a direct consequence of the construction.

Proposition 3.2.5.15. (ModA closed symmetric monoidal) Let A ∈ Ani(CRing). Then, the ∞-category
ModA is closed symmetric monoidal.

Pre-stability.

Then, let us record a stability result of the categories of animated modules over arbitrary animated rings.
We will employ the language of the next section, since this will not imply any circularity.

Proposition 3.2.5.16. (ModA is pre-stable) Consider the fibre ModA of MOD → Ani(CRing) over the
animated ring A. Then, ModA is a connective pre-stable ∞-category.

Proof. By the construction of MOD = Ani(CRMod) as in 3.2.5.2, we have an equivalence of ∞-categories
MOD ≃ SCRModcn, since they both are the animation of the same ordinary category C.
Hence, they have equivalent fibres over Ani(CRing) ≃ CAlg∆, so that ModA ≃ ModcnA◦ , which is pre-stable
with stabilization ModA◦ . □

A technical Lemma.

We close this section with a technical Lemma where we characterize pr1-cocartesian morphisms of MOD over
Ani(CRing).

Lemma 3.2.5.17. (pr1-Cocartesian morphisms in MOD) Consider the cocartesian fibration pr1 : MOD→
Ani(CRing) in Cat∞. A morphism (ϕ, f) in MOD is cocartesian over the map of animated rings ϕ : A→ B
iff, letting v denote the counit of the base-change adjunction induced by ϕ, for each R ∈ CAlg∆B , the map

v ◦ f ⊗L R is an equivalence in ModR.
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Proof. From the very definition, an arrow (ϕ, f) : (A,M) → (B,N) in MOD is pr1-cocartesian iff, for each
(R, Y ) ∈ MOD, the following square of mapping spaces is homotopy cocartesian:

MapMOD

(︁
(B,N), (R, Y )

)︁ (−)◦(ϕ,f) →→

pr1

↓↓

MapMOD

(︁
(A,M), (R, Y )

)︁
pr1

↓↓
MapCAlg∆

(︁
B,R

)︁ (−)◦ϕ →→ MapCAlg∆

(︁
A,R

)︁
Being both functors of mapping spaces Kan fibrations, as in [29],3.3.18 the latter property is equivalent to a
fibre-wise equivalence over ϕ∗. So, let ψ ∈ MapCAlg∆(B,R) and let us compare the fibres over ψ ↦−→ ψ ◦ ϕ

MapModB
(N,ψ∗Y )

ϕ∗
→→

≃
↓↓

MapModA
(ϕ∗N,ϕ∗ψ∗Y )

−◦f →→

≃
↓↓

MapModA
(M, (ψ ◦ ϕ)∗Y )

≃
↓↓

MapModR

(︁
N ⊗LB R, Y

)︁ −◦
(︁
v(N)⊗L

BR
)︁
→→ MapModR

(︁
ϕ∗N ⊗LA R, Y

)︁ −◦
(︁
f⊗L

AR
)︁
→→ MapModR

(︁
M ⊗LA R, Y

)︁
The base-change adjunction for animated modules yields the lower arrows, which acts as precomposition with(︁
v(N) ◦ f

)︁
⊗L R, for v(N) : ϕ∗N ⊗A B → N the counit of (−⊗LA B) ⊢ ϕ∗.

Therefore, we conclude that an arrow (ϕ, f) : (A,M) → (B,N) in MOD is pr1-cocartesian iff the A-linear
morphism f :M → ϕ∗N becomes an equivalence after tensoring with each animated algebra R ∈ CAlg∆B . □

Remark. In order to grasp some more intuition, consider the fibre over a static ring A = A, and let us move
to the setting of simplicial rings and modules. There, we would need to consider the induced map under
(−⊗LAR) ≃ TorA• (−, R) in the derived category D(A). Then, the condition (v ◦f)⊗LAR being an equivalence
would amount to TorA• (v ◦ f,R) being a quasi-isomorphism in D(A). Considering the long exact sequence in
homology, this is equivalent to TorA• (Coker(v ◦ f), R) being quasi-isomorphic to 0, i.e. Coker(v ◦ f), R being
Tor-independent over A.

3.3 Comparison with Spectral Higher Algebra

In this subsection we briefly compare our construction of higher algebra with widely studied one over E∞-ring
spectra.
We will neither attempt an introduction, nor give many definition regarding the latter approach. However,
we will recollect here a couple of relevant comparison statements, as presented by Lurie in both SAG,[26]
and HA,[23].

Definition 3.3.0.1. (Ring and module spectra)

� Let CAlg(Sp) denote the ∞-category of ring spectra (or E∞-rings). Similarly to CRing not being
abelian, also the latter does not come equipped with a canonical t-structure, but we can still consider
its ’connective’ and ’static’ parts by importing the terminology of Sp. Namely, we call ’connective part’
the full subcategory CAlg(Sp)cn spanned by those object with vanishing homotopy in negative degrees;
on the other hand, we call ’heart’ its static part CAlg(Sp)♡ = CAlg(Sp)0.

� For A ∈ Ani(CRing), let A◦ be its underlying E∞-ring (see [26],25.1.2.1). Denote by ModA◦ the
corresponding category of A◦-module spectra. The latter is canonically endowed with a t-structure,
and we write ModcnA◦ for its ’connective part’ and Mod♡A◦ for its ’heart’. Moreover, let us observe that

the equivalence Mod(Sp) ≃ ModZ◦ holds.

� Now, there is a canonical inclusion CAlg∆ ⊆f.f. CAlg(Sp)cn ⊆f.f. CAlg(Sp), (see [26],25.1.2.2), which
allows us to construct the following category of ’module spectra with scalar ring spectrum’:
SCRMod := CAlg∆ ×CAlg(Sp) Mod(Sp).

Objects of SCRMod have the form (A,M) ∈ CAlg(Sp)cn×ModA◦ and we call them connective whenever

M is connective; this defines SCRModcn := CAlg∆ ×CAlg(Sp) Mod(Sp)cn.
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Whenever we are considering algebras over Q, we can also prove the essential surjectivity of the canonical
inclusion CAlg∆ ⊆f.f. CAlg(Sp)cn, so that we have the following comparison maps.

Lemma 3.3.0.2. (Comparisons) The following comparison equivalences hold:

� (Ring spectra, [26],25.1.2): In the rational setting, i.e. for A ∈ CAlg∆Q , CAlg(Sp)cnA◦ ≃ CAlg∆A and

CAlg(Sp)♡ ≃ CRing.

� (Module spectra, [26],25.2.1.2): ModcnA◦ ≃ ModA and Mod(Sp)♡ ≃ Ab.

� (Module spectra with scalar ring spectra, [26],25.2.1.2): SCRModcn ≃ MOD ≃ Ani(CRMod) and
SCRMod♡ ≃ CRMod.

Remark. The expository choice is aiming at clarity and compactness of statements, but does not reflect the
logical order of comparison. Indeed, one first notices that the two∞-categories at stake have the same static
part; this yields a canonical inclusion of the ’animated’ object into the ’spectral’ one, and they are left to
check its essential surjectivity. We stress on the fact that the last step is precisely when the assumption of
rationality comes into play.

Moreover, let us briefly sketch the idea behind the proof. The last point follows from the fact that both
∞-categories arise as the animation of C (see [26],25.2.1.2 and 3.2.5.2), and this will a posteriori induce also
the identifications of module categories, which can be regarded as fibres of MOD over CAlg∆ (see 3.2.5.1).
In particular, the various fibres of MOD over CAlg∆ are equivalent to the corresponding pre-stable categories
of connective module spectra. So, their stabilization will recover the whole corresponding stable categories
of module spectra.

Finally, we observe that the symmetric monoidal structure of any ∞-category of animated modules ModA is
precisely the one on the corresponding ModcnA◦ , which is in turn preserved by the stabilization (see [26],C.1).

3.4 Flatness

In this section, we review the prominent notion of flatness for animated modules, and hence algebras. As in
the classical setting, restriction along flat morphisms will define flat morphisms of (derived) affine schemes.
The author is indebted to Prof. Marc Hoyois for having offered him introductory lectures to the subject;
more details can be found in Lurie’s ’Higher Algebra’ section [23],7.2.2.

Notation. For the sake of clarity, we will denote ⊗L by ⊗; this highlights the fact that the former endows
the ∞-categories at stake with a symmetric monoidal structure, so our notation is not misleading.

We will have to work in the stabilization ModEx
A of our∞-categories of animated modules. Therefore, we will

start by stating (without proof) a useful although technical Lemma in which pre-stable ∞-categories - such
as ModA - are defined, and their relation with their stabilization - here ModEx

A - is provided. In order to avoid

confusion with the standard literature, let us recall from the previous section that, whenever A ∈ CAlg∆Q , in

our notation one can identify ModEx
A ≃ ModA◦ and ModA ≃ ModcnA◦ .

Lemma 3.4.0.1. (Pre-stable ∞-category) Let C be a pre-stable ∞-category, namely a pointed ∞-category
which embeds fully faithfully in its stabilization CEx and whose essential image is closed under finite colimits
and extensions (see [26],C.1.2.3). Then, a cartesian square in C of a surjection (on π0) is also cocartesian
when regarded in CEx ([26],C.1.1.2.c). On the other hand, any cocartesian square in C is also cartesian both
in C and in CEx ([26],C.1.2.6).

Proposition 3.4.0.2. (Flatness) Let A ∈ Ani(CRing). An animated A-module M ∈ ModA is flat whenever
one of the following equivalent conditions hold:

1. (Homological flatness): the functor of animated A-modules M ⊗A (−) : ModA → ModA is (left-)exact;

2. (Preserving static objects): M ⊗A (−) preserves static objects;
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3. (Preserving n-truncated objects): M ⊗A (−) preserves n-truncated objects, hence it commutes with the
n-th truncation functor;

4. (Fibre-wise flatness, [23],7.2.2.10): The following conditions on the homotopy groups of A and M hold:

� π0M is an (ordinary) flat π0A-module;

� for each i ∈ Z, the counit of 3.2.4.2 induces an isomorphism πiA⊗π0A π0M → πiM of (ordinary)
π0A-modules.

Proof. (2) ⇐⇒ (3) : One implication is clear, so let us show that for M ⊗A (−) preserving static objects
implies preserving the n-truncated ones. Let us argue by induction on n ≥ 0. The induction starts by
hypotheses, so let us assume that M ⊗A (−) preserves (n− 1)-truncated objects for n ≥ 1.
ModA is presentable, so we can consider the Postnikov tower of any n-truncated N ∈ ModA. Furthermore,
they converge, meaning that their transition morphisms are again suitable restrictions of truncations. (See
A.5.0.5.)
The fibre of the n-th transition morphism sits in the following cartesian square:

N →→ τ≤n−1N

πnN [n]

↑↑

→→ 0

↑↑

Since ModA ⊆f.f. ModEx
A embeds fully faithfully in its stabilization, by the technical Lemma 3.4.0.1 our

square is also cocartesian in the bigger category. Now, M ⊗A (−) preserves colimits, hence in particular
push-outs and suspension, so that we obtain the following cocartesian square:

M ⊗A N →→ M ⊗A τ≤n−1N

(︁
M ⊗A πnN

)︁
[n]

↑↑

→→ 0

↑↑

By the induction premise and our assumption (2), M ⊗A τ≤n−1N and M ⊗A πnN must be still (n− 1)- and
0-truncated respectively. In particular, the n-th suspension of the latter must be n-truncated.
Furthermore, the new square (in ModEx

A ) is also cartesian by the technical Lemma 3.4.0.1; therefore, the
induced long exact sequence in homotopy shows that M ⊗A N is n-truncated, as required.
Finally, we need to show that M ⊗A (−) commutes with the n-th truncation functor τ≤n. To this end, notice
that - for any n-truncated animated A-module N , so on the essential image of τ≤n - the properties of the
t-structure on ModA yield a cofibre-sequence

τ≥n(M ⊗A (N))→M ⊗A τ≤n(N)→ τ≤n(M ⊗A (N))

Then, by assumption and the previous part the first term vanishes, so that we obtain the sought equivalence
between the last two by inspecting the associated long exact sequence in homotopy. ■

(3) =⇒ (4) : Consider the bicartesian (see the technical Lemma 3.4.0.1) square in ModEx
A associated to the

fibre of the n-th transition map in the Postnikov tower of the copy of A ∈ ModA:

τ≤nA →→ τ≤n−1A

πnA[n]

↑↑

→→ 0

↑↑

As before, tensoring by M yields the cocartesian square with fiber the n-suspension of the static - by (3) -
A-module M ⊗A πnA:
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M ⊗A τ≤nA →→ M ⊗A τ≤n−1A

(︁
M ⊗A πnA

)︁
[n]

↑↑

→→ 0

↑↑

Being it static and since π0 symmetric monoidal, M ⊗A πnA ≃ π0
(︁
M ⊗A πnA

)︁
≃ π0M ⊗π0A πnA.

But now, by (3) the functor M ⊗A (−) commutes with the n-th truncation functor, so the latter cocartesian
square becomes

τ≤nM →→ τ≤n−1M

(︁
π0M ⊗π0A πnA

)︁
[n]

↑↑

→→ 0

↑↑

Again by the technical Lemma 3.4.0.1, our cocartesian square in ModA is also cartesian. So, it exhibits
(π0M ⊗π0A πnA

)︁
[n] as the fibre of the n-th transition morphism in the Postnikov tower of M . But the latter

fibre is πnM [n] and therefore the canonical comparison map in (4) must be an equivalence, as needed. ■

(4) =⇒ (2) : We can regard any static A-module N as lying under some animated module, i.e. N ∼= π0N .

Claim. wlog N = π0A.

Proof. M ⊗A N ≃ M ⊗A π0N ≃ M ⊗A (π0A⊗π0A π0N). Now, assume that M ⊗A (−) preserves the static
part of the animated base-ring, i.e. that

M ⊗A π0A ≃ π0(M ⊗A π0A) ∼= π0M ⊗π0A π0A
∼= π0M

Then, we can conclude that

M ⊗A N ≃ (π0M ⊗π0A π0A)⊗π0A π0N
∼= π0M ⊗π0A π0N

∼= π0(M ⊗A N)
which is static, as desired. ■

Finally, let’s prove the statement for N = A the base ring, namely, that M ⊗A π0A ≃ π0(M ⊗A π0A) ≃ π0M .

Consider the Tor-spectral sequence of [22],4.1.14: Ep,q2 : Torπ∗A
p (π∗M,π∗(π0A))q =⇒ πp+q(M ⊗A π0A).

Being π0A static, it degenerates at the second page and gives the sought isomorphisms in homotopy. □

Remark. This means that, in each degree i, we are requiring the canonical maps π0R→ π0M and πiR→ πiM
to sit in a cocartesian square, i.e. to have equivalent cofibers. This generalizes the classical intuition of flatness
as being a condition on (relative) affine schemes which implies fibres to ’vary continuously’ over the base.

Remark. Clearly, for a (connective) animated ring A ∈ Ani(CRing), all flat A-modules in ModEx
A are again

connective, and hence all already contained in ModA.
Moreover, if R ≃ π0R is static, then we recover the classical condition: M ∈ ModR is flat iff M ≃ π0M is
static and π0M is R-flat.

An important special case of the notion of flatness is the following.

Definition 3.4.0.3. (Faithful flatness) A map of animated rings f : A → B in Ani(CRing) is said to be
faithfully flat if the extension of scalars functor B⊗LA (−) : ModA → ModB is both exact and conservative.

Remark. Since π0 : ModB → Mod(π0B) is conservative on flat modules, a faithfully flat map ϕ : A → B
induces a faithfully flat map of static rings π0ϕ : π0A→ π0B on connected components.

Let us record for future reference an immediate although fundamental property of flatness: it is preserved
under extension of scalars.

Lemma 3.4.0.4. (Flatness is stable under extension of scalars) Let ϕ : A → B be any morphism in
Ani(CRing) and consider a flat animated module M ∈ ModA. Then, also its extension of scalars B ⊗AM ∈
ModB is flat.

38



Proof. Consider the functor (M ⊗A B)⊗B (−). For each N ∈ ModB , it holds M ⊗A B ⊗B N ≃M ⊗A ϕ∗N ;
but now the right-adjoint ϕ∗ (see 3.2.5.11) preserves truncation properties and M is A-flat, so M ⊗AB⊗BN
is static whenever N is such. We conclude by 3.4.0.2. □

As in the classical setting, we can define an analogous homological notion of projectiveness. Indeed, we call
projective A-modules, the objects of Proj(ModA). We observe that this is in agreement with [23],7.2.2.4,
because in our notation ModA ≃ ModcnA◦ consists only of connective A-modules.

Lemma 3.4.0.5. ([23],7.2.2.7, [23],7.2.2.14) Let A ∈ Ani(CRing) and let FlatA ⊆f.f. ModA denote the full
subcategory spanned by flat A-modules. Then,

� FlatA is closed under finite coproducts, retracts and filtered colimits.

� Projective A-modules are precisely the retracts of free A-modules.

� FreeA ⊆f.f. Proj(ModA) ⊆f.f. FlatA.

Proof. (1): The tensoring functor (−)⊗LAM preserves colimits in each variable.

(2), (3): [23],7.2.2.6 enhances the classical homological descriptions of projectives; this allows us to prove
both (2) and (3) in the classical way. □

The following result is an example of the enhancement, operated by flatness, of static algebraic properties to
higher homotopical degrees.

Proposition 3.4.0.6. (Flatness enhances projectiveness, [23],7.2.2.18) Let A ∈ Ani(CRing) be an animated
ring. Then, a flat A-module M ∈ FlatA is projective (resp. free) iff π0M is a projective (resp. free) π0A-
module.

Proof. (2) : Recall that the left-adjoint π0 preserves retracts and direct sums, so if an A-module M is
projective (resp. free), also its static part is such. Let’s prove the converse implication.

Claim. For M ∈ FlatA, if π0M is π0A-free, then also M is A-free.

Proof. Let X be a basis for the free static module module π0M , namely ϕ : ⊕x∈X(π0A)x ∼= π0M . Then,
multiplication by x ∈ π0M induces maps

{ϕx : π0A→ π0M : x ∈ X} ∈ HomMod(π0A)(π0A, π0M)

and hence maps {Φx : A → M : x ∈ X}, since π0 : ModA → Mod(π0A) is surjective on connected
components. These in turn canonically assemble into Φ : ⊕XAx → M . The latter map of flat A-modules
induces an equivalence after the conservative functor π0, so that it must be an equivalence itself, as desired.

Claim. For M ∈ FlatA, if π0M is π0A-projective, then also M is A-projective.

Proof. Being π0M a π0A-projective module, there exists some free module F0 ∈ Mod(π0A) s.t. F0
∼=

π0M ⊕G0. Up to replacing F0 by F
(ω)
0 , by Eilenberg’s trick we can assume also G0 to be free.

As before, we can find a lift for the projection p : F0 ↠ π0M , namely there exists some free A-module F
with π0F ∼= F0 together with a map g : F →M s.t. π0(g) = p.

We wish to show that G := Fib(g) is a free A-module. Being its static part π0G ∼= ker(p : F0 ↠ π0M) ≃ G0

a π0A-free module, by the first part it suffices to prove that G be A-flat via 3.4.0.2,iv. In other words, we
are left to prove that for each n > 0 there is an isomorphism πnG ∼= πnA⊗π0A π0G.
To this end, fix n > 0 and consider the following commutative diagram of static π0A-modules:

0 →→ πnA⊗π0A π0G →→

ϕ′

↓↓

πnA⊗π0A π0F ”p”
→→

∼= ϕ

↓↓

πnA⊗π0A π0M →→

∼= ϕ′′

↓↓

0

0 →→ πnG →→ πnF
πn(g) →→ M →→ 0
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By the flatness of F and M , the two vertical arrows ϕ and ϕ′′ are isomorphisms, so, provided the exactness
of the two rows, the Snake Lemma would imply that also ϕ is an isomorphism, as desired. Then, let’s take
care of the exactness part.
First of all observe that homotopy groups commute with fibres, so both the bottom sequence and the top
one before tensoring by πnA are exact both on the left and in the middle.
The exactness on the right of both sequences is a consequence of the flatness of F and M : being ϕ, ϕ′′

isomorphisms, the two arrows ”p” := πnA ⊗π0A π0(g) and πn(g) are isomorphic; then, being πnA ⊗π0A (−)
right-exact, p : π0F ↠ π0M induces the needed surjections.
Moreover, again by the flatness of π0M and F0, an inspection of the Tor long exact sequence yields the
exactness on the left of both rows.

Therefore, we established that G = Fib(g) is a free A-module. Consider again the fibre sequence in ModEx
A

G = Fib(g)
γ
↪→ F

g
↠M

We wish to show that the sequence splits, namely that G be a direct summand of F : being ModEx
A stable,

this will allow us to identify M ≃ Cofib(γ) with the other summand.
Our last claim amounts to proving that G is a direct summand of F in the homotopy category hoModA, i.e.
that γ admits a retraction, say ν : F → G s.t. ν ◦ γ is homotopic to the identity 1G.
Let’s construct such a retraction ν by the usual lifting procedure. π0M is projective, so π0G ∼= G0 ⊆ F0

∼= π0F
splits, say via some retraction ν0 : π0F ↠ π0G. Being F free, ν0 lifts to some map ν : F → G. Then, the
composite ν ◦ γ : G→ G induces the identity on connected components, i.e. π0(ν ◦ γ) ∼= 1π0G. Finally, being
π0 conservative on flat modules, ν ◦ γ must have been already an equivalence. So, it admits a quasi-inverse
and hence there is a homotopy ν ◦ γ ∼ 1G. This shows that ν is a retraction of γ in the homotopy category,
as needed. □

We close this section with Lurie’s enhancement of the celebrated Theorem of Lazard. We will only sketch the
proof, so as to give an idea of how the reviewed tools come into play, but we will omit all the technicalities
relative to spectral sequences.

Theorem 3.4.0.7. (Lazard’s Theorem, [26],7.2.2.15) Let A ∈ Ani(CRing) and M ∈ ModA be both connec-
tive. tfae:

1. M is flat.

2. M ≃ colim
−−−−−→

(︁
Ani | ni < ∞ , i ∈ I

)︁
admits a presentation as a filtered colimit of finitely generated free

A-modules.

3. M ≃ colim
−−−−−→

(︁
P i | P i ∈ Proj(ModA) , i ∈ I

)︁
admits a presentation as a filtered colimit of projective

A-modules.

Proof. (Sketch) (2) =⇒ (3): Clear. (3) =⇒ (1): This is the previous Lemma. Let’s sketch (1) =⇒ (3).
Our aim is to reduce the problem to the classical Lazard’s Theorem.
Let A ∈ Ani(CRing). By 3.2.5.14, we have ModA ≃ PΣ(FFreeA).
Thus, by [24],5.1.5.5 such an equivalences is the left Kan extension along the Yoneda embedding of its
restriction to FFreeA. Unwinding the definitions, this means that each M ∈ ModA admits a presentation as
the colimit of a diagram p : FFreeA/M ≃ FFreeA ×ModA

(ModA)/M → ModA.
We are left to show that FFreeA/M is actually filtered whenever M is flat over A. In other words, we wish
any of its finite sub-diagrams to have a colimit cone extension. This statement is implied by the following
two properties of FFreeA/M :

� (Extending finite diagrams) For each {Xi}ni=1 ⊆ FFreeA/M , there exists a module FFreeA/M together
with morphisms (Xi → X)i.

This is clear, since FFreeA is stable under finite coproducts.
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� (Refinement to a colimit cone) Given any modules X, Y ∈ FFreeA/M , integer n ≥ 0, and mor-
phism Sn → MapModA/M (X,Y ) ∈ H = hoSpc, there exists a map Y → Z in FFreeA/M s.t.

Sn → MapModA/M (X,Z) is null-homotopic.

The proof of the latter statement is both technical and involved, and thus omitted. In particular, we
observe that this is precisely where ne applies the classical version of Lazard’s Theorem.

Then, given any finite sub-diagram q : J → FFreeA/M , by the first property we can extend it to a cone and by
the second one we can choose an initial extension: let X :=

∐︁
J q(j) extend q|J ; we claim that X ≃ colim q|J .

Let us argue by contradiction: assume that there exists some Y ∈ FFreeA/M for which some homotopy
group, say the m-th, of MapModA/M (X,Y ) is non-trivial. By the second property, there exists a map Y → Z

which kills that homotopy group, so s.t. πmMapModA/M (X,Z) ≃ 0. But now, we assumed X ≃
∐︁
J p(j), so

that we conclude that each πmMapModA/M (p(j), Z) ≃ 0, so that also πmMapModA/M (p(j), Y ) ≃ 0, which
yields a contradiction. □

3.4.1 Example: Localization of Animated Rings and Modules

In this subsection we will discuss the construction of localization of animated rings and modules, as presented
in [22],4.1.18 and [13],2.7. Lurie’s approach generalizes the equivalence between the two most useful definitions
of classical localization: by means of a universal property and via a co-base-change along the canonical map
Z[x]→ Z[x, x−1].
We will prove the equivalence by an adaptation of the argument given by J. Hekking in [13],2.7.2.
For the sake of clarity, we work only in the category Ani(CRing), however let us observe that it is straightfor-
ward to reformulate all the statements and proofs mutatis mutandis in any other slice CAlg∆R of R-algebras.

Let us begin by introducing the notion of the space of units of an animated ring.

Definition 3.4.1.1. (Space of units, [13],2.7) For any animated ring A ∈ Ani(CRing) define its space of
units by A× := MapAni(CRing)(Z[t±1], A).

The next lemma shows that the notation is not misleading, in that A× turns out to be the full subspace of
forA spanned by π0A

× ∼= (π0A)
× ≤ π0A as abelian groups. The proof is an adaptation of the first paragraph

of [13],2.7, of [22],4.1.19 and of the last part of [22],4.1.18. Moreover, the author is indebted to Prof. Marc
Hoyois, who suggested the second part of the argument.

Lemma 3.4.1.2. ([13],2.7) The canonical comparison morphism A× → forA induced by pre-composition
with the localization map Z→ Z[t±1] is a monomorphism in Spc.

Proof. Recall that π0A ∈ CRing by 3.2.1.4. We will show that π0(A
×) ∼= (π0A)

× and πn(A
×) ∼= πnA for each

n > 0. Then, by looking at the long exact sequence in homotopy, this will allow us to conclude that the fibres
of the canonical map A× → forA are either empty or contractible, i.e. that such a map is a monomorphism.
We will start with a computation.

Claim 1. ([22],4.1.19) As static animated rings, Z[x±1] ≃ Z[x, y]⊗LZ[t] Z
Proof. More precisely, we need to show that the following commutative square in Ani(CRing) is cocartesian.

Z[t]
t ↦→1

→→

t ↦→xy

↓↓

Z

↓↓
Z[x, y]

y ↦→x−1

→→ Z[x, x−1]

The static part of the square is a push-out, i.e. Z[x, y]⊗Z[t] Z ∼= Z[x±1] in CRing, so we are left to show that
the derived tensor product is indeed static.
Since the co-angle consists of static animated rings, for each n ≥ 0 the following isomorphism of abelian
groups holds:

πn(Z[x, y]⊗LZ[t] Z) ∼= TorZ[t]n (Z,Z[x, y])
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and we are done if we observe that the right-hand side vanishes whenever n > 0.
Indeed, xy ∈ Z[x, y] is not a zero-divisor, so consider the long exact sequence induced by applying TorZ[t]• (Z,−)
to the following short exact sequence:

0 −→ Z[t] −→ Z[x, y] −→ Z[x, y]/Z[t] ∼= Z[x]⊕ Z[y] −→ 0

Then, the result follows by recalling that TorZ[t]n (Z,Z[t](k)) ≃ 0 whenever n > 0. ■

Now, consider the fibre-square obtained by applying MapZ/(−, A) to the cocartesian square above and re-
calling that m : A(Z[x, y]) ≃ A× A → A ≃ A(Z[t]) and e : A(Z) ≃ ∗ → A define the multiplication and the
unit of A, respectively (see 3.2.1.4 for more details on the topological algebra structure on A). It exhibits
A× ≃ Fibe(m : A×A→ A):

A× →→

↓↓

⋆

e

↓↓
A×A m →→ A

So, inspection of the induced long exact sequence in homotopy pointed by e:

πn(A
×, e) −→ πn(A×A, (e, e)) ∼= πn(A, e)× πn(A, e)

m−→ πn(A, e)

induces isomorphisms π0(A
×, e) ≃ π0(A, e)× and πn(A

×, e) ≃ πn(A, e), since πn(A, e)× ∼= ker(πn(m)).
Finally, observe that the isomorphisms of homotopy groups above do not depend on the chosen base-point.
Indeed, this is always the case when we are dealing with topological groups and the space A× inherits a
group-structure from A, namely the one induced under Map(−, A) by the co-multiplication Z→ Z[x, x−1] of
the square above.

□

We are now ready to characterize localizations of animated rings by using Z[x]→ Z[x±1] as a prototype. The
proof is an adaptation of [22],4.1.18.

Proposition 3.4.1.3. (Universal property of localizations, [22],4.1.18) Consider a morphism f : A→ B in
Ani(CRing) together with an element a ∈ π0A ∈ CRing s.t. f(a) ∈ (π0B)× is invertible. Then, tfae:

1. ([UP : loc]) For each R ∈ Ani(CRing), there is an equivalence of spaces f∗ : MapAni(CRing)(B,R)
≃→

Map′(A,R), where Map′(A,R) ⊆f.f. MapAni(CRing)(A,R) is the full subspace spanned by those maps

h : A→ R s.t. h(a) ∈ (π0R)
×;

2. For each n ≥ 0, there is an isomorphism πnA⊗π0A (π0A)[a
−1]

∼=→ πnB in Ab.

Equivalently, π0B ∼= (π0A)[a
−1] and B is flat on A (see 3.4.0.2).

In particular for each pair (A, a ∈ π0A) as before, there exists some B ∈ Ani(CRing) together with a map
f : A → B satisfying both the conditions above. Call such a candidate B the localization of A at a and
write B = A[a−1].
This is well-defined up to contractible ambiguity, since the universal property [UP : loc] implies that any two
maps satisfying (1) ⇐⇒ (2) must be equivalent.

Proof. Let us start by proving the existence of localizations.

Claim (∃). Given any animated ring A ∈ Ani(CRing) together with a connected component a ∈ π0A, there
exists some animated ring B together with some map f : A→ B in Ani(CRing) which satisfies both (1) and
(2). Denote them by A[a−1] and ϕ : A→ A[a−1].

Proof. Evaluation at the variable x induces an identification of static rings in CRing:

evx : HomCRing(Z[x], π0A)
∼=−→ π0A = π0MapAni(CRing)(Z[x], A)

(â : Z[x]→ π0A) ↦−→ [a : Z[x]→ A]

so that we can think the connected component a ∈ π0A as obtained by an assignment â : x ↦→ a.
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Define B := A⊗LZ[x] Z[x
±1] and f : A→ B by forming the following co-cartesian diagram in Ani(CRing):

Z[x] a →→

↓↓

A

f

↓↓
Z[x, x−1] →→ B

(1) : Then, let us verify that f satisfies the first property, i.e. that, for each R ∈ Ani(CRing), pre-composition
by f induces an equivalence Map(B,R)→ Map′(A,R) in Spc.
To this end, consider the following diagram, in which the first square - hence the outer rectangle - is cartesian
by construction:

Map(B,R) →→

f∗

↓↓

Map(Z[x±1], R)

↓↓

R×
↙ ↖

↓↓
Map(A,R)

a∗ →→ Map(Z[x], R) forR

Moreover, the rightmost vertical map is a monomorphism by the previous Lemma 3.4.1.2, so that f∗ turns
out to be a monomorphism as well.
Let Map′(A,R) ⊆f.f. Map(A,R) denote the essential image of f∗, and observe that the canonical map
Map(B,R)→ Map′(A,R) is an equivalence, so that we have the following cartesian square.

Map′(A,R)↙ ↖

↓↓

→→ R×
↙ ↖

↓↓
Map(A,R)

a∗ →→ forR

Now, by the construction Map′(A,R) ≃ Map(B,R) is spanned by some arrows h : A → R s.t. h(a) =
a∗(h) ∈ R× is invertible. So, we are left to show that each such map h : A→ R s.t. h(a) ∈ R∗ is a point in
Map′(A,R).
But this is implied by the universal property of pull-backs: any such map h amounts to a pair of arrows
(h, h(a)) : ∆0 → Map(A,R)×R× extending the angle, so that h factors through Map′(A,R).

(2) : Let us now check also the second property, namely that f is flat and that π0B ≃ (π0A)[a
−1].

For what concerns flatness, recall that, by 4.1.4.7, such a property is stable under extension of scalars, so it
is implied by the flatness of Z[x]→ Z[x±1].
As for the static part, instead, we argue as follows: π0 is a left-adjoint (see A.5.0.7), hence it commutes with
the push-out of animated rings (given by ⊗L): π0B ≃ π0A⊗Z[x]Z[x, x−1] = (π0A)[a

−1], since by construction
â : Z[x]→ π0A acts as x ↦→ a by evaluation at x. ■

(1) =⇒ (2) : Let it be given a map f : A→ B and an element a ∈ π0A s.t. f(a) ∈ B×.
Let ϕ : A→ A[a−1] be as in the Claim. Then, let us prove that (A[a−1], ϕ) ≃ (B, f), so that (B, f) is forced
to satisfy also (2).
This is the usual verification that universal property define objects up to contractible ambiguity.
Notice first that (B, f) extends the angle Z[x±1] ← Z[x] → A with push-out (A[a−1], ϕ), so there is a

canonical comparison map f̂ : A[a−1] → B. Hence, pre-composition by f , ϕ, f̂ induces a commutative
triangle of representable functors:

Map(B,−)
f̂
∗

→→

f∗

→→

Map(A[a−1],−)
←↑

ϕ∗
←←

Map(A,−)

Now, as we showed in the Claim, the point-wise essential image of ϕ∗ is Map′(A,R), so let Map′(A,−) :
Ani(CRing) → Spc denote EssIm(ϕ∗) ∈ P(Ani(CRing)op) and choose a factorization for ϕ∗ with respect to
the factorization system (EffEpi,Mono) on the (large) topos P(Ani(CRing)op) (see [24],5.2.8.16):
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ϕ∗ : Map(A[a−1])
α−→ Map′(A,−)

β
↪→ Map(A,−)

Then, we are left to show that α ◦ f∗ : Map(B,−) → Map′(A,−) is an equivalence. By [20],2.2.2 it suffices
to prove this point-wise for each R ∈ Ani(CRing), which holds by assumption.

(2) =⇒ (1) : Let f : A→ B be a morphism in Ani(CRing) and pick up any a ∈ π0A such that f(a) ∈ B×.
For a given R ∈ Ani(CRing), define Map′(A,R) := Map(A,R)×forRR

× to be the full subspace of Map(A,R)
spanned by those maps h : A→ R such that h(a) = a∗(h) ∈ R×.
Similarly, form also the pull-back Map′(B,R) := Map(B,R) ×forR R′, namely as the full subspace of
Map(B,R) spanned by those maps h : B → R such that h(fa) ∈ R×.
Consider the following diagram; by the universal property of pull-backs, the restriction of f∗ to Map′(B,R)
gives a comparison map Map′(B,R)→ Map′(A,R):

Map′(B,R)↙ ↖

↓↓

→→→→ Map′(A,R) →→
↙ ↖

↓↓

R×
↙ ↖

↓↓
Map(B,R)

f∗
→→ Map(A,R)

a∗ →→ forR

Let us record a useful observation: the pair (B, 1B) satisfies condition (1), since by (2) it holds that
B[f(a)−1] ≃ B.
This implies in particular that the inclusion Map′(B,R) ⊆f.f. Map(B,R) is actually an equivalence.
Moreover, the previous observation amounts to the fact that the following diagram commutes and consists
of cocartesian squares:

Z[x] a →→

↓↓

A
f →→

f

↓↓

B

Z[x±1] →→ B B

as a consequence, fop is a monomorphism in Ani(CRing)op , so that f∗ is a monomorphism as well. This,
means that there is an equivalence Map(B,R) ≃ EssIm(f∗), and the latter can be identified with Map′(B,R).
Therefore, we are left to show that the restriction of f∗ induces an equivalence of spaces Map′(B,R) ≃
Map′(A,R); being the latter a monomorphism, it suffices to prove that it is surjective on π0 (so that its fibres
are all contractible).
To this end, consider again the previous rectangle of cocartesian squares. A point in Map′(A,R) is equivalent
to a map h : A→ R s.t. h(a) = a∗(h) ∈ R×, namely to a map h extending the co-angle Z[x±1]← Z[x]→ A.
By the universal property of push-outs, h factors through f : B → A, and hence through B[f(a)−1] by
considering the rightmost square. Thus, the factorization

h : A
f−→ B

∃g−→ R

yields some point g ∈ Map′(B,R), i.e. such that g(fa) ∈ R×, lying over h ∈ Map′(A,R). This proves the
surjectivity on π0 and hence the statement. □

Let us include also the proof provided by Lurie in [22],4.1.18. Many ideas are the same, although in a
different order. However, we choose to present both proofs because here we make a heavy use of the spectral
sequence in [23],7.2.2.13, which somehow hides the universal property of localizations behind an extensive
use of flatness. Namely, the latter property will allow us to reduce questions about the existence of certain
factorizations to the static case, where they can be addressed by means of the universal property of static
localizations.
In the latter sense, the following proof is an instance of the meta-principle asserting that flatness ”animates”
properties of static objects to higher homotopical degree.
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Proof. ([22],4.1.18) (2) =⇒ (1) : Notice first that fop in Ani(CRing)op is a monomorphism.
Indeed, consider the cokernel pair (g, g′) of f in Ani(CRing), namely the following cocartesian square of
animated rings:

A
f →→

f

↓↓

B

g′

↓↓
B

g →→ B′

For the flat map f : A→ B, [22],4.1.14 gives a spectral sequence

Ep,q2 : Torπ∗A
p (π∗B, π∗B)q =⇒ πp+qB

′

which degenerates at the second page and amounts to the following isomorphisms of abelian groups as in
[23],7.2.2.13 (in the second page, only the vertical axis is non-trivial):

Tor
π0A
0 (π0B, πnB)

∼=−→ πn(B
′)

In other words, for each n ≥ 0, we have the sought isomorphisms in Ab:

πnB
′ ∼= πnB ⊗π0A π0B

∼=(2) πnA⊗π0A (π0A)[a
−1]⊗π0A (π0A)[a

−1] ∼= πnA⊗π0A (π0A)[a
−1] ∼=(2) πnB

Thus, both g, g′ : B → B′ are equivalences, i.e. the cofibres of f are either empty or contractible.
Therefore, pre-composition with f induces a monomorphism (i.e. a fully faithful functor) of mapping spaces
f∗ : MapAni(CRing)(B,R) ↪→ MapAni(CRing)(A,R) for each R ∈ Ani(CRing). Let Map′(A,R) denote its
essential image.
Since f(a) ∈ (π0B)× is invertible by assumption, Map′(A,R) must be spanned by some maps h : A → R
which carry a to an invertible h(a) ∈ (π0R)

×. We are left to show that our space contains all such maps, i.e.
that each map h : A→ R s.t. h(a) ∈ (π0R)

× factors through f .

To this end, form the aside push-out of f and g and let’s check that the induced
map f ′ is an equivalence by showing that it induces isomorphisms in homotopy.
Being f flat by (2), the spectral sequence from [22],4.1.14 again degenerates at
the second page, so that one obtains the following chain of isomorphisms in Ab:

A
g →→

f

↓↓

R

f ′

↓↓
B →→ R′

πnR
′ ∼= Tor

π0A
0 (π0B, πnR) ∼= πnR⊗π0A π0B

∼=(2) πnR⊗π0A (π0A)[a
−1] ∼= πnR

where the last isomorphisms comes from the fact that h(a) is already invertible in the graded commutative
ring π∗R.

Claim. Given any animated ring A ∈ Ani(CRing) together with a connected component a ∈ π0A, there exists
some animated ring B together with some map f : A→ B in Ani(CRing) which satisfies both (1) and (2).

Proof. Evaluation at the variable x induces an identification of static rings in CRing:

evx : HomCRing(Z[x], π0A)
∼=−→ π0A = π0MapAni(CRing)(Z[x], A)

(â : Z[x]→ π0A) ↦−→ [a : Z[x]→ A]

so that we can think the connected component a ∈ π0A as obtained by an assignment â : x ↦→ a.
Define B := A⊗LZ[x] Z[x, x

−1] and f : A→ B by forming the following co-cartesian diagram in Ani(CRing):

Z[x] a →→

↓↓

A

f

↓↓
Z[x, x−1] →→ B

Then, let us verify that f satisfies the second property. To this end, let us distinguish two cases:

� n = 0 : π0 is a left-adjoint, hence it commutes with the push-out of animated rings (given by ⊗L):
π0B ≃ π0A ⊗Z[x] Z[x, x−1] = (π0A)[a

−1], since by construction â : Z[x] → π0A acts as x ↦→ a by
evaluation at x.
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� n > 0 : Z[x, x−1] is Z[x]-flat, so again the spectral sequence of [22],4.1.14 degenerates at the second
page, where only the vertical axis is non-trivial. Hence, we obtain isomorphisms in Ab for each n ≥ 0:

πnB ∼= Tor
Z[x]
0 (πnA,Z[x, x−1]) ∼= πnA⊗Z[x] Z[x, x−1]

Now, by 3.2.1.4, we have an isomorphism πnA ∼= πnA⊗π0A π0A, so that we can continue the chain by

πnA⊗Z[x] Z[x, x−1] ∼= (πnA⊗π0A π0A)⊗Z[x] Z[x, x−1] ∼= πnA⊗π0A (π0A)[a
−1]

Finally, recall that we already proved (2) =⇒ (1). ■

(2) =⇒ (2) : Let f : A → B satisfy (1); by the Claim there is some map f ′ : A → B which satisfies both
(1) and (2). In particular, both f and f ′ satisfy the universal property of localizations, so that they must be
equivalent in Ani(CRing), which implies that f must satisfy (2) as well. □

As a corollary, we observe that localizations are well-behaved under change of base-ring.

Corollary 3.4.1.4. (Base-change of localizations, [22],4.1.20) With reference to the previous notation, for
the following commutative square in Ani(CRing)

A
f →→

g

↓↓

A[a−1]

↓↓
A′ f ′

→→ B′

tfae:

1. f ′ exhibits B′ ≃ A′[g(a)−1] as the localization of A′ at g(a);

2. the square above is co-cartesian, i.e. B′ ≃ A[a−1]⊗LA A
′.

Proof. Consider the following commutative diagram. The depicted equivalences are given by the previous
two characterizations of localizations. Then, the equivalence of the two statements is established as follows:
(1) holds iff the dotted arrow exists and is an equivalence; and (2) amounts to the top horizontal arrow being
an equivalence.

Map(A[a−1], R)×Map(A,R) Map(A′, R)
(2)

→→

f∗≃
↓↓

Map(B′, R)

(f ′)∗

↓↓
(1)

←←
Map′(A,R)×Map(A,R) Map(A′, R)

≃ →→ Map′(A′, R) ↘
↙ f.f. →→ Map(A′, R)

□

Moreover, let us record a generalization of the previous definition to the case of modules.

Definition 3.4.1.5. (Localization of modules) For an animated ring A ∈ Ani(CRing), let M ∈ ModA be an
A-module. Define the localization of M at a ∈ π0A by M [x−1] :=M ⊗LA A[x−1].

Remark. By the previous Corollary, localization of modules is compatible with the extension of scalars
adjunction of 3.2.5.11.

3.5 (Homotopy) Quotient Rings

In this section, we will develop the algebraic formalism supplying for a local description of ”quasi-smooth
closed immersions”. We aim at generalizing the notion of a ”regular sequence” in a ”homotopy-coherent
way”.
We refer to the subsection on ”Regular Immersions” for a comparison with the classical terminology. As
it is to be expected, the homological viewpoint admits more fruitful generalizations to the ∞-world, and in
particular when dealing with dag. One reason can be the fact that, in general, the Factor Theorem for rings
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does not generalize to the ∞-world, so that ring quotients are not well-behaved, e.g. closed immersions need
not be monomorphisms.
Therefore, we will enhance the notion of Koszul regularity. More pictorially, as commented by Khan and
Rydh in [17],2.2, the basic idea here is to regard the Koszul complex KoszA(f1, . . . , fn) as the ”ring of
functions” on a ”quasi-smooth” (derived) subscheme of Spec(A). Let us define more precisely our ”rings of
functions” and explore the connection with Koszul complexes.
On this streamline, we will see in the section ”Quasi-Smooth Closed Immersions” that, in some sense, the
notion of ”quotient rings” works as a ”system of coordinates” for a scheme. Noteworthy is how the good-
behaviour of the latter will be controlled by the cotangent complex / sheaf, so an algebraic object.

For future reference, let us give a name to maps arising by the following useful observation.

Definition 3.5.0.1. (Coordinate maps) Let A ∈ Ani(CRing) be an animated ring, and consider a sequence
(f1, . . . , fn) ⊆ π0A of connected components. Under the identification

ev (f1,...,fn) : HomhoAni(CRing)(Z[ti]ni=1, A)
∼=−→ π0MapAni(CRing)(Z[ti]ni=1, A) = (π0A)

n ∼=−→ HomCRing(Z[ti]ni=1, π0A)

[ti ↦→ fi] ↦−→ (f1, . . . , fn) ↦−→ (ti ↦→ fi)

the sequence (f1, . . . , fn) corresponds to an essentially unique choice of a map Z[t1, . . . , tn]→ A.
Call coordinate maps any such lift (ti ↦→ fi) : Z[t1, . . . , tn] → A which recovers the sequence (f1, . . . , fn)
at the level of connected components. Write simply the tuple (f1, . . . , fn) for short.

Remark. In particular, the very definition of an animated ring A ∈ Ani(CRing) ≃ Fun×(Poly,Spc) implies
that Map(Z[t1, . . . , tn], A) ≃ forAn: at the level of objects, then, evaluation at the n-tuple of indeterminates
characterizes maps Z[t1, . . . , tn]→ A by n-tuples of coordinate maps (whence the terminology).

Definition 3.5.0.2. (Quotient ring, [17],2.3.1) Let A ∈ Ani(CRing) be an animated ring, and consider a
sequence (f1, . . . , fn) ⊆ π0A of connected components. Define the quotient of A by (f1, . . . , fn) as the
base-change:

A � (f1, . . . , fn) := A⊗LZ[t1,...,tn] Z[t1, . . . , tn]/(t1, . . . , tn)
of a choice of coordinate maps t1, . . . , tn ↦→ f1, . . . , fn (see 3.5.0.1) along the canonical quotient Z[t1, . . . , tn]→
Z[t1, . . . , tn]/(t1, . . . , tn) ≃ Z:

Z[t1, . . . , tn] →→

t1,...,tn ↦→f1,...,fn

↓↓

Z[t1, . . . , tn]/(t1, . . . , tn)

↓↓
A →→ A � (f1, . . . , fn)

Remark. More geometrically, Spec(A � (f1, . . . , fn)) ≃ Spec(A) ×An {0} ∈ Sch (see 4.3.2.6), which will
correspond to a ”homotopy coherent” choice of a ”local frame” of coordinate functions (f1, . . . , fn) together
with an origin 0 ∈ Spec(A).

Lemma 3.5.0.3. (Properties of quotient rings, [17],2.3.1-2-3) Let A ∈ Ani(CRing) be an animated ring,
and consider a coordinate maps (f1, . . . , fn) (see 3.5.0.1). Then, the quotient A � (f1, . . . , fn) satisfies the
following properties:

1. π0(A � (f1, . . . , fn)) ≃ π0(A)/(f1, . . . , fn);

2. ([A/∗] quotient ∗-torsor in ModA): Forgetting the A-algebra structure via 3.7.1.2 yields the underlying
A-module:

A � (f1, . . . , fn) ≃ ⊗LCofib(fi : A→ A) ∈ ModA

3. (Compatibility with ordinary regular quotients): If A := R ∈ CRing is a static ring, then the canonical
map R � (f1, . . . , fn)→ R/(f1, . . . , fn) retrieves the classical quotient iff (f1, . . . , fn) ⊆ R is regular.
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Proof. (1) : It is clear, because the left-adjoint 0-truncation functor π0 (see A.5.0.7) preserves push-outs of
animated rings.

(2) : One could prove the statement directly in the model of simplicial rings and modules: take a sifted reso-
lution of A by Z[t1, . . . , tn]-polynomial algebras, forget the algebra structure (for which commutes with sifted
colimits by the adjunction 3.7.1.2, because ModZ[ti]ni=1

is cpt+proj-generated and Sym∗ preserves cpt+proj’s)
and reducing - via the Dold-Kan correspondence [23],1.2.4.1 - to the properties of Koszul complexes, as in
2.1.0.3,iii. Notice that the connected components of the coordinate maps [ti ↦→ fi] arise functorially from the
Z[t1, . . . , tn]-algebra structure of the diagram resolving A.

However, it is instructive to argue by induction on the length of the sequence (f1, . . . , fn). The induction
starts establishing an equivalences of A-modules between for(A � (f)) and the quotient of A by the group-
action induced by the multiplication map f : A→ A.

Start. A � (f) ≃ Cofib(f : A→ A) ∈ ModA.

Proof. Define the multiplication map f := (·f) : A → A by the base-change A → A ⊗LZ[t] Z[t] ≃ A of

multiplication by t. Since ⊗LZ[t] is co-continuous separately in each variable and Cofib(t : Z[t] → Z[t]) ≃
Z[t]/(t) in ModZ[t], we conclude that also Cofib(f : A → A) ≃ A ⊗LZ[t] Cofib(t : Z[t] → Z[t]) ≃ A � (f) in
ModA. ■

Induction Step. Let (f1, . . . , fn) ⊆ A be a n-sequence of coordinate maps, and suppose that the A-module
lying under the (n−1)-quotient is A�(f1, . . . , fn−1) ≃ ⊗Li≤n−1Cofib(fi : A→ A). Then, also A�(f1, . . . , fn) ≃
⊗Li Cofib(fi : A→ A) in ModA.

Proof. The following pasting of cocartesian diagrams in Ani(CRing) proves that ”passing to quotients” is an
associative operation:

Z[tn] →→

∼=

↓↓

Z[tn]
(tn)

∼=

↓↓(︃
Z[t1,...,tn−1]
(t1,...,tn−1)

)︃
[tn] →→

∼=
↓↓

(︃
Z[t1,...,tn−1]
(t1,...,tn−1)

)︃
Z[tn]
[tn]

∼=
↓↓

Z[tn][t1, . . . , tn] →→

(ti ↦→fi)

↓↓

Z[tn][t1,...,tn−1]
(t1,...,tn−1)

→→

(tn ↦→fn)

↓↓

Z[t1,...,tn]
(t1,...,tn)

↓↓
A →→ A � (f1, . . . , fn−1) →→ A � (f1, . . . , fn)

where the bottom left square is cocartesian, because we can compute the push-out of the coangle by pre-
composition as in the following pasting of cocartesian squares in Ani(CRing):

Z[t1, . . . , tn−1] →→

(ti ↦→fi)

↘↘

↓↓

Z[t1,...,tn−1]
(t1,...,tn−1)

↓↓
Z[t1, . . . , tn]

↓↓

→→ Z[t1,...,tn]
(t1,...,tn−1)

↓↓
A →→ PO

Finally, we conclude by inspection of the bottom row in the big diagram: A�(f1, . . . , fn) ≃
(︁
A�(f1, . . . , fn−1)

)︁
�

(fn), so by forgetting the A-algebra structure and by applying both the induction premise and start, one
obtains that:
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for
(︁
A � (f1, . . . , fn)

)︁
≃

(︁
Cofib(fn : A � (f1, . . . , fn−1) −→ A � (f1, . . . , fn−1))

)︁
≃ for

(︁
A � (f1, . . . , fn−1)

)︁
⊗LA Cofib(fn : A→ A)

≃ ⊗Li Cofib(fi : A→ A)

since we recall once more that ⊗LA is co-continuous separately in each variable. ■

(3) : For a static ring R ∈ CRing we have a chain of equivalences of graded rings:

π∗
(︁
R � (f1, . . . , fn)

)︁
= π∗

(︁
R⊗LZ[t1,...,tn] Z[t1, . . . , tn]/(t1, . . . , tn)

)︁
∼=(i) Tor

Z[t1,...,tn]
∗

(︁
R,Z[t1, . . . , tn]/(t1, . . . , tn)

)︁
≃(ii) H∗

(︁
KoszR(f1, . . . , fn)

)︁
∼=(iii) R/(f1, . . . , fn)

where the stated equivalences are obtained as follows: (i) : since all rings are static; (ii) : 2.1.0.3,iii, (iii) :
2.1.0.3,i. □

Example 3.5.0.4. (Non-regular quotients need not be static) For a static ring R ∈ CRing, R � (0) ∈
Ani(CRing) has underlying chain complex given by the square-zero extension R⊕R[1] (with zero differential).
In particular, even such a simple example gives a non-static animated ring, since π0(R�(0)) ∼= R ∼= π1(R�(0)).
Indeed, π∗(R � (0)) ∼= H∗KoszR(0) ∼= H∗(0 : R→ R).
In more geometric terms: being surjective on connected components, the map Spec(R � (0)) ↛ Spec(R) is a
closed immersion, but it is not a monomorphism: it is the identity at the level of underlying classical schemes,
but carries homotopical information, namely the identification with the origin expressing the ”triviality” of
the coordinate function 0 (see 3.5.0.5).

The next Lemma gives some more mathematical content to the notion of ”triviality” of coordinate maps.

Lemma 3.5.0.5. (Universal property of quotients, [17],2.3.5) Let A ∈ Ani(CRing) be an animated ring and
consider a sequence f1, . . . , fn ∈ A. Then, for each (ϕ : A→ B) ∈ CAlg∆A there is an equivalence of spaces:

MapCAlg∆
A

(︁
A � (f1, . . . , fn), B

)︁
≃

n∏︂
i=1

MapforB(f
′
i , 0)

where f ′i := ϕ(fi). In other words, for any A-algebra ϕ : A → B, there is a natural equivalence between
the space of A-algebra morphisms A � (f1, . . . , fn) → B and that one of paths {f ′i := ϕ(fi) ≃ 0}ni=1 in the
underlying space forB.

Proof. Let B ∈ CAlg∆A be an animated A-algebra; then, the very definition yields an equivalence in Spc:

MapCAlg∆
A

(︁
A � (f1, . . . , fn), B

)︁
≃ MapCAlg∆

A
(A,B)×Map(Z[t1,...,tn],B) MapAni(CRing)

(︁
Z, B

)︁
≃(i) PathMap(Z[t1,...,tn],B)

(︁
(f ′1, . . . , f

′
n), (0, . . . , 0)

)︁
≃(ii) PathforBn

(︁
(f ′1, . . . , f

′
n), (0, . . . , 0)

)︁
≃(iii)

n∏︂
i=1

PathforB(f
′
i , 0)

where the stated equivalences can be deduced as follows:

� (i) : for an A-algebra B, both mapping spaces Map(A,B) and Map(Z, B) are contractible and spanned
by the structure maps, so that the angle corresponds to an identifications of the choices of coordinate
maps:

(f ′1, . . . , f
′
n) : ∗ ≃ B(A)→ Map(Z[t1, . . . , tn], B)← B(Z) ≃ ∗ : (0, . . . , 0)

� (ii) : From the very definitions: forBn ≃ Map(Z[x], B)n ≃ Map(Z[t1, . . . , tn], B);
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� (iii) : for is a right-adjoint (see 3.7.1.2), and pull-backs commute with products. □

For future reference, let us also include a useful computation. Morally, one should be able to generalize it,
so as to show that quotients behave similarly to ordinary successive quotients by principal ideals. However,
the author has no full proof of it, as of yet.

Lemma 3.5.0.6. (Quotient by principal ideals, [17],3.1.5) Consider an animated ring A ∈ Ani(CRing) and
let f ∈ A be a coordinate map (see 3.5.0.1). Then, for each g ∈ A, there is a canonical equivalence

MapforA�(f)(g, 0) ≃ Fibg(f : A→ A)

where Fibg(f : A→ A) is the space of pairs (a, α : fa ≃ g) in A.

Proof. By 3.5.0.3,ii, at the level of underlying A-modules A � (f) ≃ Cofib(f : A→ A) in ModA.
As in 3.4.0.1, cofibre sequences in a pre-stable category (such as ModA) are exact, so that we obtain equiva-
lences - at the level of underlying spaces - between the horizontal fibres in the following cartesian square:

forA
f →→

↓↓

forA

↓↓
{0} →→ for(A � (f))

In particular, for any g ∈ A whose image in the quotient vanishes (i.e. is homotopy to 0), this gives the
sought equivalence Fibg(f : forA→ forA) ≃ PathA�(f)(g, 0) ≃ Mapfor(A�(f))(g, 0). □

Remark. Consider A-algebra map ϕ : A → A � (f) and let g := ϕ(f); the universal property of quotients
3.5.0.5 induces an equivalence

MapCAlg∆
A
(A � (f) , A � (f)) ≃ MapforA�(f)(g, 0) ≃ Fibg(f : A→ A)

which identifies the space of endomorphisms of A � (f) with the space of pairs (a, α : fa ≃ g) in A.

3.6 Locally free modules

In this section we expand on the notion of ”finitely generated projective” animated modules, for which we
privilege the terminology ”being locally free of finite rank”. Translated into the language of dag, this will
allow us to develop the theory of the Picard group of a (derived) scheme.
We will begin by a quick review of (almost) perfect animated modules as presented in [23],7.4.2 and then
move to the bulk of the work, for which our main reference is [26],2.9.
For the sake of readability, we will have to freely adopt the language of stable ∞-categories. We refer the
unexperienced reader to e.g. [21].

3.6.1 (Almost) Perfect Modules

In this subsection we introduce the notion of (almost) perfect animated modules. This is meant as a trans-
lation into our language of the classical theory of perfect modules over a static ring. The latter has been
widely studied, since it forms the subcategory of compact objects in the derived category of the given ring.
Such a perspective also motivates the choices we make in our exposition.
Intuition can be developed thanks to Lurie’s observation right below [23],7.4.2.7: for A ∈ Ani(CRing) an
A-module is perfect if it can be built from finitely many copies of A by means of shifts, extensions and
retractions.
However, to quote again Lurie, such a notion is too rigid for many practical applications, so that we will
consider a weakening of it, thus allowing infinitely many copies of A as ”elementary bricks”. This will give
rise to the class of almost perfect A-modules.

Definition 3.6.1.1. (Perfect module, [23],7.4.2.1-2) For an animated ring A ∈ Ani(CRing), an A-module
M ∈ ModA is called perfect iff it is a compact object in ModA. Let Perf(A) := (ModA)

fp denote the full
subcategory spanned by perfect A-modules.
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Lemma 3.6.1.2. (ModA is compactly generated, [23],7.2.4.2) For an animated ring A ∈ Ani(CRing), the
category ModA is compactly-generated, namely ModA ≃ Ind(Perf(A)).

Proof. Unwinding the definitions, we need to show that Ind(Perf(A)) ≃ ModA. To this end, we will apply
the Ind-versions of A.3.0.2 and A.4.0.3, namely [24],5.3.5.10 and [24],5.3.5.11. Namely, the inclusion of the
cpt-objects Perf(A) ⊆f.f. ModA admits a left-derived functor F : Ind(Perf(A)) → ModA, since the target
category has filtered colimits (ModA is presentable). And the latter is an equivalence iff its restriction to the
Yoneda embedding is fully faithful and has compact and lim-dense essential image in the target ModA. The
first two conditions are satisfied by assumption, so we are left to prove that F is essentially surjective.
Recall that ModA ≃ PΣ(FFreeA), so by A.3.0.1 we can express each M ∈ ModA as the geometric realization
of a simplicial A-module which is degree-wise a coproduct of copies of cpt+proj’s in ModA, i.e. a coproduct
of copies of A.
Thus, since A ∈ FFreeA ≃ ModsfpA ⊆f.f. Perf(A), we are done if we show that the essential image of F is

closed under sifted colimits in ModA. But this holds (as in A.3.0.2) since the inclusion Perf(A) ⊆ ModA is
right-exact, i.e. it preserves all finite colimits in Perf(A). □

Proposition 3.6.1.3. (Properties of Perf(A), [23],7.4.2.5) Let A ∈ Ani(CRing) be an animated ring. Then,
the following properties hold

1. Perf(A) is the smallest pre-stable (see 3.4.0.1) full subcategory of ModA which contains A and is closed
under retracts.

2. For any M ∈ Perf(A), πkM ∈ Mod(π0A) is finitely presented provided that πmM ∼= 0 for each m < k.

Proof. (1) : ModfpA is idempotent complete by a similar argument to A.4.0.5,ii and clearly A ∈ ModfpA .

Moreover, notice that also the (pre)stability properties of Perf(A) and ModA agree: by 3.6.1.2, the Yoneda
embedding Perf(A) ⊆f.f. Ind(PerfA) ≃ ModA allows us to compute limits and colimits into ModA and, by

inspecting the corresponding long exact homotopy sequences, ModfpA admits the (co)fibre sequences which
exist in ModA.
Finally, let us observe that FFreeA constitutes a set of compact generators of ModA (see the Examples in

Appendix A: the free-adjunction carries a set FinSet of generators for Setfp to a set of generators FFreeA
for ModfpA ), so we conclude again by a similar argument to A.4.0.5,ii and bt the closure properties of stable
∞-categories. ■

(2) : Notice first that we can assume wlog k = 0. Indeed, by assumption there exists some N ∈ ModA s.t.
M ≃ ΣkN is a k-suspension of M ; then, the adjunction Σ ⊢ Ω yields πk(M) ≃ π0(ΩkM) ≃ π0(N).
Now, observe that in the truncation adjunction (see A.5.0.7):

π0 = τ≤0 : ModA −⇀↽− Mod(π0A) :⊆
ModA is compactly generated (by 3.6.1.2) and the right-adjoint preserves filtered colimits, so that the left
one must preserve compact objects (and the two conditions on the adjuncts are actually equivalent, same
proof as in the first part of 3.2.2.3, Claim 4).
Thus, since Mod(π0A)

fp is the full subcategory of static π0A-modules spanned by those that are finitely
presented, we conclude that π0(M) ∈ Mod(π0A)

fp must be finitely presented, as wished. ■ □

As already mentioned, being perfect is a very strong condition: over a static ring R ∈ CRing, a module
M ∈ ModR is perfect iff its Postnikov tower exhibits a bounded resolution of π0M by finitely generated free
modules; hence, it forces π0M to be strongly finitely presented of finite homological dimension, and in general
- i.e. unless the base ring R be regular - the latter notion is much stronger than being just finitely generated.
For such a reason, we will now present a weakening of the latter, thus allowing perfect modules to have also
unbounded resolutions by finitely many copies of R. To this end, let us introduce the notion of an almost
compact object in a compactly-generated ∞-category.

Definition 3.6.1.4. (Almost compact, [23],7.2.4.8) Let C ∈ Cat∞ be a compactly-generated ∞-category.
We say that an object x ∈ C is almost compact iff, for each n ≥ 0, its n-truncation τ≤nx is compact in
(ModA)≤n.
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Remark. Unless C consists only of truncated objects, ”almost compactness” is a priori weaker than ”com-
pactness”, because the commutativity with filtered limits is tested only against diagrams of (arbitrarily)
truncated objects. In particular, all ”compact” objects are also ”almost compact”.

Definition 3.6.1.5. (Almost perfect, [23],7.2.4.10) Let A ∈ Ani(CRing). An A-module M ∈ ModA is said
almost perfect iff it is an almost compact A-module.
Let APerf(A) ⊆f.f. ModA denote the full subcategory spanned by almost perfect A-modules.

Proposition 3.6.1.6. (Properties of APerf, [23],7.2.4.11) Let A ∈ Ani(CRing) be an animated ring. Then,

1. APerf(A) ⊆f.f. ModA is a pre-stable full subcategory closed under retracts and the formation (in ModA)
of the geometric realizations of its simplicial objects in sAPerf(A).

2. Perf(A) ⊆f.f. APerf(A).

3. Every almost perfect A-module can be obtained as the geometric realization of a degree-wise finite free
simplicial A-module X• ∈ sModA, i.e. such that Xn ≃ A

(n) for each n ≥ 0.

Proof. (1) : We will only prove that APerf(A) is closed under geometric realizations in ModA of its simplicial
objects.
Being ModA cpt-generated (by 3.6.1.2), the left-adjunct τ≤n preserves compact objects, because the inclusion
(ModA)≤n ⊆f.f. ModA preserves filtered colimits. So, we are left to check that Perf(A) is closed under
geometric realizations (in ModA) of its simplicial objects; but this holds, since the right-exactness of the
inclusion Perf(A) ⊆f.f. ModA implies the cocontinuity of its left-derived functor Ind(Perf(A)) ↪→ ModA.

(3) : It is a non-trivial consequence of the Dold-Kan correspondence [23],1.2.4.1; the proof is omitted. □

Similarly to A.4.0.5, the previous Proposition allows us to characterize APerf(A) as follows.

Proposition 3.6.1.7. (Universal property APerf(A), [23],7.2.4.12) Let A ∈ Ani(CRing) be an animated
ring. For each ∞-category D ∈ Cat∞ admitting geometric realizations of its simplicial objects, the inclusion
FFreeA ⊆f.f. APerf(A) induces an equivalence

FunΣ(APerf(A),D) ≃ Fun(FFreeA,D)
where FunΣ(APerf(A),D) ⊆f.f. Fun(APerf(A),D) denotes the full subcategory spanned by those functors
which preserve geometric realizations of simplicial almost perfect modules.
In other words, APerf(A) is the free completion of FFreeA under geometric realizations (in ModA) of sim-
plicial objects in FFreeA.

Proof. The proof is an application of A.3.0.1. Let C ⊆f.f. P(FFreeA) be the smallest full subcategory
containing the essential image of the Yoneda embedding j : FFreeA ↪→ P(FFreeA) and being closed under
geometric realizations (in P(FFreeA), and hence in ModA by A.2.0.2) of sFFreeA. Call again j : FFreeA ↪→ C
the (factorization of the) Yoneda embedding. Then, for each D ∈ Cat∞ admitting geometric realizations,
restriction along j induces an equivalence (by A.3.0.1)

FunΣ(C,D)
≃−→ Fun(FFreeA,D)

In particular, the inclusion FFreeA ⊆f.f. APerf(A) extends to a fully faithful (by [24],5.3.5.11,i) functor
F : C ↪→ APerf(A), and we are left to prove that the latter is an equivalence.
By an application of [24],5.3.5.11,ii, this amounts to proving the essential surjectivity of F , which is the
content of 3.6.1.6,iii. □

Warning. The reader should beware that (almost) perfect modules are complicated. In particular, as
commented by Lurie right below [23],7.2.4.12, in general the t-structure on ModA does not descend to one
on APerf(A), and we cannot expect to recover the nerve of the 1-category of finitely presented π0A-modules
as the heart of APerf(A) via π0 : APerf(A) → Mod(π0A). This happens, however when the base animated
ring A is left-coherent, see [23],7.2.4.19.
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An interesting question to be addressed is the interplay between (almost) perfectness and flatness. Indeed,
flatness lifts properties of static modules to higher homotopical degrees, so it will allow us to bridge the gap
between compactness and its weakened version.

Proposition 3.6.1.8. (Proj = Flat ∩ APerf, [23],7.2.4.20) For an animated ring A ∈ Ani(CRing) and an
A-module M , tfae:

� M is finitely generated and projective, i.e. it is a retract of a finite free A-module.

� M is flat and almost perfect.

Proof. (1) =⇒ (2) : This is clear, because Perf(A) is closed under retracts. (2) =⇒ (1) : Let M ∈
APerf(A) ∩ Flat(A). Then, for each n ≥ 0 it holds τ≤nM ∈ Perf(A)≤n; choose some n and notice that a
truncated version of 3.6.1.3,ii implies that π0M = π0(τ≤nM) is a finitely presented flat π0A-module, hence
projective. Then, by 3.4.0.6 also M is A-projective.
In order to prove the finiteness of M , we will employ the usual lifting argument of 3.4.0.6. Indeed, by the
above there exists some finite free π0A-module F0 together with a splitting projection p : F0 ↠ π0M ; this
is in turn induced by some map g : F ↠ M in ModA with F finite A-free and π0(g) = p. Then, being M
projective the latter must split as well, so that M is indeed a retract of a finite free A-module. □

Remark. In particular, a flat and almost perfect module is a fortiori perfect.

In order to turn to a more geometric approach, we wish to study also stability results for almost perfect
modules.

Proposition 3.6.1.9. (APerf is stable under base-change, [26],2.7.3.1) Almost perfectness is stable under
base-change. In other words, for any map f : A → B in Ani(CRing) and almost perfect module M ∈
APerf(A), also B ⊗LAM is almost B-perfect.
Moreover, base-change along faithfully flat maps detects almost perfectness.

Proof. We will prove only the first part, which is a straightforward consequence of 3.6.1.6,iii: choose a
degree-wise finite free simplicial A-module X• ∈ sModA s.t. M ≃ |X•| and tensor by B:

B ⊗LAM ≃ B ⊗LA |X•| ≃ |B ⊗LA X•|
which remains degree-wise finite B-free, since ⊗LA preserves colimits separately in each variable. □

Let us briefly recall the definition of the fpqc site on SchAff (see 4.1.2.4): it is the Grothendieck topology
(see C.3.0.2) ”generated” by finite families of jointly surjective (so, such that the map from the coproduct
is an effective epimorphism) flat morphisms of affine schemes; here to ”generate” means taking the closure
under base-change along open immersions of affine schemes.

Translated into the language of algebra, covering families for the spectrum of some A ∈ Ani(CRing) for
the fpqc site on SchAff correspond to finite families of flat A-algebra maps {ϕi : A → Ai}ni=1 such that the
canonical map ϕ : A→

∏︁n
i=1Ai is faithfully flat (see the characterization in 4.1.4.5).

Let us observe that an affine Zariski cover (see 4.1.3.2) is also a fpqc-covering. So, locality of almost perfectness
with respect to affine Zariski cover will be a consequence of fpqc-locality.

Proposition 3.6.1.10. (APerf is local) Almost perfectness is local for the fpqc sites on SchAff , and hence
also with respect to affine Zariski covers (see 4.1.3.2).
More explicitly, let it be given the datum of finitely many flat maps of animated rings ϕi : A→ Ai such that
the canonical map ϕ : A↠

∏︁
iAi is faithfully flat.

For any M ∈ ModA, if M ⊗LA Ai ∈ APerf(Ai) for each i = 1, . . . , n, then M ∈ APerf(A).

Proof. By the converse of 3.6.1.9, it suffices to show that M ⊗LA (
∏︁
iAi) is almost (

∏︁
iAi)-perfect. This will

be achieved in two steps.
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Claim. ([26],2.7.0.8) Call M :=
∏︁n
i=1M i, A :=

∏︁n
i=1Ai. Then, M i ∈ APerf(Ai) for each i iff M ∈

APerf(A).

Proof. Unwinding the definition, our assumption is that, for each n ≥ 0, τ≤nM i ∈ (ModAi
)fp≤n is compact,

and we need to show that the same holds for the truncations of M ∈ ModA. Hence, we need to show that
M is A-compact iff each M i is Ai-compact.
This is implied by the following observations. First of all notice that ModA ≃

∏︁
iModAi

, because the
presheaf of modules Mod : Ani(CRing)→ Cat∞ is a right Kan extension (see 3.2.5.11); hence, in particular
mapping space functors are component-wise: MapModA

≃
∏︁
iMapModAi

in Fun(Tw(ModA),Spc). Moreover,

also filtered diagrams in ModA are obtained as finite products of diagrams in the various ModAi
’s, because

for each filtered indexing ∞-category I, Fun(I,ModA) ≃
∏︁
i Fun(I,ModAi

)
Finally, in ModA the commutativity with filtered diagrams of mapping spaces from compact objects can
be checked component-wise: as already observed, filtered diagrams in ModA are finite products of filtered
diagrams in the various ModAi

, filtered colimits commute with finite products and mapping spaces are
continuous in the covariant argument. ■

Claim. M ⊗LA (−) : ModA → ModA commutes with finite products.

Proof. We will prove that finite products in ModA coincide with finite coproducts: this will allow us to
conclude by the fact that M ⊗LA (−) preserves colimits separately in each variable.
Fix some m ≥ 0, and consider the m-ary product and coproduct functors. Being they left-derived functors,
it suffices to check their equivalence on FFreeA.
Let p : K → Poly/A be a sifted simplicial diagram of finite polynomial algebras over A, whose geometric

realization gives |p| ≃ A. Observe that the functor for : CAlg∆A → ModA forgetting the A-algebra structure

preserves sifted colimits: ModA is cpt+proj-generated and its left-adjoint LSym∗
A : ModA → CAlg∆A (see

3.7.1.2) preserves cpt+proj’s (it is an explicit computation, see the proof of 3.2.2.3). Thus, for ◦ p : K →
(ModZ)/A is a sifted simplicial diagram in ModZ consisting of static Z-modules and with geometric realization
|for ◦ p| ≃ forA.
Since finite products commute with sifted colimits (a), we have the following chain of equivalences:

(forA)×m ≃ |for ◦ p|×m ≃(a) |(for ◦ p)×m| ≃(b) |
∐︂
m

(for ◦ p)| ≃
∐︂
m

|for ◦ p| ≃
∐︂
m

forA

where (b) follows from the fact that (co)limits in functor categories are computed object-wise and that finite
coproduct and finite product in the abelian 1-category Mod(Z) are isomorphic. ■ □

3.6.2 Locally Free Modules of Finite Rank

In this subsection we specialize the previous digression to finitely generated projective modules, which we
call ”locally free of finite rank”, thus turning to a more geometric approach.

Definition 3.6.2.1. (Locally free of finite rank, [26],2.9.1.1) For A ∈ Ani(CRing) an animated ring and an
animated A-module M ∈ ModA, tfae:

1. M is locally free of finite rank (fg-loc.free);

2. M is finitely generated and projective, i.e. it is a direct summand of a finite A-free module;

3. M is fg-loc.free iff it is A-flat and almost A-perfect (see 3.6.1.8);

4. M is a dualizable object for the symmetric monoidal structure Mod⊗A (see [26],2.9.1.5).

Being locally free of finite rank is stable under base-change and is local, so that it will serve well for geometric
purposes.

Proposition 3.6.2.2. (fg-loc.free is local and stable under base-change, [26],2.9.1.4) The property of ”being
fg-loc.free” is stable under base-change and Zar-local (i.e. it can be checked on an affine Zariski cover as in
4.1.3.2).
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Proof. It suffices to show that both flatness and the property of being almost perfect enjoys the stated
stability. As for the stability under base-change, these amount to propositions 3.4.0.4 for flatness and 3.6.1.9
for almost perfectness.
For what concerns the Zariski stability, instead, we postpone the proof to the more geometric sections of the
essay: see 4.1.4.6 and 3.6.1.10. □

In what follows, we will consider mostly locally free modules which have uniform rank on some affine Zariski
cover of the base ring (see 4.1.3.2).

Definition 3.6.2.3. (n-loc.free, [26],2.9.2.1) Let A ∈ Ani(CRing) be an animated ring. We say that an
A-module M ∈ ModA is locally free of rank n (n-loc.free) (≥ 0) iff

� M is locally free of finite rank;

� M has a well-defined rank, uniformly on points, i.e. for each field K ∈ CAlg∆A , π0(K ⊗LAM) ≃ Kn in
VectK .

Remark. ([26],2.9.2.2) In the second condition, we can wlog restrict to those geometric points at algebraically
closed fields.
Indeed, if M has rank n at K, then it has such rank also at any algebraic field extension K[x]/(λ(x)) of K:
being π0 symmetric monoidal and K-flat,

π0

(︃
K[x]

λ(x)
⊗LAM

)︃
∼= π0

(︃
K[x]

λ(x)
⊗LK (K ⊗LAM)

)︃
∼=
K[x]

λ(x)
⊗K Kn ∼=

(︃
K[x]

λ(x)

)︃n
In other words, the rank of M at K is preserved along chains of algebraic extensions of K, so that it must
coincide with the one at any choice of an algebraic closure of K.

Moreover, the next result ensures that if M ∈ ModA admits rank uniformly at geometric points, then its
rank is stable on some affine Zariski cover (see 4.1.3.2) of A by distinguished opens. In more geometric terms,
this allows for the existence of trivializing atlases for vector bundles (see 4.3.2.7).

Proposition 3.6.2.4. (The rank is uniform on charts, [26],2.9.2.3) Consider an animated ring A ∈ Ani(CRing)
and let M ∈ ModA be a locally free A-module of finite rank.

Then, there exists a partition of units {xi}mi=1 of the connected components π0A s.t. the localizationM [x−1
i ] :=

A[x−1
i ]⊗LAM is A[x−1

i ]-free of rank ni.

If further M is locally A-free of rank n, then M has uniform rank wlog ni = n for each i.

Proof. Consider the set E of all connected components of A such that the locally free A-module of finite rank
M is free of finite rank on the distinguished open on which x is invertible:

E := {x ∈ π0A | ∃nx ≥ 0 :M [x−1] ≃ A[x−1]nx} ⊆ π0A
The statement amounts to proving that E generates the unit ideal. Let’s argue by contradiction, so assume
that there exists some maximal ideal m ⊆ A containing E and let k := π0A/m ∼= (π0M)m/m be its residue
field.

Then, being modules over a field free, there exists some n′ ≥ 0 s.t. π0(k ⊗LAM) ∼= kn
′
is a finite-dimensional

k-vector space (with n′ = n in the case M is n-loc.free).
Hence, choose elements y = {yi}n

′

i=1 ⊆ π0M whose images form a basis of k ⊗π0A π0M
∼= π0(k ⊗LAM) ∼= kn

′

(recall that π0 is symmetric monoidal and that M is A-flat).

It follows by Nakayama’s Lemma that the images of y = {yi}n
′

i=1 lift to generators of the local ring (π0M)m.
Indeed, by definition π0M is finitely generated over π0A, and by construction one has both that the maximal
ideal m ∼= rad

(︁
(π0A)m

)︁
coincides with the Jacobson radical of the local ring and that {yi}i generates the

quotient π0(k ⊗LAM) ∼= π0(M)/m(π0(M)). Thus we conclude by a version ([37],10.20.1,viii) of Nakayama’s
Lemma.

Now, being π0A
n′

a compact π0A-module,
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(π0A)m ⊗π0A y : ⊕i(π0A)yi ↠ (π0M)m ∼= colim
−−−−−→

(︁
(π0M)[z−1] | z ∈ π0A \m

)︁
factors through some π0M [x−1] and can be rewritten as ŷ : ⊕i(π0A[x−1])ŷi ↠ (π0M)[x−1] via the extension

of scalars along π0A → π0A[x
−1]; finally, the base-change ŷ ∼= π0A[x

−1] ⊗π0A y of the surjective map y is
again such.
As in 3.4.1.3, π0(A[x

−1]) ∼= (π0A)[x
−1], so that also π0(M [x−1]) ∼= (π0M)[x−1]. Hence, the surjection

ŷ comes from a map of A-modules g : A[x−1]n
′ → M [x−1] which retrieves the surjection ŷ = π0(g) on

connected components. Then, since passing to localizations preserves the projectivity of M , g admits a
homotopy inverse, say ψ :M [x−1]→ A[x−1]n

′
.

Consider the n′ × n′ matrix X over π0A[x
−1] determined by the composite ψ ◦ g : A[x−1]n

′ → A[x−1]n
′
.

Its determinant det(X) ∈ π0A[x
−1] must have the form det(X) = x′ · x−a for some a ≥ 0. Consider its

numerator x′ := xadetX ∈ π0A and observe that x′ /∈ m, because ŷ = π0(g) induces an isomorphism of vector

spaces y = k⊗π0A ŷ : kn
′ ∼= π0(k⊗LAM), so that k⊗π0A π0(ψ ◦ g) = idkn′ . Thus, detX ∈ (π0A[x

−1, (x′)−1])×

is invertible in the localization of π0A[x
−1] at x′.

Furthermore, localizing g at x′ induces a map A[x−1, (x′)−1]n
′ → M [x−1, (x′)−1] which acts on connected

components as the localizations of ŷ at x′. But the latter is an isomorphism: being localizations right-exact
and ŷ surjective, it stays surjective; moreover, it is injective, since it is the first composite of an automorphism

of π0A[x
−1, (x′)−1] corresponding to the invertible matrix X.

Hence, being π0 conservative on flat modules, also the map A[x−1, (x′)−1]n
′ →M [x−1, (x′)−1] induced by g

turns out to be an equivalence. This means that xx′ ∈ π0A is actually an element of E ⊆ m, which contradicts
xx′ ∈ m. □

Proposition 3.6.2.5. (n-loc.free is local, [26],2.9.2.4) Being ”locally free of rank n” is stable under base-
change and Zar-local (i.e. it can be checked on an affine Zariski cover as in 4.1.3.2).

Proof. By 3.6.2.2, being ”finitely generated locally free” is stable under base-change and Zar-local. Moreover,
the rank of a fg-loc.free A-module is clearly stable under base-change. Hence, we are left to prove the Zar-
locality part; as before, we will actually prove the stronger flat-locality, which translates into algebraic terms
as follows.

Claim. For A ∈ Ani(CRing), consider M ∈ ModA fg-loc.free and any faithfully flat map A→
∏︁n
α=1Aα. If

each base-change M ⊗LA Aα is n-loc.free on Aα, then also M is n-loc.free on A.

Proof. We need to prove condition 3.6.2.3,ii, namely that base-change along each field k ∈ CAlg∆A yields an

n-dimensional k-vector space π0(k ⊗LAM) ∼= kn.

The faithful flatness of A →
∏︁
αAα implies that there exists some α ∈ I for which Aα ⊗LA M ̸= 0 is

non-vanishing.
Indeed, also the induced static map π0A→

∏︁
α π0Ai in π0A-Alg is faithfully flat, so that

0 ̸= π0(

n∏︂
α=1

Aα ⊗LAM) ∼=
n∏︂
α=1

π0(Aα ⊗LAM)

where finite products in ModA commute with ⊗LA as in the proof of 3.6.1.9. Hence, there exists one such

index α for which π0(Aα ⊗LAM) ̸= 0, which implies that already Aα ⊗LAM ̸= 0, as desired.

Then, consider any maximal ideal m of π0(k ⊗LA Aα), and let K denote its residue field. Being the latter a

field extension of k and since ideals of π0(k ⊗LA Aα) are in particular also A-modules, our claim is reduced

to checking the isomorphism π0(K ⊗LA M) ∼= Kn in VectK (see the Remark right below 3.6.2.3). But this
is a consequence of the following manipulation: being M flat over A, wlog K ∈ ModAα

, and π0 symmetric
monoidal, one has that

π0
(︁
K ⊗LAM

)︁ ∼= π0
(︁
K ⊗LAα

(Aα ⊗LAM)
)︁ ∼= Kn

where the latter isomorphism comes from the assumption that Aα ⊗LAM is n-loc.free over Aα. □
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We close this subsection with an easy but useful 2-out-of-3 property for exact sequences of finitely generated
locally free modules.

Lemma 3.6.2.6. (2-out-of-3 for fg- and n-loc.free) Consider a cofibre sequence M ′ → M → M ′′ in ModA.
Then, all modules are fg-loc.free iff any two of them are such. Moreover, the ordinary rule to add ranks along
exact sequences holds true.

Proof. We will use the third characterization of fg-loc.free. As for the compactness part, testing the commu-
tativity against filtered diagrams induces a fibre sequence of spaces, and we can conclude by inspection of
the induced long exact sequence in homotopy. So, we are left to prove that also flatness enjoys the 2-out-of-3
property. But this is clear: we can work in the stabilization ModEx

A , so our cofibre sequence is exact and we
can again conclude by inspection of the long exact sequence in homotopy.
Finally, if any two modules are n-, m-loc.free, then we want to extend the ordinary rule to add ranks along
exact sequences. To this end, as in the definition 3.6.2.3 consider the base-change of the sequence (which
is still exact in ModEx

A ) by any field K ∈ CAlg∆A and apply π0. Then, we obtain a short exact sequence in
VectK to which we can apply the rank rule, thus proving that also the third fg-loc.free A-module must have
the right rank, uniformly defined on points. □

3.7 Universal Tensor Algebras

Construction 3.7.0.1. (Construction: Derived Symmetric Powers, [26],25.2.2.1)
For A ∈ CRing and M ∈ Mod(A), define the (static part of the) derived symmetric powers of M over A by

CSymn
A(M) := π0(T

n
AM)/Σn ∈ Mod(A)

where TnA(M) denotes the n-th graded part of the (derived) tensor A-algebra functor evaluated atM , namely

TnA(M) :=M⊗L
An, whose static part is then quotiented out by the action Σn ↷ TnM of the symmetric group

Σn on M⊗An which permutes the various copies of M in the product.

Remark. For a free A-module M = ⊕mi=1Axi, one has that CSymn
AA

m ≃ ⊕|α|=nA(x
⊗α) ∈ FFreeA (where

α denotes a multi-index of weight |α| = n); the latter is a free A-module whose rank equals the number of
symmetric monomials of degree n in m indeterminates, namely

(︁
n+m−1

n

)︁
.

Let C ⊆f.f. CRMod denote the full subcategory of cpt+proj’s, i.e. generated by those pairs of the form
(A := Z[X], An) with X any finite tuple of indeterminates of length |X| = m. By the Remark, CSymn

(−)

induces the following map:

f : C −→ C ⊆f.f. Ani(CRMod) = MOD

(A,M) ↦−→ (A,CSymn
AM)

which admits an essentially unique colimsift -preserving
extension F : Ani(CRMod)→ Ani(CRMod) sitting in
the aside commutative triangle.

MOD

pr1 ↘↘

F →→ MOD

pr1↙↙
Ani(CRing)

Observe that the stated triangle is given by the fact that f is a functor over Ani(CRing) and that pr1 =
Ani(pr1) (see 3.2.5.3) preserves sifted colimits.
Hence, one can describe the action of F on objects by the assignment F (A,M) = (A,LSymn

AM), for some
animated A-module LSymn

AM .
Moreover, notice that F extends to MOD the definition of CSymn

(−) which we introduced only over CRMod,
since also the latter functor preserves sifted colimits (both ⊗ and the quotient by Σn preserve both filtered
colimits and reflexive coequalizers, the former separately in each variable, and hence as a multi-functor).
The latter induces a well-defined notion of n-th derived symmetric tensor algebra over the whole of
ModA, whose functoriality corresponds precisely to F .

The techniques presented in the previous paragraph 3.7.0.1 yield also the other Derived Powers functors. We
report the full (analogous) construction, so as to ease referencing.

Construction 3.7.0.2. (Construction: Derived Exterior Powers, [26],25.2.2.2)
For A ∈ CRing and M ∈ Mod(A), define the (static part of the) derived exterior powers of M over A by
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CΛnA(M) := π0(T
n
AM)/Altn

where again TnA(M) =M⊗L
An denotes the n-th graded part of the (derived) tensor A-algebra functor evaluated

at M , and where we quotient its static part by the submodule Altn generated by those elementary n-tensors
whose components are not all distinct.

Remark. For a free A-module M = ⊕mi=1Axi, one has that CΛnAA
m ≃ ⊕|α|=n , ∀i:1≤αi<αi+1≤mA(x

∧α) ∈
FFreeA (where α denotes a multi-index of weight |α| = n) is a free A-module of rank

(︁
m
n

)︁
.

Let C ⊆f.f. CRMod denote the full subcategory of cpt+proj’s, i.e. generated by those pairs of the form
(A := Z[X], An) with X any finite tuple of indeterminates of length |X| = m. By the Remark, CΛn(−)

induces the following map:

f : C −→ C ⊆f.f. Ani(CRMod) = MOD

(A,M) ↦−→ (A,CΛnAM)

which admits an essentially unique colimsift -preserving
extension F : Ani(CRMod)→ Ani(CRMod) sitting in
the aside commutative triangle.

MOD

pr1 ↘↘

F →→ MOD

pr1↙↙
Ani(CRing)

Hence, one can describe the action of F on objects by the assignment F (A,M) = (A,LΛnAM), for some
animated A-module LΛnAM .
Moreover, notice that F extends to MOD the definition of CΛn(−) which we introduced only over CRMod,

since also the latter functor preserves sifted colimits (both ⊗ and the quotient by Altn preserve both filtered
colimits and reflexive coequalizers, the former separately in each variable, and hence as a multi-functor).
The latter induces a well-defined notion of n-th derived exterior tensor algebra over the whole of ModA,
whose functoriality corresponds precisely to F .

Construction 3.7.0.3. (Construction: Derived Divided Powers, [26],25.2.2.3)
For A ∈ CRing and M ∈ Mod(A), define the (static part of the) derived divided powers of M over A, say
CΓnA(M), via the universal property in [19],3.1.

Remark. For A ∈ Poly and M ∈ FFreeA it turns out that CΓnA(M) can actually be described as the
’collection’ of invariants in TnA(M) for the action Σn ↷M , as in 3.7.0.1.
More explicitly, for A ∈ Poly and M ∈ FFreeA, CΓ

n
A(M) is determined as (a graded A-algebra) by the

following properties: writing stΣn
for the stabilizer of the aforementioned action Σn ↷M⊗n,{︄

CΓnA(At) := stΣn(π0(T
n
AAt)) = A( t

n

n! )

CΓA(M ⊕N) ∼= CΓA(M)⊗A CΓA(N) [[19], 3.19]

Then, for a free A-moduleM = ⊕mi=1Axi, one has that CΓ
n
AA

m ∈ FFreeA is a free A-module of rank
(︁
n+m−1

n

)︁
.

Let C ⊆f.f. CRMod denote the full subcategory of cpt+proj’s, i.e. generated by those pairs of the form
(A := Z[X], An) with X any finite tuple of indeterminates of length |X| = m. By the Remark, CΓn(−) induces
the following map:

f : C −→ C ⊆f.f. Ani(CRMod) = MOD

(A,M) ↦−→ (A,CΓnAM)

which admits an essentially unique colimsift -preserving
extension F : Ani(CRMod)→ Ani(CRMod) sitting in
the aside commutative triangle.

MOD

pr1 ↘↘

F →→ MOD

pr1↙↙
Ani(CRing)

Hence, one can describe the action of F on objects by the assignment F (A,M) = (A,LΓnAM), for some
animated A-module LΓnAM .
Moreover, notice that F extends to MOD the definition of CΓn(−) which we introduced only over CRMod,

since also the latter functor preserves sifted colimits (by [19],3.14-16, it preserves filtered colimits and reflexive
coequalizers).
The latter induces a well-defined notion of n-th derived divided power algebra over the whole of ModA,
whose functoriality corresponds precisely to F .
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Remark. One might wonder the origin of the degree-wise equality of dimensions of Derived Powers and Sym-
metric Powers. It turns out to be indeed very deep, in that it stems from some ’duality’ in the aforementioned
constructions. More precisely, for A ∈ CRing and M ∈ Mod(A), the natural evaluation-pairing on tensors
TnA(M)× TnA(M∨)→ A induces a canonical natural isomorphism

CΓnA(M
∨) ∼= CSymn

A(M)∨

where (−)∨ = HomA(−, A) denotes the dualization functor of A-modules. For more details, we refer to the
first section of the Appendix in [35].

On the other hand, let us remark that the construction of Derived External Powers is instead self-dual, so
that dualization does not yield any other interesting universal tensor algebra. Indeed, with notation as before,
the previous pairing induces a canonical natural iso CΛnA(M

∨) ∼=
(︁
CΛnA(M)

)︁∨
.

Remark. Furthermore, let us specify the values of our newly introduced functors in degree 0 and 1. As
expected, for A ∈ Ani(CRing) and M ∈ ModA,

� n = 0: LSym0
A(M) ≃ LΛ0

A(M) ≃ LΓ0
A(M) ≃ A;

� n = 1: LSym1
A(M) ≃ LΛ1

A(M) ≃ LΓ1
A(M) ≃M

3.7.1 Construction: Derived Symmetric Algebra

In this subsection we will assemble the n-th degree derived symmetric powers into the derived symmetric
algebra. We will drop the L in the notation of the latter and refer to it simply by Sym∗

A(M), for A an
animated ring and M any A-module. Noteworthy, by construction Sym∗ will be a left-adjoint to the functor
”forgetting the algebra structure”; in other words, each Sym∗

A(M) will be described as the ”free” A-algebra
generated by M . This subsection follows Lurie’s [26],25.2.2.6.

Construction 3.7.1.1. The canonical (non-full) inclusion ι : CAlg ↪−→ Mod (obtained by left Kan extending
the one at the level of Poly) induces a map CAlg∆A/ ≃ CAlg∆A ↪−→ ModA which (informally) acts on objects
as [ϕ : A→ B] ↦−→ (A, ϕ∗B).
Then, we obtain a functor between their un-straightenings Fun(∆1,Ani(CRing)) ≃

∫︁
CAlg∆ and MOD ≃∫︁

Mod, so that the previous maps assemble into the following one:

U : Fun(∆1,Ani(CRing)) −→ MOD

[ϕ : A→ B] ↦−→ (A, ϕ∗B)

Observe that it preserves both limits and sifted colimits (so, in particular the filtered ones).

Therefore, we can apply the II Adjoint Functor Theorem 1.2.0.6 to obtain an adjunction:

Φ: MOD −⇀↽− Fun(∆1,Ani(CRing)) :U

With a slight abuse of notation which will readily become clear, we can informally describe its action on
objects as follows.

Lemma 3.7.1.2. Unwinding the definition, the adjunction Φ ⊢ U lies over Ani(CRing). Then, we can
(informally) describe the action of Φ on objects as:

Φ : (A,M) ↦−→ [A→ Sym∗
A(M)]

for some A-algebra Sym∗
A(M) ∈ CAlg∆A .

Proof. Recall first the following result on∞-colimits: the forgetful functor of an over-category commutes with
colimits ([24],1.2.13.8), i.e. the post-composition of a diagram p with the forgetful functor for : C/F → C
admits a colimit for(p), iff p already admits a colimit p ∈ C/F and - in such case - they coincide: for(p) ≃
for(p).
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Then, we claim that the left adjoint Φ is actually
defined fibre-wise over Ani(CRing), so that it sits
in the aside triangle as well. Here, we change
our notation, namely let ev1 := pr1 : MOD →
Ani(CRing); this stresses on the adjunction rela-
tion between the functors (cfr. [20],5.1).
In order to show this, since Φ is defined by
means of the II Adjoint Functor Theorem, we
shall closely inspect the proof of 1.2.0.6.

MOD

ev1 ↘↘

Φ →→ Fun(∆1,Ani(CRing))
U

←←

ev0←←
Ani(CRing)

Let us introduce some shorthand: call C := Fun(∆1,Ani(CRing)), D := MOD, so that U : C → D.
It suffices to show that, for each object d ∈ D, the over-category (Cd/)/Ani(CRing) admits a weakly initial set
S, i.e. a small subset S of objects in the over-category such that - for any other object x of our over-category
- there exists an arrow with source in S and target x.
C is presentable, so let κ be a regular cardinal for which there is a colim

−−−−−→
κ-dense subcategory Cκ ⊆f.f. C.

Closely following the proof of 1.2.0.6 in [20],5.2.14, define S := {(x, α : d → Ux) | x ∈ Cκ} ⊆ ob(Cd/); take
any (z, β : d → Uz) ∈ Cd/ and let A := ev0(z) ∈ Ani(CRing). We claim that S/A is the required weakly
initial set of (Cd/)/A.
In order to prove it, first notice that, since C is a sInd-completion, we can regard z as the sifted colimit of
some (sifted) diagram p : K → Cκ. The canonical morphisms of colimits give a map ev0(p(k))→ A, so that
we may actually assume that also Im(p) ⊆ C/A.
By the previously stated [24],1.2.13.8, the over-slice projection (Cd/)/A → Cd/ commutes with colimits, so

that also [z → A] ≃ colimsift [p(−)→ A].
In turn, U preserves sifted colimits, so U(z) ≃ colimsift U(p). Then, again by [24],1.2.13.8, since forgetful
functors of over-slices - such as D/A→ D - reflect colimits, we can regard the latter colimit as living over A.
Finally, strongly-compact objects remain such in over-slice categories. Indeed, again for [24],1.2.3.18 over-slice
forgetful functors commute with colimits, so that, for any sifted diagram q, the mapping space equivalence

MapD(d, colim
sift q(−)) ≃ colimsift MapD(d, q(−))

restricts to the following one over A: fibres embed faithfully, so

MapD/A(d, colim
sift(q(−)) ≃ colimsift MapD/A(d, q(−))

Hence, we can conclude (for q := p) that there is some k ∈ K s.t. the map β/A : d/A→ Uz/A is represented

in the colimsift
K of mapping spaces by some δ/A ∈ MapD/A(d, p(k)). In other words, β/A factors through

δ/A; then, we are done by the fact that Im(p)/A ⊆ S/A. □

We are finally ready to define the symmetric algebra associated to a pair (A,M) ∈ MOD. In what follows we
will write Sym∗ ⊢ for for the adjunction of the Lemma above. This will be applied quite often in the more
geometric sections in order to define vector bundles on schemes (such as e.g. the affine space).

Construction 3.7.1.3. (Symmetric Algebra) Consider the following functor respecting fibres over Ani(CRing)
and call it CSym∗, in agreement with the previous abuse of notation:

CSym∗
(−)(−) : CRModsfp

Φ−→ Fun(∆1,Ani(CRing))
U−→ MOD

Remark. On the ordinary category CRModsfp, we recover the adjunction defining the universal property of
symmetric algebras. More explicitly, for any

(︁
A := Z[X],M := ⊕mi=1Z[X](yi)

)︁
∈ CRModsfp,

Φ(A,M) ∼= (Z[X]
str−→ Z[X, y]) =⇒ (U ◦ Φ)(A,M) ∼=

(︁
Z[X],⊕n≥0CSym

n
Z[X](M)

)︁
=

(︁
A,Sym∗

A(M)
)︁

Moreover, by the construction CSym∗ preserves sifted colimits in CRModsfp, so that it admits a left derived
functor LSym∗ : MOD→ MOD.
Over each fibre ModA, the second projection of the latter coincides with the previously defined ⊕n≥0LSym

n
A,

since they agree on fibres of CRMod.
Thus, with reference to the construction of Derived Symmetric Powers, one has the expected canonical
equivalence:

∀(A,M) ∈ MOD : Sym∗
A(M) ≃ ⊕n≥0LSym

n
A(M)
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3.7.2 Properties of Universal Tensor Algebra functors

In this subsection we will investigate some properties of the previously introduced Universal Tensor Algebra
functors; we will short the latter as UTA-f.
Recall that by 3.2.5.1 each morphism ϕ : A → B in Ani(CRing) induces a base-change adjunction which
extends 3.2.4.2, namely (−)⊗LA B : ModA −⇀↽− ModB :ϕ∗.

Lemma 3.7.2.1. (Stability under base-change, [26],25.2.3.1) Let Fn : MOD→ MOD be a UTA-f. as before,
so acting on objects by (A,M) ↦−→ (A,LFn(M)). Then, denoting by pr1 : MOD→ Ani(CRing) the canonical
projection, F preserves pr1-cocartesian morphisms.
In other words, for each morphism ϕ : A→ B and each module M ∈ ModA,

� B ⊗LA LSymn
A(M)

≃−→ LSymn
B(B ⊗AM)

� B ⊗LA LΛnA(M)
≃−→ LΛnB(B ⊗AM)

� B ⊗LA LΓnA(M)
≃−→ LΓnB(B ⊗AM)

Proof. Notice that, by 3.2.5.17, the stated equivalences correspond to the fact that F preserves pr1-cocartesian
morphisms. Then, we need to prove that the given canonical morphisms are indeed equivalences.

We will deal only with the case of symmetric powers, the other proofs are analogous. In particular, let us
show that for any morphism of animated rings ϕ : A→ B and any A-module M ∈ ModA, the canonical map

αB,M : B ⊗LA LSymn
A(M)→ LSymN

A (M) is an equivalence. In order to achieve this, we will undertake some
reduction steps, so as to reduce the statement to the classical setting.

� wlog M ≃ A⊗LZ M0 with M0 ≃ Z(n):

Fix a morphism ϕ : A→ B. Since both LSymn
A(−) and B⊗LA (−) commute with sifted colimits, also the

functor αB,(−) : ModA → Fun(∆1,ModB), which acts on objects as M ↦−→ αB,M , does (see [24],5.1.2.3).

Hence, wlog M ≃ A(n).

In particular, the monoidal structure on MOD allows us to write (up to homotopy) M ≃ A⊗LZ M0 with
M0 ≃ Z(n).

� wlog A ≃ Z, so we can reduce to Poly:

Consider the following commutative triangle:

B ⊗LA A⊗LZ LSymn
Z(M0)

α
B⊗L

A
A,M0

→→

B⊗L
Aα(A,M0)

←←
B ⊗LA LSymn

A(A⊗LZ M0) αB,M

→→ LSymn
B(B ⊗LA A⊗LZ M0)

If we assume the canonical map αC,M0 to be an equivalence for each morphism ψ : Z→ C in Ani(CRing),
then, in particular both αA,M0 and αB⊗L

AA,M0
will be equivalences, and hence, by the 2-out-of-3 prop-

erty, also αB,M will be so.

� wlog B ≃ Z[X] for some finite tuple of indeterminates X, so we can reduce to the ordinary setting:

In view of the previous reduction steps, let us now fix some (A,M) ≃ (Z,Z(n)) ∈ Poly and let us
consider αB = α(B,M) as a functor of B, namely αB : Ani(CRing)→ Fun(∆1,MOD).

Since it commutes with sifted colimits (it is the same argument as before), wlog B ≃ Z[X] for some
finite tuple of indeterminates X.
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Therefore, we are left to prove that the following morphism (of static modules) is an iso:

Z[X]⊗Z CSymn
Z(Z(n)) −→ CSymn

Z[X](Z(n))

The latter claim follows from the explicit construction of symmetric powers: on the free Z-module Zm ∼=
⊕y∈yZ(y) with y a tuple of m free generators, our map becomes the canonical base change isomorphism:

Z[X]⊗Z (−) : Z[X]⊗Z
(︁
⊕|α|=n Z(y⊗α)

)︁ ≃−→ ⊕|α|=nZ[X](y⊗α) □

Moreover, let us record here an important Corollary, which will be used later on in order to define vector
bundles in dag.

Corollary 3.7.2.2. (Local freeness, [26],25.2.3.2) Let (A,M) ∈ MOD be animated modules with rings of
scalars s.t. M is (locally) free of rank r over A. Then, the following UTA-f’s MOD→ MOD preserve (local)
freeness (see 3.6.2.3):

� LSymn
A(M) is (locally) free of rank

(︁
n+r−1
n

)︁
;

� LΛnA(M) is (locally) free of rank
(︁
r
n

)︁
;

� LΓnA(M) is (locally) free of rank
(︁
n+r−1
n

)︁
.

Proof. Claim. wlog M ≃ A⊗Z Zr free.

Proof. Let M ∈ ModA be a locally free module of rank r. By 3.6.2.4, there exists a partition of unity {xi}mi=1

of A such that each M [x−1
i ] is A[x−1

i ]-free of rank r.
Then, assume that, for each i, the given UTA-f for A[x−1

i ], M [x−1
i ] is a free A[x−1

i ]-free module of the right
rank. By 3.7.2.1, they can be written as localizations at A[x−1

i ] of the original UTA-f for (A,M). Hence, we
conclude by 3.6.2.5. ■

As in the previous Proposition, wlog (A,M) ≃ (Z,Zr). Hence, the result follows from an explicit computation,
as performed in the definition of the UTA-f at stake. □

We will finally provide a couple of results comparing ordinary and derived Universal Tensor Algebra functors
of static modules.

Corollary 3.7.2.3. (UTA-f. preserve flatness, [26],25.2.3.3) Let A ∈ Ani(CRing) and M ∈ ModA be flat.
Then, also LSymn

A(M), LΛnA(M) and LΓnA(M) are flat A-modules.

Proof. By the∞-Lazard’s Theorem 3.4.0.7, our flat animatedA-module admits a presentationM ≃ colim
−−−−−→

(Ani | i ∈
I) as a filtered colimit of finitely generated free A-modules over an arbitrary directed set I. Our UTA-f. com-
mute with sifted colimits by the construction via animation, so that wlog M ≃ An is finitely generated free.
Then, we conclude by the previous result. □

In particular, over a static ring A ∈ CRing and for any flat (hence discrete) A-module M = M , we recover
the static versions of our UTA-f.

Proposition 3.7.2.4. (Compatibility of UTA-f, [26],25.2.3.4) Let A ∈ CRing be a static ring and consider
M ∈ ModA flat (hence static). Then, there are canonical isomorphisms of static A-modules which recover
the classical UTA-f:

� α : LSymn
A(M) ≃ CSymn

A(M);

� β : LΛnA(M) ≃ ΛnA(M);

� γ : LΓnA(M) ≃ ΓnA(M)
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Proof. Let us prove only the first one, the rest is analogous. We will employ the usual machinery. Consider
the restrictions of the functors LSymn and CSymn to the ordinary category CRMod:

Symn : CRMod −→ MOD

(A,M) ↦−→ (A,LSymn
A(M))

Symn
s : CRMod −→ MOD

(A,M) ↦−→ (A,CSymn
A(M))

Let C ⊆f.f. CRModsfp be as in 3.2.5.2, and observe that, by the construction, Symn
|C ≃ Symn

s |C and Symn ≃
LKEj(Sym

n
|C). Hence, by the universal property of left Kan extensions, there must be an essentially unique

comparison map α : Symn → Symn
s which restricts to an isomorphism on C.

Observe that, on the static fibre Mod(A) of CRMod over A, the latter corresponds to a natural transformation
αA : LSymn

A(−)→ CSymn
A(−).

Claim. αA,M is an equivalence whenever M is flat.

Proof. By Lazard’s Theorem, the static module M admits a presentation as a filtered colimit of finitely
generated free A-modules. Now, for a fixed A, the functor corresponding to αM commutes with directed
colimits. Hence, we can assume wlog M ≃ An finitely generated free.
In such a case, write M ≃ A⊗Z Zn and observe that we can consider αZn , since by 3.7.2.1 α commutes with
base-change. But then, αZn is an equivalence by the construction: see the Remark at 3.7.0.1. □

Warning. As commented by Lurie at [26],25.2.3.5, for A ∈ CRing and a staticM ∈ Mod(A) which is however
not flat, the UTA-f considered might be non-static, in the same way as the ”derived” tensor product ⊗L of
static modules is in general non-static. In particular, LΛnA(M), LΓnA(M) need not coincide with the usual
functors from commutative algebra, even though their underlying connected components do recover the usual
construction.
On the other hand, on the case of Derived Symmetric Powers we can say more: in [26],25.2.6, Lurie compares
our construction LSym with the simplicial one over A, seen as a connected E∞-ring; the latter recovers the
classical commutative algebra and the two coincide whenever we are working with a rational animated ring,
namely a Q-algebra A.
Notice that this ought to be expected, since the rationality condition turns out to guarantee the equivalence
of the two formalisms. In other words, we are implying that the construction of Symmetric Powers coincides
with the one in the setting of E∞-rings, whenever we are working rationally over A ∈ CAlg∆Q , so that it can
be entirely retrieved from the (spectral) symmetric monoidal structure on ModA.

3.8 The (Relative) Algebraic Cotangent Complex and Derivations

In this section we present the derived version of the ubiquitous construction of the module Ωπ0B/π0A of
differentials for a map of classical π0A-algebras π0A → π0B. This will lead to the notion of the relative
(algebraic) cotangent complex between the corresponding animated algebras LB/A, as introduced by Lurie
in [26],25.3.1.
The topics discussed in this section admit a natural translation into the language of dag with respect to
which they correspond to the conormal sheaf. This will be discussed in section 4.4 and will also be regarded
as motivating the algebraic counterpart.

3.8.1 The Algebraic Cotangent Complex

In view of the Lurie’s introduction in [23],7.4.1, sometimes intuition will be conveyed in the language of ∞-
group actions and the corresponding principal ∞-bundles. From such a perspective, a square-free extension
of A ∈ Ani(CRing) by M ∈ ModA should be seen as an ∞-action (see [30],3.1) of M ∈ Grp∞(Spc) on
A ∈ Spc at the level of underlying spaces.
Our focus being the geometric version of such a construction, we will limit such comments and simply freely
adopt the needed terminology; we refer the unfamiliar reader to the relative section of Appendix C or to the
extensive exposition [30], where the theory of ∞-bundles is revisited in the modern language of ∞-categories
and ∞-topoi.
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Remark. Let us briefly comment on the legitimacy of our choice. From the very definition, animated widgets
from C ∈ Cat1 are product preserving functors (Csfp)op → Spc; when C is an ’algebraic category’ we proved
at the end of Appendix A that a system of cpt+proj generators is given by taking free C-widgets on FinSet,
so that animated C-widgets turn out to satisfy the Segal condition (recall that they take the point in Set to
the one in Spc), and hence to be ∞-group objects in the ∞-topos Spc in the sense of C.1.0.5. Therefore, the
framework provided by [30] applies.

Construction 3.8.1.1. (Trivial square-zero extension) With notation as in 3.2.5.2, consider the full sub-
category C ⊆f.f. MOD spanned by {(A,M) | A ∈ Poly, M ∼= A(n) ∃n ∈ N}. Recall that for each A ∈ CRing
and M ∈ Mod(A) we can endow A⊕M with an A-algebra structure via (a,m) · (a′,m′) := (aa′, am′ + a′m).
Hence, we can define a functor

F : C → CRing ⊆ Ani(CRing)

(A,M) ↦−→ A⊕M
Let ⊕ : MOD → Ani(CRing) denote the left-derived functor of F (see A.3.0.2). Notice that it preserves
sifted colimits by the construction.

Let us record some useful properties of the functor ⊕.

Lemma 3.8.1.2. (Properties of ⊕) Let ⊕ : MOD→ Ani(CRing) be the trivial square-zero extension functor.
Then, for any (A,M) ∈ MOD

1. ([26],25.3.1.2) ⊕ preserve stasis, i.e. each (A,M) ∈ CRMod is taken to A⊕M ∈ CRing;

2. ([26],25.3.1.3) M ≃ 0 in ModA yields a canonical equivalence A⊕M ≃ A;

3. ([26],25.3.1.3) We can canonically regard A⊕M ∈ CAlg∆A//A.

Proof. (1) : By the construction. (2) : Let E ⊆f.f. MOD be the full subcategory spanned by {(B,N) ∈
MOD | N ≃ 0}. By A.4.0.5 and the construction 3.2.5.2, the small set S := {(A, 0) | A ∈ Poly} forms a set
of cpt+proj generators of E and the restriction ⊕|E agrees with the first projection pr1 : (A,M) ↦−→ A over
CRMod, and hence over S. Thus, since ⊕|E preserves sifted colimits, we obtain an equivalence ⊕|E ≃ pr1
over E . Informally, on objects this means that, for each M ≃ 0 ∈ ModA, there is a canonical equivalence
A⊕M ≃ A as left Kan extensions over Poly.
(3) : Given any M ∈ ModA, there is a canonical sequence of arrows 0 → M → 0 in the pointed category
ModA. Then, in view of part (2), an application of A⊕ (−) yields arrows A→ A⊕M → A, thus exhibiting

A⊕M ∈ CAlg∆A//A in a canonical way. □

Lemma 3.8.1.3. The canonical map A ⊕M → A can be regarded as a projection on the first component
and it sits in a fibre sequence in ModA:

M ↪→ A⊕M ↠ A

with the last map being an effective epimorphism. Hence, the trivial square-zero extension A⊕M → A is the
trivial ∞-bundle on A with fibre M (cfr. Appendix C).

Proof. Recall first that there is a canonical forgetful functor for : Ani(CRing)→ ModZ which acts fibre-wise
as CAlg∆A → ModA and that preserves sifted colimits (being it itself a left-derived functor).
Notice that for ◦⊕ : MOD→ ModZ is equivalent to the binary product × : MOD ⊆ ModZ×ModZ → ModZ,
since they both are left-derived functors of the static binary product ×|C : C ⊆ Mod(Z)×Mod(Z)→ Mod(Z).
Then, in ModA the canonical map A ⊕M → A corresponds to pr1 : A ×M → A, as one can see from the
following left square describing the functoriality of ⊕. So, as for additive 1-categories, we will stick to the
direct sum notation ⊕ for the functor for ◦ ⊕.

MOD :

⊕
↓↓

(A,M) →→

⊕
↓↓

(A, 0)

pr1

↓↓
Ani(CRing) : A⊕M →→ A

ModA :

A⊕(−)

↓↓

M →→ →→

A⊕(−)

↓↓

0

↓↓
ModA : A⊕M →→ →→ A
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Finally, by a similar reasoning we deduce that ⊕|ModA
is also equivalent to the binary coproduct in ModA,

so that we obtain the stated fibre-sequence.
Moreover, beingM ↠ 0 surjective on π0, also A×M → A is clearly such, since ⊕ ≃ for ◦⊕ ≃ × is exact. □

Remark. The surjectivity on π0 implies that the fibre sequence above in the pre-stable ModA gives a fibre-

cofibre sequence in the stabilization ModEx
A (see 3.4.0.1)

Similarly to the classical setting, we will now define square-zero extensions of A by M (or A-derivations on
M) as twists of the trivial square-zero extension A⊕M , namely sections of the trivialM -bundle A⊕M → A.

Definition 3.8.1.4. (Space of derivations, [26],25.3.1.4) The space of derivations associated to the pair
(A,M) ∈ MOD is Der(A,M) := MapCAlg∆

/A
(A,A⊕M) ∈ Spc. Call derivations its points.

Construction 3.8.1.5. (Functoriality of Derivations) We will show that the construction [(A,M) ↦−→
Der(A,M)] defines a functor Der : MOD→ Spc.
Fibre-wise over A ∈ Ani(CRing) it can be described as Der(A,−) : ModA → Spc, namely as a choice of
composition for MapCAlg∆

/A
(A,−) ◦ (A⊕ (−)|ModA

) (up to contractible ambiguity).

More generally, let F denote a choice of the composition

F ≃ MapFun(∆1,CAlg∆) ◦ (id(pr1)
op ,⊕ → pr1) : MOD→ Tw(Fun(∆1,CAlg∆))→ Spc

Under the Straightening Theorem [24],3.2, the co-presheaf F is classified by a right-fibration q :
∫︁
F → MOD;

the 1-truncation of
∫︁
F retrieves the classical Grothendieck constructions, so that the objects of

∫︁
F are triples

of the form
[(A,M), σ ∈ MapFun(∆1,CAlg∆)(1A, A⊕M → A)]

Let
∫︁
Der ⊆f.f.

∫︁
F denote the full sub-category spanned by those triples as before with squares σ ∈

MapCAlg∆
/A
(A,A⊕M), so such that the lower horizontal map is the identity.

Such an assignment defines a sub-co-presheaf Der ≤ F which acts on objects as (A,M) ↦−→ Der(A,M).

Our next goal is to classify such fibre bundles, namely to prove that Der is fibre-wise representable by some
moduli stack, which we will call the (absolute) algebraic cotangent complex. Moreover, we will be able to
describe the corresponding universal arrow as follows.

Definition 3.8.1.6. (Universal derivation) For any pair (A,M0) ∈ MOD, each derivation η ∈ Der(A,M0)
induces a map

evη := η∗ ◦ (A⊕−) : MapModA
(M0,M)→ Der(A,M)

We call universal a derivation d ∈ Der(A,M0) for some M0 ∈ ModA s.t. evd is an equivalence for each
M ∈ ModA.

Proposition 3.8.1.7. (Algebraic Cotangent Complex, [26],25.3.1.5) For each animated ring A ∈ Ani(CRing),
the functor Der(A,−) : ModA → Spc is co-represented by LA ∈ ModA and admits a universal derivation
d ∈ Der(A,LA)

)︁
. We call LA the (algebraic) cotangent complex associated to A.

Proof. The proof is now by abstract non-sense and amounts to an application of 1.3.0.2. Let us show that
the functor Der(A,−) : ModA → Spc preserves limits and is accessible.
Notice first that the corepresentable functor MapCAlg∆

/A
(A,−) enjoys such properties, so we are left to consider

the restriction of ⊕ to ModA. Now, the latter commutes with sifted colimits by construction, so it is in
particular accessible.
As for limits, instead, by Yoneda Lemma we need to test the commutativity of A ⊕ (−)|ModA

, limK with

any K-indexed diagram p : K → ModA. Since CAlg∆A ≃ PΣ(PolyA), by 3.2.3.4, it suffices to test the
commutativity with limits against finitely generated polynomial A-algebras.
The following chain of equivalences holds:
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MapCAlg∆
A

(︁
A[ti]

n
i=1, A⊕ lim

K
p
)︁
≃(a) MapModA

(︁
An, for ◦ (A⊕ lim

K
p)
)︁

≃(b) lim
K

MapModA

(︁
An, for ◦ (A⊕ p)

)︁
≃ lim

K
MapCAlg∆

A
(Sym∗(An), A⊕ p)

≃ MapCAlg∆
A
(A[ti]

n
i=1, lim

K
A⊕ p)

where

� (a) : there is a fibre-wise adjunction Φ = LSym∗ : ModZ −⇀↽− Ani(CRing) : for (see 3.7.1.2); moreover,
by 3.7.2.1, finitely generated polynomial A-algebras can be written as

LSym∗
A(A

n) ≃ LSym∗
A(A⊗LZ Zn) ≃ A⊗LZ Z[ti]ni=1 ≃ A[ti]ni=1

� (b) : mapping spaces commute with limits in the second variable; moreover, by 3.8.1.3, the composition
for ◦ ⊕ amounts to the binary product in ModA, hence it commutes with small limits.

Thus, an application of 1.3.0.2 implies that Der(A,−) is corepresentable by some LA ∈ ModA.
Unwinding the definitions, under the Straightening Theorem [24],3.2 this amounts to the following commu-
tative cube: ∫︁

Map(LA,−) Spc//∗

∫︁
Der(A,−) Spc//∗

ModA Spc

ModA Spc

≃
St(δ)

Map(LA,−)

Der(A,−)

≃δ

At the level of objects, the identification St(δ) :
∫︁
Map(LA,−) ≃

∫︁
Der(A,−) corresponds to a bijection of

triples.
St(δ)0 : [(A,M), f ∈ MapA(LA,M)]↔ [(A,M), η ∈ Der(A,M)]

Claim. The identification [(A,LA), 1LA
∈ MapA(LA, LA)] ↔ [(A,LA), d ∈ Der(A,LA)] gives the universal

derivation d.

Proof. Under the Yoneda Lemma (see [20],4.2.10, [20],4.2.11) the following equivalence in Fun(ModA,Spc)
is induced by evaluation at 1LA

:

MapA(LA,−) ≃ MapSpc
(︁
MapA(LA, LA),MapA(LA,−)

)︁
Then, by the functoriality of δ we obtain a commutative square of equivalences where the left vertical arrow
acts as conjugation by δ:

MapSpc
(︁
MapA(LA, LA),MapA(LA,−)

)︁ ev id →→

(δ∗)(δ
−1
LA

)∗

↓↓

MapA(LA,−)

δ

↓↓
MapSpc

(︁
Der(A,LA),Der(A,−)

)︁ evd →→ Der(A,−)
Let us spell out the action on objects. Informally, this means that we have a family of commutative squares
indexed by f : LA →M in ModA and which is compatible up to higher coherent homotopy:

MapA(LA, LA)

δ

↓↓

f◦(−) →→ MapA(LA,M)

δ

↓↓
Der(A,LA)

(A⊕−)◦(f◦−)→→ Der(A,M)

1LA
→→

↓↓

f

↓↓
d →→ δ(f)
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which exhibits δ(f) ≃ (A⊕ f) ◦ d ≃ d∗(A⊕−)(f) = evd(f) as in the definition of a universal arrow.
□

3.8.2 The Relative Algebraic Cotangent Complex

In this section we introduce a relative version of the algebraic cotangent complex. The first step is to observe
that our moduli space does indeed define a functor. In order to show this, we will use that the algebraic
cotangent complex of any static polynomial algebra is the corresponding usual module of derivations (see
3.8.3.1). For expository reasons, we postpone the proof to a section on examples; the reader should remark
that this causes no cyclic argument.

Proposition 3.8.2.1. (The cotangent complex functor, [26],25.3.1.8) The construction [A ↦→ (A,LA)] ex-
tends to a functor Ani(CRing) → MOD of ∞-categories. In particular, any map f : A → B of animated
rings induces a morphism B ⊗LA LA → LB in ModB.

Proof. Consider the functor L : Poly→ CRMod ⊆ MOD acting as

� Obj: A := Z[ti]ni=1 ↦→ (A,ΩA);

� Mor: (f : A→ B) ↦→ (B,B ⊗A ΩA)

Let L : Ani(CRing)→ MOD denote its left-derived functor; its action on objects can be described as follows.
Let A ∈ Ani(CRing) be the sifted colimit of some diagram p : K → Poly. Then, under the base-change
adjunction for animated modules, L(p) ≃ (for)∗(Ωp) : K → FFreeZ where for : Mod(p)→ Mod(Z) level-wise
forgets the scalar structure (see 3.8.3.1 for the computation); equivalently, we can express the functoriality
of Ω(−) in ModA by extending scalars along the canonical natural transformation ψ : p→ A.
So, since pr1 : MOD→ Ani(CRing) preserves colimits, we can regard our diagram as living over pr1(L(A)) ≃
A.
Now, the second projection preserves colimits in each fibre of pr1 : MOD→ Ani(CRing), so our construction
yields a chain of equivalences:

L(A) ≃ colimsift
K (p,A⊗Lp Ωp) ≃ (A, |A⊗Lp Ωp|)

where we used that sifted colimits in over-slices can be computed in the above category. Then, we are left to
show the following claim.

Claim. ([26],25.3.1.8) If A ≃ |p| is the geometric realization of a simplicial diagram : K → Poly, then
LA ≃ |A⊗Lp Lp| ≃ |A⊗Lp Ωp|.

Proof. By assumption, MapA(LA,−) ≃ MapCAlg∆
/A
(A,A ⊕ −) ≃ colimsift

K MapCAlg∆
/A
(p, p ⊕ −), since the

diagonal of a sifted simplicial set is cofinal and ⊕ commutes with sifted colimits separately in each variable.
Now, the functoriality of both Ω(−) and the co-representability equivalence yields a canonical morphism under
extension of scalars along the colimit map of diagrams ψ : p→ A:

colimsift
K MapModA

(A⊗Lp Ωp,−)→ colimsift
K MapCAlg∆

/A
(p, p⊕−)

Finally, the latter turns out to be an equivalence, because it is such level-wise on K. Therefore, we have the
sought equivalence of mapping spaces and we conclude by the Yoneda Lemma:

MapModA
(|A⊗Lp Ωp|,−) ≃ MapModA

(LA,−) ■

For what concerns the action of L on morphisms, take any f : A → B in Ani(CRing) and let’s argue as in
3.2.5.11 (with the same notation). Namely, let ψ : p → q be a natural transformation of sifted diagrams
wlog K → Poly whose geometric realization is f : A → B. Then, L(f) ≃ |L(ψ)| with L(ψ) : L(p) → L(q)
in Mod(p). By the animated extension of scalars, post-composing with the canonical colimit map yields a
natural transformation B ⊗LA L(p) → |L(q)| in ModB ; since ⊗L commutes with sifted colimits separately in

each variable, the latter canonically corresponds to a map B⊗LA |L(p)| → |L(q)|. This is the sought canonical
map L(f) : B ⊗LA L(A)→ L(B). □
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In particular, our functorial construction supplies for a fibre-wise left-adjoint to the trivial square-zero ex-
tension functor.

Proposition 3.8.2.2. (Square-zero extension is a right-adjoint, [26],25.3.2.3) For B ∈ Ani(CRing) let
B⊗L(−)L(−) : Ani(CRing)→ ModB denote the functor extending the construction [A ↦→ B⊗LALA] of 3.8.2.1.
Then, there is an adjunction:

B ⊗L(−) L(−) : CAlg∆/B
−⇀↽− ModB :B ⊕ (−)|ModB

In particular, B ⊗L(−) L(−) is co-continuous.

Proof. We will apply the dual of [20],5.1.10 so as to promote to an adjunction the following assignments:

� Obj: (ϕ : A→ B) ↦→ B ⊗LA LA

� Mor: 1ϕ ↦→
(︁
uA : A→ B ⊕ (B ⊗LA LA)

)︁
over B corresponding to the A-algebra structure.

In order to achieve this, we need to show that, for each N ∈ ModB , the point-wise triangle identity is an
equivalence of spaces. Let us first spell the details of the wannabe unit assignment.

Claim 1. Given ϕ : A→ B in Ani(CRing), the functoriality on the first variable of ⊕ : MOD→ Ani(CRing)
yields natural equivalences:

B ⊗LA (A⊕ (−)|ModA
) ≃ B ⊕

(︁
B ⊗LA (−)|ModA

)︁
ϕ∗(B ⊕ (−)|ModB

) ≃ A⊕ ϕ∗(−)|ModB

Proof. As for the first one, in the following 3D diagram the top face commutes, since all the others do.

ModA CAlg∆A

MOD Ani(CRing)

ModB CAlg∆B

B⊗A(−)

⊕|ModA

B⊗A(−)

CALg∆

⊕

⊕|ModB

The second equivalence is analogous. ■

Hence, the assignment on morphisms is the canonical map obtained by post-composing the unit ηA,B of the
adjunction B ⊗LA (−) ⊢ ϕ∗ to the universal derivation d : A→ A⊕ LA:

uA : A
d−→ A⊕ LA

ηA,B−→ B ⊗LA (A⊕ LA)

Now, consider the following diagram, where the wannabe triangular equivalence sits in the top row.

MapModB

(︁
B ⊗LA LA, N

)︁ B⊕(−)→→

≃
↓↓

MapCAlg∆
/B

(︁
B ⊕ (B ⊗LA LA), B ⊕N

)︁(−)◦uA →→

≃
↓↓

MapCAlg∆
/B

(︁
A,B ⊕N

)︁
≃
↓↓

MapModA

(︁
LA, ϕ

∗N
)︁ A⊕(−) →→ MapCAlg∆

/A

(︁
A⊕ LA, A⊕ ϕ∗N

)︁ (−)◦d →→ MapCAlg∆
/A

(︁
A,A⊕ ϕ∗N

)︁
The lower composite is an equivalence, since it retrieves the functor of spaces evaluating at the universal
derivation d : A→ A⊕ LA of 3.8.1.7.
As for the vertical maps, thanks to Claim 1 the left and middle vertical arrows are equivalences induced by
the extension of scalars for animated modules (see 3.2.5.11). Moreover, the right map is an equivalence by
the following claim.

Claim 2. There is an equivalence of spaces MapCAlg∆
/B

(︁
A,B ⊕N

)︁
−→ MapCAlg∆

/A

(︁
A,A⊕ ϕ∗N

)︁
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Proof. Notice that ϕ sits in the aside cartesian square in ModA (see

3.8.1.3); the latter was already cartesian before applying for : CAlg∆A →
ModA, since forgetting the A-algebra structure reflects limits (see the
proof of 3.8.1.7).
So, the universal property of pull-backs yields the sought equivalence
of spaces:

MapCAlg∆
/B

(A
ϕ→ B,B⊕N pr1→ B) ≃ MapCAlg∆

/A
(A = A,A⊕ϕ∗N pr1→ A)

■

A

↘↘↘↘
A⊕ ϕ∗N

ϕ⊕id →→

pr1

↓↓

ϕ∗(B ⊕N)

pr1

↓↓
A

ϕ →→ ϕ∗(B)

Finally, by the construction of our equivalence and the description of the assignment in Claim 1, also the
rightmost square commutes, as wished. □

Definition 3.8.2.3. (The relative algebraic cotangent complex, [26],25.3.2.1) Let f : A → B be any mor-
phism in Ani(CRing). Define the relative algebraic cotangent complex of B over A as LB/A :=

cofibre
(︁
B ⊗L LA → LB

)︁
, i.e. as the cofibre in MOD of the map L(f) from the previous proposition.

As in the absolute case, also the relative cotangent complex co-represents a space generalizing relative deriva-
tions. The author learnt the proof in a seminar talk given by L. Pol, see [34],2.10.

Proposition 3.8.2.4. (Universal Property of LB/A, [26],25.3.2.4) Given any morphism ϕ : A → B in
Ani(CRing) and pair (B,N) ∈ MOD, there is a natural equivalence of spaces:

MapModB
(LB/A, N) ≃ MapCalg∆

A//B
(B,B ⊕N) =: DerA(B,N)

Proof. Consider the fibre-sequence of mapping spaces induced by applying MapModB
(−, N) to the cofibre-

sequence B ⊗LA LA → LB → LB/A in ModB , namely

MapModB
(LB/A, N)→ MapModB

(LB , N)→ MapModB
(B ⊗LA LA, N) ≃ MapModA

(LA, ϕ
∗N)

where the last equivalence follows by the base-change adjunction for animated modules 3.2.5.11. Then, by
the universal property of the algebraic cotangent complex, the last arrow can be equivalently rewritten as

MapCAlg∆
/B

(B,B ⊕N)→ MapCAlg∆
/A
(A,A⊕ ϕ∗N)

and we are left to show the following claim.

Claim. The last arrow acts as (−) ◦ ϕ : MapCAlg∆
/B

(B,B ⊕N)→ MapCAlg∆
/B

(A,B ⊕N).

Proof. Similarly to Claim 2 in the proof of 3.8.2.2, there is an equivalence of spaces:

MapCAlg∆
/B

(A
ϕ→ B,B ⊕N pr1→ B) ≃ MapCAlg∆

/A
(A = A,A⊕ ϕ∗N pr1→ A)

so that the target of our map has the desired form, and we conclude by the Yoneda Lemma together with
the commutativity condition of structure maps over B. ■

Then, the fibre of pre-composition by ϕ gives the desired natural equivalence.

Fib(− ◦ ϕ) ≃ MapCAlg∆
/B

(A/B,A/(B ⊕N)) ≃ MapCAlg∆
A//B

(B,B ⊕N)
□

We close this section with a list of useful properties of the relative algebraic cotangent complex.

Proposition 3.8.2.5. (Properties of LB/A) The functor relative algebraic cotangent complex L satisfies the
following properties:

1. ([26],25.3.2.4) For any extension of scalars B ≃ A⊗LA′B
′ in Ani(CRing) there is a canonical equivalence

LB/A ≃ B ⊗LB′ LB′/A′ .
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2. ([26],25.3.2.5) Any composition of maps of animated rings A → B → C induces a canonical cofibre
sequence in the stabilization ModEx

C :

C ⊗LB LB/A −→ LC/A −→ LC/B

Moreover, the canonical map C ⊗LA LB/A → LC/A is an equivalence whenever its source and target are
equivalent C-modules.

3. Any map ϕ : A → B in Ani(CRing) induces a canonical map ϵϕ : B ⊗LA Cofib(ϕ) → LB/A in ModEx
B ,

namely the Hurewicz map associated to ϕ.

4. ([26],25.3.6.6) A morphism ϕ : A→ B in Ani(CRing) is an equivalence iff π0(ϕ) is an iso and LB/A ≃ 0.

Proof. (1) : Consider a co-cartesian square in Ani(CRing) yielding the extension of scalars B ≃ A⊗LA′ B
′ as

in the statement.

A′ g →→

α

↓↓

B′

β

↓↓
A

f →→ B

By the universal property of the relative cotangent complex 3.8.2.4, for each N ∈ ModB one has the following
chain of equivalences, so we conclude by the Yoneda Lemma:

MapModB

(︁
B ⊗LB′ LB′/A′ , N

)︁
≃(a) MapModB′

(︁
LB′/A′ , β∗N

)︁
≃(b) MapCAlg∆

A′//B′

(︁
B′, B′ ⊕ β∗N

)︁
= MapCAlg∆

A′//B′

(︁
g∗B′, g∗(B′ ⊕ β∗N)

)︁
≃(c) MapCAlg∆

A′//B′

(︁
g∗B′, A′ ⊕ (β ◦ g)∗N

)︁
A⊗L

A′ (−)
−→(d) MapCAlg∆

A//B

(︁
B,A⊕ (A⊗LA′ (f ◦ α)∗N)

)︁
vN−→(e) MapCAlg∆

A//B

(︁
B,A⊕ f∗N

)︁
≃(f) MapCAlg∆

A//B

(︁
f∗B, f∗(B ⊕N)

)︁
= MapCAlg∆

A//B

(︁
B,B ⊕N

)︁
≃(g) MapModB

(LB/A, N)

where we used:

� (a) : It is extension of scalars for animated modules along β : B′ → B, see 3.2.5.11;

� (b) : It is the universal property for the relative algebraic cotangent complex, see 3.8.2.4; the next line
is then a more explicit rewriting via restriction of scalars along g : A′ → B′, which is implicit whenever
we regard a B′-algebra as a A′-algebra via 3.2.2.3;

� (c) : By Claim 1 in 3.8.2.2, ⊕ commutes with restriction of scalars along g;

� (d) : Apply the functor A⊗LA′ (−), namely extension of scalars along α : A′ → A of 3.2.3.3; moreover,

use the fact that the square is (commutative and) co-cartesian;

� (e) : Post-compose with the counit vN of the adjunction A⊗LA′ (−) : CAlg∆A′//B′ −⇀↽− CAlg∆A//B :α∗;

� (f) : It is again the commutativity of f∗ and ⊕; as in (b), in the standard notation f∗ is omitted;
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� (g) : It is again the universal property of the relative algebraic cotangent complex, see 3.8.2.4.

Finally, observe that the composition of (d) and (e) is an equivalence by the triangle identity. ■

(2) : By the functoriality of L(−) as in 3.8.2.1, we have the following diagram of morphisms of cofibre sequences
in ModC , which induces the dotted arrows at the level of cofibres:

E1 :

ϕ1

↓↓

C ⊗LA LA →→ C ⊗LB LB →→

↓↓

C ⊗LB LB/A

↓↓
E2 :

ϕ2

↓↓

C ⊗LA LA →→

↓↓

LC →→ LC/A

↓↓
E3 : C ⊗LB LB →→ LC →→ LC/B

We are left to show that the sequence E in ModC formed by the induced dotted arrows is cofibre.
To this end, we will apply Yoneda Lemma and check the universal property of push-outs against any M ∈
ModC .
In what follows we will let Ei denote both the sequence itself and the composite of the arrows forming it.
The interpretation considered will be clear from the context.
Now, observe that the commutativity of the diagram and the universal property of cofibres (for the last
sequence E3) yield the following chain of equivalences:

MapC([∗ ← C ⊗LB LB/A → LC/A],M)
E∗

1−→ MapC([∗ ← E2],M)

≃ MapC([∗ ← C ⊗LA LA → E3],M)

≃ MapC([∗ ← E2 → LC/B ],M)

≃ E∗
2

(︁
MapC([∗ ← LC/A → LC/B ],M)

)︁
≃ E∗

1

(︁
MapC([∗ ← E ],M)

)︁
Putting everything together, we obtain the equivalence of mapping spaces:

E∗
1

(︁
MapC([∗ ← C ⊗LB LB/A → LC/A],M)

)︁
≃ E∗

1

(︁
MapC([∗ ← E ],M)

)︁
which allows us to conclude by the Yoneda Lemma that [∗ ← E ] is a cocartesian square extending the coangle
[∗ ← C ⊗LB LB/A → LC/A], as wished.

Finally, the last part of the statement follows by inspection of our construction together with the proof
of 3.8.2.1: it holds for the static parts by the construction of the I fundamental sequence for the module
of differentials, and can be extended to the derived setting, since cofibre sequences commute with sifted
resolutions. ■

(3) : Omissis.
(4) : One direction is clear; for the other one, assume both that ϕ induces an isomorphism π0(ϕ) : π0(A) →
π0(B) and that LB/A. We will need a technical Lemma 3.8.2.6 on the connectivity of the Hurewicz map,
which we postpone.
Assume by contradiction that ϕ be not an equivalence and consider the cofibre sequence of ϕ in ModA
(by 3.4.0.1 it can be computed in the pre-stable category, since π0(ϕ) and all of its de-suspensions are
isomorphisms). By the conservativity of π∗, our assumption amounts to the existence of a smallest n ≥ 0 for
which πnCofib(ϕ) ̸= 0. Then, consider the Hurewicz map ϵϕ : B ⊗LA Cofib(ϕ)→ LB/A.
By the following technical Lemma 3.8.2.6, the n-connectivity of Cofib(ϕ) implies that Fib(ϵϕ) is at least
(n+ 1)-connected. Hence, ϵϕ induces an isomorphism πn(B ⊗L Cofib(ϕ))→ πn(LB/A). But now, the latter
vanishes by assumption, so that we obtain πn(B ⊗LA Cofib(ϕ)) ∼= 0 which yields the sought contradiction.

□
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Remark. Since B′ ⊗LB′ (−) preserves colimits (hence in particular cofibre sequences), the first property
basically makes sense of the statement that the algebraic cotangent complex preserves cocartesian diagrams
in Ani(CRing). In other words, we proved that for any extension of scalars B ≃ A ⊗LA′ B

′ in Ani(CRing),
the following square is cocartesian:

B ⊗LA′ LA′ →→

↓↓

B ⊗LA LA

↓↓
B ⊗LB′ LB′ →→ LB

We close this subsection with a technical Lemma on some useful connectivity properties of the Hurewicz
map. The proof is omitted.

Lemma 3.8.2.6. (Connectivity of the Hurewicz map, [26],25.3.6.1) Let ϕ : A → B in Ani(CRing) be a
morphism of animated rings. Then, the Hurewicz map ϵϕ : B ⊗LA Cofib(ϕ)→ LB/A of 3.8.2.5,iii satisfies the
following connectivity properties:

� π0(ϵϕ) is surjective;

� If Fib(ϕ) is connective, then Fib(ϵϕ) is 2-connective;

� If Fib(ϕ) is m-connective for some m > 0, then Fib(ϵϕ) is (m+ 3)-connective.

3.8.3 Examples

In this subsection we include some computations and remarks that will be used when dealing with the
geometric version of the cotangent complex.

Let us start by showing that our construction does indeed generalize the classical module of differentials.

Lemma 3.8.3.1. ([26],25.3.1.7) Let A := Z[xs|s ∈ S] ∈ CRing be a static polynomial algebra (on an arbitrary
set of generators S). Recall that static A-derivations are represented by (ΩA = ⊕S [dxs]A ∈ Mod(A) , d : A→
ΩA), where the universal derivation acts as d : A ∋ f ↦−→ (f,

∑︁
S ∂sfdxs) ∈ A⊕ ΩA.

Then, (ΩA, d) co-represent also Der(A,−) : ModA → Spc. In particular, the algebraic cotangent complex LA
of any static polynomial algebra A is itself static.

Proof. We have to show that d∗(A ⊕ −) : MapModA
(ΩA,M) → MapCAlg∆

/A
(A,A ⊕M) is an equivalence of

spaces for each M ∈ ModA.
Notice that wlog S is a finite set, so both A and ΩA are cpt+proj. Indeed, ΩA = ⊕S [dxs]A ∼= colim

−−−−−→

(︁
⊕F

[dxs]A | F ⊆ S finite
)︁
and A ∼= colim

−−−−−→

(︁
Z[t]⊗|F | |F ⊆ S finite

)︁
can be written as filtered 1-colimits of finite free

modules and finitely generated polynomial algebras, respectively. Now, by [6],7.3, filtered 1-colimits are also
∞-colimits, so we obtain presentations of ΩA and A by cpt+proj objects of the corresponding ∞-categories.
Hence, we can assume that the left component of our mapping spaces is cpt+proj. Now, since ⊕ commutes
with sifted colimits separately in each variable, wlog S is finite.
Thus, for p : K → ModA a sifted diagram with colimit M , we can carry the K-indexed colimit out of both
sides, so that also M can be assumed to live in FFreeA.
Therefore, we reduced our problem to the static case, where the statement holds true by the classical theory.

□

Example 3.8.3.2. Let t := (t1, . . . , tn) denote a tuple of n variables and consider the quotient projection
Z[t]→ Z[t]/(t) ≃ Z. Then, LZ/Z[t] ≃ Zn[1].
In the language of DAG, this will correspond to the closed point inclusion 0 ↛ An into the n-th affine space.
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Proof. As in 3.8.2.2, Z ⊗L(−) L(−) ≃ L(−) is a left-adjunct, so it takes the inizial object Z ∈ Ani(CRing) to
the initial object 0 ∈ ModZ. Hence, there is a cofibre sequence

Z⊗LZ[t] LZ[t] →→

≃
↓↓

LZ →→

≃

↓↓

LZ/Z[t]

ΩZ[t] →→ 0 →→ LZ/Z[t]

which can be written as in the bottom row by 3.8.3.1, thus exhibiting the relative cotangent complex as a
suspension in ModZ: LZ/Z[t] ≃ ΣΩZ[t] ≃ Z|t|[1]. □

The following result allows us to determine the algebraic cotangent complex of the symmetric A-algebra of
an A-module over the base animated ring. The author learned the proof in a seminar talk by Luca Pol, see
[34],2.12.

Lemma 3.8.3.3. ([26],25.3.2.2) Let (A,M) ∈ MOD and set B := LSym∗
A(M). Then, by the universal

property of the Derived Symmetric Algebra 3.7.1.2 we deduce that LB/A ≃ B ⊗LAM ≃ LSym
∗
A(M)⊗LAM .

Proof. For each N ∈ ModB with B = LSym∗
A(M), there is a chain of natural equivalences of mapping spaces,

so we conclude by the Yoneda Lemma:

MapModB
(LB/A, N) ≃(a) MapCAlg∆

A//B
(B,B ⊕N)

≃(b) Fib
(︁
MapCAlg∆

A
(B,B ⊕N)→ MapCAlg∆

A
(B,B)

)︁
≃(c) Fib

(︁
MapModA

(M,ϕ∗(B ⊕N)→ MapModA
(M,ϕ∗B)

)︁
≃(d) MapModA

(M,ϕ∗N)

≃(e) MapModB
(B ⊗LAM,N)

Here the equivalences are obtained as follows:

� (a) : It is the universal property of the relative cotangent complex 3.8.2.4;

� (b) : By 3.2.2.3, we can identify CAlg∆A ≃ CAlg∆A/; then, the equivalence with the fibre follows from the
definition of maps over B;

� (c) : It follows from the universal property of the Derived Symmetric A-Algebra B = LSym∗
A(M), see

3.7.1.2;

� (d) : Since mapping space and for : CAlg∆A → ModA commute with limits in the second variable (see
3.8.1.7 for the latter), this is an application of the Yoneda Lemma to the fibre sequence of 3.8.1.3;

� (e) : It is the extension of scalars for animated modules, see 3.2.5.11.
□

4 A primer on Derived Algebraic Geometry

4.1 Derived Schemes

In this section we will introduce the definition of a derived scheme, following the doctoral thesis of A. Khan
[15] and referring to the Appendices for details about the results involved as well as for motivation.
We will generalize the classical formalism of ’functors of points’ by introducing the notion of stacks as
sheaves for the Zariski site, which will correspond then to ’local functors of points’, and considering the full
subcategory spanned by those stacks which further admit a finite affine Zariski covering, corresponding in
turn to classical schemes. These will be, indeed, our candidates for derived schemes.
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A number of interesting local properties of relative schemes will be introduced, such as flatness, compactness
conditions, open and closed immersions, being qcqs (i.e. quasi-compact and quasi-separated) on the base,
etc.
Thereafter, as in classical algebraic geometry, we will relate the formalism of ’functors of points’ to the
topological description of schemes. This will be achieved thanks to the tools developed in Appendix C,
primarily Čech descent.
Finally, we will devote the remaining of this section to introducing the machinery that will be employed in
the construction of blow-ups of quasi-smooth derived schemes. Such constructions will be of independent
interest and will also serve as excellent examples in order to achieve a more thorough understanding of the
theory itself.
In what follows by scheme or stack we will always mean their higher version and explicitly write classical
whenever we want to consider the ordinary concepts.

4.1.1 Pre-Stacks

Warning. Choose a chain of three universes U ⊆ U ′ ⊆ U ′′ and adopt the terminology ”small”, ”large”
and ”very large” to distinguish smallness properties along the hierarchy. Observe that, in general, taking
presheaves and animation do not preserve smallness; in particular, if we assume CRing to be small, then
Ani(CRing) will be a large∞-category and taking presheaves - so functors into the large∞-category of large

spaces ˆ︃Spc - will yield the very large P(Ani(CRing)op) = Fun(Ani(CRing),ˆ︃Spc); then the localization to
sheaves on such a large site (which we will define later on) gives again a very large Sh(Ani(CRing),Spc).
When dealing with stacks, we will remark the implications of having only large ∞-topoi at our disposal.
Moreover, for the sake of readability, we drop the hat in the notation: Spc is automatically the ∞-category
of large spaces whenever we deal with stacks, and the ordinary one if we consider schemes; otherwise, it will
be clear from the context when we can restrict to its full sub-category of small spaces (e.g. when considering
mapping spaces in the locally small - although large - ∞-category Ani(CRing)).

Definition 4.1.1.1. (Prestack, [15],4.2.1) A prestack is a presheaf Ani(CRing) → Spc. Let PreStack :=
P(Ani(CRing)op) denote the ∞-category of prestacks.
For any animated ring A ∈ Ani(CRing), write Spec(A) := MapAni(CRing)(A,−) for the co-represented

prestack, and consider the full subcategory of affine schemes, SchAff ⊆f.f. PreStack, spanned by the
image of the Yoneda embedding.
Moreover, given any animated ring A ∈ Ani(CRing), we call A-points of a prestack S ∈ PreStack the
morphisms s : Spec(A)→ S, i.e. the points of the space S(A) ∈ Spc under the Yoneda Lemma.

Similarly to the case of animated rings, we consider the classical prestack underlying a higher one.

Definition 4.1.1.2. (Classical underlying stack, [15],4.2.3) Define PreStackcl = P(CRingop) and, given any
S ∈ PreStack, call its underlying classical prestack the presheaf Scl := j∗(S) ∈ PreStackcl obtained as a
restriction along the Yoneda embedding j : CRing ↪−→ Ani(CRing).
Furthermore, the 0-truncation adjunction π0 ⊢ j of A.5.0.7 induces the following adjunction of presheaves by
passing to the underlying classical prestack:

π∗
0 : PreStack

cl −⇀↽− PreStack :j∗ =: (−)cl

Remark. For A ∈ Ani(CRing), it holds Spec(A)cl ≃ Spec(π0(A)) and they span the full sub-category of
classical affine schemes in SchAff . Moreover, Spec(A)cl is actually an ’ordinary’ affine scheme, namely it
factors through Set.
Indeed, for each static ring B ∈ CRing, the 0-truncation adjunction π0 ⊢ j yields:

(Spec(A))cl(B) ≃ (Spec(A) ◦ j)(B) ≃ MapAni(CRing)(A, j(B)) ≃ HomCRing(π0A,B) = Spec(π0A)(B) ∈ Set

Definition 4.1.1.3. (Quasi-Coherent Modules, [15],4.3.1-4) For an affine scheme S := Spec(A) ∈ SchAff ,
define QCoh(S) := ModA; in particular, write OSpec(A) := A ∈ ModA for the quasi-coherent copy of the
base-ring.
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Define the presheaf of quasi-coherent modules to be the one of presentable pre-stable symmetric monoidal
∞-categories

QCoh : PreStack→ PrL⊗ s.t. QCoh := Ranj(Mod)

which is the (large) right Kan extension along the Yoneda embedding Ani(CRing)op ↪−→ PreStack of the
(large) presheaf Mod : Ani(CRing)op → SymMonL occurring in the definition of MOD (as in 3.2.5.11).

Informally, we can write its action on objects by a large inverse limit over all generalized points of S:

QCoh(S) := lim
(︁
QCoh(Spec(B)) | Spec(B) ∈ SchAff

/S

)︁
At each step, the monoidal unit is given by the quasi-coherent module corresponding to the base-ring, namely
OS ∈ QCoh(S), represented by

(︁
OS,s := OSpec(B) | (s : Spec(B)→ S) ∈ SchAff

/S

)︁
.

Moreover, as in the classical setting, a morphism f : S → T in PreStack induces a transition functor f∗

for the presheaf QCoh which can be described similarly to 3.2.5.11: f : S → T is the large colimit of a
natural transformation ψ : Spec(q)→ Spec(p) as induced by the ∞-Density Theorem [24],5.1.5.3 and which
we informally denote as follows:

f ≃ colim
(︁
ψB,A : SpecB/S → SpecA/T | Spec(B) ∈ SchAff

/S , Spec(A) ∈ SchAff
/T

)︁
Let us describe the object-wise action of the functor f , with reference to the notation of the proof of 3.2.5.11.
Let P ∈ Modp = QCoh(Spec(p)) be a large diagram of affine representatives of a quasi-coherent module
N ≃ limP over T . Then, ψ yields by extension of scalars a new large diagram of quasi-coherent modules
q ⊗Lp P in the fibre Modq = QCoh(Spec(q)) over the algebras CAlg∆q .
Hence, as in 3.2.5.11, each f∗ is a symmetric monoidal and (large) colimit-preserving functor. In particular,
whenever we can take small diagrams over S and T , then each f∗ admits a right-adjoint f∗.
As in the classical case, we refer to f∗ as the inverse image functor and call f∗ the direct image functor.
Accordingly to the previous derivation, f∗ acts on objects by restriction of scalars, namely (in the obvious
notation) f∗ takes Q ∈ Modq to ψ∗(Q) ∈ ψ∗(Modq) ≃ Modp.

Remark. Let S ∈ PreStack be such that QCoh(S) is defined over a small diagram. Then, in view of
the adjunction in 3.2.5.1, QCoh(S) can be endowed with a closed symmetric monoidal structure via Day

convolution by positing QCoh(S)⊛ ≃ LKEj(MOD⊠) as in 3.2.5.1.

Warning. We already observed that diagrams over a stack are potentially large and that the presheaf
∞-category P(Ani(CRing)op) is a large ∞-topos, namely it is not accessible in the sense of essentially
small ∞-categories. In particular, this does not really allow straightforward applications of Adjoint Functor
Theorems.
However, this is not a major issue: whenever the prestacks S, T arise as the colimit of a small diagram of
representables (read classical schemes), then both QCoh(S), QCoh(T ) are still presentable: they are small
limits of presentable categories, and PrR ⊆ Cat∞ is closed under small limits in the ambient ∞-category by
[24],5.5.3.18. Moreover, we will define schemes so as to admit only essentially small affine over-slices, so over
them we will be able to work with presentable ∞-categories and carry on the usual business.

An analogous digression with the presheaf of animated algebras 3.2.3.1 in place of 3.2.5.11 describes quasi-
coherent algebras QCohAlg as a right Kan extension of CAlg∆ along the Yoneda embedding.

Definition 4.1.1.4. (Quasi-Coherent Algebras, [15],4.7.1) For an affine scheme S := Spec(A) ∈ SchAff ,
define OSpec(A)-Alg := QCohAlg(S) := CAlg∆A ; in particular, write OSpec(A)(A) := A ∈ CAlg∆A for the
quasi-coherent copy of the base-ring (see 4.2.2.2).

Define the presheaf of quasi-coherent algebras to be the one of presentable symmetric monoidal ∞-
categories

QCohAlg : PreStack→ SymMonL s.t. QCohAlg := RKEj(CAlg∆)

which is the (large) right Kan extension along the Yoneda embedding Ani(CRing)op ↪−→ PreStack of the
(large) presheaf CAlg∆ : Ani(CRing)op → SymMonLlax as in 3.2.3.1.

Informally, we can write its action on objects by a large inverse limit over all generalized points of S ∈
PreStack: Os-Alg := QCohAlg(S) = lim

(︁
OSpec(A)-Alg | Spec(A) ∈ SchAff

/S

)︁
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At each prestack S, the monoidal structure is induced by that of the corresponding ∞-category QCoh(S) of
quasi-coherent modules on S. Similarly, the functoriality on arrows is expressed by direct and inverse image
functors with respect to the extension of scalars adjunction for algebras.

4.1.2 Stacks

Definition 4.1.2.1. (Flatness, f.p. open immersions, [15],4.4.2) Let f : T := Spec(B)→ Spec(A) =: S be
a morphism SchAff . We say that:

� f is flat iff the inverse image f∗ : QCoh(S)→ QCoh(T ) is an exact functor.

Equivalently, iff the induced morphism of animated rings is flat (see 3.4.0.2), iff the morphism of
underlying classical schemes fcl : Spec(π0B)→ Spec(π0A) is flat (i.e. π0B is a flat π0A-module) and the
canonical base-change comparison morphism of π0B-algebras (i.e. the counit of 3.2.3.3) πiA⊗Lπ0A

π0B →
πi(B) is invertible for each i.

� f is of finite presentation (f.p.) iff B ∈ CRingA/ is a compact (i.e. finitely presented) A-algebra.

� f is an open immersion iff f is flat and the morphism of underlying classical schemes f cl is an
open immersion, i.e. for each g : Spec(R) → Spec(π0A) = Scl, the base-change g∗(f cl) has source
Spec(π0B ⊗R π0A) ∼= Spec(R)a for some ideal a ⊆ π0A, where the latter classical scheme is defined on
C-valued points by Spec(R)a(C) := {ϕ : R→ C |C = ϕ(a)C}.
Equivalently, iff it is a flat f.p. monomorphism (i.e. (−1)-truncated, so with an invertible diagonal
∆ : T → T ×S T ).

Before proving the claimed equivalences of definitions, let us motivate the stated generalizations.

Motivation. The definitions given generalize the following:

� Flat (equiv. definition): classical flatness is [37],II.29.25.2; the higher homotopical condition clearly has
no counterpart in classical algebraic geometry. At the level of derived categories, it could be stated
as a Tor-independence property: Tor

π0A
i (πiA, π0B) ∼= πiB for each i ∈ N (see [37],15.61); however, in

the classical formalism, this is an ’external’ condition on the objects involved, more than a property of
their structure. On the other hand, in dag this means that the maps π0A→ π0B and πiA→ πiB sit
in the obvious cocartesian square, i.e. that their cofibers are equivalent. See 3.4.0.2 for more details.

� f.p.: [37],II.29.21.2.

� Open immersion: The definition is self-explanatory, whereas the equivalent condition is definitely non-
trivial, but the goal is providing a definition of open immersions which can be formulated in the
language of commutative higher algebra and which does not require any specification of a topology on
affine spectra.

The equivalence in the classical setting can be found in [37],II.41.14.1: as a consequence ([37],II.29.23.2)
of Chevalley’s Theorem ([37],I.10.29.10) and Going Down ([37],I.10.41.1) for flat maps ([37],I.10.39.19),
flat f.p. morphisms of affine schemes are open ([37],I.10.41.8). Then, the part relative to being an
’immersion’ is self-explanatory: the condition on the diagonal generalizes the similar characterization
of monomorphism in terms of kernel pair which holds in any category with fibred products.

Noteworthy is however to observe the different role played by hypotheses of different ’nature’. For future
reference, we will enclose this in a vague meta-definition.

Definition 4.1.2.2. (Meta-definition: classes of properties) We group generalizations of properties of Clas-
sical Algebraic Geometry into three classes:

� algebraic assumptions: (e.g. compactness, such as f.p.) they pertain to the representing animated
objects;
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� homotopical assumptions: (e.g. flatness) they relate different homotopy-degrees in the Postnikov tower
and allow us to consistently lift ’topological’ properties to the ∞-world. In the example of flatness, the
latter is the combination of a ’homotopical’ property, i.e. higher coherence, together with a ’topological’
property, i.e. the fact that fibres behave nicely at the level of underlying classical schemes; the lifting
part will be made meaningful in the next proof.

� topological assumptions: (e.g. properties of immersions) they are relative to the underlying classical
scheme, so the object of study of Classical Algebraic Geometry, and can be lifted to the ∞-world by
means of good higher consistence (i.e. flatness).

Proof. Flatness:
For a morphism of affine pre-stacks f : T = Spec(B)→ Spec(A) = S in SchAff , the inverse image f∗ is exact
whenever the extension of scalars OT ⊗OS

(−) is such. Hence, we conclude by the digression in 3.4.0.2, where
it is proven that a morphism f : A → B of animated algebras is flat iff the induced extension of scalars
(−)⊗LA B is exact, iff the last equivalent condition holds.

Open immersions:
Claim 1. A flat morphism f : T = Spec(B)→ Spec(A) =: S in SchAff is a monomorphism iff fcl is such.

Proof. f is a monomorphism iff the diagonal map ∆ : T → T ×S T is an equivalence, iff the canonical
multiplication m : B ⊗A B → B is such. By flatness all tensor products in homotopy are static, so we can
consider the following commutative square for each i:

(πiA⊗π0A π0B)⊗πiA (πiA⊗π0A π0B)

≃
↓↓

πi(m) →→ πiA⊗π0A π0B

≃
↓↓

πiA⊗π0A

(︁
π0B ⊗π0A π0B

)︁ πi(A)⊗π0(m) →→ πiA⊗π0A π0B

Hence, by Whitehead Theorem, m is an equivalence iff π0(m) is such. ■

Then, one can show that, for flat monomorphisms, being étale lifts to the derived setting. See for instance
[23],7.5.0.6.

Finally, as already observed (see [37],II.41.14.1), an open immersion of classical affine schemes is a flat f.p.
monomorphism and we proved that, for a flat f , fcl enjoys such properties iff f does. □

We are now ready to define the Zariski site on the∞-category of affine schemes. This generalizes the classical
small Zariski site, as presented in [27],III.3 (see also [37],II.34.3).

Definition 4.1.2.3. (Zariski Site, [15],4.4.3) Define the (small) Zariski site on SchAff to be the Grothendieck
site (see C.3.0.2) associated to the following pre-topology (or basis):
For a small set I ∈ Set, we say that {jα : Uα → S in SchAff | α ∈ I} ∈ Zar iff, for each α ∈ I, the map
jα is an open immersion and the inverse images j∗α : QCoh(S) → QCoh(Uα) are jointly conservative, i.e. a
morphism ϕ in QCoh(S) is an isomorphism iff j∗α(ϕ) iso in each QCoh(Uα).

We write ’Zar-covering’ for a covering of the Zariski site.

Remark. In other words, we are requiring our covering sieves to detect whether two affine schemes coincide
by checking their affine open sub-schemes.

Remark. The reader should beware that we stated only ”generating” families for the corresponding covering
sieves, which are obtained by closing under pre-composition in the site SchAff .

Remark. The family of functors j∗α : QCoh(S) → QCoh(Uα) is jointly conservative iff the canonical map
j :=

∐︁
α jα induces a conservative functor j∗ : QCoh(S)→

∏︁
αQCoh(Uα) ≃ QCoh(

∐︁
α Uα).

Indeed,
∐︁
Uα corresponds to a product in Ani(CRing) and hence is preserved by QCohop , which is a right

Kan extension over Ani(CRing), being it the composite of two right Kan extensions. Moreover, the canonical
product projections form a jointly conservative family.
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Sometimes we do not need the full strength of all the requirements in the definition of Zariski covers. For
instance, let us give a name to a finer site (so one with ”more covers”) which will often occur when studying
descent.

Definition 4.1.2.4. (fpqc-site) Define the (small) fpqc site on SchAff to be the Grothendieck site (see
C.3.0.2) associated to the following pre-topology (or basis):
For a finite set I ∈ Set, we say that {fα : Sα → S ∈ SchAff | α ∈ I} generates a fpqc-covering iff each fα is
flat (and of finite presentation), and the inverse images f∗α : QCoh(S)→ QCoh(Sα) are jointly conservative.

As already anticipated, we define ’stacks’ as local (in the sense of Bousfield localisations) prestacks with
respect to the Zariski site, thus generalizing ’local functors of points’.

Definition 4.1.2.5. (Stacks, [15],4.4.4) Define a stack to be a prestack satisfying descent with respect to
the Zariski site, i.e. to be a sheaf in Sh(SchAff ,Zar). Call Stack := Sh(SchAff ,Zar) ⊆f.f. PreStack the full

subcategory spanned by stacks. By extension, for any site τ on SchAff , we will call τ -stacks the sheaves in
Sh(SchAff , τ).

Digression. The very large ∞-topos Stack ”behaves like” an ∞-topos (see Appendix C on ∞-topoi and
sheaves).
As already observed in 4.1.1, SchAff gives rise to a large site, and sheaves on large sites are in general very
large∞-topoi and need not be small. In particular, what fails is precisely being accessible (hence presentable)
with respect to the smallest universe U .
A consequence of such an observation is that, for example, the Representability Theorem or the Adjoint
Functor Theorems do not hold any more, unless allowing large diagrams.
However, in most cases we will be dealing with schemes (which will defined soon) on the Zariski site, and such
a pathology can be solved as in the classical case (see [37],34.3.5): we restrict our constructions to involve
only a small set of schemes and a small set of (small) families of their covers; then one can define a small site
in which to operate: this will not alter anything in the constructions and will have the advantage of allowing
us to work into a topos. As expected, however, one should be very careful when comparing constructions
among the different sites arising in such a way.
In particular, such an observation allows us to still construct sheafification functors as in C.5.1.2, thus
enforcing in such very large sheaves ∞-categories all Giraud’s axiom (apart from accessibility). Moreover,
all the U-small constructions which could be performed in a U-small ∞-topos remain U-small in Stack.
We observe, that such a feature really depends on the possibility of defining Zar by means of covering sieves
consisting of compact morphisms. For instance, the same observation holds for the étale site, but should not
be taken for granted, since e.g. it does not hold for the fpqc-site.
Nevertheless, in order to focus on the more algebraic/geometric aspects of the subject, we choose to avoid
focussing too much on set-theoretical issues.

Lemma 4.1.2.6. (Zar is sub-canonical) The site Zar is sub-canonical, i.e. all representable presheaves
Spec(A) ∈ SchAff are indeed Zar-sheaves.

Proof. We need to show that, for each S := Spec(B) ∈ SchAff and each diagram Spec(p) : I → SchAff with
limit limSpec(p) = S, it holds Spec(A)(S) ≃ lim Spec(A)(Spec(p)).
Under Yoneda Lemma, the diagram Spec(p) into SchAff amounts to a diagram p into Ani(CRing), so that
our condition becomes Map(A,B) ≃ limMap(A,Bα); the latter clearly holds, since Map preserves limits in
the second variable. □

4.1.3 Schemes

The next definition generalizes open immersions in the formalism of functors of points.

Definition 4.1.3.1. (Open immersion,[15],4.5.2) Let j : U → S be a morphism in Stack. Then,
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� For S ∈ SchAff : j is an open immersion (write ↬) into an affine scheme iff

– j is a monomorphism;

– there exists a family of open immersions of affine schemes (jα : Uα ↬ S)α ⊆ SchAff which factors
through U by an effective epimorphism

∐︁
α Uα ↠ U (see C.1.0.7).

� For an arbitrary S ∈ Stack: j is an open immersion of stacks iff, for each s : Spec(A) → S A-point of
S, the base-change s∗(j) : U ×S Spec(A)→ Spec(A) is an open immersion into an affine scheme.

Given an open immersion j : U ↬ S in Stack, we call U an open sub-stack of S.

Remark. Intuitively, an open immersion of arbitrary stacks is defined to be ’locally on the base’ an open
immersion of stacks into an affine scheme. Moreover, as we will observe in 4.1.4.10, they are precisely
monomorphisms being also open maps of stacks.

We postpone statements and proofs of the properties of open immersions of stacks to the section consisting
of examples of relative schemes. Nevertheless, we will refer to them in showing many properties of schemes.

In the classical setting, schemes are defined to be local functors of points which admit a small cover by affine
open sub-functors. Let us extend such a definition to the setting of stacks.

Definition 4.1.3.2. (Zariski cover, [15],4.5.3) A Zariski cover of a stack S ∈ Stack is a family of open
immersions of stacks U := (jα : Uα ↬ S)α such that the canonical map j : U :=

∐︁
α Uα ↠ S is an effective

epimorphism in the very large ∞-topos Stack.
Furthermore, the family U is called an affine Zariski cover iff each Uα ∈ SchAff .

Remark. By C.1.0.8 and 4.1.4.8, (affine) Zariski covers are transitive: let (Uα ↬ S)α be a (affine) Zariski
cover of S ∈ Stack and consider (affine) Zariski covers (V αβ ↬ Uα)β of each Uα; then (V αβ ↬ S)α,β is again a
(affine) Zariski cover of S.

The next lemma relates affine Zariski covers of affine schemes and Zar-coverings.

Lemma 4.1.3.3. Consider an affine S = Spec(A) ∈ SchAff . Then, a small affine Zariski cover for S is a
Zar-covering.

Proof. Let (jα : Uα := Spec(Bα) ↬ S)α be open immersions in SchAff s.t. the canonical map j : U :=
∐︁
Uα ≃

Spec(
∏︁
Bα) ↠ S is an effective epimorphism in Stack. We want to show that j∗ : QCoh(S) → QCoh(U) is

conservative. We recall that, from the very definition, an open immersion of affine schemes is flat; hence, we
are done by the characterization of faithful-flatness 4.1.4.5. □

We observe, however, that the terminology is purposely confusing: Zariski covers are coverings for the
following site on Stack. Recall the construction of finitary sites as in C.5.2.2. Let S := EffEpi(Stack) be
the class of effective epimorphisms in Stack, and consider the sieves which are generated by Zariski covers.
EffEpi(Stack) satisfies the assumptions of C.5.2.2 by C.1.0.8.
EffEpi(Stack) is closed under large (so not very large) coproducts, so we can lift the assumptions of finiteness
in the generation of sieves, and our assignment specifies a Grothendieck site on Stack.
As already observed, Zar is sub-canonical, so that SchAff ⊆ Stack and we wonder whether Stack admits an
analogous site with coverings generated by (small) affine Zariski covers.
This is no longer true, because an arbitrary stack needs not admit an affine Zariski cover. Then, we will
define Sch ⊆f.f. Stack to be the maximal subcategory admitting such a site.

Definition 4.1.3.4. (Schemes, [15],4.5.4) Define a scheme to be a stack which admits a small affine Zariski
cover. Let Sch ⊆f.f. Stack be the full subcategory spanned by schemes.

Derived schemes enjoy stability properties analogous to those of the classical ones.

Lemma 4.1.3.5. (Open sub-prestacks are schemes) Let U ↬ X be an open immersion in PreStack with
X ∈ Sch. Then, also U ∈ Sch.
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Proof. Claim. U ∈ Stack.

Proof. Let S ∈ SchAff and consider any of its Zar-covering J ∈ Zar(S). According to C.5.3.3, we need to
check the sheaf condition relative to J , namely that limU|J ≃ U(S) ≃ Map(S,U).
Since X ∈ Stack, it holds in particular limX|J ≃ X(S) ≃ Map(S,X). Then, the open immersion of prestacks
j : U ↬ X induces the following square in PreStack:

limU|J Map(S,U)

limX|J Map(S,X)

j|J j∗

≃

We wish to show that such a square in Spc is cartesian. By [29],3.3.18, it amounts to check that the fibres
of the horizontal maps are equivalent.
To this end, take any point ϕ : ∆0 → Map(S,X) and let ϕJ : ∆0 → limX|J denote its copy in the limit.
Consider the following cub induced by taking the fibre over ϕ.

(lim j|J )−1(ϕJ ) limU|J

j−1
∗ (ϕ) Map(S,U)

∆0 limX|J

∆0 Map(S,X)

j|J

j∗
ϕJ

≃

ϕ

We will now freely apply results from the appendix on truncatedness. The leftmost vertical maps are
monomorphisms of spaces, so that they have (−1)-truncated fibres. Hence, by [24],5.5.6.14, also the compar-
ison map between fibres must be (−1)-truncated.
We wish to show that it is actually (−2)-truncated, i.e. an equivalence. In other words, we want it to have
contractible fibres. Since we already know them to be either empty or contractible, let’s prove that the fibre
over any lift ψ : S → U of ϕ : S → X is not empty, i.e. that there exists ψJ ∈ limU|J which corresponds to
ψ and lifts ϕJ .
But this can be checked at the level of the underlying classical prestacks (so after applying j∗) and turns out
to be true, because jcl : U cl ↪→ Xcl makes U cl into an open (hence local) subfunctor of the classical scheme
Xcl. ■

Claim. The stack U admits an affine Zariski cover.

Proof. Let (jXα : Xα ↬ X)α be an affine Zariski cover of X and consider the following cartesian squares
consisting of open immersions (by 4.1.4.8) and defining a Zariski cover of U (by C.1.0.8):

Uα := Xα ×X U →→

jUα
↓↓

Xα

jXα
↓↓

U
j →→ X

In particular, the fact that (jXα )∗(j) : Uα ↬ Xα is an open immersion into the affine scheme Xα is witnessed
by a family of open immersions (V αβ ↬ Xα)β of affine schemes s.t.

∐︁
β V

α
β ↠ Uα. We claim that (V αβ → Uα)β

is an affine Zariski cover of the latter, i.e. that each V αβ → Uα is an open immersion.
In other words, we need to show that, for each A-point of Uα, the base-change V αβ ×Uα

Spec(A)→ Spec(A)
is an open immersion. Our schemes sit in the following diagram with cartesian squares:
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V αβ ×Uα
Spec(A) →→

↓↓

V αβ

↓↓

↓ ←

op

↘↘
Spec(A)

∀ →→ Uα := Xα ×X U ↘
↙

op
→→

↖↙

op jUα
↓↓

Xα↖↙

op jXα
↓↓

U ↘
↙ j

op
→→ X

The post-composition of the upper-left square by the monomorphism Uα ↬ Xα is still cartesian and exhibits
V αβ ×Uα Spec(A) ≃ V αβ ×Xα Spec(A) ↬ Spec(A), as wished. ■ □

Proposition 4.1.3.6. (Stability under coproducts and base-change, [15],4.5.4) Sch is closed under coproducts
and base-change in Stack. In particular coproducts in Sch are disjoint and universal.

Proof. The very large ∞-topos Stack is in particular small bi-complete; let’s show that affine Zariski covers
are ’stable’ under such operations.
Base-change: The proof is analogous to the classical setting. First, observe that the fibre-product in Stack
of the angle Spec(A)→ Spec(B)← Spec(C) is the affine scheme Spec(A⊗LB C). Indeed, by an adaptation of

[24],5.1.3.2 the co-Yoneda embedding Spec sends colimits in Ani(CRing) to limits in SchAff , and the latter is
a subcategory of Stack because Zar is sub-canonical.
Then, let X → Z ← Y be an angle in Sch and form its fibre-product in Stack; we are left to show that the
latter admits an affine Zariski cover.
Let (jZα : Zα ↬ Z)α be an affine Zariski cover for Z ∈ Sch, so s.t.

∐︁
Zα ↠ Z is an effective epimorphism.

The base-changes jXα : Xα := X ×Z Zα → X and jYα : Yα := Y ×Z Zα → Y of jZα are again open immersions
by 4.1.4.8, and thus, by 4.1.3.5, they both live in Sch and form Zariski covers of X and Y , respectively.
Choose affine Zariski covers (jXα,β : Xα

β ↬ Xα)β and (jYα,β : Y αβ ↬ Yα)β . Then, again by applying 4.1.4.8
three times, the affine schemes

Xα
β ×Zα

Y αβ ≃ (Xα
β ×Z Y )×Zα

(Z ×Z Y αβ )

form a family of open immersions (Xα
β ×Zα

Y αβ ↬ X ×Z Y )α,β whose source is affine by the first part of the
argument. We are left to check the covering property. By the construction, we have the following cube where
↠ denotes effective epimorphisms.∐︁

β,α(X
α
β ×Zα Y

α
β )

∐︁
α,β Y

α
β

∐︁
α,β X

α
β

∐︁
Zα

X ×Z Y Y

X Z

Since coproducts in Stack are universal, also the top face is cartesian, so that the vertical map at the back-
right corner is an effective epimorphism. Let us briefly prove this latter fact, which holds more generally in
a semi-topos: call f such a map, and let fT denote the other vertical maps, for T = X,Y, Z; we need to
show that colim Č(f)|∆op ≃ cod(f). We claim that the canonical comparison map Č(f)→ Č(fX)×Č(fZ) fY̌
is an equivalence: the check nerve of a map u is level-wise a fibre-product of copies of the source of u over
its target, so that the canonical map is a level-wise equivalence and we conclude by [20],2.2.2. Then, being
the fT ’s all effective epimorphisms, we conclude by the fact that colimits in a semi-topos are universal.

Coproducts: Let {Xi}I be a family of schemes and choose an affine Zariski cover for each of them,
say Xi := (Xi

α ↬ Xi | α ∈ Ai). Then, ∪IXi forms an affine Zariski cover for
∐︁
I Xi. Indeed, effective

epimorphisms are stable under coproduct by [24],6.2.3.11. □
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Similarly to the case of classical prestacks, we can retrieve the ordinary notion of scheme as an example of
our theory.

Definition 4.1.3.7. (Classical schemes, [15],4.5.6) Call classical scheme a classical stack on the site
generated by Zar-coverings such that it admits a small affine Zariski cover.
The ordinary full subcategory Schcl ⊆f.f. Sh(CRingop ,Zar,Set) spanned by classical schemes retrieves the
ordinary notion of schemes. Here Set denotes consistently the large 1-category of large sets.
Moreover, for X ∈ Sch ⊆f.f. Stack, the underlying classical prestack Xcl ∈ PreStackcl takes values in Set
and is a classical scheme. Call it the underlying classical scheme of X.

Proof. Let X ∈ Sch be a Zariski-stack with an affine Zariski cover (jα : Uα ↬ X)α. We already know that
the underlying classical stack Xcl ∈ Schcl ⊆f.f. PreStackcl factors through Set. Hence, wish to show that the
family (jα)α reduces to a Zar-covering by ordinary open affine schemes.
The condition jα : Uα ↬ X open immersion reduces to the fact that the base-change along each A-point of
X is an open immersion into an affine scheme. At the level of classical schemes, for each x : Spec(A) → X
this corresponds to the rightmost cartesian square.

Uα ×X Spec(A) →→
↖↙

opx∗(jα)

↓↓

Uα↖↙

opjα

↓↓
Spec(A)

x →→ X

U cl
α ×Xcl Spec(π0A) →→

↖↙

↓↓

U cl
α↖↙

jclα
↓↓

Spec(π0A)
xcl

→→ Xcl

Notice that the rightmost square has the stated form, since pre-composition with the Yoneda embedding
j : CRing ↪−→ Ani(CRing) is a right-adjoint, so that it preserves limits, thus in particular monomorphisms
and fibre products.
Moreover, the fact that x∗(jα) is an open immersion is witnessed by a family of open immersions of affine
schemes (jαβ : V αβ ↬ Spec(A))β with pα :

∐︁
β V

α
β ↠ Uα ×X Spec(A) being an effective epimorphism.

At the level of classical schemes, each family {(jαβ )cl}β consists again of open immersions and the restriction
along the Yoneda embedding of the corresponding effective epimorphism amounts to an ordinary glueing of
schemes.
Indeed, restriction along the Yoneda embedding admits also a right-adjoint via a right Kan extension, thus
it is a bi-continuous functor; in particular, it preserves effective epimorphisms, so that, by C.5.3.7,

U cl
α ×Xcl Spec(π0A) ∼= colim Č(pα)|∆op ∼= colim Č(pα)|∆≤2

exhibits {V αβ }β as an open cover of the classical scheme U cl
α ×Xcl Spec(π0A).

In other words, each {(jβα)cl}β witnesses the fact that (x∗(jα))
cl is an open immersion into a classical affine

scheme. Thus, also jclα is an open immersion of classical schemes in the formalism of functors of points, as
desired. □

We close this section by introducing an important class of schemes, consisting of those which are ’quasi-
compact and quasi-separated’. Indeed, these can be described by finitely many affine charts, so that they
enhance algebraic compactness to the scheme-theoretic one.

Definition 4.1.3.8. (qcqs, [15],4.5.5) Consider two schemes X, Y ∈ Sch and a morphism f : X → Y
between them.

� X ∈ Sch is quasi-compact (qc) iff each Zariski cover (jα : Uα ↬ X |α ∈ I) admits a finite Zariski
sub-cover (jα : Uα ↬ X |α ∈ F ⊆ A finite) (see C.5.2.1).

� f : X → Y in Sch is quasi-compact iff the base-change X ×Y Spec(A) along any A-point of Y is qc, i.e.
iff it has qc fibres.

� Y ∈ Sch is quasi-separated (qs) iff the intersection U ×Y V of any two affine open sub-schemes
U, V ↬ Y is quasi-compact.
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Remark. As already observed, Sch ⊆f.f. Stack is the maximal subcategory which admits a (non-finitary)
site as in C.5.2.2 with respect to EffEpi(Stack) and those sieves generated by affine Zariski covers. Now, we
address the issue of defining a finitary site on Sch with respect to EffEpi(Stack) and with sieves generated
by finite affine Zariski covers. Again, Sch does not admit such a site, and the maximal subcategory on which
to restrict our investigation is precisely the full subcategory Schqc ⊆f.f. Sch of quasi-compact schemes.

4.1.4 Examples of Relative Schemes

All the examples of relative schemes we will consider will be of course defined compatibly with the Zariski
site, and a general strategy to prove statements about the properties of such maps will be a reduction to
their restrictions to affine charts.
A very favourable situation occurs when a property P of a morphism of stacks f : X → Y can be checked
”locally on the base”, meaning that, for each affine chart y of the base, it suffices to prove P on the restriction
of the fibre fy to an affine cover of Xy. Clearly such a feature needs not be true in full generality, but, if we
restrict to morphisms of schemes, then luckily it will be enjoyed by quite a big class of interesting examples.
Therefore, let us state it more precisely.

Definition 4.1.4.1. (Zar-locality on the base) Let f : X → Y be a morphism in Stack and consider an affine
Zariski cover Y of the base Y such that, for each affine chart y ∈ Y, the fibre Xy over the latter admits an
affine Zariski cover Xy := {jyα : Xy

α ↬ Xy}α. Then, we say that a property P of f is Zar-local on the base
iff P holds whenever each restriction f ◦ jyα satisfies P.

Remark. Let τ denote any ”small” site on SchAff . What we actually need is that, for a ”small” amount of
affine charts y ∈ Y ”τ -covering” the base, our notion of ”small τ -cover” may provide a suitable cofinal class
X ⊆f.f. SchAff

/Xy
on which to check algebraic properties of the quasi-coherent algebra OXy

∈ QCohCAlg(Xy)
(see the section on ”Animated Schemes”).
The notion of ”smallness” then depends on the feature at stake: for compactness properties we will need to
work with finitely many fibres Xy and to consider a limit over finite classes Uy; when dealing with (co)limits,
then we need small indexing diagrams - i.e. a small amount of fibres and small cofinal classes - so that we
can relax the size constraint on affine Zariski covers. In other cases, one might even extend the definition to
morphisms of stacks and not really care about size issues.

Affine morphisms.

Definition 4.1.4.2. (Affine maps, [15],4.6.1) A morphism of schemes f : X → Y in Sch is affine iff it has
affine fibres, i.e. for each x ∈ X(A), the fibre Y ×X Spec(A) ∈ SchAff is affine.

A morphism of stacks f : S → T in Stack is affine iff its schematic fibres are affine maps of schemes: for
each map X → T with X ∈ Sch, the base-change XS → X is affine in Sch. So, iff each A-valued point is an
affine scheme.

Remark. Let f : X → Y be a map in Sch with Y ∈ SchAff affine. Then, f is affine iff also X ∈ SchAff .
Indeed, if f is affine, base-changing along any isomorphic copy of Y forces X to be affine.

Proposition 4.1.4.3. (Stability properties of affine morphisms) Affine morphisms are stable under base-
change and composition.

Proof. Composition: Let X
f→ Y

g→ Z be affine morphisms in Sch. For any Spec(A) ∈ SchAff , consider the
following composition of cartesian squares:

X ×Z Spec(A) →→

↓↓

Y ×Z Spec(A) →→

↓↓

Spec(A)

∀
↓↓

X
f →→ Y

g →→ Z

and notice that Y ×Z Spec(A) ∈ SchAff because g is an affine morphism; hence, since f affine also X ×Z
Spec(A) ∈ SchAff , as needed.
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Base-change: Let f : X → Y in Sch be affine, and consider the base-changeX×Y Y ′ by any map g : Y ′ → Y
in Sch. For any Spec(A) ∈ SchAff , consider the following composition of cartesian squares:

X ′ ×Y Spec(A) →→

↓↓

Spec(A)

∀
↓↓

X ′ = X ×Y Y ′ g∗(f) →→

↓↓

Y ′

g

↓↓
X

f →→ Y

X ′ ×Y Spec(A) ∈ SchAff because f is affine, thus we conclude that also g∗(f) is such. □

Proposition 4.1.4.4. (Cancellation property of affine morphisms, [13],2.4.3) Let S
f→ T

g→ Z be composable
morphisms in Stack. If g is affine, then f is affine iff g ◦ f is such.

Proof. One direction follows from the stability under composition, as in 4.1.4.3. Conversely, assume that
both g and g ◦ f are affine. Assume for the moment the following Claim.

Claim. Reduce wlog to the composition pr ◦ i = 1S : S ↪→ T
affine−→ S.

Then, we are left to consider the following map in Sch obtained by base-changing along an arbitrary A-valued
point Spec(A) ∈ SchAff

/S :

1Spec(A) : Spec(A)
iSpec(A)

↪→ Spec(A)T
prSpec(A)−→

affine
Spec(A)

Now, being prSpec(A) : Spec(A)T → Spec(A) an affine morphism over an affine scheme, also the base-change

Spec(A)T is forced to be affine; hence, the map iSpec(A) : Spec(A) → Spec(A)T in SchAff must be affine, as
desired.

Proof. (Of the Claim) The following extension of a cartesian square
yields a factorization:

f : S
i
↪→ S ×Z T

pr2−→ T

By 4.1.4.3, affine morphisms stable under base-change, so both pull-
back projections pr1, pr2 are affine. Then, being they also stable under
composition (see ibid.), it suffices to show that i is affine. In particular,
we can replace g by the composite g ◦ pr2 := S ×Z T → T . ■

S f

↘↘

↓ ←

i

↘↘
S ×Z T

pr1

↓↓

pr2 →→ T

gAff

↓↓
S

g◦f

Aff
→→ Z

□

Flat morphisms.

We recall the definition of a flat map of prestacks: f : T → S in PreStack is flat iff f∗ : QCoh(S)→ QCoh(T )
is an exact functor. In particular, whenever f : S := Spec(B) → Spec(A) =: T is a map in SchAff such a
condition amounts to the flatness of the corresponding morphism f# : A→ B in Ani(CRing).
Let us record some stability properties of flat morphisms. First of all, notice that they are clearly stable
under composition.
Let us start with a characterization of faithful flatness, which will be used often to prove the locality of some
given properties, such as flatness itself.

Lemma 4.1.4.5. (Characterization of faithful flatness) For a map ϕ : A→ B in Ani(CRing) tfae:

1. ϕ is faithfully flat, i.e. the induced extension of scalars functor B⊗LA (−) : ModA → ModB is both exact
and conservative (see 3.4.0.3).

2. ϕ is flat and ϕ∗ : Spec(B)→ Spec(A) is an effective epimorphism in the (very large) ∞-topos Stack.
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Proof. (1) =⇒ (2) : We need to show that a faithfully flat map ϕ induces a surjection π0ϕ
∗ : Spec(B)cl =

Spec(π0B) → Spec(π0A) = Spec(A)cl on connected components; since also π0ϕ in CRing is faithfully flat,
this comes from the classical theory.

(2) =⇒ (1) : Let it be given a map f :M →M ′ in ModA which is sent to an equivalence ϕ∗(f) :M ⊗LAB →
M ′ ⊗LA B in ModB . ϕ is flat, so by 3.4.0.2 in homotopy we obtain morphisms in Mod(π0B):

πi(ϕ
∗(f)) : πi(M)⊗π0(A) π0(B)

∼=−→ πi(M
′)⊗π0(A) π0(B)

But now the effective epimorphism Spec(B) ↠ Spec(A) induces a surjection of classical schemes Spec(π0B) ∼=
Spec(B)cl ↠ Spec(A)cl ∼= Spec(π0B), i.e. π0(ϕ) : π0A → π0B in CRing is faithfully flat. Thus, each iso
πi(ϕ

∗(f)) comes from an isomorphism πi(f), and we infer the desired conservativity of ϕ∗ by Whitehead
Theorem. □

We are now ready to present the anticipated local properties of flatness.

Proposition 4.1.4.6. (Flatness is local, [26],2.7.) Let f : S → T be a morphism in Sch and assume S to
admit a finite affine Zariski cover, say {jα : Uα := Spec(Rα) ↬ S}α. Then f is flat iff each composite f ◦ jα
is such.

Proof. Choose a small set U ′
T := {U ↬ T |U ∈ SchAff

/T } of affine charts of T containing the Čheck nerve of an

affine Zariski cover for T , and let UT := ⟨U ′
T ⟩ ⊆f.f. Sch

Aff
/T denote the full subcategory of spanned by such a

set. Observe that the inclusion UT ⊆ SchAff
/T is cofinal.

Then, let U ′
S := f∗(UT ) ⊆f.f. Sch/S denote the base-change of UT along f ; notice that U ′

S needs not live into

SchAff
/S , unless f is affine. Hence, define US ⊆f.f. SchAff

S to be spanned by open affine refinements of U ′
S : for

each X ∈ U ′
S , choose an affine Zariski cover Z(X) := {jU : U ↬ X}U and let US ⊆f.f. SchAff

/S be the union
US := ∪(Z(X) |X ∈ U ′

S); observe that for a scheme T such a colimit is small, because both UT (hence U ′
S)

and each Z(X) are small.
Moreover, since both base-change and restriction to affine Zariski covers preserve limits of quasi-coherent
modules, remark that also US ⊆f.f. SchAff

/S is cofinal. In particular, the construction is independent of the
choices made.
In what follows, we adopt a more evocative terminology and refer to U(⋆) as the set of ”affine open patches
of (⋆)”. So, by construction we can regard the given map as being determined over affine open patches:

f∗ : QCoh(S) ≃ lim
(︁
QCoh(U) |U ∈ US

)︁
−→ lim

(︁
QCoh(V ) |V ∈ UT

)︁
≃ QCoh(T )

is the limit point f∗ = ψ(∞) of a natural transformation ψ : pS → pT between the restrictions pS :=
(QCoh(−)|US) and pT := (QCoh(−)|UT ).
Consider any (co)limit extension F : K → QCoh(S) of a finite K-indexed diagram and call H := F (∞) its
(co)limit point. Consider f∗ ◦ F : K → QCoh(T ). The exactness of f∗ amounts to proving that f∗(H) is
still the (co)limit point of the restriction (f∗ ◦ F )|K .
In what follows, will now refer to a straightforward adaptation of the proof of Claim 1.2 in 3.2.5.11 (it suffices
to change the notation, as prompted by the bold Remark right below it).
Observe that F is the limiting diagram of a cocone of natural transformations on US , say F : constUS

(K)→
pS , which represents F on the affine patches of S. Similarly, by taking limits over K point-wise on US one
obtains a diagram of natural transformations H : Map(K, pS(−)) → pS representing the (co)limit point H
on the affine patches of S.
Let H′ : Map(K, pT (−))→ pT denote the (co)limiting points over K of ψ ◦ F point-wise on UT , and call H ′

the limiting point of H′ over UT .
By the bold Remark in the proof of 3.2.5.11, we obtain the required commutativity f∗ ◦H ≃ H ′ provided
that this holds point-wise on US , i.e. that ψ ◦ H ≃ H′.

In other words, we proved that it suffices to show the statement for a map f : Spec(B) → Spec(A) with
Spec(A) an open patch of T . The given affine Zariski open cover induces one of Spec(B), so we are left to
consider the following claim.
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Claim. Let f : Spec(A) → Spec(B) be a map in SchAff , and let it be given any affine Zariski open cover
{jα : Spec(Bα) ↬ Spec(B)}α in SchAff . Then, f is flat iff, for each α, f ◦ jα is such.

Proof. We will actually prove a stronger result, namely that flatness being local for the fpqc-site, i.e. we
need not require the maps jα to be open immersions, but we assume precisely jα to be flat for each α and
j :

∐︁
Spec(Bα) ↠ Spec(B) to be an effective epimorphism. Algebraically, this means that each j#α : B → Bα

is flat and that j# : B →
∏︁
αBα is faithfully flat (see the characterization in 4.1.4.5 above). On the other

hand, our statement becomes that f# : A→ B be flat iff j#α ◦ f# : A→ Bα be such.
One direction is clear. For the converse claim, observe that it suffices to show that the composite j# ◦ f# :
A→ B →

∏︁
Bα is flat whenever j#α ◦ f# is such for each α. Indeed, being j∗ conservative, the exactness of

(j ◦ f)∗ would imply also that of f∗.
By 3.4.0.2, this means proving that π0(j

# ◦ f#) : π0A→
∏︁
π0(Bα) be flat and that

∏︁
πn(Bα) ≃ πnA⊗Lπ0A∏︁

π0Bα.
The second claim is the assumption that j#α ◦ f# is flat for each α. As for the first claim, instead it comes
from the classical theory: consider static algebras {Bi}ni=1 over A ∈ CRing; we will show that (

∏︁
iBi)⊗A (−)

is exact iff each Bi ⊗A (−) is such.
To this end, recall first that, in the abelian category Mod(A), finite products are isomorphic to finite co-
products and both functors are identified with the direct sum ⊕; in particular the functor ⊕ is exact and
commutes with the tensor product ⊗, so that (⊕iBi)⊗A (−) ∼= ⊕ ◦ {Bi ⊗A (−)}i, and the latter composite
turns out to be exact precisely when each Bi is A-flat. ■ □

Remark. We actually proved that the flatness of a map f : S → T in Stack can be checked locally on the
base, namely on a system of maps in SchAff whose targets range over all the affine open patches of the target
in some (possibly large) class UT being cofinal to SchAff

/T .
The compactness properties of the target T affect our understanding of the term ”locally”: such a verification
process can be simplified by reduction to those patches of a ”nice” affine Zariski ”cover” of the target (possibly
large unless T is a scheme). In practice, this means being able to choose ”nice” versions of UT .
Then, the given ”local” assumption on the source S shapes the verification itself, which is the content of the
last Claim.
In particular, for a map of schemes with a quasi-compact source, we obtain the fpqc-locality (and hence the
Zar-locality) of flatness.

Proposition 4.1.4.7. (Flatness is stable under base-change) Let f : X → Z be a morphism in Stack, and
consider any other map of stacks g : Y → Z. If f is flat, then also the base-change g∗(f) : X ×Z Y → Y is
flat.

Proof. By the previous result 4.1.4.6, the question is now local on Y and X ×Z Y . By 4.1.3.6, one can
determine an affine Zariski cover of the fibre-product by taking all possible fibre-products of suitable choices
of affine Zariski covers of X, Y , Z, locally on Z. So the statement reduces to check that the extension of
scalars of flat maps in Ani(CRing) is flat, which is the content of 3.4.0.4. □

Open immersions.

Proposition 4.1.4.8. (Properties of open immersions) Open immersions of stacks (or schemes) are stable
under composition and base-change.

Proof. Composition. Let j : X ↬ Y , j′ : Y ↬ Z be open immersions of stacks. Pick up an arbitrary
point s ∈ Z(A), and let it be given a family of open immersions witnessing j′ open immersion, namely
(j′α : U ′

α ↬ Spec(A))α with U ′
α := Spec(Bα) affine schemes s.t.

∐︁
U ′
α ↠ Y ×Z Spec(A) is an effective

epimorphism.
Then, being also j an open immersion, pick up families of open immersions as in the definition for each of
the points j′α ∈ Y (Bα), namely (jαβ : Uαβ ↬ U ′

α)α with Uαβ := Spec(Cαβ) affine schemes s.t.
∐︁
β U

α
β ↠ U ′

α is
an effective epimorphism.
Then, by C.1.0.8 also

∐︁
α,β U

α
β ↠ Y ×Z Spec(A) is an effective epimorphism.
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Hence, (j′α ◦ jβα : Uαβ ↬ U ′
α ↬ Spec(A))α,β is the family of open immersions of affine schemes witnessing j′ ◦ j

open immersion.

Base-change. Let j : U ↬ X be an open immersion of stacks and consider any g : Y → X in Sch. We need to
show that, for each A-point y : Spec(A)→ Y , the base-change g∗(j)×Y Spec(A) : U ×X Spec(A)→ Spec(A).
But this is clear, because the fibre-product is along [g ◦ y : Spec(A) → X] ∈ X(A), so that g∗(j) ×Y y ≃
j ×X (g ◦ y) is an open immersion by the assumption on j. □

Now, as the topological intuition would suggest, we prove that open immersions of stacks are open monomor-
phisms. Furthermore, this turns out to characterize open immersions whenever the source admits an open
cover.

Definition 4.1.4.9. (Open morphism) Let f : S → T in Stack be a morphism of stacks. Then,

� For T ∈ SchAff : f is open into an affine scheme iff there exists a family of open immersions of affine
schemes (jα : Uα ↬ T )α ⊆ SchAff which factors through S by an effective epimorphism

∐︁
α Uα ↠ T

(see C.1.0.7).

� For an arbitrary T ∈ Stack: f is open iff the base-change of f along any affine point of T is open into
an affine scheme.

Lemma 4.1.4.10. (Characterization of open maps) Let f : S → T in Stack be an open map of stacks; then,
post-composition by f preserves open immersions.

Proof. Let j : U ↬ S be an open immersion in Stack, and let s : Spec(R) → T be any R-valued point of
the target. We need to show that s∗(f ◦ j) : U ×T Spec(R) → U ×S Spec(R) → Spec(R) is again an open
immersion.
f is open, so there exists a family of affine open charts {Vj ↬ Spec(R)}j∈J which covers S ×T Spec(R).
Moreover, by 4.1.4.8 open immersions are stable under base-change, so also the first composite in s∗(f ◦ j)
must be an open immersion; hence, for each j there exists a family of affine open immersions {V jα ↬ Vj}α∈Ij
which induces an effective epimorphism

∐︁
Ij
V jα ↠ U ×T Spec(R).

Then, again by 4.1.4.8, we obtain a family of affine open immersions {V jα ↬ Vj ↬ Spec(R)}j,α indexed by
∪JIj . Finally, it covers U ×T Spec(R) because each Ij-indexed subfamily does and effective epimorphisms
are stable under coproducts. □

Remark. If S admits an open cover (e.g. is a scheme), then the condition above is clearly both necessary and
sufficient.

Closed immersions.

Definition 4.1.4.11. (Closed immersion, [15],4.6.2) Let i : Z → X be a morphism in Sch. Then,

� For Z := Spec(B), X := Spec(A) ∈ SchAff : i is a closed immersion (write ↛) of affine schemes iff
its transpose A→ B induces a surjection of connected components π0(A)→ π0(B).

� For arbitrary schemes Z, X ∈ Sch: i is a closed immersion iff

– i is affine;

– i is a closed immersion on affine fibres: for each x ∈ X(A), the base-change Z ×X Spec(A) ↛
Spec(A) is a closed immersion of affine schemes.

Equivalently, iff icl : Zcl ↛ Xcl is a closed immersion of ordinary schemes.

In such a case, we say that Z is a closed subscheme of X, as witnessed by the closed immersion i : Z ↛ X.

Remark. In particular, a subscheme Z of X is closed iff Zcl ⊆ Xcl is closed at the level of underlying classical
schemes.

87



Proposition 4.1.4.12. (Properties of closed immersions) Closed immersions are stable under composition
and base-change.

Proof. Composition: Let X
i↛ Y

j↛ Z be closed immersions in Sch, i.e. affine morphisms of schemes which
are closed immersions at the level of affine fibres. Composition of affine morphisms is again affine, so we are
left to check the second condition. For any Spec(A) ∈ SchAff , consider the following composition of cartesian
squares:

X ×Z Spec(A)
i′ →→

↓↓

Y ×Z Spec(A)
j′ →→

↓↓

Spec(A)

∀
↓↓

X
i →→ Y

j →→ Z

and notice that both Y ×Z Spec(A), X ×Z Spec(A) ∈ SchAff , because j, i are affine morphisms, so that their
composition clearly is such. Hence, the condition of being closed immersions on fibres induces surjections of
classical schemes proving that j ◦ i is a closed immersion at the level of fibres:

π0(A)
j′

↠ π0O(Y ×Z Spec(A))
i′

↠ π0O(X ×Z Spec(A))

Base-change: Let g∗(i) be the base-change in Sch of a closed immersion i : X ↛ Y along any morphism
g : Y ′ → Y . g∗(i) is again affine, so let’s check that it is also a closed immersion at the level of fibres.
Consider the following composition of cartesian squares.

X ′ ×Y Spec(A)
i′ →→

↓↓

Spec(A)

∀
↓↓

X ′ = X ×Y Y ′ g∗(i) →→

↓↓

Y ′

g

↓↓
X

i →→ Y

The rightmost vertical composite is some map Spec(A)→ Y , so, being i a closed immersion on affine fibres,
we obtain the needed epimorphism of underlying classical schemes:

(g∗(i)′)cl : π0(A)
(i′)cl

↠ π0O(X ×Y Spec(A)) ∼= π0O(X ′ ×Y Spec(A))

□

Proposition 4.1.4.13. (Complementary open immersion, [15],4.6.3) Let i : Z ↛ X be a closed immersion
of schemes and consider the sub-prestack of X obtained by base-change along the classical sub-prestack which
is informally defined on A-points as follows: U(A)0 := {x ∈ X(A)0 | Spec(A)×X Z = ∅}, where ∅ ∈ Stack is
the initial stack.
Then, U is a scheme and j : U ↬ X is called the complementary open immersion to i.

Proof. Claim. There exists a sub-prestack U of X, which has the stated A-points for A ∈ Ani(CRing). Call
it a complement of Z in X.

Proof. Let us first make sense of the definition of the prestack U . Let (−) ×X Z = i∗ : SchAff
/X → SchAff

/Z

denote the functor of schemes ”base-change by i”, as induced by restricting the base-change functor of the
large topos Stack to affine schemes; notice that this is well-defined, because i is an affine morphism. Let
I := (i∗)−1(∅) ⊆ SchAff

/X denote the pre-image under i∗ of the full subcategory ∅ ⊆f.f. SchAff
/Z , as in the

following cartesian square in Cat∞.

I := (i∗)−1(∅) →→
↙ ↖

↓↓

∅ ↙ ↖

↓↓
SchAff

/X
i∗ →→ SchAff

/Z
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Since taking pre-images preserves faithfully full monomorphisms, I ⊆f.f. SchAff
/X is a full subcategory of affine

schemes over X. Moreover, the latter comes equipped with a canonical forgetful functor ev0 : I → SchAff .
We claim it to be a right-fibration.
In order to see this, first notice that ev0 : SchAff

/X → SchAff is a right-fibration, so that by [20],3.1.22 all

morphisms in SchAff
/X (thus a fortiori all those in I) are ev0-cartesian. Hence, it suffices to show that each

morphism in SchAff with target in I admits a lift in I. But this is clear, since for each Spec(B)→ Spec(A)
s.t. Z ×X Spec(A) ≃ ∅, one has that also Z ×X Spec(B) ≃ (Z ×X Spec(A)) ×Spec(A) Spec(B) ≃ ∅; hence,
Spec(B)→ Spec(A), having both source and target in I ⊆f.f. SchAff

/X , must itself live in I, as wished.
Therefore, the right-fibration ev0 : I → SchAff represents a prestack U : SchAff ≃ Ani(CRing)op → Spc
under the Straightening Theorem [24],3.2:

I →→

ev0RFib∋
↓↓

Spc∗

πuniv

↓↓
SchAff U →→ Spc

The action of U on objects retrieves the classical Grothendieck construction, so that, for each Spec(A) ∈
SchAff

/X , one has that U(A) := (i∗|SchAff
Spec(A)//X)−1(∅) ∈ Spc yields the corresponding fibre of ev0.

Moreover, under the aforementioned Straightening equivalence of ∞-categories RFib(SchAff) ≃ P(SchAff),
the fully faithful inclusion I ⊆ SchAff

/X allows us to regard j : U ↪→ X as a subobject in PreStack. ■

Claim. U ×X Z ≃ ∅.
Proof. Form the fibre-product U ×X Z and consider the following diagram in PreStack induced by any of its
A-points:

Spec(A)

Spec(A) Spec(A)×X Z ≃ ∅

U ×X Z Z

U X

ev2◦α
∃!

α

ev2

i

j

The existence of a map Spec(A) → Spec(0) ≃ ∅ implies that A is a 0-algebra, and hence is trivial. In other
words, SchAff

/U×XZ ≃ ∗ ≃ SchAff
/∅ and we conclude by the Yoneda Lemma in PreStack. ■

Claim. Any complement U of Z in X is a stack.

Proof. Follow the proof of 4.1.3.5 until the last step to reduce the statement to the case of underlying classical
schemes. There, U cl ↬ Xcl is an open complement of the closed classical subscheme Zcl ↛ Xcl, so we can
apply 4.1.3.5. ■
Remark. We do not really need this last claim, we make such an observation just because we defined closed
immersions only for stacks.

Claim. j : U ↬ X is an open immersion of stacks.

Proof. Notice first that wlog X ∈ SchAff .
Indeed, we need to show that the base-change along each A-point of X yields an open immersion U ×X
Spec(A) ↬ Spec(A). On the other hand, from the very definition we know that Z ×X Spec(A) ↛ Spec(A) is
a closed immersion of affine schemes. Now, the intersection of the two sub-stacks is empty:

(U ×X Spec(A))×Spec(A) (Z ×X Spec(A)) ≃ U ×X Z ×X Spec(A) ≃ ∅ ×X Spec(A) ≃ ∅
because by C.1.0.8 we can cover the last fibre-product by the empty set. Thus, we retrieve our setting over
the arbitrarily chosen affine scheme Spec(A).
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Therefore, we need to find open immersions Uα ↬ X in SchAff s.t.
∐︁
Uα ↠ U is an effective epimorphism.

Observe that, for each Spec(A) ∈ SchAff
/U , Spec(A) ×X Z ≃ ∅. Moreover, recall that by the ∞-Density

Theorem [24],5.1.5.3, we can write colimSchAff
/U

for ≃ U , and (by the sheaf condition on covers) the colimit can

be computed by restricting along the cofinal inclusion U ⊆f.f. SchAff
/U of the wlog small family of open affine

schemes in U ; hence, by [24],6.2.3.13, we conclude that
∐︁
U ↠ colimU for ≃ U is an effective epimorphism.

□

Morphism of Finite Presentation.

Let us start by introducing some topological compactness property, namely the relative notion of qcqs
schemes. In view of the section on ”Animated Schemes”, such topological statements and proofs are en-
tirely classical, and hence omitted.

Definition 4.1.4.14. (Quasi-compact, separated and quasi-separated) A morphism of schemes f : X → Y
is quasi-compact (or qc for short) iff there is an affine Zariski cover Y of the base Y with quasi-compact
pre-image f−1(y) ∈ Schqc, iff every A-valued point y ∈ Y (A) has quasi-compact pre-image f−1(y).

A morphism of schemes f : X → Y is (quasi-)separated (or qs for short) iff its diagonal ∆X/Y : X →
X ×Y X is a closed immersion (resp. quasi-compact).

Example 4.1.4.15. qc: Closed immersions are always quasi-compact, but an open immersion needs not be.
Separated: (Maps of) Affine schemes are always separated.

Proposition 4.1.4.16. (Properties of qcqs and separated) ”Being qc” and ”Being separated (resp. qs)” are
stable under base-change, composition, and Zar-local on the base.
For a separated morphism f : X → Y in Sch with Y separated, then the intersection of any two affine
subschemes of X is again affine.

We now enlarge the picture by adding some algebraic compactness, namely finite presentation. Since in dag
we work with homotopy colimits, compactness expresses now in a broad ranges of facets: see the section on
”Almost Perfect Modules” for the algebraic context. However, we will not really need such flexibility at the
level of morphisms of schemes, so we state only the direct analogous of the classical notion.

Definition 4.1.4.17. (Finite presentation) A morphism of schemes f : X → Y in Sch is locally of finite
presentation (or lfp for short) iff, Zar-locally on the base Y (see 4.1.4.1), it is of the form Spec(B)→ Spec(A)
in SchAff for B a compact A-algebra. More precisely:

� for f : X := Spec(B) → Spec(A) =: Y in SchAff : f corresponds to a finitely presented A-algebra
f ♭ : A→ B, i.e. B ∈ (CAlg∆A)

fp is compact.

� for an arbitrary f : X → Y in Sch: for any chart y : Spec(A) → Y of an affine Zariski cover Y of the
base and affine Zariski covers Xy := {Xy

α ↬ Xy}α of the fibres Xy := X ×X Spec(A) → Spec(A), the

restriction f|Xy
α
: Xy

α → Spec(A) in SchAff is lfp.

The morphism f : X → Y in Sch is furthermore of finite presentation (or fp for short) iff it is quasi-compact
and quasi-separated and locally of finite presentation.

Warning. In view of the introductory paragraph, for a morphism of schemes f : X → Y being lfp is not
equivalent to being flat with f cl lfp. In particular, in general it holds only that f lfp implies f cl lfp.

Example 4.1.4.18. Any open immersion is lfp and fp iff it is quasi-compact.

Proposition 4.1.4.19. (Properties of lfp morphisms) ”Being lfp” is stable under composition, base-change,
and is fpqc- and Zar-local on the base.
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Proof. Zariski locality follows from the very definition of lfp, so that the two stability claims become straight-
forward by the stability properties of compact algebras. Finally, let’s consider fpqc-locality. We can assume
wlog that f : Spec(B) → Spec(A) be affine and - for ϕ := f ♭ : A → B in CAlg∆A - we need to prove that
wlog, for any commutative square whose horizontal maps are faithfully flat and the ai’s and bi’s are flat:

A
∏︁
ai→→ →→

ϕ

↓↓

∏︁
iAi∏︁

ϕi

↓↓
B

∏︁
bi→→ →→ ∏︁

iBi

B is a compact A-algebra whenever each Bi is a compact Ai-algebra.

Observe that, with a similar argument to the proof of 3.6.1.10,Claim1 (replace the presheaf Mod with CAlg∆

of 3.2.3.1), our assumption implies in particular that
∏︁
Bi is

∏︁
Ai-compact, and hence - being

∏︁
ai faithfully

flat - also A-compact. So, we are left to prove the following statement.

Claim 1.Consider the following triangle of animated rings, where the horizontal map ψ is faithfully flat.
Then, B is A-compact whenever C is such.

A

↙↙ ↘↘
B

ψ →→ →→ C

Proof. ψ : B → C is faithfully flat, i.e. the induced extension of scalars functor C ⊗LB (−) is both exact
(between the stabilized categories of modules) and conservative. So, one is left to test the compactness
condition in Ani(CRing) against any filtered diagram p : I → ModB . Due to time constraints we omit the
rest of the argument. □

Proposition 4.1.4.20. (Cancellation property of lfp morphisms) Let g ◦ f : X → Y → Z be a choice of a
composition in Sch, and assume g to be locally of finite presentation. Then, f is locally of finite presentation
iff g ◦ f is locally of finite presentation.

Proof. One direction follows from the stability under composition of lfp morphisms. Conversely, assume that
both g ◦ f and g are lfp and let’s profe that also f is such. By the locality on the base, we are left to show
wlog the algebraic counterpart: let ψ ◦ ϕ : A → B → C be a composition in CAlg∆A , and assume that both
B and C are A-compact; then, C is also B-compact.
In order to see this, let’s test the compatibility of MapB/(ψ

∗C,−) with filtered limits against any filtered

diagram p : I → CAlg∆B :

MapB/
(︁
ψ∗C, lim p

)︁
≃ MapA/

(︁
(ψ ◦ ϕ)∗C, ϕ∗(lim p)

)︁
×Map(A,B) {ϕ}

≃(i)

(︃
limMapA/

(︁
(ψ ◦ ϕ)∗C, ϕ∗p

)︁)︃
×Map(A,B) {ϕ}

≃(ii) lim

(︃
MapB/

(︁
(ψ)∗C, p

)︁)︃
where (i) follows by the A-compactness of C together with the fact that restriction of scalars along ϕ preserves
sifted colimits, since ModB is cpt+proj-generated and its left-adjoint B ⊗LA (−) preserves cpt+proj’s; and
(ii) is due to the universality of colimits in the ∞-topos Spc. □

Proper Morphisms. We now introduce what should be regarded as a ”compact” relative scheme. This
is a topological notion, hence intrinsically classical.

Definition 4.1.4.21. A morphism of schemes f : X → Y in Sch is proper iff the underlying morphism
f cl : Xcl → Y cl of classical schemes is such.
Equivalently, iff it is separated, of finite type (i.e. OX is a finitely generated OY algebra) and universally
closed (i.e. any base-change is a closed map).
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Remark. The equivalence of the two definitions above is evident: closedness - so also separatedness - is
defined at the level of the underlying classical schemes, whereas being of finite type amounts to the existence
of a surjection (on π0) OnY ↠ OX in QCohAlg(OY ), which supplies for a system of local generators.

Let us now record some properties of proper morphisms. They can be all immediately reduced to the classical
case, so the proofs are omitted; see e.g. [37],29.41 for a more complete discussion.

Proposition 4.1.4.22. (Properties of proper morphisms) ”Being a proper morphism of stacks” is local on
the base and stable under base-change and composition.

4.2 Schemes as Animated Ringed Spaces

In this section we generalize the classical approach to algebraic geometry. Namely, after having enhanced
the ordinary category GS of geometric space to the ∞-category ToplocAni(CRing) of animated ringed spaces (an
example of ’structured ringed spaces’, see [22]), we will equivalently characterize schemes as a special class
of hypercomplete objects of the latter.
Among schemes, we will characterize those which are affine by means of a universal property; as a by-product,
this will allow us to introduce the structure sheaf of a scheme and to regard it as a forgetful functor.
Thereafter, a brief digression on the truncation of schemes and on the relationship between Sch and Schcl

will follow.
Finally, we conclude our discussion by a result comparing our current point of view with the approach via
stacks.

4.2.1 Animated Ringed Spaces and Schemes

In this subsection we introduce the notion of animated ringed spaces. For expository reasons, the more
technical results will be discussed in the Appendix on ∞-Sheaves.

Definition 4.2.1.1. (Animated Ringed Spaces, [26],1.1.2.5) With notation as in Construction C.5.4.2, define
the∞-category of animated ringed spaces by TopAni(CRing). An element of the latter has the form (X,OX)
and we refer to OX as the structure sheaf of the space X.

Remark. The∞-category TopNCRing retrieves the nerve of the ordinary category of ringed spaces, consisting
of topological spaces equipped with a sheaf of static rings.

Construction 4.2.1.2. (The underlying ringed space, [26],1.1.2.6) Let X ∈ Top be a topological space and
consider a MOD-valued sheaf F ∈ ShMOD(X), where we recall that MOD is the ∞-category of ”animated
modules with animated ring of scalars” as in 3.2.5.1.
For each n ≥ 0, the ordinary presheaf [U ↦→ πnF(U)] ∈ Psh(X,Ab) can be sheafified to

πnF := L(U ↦→ πnF(U)) ∈ ShAb(X)

In particular, for (X,OX) ∈ TopAni(CRing), this yields sheaves

� n = 0 : π0OX ∈ ShCRing(X);

� n > 0 : πnOX ∈ ShMod(π0OX)(X)

So, we define the underlying ringed space functor by taking the 0-truncation:

π0 : TopAni(CRing) −→ TopCRing

(X,OX) ↦−→ (X,π0OX)

Warning. ([26],1.1.2.7) For each n ≥ 0 and U ∈ Open(X), the canonical map πn(OX(U)) → (πnOX)(U)
needs not be an isomorphism, because we had to sheafify the n-th homotopy structure sheaf. However, for
any animated ringed space lying over an affine scheme, taking sections of homotopy structure sheaves is the
same as considering the homotopy groups of their evaluations. This motivates the third requirement in the
definition of a scheme.
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Definition 4.2.1.3. (Animated scheme, [26],1.1.2.8) A (connective) animated scheme is an animated
ringed space (X,OX) such that:

1. the underlying ringed spaces (X,π0OX) ∈ Schcl is a classical scheme;

2. for each n ≥ 0, πnOX ∈ QCoh(Spec(OX(X))cl);

3. For each open subset U ⊆ X with affine underlying classical geometric space (U, π0(OX)|U ) ∈ SchAff,cl,
the canonical map πn(OX(U))→ (πnOX)(U) is an isomorphism.

4.2.2 The Spectrum of an Animated Ring

In the current subsection, we define affine animated schemes as ”homotopy-coherent data” lying over an
affine classical scheme. Our next concern will then be enhancing the usual glueing procedure, so as to recover
classical algebraic geometry as the static part of our construction.
We incidentally observe that such an approach will amount to defining the free quasi-coherent module of
rank one OSpec(A) on an affine animated scheme Spec(A). Then, the aforementioned ”glueing procedure”
will allow us to generalize our construction to an arbitrary base. This will be made more precise in the next
section on Locally Free Sheaves.

Definition 4.2.2.1. (Affine, [26],1.1.4.1) For an animated ring A ∈ Ani(CRing), consider the topological
space |SpecA| := Spec(π0A) ∈ Top lying under the spectrum of A, namely the spectrum of the corresponding
underlying classical ring. We say that an open subset U ∈ Open(|Spec(A)|) is affine iff U ⊆ Spec(A)cl is an
open affine chart.

Proposition 4.2.2.2. (Spectrum of an animated ring, [26],1.1.4.3) For an animated ring A ∈ Ani(CRing),
there exists a sheaf OA ∈ ShAni(CRing)(|Spec(A)|) together with a map ϕ : A → OA(|Spec(A)|) such that the
following properties hold:

1. For each x ∈ π0A, let D(x) := {p ∈ |Spec(A)| |x /∈ p} denote the affine chart of Spec(A)cl where x is
invertible; then, the composite

A
ϕ−→ OA(|Spec(A)|) −→ OA(D(x))

exhibits OA(D(x)) as the localization A[x−1] in Ani(CRing) (see 3.4.1.3).

2. At the level of connected components, the composite

π0A
π0ϕ−→ π0OA(|Spec(A)|) −→ (π0OA)(|Spec(A)|)

induces an isomorphism which retrieves π0OA ∼= Oπ0A in ShCRing(SpecA
cl).

3. Spec(A) := (|Spec(A)|,OA) ∈ TopAni(CRing) is an animated scheme. Define the spectrum of the
animated ring A to be Spec(A).

Remark. In particular, being localizations defined via a universal property, by (1) the map ϕ turns out to be
an equivalence with quasi-inverse OA(|Spec(A)|) ≃ OA(D(1)) ≃ A[1−1] ≃ A.

Remark. (Classical case, [26],1.1.4.7) With reference to C.5.4.6, let X := |SpecR| for some static ring
R ∈ CRing, C := CRing, and Ue := {D(r) | r ∈ R}. Then, there exists an essentially unique classical affine
scheme (X = |SpecR|,OX) ∈ SchAff,cl, together with a map ϕ : R→ OSpec(R)|Spec(R)| as in the statement.
Indeed, by C.5.3.7 descent for sheaves with values in ordinary categories retrieves the classical construction.

Proof. (of 4.2.2.2) The proof of 4.2.2.2 relies on a couple of technical results from the Appendix on∞-Sheaves,
namely C.5.4.3 and C.5.4.6. We will also import our notation from such a digression.

(∃) : Let X := |Spec(A)| ∈ Top and consider the quasi-compact basis Ue := {D(x) | x ∈ π0A} consisting
of all the open affine subsets D(x) of X where x is invertible. By C.5.4.6 it suffices to define the wannabe
structure sheaf O := OA : Open(X)op → Ani(CRing) on its restriction Oe to Ue.
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Claim. There exists an essentially unique sheaf Oe ∈ Sh(Ue,CAlg∆A) with values Oe(D(x)) ≃ A[x−1] ∈
CAlg∆A . In particular, π0Oe ≃ O|Spec(A)cl in Sh(X,CRing).1

Proof. Let O := OSpec(π0A) denote the structure sheaf of the underlying classical scheme Spec(A)cl, which

comes equipped with a natural family of localization maps ϕ0 : {ϕ0(x) : π0A→ π0A[x
−1] = O(D(x))}D(x)∈Ue

.

Let Oe := O|Ue
: Uop

e → π0A-Alg denote its restriction to the quasi-compact basis Ue. By [23],7.5.0.6, there

exists an essentially unique presheaf Oe : Uop
e → CAlg∆A lifting Oe in such a way that, for each D(x) ∈ Ue, the

value of Oe(D(x)) ∈ CAlg∆A is a (essentially unique) choice of a localization of A at x via ϕ(x) : A→ A[x−1]
(see 3.4.1.3).
Let us check that Oe ∈ P(Ue,CAlg∆A) does indeed define a sheaf. In other words, we have to show the
following property: for each finite family I ⊆ Ue of distinguished opens of X, let γ : Pf (I)→ U ′(I)op be the
right-cofinal map of C.5.4.5,ii; then, the canonical map θ : Oe(∪I)→ limO ◦ γ is an equivalence.

We will momentarily drop the subscript e in the notation. Observe first that the map O(∪I) →
∏︁
I O(i)

in CAlg∆A is faithfully flat, because it is flat (by the properties of localizations) and the underlying map on

Oe ∼= π0O induced by the cover I of ∪I is also faithfully flat. Hence, it suffices to prove that θ is equivalence
after tensoring with each O(i), i.e. that each of the following maps is an equivalence:

θi : O(i)→ O(i)⊗LO(∪I) limO ◦ γ
Now, since O(i)⊗LO(∪I) (−) : ModEx

O(∪I) → ModEx
O(∪I) is an exact functor of stable∞-categories (see the proof

of 3.6.1.9, Claim 2), it preserves finite limits, so that we are left to consider the maps:

θi : O(i)→ lim
(︁
O(i)⊗LO(∪I) O ◦ γ

)︁
≃ lim

(︁
O ◦ [S ↦→ γ({i} ∪ S)]

)︁
where the latter equality is obtained by 3.4.1.4. 2

Now, the construction [S ↦→ O ◦ γ({i} ∪ S)] is the right Kan extension of its restriction to the over-poset
Pf (I)/i of those finite subsets of I containing i (recall that the order is given by the reverse inclusion). But

now, i = max
(︁
Pf (I)/i

)︁
≃

(︁
Pf (I)/i

)︁term
, so that the canonical map θi is an equivalence as desired. ■

Define O := Ran(Oe) ∈ P(X,Ani(CRing)) to be a choice of a right Kan extension of Oe. By the construction,
we conclude that O ∈ Sh(X,Ani(CRing)) is furthermore a sheaf, as in C.5.4.3. We are now left to check the
stated properties.

(1) : This follows by the construction: O(D(x)) = Oe(D(x)) ≃ A[x−1].

(2) : By construction, the construction [U ↦→ π0O(U)] ∈ Psh(|Spec(A)|,CRing) agrees with the classical
structure sheaf O = π0O on the quasi-compact basis Ue, so that they must be isomorphic in Sh(X,CRing)
by C.5.4.6.

(3) : Let us check that (|Spec(A)|,O) ∈ TopAni(CRing) is indeed an animated scheme.
The underlying geometric space is clearly an affine scheme by construction, so the first requirement is met.
Then, let’s check that each homotopy group of the structure sheaf is a quasi-coherent module on the underlying
affine scheme. For any fixed n ≥ 0, the homotopy group πnA ∈ Mod(π0A) is the global section of a

(wlog classical) quasi-coherent module ˜︃πnA ∈ QCoh(Spec(A)) given by ˜︃πnA(D(x)) = π0A[x
−1]⊗π0A πnA

∼=
πnA[x

−1] = πnO(D(x)) (since A[x−1] is A-flat) on distinguished opens. By C.5.4.6, we can lift the equality

on Ue to the whole of |Spec(A)|, so that πnO ∼= ˜︃πnA ∈ Sh(X,CRing) as quasi-coherent sheaves.

Remark. In particular, this implies the flatness of O on each open affine chart Spec(π0B) ↬ X.

Indeed, being π0B a flat π0A-algebra by assumption, πnO(Spec(π0B)) ≃ ˜︃πnA(Spec(π0B)) ∼= π0B⊗π0A πnA;

moreover, π0O(Spec(π0B)) ∼= ˜︃π0A(Spec(π0B)) ∼= π0B.

1Lurie works in greater generality: consider the quasi-compact basis Ue consisting of all the open affine charts of X; then,
there exists an essentially unique sheaf Oe ∈ Sh(Ue,CAlg∆A) taking values into flat A-algebras via ϕU : A → Oe(U) and retrieving

π0Oe(U) ∼= Oe(U) on connected components. This is obtained via an analogous construction, the only difference being that he
constructs more generally Oe as an étale-lift (see [23],7.5.0.6) of Oe : Uop

e → π0A-Algét.
2The argument works also in greater generality (as proven by Lurie in [26],1.4.4.3): if we assume the basis Ue consisting

of those open affine charts of X, then we can lift via [23],7.5.0.6 the classical fibre-product identity O(i) ⊗O(V ) O(∩S) ∼=
O
(︁
i∩ (∩S)

)︁ ∼= O
(︁
∩ (S ∪{i})

)︁
. (In order to avoid confusion: for a set T of spaces, we write ∩T := ∩t∈T t as a #T -ary function.)
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Finally, we need to show that the canonical map πn(O(U)) → (πnO)(U) is an isomorphism over each open
affine patch (U = Spec(π0B), π0(O)|U ) of the classical geometric space lying under (X,O).
First, let us observe that wlog n = 0: being πn(O(U)) a flat π0A-algebra, we can write πn(O(U)) ∼=
π0(O(U)) ⊗π0A πnA; on the other hand, (πnO)(U) ∼= ˜︃πnA(Spec(B)) ∼= π0B ⊗A πnA, so we are left to show
that π0(O(U)) ∼= π0B = (π0O)(U).
The latter isomorphism is a consequence of our construction: with a slight abuse of notation, let I :=
{D(i)}i∈I ⊆ Ue be a finite cover of U = ∪I ∈ SchAff,cl by distinguished opens of X; then, as before the map
O(U)→

∏︁
I A[i

−1] is faithfully flat and, after having tensored by O(D(i)) ∼= A[i−1], one is left to check that
π0(A[i

−1]) ∼= (π0A)[i
−1]; finally, the latter holds true by virtue of 3.4.1.3. □

Warning. ([26],1.1.4.9) We can regard a ring R ∈ CRing as a static object in Ani(CRing)≤0. This yields a
possible conflict in terminology, since we adopt the same notation for both:

� Spec(R) ∼= (|Spec(R)|,O) ∈ Sh(|Spec(R)|,CRing), obtained by embedding into ∞-sheaves of rings the
structure sheaf of the classical scheme;

� Spec(R) ∼= (|Spec(R)|,O) ∈ Sh(|Spec(R)|,Ani(CRing)) as in 4.2.2.2.

The two objects are indeed different. However, as observed by Lurie they are interchangeable data:

� O ∼= π0O;

� O ≃ L(O), where L : P(|Spec(R)|,Ani(CRing)) → Sh(|Spec(R)|,Ani(CRing)) is the sheafification
functor and we let again O denote its copy in the image of the fully faithful embedding induced by the
0-truncation of coefficients.

4.2.3 The ∞-Category of Animated Schemes and the Universal Property of Spec

Our next aim is to define an ∞-category Sch′ of all the animated schemes. Similarly to the classical case,
we will set up the theory within an ambient ∞-category enhancing the ordinary one of locally ringed spaces;
this will give substance to the aforementioned idea of a ”glueing procedure”.
In the next subsection, we will finally observe that our two approaches to the theory of schemes in the end
produce an equivalence of ∞-categories Sch ≃ Sch′.

Definition 4.2.3.1. (Animated locally ringed spaces, [26],1.1.5.3-4) An animated ringed space (X,OX) ∈
TopAni(CRing) is an animated locally ringed space iff its underlying ringed space (X,π0OX) ∈ GS is a

geometric space (or locally ringed space). In particular, observe that animated schemes are in ToplocAni(CRing).
Define the ∞-categories of animated locally ringed spaces and animated schemes by the chain of ”full
subcategories” Sch′ ⊆f.f. ToplocAni(CRing) ⊆f.f. TopAni(CRing) sitting in the following diagram of cartesian
squares:

Sch′ →→

π0

↓↓

ToplocAni(CRing)
→→

π0

↓↓

TopAni(CRing)

π0

↓↓
Schcl

↘ ↙ →→ GS ↘
↙ →→ TopCRing

Remark. In particular, MapSch′
(︁
(X,OX), (Y,OY )

)︁
≃ MapToploc

Ani(CRing)

(︁
(X,OX), (Y,OY )

)︁
, so that a morphism

(X,OX)→ (Y,OY ) in Sch′ is a pair (f, α) in TopAni(CRing) such that α : OY → f∗OX in Sh(Y,Ani(CRing))
is a local map at each stalk (π0α)f (x) for x ∈ X.

The next result characterizes affine schemes by means of a universal property: as it will be manifest from
the proof, this enhances the classical adjunction Oop ⊢ Spec induced by HomSchcl

(︁
(X,OX),Spec(R)

)︁
≃

HomCRing

(︁
R,OX(X)

)︁
for each ring R ∈ CRing and geometric space (X,OX) ∈ GS.

We start with a technical Lemma, which amounts to the truncation adjunction π0 ⊢⊆ for Sh(|Spec(A)|,Ani(CRing)).
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Lemma 4.2.3.2. (Technical lemma, [26],1.1.8.1) Let (X,π0OX) ∈ TopAni(CRing) be a static animated ringed
space. Then, for any (Y,OY ) ∈ TopAni(CRing):

MapTopAni(CRing)

(︁
(X,π0OX), (Y,OY )

)︁ ≃−→ HomTopCRing

(︁
(X,π0OX), (Y, π0OY )

)︁
In other words, taking the 0-truncation induces a fully faithful functor of slices under (X,π0OX).

Proof. We wish to show that, for any given continuous map f : X → Y in Top, the following functor of
mapping spaces is an equivalence:

MapSh(Y,Ani(CRing))

(︁
OY , f∗π0OX

)︁ π0−→ HomSh(Y,CRing)

(︁
π0OY , f∗π0OX

)︁
Provided the commutativity of pushing-forward along f and taking the underlying ringed space, this is a
consequence of the fact that we defined the 0-truncation adjunction π0 ⊢⊆ for homotopy structure sheaves
as the composite of the sheafification localization L ⊢⊆ after the 0-truncation adjunction πPsh

0 ⊢⊆Psh for
presheaves of A.5.0.7.
Hence, we are left to show that f∗(π0OX) ≃ π0(f∗OX) as static sheaves of rings.
In order to see this, it suffices to check the isomorphism as static presheaves, i.e. on each open patch. To this
end, observe that the presheaf of static rings [U ↦→ π0OX(U)] is already a sheaf, so that π0OX = πPsh

0 OX
and it satisfies π0(OX(U))

∼=→ (π0OX)(U) for each open subset U ∈ Open(X). Thus, for each V ∈ Open(Y ),
we have the desired isomorphism:

π0(f∗OX(V )) = π0(OX(f−1V )) ∼= (π0OX)(f−1V ) = (f∗(π0OX))(V ) □

In particular, the previous technical Lemma 4.2.3.2 allows us to retrieve classical schemes and (locally) ringed
spaces as 0-truncations of our new gadgets.

Corollary 4.2.3.3. Suitable restrictions of the 0-truncation functor π0 : TopAni(CRing) → Top(CRing) induce
the following equivalences of ∞-categories:

� ([26],1.1.8.2) (TopAni(CRing))0 ≃ TopCRing;

� ([26],1.1.8.3) (ToplocAni(CRing))0 ≃ GS;

� ([26],1.1.8.4) Sch′0 ≃ Schcl.

([26],1.1.8.5) Moreover, a homotopy inverse to the latter equivalence supplies a fully faithful embedding
Schcl ↪→ Sch′ with essential image spanned by static animated schemes.

Proof. The first equivalence follows from the essential surjectivity of π0. The second one is then automatic.
Let’s prove the third statement.
By the second claim, we can regard each classical scheme (X,O) ∈ Schcl as a static animated locally ringed
space (X,π0OX) ∈ (ToplocAni(CRing))0. Finally, the static (X,OX) is clearly an animated scheme (iff a static
animated scheme). □

After such a brief technical digression, we are finally ready to introduce the aforementioned adjunction.

Proposition 4.2.3.4. (Universal property of Spec, [26],1.1.5.5) For each (X,OX) ∈ ToplocAni(CRing) and
Spec(A) = (|Spec(A)|,OA) with A ∈ Ani(CRing), the equivalence α : A→ OA(|Spec(A)|) of 4.2.2.2 induces
an equivalence:

ev |Spec(A)| ◦ pr2 : MapToploc
Ani(CRing)

(︁
(X,OX),Spec(A)

)︁ ≃−→ MapAni(CRing)

(︁
A,OX(X)

)︁
Proof. We wish to show that the above functor of mapping spaces has contractible fibres; this will be achieved
in several steps. Fix some map ϕ : A → OX(X) and let Z := Map

(︁
(X,OX),Spec(A)

)︁
×Map(A,OX(X)) {ϕ}

denote the fibre over ϕ.

Remark. The same construction as in the classical adjunction implies that - point-wise - the essential image
of MapToploc

Ani(CRing)
⊆f.f. MapTopAni(CRing)

is spanned by those maps which are completely determined by the

arrow of structure sheaves. This is the content of the first two Claims.
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Claim 1. The second projection ev2 : (f,Φ) → Φ is surjective on connected components. Let it be given a
map of structure sheaves Φ : OA → OX and call ϕ := Φ(|Spec(A)|). Then, we can make it into a pair (f,Φ)
over ϕ as follows: for each x ∈ X, let k(x) := (π0OX)x/mx denote its residue field and consider the stalk
map π0ϕx : π0A → π0OX(X) → k(x) in CRing; let px := ker(π0ϕx) ∈ Spec(π0A) and define the following
continuous map:

f : X −→ |Spec(A)|
x ↦−→ px

Proof. The continuity of f can be checked on the basis consisting of the distinguished opens of |Spec(A)|:
for each a ∈ π0A, we want U := X \ f−1(V (a)) = {x ∈ X | a /∈ px} to be an open subspace of X.
To this end, for each x ∈ U we wish to have an open x ∈ V ⊆ U . Pick up any x ∈ U ; by construction,
π0ϕx(a) ∈ (π0OX)× is invertible, so let s ∈ (π0OX)× be a multiplicative inverse to a. Let s̄ ∈ π0(OX(V )) be
a lift of s on some open neighbourhood V ⊆ X of x; up to shrinking V , wlog s̄ ∈ π0(OX(V ))× is invertible
and equal to ϕV (a)

−1 for ϕV : π0A→ π0OX(X)→ π0OX(V ). But such an invertibility means precisely that
V consists of points v for which a /∈ pv, so that V ⊆ U , as needed. ■

Claim 2. Identify the fibre Z over ϕ with the fibre over ϕ of the following map, with f as in Claim 1:

MapSh(|Spec(A)|,Ani(CRing))

(︁
OA, f∗OX

)︁
−→ MapAni(CRing)

(︁
A,OX(X)

)︁
Proof. We need to show that the second projection is a monomorphism over ϕ, so as to conclude by the fact
that (EffEpi,Mono) gives a factorization system in the ∞-topos Spc (see [24],5.2.8.16).
To this end, construct f in Top over ϕ as in Claim 1; we will prove that, for any given morphism (g,Γ) :
(X,OX)→ Spec(A) in ToplocAni(CRing) over ϕ, it holds g = f .
Pick up any x ∈ X, and let γ := Γ(|Spec(A)|). Observe that the following map factors through (π0A)g(x):

π0ϕx : π0A
π0ϕ−→ π0OX(X) −→ (π0OX)x −→ k(x)

Indeed, by the universal property of localizations, this amounts to the fact that each a ∈ g(x) is carried to a
unit π0ϕx(a) ∈ (π0(OX)x)

× = (π0(OX)x) \ mx. Now, (g,Γ) ∈ Z implies γ = Γ(|Spec(A)|) = ϕ and, being γ
a local map, it sends γ : g(x)(π0A)g(x) ↦→ mx. This means that g(x)(π0A)g(x) ⊆ γ−1(mx); but now the right
hand-side must be an ideal and the left hand-side is the maximal one, so that the equality holds.
In particular, our argument amounts to the desired equality g(x) = ker(π0γx) = ker(π0ϕx) = f(x) for each
x ∈ X. ■

Claim 3. By C.5.4.6, we can compute mapping spaces in Sh(|Spec(A)|,Ani(CRing)) by restricting the sheaves
to the quasi-compact basis Ue consisting of all the quasi-distinguished sets of Spec(A). Then, our fibre is a
static Hom-space: Z ≃ HomPsh(Ue,π0A-Alg)

(︁
π0(OA)|Ue

, π0(f∗OX)|Uop
e

)︁
.

Proof. We wish to show that Z ≃ π0Z in Spc. In view of the discussion above, we can write

Z ≃ MapSh(Ue,Ani(CRing))

(︁
(OA)|Ue

, (f∗OX)|Ue

)︁
×Map(A,OX(X)) {ϕ}

≃ MapSh(Ue,CAlg∆
A)

(︁
(OA)|Ue

, (f∗OX)|Ue

)︁
where the latter equivalence follows from the fact that (OA)|Ue

takes values into localizations of A for the
A-algebra structure induced by the equivalence α : A→ OA(|Spec(A)|) (see 4.2.2.2) and that ϕ specifies an
A-algebra structure on the global section OX(X).
Now, we invoke the previous technical Lemma 4.2.3.2. As a consequence, it suffices to show that we can
replace both A and (OA)|Ue

by their static parts.
Finally, this is implied by the usual lifting-result [23],7.5.0.6. ■

Claim 4. The Hom-set HomPsh(Ue,π0A-Alg)

(︁
π0(OA)|Ue

, π0(f∗OX)|Uop
e

)︁
is contractible whenever the following

technical condition holds: π0ϕD(a)(a) ∈ (π0(f∗OX)(D(a)))× is a unit for each a ∈ π0A.
Proof. The technical condition shows that the image π0ϕ(π0A) is a field of global sections into π0OX(X);
hence, every two arrows in the Hom-set are homotopic via a path through the constant map at the global
section 1. ■

Claim 5. Technical classical condition: π0ϕD(a)(a) ∈ (π0(f∗OX)(D(a)))× is a unit for each a ∈ π0A.
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Proof. Multiplication by the elements of π0A via the given map ϕ : π0A→ π0OX(X) yields a scalar structure
(i.e. a static sub-algebra sheaf) π0A ≤ EndSh(Ue,π0A-Alg)(π0OX).
For a fixed a ∈ π0A, let U := f−1D(a) and consider the corresponding π0A-scalar structure on the sections
at U . We wish to show that the multiplication map (·a)|U =

(︁
· π0ϕD(a)(a)

)︁
induces an automorphism of

π0OX(U) = π0(f∗OX)(D(a)), i.e. that π0ϕD(a)(a) ∈ π0(f∗OX)(D(a))× is a unit.
In order to see this, observe that, for each x ∈ U , π0ϕx(a) ∈ (π0OX)×x is a unit by construction (see
Claim 1); furthermore, there exists an open x ∈ Vx ⊆ U on which the latter lifts to an invertible section
π0ϕVx

(a) ∈ (π0OX(Vx))
×. In other words, (·a)|Vx

is an isomorphism of π0(OX)|Vx
. Being our choice of x

arbitrary, this proves that the multiplication map by a has contractible fibre Fib(·a)|U ≃ ∗ on U , i.e. the
glueing on U of the isomorphisms on the various patches Vx’s is an isomorphism of π0OX(U), as desired. □

Construction 4.2.3.5. (Global sections and Spec adjunction, [26],1.1.5.6-7) The global section functor
determines a forgetful functor:

Oop : ToplocAni(CRing) −→ Ani(CRing)op

(X,OX)
Γ(X;−)↦−→ OX(X)

The universal property of Spec 4.2.3.4 amounts to an adjunction Oop ⊢ Spec, where the right-adjoint acts
on objects by:

Spec : Ani(CRing)op −→ Sch′ ⊆f.f. ToplocAni(CRing)

A ↦−→ Spec(A)

Moreover, Spec is fully faithful, so that O ⊢ Spec exhibits Ani(CRing)op as a right Bousfield localization of
ToplocAni(CRing) and restricts to an equivalence Ani(CRing)op ≃ SchAff .

Proof. we prove that the counit vA : O(Spec(A))→ A can be obtained as the quasi-inverse to the equivalence
α : A→ OA(|Spec(A)|). By [20],5.1.10, we will promote to an adjunction the following assignments:

� Obj: A ↦→ Spec(A)

� Mor: 1A ↦→ (vA : O(Spec(A))→ A)

In order to achieve it, we need to prove that, for each (X,OX) ∈ ToplocAni(CRing), the point-wise triangle
identity is an equivalence of spaces:

Map
(︁
(X,OX),Spec(A)

)︁ Oop

−→ MapAni(CRing)op
(︁
OX(X),O(Spec(A))

)︁ op ◦ (vA)∗−→ MapAni(CRing)

(︁
A,OX(X)

)︁
and we conclude by the Proposition if we notice that - up to working in the opposite category - one has:

O
(︁
Map

(︁
(X,OX),Spec(A)

)︁)︁
≃ ev |Spec(A)| ◦ pr2

(︁
Map

(︁
OA(|Spec(A)|), f∗(OX)(|Spec(A)|)

)︁)︁
Finally, the fully faithfulness of Spec is a consequence of the construction: by inspection of the proof of
[20],5.1.10, for each A, B ∈ Ani(CRing), the action of Spec on the corresponding mapping spaces is defined
so as to obtain the commutativity of the triangle below:

MapToploc
Ani(CRing)

(︁
Spec(B),Spec(A)

)︁ ≃
UP

→→ MapAni(CRing)

(︁
A,OB |Spec(B)|

)︁

MapAni(CRing)

(︁
A,B

)︁
←←

≃
β∗

→→

where β : B → O(|Spec(B)|) denotes the equivalence expressing the algebra structure of 4.2.2.2. □

The Oop ⊢ Spec adjunction also allows us to characterize those schemes which are affine. This will be the
goal of the next four results.

Proposition 4.2.3.6. (Local characterization of affine schemes, [26],1.1.6.1) Let f : (X,OX)→ Spec(A) be
a map in ToplocAni(CRing) such that:
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(a) Its transpose α : A→ OX(X) under 4.2.3.5 is an equivalence.

(b) The underlying locally ringed space (X,π0OX) ∈ GS is affine;

(c) The homotopy sheaves πnOX ∈ QCoh(X) are quasi-coherent for each n ≥ 0.

Then, tfae:

1. f is an equivalence;

2. (X,OX) ∈ Sch′ is an animated scheme

Proof. (1) =⇒ (2) : It is clear, because Spec(A) ∈ Sch′ and the full subcategories are closed under
equivalences.

(2) =⇒ (1) : Consider an animated scheme (X,OX) ∈ Sch′ lying - by (b) - over an affine classical

scheme Spec(R) := (X,π0OX) ∈ SchAff,cl and - by (c) - with quasi-coherent homotopy modules {˜︃Mn}n ⊆
QCoh(Spec(R)) for some {Mn}n ⊆ Mod(R) with M0 = R.3

Let’s show that the continuous map f : X → |Spec(A)| is a homeomorphism.
By the compatibility of homotopy structure sheaves of schemes with truncation, we have an isomorphism
πn(OX(U)) → (πnOX)(U) = ˜︃Mn(U) over each distinguished open U ⊆ X, and in particular on the whole
space.

Now, by (a), the transpose α induces isomorphisms πn(α) : πnA
∼=→ πn(OX(X)) ∼= Mn for each n ≥ 0.

This holds in particular for n = 0, which yields α : π0A ∼= π0OX(X) ∼= R, i.e. f induces an isomorphism
π0(f) : (X,π0OX) ∼= Spec(R)→ Spec(π0A) and in particular a homeomorphism f : X → |Spec(A)|.
Finally, under the identification Sh(|Spec(A)|) ≃ Sh(X), we are left to check that f induces an equivalence
OA → OX in Sh(X,Ani(CRing)). Equivalently, by C.5.4.6 it suffices to check it over the quasi-compact basis
Ue of all distinguished opens of X. Hence, being π∗ conservative, we need to check that, for each n ≥ 0 and
x ∈ π0A, the maps πn(f)(D(x)) : πnOA(D(x))→ πnOX(D(x)) are isomorphisms. Fix n ≥ 0; the statement
now follows by considering the following commutative triangle:

(π0OX)(D(x))⊗RMn

≃
(i)←←

≃
(ii) →→

πnOA(D(x))
πn(f)(D(x)) →→ πnOX(D(x))

where the slanting maps are equivalences by the following arguments:

� (i) : by (a), for m = 0, n there is an isomorphism πm(α) : πmA ∼= Mm, which in turn induces an
isomorphism (π0OX)(D(x))⊗RMn

∼= π0A[x
−1]⊗π0A πnA

∼= πnA[x
−1] ∼= πnOA(D(x));

� (ii) : (π0OX)(D(x)) ⊗R Mn
∼= ˜︃Mn(D(x)) ∼= (πnOX)(D(x)) by (c) and the second property of the

definition of animated schemes.

□

Corollary 4.2.3.7. (Global characterization of affine schemes, [26],1.1.6.2) For an animated locally ringed
spaces (X,OX) ∈ ToplocAni(CRing) lying over a classical scheme (X,π0OX) ∈ Schcl and quasi-coherent homotopy
structure sheaves {πnOX}n ⊆ QCoh(π0OX). tfae:

1. Each x ∈ X admits an open neighbourhood x ∈ U ⊆ X over which the restriction (U, (OX)|U ) ∈ Sch′

is affine.

2. (X,OX)

3So, in our setting the assumption (X,OX) ∈ Sch′ amounts to further assuming the compatibility with truncation for
homotopy structure sheaves, i.e. property (3) in the definition of an animated scheme.
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Proof. (1) =⇒ (2) : Notice first that (X,OX) is very close to a scheme, and what is missing is only the
compatibility of the homotopy structure sheaves with truncation. As already observed at the end of the
proof of 4.2.2.2, the isomorphisms at stake can be checked on the quasi-compact basis Ue consisting of all
the distinguished opens of X, and there is holds by (1), since we can cover each (affine) open U ⊆ X by
distinguished opens.

(2) =⇒ (1) : Consider (X,OX) ∈ Sch′ and pick up any x ∈ X. Since (X,π0X) ∈ Schcl, there exists some
open neighbourhood x ∈ U ⊆ X over which (U, (π0OX)|U ) ∈ SchAff,cl. Set A ≃ OX(U), and consider its
transpose f : (U, (OX)|U ) → Spec(A) under 4.2.3.5. By assumption, (X,OX) - and hence its restriction to
U - is an animated scheme, so that f turns out to be an equivalence by the previous Proposition 4.2.3.6. □

As a consequence, the following two corollaries formalise two key intuitive facts:

� For an animated scheme, ”being affine” can be checked on its static part;

� For an animated locally ringed space, ”being a scheme” can be tested locally on X.

Moreover, the latter translates in more topological terms the definition of a scheme as a stack admitting an
affine Zariski cover.

Corollary 4.2.3.8. (Topological characterization of schemes, [26],1.1.6.3-4) An animated scheme (X,OX) ∈
Sch′ is affine iff its static part (X,π0OX) ∈ SchAff,cl is such.
Moreover, an animated locally ringed space (X,OX) ∈ ToplocAni(CRing) is an animated scheme iff each x ∈ X
admits an open neighbourhood x ∈ U ⊆ X over which the restriction (U, (OX)|U ) is an animated scheme.

Proof. The first claim follows from the proof of 4.2.3.7,(2) =⇒ (1). The second statement is a consequence
of 4.2.3.7,(1) =⇒ (2) together with the fact that the assumption of loc.cit. are local on X. □

4.2.4 Functor of Points and the Comparison Theorem

In the current subsection, we finally prove the equivalence between the∞-category Sch′ of animated schemes
and the one Sch of stacks admitting an affine Zariski cover. Morally, this amounts to achieving a better
description of the co-Yoneda embedding Ani(CRing) ↪→ PreStack.

Warning. We summarize the discussion in 4.1.1 and 4.1.2. Let ˆ︃Spc denote the ∞-category of large spaces.
As when dealing with Stack, we will have to consider very large ∞-topoi of sheaves on large sites; those can
be regarded in turn as full subcategories of presheaves into ˆ︃Spc. Such∞-categories are large-presentable, but
not small-accessible; however, for the rest they ”behave like ∞-topoi”, in that all other Giraud’s Axioms can
be enforced. As in the previous section, we drop the hat in the notation, so Spc will automatically denote the
large ∞-topos of large spaces, and it will be clear from the context when we can restrict to the ∞-topos of
spaces (e.g. when considering mapping spaces in the locally small - although large -∞-category Ani(CRing)).

Definition 4.2.4.1. (Animated functor of points, [26],1.6.1.1) For each animated locally ringed space
(X,OX) ∈ ToplocAni(CRing), define the prestack (i.e. presheaf, see 4.1.1.1) hX ∈ PreStack = P(SchAff) =

Fun(SchAff ,Spc) by the Yoneda embedding of ToplocAni(CRing):

hX : R ↦→ MapToploc
Ani(CRing)

(︁
Spec(R), (X,OX)

)︁
Remark. The fully faithful embedding SchAff ↪→ ToplocAni(CRing) allows us to consider the restriction h|SchAff as

an extension of the Yoneda Lemma of SchAff . As observed in 4.1.2.6, the Zariski site on SchAff is sub-canonical,
meaning that the representable presheaves of the form hSpec(A) are already sheaves. As a consequence, also

hX is a sheaf for any (X,OX) ∈ ToplocAni(CRing). This is the content of Theorem [26],1.6.2.1, which we will not
prove.

The next result establishes that functors of points arise naturally; indeed, as we will see, they will as-
semble into the Yoneda embedding of the large ∞-topos Stack := Sh(SchAff) into the very large ∞-topos
Sh(X,Sh(SchAff)op) of families of open sub-stacks of X. Let us first record a computation, which will appear
in the proof.
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Lemma 4.2.4.2. (Fibre-products of animated locally ringed spaces) Consider an angle of animated locally
ringed spaces in ToplocAni(CRing):

(X,OX)
(a,α)−→ (Y,OY )

(b,β)←− (Z,OZ)
and form the pull-back in Top under the first projection:

X ×Z Y
q →→

p

↓↓

r

↘↘

Y

b

↓↓
X

a →→ Z

Then, the fibre-product in ToplocAni(CRing) of the angle can be described by:

hX ×hZ
hY ≃ h(−)

(︃
(X,OX)×(Z,OZ) (Y,OY )

)︃
≃ h(−)

(︃
X ×Z Y , p∗OX

∐︂
r∗OZ

q∗OY
)︃

Proof. The first equivalence follows from the very definition of h(−) as the composition of the Yoneda em-

bedding of ToplocAni(CRing) after the fully faithful inclusion SchAff ↪→ ToplocAni(CRing). Indeed, mapping spaces
commute with limits in the second component.
Hence, we need to characterize fibre-products of animated locally ringed spaces. It suffices to check that, for
each morphism from (S,OS) into the pull-back, the corresponding continuous map f : S → X ×Z Y in Top
induces:

Map′
(︃
p∗OX

∐︂
r∗OZ

q∗OY , f∗Spec(A)
)︃
≃ Map′

(︃
p∗OX ← r∗OZ → q∗OY , f∗Spec(A)

)︃
where Map′ denotes mapping sub-spaces of Sh(X ×Z Y,Ani(CRing)) consisting of maps whose static part
is local at each stalk. The locality property can be rephrased by requiring that π0Map′ yields a Hom-set of
structure sheaves coming from Hom-sets of GS.
More generally, recall that ToplocAni(CRing) is defined as the fibre-product of the angle

GS
f.f.
↪→ TopCRing

π0← TopAni(CRing)

Thus, we are left to show that the needed isomorphism holds in each ∞-category of the angle, which is now
clear, since it follows from either the definition or the classical setting. □

Proposition 4.2.4.3. ([26],1.6.3.1) For any animated locally ringed space (X,OX) ∈ ToplocAni(CRing), each

restriction (U, (OX)|U ) ∈ ToplocAni(CRing) to the open U ∈ Open(X) represents a stack hU ∈ Sh(SchAff) (i.e. a
Zariski-sheaf, see 4.1.2.5).
They are grouped into the construction [U ↦→ hU ], which determines a sheaf h(−) ∈ Sh(X,Sh(SchAff)op).

Proof. The first statement follows from Theorem [26],1.6.2.1.
Now, with reference to C.5.4.3, consider any family I ⊆ Open(X) and let U ′(I) := ∪IOpen(i). The sheaf
condition C.5.3.2 of h(−) amounts to proving that, for any arbitrary choice of I as above, the canonical map

colimh|U ′(I) → h∪I is an equivalence in the very large ∞-topos Sh(SchAff). In regard to this, let us avoid

confusion by recalling that we would like to have Sh(SchAff)op-valued sheaves. And given that U ′(I) needs
not be small in the large site SchAff , we are in need to deal with a very large ∞-topos (see the introductory
Warning).
Now, let us simplify the condition above. In the previous Remark we observed that, being the Zariski site sub-
canonical (see 4.1.2.6), the Yoneda embedding j : Ani(CRing) ↪→ P(SchAff ,Spc) factors through Sh(SchAff).
Then, up to allowing large diagrams, Sh(SchAff) is still colim-generated by the co-representables, as in the
∞-Density Theorem [24],5.1.5.3. In particular, being colimit in Sh(SchAff) universal, it suffices to prove the
following Claim.

Claim. For each ϕ : j(R) → h∪I , the canonical map colim
(︁
j(R) ×h∪I

h|U ′(I)

)︁
→ j(R) is an equivalence in

Sh(SchAff).

101



Proof. Let us fix some notation: set V := ∪I and let f : |Spec(R)| → V in Top denote the first projection of
the given ϕ ∈ Map(Spec(R), (V, (OX)|V )).

We will start by inspecting the fibre-products. By 4.2.4.2, for each U ∈ U ′(I) we can describe the fibre-product
j(R)×hV

hU ≃ jU (R) ⊆ j(R) in ToplocAni(CRing) by the sheaf of direct summands

jU (R) : A ↦→ jU (R)(A) ≤⊕ MapAni(CRing)(R,A)

where the latter subspace jU (R)(A) is spanned by all those maps γ : R→ A in Ani(CRing) which fit in the
extension of the following cartesian square:

|Spec(A)|

→→

↘↘

γ

↘↘
f−1(U)

↘ ↙

op
→→

↓↓

|Spec(R)|

f

↓↓
U
↘ ↙

op
→→ V

Now, let us rephrase the statement of the Claim. Consider the sieve C
(0)
/R spanned by the class of sheaf

inclusions:
{jU (R) ↪→ j(R) | U ∈ U ′(I)}

and observe that the construction [U ↦→ jU (R)] (so a choice of the composition j(R)×hV
(−)◦h(−)) determines

a left-cofinal inclusion U ′(I) ↪→ C
(0)
/R .

Hence, the statement amounts to the equivalence of the canonical map

colim id
C

(0)

/R

≃ colim
(︁
jU (R) | U ∈ U ′(I)

)︁
−→ j(R)

namely that j(R) ∈
(︁
C

(0)
/R

)︁term
, i.e. that C

(0)
/R is the sieve over j(R) generated by the identity 1j(R). In yet

another reformulation, this amounts to the fact that the Čheck nerve C
(0)
/R ≃ Č(1j(R))|∆op Zar-covers j(R)

(so its augmentation is an effective epimorphism).

To see this, since I covers V = ∪I, choose some partition of unity {xk}mk=1 ⊆ π0R in such a way that each
inclusion of distinguished opens D(xk) = |Spec(R[x−1

k ])| ↪→ |Spec(R)| factors through f−1(k) for some k ∈ I.
But then the maps {j(R[x−1

k ]) ↪→ k(R)}mk=1 ⊆ C
(0)
/R ∈ Zar(Spec(R)) generate a Zariski cover of j(R) and sit

in the cartesian squares above, so that our sieve is indeed covering as wished. □

As a Corollary, we finally obtain the Comparison Theorem between our two approaches do dag.

Corollary 4.2.4.4. (Comparison Theorem, [26],1.6.3.3) The restriction to scheme induces a fully faithful
embedding

h(−) : Sch
′ ↪→ Fun(Ani(CRing),Spc) ≃ P(SchAff) = PreStack

whose essential image is the full subcategory of Sh(Ani(CRing)) spanned by those local functors of points
admitting an affine Zariski cover (see 4.1.3.2), namely those sheaves hX with (X,OX) ∈ ToplocAni(CRing) such
that there exists a family {Ui}I ⊆ Open(X) which induces an effective epimorphism

∐︁
hUi

↠ hX .

In particular, h(−) : Sch
′ ↪→ Sch ⊆f.f. PreStack establishes an equivalence of ∞-categories.

Proof. h(−) is fully faithful: Fix any two animated schemes (X,OX), (Y,OY ) ∈ Sch′. In order to prove that
h(−) induces an equivalence on the mapping space between the two, it suffice to show that it does whenever we
replace (X,OX) by its restriction (U, (OX)|U ) to any open U ∈ Open(X). Then, we wish that the following
full subcategory of Open(X) be the whole one:

U := ⟨
{︁
U ∈ Open(X) | θU : MapToploc

Ani(CRing)

(︁
(U, (OX)|U ), (Y,OY )

)︁
→ MapPreStack

(︁
hU , hY

)︁}︁
⟩

Claim. U is stable under glueing: for each V ∈ Open(X), let
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Cov(V ) := {I ⊆ U | V = ∪I , ∀S ∈ Pf (I), ∩S ⊆ U}
Then, Cov(V ) ̸= ∅ implies V ∈ U .
Proof. Fix any V ∈ Open(X), and let I ⊆ U be a covering family for V (i.e. ∪I = V ) such that I = {Ui}I ∈
Cov(V ). By 4.2.4.3, the functor h(−) - hence the functor associated to the natural transformation θ(−) - is a
sheaf on Open(X); now by [26],1.6.2.1, hY is a hypercomplete sheaf, so that the sheaf condition of θ(−) at

the covering sieve generated by I can be checked on the Čheck nerve of
∐︁
I Ui ↠ ∪I = V . In other words,

since we consider Sh(Ani(CRing))op as coefficients, one has the equivalence θV ≃ colim θ|Č(I→V ). But now,

being colimits in Set universal, the simplicial object lying under the Čheck nerve acts as:

Č(I → V )|∆op : [n] ↦→
(︁∐︂

I

Ui
)︁×V n ∼= {∩S | S ∈ Pf (I) , #S = n}

and we conclude by the facts that, by assumption, U contains each ∩S. ■

Then, we will attempt three successive generalizations:

1. U contains the open affine charts of X, over which h(−) restricts to the Yoneda embedding.

2. Let U ∈ Open(X) be such that there exists some open affine chart V ∈ Open(X) for which U ⊆ V ⊆ X.
Then, we observe that U ∈ U .
Indeed, being (X,OX) an animated scheme, the open subset U is the topological space lying under
some classical scheme, and hence admits a cover I = {Ui}I by affine open charts. Now, being Ui ↬ V
also open affine charts of the affine animated scheme V , they can be covered by distinguished opens of
V , i.e. spectra of localizations of A. In particular, this implies that all the finite intersections of I are
again distinguished opens and hence open affine charts of U . By (1), I ⊆ U ; moreover, by construction
∪I = U and, for each finite subset S ∈ Pf (I), ∩S ∈ U . Hence, I ∈ Cov(U) and we conclude by the
Claim that also U ∈ U , as desired.

3. We finally show that any arbitrary open subspace U ∈ Open(X) belongs to U .
As before, there exists some cover I := {Ui}I ⊆ Open(X) consisting of open affine charts. Since ∪I = U
and I ⊆ U by (1), an application of the Claim would imply that U ∈ U whenever U contains all finite
intersections ∩S with S ∈ Pf (I). But the latter condition follows from (2): for a given S ∈ Pf (I) and
any affine open s ∈ S, ∩S ⊆ s, and s ∈ U by (1).

Essential image of h(−): Any sheaf as in the statement belongs to the essential image of h(−), because the

latter functor is a sheaf extending the Yoneda embedding h(−) : Sch
Aff ↪→ PreStack.

The converse inclusion is a consequence of 4.2.4.3: being h(−) a Sh(Ani(CRing))op-sheaf onX with hypercom-

plete values, hX is the colimit of the values of h(−) at the Čheck nerve of any open cover I := {Ui}I ⊆ Open(X)
of X; then, observe that we can choose an I consisting of affine open charts of X: being (X,OX) ∈ Sch′ an
animated scheme, its underlying ringed space is a classical scheme.
Hence, taking the Čheck nerve

∐︁
I Ui ↠ ∪IUi = X of a small affine Zariski cover gives the sought effective

epimorphism
∐︁
hUi ↠ hX (here we use that the Yoneda embedding h|SchAff : SchAff ↪→ PreStack commutes

with coproducts of affine schemes, see [26],1.6.2.4). □

4.3 Vector Bundles

In this section we will regard quasi-coherent sheaves from an equivariant point of view. This will provide
interesting geometric insights into the algebraic constructions we introduced so far, such as symmetric algebras
and cotangent complexes.
We will start by defining the relative spectrum of a quasi-coherent algebra, and then use this to obtain vector
bundles of schemes from locally free sheaves.
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4.3.1 The Relative Spectrum

In this subsection we will extend to quasi-coherent algebras the equivalence Ani(CRing)op ≃ SchAff induced
by the adjunction Oop ⊢ Spec of 4.2.3.5. However, the reader should beware that this will not provide
an alternative proof of such an equivalence, since the proof of the enhancement will be a reduction to the
”algebraic” case.

Proposition 4.3.1.1. (Spec of quasi-coherent algebra, [13],2.4.3) Let Aff/T ⊆f.f. Stack/T denote the full
sub-slice spanned by those stacks which are affine over T . There is an equivalence in Cat∞:

O : (Aff/T )
op −→ QCohAlg(T )

Define the relative spectrum SpecT : QCohAlg(T )op → Aff/T to be the quasi-inverse to Oop.

Proof. First recall that, for each affine map of stacks S → T and each A-valued Spec(A) → T , the base-
change SSpec(A) := S ×T Spec(A) → Spec(A) is an affine map in Sch from the very definition, so that

SSpec(A) ∈ SchAff is forced to be affine.

Then, the restriction of the bi-functor O◦
(︁
(−)×T (−)

)︁
to SchAff

/T yields a (possibly large) diagram of functors:

O
(︁
(−)×T Spec(A)

)︁
:
(︁
Aff/T

)︁op −→ QCohAlg(Spec(A)) = CAlg∆A

Obj: (S
affine−→ T ) ↦−→ O

(︁
S ×T Spec(A)

)︁
whose (large) limit gives a functor:

O :
(︁
Aff/T

)︁op −→ QCohAlg(T )

Obj: (S
affine−→ T ) ↦−→ O(S) := colimO

(︁
S ×T Spec(−)

)︁⃓⃓(︁
SchAff

/T

)︁op

In other words, we set

O(−) ≃ Ran

(︃
O ◦

(︁
(−)×T (⋆)

)︁⃓⃓(︁
SchAff

/T

)︁op

)︃
as the (large) right Kan extension along the Yoneda embedding of the slice consisting of those affine schemes
over T into the second copy of Stack.
Let’s show that O is an equivalence of ∞-categories.
The statement is local on T : by construction, it suffices to show that each O((−) ×T Spec(A)) is such.
Hence, wlog T = Spec(A) ∈ SchAff ; but now Aff/Spec(A) ≃ SchAff

/Spec(A) has a terminal object, so that
O(−) ≃ O((−)×Spec(A) Spec(A)) and the claim is trivial. □

Remark. The properties of affine morphisms enhance the identification in 3.2.2.3 of the operations ”taking
under-slices” and ”restricting the algebra structure”: by the cancellation property 4.1.4.4, composable arrows
of stacks S → T → Z induces equivalences in Cat∞:(︁

Aff/Z
)︁
/(T/Z)

≃ Aff/T ⇐⇒ QCohAlg(Z)(Z/T )/ ≃ QCohAlg(T )

In particular, having O and QCohAlg compatible behaviours under restriction of scalars, the presheaf
QCohAlg(−) induces a presheaf Aff(−) grouping all affine morphisms of stacks, and the equivalence of
their values becomes tautologically functorial.

Remark. From the very definition of affine morphisms of stack, over any scheme X ∈ Sch the anti-equivalence
restricts to one between the ∞-categories of schemes which are affine over X, on the one hand, and that of
quasi-coherent OX -algebras on the other: Oop : Aff/X −⇀↽− QCohAlg(X)op :SpecX .

Moreover, as already observed, restricting further the equivalence to SchAff yields wlog the one Spec :
Ani(CRing)op ≃ SchAff : Oop of 4.2.3.5. In particular, this supplies a formula to compute the action of SpecS
on objects: with notation as in 4.3.1.2, for any A ∈ OS-Alg,

SpecT (A) :
(︁
Aff/T

)︁op −→ Spc

Obj: (p : S
affine−→ T ) ↦−→ (p∗A)∨ = MapOS-Alg(p

∗A,OS)

where the notation (−)∨ means dualizing with respect to the monoidal structure of OX -Alg, in the sense of
the following definition.
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Definition 4.3.1.2. (Dualization in QCoh) For a prestack S ∈ PreStack, the presheaf of quasi-coherent
modules on S represented by the structure sheaf OS defines a dualization functor for QCoh(S) by

(−)∨ : QCoh(S) −→ Spc

M ↦−→M∨ := MapQCoh(S)

(︁
M,OS

)︁
A similar discussion can be carried on with OS-algebras and MapOS-Alg.

4.3.2 Vector Bundles over Stacks

In the current subsection, we will define vector bundles over stacks. This is a direct generalization of the
classical case whenever the base stack admits a small cover by open affine charts. Let us start with a
description of their fibres: it is well-posed in view of 3.6.2.5.

Definition 4.3.2.1. (Locally free quasi-coherent module of rank n, [26],2.9.3.1) Let S ∈ Stack be a stack. A
quasi-coherent module F ∈ QCoh(S) is said to be locally free of finite rank (fg-loc.free) iff the base-change
f∗F ∈ QCoh(Spec(A)) ≃ ModA along any A-valued point f : SpecA→ S is a finitely generated locally free
A-module.
If furthermore F has uniform rank, say equal to n, on all A-valued points (see 3.6.2.4), then we say that the
quasi-coherent module F is locally free of rank n (n-loc.free).

Let QCohn(S), QCohfg(S) ⊆f.f. QCoh(S)≃ denote the spaces of n-loc.free (respectively fg-loc.free) quasi-
coherent modules on the stack S.

Let us record some properties of locally free quasi-coherent modules of finite rank; they are all globalizations
of the corresponding features for locally free modules of finite rank.

Proposition 4.3.2.2. (Properties of locally free quasi-coherent modules of finite rank) Let S ∈ Stack be a
stack. Then, the following properties of locally free OS-modules of finite rank hold:

� ”Being locally free of finite rank (resp. of rank n)” is fpqc-local (hence a fortiori Zar-local), stable under
base-change, and satisfies the 2-out-of-3 property on exact sequences (see 3.6.2.6)

� F ∈ QCoh(S) is fg-loc.free iff F is a dualizable object for the closed symmetric monoidal structure
QCoh(S)⊗ (see 4.3.1.2 and [26],2.9.1.5).

Moreover, locally free quasi-coherent modules generate free quasi-coherent algebras via a globalization of the
Derived Symmetric Algebra we defined in 3.7.1.

Definition 4.3.2.3. (Quasi-coherent Sym, [15],4.7.4) For a stack S ∈ Stack, consider a quasi-coherent
module F ∈ QCoh(S), and define the quasi-coherent symmetric algebra Sym∗

OS
by:

� S = Spec(A) ∈ SchAff : Sym∗
OSpec(A)

(F) := Sym∗
A(F|A) ∈ OA-Alg = CAlg∆A ;

� S ∈ Stack arbitrary: define Sym∗
OS

(F) := lim
(︁
Sym∗

OS,s
(F|s) | s ∈ SchAff

/S

)︁
∈ OS-Alg as the (large) limit

over all the A-valued points s : Spec(A)→ S.

Remark. Sym∗
OS

is well-defined over the diagram of F , because the derived symmetric algebra Sym∗ commutes
with base-change: see 3.7.2.1. Moreover, by 4.1.1 the limit defining Sym∗

OS
(F) can be assumed to be small

whenever S ∈ Sch.

We are now ready to introduce vector bundles over stacks.

Definition 4.3.2.4. (Vector bundle, [15],4.7.6) Let S ∈ Stack be a stack, and consider a locally free quasi-
coherent module F ∈ QCoh(S) of rank n. Define the vector bundle associated to F as the affine S-stack:

VS(F) := SpecS
(︁
Sym∗

OS
(F∨)

)︁
∈ Aff/S

where (−)∨ denotes the dualization functor in QCoh⊗ of 4.3.1.2.
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Remark. Let F ∈ QCoh(S) and E := VS(F) be the associated vector bundle. As in the affine case, under
the globalized Spec-adjunction 4.3.1.1 it holds that global sections σ : S → E (of the structural morphism)
are closed immersions corresponding to maps σ♭ : F∨ → OS , so global sections σ♭ ∈ Γ(S,F) before the
dualization. A special instance of global section is the ”trivial embedding” of the base, which is defined as
follows.

Construction 4.3.2.5. (Zero-section) Let F ∈ QCoh(S) be a quasi-coherent sheaf of rank n on the stack
S ∈ Stack, and let E := VS(F) denote its associated vector bundle. On the open affine charts of a trivializing
atlas for F , one can write E ≃ SpecSpec(A)(Sym

∗
A(M

∨)) for some (A,M) ∈ MOD with M locally A-free of
rank n.
Define the zero-section of F as the canonical map 0 : S → E associated to the ”quotient” map 0♭ :
Sym∗

A(M
∨)→ Sym0

A(M
∨) ≃ A under the globalized Spec-adjunction 4.3.1.1; here 0♭ is induced in ModA by

1A and LSymk
A(M

∨)→ 0 for k > 0.
In particular, observe that the zero-section 0 : X → E is always a closed immersion locally of finite presen-
tation. As in 4.4.1.3, its conormal sheaf recovers the dual of the quasi-coherent sheaf: N0 ≃ L∨. Hence, by
4.5.2.3 it will follow that zero-sections are furthermore quasi-smooth closed immersions (see 4.5.2.1).

As a particular case, we can define the affine space AnS over any arbitrary base-scheme S. For S = Spec(Z),
this retrieves the usual notion An ≃ Spec(Z[t1, . . . , tn]).

Definition 4.3.2.6. (Affine space) For an arbitrary stack S ∈ Stack, define the n-th affine space on S as
the following base-change:

AnS := SpecS
(︁
Sym∗

OS
((OnS)∨)

)︁
≃ SpecS(OS [ti]ni=1) ≃ An ×Spec(Z) S

Remark. The equivalence Sym∗
OS

(︁
(OnS)∨

)︁
≃ OS [ti]ni=1 can be checked as follows. The right-hand side is

the quasi-coherent algebra defined by the base-change OS [ti]ni=1 ≃ OS ⊗LZ Z[ti]ni=1, so the statement is Zar-
local; then, the equivalence Sym∗

A((A
n)∨) ≃ A[ti=1]

n for any A ∈ Ani(CRing) is obtained by tensoring

Sym∗
Z
(︁
(Zn)∨

)︁
≃ Z[t1, . . . , tn] along Z→ A.

Remark. (Classical affine spaces, [15],4.7.7) For S ∈ Stack, n ∈ N, the structure map AnS → S is induced by
the quasi-coherent algebra structure OS → OS [ti]ni=1 and is flat (check it on open affine charts). In particular,
one has (AnS)cl ≃ AnS ⊗LS Scl ≃ AnScl ; so, our construction retrieves the classical one as a particular case.

Remark. (Zero-section of an affine space) For an affine space the zero-section is particularly simple. Indeed,
being the symmetric algebra stable under base-change by 3.7.2.1, on a trivializing atlas for OS - so with
S = Spec(A) for some A ∈ Ani(CRing) - we have

0 : A[t1, . . . , tn]→ A ≃ A[t1, . . . , tn] � (t1, . . . , tn) := A[t1, . . . , tn]⊗LZ[t1,...,tn] Z[t1, . . . , tn]/(t1, . . . , tn)

along a choice of a lift Z[t1, . . . , tn] → A[t1, . . . , tn] for the connected component [ti ↦→ ti] : Z[t1, . . . , tn] →
π0A[t1, . . . , tn] in hoAni(CRing). The equivalence A ≃ A[t1, . . . , tn]�(t1, . . . , tn) can be inferred by a diagram
chasing argument, which we report with only one indeterminate x:

MapZ[x]/(A � (x) , B) ≃ MapZ[x]/(A[x]← Z[x]→ Z[x]/(x) , B)

≃ MapZ/(A[x]← A← Z→ Z[x]→ Z[x]/(x) , B)

≃ MapZ/(Z[x]/(x)← Z→ A, B)

≃ Map(A, B)

Animated rings such as A[t1, . . . , tn] � (t1, . . . , tn) will be extensively studied in the section ”Quotients of
Rings”.
In particular, we proved directly that the zero-section of an affine space is always a quasi-smooth closed
immersion (see 4.5.2.1). As observed in 4.4.1.3, this holds for any vector bundle, but will only follow from
the more abstract characterization 4.5.2.3.

In order to foster the intuition, let us spell out the action of the zero-section 0 : S → E = VS(F) of an
arbitrary locally free quasi-coherent sheaf F ∈ QCoh(S) of rank n on some stack S ∈ Stack. Let’s do it
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locally on a trivializing atlas for F , so that wlog S = Spec(A), F = M ∈ QCoh(Spec(A)) = ModA and

0♭ : Sym∗
A(M

∨) → A. Since both (−)∨ and (the left adjoint) Sym∗
A preserve finite coproduct, for some

X ∈ ModA such that M ⊕X ≃ An it holds

0♭ : Sym∗
A(M

∨) −→ Sym∗
A(M

∨)⊗LA Sym∗
A(X

∨) ≃ A[t1, . . . , tn] −→ A[t1, . . . , tn] � (t1, . . . , tn) ≃ A
Then, we know that the zero-section is quasi-smooth, so - up to further shrinking our charts - it is wlog of
the form 0♭ : Sym∗

A(M
∨)→ Sym∗

A(M
∨) � (f1, . . . , fr) ≃ A

for some (f1, . . . , fr) ⊆ π0Sym∗
A(M

∨) not-necessarily-regular-generators exhibiting the latter as a static π0A-
algebra of finite presentation.

The next result allows for a more intuitive approach: a vector bundle amounts to a ”glueing” of affine spaces
over a trivializing atlas consisting of open affine charts. Both the statement and the proof are a translation
of 3.6.2.4 into more geometric terms; we will also refer to the algebraic counterpart for some more technical
steps.

Proposition 4.3.2.7. (Trivializing atlas) Let S ∈ Stack admitting a small cover by open affine schemes.
Then, a vector bundle E := VS(F) → S on S ∈ Stack admits a trivializing atlas, namely there exists a
(small) cover E of S by affine open charts on which E restricts to affine spaces.

Proof. By the construction of QCoh and the fact that Sym∗◦(−)∨ preserves (small) limits, it suffices to prove
the claim for S = Spec(A), F :=M ∈ QCoh(Spec(A)) = ModA for some animated ring A ∈ Ani(CRing) and
some locally free A-moduleM of ranks n. Then, we need to show that Spec(A) admits an affine Zariski cover
on which M restricts to a free module of rank n. So, the proof continues as in 3.6.2.4, which we translate
into more geometric terms.

Define E to be the set of distinguished opens D(x) of Spec(A)cl over which ˜︂M ∈ QCoh(Spec(A)) with
global section M corresponds to a free module of finite rank nx. We argue by contradiction that E is not

a trivializing atlas for ˜︂M , i.e. that it does not cover A; namely, assume the existence of some closed point
ϵm : V (m) = Spec(k = k(m)) ↛ Spec(A)cl → Spec(A) not belonging to any of the opens in E .
We want to show that ˜︂M be free in an open neighbourhood of such a point m.
By Nakayama’s Lemma we can afford a local description: a choice of a k-basis {yi}i of the inverse image of˜︂M at the closed point {m} yields global generators of ˜︂M on Dcl := Spec(π0(A)m) = ∩{m ∈ D(z)} (as in the
proof of 3.4.0.6, we can argue at the level of connected components). In other words, we obtain a surjection
ŷ : On′

Dcl ↠M |Dcl . (Here we can assume n′ = n iff M is n-loc.free.)

Then, we claim that we can find an open neighbourhood U ∋ m which belongs to E , thus reaching the sought
contradiction.
Choose any open neighbourhood D(x) of m and consider a lift of ŷ to a surjection g : On′

D(x) ↠
˜︂M |D(x). By

the projectivity of Γ(D(x), ˜︂M), this admits a section ψ, i.e. g ◦ψ is homotopic to the identity. We are left to
show that also ψ ◦ g is homotopic to the identity of the trivial D(x)-vector bundle of rank n′.
To this end, we consider the matrix X associated to the linear map Γ(D(x), π0(ψ ◦ g)) in Vectk. The
vanishing locus V (detX) cannot contain m, because the first composite π0(g) of the pull-back of π0(ψ ◦ g)
to the specialization {m} is an isomorphism. In other words, m ∈ D ⊆ D(detX). If we let x′ denote the
numerator of det(X), one has D(detX) = D(xx′). Moreover, we can regard X as inducing an automorphism

of the quasi-coherent sheaf OD(x) which is then invertible on D(xx′), thus implying the triviality of ˜︂M|D(xx′).
It follows that xx′ ∈ E , which is the desired contradiction. □

Another prominent class of example consists of line bundles, namely locally free quasi-coherent sheaves of
rank 1, which constitute the class of invertible objects for the symmetric monoidal structure on the given
∞-category of quasi-coherent modules.

Definition 4.3.2.8. (Line bundles, [26],2.9.4.1) A quasi-coherent module F ∈ QCoh(S) on a stack S ∈ Stack
is a line bundle iff it is locally free of rank 1.

We refer to the full subspace Pic(S) ⊆f.f. QCoh(S)≃ of line bundles on S as the Picard group of S.
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Remark. Whenever S = X ∈ Sch is a scheme, its connected components Pic(X) := π0Pic(X) retrieve the
classical Picard group of the underlying classical scheme Xcl.

Proposition 4.3.2.9. (Line bundles are invertible, [26],2.9.4.2) For a scheme X ∈ Sch, a quasi-coherent
module F ∈ QCoh(X) is a line bundle iff it is invertible for QCoh(X)⊗.

Finally, observe that the data of Picard groups over schemes assembles into a fpqc-sheaf (on a very large
site).

Construction 4.3.2.10. (Pic fpqc-stack) The construction [X ↦→ Pic(X)] assembles into a fpqc-stack on
SchAff .

Proof. Define
∫︁
Pic′ ⊆f.f.

∫︁
QCoh as the full subcategory spanned by locally free quasi-coherent modules of

rank 1. By the construction, the projection on the first component (pr1 :
∫︁
QCoh→ SchAff) ∈ CoCart(SchAff)

restricts to a cocartesian fibration pr1 :
∫︁
Pic′ → SchAff ; to the latter remains associated a sub-prestack

Pic′ ≤ QCoh.
Then, by 3.6.2.5 the condition of ”being locally free of rank 1” is fpqc-local, so that the fpqc-sheaf QCoh(−) ∈
Shfpqc(Sch

Aff ,Cat∞) restricts to the fpqc-stack Pic′. Finally, Pic := Pic′(−)≃ ≤ QCoh(−)≃ gives the sought
fpqc-sheaf. □

Finally, we close this section with a brief digression on the projectivization of locally free modules of finite
rank.

Definition 4.3.2.11. (Projectivization, [15],6.1.2) Let S ∈ Sch be a scheme, F ∈ QCohfg(S) a locally free
quasi-coherent sheaf of finite rank, and consider any S-scheme Y ∈ Sch/S . Let ProjS(F)(Y ) denote the space

of all surjections (f : Y → S, f∗F∨ ↠ L) onto some line bundle L ∈ QCoh1(Y ). Such a construction defines
a sheaf on Sch/S , which admits a classifying S-scheme PS(F), call it the projectivization of F on S.

Remark. By 3.6.2.1 F is projective at each affine point Spec(A)→ S, so ProjS(F)(Spec(A)) is the space of
all direct summands of rank 1 in the dual of F|Spec(A) ∈ QCohfg(A) ⊆ APerf(A) ∩ FlatA; morally, it is then
the space of all the equations cutting-out hyperplanes of f∗F , as it should be.

Remark. Projectivization can be equivalently described as follows: by post-composition with the zero-
section of L, the data above correspond to a monomorphisms in degree 1 of globalized symmetric algebras
Sym∗

S(f
∗F∨) ↪→ Sym∗

Y (L). So, PS(F)(f : Y → S) is also the space of the ”lines” VY (L) ⊆ f∗VS(F) of the
total S-space for F .

Remark. A derived analogue to the theory of graded algebras has been laid down in [13], where the statements
in the previous definition-proposition are proven.

Remark. (Classical projectivization, [15],6.1.2) Let S ∈ Sch, F ∈ QCohn(S) be as in the definition above. The
structural morphism PS(F)→ S can be proven to be flat, so one has PS(F)cl ≃ PS(F)×S Scl ≃ PScl(i∗(F)),
where i : Scl → S is the canonical map from the underlying classical scheme. Hence, our construction agrees
with the classical one whenever both S and F are such.

4.4 The Conormal Sheaf

In this subsection we translate the construction of the (relative) algebraic cotangent complex in the language
of dag. To this end, we will follow the handouts of a seminar talk given by L. Pol, see [34],3. Moreover, we
will freely use the notation and results of section 3.8 on the ”Algebraic Cotangent Complex”, to which we
refer the unexperienced reader.

Definition 4.4.0.1. (Space of derivations of a scheme) Let f : Y → X be a morphism in Sch and y :
Spec(A)→ Y an A-point of Y . Given an animated module M ∈ ModA, consider the following commutative
square of spaces, with ev := ev1 : A⊕M → A a retraction of the trivial square-zero extension dtriv of 3.8.1.1.
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Y (A⊕M)
ev∗ →→

↓↓

Y (A)

f(A)

↓↓

η

←↙
X(A⊕M)

ev∗ →→ X(A)

Define the space of derivations at y of Y into M as the fibre ”at y” of the canonical comparison map:
Y (A⊕M) −→ Y (A)×X(A) X(A⊕M).

Dery(Y/X,M) := Fiby
(︁
Y (A⊕M)→ Y (A)×X(A) X(A⊕M)

)︁
Remark. By ”fibre at y” in the definition of the space Dery(Y/X,M) we actually mean the fibre at the
following point: the commutativity of the square gives a homotopy η : ev∗(d

triv
∗ (f(y))) ≃ f(y) in X(A)

between f(y) and the following composite:

X(A⊕M) ∋ dtriv∗ (f(y)) : Spec(A⊕M)
dtriv−→ Spec(A)

y−→ Y
f−→ X

Then, we take y ×η dtriv∗ (f(y)) ∈ Y (A)×X(A) X(A⊕M) as a base-point.

Definition 4.4.0.2. (f admits a cotangent complex) Let f : Y → X be a morphism in Sch.

� (Local version, [34],3.2) Given any A-valued point y : Spec(A) → Y for which Dery(Y/X,−) is co-
representable, we define the cotangent complex of f at y to be the co-representing A-module Ly,
i.e. such that there is a natural equivalence MapModA

(Ly,M) ≃ Dery(Y/X,M) for each M ∈ ModA.

Whenever Dery(Y/X,−) is co-representable (i.e. exists such a Ly) we say that f admits a cotangent
complex at y and write equivalently y∗LY/X = y∗Lf := Ly.

� (Global version, [34],3.4) A quasi-coherent module L ∈ QCoh(Y ) is a cotangent complex of f iff,
for each R-point y ∈ Y (R), y∗L ≃ y∗Lf is a cotangent complex of f at y.

Whenever there exists such an L, we say that f admits a cotangent complex and write equivalently
Lf ≃ LY/X := L.

Remark. As observed in 4.4.1.1, the notation is consistent.

Let us now record some properties of the cotangent complex of a morphism of schemes. In proving them, we
will reduce the statements to the open affine patches and then refer to the following subsection on Examples
for such special cases.

Proposition 4.4.0.3. (Properties of LY/X) The following properties hold:

1. ([34],3.5) Let Z
p→ Y

q→ X be composable morphisms in Sch, and assume that there exists Lq. Then,

� there exists Lp iff Lq◦p exists;

� in such a case, there is an exact sequence in the stabilization QCoh(Z)Ex: p∗Lq → Lq◦p → Lp.

2. ([34],3.6) Any open immersion j : U ↬ X in Sch admits a trivial cotangent complex LU/X ≃ 0.

3. (3.8.2.5,iv) A morphism of schemes f : Y → X in Sch admitting a cotangent complex LY/X is an

equivalence iff it induces an isomorphism f cl : Xcl → Y cl at the level of underlying classical schemes
and LX/Y ≃ 0 vanishes.

Proof. (1) : We will reduce the question Zar-locally on X. There it will be answered in the Example 4.4.1.1.
In order to see this, let U ⊆f.f. SchAff

/X denote the full subcategory spanned by open affine patches of X, and
recall that QCoh/OX

is determined on open affine patches (it is a consequence of the sheaf-condition of X).

In other words, U ⊆ SchAff
/X is cofinal for QCoh and we can write:

QCoh(X) ≃ lim
(︁
QCoh(SpecA) ≃ ModA | j : Spec(A) ↬ X , A ∈ Ani(CRing)

)︁
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Now, by construction base-change preserves limits of quasi-coherent modules, so q∗U (resp. (q ◦p)∗U) consist
of a cofinal full subcategory of the open affine patches of Y (resp. Z).
So, suppose to have cofibre sequences Zar-locally on X.

In other words, we assume that for each (j := jA : Spec(A) ↬ X) ∈ U -
and with notation as in the aside rectangle of cartesian squares - there is a
cofibre sequence:

(p′′)∗Lq′ −→ Lq′◦p′′ −→ Lp′′

(q ◦ p)∗U
p′′ →→

↙ ↖

j′′

↓↓

q∗U
q′ →→

↙ ↖

j′

↓↓

U↙ ↖

j

↓↓
Z

p →→ Y
q →→ X

The existence of two cotangent complexes as in the statement means that two out of three Zar-locally defined
quasi-coherent modules assemble into global ones.
Furthermore, observe that we can assume wlog to be in the case in which the first two terms of the cofibre
sequences of quasi-coherent modules assemble into global quasi-coherent modules on Z.
Indeed, if we know the existence of both Lq and Lp, for each U ∈ U we can de-suspend the sequences in
QCoh((q ◦ p)∗U)Ex, thus obtaining a fibre - equivalently cofibre - sequence whose first two terms assemble
into global quasi-coherent modules on Z.
Thus, we can assume wlog that Lq and Lq◦p exist and we need to show that also (Lp′′ | j′′ ∈ (q ◦ p)∗U)
assembles into Lp ∈ QCoh(Z), i.e. that it defines an object in the previous limit.
Equivalently we want that, for each morphism (g : U/X → V/X) ∈ U , the functoriality of L(−) over the open
affine patches in (q◦p)∗U (induced by the universal property of cofibre sequences) corresponds to equivalences
g∗L(q◦p)∗V/q∗V ≃ L(q◦p)∗U/q∗U .
But this holds true for the first two quasi-coherent modules p∗Lq, Lq◦p in the (co)fibre sequence, so it must
hold true also for the last one by inspecting the induced long exact sequences in homotopy. ■

(2) : It suffices to show that u∗LU/X ≃ 0 for each R-point u ∈ U(R), i.e. that, for each M ∈ ModR, the
canonical map U(R⊕M)→ U(R)×X(R) X(R⊕M) has contractible fibre at (u, dtriv∗ (ju)).
The open immersion j is in particular a monomorphism, so by diagram-chasing the canonical comparison
map is a monomorphism, too. In other words, its fibres are either empty or contractible. However, dtriv∗ (ju) ∈
U(R⊕M) lies over (u, dtriv∗ (ju)), so the fibre over the latter must be contractible, as needed. □

Theorem 4.4.0.4. (Existence of L, [34],3.7) Any morphism f : Y → X in Sch admits a cotangent complex
LY/X ∈ QCoh(Y ).

Proof. Let us start with a reduction step to the absolute case, i.e. to the relative case over Z.
Claim. wlog X = Spec(Z)
Proof. Assume that Y/Z and X/Z admit cotangent complexes over Spec(Z), say LY and LX . Then, an

application of 4.4.0.3,i to the sequence Y → X → Spec(Z) yields the sought LY/X := Cofib(f∗LX → LY ). ■

We need to show that there exists LY := LY/Spec(Z). Recall that - as a consequence of the sheaf-condition
and the existence of an affine Zariski cover - quasi-coherent modules on a scheme are determined by their
values on open affine charts, i.e.

U := ⟨{U := Spec(A) ↬ Y | A ∈ Ani(CRing)}⟩ ⊆f.f. SchAff
/Y

is cofinal, so that we can write

QCoh(Y ) ≃ limQCoh|U ≃ lim
(︁
QCoh(SpecA) ≃ ModA | j : Spec(A) ↬ Y , A ∈ Ani(CRing)

)︁
Therefore, it suffices to construct a compatible system of quasi-coherent modules(︁

j∗LY | j : U := Spec(A) ↬ Y , A ∈ Ani(CRing)
)︁
=

(︁
j∗LY | j ∈ U

)︁
To this end, notice that there exists LU ≃ LSpec(A) = LA (by 4.4.1.1), and that the open immersion j admits
a well-defined trivial cotangent complex, namely LU/Y ≃ 0 (by 4.4.0.3,ii). Thus, whenever it exists, LY must
sit in the cofiber sequence j∗LY → LU → LU/Y of 4.4.0.3,i. In other words, j∗LY ≃ LA whenever LY exists,
so we have a Zar-local candidate for the restriction of the latter quasi-coherent module to the open patch
U = Spec(A).
Therefore, set (j∗LY := LA)j∈U and let us show that it defines an object in the previous limit.
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Observe first that the construction [A ↦→ j∗ALY ] is functorial on U : the Spec-construction is fully faithful,
so (in the incarnation of quasi-categories) all (≥ 1)-simplices are in Ani(CRing) and L(−) is functorial on
Ani(CRing).
Thus, it suffices to show that j∗(−)LY respects the relation defining the limit as a subobject of the product of
categories of quasi-coherent modules. Indeed, recall that limits are constructed via products and pull-backs.

In other words, we want that, for each morphism g : U := Spec(B)/Y → V := Spec(A)/Y of open affine
patches, the canonical comparison map B ⊗LA LA → LB induces an equivalence g∗LV ≃ LU in QCoh(U) ≃
ModB .
To this end, notice that g induces a cofibre sequence by 4.4.0.3,i:

g∗LV/Y → LU/Y → LU/V
Now, the first two terms vanish, because jU and jV are open immersions; so also LU/V ≃ 0. But the question
is now algebraic: by the Example 4.4.1.1 and 3.8.2.5,ii, there is a cofiber sequence

g∗LV →→ LU →→ LU/V ≃ 0

≃
↓↓

B ⊗LA LA →→ LB →→ LB/A

which forces an equivalence g∗LV ≃ LU between the first two terms, as wished. □

In view of the exact sequence of cotangent sheaves 4.4.0.3,i and of the shift occurring in the cotangent complex
relative to the inclusion of the origin in the affine space 3.8.3.2, let us give a name to the de-suspension of
the cotangent complex of a map of schemes. Needless to observe that such an object plays a prominent role
in the modern approach to algebraic geometry.

Definition 4.4.0.5. (Conormal sheaf) Define the conormal sheaf of a map of schemes f : Y → X in Sch
as the de-suspension NY/X := LY/X [−1]

4.4.1 Examples

Example 4.4.1.1. ([34],3.1-3) Let f : Y := Spec(B) → Spec(A) =: X be in SchAff . Then, we retrieve
Der1B (Y/X,M) ≃ DerA(B,M). In particular, f admits a cotangent complex at 1B , namely LY/X := LB/A.

Moreover, by base-change at any R-point y : Spec(R) → Y - i.e. y ∈ MapAni(CRing)(B,R) - f admits a

cotangent complex Ly = y∗LY/X ≃ R⊗LB LB/A.

Proof. Let ϕ : A→ B in Ani(CRing) correspond to f : Y → X in SchAff , and recall first that the base-point
in our notation is 1B ×(ϕ∗,ev∗) (d

triv ◦ ϕ). We have the following chain of equivalences in Spc:

Der1B (Y/X,M) = Fib1B
(︁
MapCAlg∆(B,B ⊕M)→ MapCAlg∆(B,B)×MapCAlg∆ (A,B) MapCAlg∆(A,B ⊕M)

)︁
≃ MapCAlg∆

A//B
(B,B ⊕M)

= DerA(B,M)

Informally, under the Yoneda Lemma, the canonical comparison map allows us to regard the maps in the
source MapCAlg∆(B,B ⊕M) as pairs consisting of:

� maps B → B of animated rings coming from the A-algebra structure ϕ : A→ B of B, and

� maps A→ B ⊕M obtained by regarding square-zero extensions of B by M as maps of A-algebras.

Then, taking the fibre at 1B×ϕ(dtriv◦ϕ) amounts to considering those maps in the source which are A-algebra
square-zero extensions of B by M .
Moreover, by 3.8.2.4 the functor DerA(B,M) is co-represented by LB/A, so f does indeed admit LB/A as a
cotangent complex at 1B .
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Finally, let us show that, for any y ∈ MapAni(CRing)(B,R), we obtain Ly as the base-change R⊗LB LB/A.
In order to see this, observe that there is a cofibre sequence of spaces induced by the composable arrows of

animated rings A
ϕ−→ B

y−→ R:

Der1R(Spec(R)/Spec(A),M)
f∗

−→ Der1R(Spec(R)/Spec(B),M)
y∗−→ Dery(Spec(B)/Spec(A).M)

as given by the following composition of morphisms of fibre angles (one can show that this is again a fibre
sequence as in the proof of 3.8.2.5,ii):

[1pt, 1R, 1R ×ϕ∗ ϕ∗] ◦ [1pt, y∗, y∗ ×ϕ∗ ϕ∗]

Now, notice that 3.8.2.5,ii yields a morphism of fibre sequences in Spc for each M ∈ ModR, where the solid
vertical arrows are equivalences by the previous part:

Der1R(Spec(R)/Spec(A),M) →→

≃
↓↓

Der1R(Spec(R)/Spec(B),M) →→

≃
↓↓

Dery(Spec(B)/Spec(A).M)

↓↓
MapModR

(LR/A,M) →→ MapModR
(LR/B ,M) →→ MapModR

(R⊗LB LB/A,M)

Hence, also the induced dotted vertical arrow is an equivalence, as inferred by considering the associated long
exact sequences in homotopy. □

Remark. In particular, by the functoriality of QCoh, the notation y∗LY/X (resp. LY/X) for the local (resp.
global) cotangent complex of f is consistent.

Example 4.4.1.2. In particular, the closed immersion of the origin of the n-th affine space, {0} ↛ An,
admits a cotangent complex and it holds L{0}/An ≃ Zn[1] ∈ QCoh(Spec(Z)). In particular, N{0}/An ≃ Zn.

Proof. Let t be a tuple of n variables. The closed immersion can be rewritten as

{0} ≃ Spec(Z[t]/(t)) ↛ Spec(Z[t]) ≃ An

so, by the previous example, we know that - at the (only) point r : Spec(R) → Spec(Z) = {0} - it holds
r∗(L{0}/An) ≃ r∗LZ/Z[t] ≃ R⊗LZ Zn[1] = Rn[1]. □

Let us now include a couple of slight variations of the previous example. We refer to 4.3.2.5 and 4.5.2.1 for
the terminology needed.

Example 4.4.1.3. (Conormal sheaf of zero-sections) Let L ∈ QCoh(S) be a locally free quasi-coherent
module of rank n on a stack S ∈ Stack. Let p : L := VS(L) → X denote the associated vector bundle and
consider its zero-section 0 : X → L. Then, L0 ≃ L∨[−1] ≃ (L[1])∨, so that N0 ≃ L∨.

Proof. Locally on a trivializing atlas for L, our setting amounts to a factorization of the identity:

1A : A
p♭→ Sym∗

A(M
∨)

0♭→ A

for (A,M) ∈ MOD such that L|Spec(A) = M ∈ ModA. By 3.8.2.5,ii, the latter induces in turn a cofibre
sequence of relative cotangent complexes:

A⊗LB Lp♭ → L1A → L0♭

with B := Sym∗
A(M

∨). Then, being L1A ≃ 0 trivial, the exactness in ModEx
A allows us to compute L0♭ [−1] ≃

A⊗LB Lp♭ ≃M
∨ by 3.8.3.3. □

Example 4.4.1.4. (Conormal sheaf of qSmCl) Let i : Z := Spec(A � (f1, . . . , fn)) ↛ Spec(A) =: X
be a quasi-smooth closed immersion of affine schemes, and recall that A � (f1, . . . , fn) ≃ A ⊗LZ[t1,...,tn]
Z[t1, . . . , tn]/(t1, . . . , tn). Then, by 3.8.3.2 and 4.4.1.1, the base-change along Spec(A � (f1, . . . , fn)) → {0}
yields NZ/X ≃

(︁
A � (f1, . . . , fn)

)︁n
.
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4.5 Smoothness and Quasi-Smoothness

In this subsection we introduce classes of relative schemes which correspond to a choice of a ”system of
local coordinates” on the base scheme. The mathematical nature of such frames will be determined by the
properties of the class at stake.

4.5.1 Smooth and Étale Morphisms.

Let us start with a brief review of smooth and étale morphisms of schemes. Our goal is to focus on quasi-
smoothness, so we take the latter notions as motivational. As an outcome, we will not provide any proof.

Definition 4.5.1.1. (Smooth and Étale morphisms, [15],5.3.2) A morphism of schemes f : Y → X in Sch
with quasi-compact and quasi-separated source Y ∈ Schqcqs is:

1. smooth iff, Zar-locally on the base X, it is locally of finite presentation and the cotangent complex
LY/X is locally free of finite rank.

Equivalently, iff f is flat and the underlying morphism of classical schemes f cl : Y cl → Xcl in Schcl is
smooth.

2. étale iff, Zar-locally on the base X, it is locally of finite presentation and the cotangent complex LY/X
vanishes.

Equivalently, iff f is flat and the underlying morphism of classical schemes f cl : Y cl → Xcl in Schcl is
étale.

For any scheme S ∈ Sch, let SmS , ÉtS ⊆f.f. Schqcqs,lfpS denote the full subcategories of S-smooth and S-étale
schemes.

Example 4.5.1.2. From the very definition, open immersions are étale and étale maps are in particular
smooth.
Moreover, any vector bundle is smooth on the base, so in particular affine and projective spaces are such.

4.5.2 Quasi-Smooth Closed Immersions.

In this subsection we will introduce the notion of ”quasi-smooth closed immersions” as zero-loci of coordinate
maps (see 3.5.0.1). This will be the most important class of relative schemes for the rest of our dissertation.
Morally, we will see here in which sense the notion of ”(homotopy) quotient rings” works as a ”homotopy-
coherent system of coordinates” for a scheme. Noteworthy is how the good-behaviour of the latter is controlled
by the cotangent complex / sheaf, so an algebraic object.

Definition 4.5.2.1. (Quasi-Smooth closed immersion, [17],2.3.6) A closed immersion of schemes i : Z ↛ X
in Sch is quasi-smooth iff, Zar-locally on the base X, there exists a map f : X → An sitting in the following
cartesian square in Sch:

Z
i →→

↓↓

X

f

↓↓
{0} 0 →→ An

where 0 : {0}↛ An denotes the (closed) inclusion of the origin. In other words, we require i to be locally of
the form Spec(A � (f1, . . . , fn))→ Spec(A) for some coordinate maps (f1, . . . , fn) ⊆ A.
Sometimes we will denote by qSmCl the property ”being quasi-smooth” of a closed immersion of schemes.

Lemma 4.5.2.2. (Properties of quasi-smooth closed immersions, [17],2.3.6) The following properties hold:

1. ”Being a quasi-smooth closed immersion” is stable under base-change and Zar-local on the base.
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2. A closed immersion icl : Zcl ↛ Xcl of classical schemes in Schcl is quasi-smooth iff it is regular (see
2.1.0.4).

Proof. (2) : It follows from 3.5.0.3,iii and 2.1.0.3,i-iii.
(1) : Locality on the base is by definition. As for stability under base-change, the question is now local on
the base. Then, let it be given a quasi-smooth closed immersion i : Spec(A � (f1, . . . , fn)) ↛ Spec(A) in
SchAff ; for any map ϕ : Spec(A) → Spec(B) in SchAff , the base-change along ϕ retrieves a quasi-smooth
closed immersion ϕ∗(i) : Spec(B � (ϕ♭(f1), . . . , ϕ

♭(fn)))→ Spec(B), since ⊗L is associative:

B ⊗LA
(︁
A � (f1, . . . , fn)

)︁
≃ B ⊗LZ[t1,...,tn] Z[t1, . . . , tn]/(t1, . . . , tn) ≃ B � (ϕ(f1), . . . , ϕ(fn)) □

Remark. Any (non-empty) static scheme admits non-static quasi-smooth sub-schemes: on the affine chart
Spec(R) corresponding to some static ring R ∈ CRing, consider the quasi-smooth closed immersion Spec(R�
(0))→ Spec(R) of Example 3.5.0.4.
Morally, this is a non-static generalization of Koszul regular immersions: for a sequence of coordinate maps,
not being ”topologically” Koszul regular (on the underlying schemes) is not a bug, but a feature: it means
that they carry also higher ”homotopical” information.

The next result characterizes quasi-smoothness algebraically in terms of the conormal sheaf (see 4.4.0.5),
thus opening for a comparison with an enhancement of the more familiar notion of ”smoothness”.

Proposition 4.5.2.3. (Characterization of quasi-smooth closed immersions, [17],2.3.8) A closed immersion
of schemes i : Z ↛ X in Sch is quasi-smooth iff it is locally of finite presentation (see 4.1.4.17) and the
conormal sheaf NZ/X = LY/X [−1] ∈ QCoh(Z)Ex is locally free of finite rank (see 4.3.2.1).
In particular, ”being a quasi-smooth closed immersion” is fpqc-local.

Proof. First observe that - by the properties 4.5.2.2, 4.1.4.19, 4.3.2.1 of the objects at stake - the statement is
Zar-local and stable under base-change, so that we can reduce it wlog to i : Z := Spec(B) ↛ Spec(A) =: X.

( =⇒ ) : Up to base-change along A, wlog i : {0} ↛ An is the inclusion of the origin. Then, by 3.8.3.2

N{0}/An ≃ L{0}/An [−1] ≃ ˜︁Zn is a locally free quasi-coherent module of finite rank. Moreover, i is locally
finitely presented: Z is a compact Z[t1, . . . , tn]-algebra, since extension of scalars induces an equivalence
MapZ[t1,...,tn]/(Z,−) ≃ Map(Z,−) ≃ MapZ[t1,...,tn]/(Z[t1, . . . , tn],−) of mapping spaces of (the given slice of)

animated rings and PolyZ[t1,...,tn] ≃ (CAlg∆Z[t1,...,tn])
sfp ⊆ (CAlg∆Z[t1,...,tn])

fp.

( ⇐= ) : As in the introduction, let’s work on a trivializing atlas for Li; so, assume i : Spec(B) → Spec(A)
for some surjective (on π0) map ϕ := i♭ : A→ B in (CAlg∆A)

fp exhibiting B as a compact A-algebra and with

the shifted cotangent complex LB/A[−1] ∈ ModEx
B being free of finite rank, say n. (Recall that the source of

a closed immersion into an affine scheme is affine by 4.2.3.8, so that we obtain such a ϕ = i♭ by either the
Yoneda Lemma or, equivalently, by the Spec-adjunction 4.2.3.5).
We need to exhibit a sequence (f1, . . . , fn) ⊆ A for which B ≃ A � (f1, . . . , fn). To this end, we will first
exhibit a morphism A � (f1, . . . , fn) → B in CAlg∆A and then prove that it is an equivalence via property
3.8.2.5,iv of the conormal sheaf.
Recall that, by the universal property of quotients 3.5.0.5, the datum of a morphism A� (f1, . . . , fn)→ B in
CAlg∆A corresponds to a sequence (f1, . . . , fn) ⊆ A together with homotopies {f ′i := ϕ(fi) ≃ 0}i in forB.
We will construct such a sequence of pairs by lifting a basis of connected components in the free π0(B)-module
π1(LB/A) ∼= π0(LB/A[−1]) lying under the shifted relative cotangent complex.

Claim 1. Take the fibre F := Fib(ϕ : A → B) in ModEx
A ; the Hurewicz map of 3.8.2.5,iii induces an

identification π1(LB/A) ∼= π0(F ⊗LA B), so that the latter is a locally free π0B-module of rank n.

Proof. Let’s construct an isomorphism π0(F ⊗LA B) ∼= π0(LB/A[−1]) ∼= π1(LB/A). To this end, consider the

fibre sequence in ModEx
B associated to B ⊗LA ϕ, and observe that its tail can be computed by tensoring with

B ⊗LA (−) the cofibre sequence in ModEx
A for ϕ : A→ B:

B ⊗LA Cofib(ϕ)[−1] ≃ B ⊗LA F −→ B
B⊗Lϕ−→ B ⊗LA B −→ B ⊗LA Cofib(ϕ)
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Indeed, being π0(ϕ) surjective, by 3.4.0.1 we can compute the terms (in the degrees above) of the sequence
for ϕ in the pre-stable category ModA. Then, tensoring along ϕ is exact in the pre-stable category ModA
(even though it is exact in its stabilization iff ϕ is flat), so we obtain the exact sequence above.
Now, consider the Hurewicz map ϵϕ : B ⊗LA Cofib(ϕ)→ LB/A of 3.8.2.5,iii; again by the surjectivity of ϕ on
connected components, by 3.8.2.6 we conclude that the connectivity of F = Fib(ϕ) implies the 2-connectivity
of Fib(ϵϕ), i.e. the desired map π1(ϵϕ) ∼= π0(ϵϕ[−1]) : π0(B ⊗LA F )→ π0(LB/A[−1]) is an isomorphism. ■

Claim 2. A basis {df1, . . . , dfn} for the n-loc.free π0(F ⊗LA B) lifts to elements {f̃1, . . . , f̃n} ⊆ π0(F ) which
wlog π0A-generate the latter by Nakayama’s Lemma.

Proof. Let I := ker(π0(ϕ) : π0A ↠ π0B) denote the ideal of the structure map, which is surjective at the
level of connected components by assumption. Being π0 symmetric monoidal, we can write:

π0(F ⊗LA B) ∼= π0F ⊗π0A π0B
∼= π0(F )/Iπ0(F )

Choose lifts {f̃ i}i ⊆ π0(F ) of the basis {dfi}i of the quotient. We claim that {f̃ i}i π0A-generate π0F .
In order to see this, we need a few remarks. First, by the following Remark, being ϕ surjective on π0, we
can compute its fibre F in ModA, and the latter operation commutes with π0 := MapSpc(S0,MapModA

(A,−)
(see 3.2.1.4). Then, π0F ∼= π0(Fib(ϕ)) ∼= Fib(π0ϕ), and the latter is in turn isomorphic to ker(π0ϕ) ∼= I ∈
Mod(π0A), which is finitely generated by assumption.
Now, observe that for this Claim we can assume wlog π0A to be local, since the surjectivity of ⊕i[f̃ i]π0(A)→
π0(F ) is a local property.
Therefore, {f̃1, . . . , f̃n} generate π0(F ) by Nakayama’s Lemma as in [37],10.20.1.vii. ■

Remark. Let ϕ : R → S be in CRing. Then, ϕ is surjective iff the fibre Fib(ϕ) ∈ ModEx
R can actually be

computed in ModR and it is static and can be identified with ker(ϕ) ∈ Mod(R).

Proof. It suffices to prove that ϕ is surjective iff Fib(ϕ) ≃ ker(ϕ) is static. The rest is a consequence of
3.4.0.1.
The claim can be seen by inspecting the induced long exact sequence in homotopy:

πk(Fib(ϕ))→ πk(R)→ πk(S)→ πk−1(Fib(ϕ))

Indeed, the satiticity of R, S imply that πk(Fib(ϕ)) ∼= 0 whenever k ̸= 0,−1; finally, π0(Fib(ϕ)) ≃ ker(ϕ)
and π−1(Fib(ϕ)) ∼= coker(ϕ) vanishes iff ϕ is surjective. ■

As in 3.5.0.1, lift the latter generators to a sequence of coordinate maps (f1, . . . , fn) ⊆ F (An) ↪→ A(Z[t1, . . . , tn]) ≃
forAn, together with a choice of paths {f ′i ≃ 0 ∈ PathforB(f

′
i , 0)}ni=1 witnessing the commutativity of the

fibre square in ModEx
A :

F ↘
↙ →→

↓↓

A

ϕ

↓↓
0 ↘
↙ →→ B

fi →→

↓↓

fi

↓↓
0 →→ f ′i := ϕ(fi)

As already observed, by the universal property of quotients in 3.5.0.5, such a datum amounts to an essentially
unique morphism Φ : A � (f1, . . . , fn)→ B in CAlg∆A .

Claim 4. The morphism Φ : A � (f1, . . . , fn)→ B in CAlg∆A is an equivalence.

Proof. By property 3.8.2.5,iv, Φ is an isomorphism iff it induces an isomorphism π0(Φ) on connected com-
ponents and its relative cotangent complex LΦ ≃ 0 vanishes.
The first condition follows by the construction: as in the Remark and in the proof of Claim 2, π0(F ) ∼=
ker(π0ϕ) and π0(ϕ) is surjective, so that 3.5.0.3,i at (3) implies:

π0(B) ∼= π0(A)/π0(F ) ∼=(1) π0(A)/(f̃1, . . . , f̃n)
∼=(2) π0(A)/(f1, . . . , fn) ∼=(3) π0(A � (f1, . . . , fn))

and - reading from right to left - we retrieve the action of the map Φ as described in the proof of 3.5.0.5
(apart from (1) and (2) which are the algebraic identifications of CLaim 2).

Let’s turn to the relative cotangent complex LΦ. Consider the exact sequence in ModEx
B as in 3.8.2.5,ii:

L(A�(f1,...,fn))/A ⊗
L
A�(f1,...,fn)

B −→ LB/A −→ LB/A�(f1,...,fn) = LΦ
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The vanishing of LΦ amounts to the first map being an equivalence. In order to see the latter, notice first
that LB/A[−1] ≃ Bn by assumption, so that LB/A ≃ Bn[1] by suspending in ModEx

B . On the other hand, by

3.8.2.5,i, the very definition A � (f1, . . . , fn) ≃ A⊗LZ[t1,...,tn] Z[t1, . . . , tn]/(t1, . . . , tn) allows us to rewrite

L(A�(f1,...,fn))/A ≃ L{0}/Z[t1,...,tn] ⊗
L
Z[t1,...,tn] A � (f1, . . . , fn) ≃

(︁
A � (f1, . . . , fn)

)︁n
[1]

Finally, extending scalars along Φ computes also the first term as Bn[1]. Thus, by the last part of 3.8.2.5,ii
the first map of the exact sequence is an equivalence, as wished. ■

Thus, on a trivializing atlas for the conormal sheaf NZ/X , the closed immersion i : Spec(A � (f1, . . . , fn)) ↛
Spec(A) is quasi-smooth.

Finally, for what concerns the last statement on the fpqc-locality, this is now automatic: the algebraic
characterization of quasi-smoothness is fpqc-local by 3.6.2.2 and 4.1.4.19. □

Remark. The proof is constructive: let it be given a quasi-smooth closed immersion i : Z ↛ X, so a closed
immersion of finite presentation admitting a conormal sheaf Ni which is locally free of finite rank; then,
we can choose a trivializing neighbourhood Z = {Zi ↬ Z}I of Z on which i restricts to maps Spec(Ai �
(f i1, . . . , f

i
ni
)) ↛ Spec(Ai) for an affine Zariski cover {Spec(Ai)}I of X; for each i, this can be obtained by

lifting a basis {df ij}
ni
j=1 for the free module Ni to a sequence {f ij}

ni
j=1 of coordinate maps in A together with

homotopies {f ij ≃ 0}ni
i=1.

Example 4.5.2.4. (Closed immersions in SmS) Let S ∈ Sch be a scheme. Any closed immersion of quasi-
smooth S-schemes is itself such.
In particular, closed immersions which admit smooth retractions (e.g. zero-sections of vector bundles) are
quasi-smooth.

Let’s prove it. Let i : Z ↛ X be a closed immersion of smooth S-schemes. Notice first that i is locally
finitely presented, because the class of lfp morphisms enjoys the right-cancellation property 4.1.4.20. As for
the condition on the cotangent complexes, consider the shifted exact sequence in QCoh(Z)Ex of 4.4.0.3,i:
i∗NX/S → NZ/S → NZ/X ; by assumption the first two quasi-coherent modules are locally free of finite rank,
so we conclude by 4.3.2.2.

We close our digression on quasi-smooth morphisms by introducing a notion of ”(co)dimension” for such
coordinate ”frames”.

Definition 4.5.2.5. (Virtual codimension, [17],2.3.11) Define Zar-locally on the source the virtual codi-
mension of a quasi-smooth closed immersion i : Z ↛ X to be the rank of the (fg-loc.free) conormal sheaf
NZ/X ∈ QCoh(OZ)Ex. Denote it by either codim.vir(X,Z) or codim.vir(i).

Remark. In other words, in view of the proof of 4.5.2.3 we define codim.vir(i) on a trivializing neighbourhood
for NZ/X by positing codim.vir(Spec(A � (f1, . . . , fn)),Spec(A)) := n. The adjective ”virtual” is probably
due to the fact that our ”coordiante frames” carry homotopical as well as topological information.

Proposition 4.5.2.6. (Properties of codim.vir) The virtual codimension of a quasi-smooth closed immersion
i : Z ↛ X in Sch enjoys the following properties.

1. codim.vir(i) is stable under base-change and fpqc-local;

2. Define the topological codimension codim.top(X,Z) of a closed immersion i : Z ↛ X to be the
(Krull) codimension of the underlying classical closed immersion icl : Zcl ↛ Xcl, i.e. morally the
minimum among the Krull codimensions of the closed irreducible components of (Zcl, Xcl).

Suppose that the classical scheme Xcl lying under the target is locally Noetherian. Then, the two notions
of dimension are comparable and

(a) codim.vir(X,Z) ≥ codim.top(X,Z);

(b) the equality at a point x ∈ X holds whenever Z ×X Xcl ∈ Sch is classical Zar-locally around x; in
particular, the virtual and topological codimension of a regular closed immersion coincide;
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(c) if further Xcl is Cohen-Macauley (see [37],28.8: Xcl is locally given by Cohen-Macauley Noetherian
rings as in [37],10.104) at x ∈ Xcl, then the equality at x holds iff Z×X Xcl is classical around x.

Proof. (1) : Is clear from the definition and 4.5.2.3, 3.6.2.5, 3.6.1.9.

(2), a : The question is local on the base, so let’s assume wlog i : Spec(A � (f1, . . . , fn)) → Spec(A) for a
Noetherian ring π0A ∈ CRing. We need to show that the Krull codimension of the canonical quotient map
π0(A) ↠ π0(A)/(f1, . . . , fn) is at most n. Let us recall more precisely the definition of Krull codimension for
icl. First recall that the Krull dimension of a Noetherian static ring R ∈ CRing is is the maximum among
the dimensions of its closed irreducible components (see [9],11.7).
Recall also that - being the static ring π0A Noetherian - the ideal (f1, . . . , fn) admits a minimal finite
primary decomposition, with associated primes Ass(f1, . . . , fn) (combine [9],8.21-25-27); in other words, if
we let Min(f1, . . . , fn) denote the set of all the isolated prime ideals p ∈ Ass(f1, . . . , fn) of (f1, . . . , fn) (by
[9],8.30, read ”minimal” primes over the ideal),

(f1, . . . , fn) = ∩Ass(f1, . . . , fn) = ∩Min(f1, . . . , fn)

This gives a decomposition into closed irreducible components of

Zcl = Spec(π0(A)/(f1, . . . , fn)) = ∪{V (p) | p ∈ Min(p)}
Then, by definition codim.top(Zcl, Xcl) = codim(q) is the codimension (or height) of the minimal prime
q ∈ Min(f1, . . . , fn) which realizes the maximum in:

dim(π0A/(f1, . . . , fn)) = max{dim(π0A/p) | p ∈ Min(f1, . . . , fn)}
Intuitively, we are forcing the equality in [9],11.5,b: dim(π0A) = dim(π0A/q) + codim(q).
Finally, the Corollary [9],11.17 to Krull’s Hauptidealsatz implies that the minimal prime q over (f1, . . . , fn)
has codimension at most n, so that codim.top(Zcl, Xcl) ≤ n, as wished. ■

(2).b : As before, wlog i : Spec(A � (f1, . . . , fn)) → Spec(A); unpacking the assumption, there exists some
open neighbourhood x ∈ Spec(A[g−1]) ⊆ Spec(A) such that, for B := A[g−1],

π0B � (f1, . . . , fn) ≃ B � (f1, . . . , fn)⊗LB π0B ≃ π0(B)/(f1, . . . , fn)

where the first equality follows from 3.5.0.3,i. By 3.5.0.3,iii this amounts to (f1, . . . , fn) ⊆ π0B being a
regular sequence.
The claim is to show that the inequality obtained via Krull Hauptidealsatz is indeed an equality n = codim(q),
for q ⊆ π0B some minimal prime ideal over (f1, . . . , fn) realizing the Krull codimension of icl (as in the proof
of (2), a). To this end, notice that we can recursively write π0B/(f1, . . . , fn) by successive quotients by a
single regular equation fi each; this yields an n-long increasing sequence of prime ideals with pn = q and
such that, for each 1 ≤ i ≤ n, pi ∈ Min(f1, . . . , fi) is a minimal prime ideal over the first i equations. Hence,
by [9],11.19, each pi has codimension i and the statement follows.

In particular, for a regular closed immersion i : Zcl ↛ Xcl in Schcl, codim.vir(i) = codim.top(i): on a
trivializing atlas for Ni, we can write i : Spec(R � (f1, . . . , fn)) ≃ Spec(R/(f1, . . . , fn))→ Spec(R) for some
static ring R ∈ CRing, and the sufficient condition is satisfied.

(2).c : Again, wlog i : Spec(A� (f1, . . . , fn))→ Spec(A) for a local Noetherian Cohen-Macauley ring π0A, i.e.
such that the inequality of [9],11.5,b is always an equality. Then, we conclude by [37],10.104.2: a sequence
in π0A is regular iff it induces the ”right” codimension, which in turn equates the virtual one. □

Remark. We require Xcl to be locally Noetherian, because otherwise the Krull dimension itself is not ”well-
behaved” and the bound need not hold. For instance, in such cases Krull’s Hauptidealsatz [9],11.15 fails be-
cause of pathological examples of a non-locally Noetherian static ringR ∈ CRing over which codim.top(AnR, {0}) >
n+dim(R); incidentally, this is definitely not the notion of topological (co)dimension we wish for, so we will
not try to include such instances in the theory.

4.6 Cartier Divisors

In this section we generalize the various notions of divisors, as well as the relative comparisons.
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4.6.1 Virtual Cartier Divisors

Definition 4.6.1.1. (Virtual Cartier divisor, [17],3.1.1-2) Let X ∈ Sch be a scheme. Define a virtual
(effective) Cartier divisor on X to be a pair (D, iD) with iD : D ↛ X a quasi-smooth closed immersion
in Sch exhibiting D as a closed subscheme of X of virtual codimension 1.
Let VDiv(X) ⊆f.f. (Schcl/X)≃ denote the sub-space spanned by virtual Cartier divisors on X.

Remark. Unwinding the definition, we require the quasi-smooth closed immersion iD : D ↛ X to be of the
form Spec(A � (f)) ↛ Spec(A) on a trivializing atlas for ND/X .

Example 4.6.1.2. (Classical Cartier divisors, [17],3.1.3) (Effective) Cartier divisors on a classical scheme
are an instance of virtual (effective) Cartier divisors: CaDiv(Xcl) ⊆ VDiv(Xcl). This is a consequence of
2.1.0.6 together with 4.5.2.6,2,ii.

The next result assembles the data of virtual Cartier divisors on schemes into an fpqc-stack.

Construction 4.6.1.3. (VDiv, [17],3.1.2) The construction [X ↦→ VDiv(X)] determines a sub-fpqc-stack
of [X ↦→ (Sch/X)≃].

Proof. Let (Sch/(−))
op : Sch → Spc be the presheaf represented by the target map (ev1 : Fun(∆1,Sch) →

Sch) ∈ CoCart(Sch) under the Straightening Theorem [24],3.2. Post-compose it with the core-groupoid
functor (−)≃, so as to obtain the presheaf F := (Sch/(−))

≃.
Unwinding the definitions, we can informally describe Map∫︁ F (D

′/X,D/Y ) as the spaces of squares over

”admissible maps” in Map′(X,Y ) ⊆f.f. MapSch(X,Y ), where the latter embedding is the essential image of
{1X} ⊆ MapSch(X,Y ) whenever X ≃ Y and an equivalence otherwise.
Consider the full subcategory

∫︁
VDiv ⊆f.f.

∫︁
(Sch(−))

≃ spanned by the 1-skeletal data:

� Obj: VDiv(X) for X ∈ Sch;

� Mor: For any pair of virtual Cartier divisors iD′ : D′ ↛ X, iD : D ↛ Y , define MapVDiv(iD′ , iD) ⊆f.f.
Map∫︁ F (iD′ , iD) to be the subspace spanned by cocartesian squares over ”admissible maps”.

Denote again ev ′
1 :

∫︁
VDiv → Sch for the restricted target projection. Observe that ev ′

1 ∈ LFib(Sch) is a
left-fibration, since by construction it is cocartesian and its fibres are ∞-groupoids (see [20],3.1.23). Hence,
again by the Straightening Theorem [24],3.2 it classifies a presheaf VDiv : Sch→ Spc, which arises together
with a monomorphism VDiv ↪→ F (its fibres are −1-truncated, as it can be seen at the level of unstraightened
categories). In other words, we obtain a presheaf VDiv ≤ F = (Sch(−))

op in PreStack.

We are left to check the sheaf condition on fpqc-covers of SchAff . This is a straightforward consequence of
our fpqc-local definition of the notions ”quasi-smooth closed immersion” and ”virtual codimension”, hence
of ”virtual Cartier divisor”. □

4.6.2 Generalized Cartier Divisors

Definition 4.6.2.1. (Generalized effective Cartier divisor, [17],3.2.1) Let X ∈ Sch be a scheme. A gen-
eralized (effective) Cartier divisor over X is an invertible OX -twist, namely a pair (L, s : L → OX) in
QCoh(X) with L locally free of rank 1.

Define GDiv(X) :=
(︁
Pic′(X)/OX

)︁≃ ⊆f.f. (︁QCoh(X)/OX

)︁≃
to be the full subspace of generalized Cartier

divisors on X.

Remark. We write Pic′ in place of Pic (as in 4.3.2.8), because this time we consider the core groupoid of the
slice category over the structure sheaf: otherwise all comparison maps s would be invertible...

Construction 4.6.2.2. (GDiv is a fpqc-stack, [17],3.2.4) The construction [X → GDiv(X)] assembles into
a fpqc-stack SchAff → Spc.

118



Proof. Observe that the slice of two sheaves is still a sheaf: one can check the sheaf condition for e.g. coverings
by [24],5.2.2.2. Then, apply the usual argument with the Straightening Theorem [24],3.2, so as to define the
slice fpqc-stack GDiv: the fpqc-stacks Pic′ and O(−) (see 4.3.1.1) induce a fpqc-stack Pic′(−)/O(−)

, which
stays a fpqc-stack after passing to core groupoids. □

We will now prove the main result of this sections, thus showing the equivalences of the notions of virtual and
generalized Cartier divisors. Let us start with the useful construction of a comparison map GDiv→ VDiv.

Construction 4.6.2.3. (Zero-loci as VDiv, [17],3.2.3) Let (L, s) ∈ GDiv(X) be a generalized Cartier divisor
on X. It gives rise to a virtual Cartier divisor as follows.
Let σ : X → L be the global section of the vector bundle L := VX(L) on X which corresponds to s := σ♭ :
L → OX (see 4.3.2.4, and 4.3.1.1). Let 0 : X ↛ L denote the zero-section of L. Take the zero-locus D of σ,
i.e. form the following cartesian square:

D
iD →→

σ|D

↓↓

X

σ

↓↓
X

0 →→ L

Such data exhibits (D, iD : D ↛ X) ∈ VDiv(X) as a virtual Cartier divisor on X with conormal sheaf
ND/X ≃ L|D.

Proof. The zero-section 0 : X → L is quasi-smooth by 4.5.2.4 (or more directly by 4.3.2.5) with conormal
sheaf N0 ≃ L∨. Then, by 4.5.2.2,i also iD is a quasi-smooth closed immersion, and we obtain NiD ≃
(σ|D)

∗N0 = L∨
|D. □

We close this subsection by stating (without proof) a theorem comparing our notions of divisors.

Theorem 4.6.2.4. (Comparison of VDiv, GDiv, [17],3.2.6) There are canonical isomorphisms of derived
stacks:

VDiv
≃−→ GDiv

≃−→ [A1/Gm]

where [A1/Gm] is the quotient stack (see 4.6.3.1) of the affine line A1 by the canonical ”scaling” Gm action.

4.6.3 Quotient Stacks

In the (very large) ∞-topos Stack it makes sense to consider group stacks, namely objects of Grp(Stack) as
in B.1.0.9 or, equivalently, contractible groupoids as in C.1.0.5.

Definition 4.6.3.1. (Quotient stack, [16],4.25) For a group stack G ∈ Grp(Stack), define the G-action
groupoid of a stack U ∈ Stack as in C.2.0.1, and refer to (U �G)• as a ”stack S with a G-action”. Define the
quotient stack [U/G] of U by G as the geometric realization [U/G] := |(U �G)•| in Stack. By construction,
the canonical map S → [U/G] exhibits a G-torsor, as in C.2.0.2.

Remark. ([16],4.26) As it is often the case with sheaves, the sheafification functor L needs not be right-exact,
and in general colimits of sheaves are computed as the sheafification of colimits in the presheaf category:
colimStack ≃ L◦colimPreStack. Similarly, also here the canonical map colimPreStack(U�G)• → [U/G] comparing
the geometric realizations in PreStack and Stack respectively (see C.5.1.2) is in general not an equivalence,
but exhibits the latter as the sheafification of the former.

Let us now include a useful computation of the points of a quotient stack, namely we will translate the
classification result for G-torsors into a more geometric language (see C.2.0.5 for the topos-theoretic proof).

Theorem 4.6.3.2. (Functor of points of a quotient stack, [16],4.28) Let (G � U)• be a stack with a G-
action; its quotient stack [U/G] can be described as follows: its functor of points is the space [U/G](−) ≃
MapStackG(−, (G � U)•) spanned by

� coangles (π, f) : T ↞ Y → U with π being a G-torsor and f a G-equivariant map;
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� where an equivalence of two coangles (f, π) → (f ′, π′) is a G-equivariant equivalence ϕ : Y → Y ′ with
the datum of commutative squares expressing the compatibility with π, π′ and f, f ′, respectively.

In particular, for U = Spec(Z) ≃ ∗, the quotient [∗/G] recovers the classifying stack BG.

Example 4.6.3.3. (Classification of QCohn via BGLn, [16],4.32) Define the n-th general linear group
scheme by:

GLn := MapStack(Z[t
±
1 , . . . , t

±
n ],−) ∈ SchAff

More generally, for an arbitrary stack S ∈ Stack define the stack GLn(S) := GLn ×Spec(Z) S ∈ Stack/S by
base-change along the canonical map to the point.
Let now X ∈ Sch be a scheme. To a locally free sheaf F ∈ QCoh(X) of rank n (see 3.6.2.3), it remains
associated a GLn-torsor

π : IsoX(OnX ,F)→ X

whose total space represents the core-groupoid of the internal mapping space between OnX and F in the
closed symmetric monoidal ∞-category QCoh(X)⊗; recall that the action on objects is by restriction along
the given relative scheme:

MapOX

(︁
OnX ,F

)︁≃
(−) :

(︁
Sch/X

)︁op −→ Spc

(t : T → X) ↦−→ MapOT

(︁
OnT , t∗F)

)︁≃
Then, functoriality in the second variable determines an equivalence

MapOX

(︁
OnX ,−

)︁≃
: QCohn(X)

≃−→ GLnBund(X)

between n-loc.free quasi-coherent modules over X (see 4.3.2.1) and GLn-torsors over X. In particular, locally
free quasi-coherent modules on X of rank n are classified by maps X → BGLn in Sch.

4.7 Blow-up of Quasi-Smooth Closed Derived Sub-Schemes

This section is the goal of the project. We have finally developed all the machinery necessary to present
the construction of blow-ups of quasi-smooth closed derived sub-schemes. It is due to Khan and Rydh and
appeared in the paper [17], which will be our main reference for the topic.
We will start by introducing a relative notion of virtual Cartier divisors on some X-scheme S over some base
quasi-smooth closed immersion i : Z ↛ X. By varying S/X , such objects will then be grouped into a stack
of X-schemes, namely BlZ(X)(−). This will turn out to be representable by a classifying moduli-X-scheme,
namely the blow-up BlZ(X) of the pair (X,Z); in other words, the latter arises as the X-scheme classifying
all the relative virtual Cartier divisors lying over (X,Z).
Finally, in the main result of the dissertation, it will be proven that theX-scheme BlZ(X) enjoys the ”derived”
version of the same properties as the classical blow-up. Moreover, the construction above is compatible with
the classical one, which is retrieved whenever the pair (X,Z) is classical.
Such a geometric construction of blow-ups has then been generalized in subsequent papers by Hekking [13],
Hekking-Khan-Rydh [18], in order to encompass all pairs (X,Z) of relative closed schemes and not only quasi-
smooth closed immersions. However, due to time constraints, this will not be discussed in our dissertation.

4.7.1 The Blow-Up Stack

Let us start by introducing a relative notion of virtual Cartier divisors. We will provide three equivalent
definitions, thus allowing more flexibility in manipulations.

Definition 4.7.1.1. (Relative Virtual Divisor, [17],4.1.1) Consider the following square Q in Sch, where
f : S → X is any map in Sch and i : Z ↛ X is a quasi-smooth closed immersion. Then, Q exhibits a Virtual
Cartier Divisor on S lying over (X,Z) (or ”relative divisor” for short) iff it satisfies:
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D
iD

VDiv
→→

g

↓↓

S

∀f

↓↓
Z

i

qSmCl
→→ X

(a) (iD : D ↛ S) ∈ VDiv(S) is a virtual Cartier divisor on S;

(b) The underlying classical square Qcl in Schcl is cartesian;

(c) The comparison map g∗NZ/X → ND/S is surjective (on π0).

Let VDiv(S)/(X,Z) ⊆f.f. MapCat∞(∆1 ×∆1,Sch) denote the subspace of those squares in Sch which satisfy
the previous properties.

(Local formulation, [17],4.1.3,ii): Equivalently, we can consider the following set of axioms: let i, f be as
before and denote SZ := S ×X Z; then a virtual Cartier divisor D ∈ VDiv(S) on S lying over (X,Z) is a
closed relative scheme (h : D ↛ SZ) ∈ Sch/SZ

such that:

D
iD

VDiv
→→

g

↓↓

h ↘↘

S

∀f

↓↓

SZ

pr2

↙↙

pr1

↗↗

Z
i

qSmCl
→→ X

(A) The composite (iD : D ↛ SZ ↛ S) ∈ VDiv(S) is a virtual Cartier
divisor on S;

(B) h : D → SZ induces an isomorphism Dcl ∼= Scl
Z ∈ Schcl at the level of

classical underlying schemes;

(C) h∗NSZ/S → ND/S is surjective on π0 (i.e. LD/SZ
is 2-connective).

(Connectivity of the square, [17],4.1.3,iii): Equivalently, with notation as in the local formulation above, a
virtual Cartier divisor D ∈ VDiv(S) on S lying over (X,Z) is a closed relative scheme (h : D ↛ SZ) ∈ Sch/SZ

such that the composite (iD = pr1 ◦ h : D → S) ∈ VDiv(S) is a virtual Cartier divisor on S and the induced
map h♭ : OSZ

→ h∗OD is 1-connected.

Let us mention that the definition above encompasses all effective Cartier divisors arising as the base-change
of a regular immersion of classical schemes along any other map in Schcl: this will be the content of 4.6.1.2.
More examples will be provided in the homonymous subsection, whereas we start by proving the equivalences
of the various formulations.
Notice that in practice we could carry on all the future arguments without the third one, which is perhaps
the reason why it was presented as a Remark by Khan and Rydh. However, we opt for including it as part of
the definition; this is motivated by Definition [18],5.10 in their subsequent work, in that it better highlights
the ”technicality” of axioms (B) and (C).

Proof. (Of the equivalence) Let’s start with the local rephrasing. The pairs of axioms (a), (A) and (b), (B)
are equivalent: the only difference being that the second formulation takes as part of the data a choice of a
comparison map h : D → SZ .
As for the third requirement, let’s construct the map of conormal sheaves g∗Ni → NiD in (c): it is the de-
suspension of the lower-left corner in the diagram of exact sequences induced by the two composites D → X
via 4.4.0.3,i:

i∗DLf

↓↓
g∗Li →→

↘↘

LD/X →→

↓↓

Lg

LiD
The map for (C) is defined in a similar way. Moreover, for pr1 := SZ → S and pr2 := SZ → Z the pull-back
projections, the composite g = h ◦ pr2 yields a factorization (g∗Li → LiD ) ≃ (h∗pr∗2Li → h∗Lpr1

→ LiD ).
So, with the obvious change of notation, it suffices to record the following observation.

Claim 1. The comparison map g∗Li → LiD is an isomorphism whenever Q is cartesian.
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Proof. The local definition of the cotangent sheaf (so, 3.8.2.5,i) implies that such a map is an equivalence,
since it is such on an affine Zariski cover. ■

Then, let us show that the local formulation is equivalent to the connectivity requirements on the square Q.
We will prove the following statement.

Claim 2. The closed immersion h : D ↛ SZ corresponds (under the globalized Spec-adjunction 4.3.1.1) to
a surjection h♭ : OSZ

→ h∗OD such that:

� (B) iff π0(h
♭) is an isomorphism;

� (B) implies the equivalence: (C) iff π1(h
♭) is surjective.

Hence, in particular the local formulation above posits connectivity requirements for h♭:

(B) + (C) ⇐⇒ π0(h
♭) iso & π1(h

♭) epi

Proof. We will refer to the notation adopted in the picture above. By construction, (B) iff π0(h
♭) is an

isomorphism. Moreover, notice that tfae:

1. (C) : π1(h
∗Lpr1

)→ π1(LiD ) is surjective;

2. Lh is 2-connective;

3. π0
(︁
Fib(h∗(h♭))

)︁ ∼= 0;

4. π1
(︁
h∗(h♭)

)︁
surjective.

Let’s show the equivalence of such statements. (1) ⇐⇒ (2) : From the exact sequence of 4.4.0.3,i it follows
that (1) iff π1(Lh) ∼= 0; moreover, π0(Lh) ∼= 0 always holds for closed immersions such as h.
(2) ⇐⇒ (3) : is a consequence of the connectivity properties of the Hurewicz map ϵh♭ (see 3.8.2.6): as
we already observed at the beginning of the proof of 4.5.2.3, there is an isomorphism π1(Lh) = π1(Lh♭) ∼=
π0(Fib(h

∗(h♭))).
(3) ⇐⇒ (4) : this is the long exact sequence in homotopy induced by the fibre sequence of h∗(h♭).

Now, we want to use the equivalence above to prove that - whenever also (B) holds - the surjectivity of
π1(h

∗(h♭)) ∼= π1(OD ⊗LOSZ
h♭) is equivalent to that of π1(h

♭). Let us reformulate the statement; consider the

following cocartesian square exhibiting the ”cofibre pair” of h♭, where we drop h∗ because |D| = |SZ | by (B):

OSZ

h♭
→→

h♭

↓↓

OD

h∗(h♭)

↓↓
OD

h∗(h♭)→→ OD ⊗LOSZ
OD

Our claim is that the upper horizontal arrow induces a surjection in π1 iff the lower horizontal one does.
One direction is clear, so let’s prove the converse. This is in turn equivalent to showing that e.g. the lower
horizontal arrow induces an isomorphism on π1. Indeed, after applying π1 the square above becomes the
cokernel pair of π1(h

♭), and a morphism of static modules is surjective iff its cokernel pair is trivial.
So, we are left to show that π1(h

∗(h♭)) is injective; which is equivalent to the vanishing π0(Cofib(h
∗(h♭))) ∼= 0,

as one can see by inspection of the long exact sequence in homotopy.
Now, since π0 is both symmetric monoidal and a left-adjoint, the latter can be written as coker(R/I⊗Rπ0(h♭))
for some static ring R := π0(OSZ

) and ideal I cutting out the closed subscheme π0OD. But then, π0(h
♭) is

surjective, since h is a closed immersion, so we are done. □

Remark. (Obstruction to being cartesian, [17],4.1.3,i) If a virtual Cartier divisor D ∈ VDiv(S)/(X,Z) is
exhibited by a cartesian square Q as before, then (see Claim 1 in the proof above) the comparison map in
Property (c) is an equivalence g∗NZ/X ≃ ND/S .
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On the other hand, in order for Q to be cartesian, D must be the pull-back of a virtual Cartier divisor
(X,Z) ∈ VDiv(X), because the virtual codimension is stable under base-change as in 4.5.2.6,i.

As our notation suggests, we regard VDiv(S)/(X,Z) as the following subspace of squares (i.e. morphisms of
relative schemes) over (X,Z):

VDiv(S)/(X,Z) ⊆f.f.
(︁
(Sch/S)/(X,Z)

)︁≃
The latter is in general not a slice of VDiv(S); however, since h is the obstruction to Q being cartesian, its
connectivity properties intuitively measure ”how far” this is from being true.

Our next goal is promoting such a construction to a functor BlZ(X) : (Sch/X)op → Spc. This will be possible
by the following Lemma.

Lemma 4.7.1.2. (”Being a relative divisor” is local on the base) For a quasi-smooth closed immersion
i : Z ↛ X, the conditions (A), (B), (C) are stable under base-change in Sch and Zar-local on the base X.

Proof. It will be achieved in two steps; in the proof we will also spell out more precisely what we exactly
mean by locality on the base for relative Cartier divisors. By 4.5.2.2,i, there exists an affine Zariski cover
X := {jXα : Xα ↬ X}α such that i is a quasi-smooth closed immersion iff its restrictions iα := (jXα )∗(i) :
Zα ↛ Xα are such, with Zα := Z ×X Xα. For any map f : S → X in Sch and any square Q exhibiting
a relative virtual Cartier divisor D ∈ VDiv(S)/(X,Z), form the following cube by base-change along jXα , so
with all faces apart from the front and back one being cartesian:

Dα Sα

D S

Zα Xα

Z X

iDα

iD

f
iα

jZα jXα

i

Set fα := (jXα )∗(f) : Sα → Xα, and let Qα denote the back face, which exhibits the ”restriction” to (Zα, Xα)
of the front-face.
Indeed, notice that all maps of the form Tα ↬ T (for the various values of T at stake) assemble into affine
Zariski covers by 4.1.4.8 and C.1.0.8,i. The reader should beware, however, that only the Xα and Zα need
be affine open charts (the latter because i is a closed immersion), unless f is an affine morphism of schemes.

Now, let’s check the properties in the second/third formulation.
(A) is local over X by construction, 4.5.2.2,i and 4.5.2.6,i. As for (B) and (C), let h : D ↛ Z ×X S and
hα : Dα ↛ Zα ×XαSα denote the comparison maps.
By construction, one can verify by the universal property of pull-backs that hα ≃ (jXα )∗(h). Then, since
pulling-back along a cover induces a family of jointly conservative base-change functors, the connectivity
properties of h (or better of h♭) are also local over X.

Finally, let’s show that we can indeed assume the back face to be consisting of affine schemes.
Indeed, one could repeat a similar procedure with affine Zariski covers {jSα

β : Sαβ ↬ Sα}β exhibiting the
locality on the base Sα of each statement ”iDα

is a quasi-smooth closed immersion”. This yields a cube with
a trivial bottom face witnessing iα = iα; paste it to the back face Qα and call Qαβ the new back face. As

before, the quasi-smooth closed immersions iDα
β

: Dα
β ↛ Sαβ obtained as the base-change (jSα

β )∗(iDα
) are

clearly virtual Cartier divisors. Moreover, a similar verification yields hαβ ≃ (jSα

β )∗(h) for the comparison

maps, so we can conclude as above by {jSα

β }β forming a cover of Sα. □

Proposition 4.7.1.3. (The Blow-Up Stack, [17],4.1.4) Fix a closed immersion i := (X,Z) : Z ↛ X in Sch.
Define BlZ(X)(S → X) ⊆f.f. (Sch/SZ

)≃ ∈ Spc to be the subspace of those virtual Cartier divisors on S lying
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over (X,Z). Then, the construction [(f : S → X) ↦→ BlZ(X)(f : S → X)] defines the Blow-Up stack,
equipped with the structural morphism πZ/X :

[BlZ(X) : (SchAff
/X)op → Spc] ∈ Stack/X w/ πZ/X : BlZ(X)→ X

Proof. We will adopt the second formulation to construct the presheaf BlZ(X) as a subobject of the following
presheaf of spaces, obtained by a choice of the composition (−)≃ ◦ Sch/(−) ◦ (Z ×X (−)):

F :
(︁
Schop/X

)︁
−→ Spc

(f : S → X) ↦−→ (Sch/SZ
)≃

The presheaf F is obtained by the usual construction via the Straightening Theorem [24],3.2 as in 4.3.2.8.
Then, the stability under base-change of the definition above will allow us to regard BlZ(X) as the stated
sub-presheaf. Thereafter, the sheaf condition on Zar-covers of S over X will be an automatic consequence
of the local nature of our axioms in the second formulation (see 4.7.1.2). In particular, the restriction
BlZ(X) : (SchAff

/X)op → Spc will define a stack over X, with structural morphism πZ/X : BlZ(X) → X; this
classifies then relative Cartier divisors over (X,Z) under the Yoneda Lemma. Let us briefly mention that we
do indeed obtain a stack by virtue of the following useful observation.

Remark. ([15],4.7.2) There are canonical equivalences of∞-categories Sh(Sch/X) ≃ Sh(Sch)/X ≃ Sh(SchAff)/X .

Sketch. We just sketch the argument. As for the first equivalence, it is a manipulation with Yoneda Lemma
and holds furthermore at the level of presheaves; then, it is preserved by the sheafification, since both the
forgetful functor of over-slices commutes with limits and C.5.3.3. For what concerns the second one, instead,
the restriction functor induces an equivalence fibre-wise, since schemes admit a small affine Zariski cover: Sch
is in the colimit closure of SchAff , so that sheaf condition C.5.3.3 on Sch can be checked on the restriction to
SchAff . ■

So, let’s construct BlZ(X). Recall that, up to equivalence, the straightened category of F has objects of the
form (f : S → X, (h : D → SZ) ∈ F(f),F(f)); then, define

∫︁
BlZ(X) ⊆f.f.

∫︁
F to be the full subcategory

spanned by those h : D → SZ satisfying the local version of the conditions in 4.7.1.1. This yields the
following pasting of cartesian squares, where we let q :

∫︁
BlZ(X) → (Sch/X)op denote the restriction of the

straightening projection St(F). ∫︁
BlZ(X) ↘

↙ →→

q

↓↓

∫︁
F →→

St(F)LFib∋
↓↓

Spc//∗

↓↓
(Sch/X)op (Sch/X)op

F →→ Spc

By the Straightening Theorem [24],3.2, we are left to prove that also q is a left-fibration. Indeed, then
BlZ(X) := UnSt(q) : (Sch/X)op → Spc yields the sought presheaf of schemes over X, together with a map
BlZ(X) → F in P(Sch/X), which is readily seen to be a monomorphism (check it on fibres, at the level of
straightened categories).
Moreover, observe that it suffices to show that q is a cartesian fibration (i.e. cocartesian on (Sch/X)op).
Indeed, provided that, we can conclude by an application of [20],3.1.22: we constructed

∫︁
BlZ(X) ⊆f.f.

∫︁
F

as a fully faithful embedding - so an edge in the source is q-cocartesian iff its copy in the target is St(F)-
cocartesian - and a left fibration is a cocartesian one with all edges being cocartesian.
Then, let’s prove that each commutative triangle g : (f ′ : S′/X)→ (f : S/X) in Sch/X with BlZ(X)(f) ̸= ∅
admits a lift in

∫︁
BlZ(X); this is then automatically (q-) St(F)-cocartesian.

To this end, notice that the stability under base-change of 4.7.1.1 yields a base-change functor, whose action
on objects can be described as follows:

g∗ : BlZ(X)(f) −→ BlZ(X)(f ′)

(iD : D → S) ↦−→ (iD′ := g∗(iD) : D
′ := S′ ×S D → S′)

Since g∗ also gives an arrow connecting g∗(iD)→ iD, we are done. □
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Remark. ( [17],4.1.6) Defining quasi-smoothness fpqc-locally on the base, we can extend our discussion to
define a fpqc-stack BlZ(X) over X classifying virtual Cartier divisors lying over (X,Z). Also the properties
of the latter stack generalize mutatis mutandis.

Before stating the main Theorem, let us record one more stability property of relative virtual Cartier divisors.

Lemma 4.7.1.4. (Change of base-pair) Let i : Z ↛ X and i′ : X ↛ Y be composable quasi-smooth closed
immersions in Sch. Then, relative virtual Cartier divisors over (X,Z) are also such over (Y,Z), i.e. over
the composition i′ ◦ i : Z ↛ Y .

Proof. With notation as in the second formulation of 4.7.1.1, let Q be a square exhibiting a virtual Cartier
divisor iD : D ↛ S over i : Z ↛ X, and let Q′ denote the square obtained by pasting the morphism of arrows
i→ i′ ◦ i to the bottom.
Then, Q′ clearly satisfies properties (a) + (b), since pull-backs are preserved by post-composition with
monomorphisms and closed immersions are injective at the level of the underlying classical schemes. As
for property (c), consider the exact sequence of 4.4.0.3,i associated to the composition i′ ◦ i and take the
base-change along g : D → Z:

(i ◦ g)∗Ni′ → g∗Ni′◦i → g∗Ni
So, we conclude by considering the following composition: g∗Ni′◦i ↠ g∗Ni ↠ NiD , where the second
composite is surjective by assumption, while the first one is such by the exactness of the sequence. □

We are now ready to state the main Theorem about Blow-Ups of quasi-smooth schemes. The proof is very
articulated and will be the content of the next subsection.

Theorem 4.7.1.5. (Properties of the Blow-Up stack, [17],4.1.5) For a quasi-smooth closed immersion i :
Z ↛ X in Sch, the following statements hold true:

1. qSmCl-Functoriality:

(a) The stack BlZ(X) ∈ Stack/X is representable by a scheme.

(b) The construction [(Z ↛ X) ↦→ (πZ/X : BlZ(X) → X)] on qSmCl commutes with base-change in
Sch, i.e. BlZ(X)×X X ′ ≃ BlZ×XX′(X ′).

(c) The construction [i ↦→ πi] is covariantly functorial in X along qSmCl, i.e. for each X ↛ Y in
qSmCl there exists a canonical quasi-smooth closed immersion BlZ(X) ↛ BlZ(Y ) in qSmCl/Y .

2. Exceptional Divisor:

(a) There is a canonical closed immersion P(NZ/X) ↛ BlZ(X) exhibiting the projectivized normal
bundle as the universal virtual Cartier divisor lying over (X,Z).

(b) The structure map πZ/X : BlZ(X) → X is quasi-smooth and proper and induces an equivalence

with the base X away from Z: BlZ(X) \ PZ(NZ/X)
≃→ X \ Z.

3. Comparison with classical blow-ups:

(a) For any classical schemes Zcl, Xcl ∈ Schcl, the blow-up BlZcl(Xcl) ∈ Schcl is a classical scheme
and coincides with the classical construction: BlZcl(Xcl) ∼= BlclZcl(Xcl).

(b) In general, for I := Fib(i♭ : OX → i∗OZ) the quasi-coherent ideal-sheaf corresponding to the closed

immersion i : Z ↛ X, the classical scheme lying under the Blow-Up is
(︁
BlZ(X)

)︁cl ∼= Pcl
Xcl(π0I),

where Pcl(−) = CProj(CSym∗(−)) denotes the projectivized classical symmetric algebra.

4. Degenerate cases:

(a) The Blow-Up of X at a virtual Cartier divisor (i : Z ↛ X) ∈ VDiv(X) is equivalent to the scheme

itself via the structure map πZ/X : BlZ(X)
≃→ X.

(b) The Blow up of a scheme X at itself (i.e. at i = 1X) is the empty scheme BlZ(X) ≃ ∅.
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4.7.2 Proof of the Main Theorem

As usual, we will prove the main Theorem in two steps: the affine case will be dealt with directly, whereas
we will reduce the general quasi-smooth setting to the latter one.
Nevertheless, let us point out one major difference occurring when dealing with the ”derived” affine special
case as opposed to the ”classical” one, which is due to the peculiarities of the ∞-world. Namely, in the
classical setting we exhibit a candidate for the blow-up of An at {0} via a description on charts. Here,
however, a scheme cannot be constructed by hands: the glueing datum is a diagram with an infinite chain of
”higher coherences”. Therefore, the existence of the blow-up stack Bl{0}(An) is proven by abstract nonsense
as in 4.7.1.3, and only thereafter we investigate its properties; in particular, we will show that the affine
Zariski atlas of the classical blow-up Blcl{0}(An) does provide one for the blow-up stack at the inclusion of
the origin in the n-th affine space, so that the latter stack turns out to be a classical scheme isomorphic to
Blcl{0}(An).

The Affine Case.

There are many analogies with the standard argument in the classical case, for which we refer for instance
to [7],IV-17,18. In particular, the ordinary construction hints at an example of a family of classical virtual
Cartier divisors on (An, {0}): the bulk of the work will be then to show that such a family does indeed
provide a Zariski atlas for Bl{0}(An).
Notation. For convenience, we will follow the authors conventions: fix n ≥ 0 and consider the quasi-smooth
closed immersion of the origin i : {0} = Spec(Z[t1, . . . , tn]/(t1, . . . , tn)) ↛ Spec(Z[t1, . . . , tn]) = An; let
Y := Bl{0}(An) denote its blow-up stack.

Example 4.7.2.1. (Charts of Bl{0}(An), [17],4.2.1) For each 1 ≤ k ≤ n, define the static rings

Ak := Z[t1/tk, . . . , tn/tk, tk] ⊆ Z(t1, . . . , tn) ∈ CRing

and observe that the following squares of classical schemes define points of VDiv(Spec(Ak))/(An,{0}).

Spec(Ak/(tk))
VDiv

→→

↓↓

Spec(Ak)

γk

↓↓
Spec(Z[t1, . . . , tn]/(t1, . . . , tn))

qSmCl

i →→ Spec(Z[t1, . . . , tn])

By the construction, for each k the virtual Cartier divisor Spec(Ak/(tk)) ↛ Spec(Ak) is classified by a
canonical morphism jk : Spec(Ak)→ Y .

Proof. Let’s check that Spec(Ak/(tk)) ↛ Spec(Ak) is a virtual Cartier divisor over i, namely that it satisfies
the axioms in the first version of 4.7.1.1:

� (a) : tk is a regular element of Ak, so by 3.5.0.3,iii the quotients Ak � (tk) ≃ Ak/(tk) are canonically
equivalent and the upper row is a quasi-smooth closed immersion.

� (b) : The square is cartesian (in Schcl) iff computing the static tensor product gives:

Ak ⊗Z[t1,...,tn] Z[t1, . . . , tn]/(t1, . . . , tn) ≃ Ak/(tk)

In order to see this, first first recall the action of the map γk between subalgebras of Z(t1, . . . , tn) as in
2.2.0.5:

γk : Z[t1, . . . , tn] −→
Z[t1, . . . , tn][yr]r ̸=k

(ρr := tkyr − tr : r ̸= k)
= Ak

tk ↦−→ tk

(∀r ̸= k) tr ↦−→ tr = tkyr
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Then, since (tk, ρr) = (tk, tr) for each r ̸= k, it holds:

Ak ⊗Z[t1,...,tn]
Z[t1, . . . , tn]
(t1, . . . , tn)

∼=
Z[t1, . . . , tn][yr]r ̸=k

(t1, . . . , tn) + (ρr : r ̸= k)
∼=

Z[t1, . . . , tn][yr]r ̸=k
(tk) + (ρr := tkyr − tr : r ̸= k)

∼=
Ak
(tk)

� (c) : This is 4.8.1.1. □

Remark. Recall that in 2.2.0.5 we proved that the sequence (ρr := tr − tkyr)r ̸=k ⊆ Z[tr, yr]r ̸=k is regular.

Therefore, 3.5.0.3,iii yields an identification as static Z[t1, . . . , tn]-algebras:

Ak ∼=
Z[t1, . . . , tn][yr]r ̸=k

(ρr := tkyr − tr : r ̸= k)
≃ Z[t1, . . . , tn, yr : r ̸= k] � (ρr : r ̸= k)

In particular, notice that the squares above cannot be cartesian in Sch, because codim.vir(An, {0}) = n; the
fibre-product in Sch of the angle would then be represented by Ak � (tk, tr = 0 : r ̸= k), namely it keeps trace
of the identifications induced by the relations {ρr}r ̸=k above as higher homotopical data.

Proposition 4.7.2.2. (Zariski atlas for Bl{0}(An), [17],4.2.2)

1. For each 1 ≤ k ≤ n, the classifying morphism jk : Spec(Ak) → Y is a monomorphism (i.e. with
(−1)-truncated fibres).

2. The family {jk : Spec(Ak) ↪→ Y }nk=1 defines an affine cover of the stack Y , i.e. the induced morphism
j :

∐︁
k Spec(Ak)→ Y is an effective epimorphism in Stack.

3. The affine cover above is Zariski-open, so the blow-up stack Y is a classical scheme isomorphic to the
classical blow-up Blcl{0}(An).

Being the proof significantly long, we follow the authors’ choice and split it into three parts.

Proof. (Of 4.7.2.2,i, [17],4.2.3) We need to show that the fibres of ϕk : Spec(Ak) → Y over An are (−1)-
truncated. Observe first that it suffices to check it over the SchAff

/An -points of Y .
Indeed, ”being m-truncated” in Sch is a property in Stack which can be checked in PreStack, since the
sheafification functor is left-exact. Now, as in A.5.0.7, a map f : S → T in PreStack is m-truncated iff
Map(R, f) ∈ Spc≤m for each S ∈ PreStack. Then, the Density Theorem [24],5.1.5.3 allows us to write
R ≃ colimSchAff

/R
for , so that Map(R, f) ≃ limSchAff

/R
Map(for , f); finally, since taking the limit preserves

truncation properties, it suffices to check that Map(Spec(A), f) be m-truncated for each A ∈ Ani(CRing).

Thus, we need to prove that, for each affine scheme S := Spec(R) ∈ SchAff and each coordinate map
ti ↦→ fi : S → An, the following functor of spaces is a monomorphism:

θ : Map/An(S,Spec(Ak))→ Map/An(S, Y ) ≃ Y (S → An)
To this end, let us start by obtaining a better homotopical description of both the source and the target.

Claim 1. Morally, the datum of a map S → Spec(Ak) over An is determined by coordinate maps tk → fk
and tr/tk ↦→ fr/fk for r ̸= k. More precisely,

Map/An(S, Spec(Ak)) ≃ MapZ[t1,...,tn]/(Ak, R) ≃
∏︂
r ̸=k

Fibfr (fk : R→ R)

Proof. As already observed in the Remark above, Ak is a static Z[t1, . . . , tn]-algebra generated by the
indeterminates {yr}r ̸=k with regular relations (ρr = tkyr − tr)r ̸=k. Recall that by construction any map
ψ : Ak → R factors through the structure map (ti ↦→ fi) : Z[t1, . . . , tn] → R; then, let ρ′r := fkψ(yr) − fr
denote the image under ψ of the relation ρr. One has the following chain of equivalences in Spc:

MapZ[t1,...,tn]/(Ak, R) ≃ MapZ[t1,...,tn]/
(︁
Z[t1, . . . , tn, yr : r ̸= k] � (ρr : r ̸= k) , R

)︁
≃(i)

∏︂
r ̸=k

PathforR(ρ
′
r, 0)

≃(ii)

∏︂
r ̸=k

Fibfr (fk : R→ R)
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where (i) is implied by the universal property of quotients 3.5.0.5; while (ii) can be proved as follows.
Recall first that the additive group structure on the topological algebra forB (see 3.2.1.4) is compatible with
paths; hence, for any given map ψ : Ak → R and ρ′r := ψ(ρr) = fkψ(yr) − fr, there is an equivalence
PathforR(ρ

′
r, 0) ≃ PathforR(fkψ(yr), fr). In oder words, the relation ρ′r imposes on ψ(yr) precisely the

condition of being an element (ψ(yr) ∈ forR , αr : fkψ(yr) ≃ fr) of the fibre Fibfr (fk : R → R) of the
multiplication map fk : R→ R over fr, as wished.
Hence, maps S/An → Spec(Ak)/An can be identified with tuples a := (ar, αr)r ̸=k of coordinate maps
(ar)r ̸=k ⊆ R together with paths (αr : fkar ≃ fr ∈ PathR(fkar, fr))r ̸=k. ■

Claim 2. The objects of the target Y (S → An) can be canonically regarded as pairs consisting of an R-algebra
ψ : R→ R′ endowed with a collection of paths (ψ(fr) ≃ 0)r ̸=k into forR′.

Proof. The construction of the blow-up stack yields the following canonical embedding:

Y (ti ↦→ fi : S → An) ≃ Bl{0}(An) ≤
(︃
SchAff

/S×An{0}

)︃≃

≃
(︃
CAlg∆R�(f1,...,fn)

)︃≃

Hence, the objects of Y (ti ↦→ fi : S → An) can be canonically identified with pairs consisting of an R-
algebra ψ : R → R′ together with an R-algebra morphism R � (f1, . . . , fn) → R′. Now, the universal
property of quotients 3.5.0.5 supplies an identification of each R � (f1, . . . , fn) → R′ with an object of∏︁
r ̸=kMapforR′(ψ(fr), 0), whence the stated characterization. ■

Claim 3. One can describe the action of the functor θ on objects by:

θ : a := (ar , αr : fkar ≃ fr)r ̸=k ↦−→ θ(a) := (R � (fk) , θ(a)r : fr ≃ 0)nr=1

where the paths θ(a)r ∈ PathR�(fk)(fr, 0) are defined as follows:

� r = k : θ(a)k : fk ≃ 0 is the ”tautological” path given by the identification between fk and 0 in R � fk;

� r ̸= k : θ(a)r := (θ(a)k · ar) ◦ α−1
r : fr ≃ fkar ≃ 0 · ar ≃ 0.

Proof. A virtual Cartier divisor on S = Spec(R) must have the form Spec(R � (fk)) ∈ Sch/S×An{0}, whence
the choice of R�(fk) for R

′ - with notation as in Claim 2. Then, we can write θ(a) = (R�(fk) , θ(a)r : fr ≃ 0),
and we are left to specify the paths.
It suffices to exhibit candidates for paths in R � (fk) between the fr’s in 0, since such a datum completely
determines (up to homotopy equivalence in the mapping space) an algebra map R� (f1, . . . , fn)→ R� (fk).
Now, notice that the algebra structure R → R � (fk) entails the choice of a homotopy fk ≃ 0, call it
θ(a)k : fk ≃ 0.
Furthermore, pre-composition by the classifying map OY → Ak preserves the paths induced by Ak → R
which correspond then to some homotopies of R � (fk); in particular we still have the αr’s at our disposal
and we can perform the compositions above, so as to obtain θ(a)r : fr ≃ 0 for each r ̸= k. ■

We are finally ready to prove our statement, namely that θ is fully faithful. This amounts to the following
Claim.

Claim 4. For each pair of points a, a′ ∈ Map/An

(︁
S, Spec(Ak)

)︁
, the space of identifications of their images

under θ can be written as follows:

MapY (f :S→An)

(︁
θ(a), θ(a′)

)︁
≃ PathY (f :S→An)

(︁
θ(a), θ(a′)

)︁
≃

∏︂
r ̸=k

MapR�(fk)

(︁
θ(a)r , θ(a

′)r
)︁

Proof. There is a chain of equivalences in Spc, which can be deduced as argued in the following bullet-list:

MapY (f :S/An)

(︁
θ(a), θ(a′)

)︁
≃(a) MapR�(f1,...,fn)/

(︁
R � (fk), R � (fk)

)︁
≃(b) Fibθ(a′)

(︃
θ(a)∗ : MapR/

(︁
R � (fk), R � (fk)

)︁
→ MapR/

(︁
R � (f1, . . . , fn), R � (fk)

)︁)︃
≃(c) Fib(θ(a′))r

(︃
PathR�(fk)(fk, 0)

((α−1
r )∗)r−→

n∏︂
r=1

PathR�(fk)(fr, 0)

)︃
≃(d)

∏︂
r ̸=k

PathPathR�(fk)(fr,0)

(︁
θ(a)r, θ(a

′)r
)︁
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� (a) : This is Claim 2.

� (b) : Under the identification MapR�(f1,...,fn)/(R�(f1, . . . , fn), R�(fk)) ≃ {θ(a′)}, consider the following
cartesian diagram: computing the corresponding tensor product in CAlg∆R corresponds to extending
the scalars in the right-upper corner along the structure map θ(a).

Fibθ(a′)(θ(a)
∗) →→

↓↓

MapR/(R � (fk), R � (fk))

θ(a)∗

↓↓
MapR�(f1,...,fn)/(R � (f1, . . . , fn), R � (fk)) ≃ ∗

θ(a′) →→ MapR/(R � (f1, . . . , fn), R � (fk))

� (c) : This is precisely the universal property of quotient rings 3.5.0.5, together with the description
above of the action of θ on objects.

� (d) : For each r, the fibre can be computed by the following cartesian square, where we evidence the
commutativity 2-simplex (so a suitable homotopy in the lower-right mapping space):

Fib →→

↓↓

PathR�(fk)(fk, 0)

(α−1
r )∗

↓↓h←↙
{θ(a′)r} →→ PathR�(fk)(fr, 0)

Being paths invertible, we can identify PathR�(fk)(fk, 0) ≃ PathR�(fK)(0, 0)× {θ(a)k} under the post-
composition of loops at 0, so that the action of the functor (α−1

r )∗ can be described on components
by

(id, (α−1
r )∗) : PathR�(fk)(0, 0)× {θ(a)k} −→ PathR�(fk)(0, 0)× {θ(a)r} ≃ PathR�(fk)(fr, 0)

In particular, the essential image of (α−1
r )∗ is equivalent (via homotopies in PathR�(fk)(fr, 0), so mor-

phisms of paths) to the point {θ(a)r}. Hence, there is an identification of Fib with the mapping space
PathPathR�(fk)(fr,0)

(︁
θ(a)r, θ(a

′)r
)︁
of the two choices of a pointing. Finally, observe that, for r = k, the

functor αr is the identity, so the fibre is contractible. ■

Therefore, the functor θ : PathMap/An (S,Spec(Ak))(a, a
′) → MapY (S)(θ(a), θ(a

′)) can be identified by Claim 3
with the following map, which is induced by the canonical one between the fibres over fr and 0 of fk : R→ R
and {0} → forR � (fk):∏︂

r ̸=k

MapFibfr (fk:R→R)

(︁
(ar, αr) , (a

′
r, α

′
r)
)︁
−→

∏︂
r ̸=k

MapforR�(fk)

(︁
θ(a)r , θ(a

′)r
)︁

and the latter is an equivalence component-wise, as we computed in 3.5.0.6. □

Proof. (Of 4.7.2.2,ii, [17],4.2.4) We need to show that the canonical map
∐︁
k Spec(Ak) ↠ Y is an effective

epimorphism in Stack. We already know that
∐︁
S∈SchAff

/Y
S → colimSchAff

/Y
for ≃ Y is an effective epimorphism

by C.1.0.9 and the Density Theorem [24],5.1.5.3; then, by C.1.0.8 it suffices to show that such a map factors
as

∐︁
SchAff

/Y
S →

∐︁
k Spec(Ak)→ Y . To this end, we will prove the following Claim.

Claim. For each map f : S → An and each relative virtual Cartier divisor (D ↛ S) ∈ VDiv(S)/(An,{0}),
there exists a map S → Spec(Ak) fitting in the following diagram, where the top square is cartesian:

D
VDiv

iD →→

↓↓
g

↘↘

S

∃
↓↓

∀f

←←

Spec(Ak/(tk))
VDiv

→→

↓↓

Spec(Ak)

↓↓
{0}

qSmCl

i →→ An
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Proof. Let it be given f and iD as in the statement, and write S = Spec(R) for some R ∈ Ani(CRing);
let f : Spec(R) → Spec(Z[t1, . . . , tn]) = An be given by the coordinate maps (f1, . . . , fn). Moreover, let
OD ∈ CAlg∆R be the animated ring representing the closed subscheme D, which is affine by virtue of 4.2.3.8.
Then, by 4.5.2.3 the virtual Cartier divisor iD admits a locally free conormal sheaf NiD ∈ ModOD

of rank 1.
Moreover, observe that we can choose its generator among those of N{0}/An , say dfk. Indeed, axiom (c) of
Definition 4.7.1.1 yields a surjection on connected components:

g∗N{0}/An ≃ OD ⊗LZ
(︁
⊕nk=1 [dfk]Z

)︁
≃ ⊕nk=1[dfk]OD ↠ NiD

Then, argue as in the proof of 4.5.2.3: it is constructive and allows us to express D ≃ Spec(B � (fk)) on
the trivializing open neighbourhoods Spec(B) ↬ D for NiD . Actually, an adaptation of the last Claim in
the aforementioned proof shows that D ↛ S is also globally cut-out by the equation fk, since the induced
morphism D → S ×An {0} ≃ Spec(R � (f1, . . . , fn))→ Spec(R � (fk)) is an equivalence.

Let us postpone the details of the adaptation, and focus on the latter composition. The canonical map h :
D → S×An{0} provides a map h♭ : R�(f1, . . . , fn)→ OD ≃ R�(fk) in CAlg∆R , namely a point in the essential
image of the fully faithful functor θ as in 4.7.2.2,1.(Claim 3). By 4.7.2.2,1, the latter corresponds to a map
Spec(R)→ Spec(Ak). Then, the global presentation D ≃ Spec(R� (fk)) ≃ Spec(Ak/(tk))×Spec(Ak) Spec(R)
means precisely that the upper square in the diagram above is cartesian.

Finally, we show that the map D → Spec(R � (f1, . . . , fn))→ Spec(R � (fk)) is an equivalence, as claimed.
We will apply 4.4.0.3,iii. Notice that we can work locally on the base S and on a trivializing neighbourhood
for the conormal sheaf NiD ; in other words, in view of the second paragraph we can suppose our map to be of
the form Spec(R � (fk))→ Spec(R � (f1, . . . , fn))→ Spec(R � (fk)). The given composition clearly induces
the identity at the level of the underlying classical schemes: the first composite π0(h

♭) is an isomorphism by
4.7.1.1,B with the second composite being the inverse on connected components (by the universal property
of classical pull-backs). Thus, we are left to prove the vanishing of the cotangent sheaf LR�(fk)/R�(fk).
To this end, observe that the identity at the level of the underlying classical schemes means that the factor-
ization above is induced by taking the base-change of the composition

id : Z[x] x↦→tk−→ Z[t1, . . . , tn]
quot−→ Z[t1, . . . , tn]/(tr : r ̸= k) ≃ Z[x]

along the coordinate maps (fk) : Z[x]→ R and f := (f1, . . . , fn) : Z[t1, . . . , tn]→ R. Therefore, the cotangent
complex vanishes: LR�(fk)/R�(fk) ≃ Lid ⊗LZ[tk] R ≃ 0, since it is stable under base-change by 3.8.2.5,i.

□

Acknowledgement. The author is highly indebted to Prof. Marc Hoyois, who taught him the proof of the fact
that the canonical maps jk : Spec(Ak) ↪→ Y are open.

Proof. (Of 4.7.2.2,3) Let’s show first that the classifying maps {jk : Spec(Ak) ↪→ Y }k are indeed open
immersions.

In view of 4.6.2.3, we will use the language of generalized divisors. Let I ∈ QCoh(Y ) be the locally free
ideal-sheaf of rank 1 cutting-out the exceptional divisor E. In other words, I is the image of the coordinate
map π := (p1, . . . , pn) : Z[t1, . . . , tn]→ OY inducing the structure map of the blow-up stack Y .
Indeed, the structure map of the An-scheme E is given by some coordinate maps e := (e1, . . . , en) :
Z[t1, . . . , tn] → OE which lift the Z[t1, . . . , tn]-generators of OE ; now, by assumption (b), π0OE sits in
the following co-cartesian square of the underlying static quasi-coherent sheaves:

Z[t1, . . . , tn]
t →→

↓↓

π0OY

↓↓
0 →→ π0OE

which exhibits π0(OY )/π0I ∼= π0(OE) ∼= Coker(t) ≃ π0(Oy)/Im(t), so that the local generator of I is given
by the isomorphism π0I ∼= Im(t) and we obtain the claimed universal factorization Z[t1, . . . , tn]→ I → OY .
Consider the maps Z[tk] → Z[t1, . . . , tn] → I, where the first map is the canonical inclusion tk ↦→ tk, and
let Vk := DY (pk) denote its non-vanishing locus in Y . We claim that Vk ≃ Spec(Ak). By 4.7.2.2,ii, there
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is a map Vk → Spec(Ak), so - in view of [20],2.2.2 and of the classifying property of Y - it suffices to show
that the two Y -stacks have the same functor of points as sub-stacks of Bl{0}(An)(−). Let’s unwind the
definition of Vk(S) ⊆ VDiv(S)/(An,{0}) at any affine scheme S ∈ SchY . Any map ϕ : S → Vk corresponds
to some relative virtual Cartier divisor iD : D ↛ S and can be described by an n-tuple of coordinate maps
ϕ := (ϕ1, . . . , ϕn) : S → An which sit in a diagram:

Z[tk] ↘
↙ tk →→

ϕk

↘↘

Z[t1, . . . , tn] →→

ϕ

↓↓

I

≃
↙↙

ID
with I → ID an equivalence; here we denoted by ID the ideal-sheaf defining iD : D ↛ S. Arguing as at
the very beginning, the identification of the two ideal-sheaves corresponds to an isomorphism D → VS(ϕk)
expressing the relative virtual Cartier divisor D as the vanishing locus on S of the coordinate map ϕk.
So, the condition (iD : D ↛ S)↔ (ϕ : S → Vk) ∈ Vk(S) is equivalent to iD sitting in the following cartesian
square:

D = VS(ϕk)
iD →→

↓↓

S

ϕ

↓↓
Spec(Ak/(tk)) →→ Spec(Ak)

where we again let ϕ : S → Spec(Ak) denote the factorization of the coordinate maps ϕ : S → An; this is due
to the fact that the condition D ≃ VS(ϕk) means precisely that ϕk lifts a local generator dϕk of the fibre of
OS → OD, and hence of the conormal sheaf NiD , so we conclude by the above 4.7.2.2,ii. ■

Therefore, by 4.7.2.2,1-2 we obtain an affine Zariski cover {jk : Spec(Ak) ↬ Y }k for Y ∈ Stack, so that the
latter must indeed be a scheme. Furthermore, it is classical, since the cover consists of classical schemes.
Indeed, consider the fibre sequence induced by the effective epimorphism

∐︁
ϕk:

F ↪→
∐︂

Spec(Ak) ↠ Y

The fibre of an effective epimorphism is −1-connected by definition, and it is also 0-truncated, since it is the
subobject of a classical scheme. Thus, also F is classical, which forces Y to be such.
Moreover, {Spec(Ak)}k is the standard cover for the classical blow-up Blcl{0}(An) of the n-th affine space at

the origin; hence, the two schemes are isomorphic in Schcl. Indeed, Y ∼= ∪Spec(Ak) ∼= Blcl{0}(An) in Schcl; in
our language, this is an instance of a more general topos-theoretic fact: by C.1.0.8,iii, base-change along an
effective epimorphism is conservative. □

Remark. (Universal property of Bl{0}(An), [17],4.2.6) Noteworthy is that, provided it be classical, then by

construction Y satisfies the same universal property as Blcl{0}(An), see 2.2.0.1: given any map f : Scl → An in

Schcl such that the schematic fibre f−1({0}) ∈ Schcl ∈ CaDiv(Scl) exhibits a classical Cartier divisor on Scl,
then the space VDiv(f)/(An,{0}) = Y (f) ≃ Map/An(S, Y ) is contractible; in particular, there exists a unique

map Scl → Y in Schcl/An , namely the classifying morphism for f−1({0}).
Indeed, Y classifies relative virtual Cartier divisors over (An, {0}), and these include classical relative Cartier
divisors by 4.6.1.2. Moreover, being the blow-up scheme Y classical implies that, for any f : Scl → An in
Schcl as before, the space VDiv(f)/(X,Z) ≃ Hom/An(Scl, Y ) is indeed static (i.e. a set); hence, we conclude
by condition (B) in Definition 4.7.1.1.

Proof of the Main Theorem.

The proof is again very articulated, so we will split it accordingly to the claims stated in 4.7.1.5. However,
the order will not always be maintained: the statements are about the representing schemes, whereas e.g. in
the first paragraph we will provide proofs for the blow-up stacks. Let us start by a short summary of the
strategy which will be adopted in the proof.
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As a prerequisite, we will show first that the construction of the blow-up stack on qSmCl commutes with
base-change in Sch. Then, we will address the question of whether the blow-up X-stack over (X,Z) - which
was constructed in 4.7.1.3 - can be represented by a scheme. Since the statement Zar-local on the base
(by 4.7.1.2) and since quasi-smooth closed immersions are defined to be zero-loci of coordinate maps, the
preliminary step allows us to reduce it to the affine case (X,Z) = (An, {0}): there it has already been
answered affirmatively by 4.7.2.2,3.
Thereafter, we will exhibit the ”universal” relative virtual Cartier divisor P(NZ/X) ↛ BlZ(X) over (X,Z):
being the statement local and stable under base-change, it can be reduced to relative divisors over the
inclusion of the origin in the n-th affine space; there the closed immersion of the classical exceptional divisor
into the blow-up supplies a candidate and the universality part will amount to the classical universal property
of Blcl{0}(An).
Then, we will move on to the properties in 4.7.1.5,2.b of the universal structure map πZ/X , and this will
imply also 4.7.1.5,1.c.
Once the machinery is set up, it is meaningful to compare it with the classical construction and prove
statements 4.7.1.5,3.a-b; finally, the degenerate cases in 4.7.1.5,4.a-b are almost trivial consequences of the
definition 4.7.1.1 of relative virtual Cartier divisors.

1.(a)-(b). Functoriality properties of the blow-up construction.

Proof. (Of 4.7.1.5,1.b) The construction on qSmCl expressed in the statement is functorial in the following
sense, which amounts to the claim.
Let (i : Z ↛ X) ∈ qSmCl be a quasi-smooth closed immersion of schemes, p : X ′ → X any morphism in Sch,
and (i′ : Z ′ ↛ X ′) ∈ qSmCl be the base-change of i along p (recall 4.5.2.2,i). Observe that base-change along
p induces a natural equivalence of functors i∗(−)→ (i′)∗(−), and hence one of prestacks

(︁
Sch/(−)×XZ

)︁≃ →(︁
Sch/(−)×X′Z′

)︁≃
with quasi-inverse post-composition by the morphism of relative schemes (p, p∗(i)). Since

p∗ preserves relative virtual Cartier divisors, the composite of their restrictions gives a canonical natural
equivalence BlZ′(X ′)(−) → BlZ(X)(−) → BlZ(X)(−) ×X X ′ of sub-stacks of

(︁
Sch/(−)×X′Z′

)︁≃
. In other

words, we proved the following statement: ([17],4.3.2) The canonical morphism BlZ′(X ′)→ BlZ(X)×X X ′

in Stack is an equivalence. □

Proof. (Of 4.7.1.5,1.a) We will reduce the problem to the affine case via two reduction steps.

Claim 1. The statement is Zar-local on the base X (see 4.1.4.1). Hence, we can assume wlog i to be of the
form Spec(A)×An ({0}↛ An) for some animated ring A ∈ Ani(CRing).

Proof. This can be argued as follows. By 4.5.2.2,i, being a quasi-smooth closed immersion is local on the
base, so let it be given affine Zariski covers X := {jXα : Xα ↬ X}α of X and Z := {jZα : Zα ↬ Z}α of Z on
which the restriction of i can be written as iα := i|Zα

:= (jXα )∗(i) : Zα ↛ Xα. Assume that, for each α, there
exists some Yα ∈ Sch/Xα

representing the blow-up stack at iα, i.e. such that BlZα
(Xα)(−) ≃ Map/Xα

(−, Yα)
in Sch/Xα

.
As already noticed, ”being a relative Cartier divisor over (X,Z)” is Zar-local on the base X in view of the
second formulation of 4.7.1.1, i.e. informally - and with abuse of notation in the choice of the index α - there is
an isomorphism colimα BlZα

(Xα) ≃ BlZ(X) of stacks over X; more precisely, the diagram of blow-up stacks
over X is induced by the functoriality of 4.7.1.5,1.b with respect to the intersections among affine charts of
X or of Z - so on the product of the Čech nerves of the covers Č(X )× Č(Y). Then, we are left to show that,
for Y := colimYα := colim Č(

∐︁
Yα ×

∐︁
Yα →

∐︁
Yα), the canonical map

colimα

(︁
Map/Xα

(−, Yα)
)︁
(−) ≃−→ colimα

(︁
Map/X(−, Yα)

)︁
−→ Map/X(−, Y )

is an equivalence of stacks over X. Notice first that the first map is an equivalence, because we are post-
composing with monomorphisms Xα ↬ X.
Then, consider the composite. By [20],2.2.2, the equivalence can be tested point-wise by evaluation at any
f : S → X: for each α, set Sα := (jXα )∗(S) and fα := (jXα )∗(f) : Sα → Xα; then, our map of spaces becomes
the following canonical one, which is then clearly an equivalence:

colimα

(︁
Map/Xα

(−, Yα)
)︁
(S) ≃ colimα

(︁
Map/Xα

(Sα, Yα)
)︁
→ Map/X(S, Y ) ■
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Claim 2. We can assume wlog i : {0}↛ An to be the inclusion of the origin in the n-th affine space.

Proof. Let 0 : {0}↛ An denote the inclusion of the origin. In view of Claim 1, wlog i : Spec(A)×An 0. Now,
by 4.7.1.5,1.b one has Bl(i) ≃ Bl(0) ×An Spec(A), and the claim follows by the fact that mapping spaces
commute with limits (hence fibre-products) in the covariant component. ■

Finally, by the affine case 4.7.2.2, we know that the blow-up stack Bl{0}(An) is represented by the classical

scheme Blcl{0}(An). □

Remark. In particular, 4.7.1.5,1.b becomes a precise mathematical statement in terms of the schemes repre-
senting the corresponding blow-up stacks; this motivates the order of the statements in the main theorem.
Moreover, as we have just shown their compatibility with base-change is equivalent to that at the stack level.

2.(a)-(b), 1.(c). The universal relative Cartier divisor.

Proof. (Of 4.7.1.5,2.a) Let πZ/X : BlZ(X) → X denote the blow-up X-scheme of 4.7.1.5,1.a. Then, by the
usual ”Yoneda-like argument”, one has the following universal data:

� the identity morphism BlZ(X) → BlZ(X) classifies the ”universal virtual Cartier divisor” lying over
(X,Z); call it Duniv

Z/X ;

� it comes equipped with a canonical map πuniv : Duniv
Z/X → Z together with a canonical line bundle

Luniv
Z/X := NDuniv

Z/X
/BlZ(X);

� condition (c) of 4.7.1.1 is then expressed by a canonical surjection π∗
univNZ/X ↠ Luniv

Z/X .

This is classified by a canonical morphism Duniv
Z/X → PZ(NZ/X) in Sch/Z . We will prove in three steps that it

is invertible.

Claim 1. The statement ”Duniv
Z/X → PZ(NZ/X) in Sch/Z is invertible” can be checked Zar-locally over X and

is stable under base-change.

Proof. Recall that, as in 4.7.1.5,1.a, the blow-up stack (and the construction supplying for its representing
object) is Zar-local over X in the following sense. Being a quasi-smooth closed immersion is local on the
base, so let it be given affine Zariski covers X := {jXα : Xα ↬ X}α of X and Z := {jZα : Zα ↬ Z}α of Z on
which the restriction of i can be written as iα := i|Zα

:= (jXα )∗(i) : Zα ↛ Xα. Then, as above, there is an
isomorphism colimα BlZα

(Xα) ≃ BlZ(X) both as X-stacks and representing X-schemes. In other words, the
”classifying process” is Zar-local on the base Z.
Then, also the universal virtual Cartier divisor Duniv

Z/X over (X,Z) together with the relative data πuniv, Luniv
Z/X

are local on the base Z, since they are classified by the identity of BlZ(X), which is in turn determined
Zar-locally on Z by the identities.
The locality of the conormal sheaf NZ/X follows from the very definition 4.4.0.5, so in addition we obtain
also that of the surjection π∗

univ(NZ/X)→ Luniv
Z/X . Finally, the construction of the projective Z-scheme PZ(−)

is local on the base Z (see 4.3.2.11), hence so is the classifying morphism Duniv
Z/X → PZ(NZ/X).

In view of 4.7.1.5,1.b, a similar argument shows the stability under base-change. ■

Now, locality allows us to reduce the statement to a base-change of {0}↛ An, which can then be neglected
by virtue of the aforementioned stability properties. So, we are left to prove it in the affine case.

Claim 2. Duniv
Z/X → PZ(NZ/X) in Sch/Z is invertible for (X,Z) = (An, {0}).

Proof. As proven in 4.7.2.2,3, recall that Bl{0}(An) ∼= Blcl{0}(An) is a classical scheme, and its fibre-product in

Schcl along the inclusion of the origin {0}↛ An is isomorphic to the exceptional divisor. Now, we observed
right below the Construction 2.2.0.6 that the latter is in turn isomorphic to the (classical) projectivization
of the normal bundle: E{0}(An) = Pcl

{0}(N{0}/An) ≃ P{0}(N{0}/An), which coincides with the ”derived”

construction in Sch whenever it involves only classical objects (as remarked in our brief digression 4.3.2.11).
Then, an application of the universal property of Bl{0}(An) - see right-below the proof of 4.7.2.2,3 - with
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Scl = Bl{0}(An), f = π{0}/An and classifying map idBl{0}(An) implies that P{0}(N{0}/An) ↛ Bl{0}(An) is the
unique virtual Cartier divisor on Bl{0}(An) over (An, {0}), and it is classified by the identity. This forces the
desired equality Duniv

{0}/An = P{0}(N{0}/An). ■ □

Construction 4.7.2.3. (Universal property of Blow-ups) To sum up, we proved that there is a canonical
closed immersion PZ(NZ/X) ↛ BlZ(X) which exhibits the projectivized normal bundle as the universal
virtual Cartier divisor lying over (X,Z), so as the exceptional divisor of the blow-up.
More precisely, let us spell out how the classification occurs. Let it be given a quasi-smooth closed immersion
i : Z ↛ X and let Y := BlZ(X) and E := PZ(NZ/X) denote the Blow-up stack over i and the exceptional
divisor, respectively. Then, we proved that - for any X-scheme f : S → X - the universal relative virtual
Cartier divisor E(f) ∈ VDiv(Y (f))/(X,Z) induces the following correspondence in Spc:

Map/X
(︁
S , Y

)︁
−→ BlZ(X)(f : S → X) ≤

(︁
Sch/SZ

)︁≃
(ϕ : S → Y ) ↦−→ (D := ϕ∗(E(f)), h : D ↛ SZ)

D

h

↓↓

iD

↘↘

→→ E(f)

↙↙

iuniv →→ Y (f)

πZ/X

↙↙

SZ
pr2 →→

↓↓

S

f

↓↓

ϕ

↗↗

Z
i →→ X

In other words, relative effective Cartier divisors over (X,Z) arise as base-changes of the universal one along
classifying morphisms into the blow-up.

Proof. (Of the Construction) The construction above clearly gives a well-defined fully faithful functor, so
we are left to show the essential surjectivity of the assignment. In other words, we wish that, for any given
ϕ : S → Y (f), the classified relative virtual Cartier divisor iD : D ↛ S over (X,Z) sits in a cartesian square
exhibiting the pull-back of the angle (ϕ, iuniv). But this is a direct consequence of the construction of the
stack BlZ(X)(−): being ϕ = idY (f) ◦ ϕ, we can regard BlZ(X)(ϕ) ≃ ϕ∗BlZ(X)(πZ/X), as desired. □

Proof. (Of 4.7.1.5,2.b) By 4.5.2.2,i, 4.1.4.22, and C.1.0.8,i, the claim is local on the base X and stable under
base-change. Hence, we can reduce it to (X,Z) = (An, {0}). The properties needed can be proven in Schcl,
so we refer to both 2.2.0.7 and 2.2.0.8; nevertheless, let us summarize our setting in the following Claim.

Claim. Let i : {0}↛ An be the inclusion of the origin. Then, the structure map π{0}/Bl{0}(An) : Bl{0}(An)→
An is quasi-smooth and proper and induces an equivalence with the base An away from {0}: Bl{0}(An) \
P{0}(N{0}/An)

≃→ An \ {0}. □

Proof. (Proof of 4.7.1.5,1.c) Let i : Z ↛ X and i′ : X ↛ Y be two composable quasi-smooth closed
immersions in Sch. Recall that, by 4.7.1.4, a relative virtual Cartier divisor over i : (X,Z) can be regarded
as lying over i′ ◦ i : (Y, Z). In particular this applies to the universal one on BlZ(X), which can be exhibited
as a relative virtual Cartier divisor over (Y, Z) by the following square:

PZ(NZ/X) →→

↓↓

BlZ(X)

i′◦πZ/X

↓↓
Z →→ X

The latter is then classified by a canonical map BlZ(X) ↛ BlZ(Y ) over Y , which is a closed immersion, since
the structure maps of blow-ups are such. So, we are left to show its quasi-smoothness. In view of 4.5.2.2,i,
it suffices to argue locally over a cover of the base Y , say {Z, Y \ Z}.

� Over Y \Z: by 4.7.1.5,2.b, the map becomes i′|X\Z : X \Z ≃ BlZ(X)→ BlZ(Y ) ≃ Y \Z, which is the

restriction of the quasi-smooth closed immersion i′;
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� Over Z: by the universal property of blow-ups 4.7.2.3, the classifying map restricts to a closed immersion
between the projectivized conormal sheaves PZ(NZ/X) ↛ PZ(NY/X); hence, it is quasi-smooth by
4.5.2.4, because both the source and the target are such over Z. □

3.(a)-(b). Comparison with Classical Blow-Ups.

Proof. (Of 4.7.1.5,3.a) Let i : Z ↛ X be a quasi-smooth closed immersion in Schcl, i.e. a regular immersion
of classical schemes. Both the constructions [(X,Z) ↦→ BlZ(X)] and [(X,Z) ↦→ BlclZ(X)] are Zar-local over
the base X in the same sense. Hence, we can reduce wlog to X = Spec(R), Z = Spec(R � (f1, . . . , fn)) ∼=
Spec(R/(f1, . . . , fn)) for some static ring R ∈ CRing and some regular sequence (f1, . . . , fn) ⊆ R (see
3.5.0.3,iii) such that Z ranges in a trivializing atlas for the conormal sheaf NZ/X . Adopt the following

shorthand for tuples: f := (f1, . . . , fn) and yk := (yr : r ̸= k). The comparison will be established in two
Lemmas: we first prove that BlZ(X) ∈ Schcl is classical, and then that it agrees with the classical construction
BlclZ(X).

Claim 1. Let ρ′k : An → R[y] denote the n-tuple of coordinate functions ρr := fkyr − fr for r ̸= k. Then,
{Spec(R[yk]/(ρ′k))}nk=1 forms a classical affine Zariski atlas for the blow-up scheme BlZ(X).

Proof. 4.1.3.3 yields the claim with each R[yk]/(ρ′k) replaced by R[yk]� (ρ′k). Finally, observe that they are
isomorphic: the sequence f is regular by assumption, so that also ρ′k is such by an analogous argument to
2.2.0.5. Hence, the affine Zariski cover - and hence the blow-up of (Z,X) - is classical. ■

Moreover, such a cover {Spec(R[yk]/(ρ′k))}k is also an affine Zariski cover of the classical blow-up. Indeed,
the latter can be written as BlclZ(X) ∼= Blcl{0}(An)×An X by 2.2.0.3,i, and we showed in 4.7.2.2,iii that there

is an isomorphism Blcl{0}(An) ∼= Bl{0}(An).
□

Proof. (Of 4.7.1.5,3.b) From the very definition, quasi-smooth closed immersions arise as base-changes of the
form (i : Z ↛ X) ≃ X × ({0}↛ An) along some coordinate maps on X (see 3.5.0.1).
Now, by 4.7.1.5,1.b the construction of the blow-up scheme is stable under base-change, so that BlZ(X) ≃
Bl{0}(An)×An X in Sch. At the level of the underlying classical schemes, we obtain a base-change in Schcl:(︁
BlZ(X)

)︁cl ∼= Blcl{0}(An) ×cl
An Xcl, because in 4.7.2.2,iii we already proved that Blcl{0}(An) ∼= Bl{0}(An) ≃(︁

Bl{0}(An)
)︁cl

.

Moreover, the Claim is stable under base-change in Schcl, since the construction [(i : Z ↛ X) ↦→ π0Fib(i
♭ :

OX → i∗OZ)], the classical CSym∗(−) and the classical CProj are such.
Therefore, it can be reduced to the case of (An, {0}), namely we have to show that Blcl{0}(An) ∼= ProjAn(CSym∗(I)),
for I = (t1, . . . , tn)Z[t1, . . . , tn] the ideal describing the inclusion of the origin. This holds true, as observed
in 2.2.0.10. □

Remark. ([17],4.3.9) As observed by Khan and Rydh, the blow-up BlZ(X) of a quasi-smooth closed immersion
i : D ↛ X cut-out by I is equivalent to the projectivized ”derived” symmetric algebra CProj(Sym∗(I)) iff
the virtual codimension codim.vir(i) ≤ 2.

4.(a)-(b). The degenerate cases.

Proof. (Of 4.7.1.5,4.a) We will show that, whenever codim.vir(i : Z ↛ X) = 1, for any f : S → X a virtual
Cartier divisor iD : D ↛ S lies over (X,Z) iff it is exhibited by a cartesian square. Then, the universal
property of blow-ups 4.7.2.3 implies that (X,Z) ≃ (BlZ(X), EZ(X)), as wished.
In order to see the first claim, argue as follows. One direction is clear. Conversely, with notation as in 4.7.1.1
consider a relative virtual Cartier divisor iD : D ↛ S over (X,Z) and let h : D ↛ SZ denote the comparison
morphism. Condition (C) yields a canonical surjection h∗(NSZ/S) ↠ NiD in QCoh(D), which becomes then
an isomorphism, as it can be checked on a common trivializing atlas, since both the quasi-coherent modules
are locally free of rank 1. Hence, also their de-suspensions must be equivalent.
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Then, the exact sequence of 4.4.0.3,i forces the vanishing of the cotangent complex Lh. Moreover, by (B) h
induces an isomorphism on π0. Thus, we conclude by 4.4.0.3,iii that h is an isomorphism, i.e. that the square
is cartesian. □

Proof. (Of 4.7.1.5,4.b) Let i := idX be the identity of X, and let S be any X-scheme. In order for a virtual
Cartier divisor iD : D ↛ S to lie over (X,X), it must hold both that iclD = idS and that 0 ≃ h∗NidX

→ NiD
be surjective. The second condition forces NiD ≃ 0, so that iD must be an equivalence by 4.4.0.3,iii. But
this would contradict the requirement codim.vir(iD) = 1, so we conclude that there cannot be any relative
virtual Cartier divisor over (X,X), i.e. that BlX(X) = ∅, as claimed. □

4.8 Examples

4.8.1 Special Classes of Relative Virtual Cartier Divisors

Let us start by recording a couple of examples of relative virtual Cartier divisors.

Example 4.8.1.1. (Relative CaDiv are VDiv, [17],4.1.2) Consider a square Qcl in Schcl as above, so such
that the angle (icl, f cl) : Zcl → Xcl ← Scl lives in Schcl and icl is a regular closed immersion (see 4.5.2.2,ii). If
the classical schematic fibre (f cl)−1(Zcl) ∈ CaDiv(Scl) is a classical Cartier divisor on S, then (f cl)−1(Zcl) ∈
VDiv(Scl)/(Zcl,Xcl) also defines a virtual Cartier divisor on icl.

As a consequence, the we can produce many examples of classical Cartier divisors over (almost) arbitrary
quasi-smooth closed immersions of schemes: consider a quasi-smooth closed immersion i : Z ↛ X in Sch and
suppose that, Zar-locally on the base X, iA : Spec(A � (f1, . . . , fn)) → Spec(A) exhibits Z as being cut-out
by a sequence (f1, . . . , fn) ⊆ A such that wlog fn is a non-zero-divisor in π0A/(f1, . . . , fn−1); then, there
exists some f : S → X in Sch giving rise to some classical Cartier divisor (iD : D ↛ S) ∈ CaDiv(S)/(X,Z).

Proof. By 4.6.1.2 and our assumption, we obtain conditions (a) + (b). Condition (c), then, is equivalent
to the surjectivity of π1(h

♭ : OSZ
→ OD) (defined as in the proof above, with D = (f cl)−1(Zcl)), which

automatically follows from D being classical.

Now, let it be given a quasi-smooth closed immersion i : Z ↛ X in Sch, and let icl : Zcl → Xcl denote the
induced map of underlying classical schemes. We will exhibit a map g : S → Xcl in Schcl and a classical
Cartier divisor iD : D ↛ S sitting in a diagram as follows, where g−1(Zcl) denote the classical schematic
fibre:

D := g−1(Zcl)
iD

reg
→→

↓↓

S

g

↓↓
Zcl icl →→

↓↓

Xcl

↓↓
Z

i

qSmCl
→→ X

We argue Zar-locally on the base X, so let A ∈ Ani(CRing) be such that wlog X = Spec(A); then, we
can write the quasi-smooth closed immersion as i : Spec(A � (f1, . . . , fn)) ↛ Spec(A) for some sequence
(f1, . . . , fn) ⊆ A, so that icl : Spec(π0A/(x1, . . . , xm)) → Spec(π0A) for some sub-sequence of (f1, . . . , fn)
without repetitions. We need to exhibit some π0A-algebra R such that

iD : g−1(Spec(π0A/(x1, . . . , xm))) = Spec(R/(x1, . . . , xm))→ Spec(R)

is a closed immersion cut-out by a single non-zero divisor. If, up to permutations, xm = fn is (Koszul)
regular in π0A/(x1, . . . , xm−1), then R := π0A/(x1, . . . , xm−1) does the job. Finally, the glueing datum
corresponding to the affine patches Spec(π0A)’s of X

cl allows to glue also our local candidates Spec(R)’s to
the desired scheme S. Then, iD ∈ VDiv(S)/(Zcl,Xcl) is also a relative virtual Cartier divisor over (X,Z):

again conditions (a) + (b) are clear and the surjectivity of π1(h
♭) can be checked as above. □
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The next example is not necessary to the theory, but fosters intuition, since it shows that the ”obvious”
method of exhibiting relative virtual Cartier divisors does indeed work. Morally, given any quasi-smooth
closed immersion of (virtual) codimension n, a composite of quasi-smooth closed immersions of codimension
1 and n− 1 exhibits a relative virtual Cartier divisor over the former.

Example 4.8.1.2. (Successive quotients exhibit relative virtual Cartier divisors) Let i : Z ↛ X be a quasi-
smooth closed immersion in Sch of non-vanishing virtual codimension. Then, there exists a virtual Cartier
divisor over (X,Z) on some X-scheme S/X in Sch/X .

Proof. Define S, f : S → X and iD : D := Z ↛ S by the following cube, where all vertical faces are cartesian.

Z S

PB X

{0} A1

An−1 An

iD

i f

(ti|i<n)

(tn)

We claim that the induced commutative square exhibits iD as a
relative Cartier divisor on S over i:

Z
iD →→ S

f

↓↓
Z

i →→ X

It suffices to check it Zar-locally on the base X, where one has:

Spec(A � (f1, . . . , fn))
iD →→ Spec(A � (f1, . . . , fn−1))

f

↓↓
Spec(A � (f1, . . . , fn))

i →→ Spec(A)

Indeed, Zar-locally one has wlog S = Spec(R) for some R ∈ Ani(CRing). Now, being the vertical right face
cartesian, we can write

R ≃ A⊗LZ[t1,...,tn]
Z[t1, . . . , tn]
(t1, . . . , tn−1)

≃ A⊗LZ[t1,...,tn]
(︃
Z[t1, . . . , tn]⊗LZ[t1,...,tn−1]

Z[t1, . . . , tn−1]

(t1, . . . , tn−1)

)︃
≃ A⊗LZ[t1,...,tn−1]

Z[t1, . . . , tn−1]

(t1, . . . , tn−1)

≃ A � (f1, . . . , fn−1)

On the other hand, as in the inductive proof of 3.5.0.3,ii, the front and left vertical faces of the cube express
the identification A � (f1, . . . , fn) ≃

(︁
A � (f1, . . . , fn−1)

)︁
� (fn) which induces iD.

Then, let’s check the axioms of the first definition for the affine square above:

� (a) : The map iD is a quasi-smooth closed immersion of codimension 1 - i.e. a virtual Cartier divisor
on S - because is the base-change of the (quasi-smooth closed) inclusion of the origin {0} ↛ A1 (see
4.5.2.2,i and 4.5.2.6,i).

� (b) : At the level of classical schemes, the commutative square above is clearly cocartesian, since
π0A/(f1, . . . , fn) ∼= π0A/(f1, . . . , fn)⊗π0A π0A/(f1, . . . , fn−1).

� (c) : We need to check the surjectivity on π0 of the canonical map (1Z)
∗Ni → ND/X → NiD ; by 4.4.1.4

and the construction, this amounts to the following projection, so we are done:(︁
A � (f1, . . . , fn)

)︁n → A � (f1, . . . , fn) □

4.8.2 Computation: Affine Charts of Blow-Ups

In this subsection we record a computation of the affine charts of the blow-up of a quasi-smooth locally closed
relative scheme.
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Proposition 4.8.2.1. (Blow-up of affine qSmCl, [17],4.3.7) Let i : Z = Spec(R�(f1, . . . , fn))→ Spec(R) =
X in SchAff be a quasi-smooth closed immersion cut-out by coordinate maps (f1, . . . , fn) : Z[t1, . . . , tn] → R
(see 3.5.0.1). Then, the following affine schemes determine an affine Zariski atlas for BlZ(X):

Spec(R)×An Spec(Ak) ≃ Spec
(︁
R[yr : r ̸= k] � (ρ′r := fkyr − fr : r ̸= k)

)︁
Proof. BlZ(R) is stable under base-change in Sch by 4.7.1.5,1.b; hence, the computation R � (f) ≃ R ⊗LZ[t]
Z[t]/(t) implies the equivalence BlZ(X) ≃ Spec(R)×An Bl{0}(An) in Sch. Then, intersecting the affine Zariski
atlas {Spec(Ak)}k for the blow-up of the inclusion of the origin Bl{0}(An) as in 4.7.2.2,iii yields an affine
Zariski atlas for the blow-up, namely

Spec(R)×An Spec(Ak) ≃ Spec
(︁
R⊗LZ[t1,...,tn] Ak

)︁
for 1 ≤ k ≤ n

Thus, we are left to compute the tensor product. Let t := (t1, . . . , tn) and y
k := (yr : r ̸= k) be n-tuples of

indeterminates and let f := (f1, . . . , fn) denote the sequence of coordinate maps. Consistently, define also the
n-tuple ρk := (ρr := tkyr − tr : r ̸= k). With this notation, we can rewrite the description of the structural
map γk : Spec(Ak)→ An we provided in 2.2.0.5 as a regular immersion cut-out by the equations in ρ:

γ♭k : Z[t] −→ Z[t][yk]
(ρk)

= Ak

tk ↦−→ tk

(∀r ̸= k) tr ↦−→ tr = tkyr

The expressions above assemble into coordinate maps ρk : Z[t]→ Z[t][yk], which together with f induce the
following tensor product:

R⊗LZ[t] Ak ≃ R⊗
L
Z[t]

(︁
Z[t][yk]⊗LZ[yk] Z[y

k]/(yk)
)︁
≃ R[yk]⊗LZ[yk] Z[y

k](yk)

Now, by the associativity of the monoidal structure ⊗L we are left to consider the latter algebra, which can
be regarded as the claimed quotient ring. Indeed, it is given by the coordinate maps:

ρ′k :=
(︁
f ⊗LZ Z[yk]

)︁
◦ ρk : Z[yk] −→ R[yk]

which are morally obtained by replacing t with f in ρk, i.e. ρ′r = fkyr − fr for r ̸= k. □

Example 4.8.2.2. Let us specialize the Proposition above into a couple of more explicit computations.

� Let R ∈ Ani(CRing) be any animated ring, X := Spec(R), and let Z be cut-out by coordinate maps
(f1, . . . , fn) = (0, . . . , 0) : Z[t1, . . . , tn]→ R. Then, the blow-up BlZ(X) of i : Z ↛ X admits the affine
Zariski atlas:

Spec(R)×An Spec(Ak) ≃ Spec(R[yr : r ̸= k] � (ρ′r = 0 : r ̸= k))

� Let R ∈ CRing be a static ring, X := Spec(R), and let Z be cut-out by a regular sequence of coordinate
maps (f1, . . . , fn) : Z[t1, . . . , tn]→ R. Then, as observed in 4.7.1.5,3.a, the blow-up BlZ(X) of i : Z ↛ X
admits the affine Zariski atlas:

Spec(R)×An Spec(Ak) ≃ Spec

(︃
R[yr : r ̸= k]

(ρ′r = fkyr − fr : r ̸= k)

)︃
In other words, by 2.2.0.10 we retrieve the classical description of blow-ups of regular immersions as
the (classical) projectivization of the (classical) symmetric algebra generated by the defining ideal of
regular equations: BlZ(X) ∼= BlclZ(X) ∼= CProj(CSym∗(f1, . . . , fn)).
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A Animation

In this section we will present the construction PΣ, also known as animation. The main source is the work
of Lurie in [24],5.5.8.
Unless otherwise specified, we will always be concerned with small∞-categories which admit finite coproducts.
An initial detour on sifted simplicial sets and colimits will provide us with the technical tools needed to
develop the PΣ-construction.
This will be the content of the second subsection, whereas the third one will be mostly concerned with showing
how to regard PΣ(C) as the free sInd-completion of the full subcategory of compact and projective objects
of C. In other words, PΣ(C) will be obtained from C by freely adjoining sifted colimits, and hence, will
enjoy the universal property of free sInd-completions. As we will remark also later on, it is indeed the latter
fact which allows us to set up the theory of DAG, since it enables us to define functors of the ∞-categories
involved by declaring their actions on the ordinary category of compact and projective objects of a suitable
∞-category C.
In the fourth subsection, we will briefly comment on how to regard PΣ as a localization functor for a given
’non-abelian’ model structure on C ∈ Cat∞.
Finally, a synthetic presentation of [23],4.7.3 will close the section, aiming at determining how to characterize
compact and projective objects of algebraic categories.

A.1 Detour on Sifted Colimits

We introduce the notion of ’sifted’ simplicial sets. They are meant to be particularly nice indexing categories
for ’sifted’ diagrams, over which to form ’sifted’ colimits. In the current subsection, we will stress on how they
generalize the 1-categorical notion of ’siftedness’, as introduced by Adamek and Rosicky in [1], in that they
can again be described in terms of filtered colimits and reflexive coequalizers (namely, ’geometric realizations’
in the ∞-categorical language).
We will then provide some examples of sifted colimits, which, as we will see, are manifestly ubiquitous when
dealing with ’algebraic theories’.
Due to the nature of the objects involved, in the current subsections we will of course be working with
simplicial sets and our results will be in the incarnation of quasi-categories.
We present, however, only an informal adaptation of the arguments proving the results stated, while we
always reference to Lurie’s or Land’s formal proofs. Our expository choice is motivated by the following two
reasons: first of all, the arguments are sometimes technical and fairly involved and anyway far from the scope
of the present dissertation. On the other hand, we believe that manipulations of (co)limits become easier
and more enlightening if one acquires enough intuition about the combinatorics of the objects involved.

Definition A.1.0.1. ([24],5.5.8.1) A simplicial set K ∈ sSet is called sifted if

� K is inhabited, i.e. is non-empty;

� the diagonal functor diag := const∂∆1 : K → K ×K is cofinal.

Consistently with the terminology of algebraic topology, we require a sifted simplicial set to be inhabited in
order to avoid triviality; compare also with A.1.0.4.

Remark. As expected, filtered colimits in Cat∞ are sifted: apply [24],5.3.1.20 to the simplicial set C with
the auxiliary K = ∂∆1.
We will now exhibit an interesting example of a sifted simplicial set. As a preparation, we state the following
Criterion for a functor to be cofinal, due to Joyal.

Lemma A.1.0.2. (Joyal Criterion of Cofinality, [24],4.1.3.1) Let f : C → D be a map in sSet, with
D ∈ Cat∞. tfae:

� f is cofinal, i.e. for each diagram p : D → E of ∞-categories, f induces an equivalence colim(p) ≃
colim(p ◦ f).
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� For every object d ∈ D, C ×D Dd/ is weakly contractible.

Remark. (Motivational, in Cat∞) In [24],4.1.3, Lurie informally motivates the statement of Joyal’s Theorem
as follows. Given any diagram p : D → E of ∞-categories, we want an equivalence colim(p) ≃ colim(p ◦ f).
Provided that both sides are well-defined, there is always a canonical morphism ϕ : colim(p◦f)→ colim(p), so
that we have the required cofinality iff there is a quasi-inverse ψ to ϕ. This amounts to defining a ’compatible’
family of maps

(︁
ψd : p(d)→ colim(p ◦ f) | d ∈ D

)︁
.

The only reasonable candidate should be the one induced by a family of ’compatible’ factorizations p(d) →
p ◦ f(c)→ colim(p ◦ f), where the first map arises from ’compatible’ d→ p ◦ f(c), for some c ∈ C.
Now, observe that such an object c need not exist, and even in such a case it need not be unique. However,
provided that the latter two conditions are satisfied, we are done.
The collection of such candidates for c is parametrized by the slice Cd/ ≃ C×DDd/ ∈ Cat∞. Hence, from this
perspective, Joyal’s statement amounts to the latter slice being weakly contractible, namely to the existence
of a universal such object c ∈ C as needed.

Lemma A.1.0.3. (Natural numbers are co-sifted, [24],5.5.8.4) N (∆)op ∈ sSet is sifted. In particular,
geometric realizations are sifted diagrams.

Proof. (Sketch) Clearly N (∆)op is inhabited, so we are left to show that the diagonal is cofinal. To this
end, we will apply A.1.0.2 to diag, and hence show that, for each d := ([m], [n]) ∈ ∆ × ∆, relabelling
Dd/ := N (X := ∆/[m]×∆ ∆/[n]) (recall that we are dealing with op-categories) the slice ∆×∆×∆Dd/ ≃ Dd/

is w. contractible.
Notice that it suffices to check it on the full subcategory X0 ⊆f.f. X, spanned by the saturation of

{piece-wise ’continuous’ paths in the rectangle [m]× [n]}
Indeed, being X0 a presentable and cocomplete category, the inclusion X0 ⊆f.f. X admits a left-adjoint, so
that such an inclusion induces a w.h.equivalence under the nerve.
Finally, in order to prove that N (X0) is w. contractible, we remark that N (X0) is equivalent to the simplicial
set Sub(∆m × ∆n) of baricentric subdivisions of ∆m × ∆n (i.e. finite chains of sub-simplices), so that in
homotopy π∗(|N (X0)|) ≃ π∗(|Sub(∆m ×∆n)|) ≃ π∗(|∆m ×∆n|) ≃ ∗. □

Remark. ([24],5.5.8.5) As another example of sifted colimits, observe that the geometric realization of
simplicial objects | − | is a colimit over a sifted diagram and should be thought of as the ∞-categorical
analogue of the formation of reflexive coequalizers:

|X| := colim∆n/X |∆n| = colim∆n/X |∆n
di →→ ∆n+1|i,j
sj

←←

generalizes the ’1-truncated version’ colim
(︁
0

→→
→→ 1←←

)︁op ≃ colim(id∆op
≤1
), which is the underlying diagram

of a reflexive coequalizer.

Let us now present another application of Joyal’s Criterion, which shows that sifted simplicial sets are very
’rigid’. Hence, as we will see afterwards, they have good commutativity properties with respect to other
limits.

Lemma A.1.0.4. (Sifted simplicial sets are w. contractible, [24],5.5.8.7) Any sifted simplicial set K is weakly
contractible, i.e. the canonical map K → ∆0 is a weak homotopy equivalence (see [25],3.2.6.1).

Proof. Given any x ∈ K, by the Whitehead Theorem it suffices to show that K has w. contractible geometric
realization: π∗(|K|, x) ≃ ∗.
Let us recall that cofinal morphisms (such as the diagonal diag) are w. h. equivalences ([24],4.1.1.3). Indeed,
informally, given a diagram q, a cofinal map f for q amounts to fibre-wise equivalences of the cocartesian
fibrations corresponding (under the Straightening-Unstraightening equivalence of [24],3.2) to colim(q) and
colim(q ◦ f); this, as shown in [20],3.1.27, means that f must be a w. h. equivalence itself.
From the latter we observe that the diagonal map induces:

diag : π∗(|K|, x)
≃−→ π∗(|K ×K|,diag(x)) ≃ π∗(|K|, x)× π∗(|K|, x)

which forces π∗(|K|, x) ≃ ∗, since - being K inhabited - π∗(|K|, x) ̸= ∅. □
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We now investigate the compatibility properties of sifted colimits and finite products. As in the 1-categorical
case, we will obtain the commutativity of the two functors; this will be achieved in two lemmas.

Lemma A.1.0.5. ([24],5.5.8.6) Let K ∈ sSet be a sifted simplicial set, and consider ∞-categories C, D, E
with K-indexed (sifted) colimits.
If a functor f : C ×D → E of ∞-categories preserves K-indexed colimits separately in each variable, then it
preserves sifted colimits of K-indexed diagram in the product category.

Proof. (Sketch) ConsiderK-indexed diagrams p : K → C and q : K → D and rename δ := diag : K → K×K.
Then, we claim that we can decompose

colim
(︁
f ◦ (p× q)

)︁
≃(1) f ◦

(︁
colim(p× q)

)︁
≃(2) colim

(︁
K

δ−→ K ×K p×q−→ C ×D f−→ E
)︁

where the previous equivalences are due to the following facts:
1. f admits colimits over K ×K, and these are computed by evaluating f at the colimit of p× q.

Indeed, the assumption on f rewrites as the fact that, for any colimit cone K ≃ K ∪ {∞} extending
K, f ◦ (p× q)|⊆i(K) : K → C ×D → E is a colimit diagram. Now a technical Lemma (see [24],5.5.2.3)
assures that we can compute the colimit over the product diagram by a ’Cantor diagonal argument’
applied to the product of colimit cones, in other words that K ×K ≃ K ×K.

In practical terms, this means that the value of the colimit f ◦ p× q exists and it is computed by
f ◦ p× q.

2. We can actually factor each colimit over K×K through δ, i.e. δ is cofinal: this holds true by assumption.
□

Remark. Binary products in an ∞-topos (e.g. Spc, see Appendix C for a more general discussion) preserve
small colimits separately in each variable.
Indeed, colimits in a topos X are universal, i.e. for each morphism f : X → Y in X there is a well-
defined pull-back functor of slice topoi f∗ : X/Y → X/X which preserves all small colimits. Now, observe
that a binary product in X corresponds to a pull-back square over the terminal object ∗ of X , so that
X × (−) ≃ (X → ∗)∗(−) and similarly for the other variable.

Lemma A.1.0.6. (Sifted colimits preserve finite products, [24],5.5.8.11) Let K ∈ sSet be sifted, and X ∈
Cat∞ with finite products and sifted colimits (e.g. X = Spc or any∞-topos). Assume further that each n-fold
product preserves K-indexed colimits separately in each variable. Then, colimK : Fun(K,X)→ X preserves
finite products.

Proof. (Sketch) First recall that, as proved in the previous Lemma, colimK commutes with binary products
whenever K ∈ sSet is sifted. Now, notice that we can regard a finite product as the terminal object in the
diagram of its binary sub-products. Therefore, in view of Lemma A.1.0.4, we are left to show the following:

Claim. ([24],4.4.4.9) colimK preserves terminal objects whenever K is w. contractible.

Proof. Our argument will amount to the definition of the copowering over H := Ho(Spc) of an ∞-category
(in its quasi-categorical incarnation). The following digression summarizes [24],4.4.4.
First, let us fix some notation (for any arbitrary K ∈ sSet). Fix a diagram p : K → C into an∞-category C.
In view of [24],4.4.4.5, we say that the left fibration Cp/ → C is corepresentable if the under-category Cp/ has
an initial object, or equivalently iff p has a colimit in C. In particular, let c : ∆0 → C be the inclusion of an
object c ∈ C; in view of the Yoneda Lemma as formulated by Heberstreit in e.g. [20],4.2.12, write MapC(c,−)
for the functor corepresented by c in the homotopy category of Spc, namely H. Now, let p := constc : K → C
be the K-indexed constant diagram at c ∈ C.
For each c′ ∈ C, the homotopy-coherent version of Straightening-Unstraightening yields a functorial identi-
fication Cp/ ×C {c′} ≃ (Cc/ ×C {c′})K of fibers of left fibrations (and hence an identification of these left

fibrations over C in LFib(C)), so that p is corepresented in H by the product MapC(c,−)[K], where [K]
denotes the homotopy class of K in H.
In other words, following the formulation of [24],4.4.4.9, the objects of the fibre Cp/×C {c′} are classified (up
to equivalence) by maps ψ : [K] → MapC(c, c

′) in the homotopy category H. Observe that, for each z ∈ C,
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the latter induces a map MapC(c
′, z)→ MapC(c, z)

[K]. Now, one has that such a map ψ classifies a colimit
for p iff, for each z ∈ C, the previous map actually corresponds to an iso MapC(c

′, z) ≃ MapC(c, z)
[K] in

H. The latter statement is an immediate consequence of the fact that, in such a case, c′ would be initial in
Cp/. In order to grasp some intuition, this corresponds precisely to the classical definition of a colimit as a
universal cone extension.

Remark. When such a colimit exists, then we denote it by c⊗K, being it the K-copower of c ∈ C over H.
Finally, let us come back to our setting. For K w. contractible, [K] = ∗ and the fully faithfulness of the
Yoneda functor ensures the existence of a ψ classifying a colimit for p. □

A.2 The PΣ-Construction

We now introduce the PΣ-construction together with its first properties. For reasons which will be clear later
on, the latter is also known as ’non-abelian localization’ ; a more modern and evocative terminology has been
however introduced by Cesnavicius and Scholze in [3],5, who refer to a special instance of the PΣ-construction
as ’animation’, a term which comes from ’anima,-ae’, the latin word for ’soul’. The motivation behind such
a terminology will become clear in the next sections.

Definition A.2.0.1. (PΣ-construction, [24],5.5.8.8) Let C ∈ Cat∞ admit finite coproducts and let P(C) :=
Psh(C) = Fun(Cop ,Spc) denote the ∞-category of presheaves on C. Define PΣ(C) ⊆f.f. P(C) to be the full
sub-∞-category spanned by finite-product-preserving functors from Cop to spaces: PΣ(C) := Fun×(Cop ,Spc) ⊆f.f.
P(C).

Before proving the properties of the PΣ-construction, we delve into a brief digression on strongly reflective
localizations.

Digression: On strongly reflective localizations. We briefly review [24],5.5.4 - complementing with
the relative nLab page [33] - aiming at introducing the language of S-local objects and morphisms, so as
to describe Bousfield left-localizations in terms of those. The PΣ-construction will turn out to be a very
well-behaved instance of such a class of localizations.
First, let us consider an ∞-category C and a class of morphisms S ⊆ MorC. We say that:

� c ∈ C is a S-local object if j(c) sends S to weak homotopy equivalences in Spc;

� f ∈ MorC is a S-local equivalence if, for each S-local object c ∈ C, j(c)(f) is a weak homotopy
equivalence in Spc.

Intuitively, we are requiring a relative version of being a weak categorical equivalence (as in [20],2.2.28), since
the latter property is to be checked on the (generally smaller) class S.

In addition, we say that a class S of morphisms in a cocomplete category C ∈ Cat∞ is strongly saturated
if it is stable under pull-backs along morphisms of C, it has the 2-out-of-3 property and the full subcategory
of Fun(∆1, C) generated by S is cocomplete.

One can show that, given a class S of morphisms of C, there is a well-defined notion of ’strong saturated
closure’ of S, which in particular must contain all weak categorical equivalences of C.
Moreover, as stated in [33],2.4, given a colimit preserving functor F : C → D of cocomplete ∞-categories
and a strongly saturated class T of morphisms of the target D, then the pre-image F−1(T ) is a strongly
saturated class of the source C. In particular, this holds for the pre-image along F of the weak equivalences
of its target D. Hence, for F = ∩j(c) : C → Spc over S-local objects, one observes that the class of S-local
equivalences in a category must be strongly saturated.

Let WX denote the class of weak categorical equivalences of an ∞-category X. By [33],3.2 (or [24],5.5.4.2),
a Bousfield left-localization L : C −⇀↽− D :⊇ can be characterized in terms of S := L−1(WD)-local objects
and morphisms of C. More explicitly, denoting by Loc :=⊆ ◦L the localization functor, {S-local objects} ≃
Loc(C) and S = {S-local equivalences}.
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For a presentable category X (such as e.g. P(C)), a variant of the II Adjoint Functor Theorem allows us to
prove that the previous characterization actually exhausts all the ”reasonable” Bousfield left-localizations of
X. Indeed, by [33] (or [24],5.5.4.15), the reflective subcategories X0 ⊆f.f. X are precisely those spanned by
a small set S0 ⊆ Mor(X). Furthermore, as expected, for L the left-adjoint to ⊆, {S0-local equivalences} =
S0 = L−1(WX0).

We now claim that reflective subcategories X0 of such a form are furthermore the strongly reflective
subcategories of X, meaning that they are presentable, reflective and stable under equivalences in X.
So, intuitively, they correspond to localizations at those morphisms which are relative weak categorical
equivalences with respect to some small set.

Criterion. (For strongly reflective localizations) The full subcategories X0 of a presentable X ∈ PrL which
are spanned by the S0-local objects of X for some small set S0 ⊆ Mor(X) are strongly reflective, i.e. are
reflective, presentable and stable under equivalences in X.

Sketch. In view of the previous digression, we already have a Bousfield localization L : X −⇀↽− X0 :⊇ which
exhibits X0 as a reflective subcategory of X. Moreover, being X0 spanned by the S0-local objects, it is
clearly stable under equivalences in X. Hence, will only need to prove that X0 is presentable.
By [24],5.2.7.5, being X cocomplete, also X0 ≃ LX is so: for any diagram q : K → X0, we know that
p : K → X0 ⊆ X admits a colimit cone p, which is preserved by the left-adjoint L, so that L ◦ p is a colimit
diagram of L ◦ p ≃ L◦ ⊆ ◦q ≃ q (where the equivalence is given by the counit).
Finally, the heart of our statement lies in the proof that LX is accessible whenever X is such; however, the
latter is definitely technical and involved, so we defer it to Luries’s exposition in [24],5.5.4.2/iii). ■

We close this digression by recording (without proof) three stability properties of strongly reflective localiza-
tions, which will be needed later on:

Properties. (Of strongly reflective localizations) Let C ∈ PrL be a presentable ∞-category. Then,

(a) ([24],5.5.4.17) Pulling back the right adjoint of F : C −⇀↽− D :G in PrL along a strongly reflective
embedding C0 ⊆f.f. C exhibits D0 := G−1(C0) ⊆f.f. D as a strongly reflective subcategory:

C0 ↘
↙ f.f. →→ C

F

↓↓
D0 := G−1(C0)

G|D0

↑↑

↘ ↙ f.f. →→ D

G

↑↑

(b) ([24],5.5.4.18) Let {Cα}A be a small family of strongly reflective subcategories of C induced by the
small subsets {Sα}A of C; then, also their intersection ∩ACα ⊆f.f. C is strongly reflective, as induced
by localizing at S := ∪ASα-local maps.

(c) ([24],5.5.4.19) For a small simplicial set K ∈ sSet, the full subcategory D spanned by

D := ⟨{p : K → C | p ≃ lim p|K}⟩ ⊆f.f. Fun(K,C)

exhibits a strongly reflective subcategory limK(D) ⊆f.f. C.

We are finally ready to state and prove the main proposition of this section, which investigates the properties
of the PΣ-construction.

Proposition A.2.0.2. (Properties of PΣ, [24],5.5.8.10) For a small ∞-category C ∈ Cat∞ with finite
coproducts, the following properties hold true:

1. PΣ(C) ∈ Cat∞ is a Bousfield accessible localization of P(C) via L : P(C) −⇀↽− PΣ(C) :⊇.

2. The Yoneda embedding j : C ↪−→ P(C) factors through jΣ := L◦ j : C ↪−→ PΣ(C) and the latter preserves
finite coproducts.
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3. Given an adjunction F : P(C) −⇀↽− D :G with D ∈ Cat∞ a presentable category, G factors through
PΣ(C) iff f := F ◦ j : C → D preserves finite coproducts.

4. PΣ(C) ⊆f.f. P(C) is stable under sifted colimits; in particular, pictorially PΣ(C) ⊇ sInd((C).

5. In the Bousfield localization L : P(C) −⇀↽− PΣ(C) :⊇, the unit L : P(C)→ PΣ(C) ⊆f.f. P(C) preserves
sifted colimits of presheaves.

6. PΣ(C) ∈ Cat∞ is compactly generated.

Proof. (1) : Rephrasing in the terminology of [24],5.5.4, we are asserting that PΣ(C) is a strongly reflective
subcategory of the presentable category P(C). We refer the unexperienced reader to the digression above for
an introduction to left-localizations.
In view of property (b) as above, we will construct countably many strongly reflective subcategories Pn(C) ⊆f.f.
P(C) such that PΣ(C) ≃ ∩n≤ωPn(C). Moreover, if we let Sn denote the small sets of local equivalences
inducing the localization Pn(C), then PΣ(C) will be the localization at S := ∪nSn-local maps.
To this end, for each n < ω consider the full subcategory Pn(C) ⊆f.f. P(C) spanned by those functors which
preserve n-ary products in Cop , and observe that it is the left-localization at Sn-local maps, where:

Sn :=

{︃
j(

n∏︂
i=1

xi)→
m∐︂
i=1

j(xi)

⃓⃓⃓⃓
(xi)

n
i=1 ∈ Cn

}︃
In order to see this, we need to check that, for each F ∈ Pn(C) and each map in Sn, pre-composition with the
latter induces an equivalence of mapping spaces. But this is clear: under the Yoneda Lemma, the previous
map amounts to the canonical one between the corresponding evaluations and F preserves n-fold products
by assumption, so the following is a homotopy equivalence:

MapP(C)

(︁∐︂
j(xi),F

)︁
≃

∏︂
F(xi)→ F(

∏︂
xi) ≃ MapP(C)

(︁
j(
∏︂

xi),F
)︁

Finally, we remark that, being C small by assumption, also Sn is a small set for each n, and hence it exhibits
Pn(C) as a strongly reflective subcategory of P(C), as needed.

(2) : Being PΣ(C) a full subcategory of P(C), the Yoneda embedding jC : C → P(C) factors through
PΣ(C) iff, for each x ∈ C, jC(x) preserves finite products in Cop . By [20],5.1.24, an n-coproduct is left
adjoint to the n-constant functor, so that we obtain the required property:

MapC(

n∐︂
i=1

zi, x) ≃ MapFun(
∐︁

∗,C)(zi, constx) ≃
n∏︂
i=1

MapC(zi, x)

where the last equivalence follows from the dual to [20],4.3.24.

Now, we are left to check the ’dual property’, namely that j carries finite coproducts in C to finite coproducts
in PΣ(C), i.e. that there is an equivalence of pre-sheaves MapC(−,

∐︁
F xi) ≃

∐︁
F MapC(−, xi) ∈ PΣ(C) over

any finite F .
As an application of Yoneda Lemma (see [24],5.5.2.1 or - from a more ∞-categorical perspective - apply the
homotopy-coherent version of the Yoneda Lemma to the natural transformation induced by evaluation at
an object and conclude by [20]2.2.2), we can regard any representable functor evy := MapC(−, y) as the
composition of the opposite Yoneda embedding jop : Cop → PΣ(C)

op followed by the functor represented by
evy, namely MapPΣ(C)(−, evy), which corresponds to ’evaluation at y’ under the Yoneda Lemma.
Hence, it suffices to check that for any representable functor e : PΣ(C)

op → Spc, the composition

Cop jop−→ PΣ(C)
op e−→ Spc

preserves all finite products in Cop . Finally, as observed in the first paragraph of [24],5.5.2, even more holds,
namely that the composition preserves all small limits. Indeed, jop does so by [24],5.1.3.2, while the evaluation
e preserves lim, since in presheaves categories those are computed object-wise (see either [24],5.1.2.2 or the
proof of [20],5.1.27).

(3) : Write jC(x) := MapC(−, x). The Yoneda Lemma (see [20],4.2.10) yields, for each d ∈ D, an
equivalence of functors (in ⋆):
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G(d)(⋆) ≃ MapP(C)(MapC(−, ⋆), G(d)) ≃ MapD(F ◦MapC(−, ⋆), d) ≃ jD(d) ◦ (F ◦ jC)op(⋆)
Call f := F ◦ jC and assume D to be small. Then, (by [24],5.1.3.2) jD preserves those limits which exist in
the small ∞-category Dop , so, if fop preserves

∏︁<ω
, it follows that also G(d) ≃ jD(d) ◦ fop does so, and

hence it belongs to the essential image of the f.f. embedding PΣ(C) ⊆f.f. P(C).
Conversely, let us assume that G(d) ∈ PΣ(C) is

∏︁<ω
-preserving. Then, we have a chain of equivalences:

MapD(f(

n∐︂
i=1

xi), d) ≃ G(d)(
n∏︂
i=1

xi) ≃
n∏︂
i=1

G(d)(xi) ≃
n∏︂
i=1

MapD(f(xi), d) ≃ MapD(

n∐︂
i=1

f(xi), d)

where the latter equivalence is the dual of [24],5.1.3.2.
Therefore, we can conclude, by the fully-faithfulness of the Yoneda embedding, that f preserves finite co-
products.

Finally, the following claim shows that our reasoning generalizes also to a presentable category.

Claim. wlog D is small.

Proof. As part of the datum for a presentable category D, we are given a small full subcategory D0 ⊆f.f. D
spanned by small objects and which generates the latter under filtered colimits colim

−−−−−→
. Since colim

−−−−−→
commutes

with both
∏︁<ω

(filtered diagrams are in particular sifted, so see A.1.0.6) and representable functors in the
image of jD (see [24],5.3.5.14), our reasoning generalizes to presentable categories. ■

(4) : Spc admits both
∏︁<ω

and colimsift , so that also P(C) has them; moreover, by Lemma A.1.0.6,∏︁<ω
and colimsift commute. Thus, colimsift : Fun(K,PΣ(C)) → P(C) lands into the full subcategory

PΣ(C) ⊆f.f. P(C). Indeed, by the proof of [20],5.1.27 (or, more directly, by [24],5.1.2.2), colimits of pre-
sheaves are computed object-wise, so that, for a diagram p : K → PΣ(C) of pre-sheaves on C p : K → PΣ(C),
one can compute its colimit at

∏︁n
i=1 xi ∈ Cop by:(︃

colimsift
K p(k)

)︃(︁ n∏︂
i=1

xi
)︁
≃ colimsift

K

(︃
p(k)

(︁ n∏︂
i=1

xi
)︁)︃
≃ colimsift

K

(︃ n∏︂
i=1

p(k)(xi)

)︃
where the latter equivalence follows from the fact that p takes values into finite-product-preserving pre-sheaves
on C. Then, as recalled

∏︁<ω
and colimsift commute, so that we can rewrite the latter as follows:

colimsift
K

(︃ n∏︂
i=1

p(k)(xi)

)︃
≃

n∏︂
i=1

colimsift
K

(︁
p(k)(xi)

)︁
≃

n∏︂
i=1

(︃
colimsift

K p(k)

)︃
(xi) ■

(5) : Let p : K → P(C) be a sifted colimit cone extending the (sifted) diagram p := p|K . Notice that
L(p) ∈ PΣ(C) has a colimit cone in the cocomplete ∞-category P(C). Now, since left adjoints preserve
arbitrary colimits (whenever they exist in both the source and the target category), L(p) must be again a
sifted colimit cone for L(p). Furthermore, since L(p) takes values in PΣ(C) and the latter category is closed
under colimsift by point (4), also L(p) must take values into PΣ(C), and hence L(p(∞)) = L(p)(∞) ∈ PΣ(C),
as stated. ■

(6) : First recall that, by [24],5.3.5.12, the ∞-category of pre-sheaves P(C) is presentable, and hence
compactly generated, i.e. there is some regular cardinal κ for which the full subcategory P(C)<κ ⊆f.f. P(C)
spanned by the < κ-compact objects colim

−−−−−→
<κ-generates P(C).

Let L : P(C) → PΣ(C) be the Bousfield localization functor of point (1). Notice that, being it colimit-
preserving and essentially surjective, L(P(C)<κ) colim

−−−−−→
-generates PΣ(C). Then, to prove our statement it

suffices to show that the former category consists of κ-compact objects.
To this end, observe that, for each e ∈ P(C)<κ the unit η : idP(C) → L induces the triangle identity
(point-wise described in [20],5.1.11):

Fun(PΣ(C),Spc) ∋ f := MapPΣ(C)(Le,−)
[e

η→Le]∗◦⊆ →→ MapP(C)(e,−) =: f ′ ∈ Fun(P(C),Spc)

which is point-wise an equivalence, and hence, if we restrict the target to its essential image PΣ(C), also an
actual equivalence (see [20],2.2.2):

η∗◦ ⊆: f ≃−→ f ′|PΣ(C) ≃ MapPΣ(C)(E,⊆ (−))|PΣ(C)
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Now, f ′ is corepresented by the κ-compact object e ∈ P(C), so that, in particular, it commutes with filtered
colimits in PΣ(C) (recall that they exist there by point (4)). Thus, also f must be colim

−−−−−→
<κ-cocontinuous,

i.e. the representing object Le ∈ PΣ(C) must be κ-compact, as needed. ■
□

We want now to provide an ’informal’ converse to Property (4), namely to show that PΣ(C) ⊆ sInd(C), by
proving that each pre-sheaf in PΣ(C) can be regarded as the (sifted) geometric realization of a simplicial
object in Ind(C). We added the adjective ’informal’, because in-so-far free sInd-completions have not yet
been defined. This will be indeed the content of the next subsection, in which we will spell out the universal
property enjoyed by such classes.
We will first state a preliminary technical Lemma, which will not be proved.

Lemma A.2.0.3. (Tree realization of pre-sheaves, [24],5.5.8.13) Let C ∈ Cat∞ be small and consider a
pre-sheaf X ∈ P(C). Then, there exists a simplicial object in P(C), say Y• : N (∆)op → P(C) s.t.

1. |Y•| ≃ colimsift Y• ≃ X.

2. For each n ≥ 0, there exists some small family {za}An ⊆ C s.t. P(C) ∋ Yn ≃
∐︁
a∈An

j(za).

We are now ready for the claimed result, namely that PΣ(C) is the smallest full subcategory of P(C) which
contains the essential image of the Yoneda embedding (A.2.0.2,ii) and is closed under filtered colimits and
geometric realizations (A.2.0.2,iv).

Lemma A.2.0.4. ([24],5.5.8.14) Let C ∈ Cat∞ admit finite coproducts. Then, for each pre-sheaf X ∈ P(C),
X ∈ PΣ(C) iff there exists some simplicial object U• : N (∆)op → Ind(C) whose geometric realization is
|U•| ≃ colimsift U• ≃ X.

Proof. ( ⇐= ) First recall that both filtered colimits and geometric realizations are special sifted colimits.
Moreover, by A.2.0.2,i) j(C) ⊆ PΣ(C) and by A.2.0.2,iv) PΣ(C) is stable under sifted colimits. Hence,
Ind(C) ⊆ sInd(C) ⊆ PΣ(C) and, in particular, for any simplicial object as before, X ≃ colimsift U• ∈ PΣ(C).

( =⇒ ) Let Y• be a ’tree’ for X ≃ colimsift Y• as in the previous technical Lemma. Let L : P(C)→ PΣ(C) be
the Bousfield localization functor of A.2.0.2,i). The counit of the adjunction is an equivalence (see the proof
of [20],5.1.8) and the unit preserves sifted colimits by A.2.0.2,v), so that X ≃ LX ≃ colimsift LY•. Define
U• := L ◦ Y•; the last technical claim finishes the proof.

Claim. LYn ∈ Ind(C) for each n ∈ N.
Proof. By assumption, Yn ≃

∐︁
a∈An

j(za) for A := An small indexing sets. wlog #A <∞.
Indeed, consider the filtration F := {F ⊆ A|#F < ∞} of the finite parts of A. Then, Yn ≃

∐︁
A j(za) ≃

colim
−−−−−→

(︁∐︁
F j(za) | F ∈ F

)︁
and, since the left-adjoint L preserves (filtered) colimits, it suffices to show that

L
(︁∐︁

F j(za)
)︁
∈ Ind(C) for an arbitrary F ∈ F .

Now, as proved in A.2.0.2,ii), the Yoneda embedding j factors through PΣ(C) and carries finite coproducts
in C to finite coproducts in PΣ(C). Thus, we are left to consider L ◦ j(

∐︁
F za) ≃ L

(︁∐︁
F j(za)

)︁
. However,

L ◦ j ≃ (L◦ ⊆) ◦ jΣ
ϵjΣ−→ jΣ is an equivalence, because the counit ϵ of the Bousfield localization is such.

Therefore, we reduced the claim to the statement Yn ≃ colim
−−−−−→F j(

∐︁
F za) ∈ Ind(C), which is true by assump-

tion. □

A.3 The Universal Property of PΣ

In the current subsection we will show that the PΣ-construction enjoys the universal property of free sInd-
completions, so it ’freely adjoins’ sifted colimits. We will maintain the same notation and abbreviations of
the previous sections.
We first need a technical result which allows us to use left Kan extensions so as to characterize free completions
of C ∈ Cat∞ obtained by freely adjoining a given class of universal objects.
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Lemma A.3.0.1. ([24],5.3.5.8 as in [24],5.3.5.9) Let C ∈ Cat∞ be small and let Σ denote some class of
colimits existing on C (i.e. some set of diagrams into C which admit a colimit extension). Consider the
smallest full subcategory CΣ ⊆f.f. P(C) which contains the essential image of the Yoneda embedding j(C)

and is stable under colimits of type Σ, i.e. admits a well-defined functor colimΣ.
Let D ∈ Cat∞ have colimits of type Σ. Then,

1. For each functor f : j(C) → D, there exists an extension F : CΣ → D s.t. F ≃ Lanj(f) is a left Kan
extension of its restriction f ≃ F ◦ j ≃ F|C .

2. Conversely, a functor F : CΣ → D is the Left Kan extension of its restriction to C, namely F ≃
Lanj(F|C), iff F|C preserves colimits of type Σ.

Proof. Recall that, in our setting, a left Kan extension Lanj(f) : CΣ → D of a functor f : j(C) → D can
be thought of as the transpose of f under the adjunction Lanj := j! ⊢ j∗, as induced by the restriction
j∗ : Fun(CΣ, D) → Fun(j(C), D) along the Yoneda embedding. Such a model independent perspective
makes sense, because in what follows we will be able to assume that wlog D is cocomplete; hence, we can
apply [24],4.3.2.13 to show that each functor f admits a left Kan extension along j and then conclude, by
[24],4.3.2.17, that such extensions can be grouped into the stated adjunction.
Let’s begin with a reduction step:

Lemma. ([24],5.3.5.7) Given any D ∈ Cat∞ (possibly not small) there exists a f.f. embedding i : D ⊆f.f. D′

into some D′ ∈ Cat∞ with all small colimits and s.t. i preserves colimits in D and detects those in D′.

Proof. Define D′ := Fun(D,Spcˆ )op , i :=
(︁
j : D ↪−→ P(D)

)︁op
. Then, D′ is co-complete by [24],5.1.2.2

(since Spc is bi-complete) and i has the stated co-continuity, since j commutes with all existing limits (by
[24],5.1.3.2). ■

(1) : Fix an arbitrary functor f : j(C) → D and assume that wlog D embeds into some D′ as in the
reduction Lemma. For the rest of our reasoning, notice that we can identify D ≃ i(D) into D′ (see the first
part of the proof of [24],5.3.6.2).
Then, an application of the theory of Kan extensions (see [24],4.3.2.13) to our setting yields, as in [24],5.1.5.5,ii),
a left Kan extension F : P(C)→ D of f = i ◦ f , which is furthermore colimit-preserving (see ibid,i).
Now, being D ⊆f.f. D′ colimΣ-stable (by assumption and because i preserves colimits), and being (again by

assumption) CΣ colimΣ-generated by j(C), we can conclude that the restriction F := F |CΣ
factors throughD.

Therefore, we obtain a functor F : CΣ → D as needed, namely s.t. it preserves colimΣ and s.t. F ≃ Lanj(f).
(2) : ( =⇒ ) Recall that Kan extensions are essentially unique, so, if F preserves colimΣ, then each left

Kan extension of f must be colimΣ-cocontinuous.

(⇐= ) Now, let it be given some F : CΣ → D as in (1) and consider any F ′ : CΣ → D which restricts to F|C

over C (i.e. F ′
|C ≃ F|C) and hence in particular s.t. F|C preserves colimΣ; we claim that also F ′ ≃ Lanj(F ′

|C),

so that (equivalently) F ′ ≃ F .
In order to see this, recall the [UP : Lan]: being F ≃ Lanj(F|C) and since the restrictions F|C ≃ F ′

|C
coincide, there must be a natural transformation α : F → F ′ extending the identity transformation over C
(more formally, such that α|C is an equivalence).

Let E ⊆f.f. CΣ be spanned by the ’equivalence-locus’ of α over CΣ, i.e. by {x ∈ CΣ | αx : F (x)
∼→ F ′(x) ∈

Mor(D)}.
Then, notice that j(C) ⊆ E and that the latter is stable under colimits of type Σ, since both F and F ′

are colimΣ-cocontinuous. Thus, by the minimality of CΣ, the previous embedding must be an equivalence
E ≃ CΣ, which means (by [20],2.2.2) that α : F → F ′ is an equivalence in Fun(CΣ, D), as required. □

Proposition A.3.0.2. (Left Derived Functors, [24],5.5.8.15) Let C ∈ Cat∞ admit small coproducts and
consider D ∈ Cat∞ with both filtered colimits and geometric realizations; define

FunΣ(PΣ(C), D) ⊆f.f. Fun(PΣ(C), D)

to be the full subcategory generated by those functors which preserve both filtered colimits and geometric
realizations. Then,
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1. [UP : sInd] : jΣ : C → PΣ(C) induces an equivalence

θ : FunΣ(PΣ(C), D)
≃−→ Fun(C,D)

Given any f ∈ Fun(C,D), we say that the corresponding colimsift -preserving extension F ∈ FunΣ(PΣ(C), D)
determined under θ is the left derived functor of f .

2. Each g ∈ FunΣ(PΣ(C), D) preserves sifted colimits.

3. Assume further that D has also finite coproducts; then, g ∈ FunΣ(PΣ(C), D) is cocontinuous iff g ◦ jΣ
preserves finite coproducts.

Proof. (1) : Let Σ denote the smallest class of diagrams in P(C) which contains both filtered diagrams and
simplicial objects. As already observed, by A.2.0.4, PΣ(C) is the smallest full subcategory of P(C) which
contains the essential image of the Yoneda embedding and is closed under filtered colimits and geometric
realizations, i.e. under colimits of type Σ.
So, we can apply A.3.0.1 in order to obtain an equivalence FunΣ(PΣ(C), D) ≃ Lanj(j(C), D), where the latter
denotes the full subcategory of Fun(j(C), D) spanned by left Kan extensions of functors in there; indeed, the
two full subcategories are, up to homotopy, spanned by the same objects.

Now, by [24],4.3.2.15, Lanj(j(C), D) ≃ Fun(C,D), as desired. Indeed, in our notation, we can rewrite the
latter statement as follows.
Let K := Lanj(j(C), D) ⊆f.f. FunΣ(PΣ(C), D) be spanned by those functors G : PΣ(C) → D s.t. G ≃
Lanj(G|C). Moreover, let K′ ⊆f.f. FunΣ(C,D) denote the full subcategory spanned by those functors
g : C → D s.t. for each F ∈ PΣ(C) the induced C/F → D admits a colimiting cone in D of type Σ. Notice
that, under the assumptions on D, the latter condition is always satisfied by functors in Fun(C,D), i.e.
K′ ≃ Fun(C,D). Now, the inference of [24],4.3.2.15 is that the canonical map Lanj(j(C), D) = K → K′ ≃
Fun(C,D) is a trivial fibration, and hence in particular an equivalence. ■

(2) : By the reduction step of A.3.0.1 (namely [24],5.3.5.7) a functor g ∈ FunΣ(PΣ(C), D) preserves sifted
colimits iff its composite e ◦ g with any representable functor e : D → Spcop does so.
So, we can assume wlog D ≃ Spcop , which has sifted colimits. We will not need any other property of Spc,
so we will keep writing D for the target and just assume that the latter admits sifted colimits.
Define the full subcategory Fun′Σ(PΣ(C), D) ⊆f.f. FunΣ(PΣ(C), D) spanned by those functors which preserve
sifted colimits, and let’s leverage on A.2.0.4 to prove that such an embedding is actually an equivalence.
To this end, observe that we can repeat our reasoning as in (1) to show that there is an equivalence θ′ :
Fun′Σ(PΣ(C), D)→ Fun(C,D) ≃θ FunΣ(PΣ(C), D). ■

(3) : Now suppose that D admits also finite coproducts.
( =⇒ ) By A.2.0.2,ii), jΣ preserves

∐︁<ω
, so we are done.

(⇐= ) As in the reduction step of A.3.0.1, wlog D is presentable. Again similarly to loc.cit, apply [24],5.1.5.5
to obtain a cocontinuous G : P(C) → D s.t. G ≃ Lanj(G|j(C) = g|j(C)). Then, by the I Adj. Functor
Theorem 1.2.0.5, G admits a right adjoint GR : D → P(C). We would like the latter to factor through
PΣ(C), which (by A.2.0.2,iii) would be equivalent to G ◦ j being finite-coproducts-preserving.

Claim. wlog G extends g, i.e. G|PΣ(C) ≃ g. Hence, in particular G ◦ j ≃ g ◦ j preserves finite coproducts
and so GR : D → PΣ(C) ⊆f.f. P(C), as desired.
Proof. Call G0 := G|PΣ(C) the restriction of G. Notice that we obtain again a left Kan extension G0 ≃
Lanj(g|j(C)), this time on PΣ(C). Then, since both G0 and g agree on j(C), the [UP : Lan] yields a natural
transformation α : G0 → g which extends (up to homotopy) the identity on j(C). As always, we let E denote
the full subcategory of PΣ(C) spanned by the ’equivalence-locus’ of α in PΣ(C). Again, we can conclude
that the embedding was actually an equivalence E ≃ PΣ(C), since the latter contains j(C) and is closed
under both filtered limits and geometric realizations (this because both G0 and g are so). In other words,
α : G0 ≃ g (by [20],2.2.2).

Thanks to such a factorization, we can then conclude the existence of a colimit-preserving functor G′ :
PΣ(C)→ D s.t. G ≃ G′ ◦ L.
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C ↓ ←

jΣ ↘↘

↘ ↙ j →→ P(C)

L

↓↓

G →→ D
GR

←←

G′R
←←PΣ(C)

G′

→→

↗↘

↑↑

Indeed, the factorization through PΣ(C) yields a functor of presentable
categories G′R : D → PΣ(C) s.t. GR ≃⊆ ◦G′R. The latter clearly
preserves all small limits: having complete source and target, the right-
adjoint⊆ not only preserves limits, but commutes with them; moreover,
G′R is accessible, because G′R ≃ L◦GR and both functors are so. Thus,
G′R admits a left-adjoint G′.

But now, since adjuncts are essentially unique, we recover the adjunction G ⊢ GR as the composite of the
induced G′ ⊢ G′R after L ⊢ ⊆, so that G ≃ G′ ◦ L. Moreover, being it a left adjoint, G′ clearly preserves all
small colimits.
Then, also g ≃ G|PΣ(C) ≃ G′ must preserve all small colimits, as needed. ■ □

Remark. Let us briefly summarize the philosophy on which the proof of (2) grounds.
In each case we considered functors preserving colimits of a given type S, say S = Σ,Σ′, whose source was
the corresponding free S-colimit completion of the original source C.
Now, [24],5.3.5.9 means that the ’intrinsic universality’ of the colimit construction (we refer to both the proof
and the role of [24],4.3.2.13 in the lemma) allows us to characterize such functors as left Kan extensions of
functors C → D, which preserve the right S-cocontinuity.
But, as we have seen in [24],4.3.2.15, if our target category has enough colimits, then left Kan extensions
have automatically the needed cocontinuity and Fun(C,D) suffices to fully determine all the S-cocontinuous
extensions at stake. Finally, we observe that, for similar statements (read: when we can adapt the first part
of the proof of [24],5.3.6.2), the cocompleteness of the target D is an empty condition, because it can always
be achieved up to a ’cunning’ replacement, such as in [24],5.3.5.7.

As a Corollary, we will finally enhance to the ∞-world the decomposition of sifted colimits by means of
filtered ones and geometric realizations.

Corollary A.3.0.3. ([24],5.5.8.17) Let C ∈ Cat∞ have all small colimits (equivalently, all sifted colimits
and finite coproducts) and let f ∈ Fun(C,D) for some D ∈ Cat∞. Then, f preserves sifted colimits iff f
preserves filtered colimits and geometric realizations.

Proof. ( =⇒ ) As we already noticed, both filtered colimits and geometric realizations are particular types
of sifted colimits.
(⇐= ) Let J ∈ sSet be a (small) sifted simplicial set, and let p : J → C be a sifted diagram. Given a colimit
cone p : J → C of the latter, we wish to show that f ◦ p : J → D is again a colimit cone for f ◦ p.
Let J ⊆f.f. P(J) be the smallest full sub-∞-category which contains the essential image of the Yoneda
embedding j(J) and which is closed under finite coproducts.
By the usual A.3.0.1, there exists come q : J → C which preserves finite coproducts and s.t. p ≃ q ◦ j.
Then, by the first part of the above Proposition, we can factor q ≃

(︁
J

jΣ
↪−→ PΣ(J )

q′−→ C
)︁
; furthermore, by

ibid.iii), q′ preserves all small colimits.

Remark. We needed to pass to J because, in order to apply the previous Proposition, we need the source of
q to be an ∞-category with finite coproducts.

Now, we have that the composition f ◦ q′ : PΣ(J ) → D must live in FunΣ(PΣ(J ), D), since both functors
preserve filtered colimits and geometric realizations. But then, by ibid.ii), f ◦ q′ must preserve also sifted
colimits.
Now, consider the (sifted) colimit cone g := jΣ ◦ j : J → PΣ(J ) of g := jΣ ◦ j.
Since q′ preserves all small colimits, in particular q′ ◦ g is a colimit cone of q′ ◦ jΣ ◦ j ≃ q ◦ j ≃ p, i.e. by
[UP : colim] q′ ◦ g ≃ p. Hence, f ◦ p ≃ f ◦ (q′ ◦ g) ≃ (f ◦ q′) ◦ g.
Now, g is sifted, so (f ◦ q′) ◦ g is a colimit cone of f ◦ q′ ◦ g ≃ f ◦ p, as desired. □

Remark. Notice that we use the characterization of sifted colimits in terms of filtered ones and geometric
realizations of the previous Proposition precisely when we infer that f ◦ q′ must preserve sifted colimits. The
rest of the proof is mostly a formal ’divide et impera’, in that it is basically a decomposition of the original
diagram p into two ’nicer’ pieces, q′ ◦ g, which we can handle.
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Another application of Proposition A.3.0.2, is to obtain some kind of ’functoriality’ of the PΣ-construction.
In what follows, we will argue it up to 1-dimensional simplices (so spines) in Cat∞.

Definition A.3.0.4. (Total derived functors, [3],5.1.4) Let F : C → D be a sifted-colimits-preserving
functor of complete ∞-categories. Call total left derived functor of F the left derived functor

PΣ(F ) : PΣ(C)→ PΣ(D)

obtained by applying A.3.0.2 to F : C → D ⊆f.f. PΣ(D). It is the essentially unique functor between the
given non-abelian localizations which satisfies the following properties:

1. PΣ(F ) preserves sifted colimits;

2. Its restriction PΣ(F )|C : C → D ⊆f.f. PΣ(D) agrees with F ;

Despite the name, our notion is compatible with composition along 1-dimensional simplices of Cat∞.

Proposition A.3.0.5. (Composition of total derived functors) Let C, D, E be cocomplete ∞-categories, and
consider composable sifted-colimits-preserving functors F , G between them. Then, one has an equivalence
PΣ(G) ◦ PΣ(F ) ≃ PΣ(G ◦ F ).

Proof. In view of A.3.0.2 and [24],5.1.2.3 (or the proof of [20],5.1.27), it suffices to investigate the composition
on the original categories C, D, E.
There, PΣ(G) ◦ PΣ(F )|C ≃ PΣ(G)|F (C) ≃ G|F (C) ≃ G ◦ F|C ≃ PΣ(G ◦ F )|C , which can be extended to an
equivalence of total left derived functors. □

We close this section with a Lemma which states that non-abelian localization preserves initial or terminal
objects.

Lemma A.3.0.6. Let C ∈ Cat∞ be a small ∞-category which admits finite coproducts. Assume that C has
an initial object x. Then, PΣ(C)

init is a contractible ∞-groupoid essentially equivalent to the category with
one object jΣ(x), where jΣ is the factorization of the Yoneda embedding.

Proof. As already observed, C ⊆f.f. PΣ(C) via the Yoneda embedding jΣ. Then, the copy of any initial
object x ∈ C in PΣ(C) is equivalent to MapC(−, x) : (C)op → Spc, and the latter is initial in PΣ(C) by an
application of Yoneda Lemma: for each F ∈ PΣ(C),

MapPΣ(C)(MapC(−, x), F ) ≃ MapP(C)(MapC(−, x), F ) ≃ F (x) ∈ Spcterm

where the latter equivalence is due to the fact that F preserves finite products (hence in particular terminal

objects) and x ∈
(︁
(C)op

)︁term
. But then Spcterm ≃ ∆0, so that each mapping space from jΣ(x) is indeed

contractible.
Finally, as observed in [20],4.1.3, if inhabited, the subcategory of initial objects is a contractible∞-groupoid.

□

Remark. A dual statement holds for ’terminal’ in place of ’initial’ objects.

A.4 Compact and Projective Objects Determine Free sInd-Completions

In the current subsection our aim is to gain a better understanding of which ∞-categories can actually occur
in the ’essential image’ of the PΣ-construction.
In other words, given an arbitrary ∞-category D, we want to understand whether there exists some full
subcategory C ⊆f.f. D s.t. PΣ(C) ≃ D.

The idea is as follows: the PΣ-construction is a free sInd-completion, so, colimsift -generating D from C,
corresponds to the fact that the left derived functor F : PΣ(C) → D of the embedding f : C ⊆f.f. D is
an equivalence. In analogy with the study of presentable (and accessible) categories, we would like then to
identify a class of ’elementary bricks’ of D, that means, intuitively, a class of objects of D which ’detects’ the
fully faithfulness and the essential surjectivity of F , and we would like C to consist of such ’bricks’.
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We will soon identify such ’nice’ objects with the cpt+proj’s of D, and we will call Dsfp the full subcategory
spanned by those.
Then, we will show that, in order for PΣ(C) to be a full subcategory of D (i.e. for F to be f.f.), C must
be contained into the aforementioned full subcategory Dsfp of cpt+proj objects of D. Otherwise, the free
sInd-completion generated by C turns out to be too big. Therefore, by putting constraint on the size of C,
we can really morally regard Dsfp as consisting of ’elementary bricks’ for D.
Furthermore, at the same time we will prove that, accordingly to the intuitive meaning of a free sInd-
completion, D can be regarded as PΣ(C) if and only if the copy of C in D is colimsift -dense.
From such a perspective, we may then wonder whether it must necessarily hold C ≃ Dsfp. In order to address
this question, we will call ’set of cpt-proj generators’ of D any colimsift -dense sub-class of ’elementary bricks’
of D; this will turn out to actually describe the family of all the possible C’s for which D ≃ PΣ(C), and will
finally allow us to provide a ’minimal model’ for such a family.

The notion of being ’compact’ is already well-known and relates to being an ’elementary brick’ for a free
Ind-completion. Let us define then the property of being projective.

Definition A.4.0.1. (Projective object, [24],5.5.8.18) Let C ∈ Cat∞ have geometric realizations of its
simplicial objects.
We say that an object x ∈ C is projective iff MapC(x,−) : C → Spc commutes with geometric realizations.
Call Proj(C) ⊆f.f. C the full subcategory of C generated by its projective objects.

The following Lemma spells out two straightforward properties of projective objects.

Lemma A.4.0.2. (Properties,[24],5.5.8.19-20) Let C ∈ Cat∞ have finite coproducts and geometric realiza-
tions of its simplicial objects.

1. The subcategory of its projective objects Proj(C) has finite coproducts.

2. Assume further that C admits all small colimits. Then, x ∈ C is cpt+proj iff MapC(x,−) preserves
sifted colimits.

Proof. (1) : Recall that MapC(
∐︁n
i=1 xi,−) ≃

∏︁n
i=1 MapC(xi,−) and that geometric realizations, being special

sifted colimits, do commute with finite products.
(2) : ( ⇐= ) is clear; ( =⇒ ) Recall that cpt+proj means that MapC(x,−) commutes with both filtered
colimits and geometric realizations, respectively. In other words, with notation as in A.3.0.2, it corresponds
to the fact that MapC(x,−) ∈ FunΣ(PΣ(C), sSet). Hence, by ibid.ii), it also preserves sifted colimits, as
desired. □

Warning. ([24],5.5.8.21) Let A ∈ Cat be abelian, and recall that P ∈ A is called projective iff HomA(P,−)
is (right) exact. The latter actually amounts to HomA(P,−) preserving geometric realizations of simplicial
objects in A.
However, notwithstanding the similarity in terminology, the two notions are nevertheless distinct, since the
canonical static-embedding Set ⊆f.f. Spc (i.e. the right adjoint to the 0-truncation π0) needs not preserve ge-
ometric realizations. Hence, if we let A∞ denote the∞-category underlying the model category Ch≥0(A)proj,
then HomA(P,−) ≃ π0

(︁
MapA∞

(P ,−)
)︁
might preserve ’more’ geometric realizations.

With reference to the introduction of the current subsection, we will now state and prove the Proposition
implying that those categories C for which D ≃ PΣ(C) must consist of ’elementary bricks’ of D.

Proposition A.4.0.3. ([24],5.5.8.22) Let C ∈ Cat∞ have finite coproducts and consider any D ∈ Cat∞
which admits filtered colimits and geometric realizations.
As in A.3.0.2, let j : C ↪−→ P(C) denote the Yoneda embedding and, for any functor f : C → D, consider a
left derived extension F : PΣ(C)→ D, so s.t. f = F ◦ j and F commutes with sifted colimits.
Consider the following three assumptions:

1. f is fully faithful;
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2. The essential image of f consists of compact and projective objects;

3. D is generated by the essential image of f under filtered colimits and geometric realizations.

Then,

� (1) + (2) are equivalent to F being fully faithful.

� (3) is equivalent to F being essentially surjective; in particular, (1) + (2) + (3) amount to F being an
equivalence.

Proof. Assume first F : PΣ(C)→ D to be fully faithful.
(1) : being j f.f. clearly also f = F ◦ j is such.
(2) : Let d ∈ EssIm(f) ⊆f.f. D, i.e. there is some c ∈ C for which d ≃ f(c). Then, from the very definition,

d ∈ D is cpt+proj iff MapD(d,−) ≃ MapD(f(c),−) ≃ MapD(F ◦ jΣ(c),−) preserves filtered colimits and
geometric realizations. Being F fully faithful, the latter is equivalent to the fact that MapPΣ(C)(jΣ(c),−)
preserves such colimits.
Now, as in the proof of A.2.0.2,ii), observe that our functor can be identified with the composite ev c◦ ⊆:
PΣ(C) ⊆ P(C)→ Spc, so that it must preserve both filtered colimits and geometric realizations, since each
of the composite does so (see [24],5.5.8.14 and [24],5.1.2.2, respectively).

Conversely, assume conditions (1) and (2) on f , and let’s show that F is f.f.

Claim 1. F induces an equivalence of mapping spaces Cop ×PΣ(C)→ Spc, i.e. if we denote by P ′
Σ(C) ⊆f.f.

PΣ(C) the full subcategory spanned by

{m ∈ PΣ(C) | ∀x ∈ C, F : MapPΣ(C)(jΣ(x),m)
≃−→ MapD(f(x), F (m))}

Then, P ′
Σ(C) ≃ PΣ(C).

Proof. Notice that the representable presheaves of PΣ(C) belong to P ′
Σ(C), because both j and f are fully

faithful (the latter by (1)).
Moreover, since by (2) EssIm(f) consists of cpt+proj objects of D, P ′

Σ(C) is closed under filtered colimits
and geometric realizations.
To see this, let p : K → P ′

Σ(C) be a sifted simplicial diagram, and let p : K → PΣ(C) be a colimit cone of p
in PΣ(C) (which exists by A.2.0.2,iv). Then,

MapD(f(x), F ◦ p) ≃(a) colimK MapD(f(x), F ◦ p)
F←− colimK MapPΣ(C)(j(x), p) ≃(b) MapPΣ(C)(j(x), p)

where (a) holds because f(x) is cpt+proj and F preserves sifted colimits, while (b) holds since, by the Yoneda
Lemma, we can regard MapPΣ(C)(j(x),−) as the left derived extension of MapC(x,−).
Now, by the definition of P ′

Σ(C), F induces a point-wise equivalence, so we actually obtain the desired one
of K-colimits, i.e. p(∞) ∈ P ′

Σ(C).
Thus, we have proved that

(︁
jΣ(C) ⊆f.f.

)︁
P ′
Σ(C) ⊆f.f. PΣ(C) is closed under sifted colimits, which in turn

implies P ′
Σ(C) ≃ PΣ(C) by the minimality of PΣ(C). ■

Claim 2. Let P ′′
Σ(C) ⊆f.f. PΣ(C) be the full subcategory spanned by

{m ∈ PΣ(C) | ∀n ∈ PΣ(C), MapPΣ(C)(m,n)
≃−→ MapD(F (m), F (n))}

Then, P ′′
Σ(C) ≃ PΣ(C).

Proof. The previous claim means precisely that P ′′
Σ(C) contains the essential image of jΣ as a full subcategory.

Then, in view of the minimality of PΣ(C), we are left to prove that P ′′
Σ(C) is closed under sifted colimits.

To this end, let again p : K → P ′′
Σ(C) be a sifted diagram, and choose one of its colimit cones p in PΣ(C).

Then, we have

MapPΣ(C)(p, n) ≃(a) MapPΣ(C)(p, n)
F−→ MapD(F (p), F (n)) ≃(b) MapD(F (p), F (n))

where (a) is the definition of colimit and (b) holds because F preserves sifted colimits. Finally, as before, F
induces a point-wise equivalence of mapping spaces, and hence one of K-colimits.
Therefore, once more it holds that P ′′

Σ(C) ≃ PΣ(C). ■
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Thus, F is fully faithful.

Moreover, by the construction of PΣ(C) as a free sifted-colimit completion of C, as well as by the one of left
derived extensions, condition (3) is equivalent to F being essentially surjective. In other words, whenever F
is fully faithful, (3) holds iff F is an equivalence. □

The previous Proposition implies, in particular, that an ∞-category D occurs as a free sInd-completion of
its cpt+proj objects Dsfp whenever the latter full subcategory is colimsift -dense in it. Such an equivalence
is witnessed by the left derived functor of the fully faithful embedding Dsfp ⊆f.f. D.
Now, we want to characterize those subcategories C ⊆f.f. D for which D ≃ sInd(C).
Consider the last part of the previous proof, namely that a functor F : PΣ(C) → D which preserves sifted
colimits is essentially surjective iff the essential image of its restriction to C generates D under sifted colimits.
This means, in our setting, that D ≃ PΣ(C) ≃ sInd(C) only if C is colimsift -dense in D.
To this end, let us characterize those families of ’elementary bricks’ which induce such dense C’s.

Definition A.4.0.4. (Set of cpt+proj generators, [24],5.5.8.23) Let D ∈ Cat∞ be cocomplete and consider
a class S of objects of D. We say that S is a set of cpt+proj generators for D iff it satisfies the following
properties:

1. S ⊆ Dsfp consists of cpt+proj objects of D;

2. the full subcategory of D spanned by S is essentially small;

3. S is dense in D, i.e. it generates D under small colimits.

Furthermore, we say that an∞-category D is projectively generated (write ’cpt+proj-generated’) iff there
exists a set S of cpt+proj objects of D.

We are finally able to give our minimal model inducing categories which occur as free sInd-completions.

Proposition A.4.0.5. ([24],5.5.8.25) Let D ∈ Cat∞ be cocomplete and let S be a set of cpt+proj generators
of D. Then, the following two statements hold.

� Let S0 be the closure of S under finite coproducts and let D0 be the full subcategory of D spanned by
S0. Denote by C ⊆ D0 a minimal model for D0, i.e. an equivalent skeletal subcategory. Then, the left
derived functor F : PΣ(C)→ D of the embedding f : C ⊆ D is an equivalence.

In particular, we conclude that a cocomplete ∞-category D admitting a set of cpt+proj generators is
cpt+proj-generated and presentable.

� We can characterize Dsfp as the closure of D0 under retracts: for an object x ∈ D, tfae:

1. x cpt+proj.

2. e : D →ˆ︃Spc corepresented by x preserves sifted colimits.

3. There exists some x′ ∈ D0 s.t. x is a retract of x′.

Proof. As for the first statement, in order to show that F is an equivalence, we are left to prove the three
conditions in the previous Proposition.
(1) : From the very definition, F ◦jΣ : C → PΣ(C)→ D is the composite of F ◦jΣ =⊆f.f.: D0 → PΣ(D

0)→ D
after C ≃ D0, so it is clearly fully faithful.
(2) : By assumption, we have an equivalence C ≃ D0, so we are left to check the claim for F ◦ jΣ ≃⊆ : D0 ↪−→
PΣ(D

0)→ D. To this end, recall that both the full subcategories of D respectively spanned by the compact
and the projective objects are stable under finite coproducts, so that we have EssIm(F ◦ jΣ) ≃ D0 ⊆f.f. Dsfp,
as desired.
(3) : Arbitrary colimits are generated by finite coproducts and sifted colimits, so D0 is colimsift -dense in
D. The former follows by [20],4.3.29 and a straightforward remark: an ∞-category E has all small colimits
whenever it has small coproducts and coequalizers; now, small coproducts are obtained as filtered colimits of

153



the finite ones, while coequalizers of simplicially indexed diagrams are just truncations of geometric realiza-
tions (more generally, an application of Joyal’s Criterion of Cofinality A.1.0.2 as in [24],6.5.3.7 allows us to
neglect degeneracies when computing colimits of simplicial diagrams).

Now let’s turn to the second statement. (2) ⇐⇒ (1) comes from the properties of cpt+proj ojects.
(1) =⇒ (3) : Let x ∈ D be cpt+proj. By the previous statement, wlog we can work in PΣ(C)(≃ D).
By A.2.0.4, there exists a simplicial object of Ind(C), say X•, whose geometric realization is |X•| ≃ x and
s.t. each Xn is an arbitraty (small) coproduct of elements of C.
Now, being x projective, 1x ∈ MapC(x, x) ≃ |MapC(x,X•)| corresponds to some class [f : x → X•] in the
geometric realizations. Any representative f is a natural transformation f : x ≃ ∆0 → X•, which in turn is
described by some assignment f : x→ X0 of constant simplicial sets.
Moreover, by the compactness of x, we can choose a factorization of the latter through some finite sub-
coproduct c ∈ C (which is then cpt+proj) of X0:

f =
(︁
x

f0−→ j(c)
str−→ X0

)︁
Finally, our construction implies that x is a retract of such a j(c) in D, as witnessed by the action on
0-simplices of a representative of the following composition:[︁

x
f0−→ j(c)

str−→ X0
can−→ x

]︁
≃ 1x

□

A.5 Truncation

In the current subsection, we briefly review the notion of truncation. Being proofs exquisitely technical and
not particularly enlightening, we will be expository and provide almost none. The interested reader can refer
to sections [24],5.5.6 and [24],5.5.8 in Lurie’s HTT.

Definition A.5.0.1. (Truncated spaces, [24],2.3.4.15) For any space X ∈ Spc and any integer n ≥ −2, we
recursively define the property of being an n-truncated space as follows.

� n = −2 : X is (−2)-truncated iff it is contractible;

� n ≥ −1 : X is n-truncated iff, for each i > n and for each base-point x ∈ X, its homotopy groups are
trivial, i.e. πi(X,x) ≃ ∗.

We say that f : X → Y in Spc is an n-truncated morphism iff the homotopy fibers of f over any point of
Y are n-truncated.

Observe first that the two definitions are clearly compatible: by inspecting the homotopy fibre sequence, the
identity 1X is n-truncated iff X is n-truncated. Now, the next step is to import the notion of truncation in
any arbitrary ∞-category.

Definition A.5.0.2. Let C ∈ Cat∞. For any integer n ≥ −1, we say that

� c ∈ C is an n-truncated object iff, for each other object x ∈ C, the space MapC(x, c) ∈ Spc is
n-truncated. We then accordingly extend our definition so as to incorporate (−2)-truncated objects:
c ∈ C is (−2)-truncated iff it is terminal, i.e, for every other object x ∈ C, MapC(x, c) ≃ ∗ is a
contractible space.

� f : c → c′ in C is an n-truncated morphism iff, for every object x ∈ C, post-composition with f
induces an n-truncated map of spaces, namely f∗ : MapC(x, c)→ MapC(x, c

′).

Notation. Let C≤n ⊆f.f. C denote the full subcategory spanned by the n-truncated objects. Notice that, in
particular, Cterm = C≤−2.

Furthermore, we call static the objects of C≤0 and, by extension, we refer to the latter as forming the static
part of C.
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Such a terminology is motivated by the equivalence C≤0 ≃ N (π0(C)). In order to see this, recall that, by
[24],2.3.4.18, a 0-truncated∞-category such as C≤0 is equivalent to a 1-category, and hence [24],2.3.4.5 yields
an equivalence C≤0 ≃ N (hoC≤0); finally, the images under ho and π0 of an ∞-category coincide.

Moreover, a morphism f : c → c′ in C ∈ Cat∞ which is (−1)-truncated (so whose fibres are either empty
or weakly contractible) is said to be a monomorphism of C; this is inspired by the latter condition being
equivalent to fact that the target map induces a fully faithful functor of slices (ev1)∗ : C/f → C/c′ , which in
turn is (up to homotopy) the categorical definition of being mono.
On the other hand, we observe that a morphism is (−2)-truncated (i.e. it has weakly contractible fibres) iff
it is an equivalence.

In order to foster intuition, let us state without proof a couple of useful facts about truncation. They are all
somehow consequences of the homotopy fibre sequence for mapping spaces (see [24],5.5.5.12 or [20],3.1.19).

Proposition A.5.0.3. (Properties of truncation) Let C be an ∞-category. The following properties hold
true for every n ≥ −2:

� ([24],5.6.6.5) C≤n is stable under all limits which exist in C.

� ([24],5.5.6.14) Let f : x→ y be a morphism in C and assume y to be n-truncated; then, x is n-truncated
iff f is n-truncated.

� (Recursive character, [24],5.5.6.15) Assume further that C has finite limits and that n ≥ −1. Then, a
morphism f : x→ y is n-truncated iff the diagonal morphism δ : x→ x×y x is (n− 1)-truncated.

(Left exact functors preserve truncation, [24],5.5.6.15) Consider now a left exact functor F : C → C ′ of
∞-categories which admit finite limits. Then, F preserves the property of objects and morphisms of being
n-truncated.

A fundamental feature of such a construction is that, whenever we can neglect set-theoretical obstructions
to the formation of (co)limits (e.g. in the presentable setting), n-truncated objects span the essential image
of a (accessible Bousfield) localization functor; such a left adjoint to the corresponding inclusion will then be
called the n-th truncation functor.

Proposition A.5.0.4. (Truncation functors, [24],5.5.6.18) Let C ∈ Cat∞ be presentable and let n ≥ −2 be
an integer. Then, the inclusion C≤n ⊆f.f. C gives rise to a (accessible Bousfield) localization functor τ≤n,
which sits in the adjunction

τ≤n : C −⇀↽− C≤n :⊆
Moreover, also C≤n ≃ EssIm(τ≤n) is presentable.

In ’nice’ settings, this allows us to recover it as the limit of a countable continuous filtration of successive
truncations, known as Postnikov tower.

Proposition A.5.0.5. (Postnikov towers, [24],5.5.6.26) Let ∆∞ denote the extension of ∆ by a maximum
[∞] and consider a presentable ∞-category C ∈ PrL.
Call a tower in C any extended simplicial object X∞

• : N (∆∞)op → C. Define a Postnikov tower of an
object x ∈ C to be a tower:

X∞
• : X∞

∞ = x→ · · · → τ≤n(x)→ τ≤n−1(x)→ · · · → τ≤0(x) = X∞
0

s.t. at each step u(x) : x→ τ≤nx is the unit of the truncation adjunction τ≤n ⊢⊆.
Then, the extended simplicial object X∞

• is a limit cocone in C exhibiting x ≃ lim τ≤n(x) iff all transition
maps τ≤n(x)→ τ≤n−1(x) are the units of the adjunction τ≤n−1 ⊢⊆ restricted to C≤n.

Such a feature encodes in some sense the ’homotopy theoretic’ character of higher algebraic and geometric
objects, as we remark while dealing with ’flatness’.
The next result investigates the problem of ’transporting’ Postnikov towers. We will apply it to deduce that
flat base-change commutes with truncation.
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Proposition A.5.0.6. (Postnikov towers are preserved, [24],5.5.6.28) Let C, D ∈ PrL be presentable ∞-
categories and consider a left-exact and cocontinuous functor F : C → D between them. Then, F commutes
with truncation functors, namely there is an equivalence F ◦ τC≤n ≃ τD≤n ◦ F in FunL(C,D).
In particular, F preserves Postnikov towers (even though it needs not preserve their convergence).

Let us conclude the current subsection with a useful application of the previously stated results, namely with
a description of truncated objects in non-abelian localizations.

Lemma A.5.0.7. ([24],5.5.8.26) Let C ∈ Cat∞ have finite coproducts. Post-composition with the n-th
truncation functor τn : Spc → Spc imports the notions of truncated objects in PΣ(C) via the Bousfield
localization

τn := (τ≤n)∗ : PΣ(C) −⇀↽− PΣ(C)≤n : (⊆≤n)∗ =: ιn

The essential image of τn is the presentable sub-∞-category of PΣ(C) spanned by those finite-product-
preserving presheaves on C which take n-truncated values, and the latter can be identified with the n-truncated
objects of PΣ(C), i.e. τn is essentially surjective.

Proof. Observe first that τ≤n : Spc → Spc≤n preserves finite products, since mapping spaces - and hence
homotopy groups - commute with finite products in the second argument.
Post-composition with spaces-truncation to the objects of PΣ(C) = Fun×(Cop ,Spc), defines a functor

τn := (τ≤n)∗ : PΣ(C)→ Fun×(Cop ,Spc≤n) ⊆f.f. PΣ(C)

Then, the Bousfield localization of spaces τ≤n ⊢⊆n induces an adjunction (see [20],5.1.16)

τn = (τ≤n)∗ : PΣ(C) −⇀↽− Fun×(Cop ,Spc≤n) : (⊆n)∗ =: ιn

Since post-composition with the inclusion of truncated objects is still fully faithful, we again obtain a Bousfield
localization, with presentable essential image (see [24],5.5.4.15,ii).

We are now left to characterize the essential image of τn. Our claim is that EssIm(τn) ≃ PΣ(C)≤n holds,
thus giving substance to the intuition that ’τ≤n imports the notion of truncated objects in PΣ(C)’.
Notice first that a functor F : Cop → Spc takes n-truncated values iff MapP(C)(j(x), F ) ∈ Spc≤n for each
presheaf on C represented by x ∈ C, so our claim amounts to the following equivalence:

∀X ∈ PΣ(C), MapPΣ(C)(X,F ) ∈ Spc≤n ⇐⇒ ∀x ∈ C, MapPΣ(C)(j(x), F ) ∈ Spc≤n

One direction is clear, so let’s prove ( ⇐= ). To this end, let F : Cop → Spc≤n be a presheaf tak-
ing n-truncated values, and consider the full subcategory of PΣ(C) spanned by those X ∈ PΣ(C) s.t.
MapPΣ(C)(X,F ) ∈ Spc≤n.
Notice that, by assumption, the latter contains j(C); moreover, it is clearly closed under all small colimits
in PΣ(C) (whenever it is well-defined, the functor limK commutes with finite limits). Hence, as desired, it
must be the all of PΣ(C), by the minimality property of the latter. □

A.6 The Model Theoretical Non-Abelian Localization

In this subsection, we will briefly comment on the fact that, for all the algebraic 1-categories of concern in
constructing the foundations of DAG, the PΣ-construction can actually be regarded from a model categorical
perspective.
This provides a recipe to simplify computations of colimits in the corresponding animated ∞-categories and
motivates the name ’derived functor’ to describe the functoriality of PΣ.
For the sake of consistency with the current literature inspired by [3], whenever we localize 1-categories of
cpt+proj objects, we will refer to the PΣ-construction as ’animation’.

Consider a small 1-category C ∈ Cat with finite products. Then, the opposite of its nerve N (C)op ∈
Cat∞ is again small and has finite coproducts, so that we can apply the PΣ-construction to it, defined
by PΣ(N (C)op) = Fun×(N (C),Spc).
Now, by [24],4.2.4.4, the latter is the ∞-category underlying the simplicial model category sSetCproj en-
dowed with the projective model structure (so equivalences and fibrations are defined point-wise according
to sSetQuillen).
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On the other hand, the category of finite-product-preserving presheaves is the underlying ∞-category of a
model category A as in the following Lemma due to Quillen.

Lemma A.6.0.1. ([24],5.5.9.1) Let C ∈ Cat1 be small and assume that it admits finite products. Let
A := Fun×(C, sSet) ∈ Cat1 denote the category of finite-product-preserving functors C → sSet. Then, A can
be endowed with a simplicial model structure as follows:

� the equivalences WA are point-wise weak homotopy equivalences in sSetQuillen;

� the fibrations FibA are point-wise (Kan) fibrations in sSetQuillen.

Moreover, the embedding ι : A ⊆f.f. sSetCQuillen preserves both (trivial) fibrations and weak equivalences, so

that it is a Quillen functor determining a Quillen adjunction F : sSetC −⇀↽− A : ι.

Now, each functor f : N (C) → Spc can be represented under the coherent nerve by some F : C → Kan s.t.
f ≃ γ ◦ N (F ), where γ : Kan→ Kan[h.eq−1] is the localization at the (weak) homotopy equivalences of (the
full subcategory of) fibrant objects in sSetQuillen.
By our construction, f ∈ PΣ(N (C)op) iff its lift F is weakly finite-product-preserving, i.e. it preserves finite
products up to homotopy equivalences in Kan.
The goal of Lurie in the very technical section [24],5.5.9 is to prove a refinement of [24],4.2.2.4 which allows the
lift F to be chosen in such a way that it preserves finite products (so, up to isomorphism and not homotopy
equivalence). This becomes more precise in the following Lemma of Bergner.

Proposition A.6.0.2. ([24],5.5.9.2) Let C be a small category with finite products and consider the Quillen
adjunction F : sSetC −⇀↽− A : ι of the previous Lemma.
Then, the total right derived functor Rι : ho(A) −→ ho(sSetC) is a fully faithful embedding, and its essential
image consists of the equivalence classes of those functors f : C → sSet which preserve finite products up to
weak homotopy equivalence (and hence [f ] preserves finite products up to iso in the homotopy category).

By the universal property of localizations, this finally allows us to conclude that the ∞-category underlying
A is precisely PΣ(N (C)op), so that we obtain a Quillen model for the latter.

Corollary A.6.0.3. ([24],5.5.9.3) Let C ∈ Cat1 be a small category with finite products, and let A be as in the

previous Lemma. Then, one has an equivalence of ∞-categories N (A◦)
≃−→ PΣ(N (C)op), where A◦ ⊆f.f. A

is the full subcategory spanned by fibrant-cofibrant objects.

But then the Quillen adjunction F : sSetC −⇀↽− A : ι promotes to one of total derived functors

LF : ho(sSetC) −⇀↽− ho(A) :Rι
which ’describes’, under the coherent nerve, the Bousfield localization

L : P(N (C)op) −⇀↽− PΣ(N (C)op) :⊆
The latter observation is used in [24],5.5.9.14 to provide strategies for computing homotopy colimits of
simplicial objects of A, and hence geometric realizations of simplicial objects in the underlying ∞-category
PΣ(N (C)op).

Proposition A.6.0.4. ([24],5.5.9.14) Let C ∈ Cat1 admit finite products. Consider the following model
categories:

� A := Fun×(C, sSet) ⊆f.f. sSetCproj as in Quillen’s Lemma;

� A := Fun×(C,Set) ⊆f.f. SetCproj.

Given a simplicial object of A, say F : ∆op → A, let F : ∆op ×∆op → A denote its adjoint bi-simplicial set
of A.
Then, the geometric realization of F can be computed as the simplicial set of A obtained by restricting F
along the diagonal:

|F | :=
(︁
diag∗(F ) : ∆op −→ ∆op ×∆op F−→ A

)︁
∈ A

In other words, hocolim(F ) ≃ |F | ∈ ho(A).
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Finally, let us carry on the discussion about composition of total left derived functors of animated categories.
For this last part we will be concerned only with localizations of 1-categories consisting of cpt+proj objects.

In the spirit of DAG, we want to investigate istances of a presentable projectively generated ’algebraic’
1-category by studying the properties of ’richer’ ∞-category which contain its embedded copy, namely the
animation of the full subcategory spanned by the set of its projective generators. In particular, given a functor
F : C → D between any two such categories, we would like for it to determine a functor of ∞-categories
Ani(F ) : Ani(C) → Ani(D). In view of Proposition A.3.0.2 and as discussed by Cesnavicius and Scholze in
[3],5.1, this can be defined as follows.

Definition A.6.0.5. (Animated functors, [3],5.1.4) Let F : C → D be a 1-sifted-colimits-preserving functor
of complete 1-categories. Define the animated functor of F , to be the left derived functor

Ani(F ) : Ani(C) = PΣ((Csfp)op)→ PΣ((Dsfp)op) = Ani(D)
obtained by applying A.3.0.2 to F : Csfp → Dsfp ⊆f.f. Ani(D). It is the essentially unique functor between
the given non-abelian localizations which satisfies the following properties:

1. Ani(F ) preserves sifted colimits;

2. Its restriction Ani(F )|Csfp : Csfp → D ⊆f.f. Ani(D) agrees with F ;

3. π0 ◦Ani(F ) = F ◦ π0.

Remark. The previous definition is indeed a particular case of PΣ ’functoriality’, but our animated functors
now enjoy one more property: the ’nice’ features of ’algebraic’ categories allow us to apply a weaker version
of the transport of Postnikov towers (see A.5.0.6).

Proposition A.6.0.6. (Composition of total derived functors, [24],5.1.5) Let C, D, E be cocomplete and pro-
jectively generated 1-categories, and consider composable 1-sifted-colimits-preserving functors F , G between
them. Then,

� There exists a natural transformation Ani(G) ◦Ani(F )→ Ani(G ◦ F );

� Assume further that

– either F (Csfp) ⊆ Ind(Dsfp) in D
– or Ani(G)

(︁
F (Csfp)

)︁
⊆ E in Ani(E) is static.

Then, the previous natural transformation is an equivalence Ani(G) ◦Ani(F ) ≃ Ani(G ◦ F ).

Proof. Both animated functors preserve sifted colimits, so, by A.3.0.2 and [24],5.1.2.3 (or see the proof of
[20],5.1.27), it suffices to define a natural transformation at the level of the full subcategories spanned by the
sets of projective generators. Hence, let’s compare their restriction to Csfp; the unit of π0 ⊢⊆ induces:(︁
Ani(G)◦Ani(F )

)︁
|Csfp ≃ Ani(G)|F (Csfp) −→ π0◦Ani(G)|F (Csfp) ≃(a) (G◦π0◦F )|Csfp ≃(b) G◦F|Csfp ≃ Ani(G◦F )|Csfp

where (a) is implied by property (3) and (b) by the fact that F is already 0-truncated.
Now, such a natural transformation turns out to be a point-wise equivalence whenever Ani(G)(d) ≃ G(d);
the two stated conditions imply this. Indeed, the second one clearly does. As for the first one, consider the

full subcategory of Ani(C) which is spanned by {d ∈ D | Ani(G)(d)
≃−→ G(d)}; the latter contains Dsfp and

is closed under filtered colimits, so that, by assumption, it must contain F (Csfp), as needed. □

As a last remark, we observe that such a ’pathology’ with respect to the ∞-categorical case is analogous to
the behaviour of total left derived functors in a model categorical perspective and should not be surprising.
Indeed, in the latter case, we cannot expect our total derived functors, which are defined at the level of
homotopy category and so on fibrant-cofibrant representatives, to be always compatible with composition of
functors, which is instead defined on all objects of our model categories.
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Here, again, our animated functors Ani(F ), Ani(G) on the free sifted-colimit-completions of the respective
1-categories are (essentially) determined as follows. We first consider the action of the composable 1-sifted-
colimit-preserving functors F and G between the 1-categories involved, and then we restrict them to the
respective full subcategory of cpt+proj objects.
As shown, we can always relate Ani(G) ◦Ani(F ) and Ani(G ◦F ) by the unit of the 0-truncation localization.
Then, the obstruction to compatibility with composition lies in the following fact: in general, it might not
be the case that F carries the cpt+proj’s of the source to cpt+proj’s of the target, as we would need in order
to apply property (2). The two technical conditions, then, correspond to two situations in which we are able
to govern such an obstruction.

A.7 Examples of Animation

In this last subsection, we will discuss some examples of animation which we will need in order to develop
the theory of DAG.

Ex.1. Ani(Set) ≃ Spc := Ani.

Lemma A.7.0.1. The compact and projective objects in Set are given by Setsfp ∼= FinSet.

Proof. Claim. A set X is compact iff it is finite.

Proof. We can equivalently characterize the property of being compact as follows: for every countable
filtered system Y• := (Yn , in : Yn → Yn+1 | n < ω) of sets with colimit Y ∈ Set, and every function
f : X → Y , there exists some n < ω s.t. one has the canonical factorization f : X → Yn → Y .
Then, if #X ≥ ω (i.e. X contains a copy of ω), then we can define a function f : n ↦−→ f(n) ∈ Yn \ in−1(Yn−1)
witnessing the non-compactness of X. ■

Let us now show that a finite set is also projective, i.e. HomSet(X,−) commutes with reflexive coequalizers.
We actually prove a stronger statement.
Claim. Corepresentable presheaves on Set always commute with reflexive coequalizers.

Proof. Consider a reflexive coequalizer in Set, with f ◦ s = idB = g ◦ s:

(f, s, g) : A
f →→
g
→→ B←← q →→ Coeq(f, g)

We need to show that Coeq(f∗, g∗) ∼= Im(q∗).
By the [UP : quot] the map q∗ factors uniquely through Coeq(f∗, g∗): the relations generating the equivalence
on Hom(X,B) which yields Coeq(f, g) are {f∗(ϕ) ∼ g∗(ϕ) | ϕ ∈ Hom(X,A)}; since they remain related
after post-composition with q∗, the latter factors uniquely through Coeq(f∗, g∗) and we obtain a function
Coeq(f∗, g∗)→ Im(q∗), which is surjective by abstract non-sense. Let’s prove its injectivity.
Let ψ,ψ′ : X → B be functions s.t. q∗(ψ) = q∗(ψ

′); by the reflexive property of our coequalizer, this is
equivalent to q ◦ f(s ◦ ψ(x)) = q ◦ g(s ◦ ψ′(x)) for each x ∈ X, i.e. f(s ◦ ψ(x)) = g(s ◦ ψ′(x)) in Coeq(f, g)
for each x ∈ X. This means that, for each x ∈ X, there exists some ax ∈ A s.t. f(ax) = f ◦ (s ◦ ψ(x)) and
g(ax) = g ◦ (s ◦ ψ′(x)). But then we are done.
Indeed, we would like to write the previous condition as a generator of the relation on Coeq(f∗, g∗), so
as to identify ψ and ψ′ in the latter quotient. In other words, we want a function η : X → A s.t. both
f ◦ (s ◦ ψ)(x) = f ◦ η(x) and g ◦ (s ◦ ψ′)(x) = g ◦ η(x) hold for each x ∈ X. We achieve our goal by defining
η : x ↦−→ ax. ■

□

Proposition A.7.0.2. (Anima) Ani := Ani(Set) = Fun×
(︁
FinSetop ,Spc

)︁
≃ Spc.

Proof. FinSetop is generated by its initial object ∗ under finite products, so any animated set F is completely
determined by its value on ∗. The latter can be sent to any space F (∗) ∈ Spc.
In other words, the functor evaluation at a point ev∗ : Fun×(FinSetop ,Spc) → Spc is essentially surjective.
In order for it to be an equivalence, we are left to show that it is also fully faithful, i.e. that

ev∗ : MapAni(F,G)
≃−→ MapSpc(F (∗), G(∗))
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is an equivalence of spaces for every F , G ∈ Ani. This follows from abstract nonsense: a natural transforma-
tion of symmetric monoidal functors is in turn symmetric monoidal.
We give anyway a more explicit argument in the incarnation of quasi-categories. Let us work with the
minimal model ∆ ≃ FinSet.
We recall that MapP(∆)(F,G) ≃ Fun(∆1,Fun×(∆op ,Spc))×P(∆)×P(∆)∆

0 on the maps (ev0, ev1) and (F,G)

respectively. MapSpc(∆
1,Spc) can be written in a similar way, so we are left to produce an equivalence of

simplicial sets ev∗ : Fun(∆1,Fun×(∆op ,Spc))→ Fun(∆1,Spc).
The following assignment on n-simplices is a well defined functor of simplicial sets (again by the closed
monoidal structure of sSet):

ev∗ : Hom(∆op ,Hom(∆n ×∆1,Spc)) −→ Hom(∆n ×∆1,Spc)

(η : ∆n × (∆1 ×∆op)→ Spc) ↦−→ (η(∗) : ∆n ×∆1 → Spc)

Moreover, the latter is clearly an equivalence, since it has an obvious point-wise mutual inverse, which is
induced by the cartesian monoidal structure of ∆op , namely η(−) : (ϕ : F (∗) → G(∗)) ↦−→ (ηϕ : ∆op →
Fun(∆1,Spc)) given by ηϕ([n]) := ϕ×n : F (∗)n → G(∗)n. □

Ex.2. Ani(C) ≃ PΣ

(︁
Retracts(Free(FinSet))

)︁
, for C an ’algebraic’ category such as Grp, CRing, Ring,

Mod(R), et similia.

In what follows, we will present proofs for C = CRing, but the arguments are analogous for all the other
examples stated, and indeed the results can be generalized to Lawvere theories. Therefore, let us carry on
denoting our category with C and calling it ’algebraic’.

Lemma A.7.0.3. Let C ∈ Cat be an ’algebraic’ category. Then the forgetful functor for : C → Set preserves
sifted colimits.

Proof. In the 1-categorical setting, our statement is equivalent to for preserving filtered colimits and reflexive
coequalizers. It suffices to notice that both such colimits can be characterized as suitable quotients on the
sets underlying the diagrams involved. This corresponds to the fact that for is representable by a cpt+proj
object of the ’algebraic’ category at stake. □

We now need a technical lemma from Lurie’s Higher Algebra, which is an enhancement of A.4.0.3,ii).

Proposition A.7.0.4. ([23],4.7.3.18) Consider an adjunction F : C −⇀↽− D :G in Cat∞ and assume that
the following properties hold:

1. D ∈ Cat∞ admits filtered colimits and geometric realizations, and G peserves them;

2. C ∈ Cat∞ is projectively generated;

3. G is conservative.

Then, the following three statements hold true:

1. D is projectively generated (and has sifted colimits);

2. We can characterize cpt+proj’s in D as follows: d ∈ Dsfp iff there exists some c ∈ Csfp s.t. d is a
retract of F (x);

3. G preserves sifted colimits.

Proof. Let D0 denote the essential image of the restriction F|Csfp .

Wlog D0 ⊆ Dsfp. Indeed, C is projectively generated, so, by spelling out the adjunction equivalence of
mapping spaces, one can easily observe that in F ⊢ G, the right adjoint G preserves filtered colimits and
geometric realizations iff the essential image D0 of the left adjoint consists of cpt+proj’s. Then, one concludes
by assumption (1).
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Wlog D0 is essentially small: up to taking a minimal model for D0, the latter must be small, because by
assumption (2) (and A.4.0.5) we can wlog assume Csfp to be spanned by a small set of projective generators
for C.

Moreover, observe that D0 has finite coproducts and that they are preserved by D0 ⊆f.f. D; in fact, Csfp is
stable under finite coproducts in C (again by A.4.0.5), which are in turn preserved by the left adjoint F .

Then, we can consider its sInd-completion PΣ(D
0).

Claim. The left derived functor F : PΣ(D
0) → D of the inclusion D0 ⊆f.f. D is an equivalence in Cat∞.

Hence, also D ≃ PΣ(D
0) is projectively generated and admits sifted colimits.

Proof. By the Criterion A.4.0.3 F is an equivalence iff D0 is colimsift -dense in D.
In order to see this, we will invoke a technical Lemma from Lurie’s ’Higher Algebra’, namely [23],4.3.7.14.
By assumptions (1) and (3), the hypotheses of the latter are satisfied, so that we can regard each object
d ∈ D as the geometric realization of a ’nice’ simplicial object in D, say d• which belongs point-wise to the
essential image of F .
Now, by assumption (2), C is generated by Csfp under sifted colimits, so that we can actually view dn as
belonging to the closure under sifted colimits of EssIm(F|Csfp). Hence, as needed, D is generated by D0 under
sifted colimits. ■

We have then proved (1). Now, let’s turn to the second statement. Being D0 spanned by a small set of
projective generators for D, we can conclude by A.4.0.3,ii) that d ∈ Dsfp iff there is some d′ ∈ D0 s.t. d is a
retract of d′, iff there is some c ∈ Csfp s.t. d is a retract of F (c) = d′.
Finally, The last assertion follows from an application of A.3.0.2,ii): D0 has finite coproducts and C has
sifted colimits, so each functor D ≃ PΣ(D

0)→ C, such as G, which preserves filtered colimits and geometric
realizations further preserves sifted colimits. □

Therefore, we can characterize the cpt+proj’s of C via the adjunction Free ⊢ for , and obtain the following.

Lemma A.7.0.5. (Cpt+Proj in ’algebraic’ categories, [3],5.1.3) Under the adjunction Free ⊢ for, Csfp ⊆f.f.
C is spanned by retracts of ’finite free’ objects.

Proof. Let us verify that Free : C −⇀↽− Set : for satisfies the conditions of the previous Lemma: (1) : C is
cocomplete and for preserves 1-sifted colimits of C; (2) : Set is projectively generated by FinSet; (3) : for is
conservative. Thence, Csfp ⊆f.f. C is spanned by the retracts of Free(FinSet). □

Hence, up to closure under retracts we can provide the following list:

� Grpsfp ∼= f.g. free groups

� Absfp ∼= f.g. free abelian groups =: FFreeZ

� Mod(R)sfp ∼= FFreeR

� CRingsfp ∼= Poly

� R−Algsfp ∼= PolyR

These then yield the corresponding animated ∞-categories by the usual rule Ani(C) = Fun×
(︁
(Csfp)op ,Spc

)︁
.

B Symmetric Monoidal ∞-categories

In this section we briefly present the generalization of monoidal structures to the ∞-world.
Let us begin with a motivational review of the classical setting.
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Definition B.0.0.1. (Monoidal category: diagrammatic ’definition’) A monoidal category is the datum

of a category C ∈ Cat sitting in a diagram C × C m−→ C e←→ ∗, together with some coherence conditions.
The latter comes equipped with (natural isomorphisms) an associator α witnessing the associativity of the
multiplication m, and left and right unitors λ, ρ expressing the fact that e is a generalized unit for m.
The monoidal structure is then called symmetric in the case m comes also with a natural isomorphism σ,
called braiding, witnessing its commutativity.
Coherence conditions then consist in the data of two diagrams (invertible 2-cells), namely the so-called
triangle and pentagon diagrams, which are technical coherence conditions making all diagrams involving
only the monoidal data m, α, λ, ρ to be unambiguous, i.e. commutative.

The first part of such a ’definition’ is somehow intuitive, in that it mimics the classical set-theoretical axioms
of a monoid.
However, the process of vertical 2-categorification (via the introduction of an associator and of unitors together
with the relative coherence conditions) implies a further level of subtlety, which requires and is expressed
by coherence diagrams. All such information could be codified within a single 2-category by means of the
globular formalism of orientals; see nLab for a more detailed insight.
Moreover, we deemed such new categorical conditions as ’technical’, since they are a by-product of the chosen
formalism, which keeps track, via ’weak commutativity’ by means of invertible 2-paths, of ’how things can be
equal’ and not just of the identity relations between them, the latter corresponding to strict commutativity
in Cat2.
Moreover, notice that the reduction of coherence conditions to the two stated diagrams is a non-trivial
’technical’ theorem proved by Kelly, which shortens the original list of coherence diagrams introduced by
Mac Lane.
Surprisingly, as remarked in the dedicated nLab page, it seems not to exist an elementary ’magic wand’
motivating the technology employed. Most naively, one could notice that a strict monoidal category is a
monoid object internal to Cat equipped with the cartesian product; however, such an approach would already
presume an understanding of (Cat,×) as a monoidal category, and hence be circular. As remarked there, one
could also attempt more sophisticated motivational approaches by regarding monoidal categories as algebras
over (higher) monads. This might shed some light on such technicalities and yield generalisations to the
∞-world as done in [23] by Lurie. However, this basically moves the need to prove a Coherence Theorem for
monoidal categories to that of obtaining a similar result for algebras over a monad, so that it ends up being
not exquisitely ’motivational’ and to mainly postpone technicalities to the homotopy-theoretical setting.

In this section, however, we will turn our attention to a functorial description of commutative monoids in an
arbitrary monoidal category C.
We will first consider, as a prototypical cocartesian monoidal structure, the category (FinSet∗,

∐︁
) of pointed

finite sets, and we will equivalently express it with the formalism of correspondences; this will allow us to
regard cartesian commutative monoids in any arbitrary symmetric monoidal category as generalized objects.
An enhancement of such an approach will then yield the notion of a symmetric monoidal ∞-category.
Thereafter, in the next section, we will use our construction to induce non-necessarily cartesian commutative
(∞-)monoids in any arbitrary symmetric monoidal (∞-)category C ∈ Cat (resp. C ∈ Cat∞).

B.1 Cartesian Commutative Monoids

Definition B.1.0.1. (Pointed Finite Sets) Consider the external base-point functor (−)+ : FinSet →
FinSet∗, which acts as I ↦−→ I+ := I

∐︁
∗ and extends morphisms in such a way that external base-points

are respected.
We can identify the category of pointed finite sets FinSet∗ with the following equivalent category Fin∗:

� Obj: I ∈ FinSet

� Mor: Partially defined maps f : I+ → J+ given by spans I K↗
↖←← f →→ J , i.e. we are specifying

the action of f on K ⊆ I and sending I \K to the external basepoint of J .
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� Comp: Fibred product of spans.

Here, the equivalence is given by FinSet∗ → Fin∗ acting as [f : (I, i) → (J, j)] ↦−→ ˜︁f :=
(︁
K := f−1(J) ⊆

I, f|K
)︁
, with the obvious quasi-inverse η : ˜︁f = (i, f) ↦−→ f extending f : K → J to the whole of I.

In particular, for future reference, let us remark that Fin∗ has families of distinguished maps, which will
be called Segal maps: for each (I+, i ∈ I) ∈ FinSet∗ consider ρi := η(id{i}) : I+ → {i}+ which acts as
(i ̸=)j ↦−→ ∗, thus extending the identity id{i} : i ↦−→ i.

In a sense that will be made precise later on, we want to view cartesian commutative monoids in a symmetric
monoidal category C as monoidal functors from (FinSet∗,

∐︁
) to (C,×).

In other words, we will regard commutative monoids in C as generalized objects of C whose internal monoid
structure is (contravariantly) induced by the cocartesian symmetric monoidal structure on Fin∗, in turn
induced by (FinSet∗,

∐︁
).

Definition B.1.0.2. (Span exponentiation) Given a symmetric cartesian monoidal category (C,×), define a
functor expC : FinSet∗ → Cat as follows:

� Obj: I+ ↦→ CI

� Mor:
[︁
I K↗ ↖

ι←← f →→ J
]︁
↦→

[︁
CI ι∗ →→ CK

µ(f) →→ CJ
]︁

where µ acts by point-wise multiplication on the fiber of f : K → J , i.e.

µ(f) : [ν : K → C] ↦−→
[︁˜︁ν : j ↦−→

∏︂
k∈f−1(j)

ν|f−1(j)(k)
]︁

Remark. (The fibres of) f determines which objects of CI are to be multiplied and µ ”executes” the mul-
tiplications according to the cartesian symmetric monoidal structure on C. So, the functoriality of expC(−)
depends on left legs of our spans, while the multiplication µ of C is defined on right legs.

Remark. In particular, µ carries Segal maps to projections: for (I+, i ∈ I), µ(ρi) : CI evi−→ C, since by
definition ρ−1

i {i} = {i}.

Notice that, for any cartesian (symmetric) monoidal category (C,×), the functor expC : (FinSet∗,
∐︁
) →

(Cat,×) is symmetric monoidal, since it satisfies the following condition:

Definition B.1.0.3. (Segal condition) Let (C,×) ∈ Cat be a cartesian symmetric monoidal category. F ∈
Fun(FinSet∗, C) satisfies the Segal condition iff, for each I+ ∈ FinSet∗, the Segal maps {ρi | i ∈ I} induce
an isomorphism

∏︁
µ(ρi) : F (I)

≃−→
∏︁
I F ({i}). In other words, iff F : (FinSet∗,

∐︁
) → (C,×) is symmetric

monoidal.

This is not an isolated case. Indeed, the next Lemma will characterize commutative monoid objects in a
cartesian monoidal category as the class of objects which satisfy the Segal condition. In particular, we will
be able to regard any cartesian symmetric monoidal category as a commutative monoid object in (Cat,×).

As it will be apparent in the proof, the Segal condition allows us to characterize commutative monoids by
means of an heuristic called the ’microcosm’ principle: our cartesian commutative monoid object (the
’microcosm’) inherits its algebraic structure by the ambient one (here the cartesian symmetric monoidal
structure of the ambient category, the ’macrocosm’). We refer to the homonymous nLab page for some more
context.

Lemma B.1.0.4. (Microcosm Principle) Let C be a cartesian symmetric monoidal category, and denote
by FunSeg(FinSet∗, C) ⊆f.f. Fun(FinSet∗, C) the full subcategory of those functors which satisfy the Segal

condition. Then, CMon(C) ≃ FunSeg(FinSet∗, C) is an equivalence of categories.
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Proof. (⊇): Take F ∈ FunSeg(FinSet∗, C); the classical data are recovered by applying F to the following
maps of FinSet∗: {0, 1}+ ∼= (∗

∐︁
∗)+ → ∗+ gives the multiplication, while ∅+ → ∗+ the unit of the monoid

F (∗). Commutativity corresponds to the functoriality of F with respect to the action Z/2 ↷ {0, 1}+, whereas
associativity is again functoriality with respect to the ways of mapping {0, 1, 2}+ → {0, 1}+. Hence, we obtain
a functor ev∗ : FunSeg(FinSet∗, C)→ CMon(C).
(⊆): A quasi-inverse to the previous functor is simply given by sending any M ∈ CMon(C) to expM ∈
FunSeg(FinSet∗, C). Indeed, ev∗ ◦ exp(−)(M) = M and exp(−) ◦ev∗(F ) = expF (∗)

∼= F by the fact that a
monoidal functor on (FinSet∗,

∐︁
) is determined by its value at the point ∗. □

Moreover, the latter characterization can be simplified by adopting a 2-categorical reformulation. Our gen-
eralization to the ∞-world will then be in the same spirit.

Lemma B.1.0.5. (2-categorical Definition) Let Span := Span(FinSet) denote the 2-category of spans of
finite sets (also known as correspondences), with objects those of FinSet, morphisms spans of finite sets
connecting the given source and target, and (weak) composition via weak pull-back of spans. In other words,
we are basically considering a generalization of Fin∗ where we do not require left maps to be monomorphisms.

Then, with a slight abuse of notation, there is an equivalence of 2-categories CMon(C) ≃ Fun×(Span, C),
where the latter is the full subcategory of Fun(Span, C) spanned by those pseudo-functors which take finite
coproducts in Span to products in C.

Proof. First of all, notice that composition of morphisms in Fin∗ can be seen as the rectification of composition
of the corresponding morphisms in the 2-category Span, so that Fun(Fin∗, C) ≃ Fun(Span, C) in Cat2. In
order to see this, notice that, given a span (f, g) : I ← K → J in Span, the epi-mono factorization of Set
associates to it a set of morphisms in Fin∗, namely

S(f, g) := {(imf, g ◦ s) : I ←−↩ Imf → J | s : Imf ↪−→ K section to K ↠ Imf}
Given two composable spans (f1, g1) and (f2, g2), their composition in Span induces compositions of spans
from S(f1, g1) and S(f2, g2) in Fin∗, which are clearly all homotopic in Span. Hence, the 2-categories of
pseudo-functors Fun(Fin∗, C) and Fun(Span, C) are equivalent, as claimed.

Moreover, the equivalence factors as FunSeg(FinSet∗, C) ≃ Fun×(Spanop , C) in Cat2. Indeed, by an explicit
check of the universal property, coproducts in Span (i.e. products in Spanop) are of the form

(︁
Xi = Xi ↪−→∐︁

I Xi | i ∈ I
)︁
and thus live in Fin∗ ≃ FinSet∗; finally, coproducts in pointed finite sets boil down to those

in Set. □

The reasons why we chose FinSet∗ are on the one hand historical: as these notions were first introduced,
1-categories were more familiar than 2-categories. On the other hand, in our construction, considering
generalized objects from FinSet∗ makes everything less artificial: given a monoidal category (C,m, e), we
can view the biased formation of the multiplication as post-composition of the given m to the formation
of the binary-product category C × C, while the unit is post-composition of e to the formation of the null-
ary product category ∗; remark that the ’formation of the n-fold product’ can be viewed as the evaluation
at n of the prototypical Segal functor, namely the co-simplicial object δ(−) ∈ Fun

(︁
FinSet,Fun(Cat,Cat)

)︁
,

corresponding (point-wise) to the canonical co-monoidal structure δn : C → C×n.
Now, our coherence conditions allow us to pass unambiguously from the biased definition (providing only
axioms for arities 0 and 2, namely those corresponding to δ0 and δ2) to the unbiased one (which instead
provides axioms for all arities). The latter viewpoint amounts to specifying the multiplication as induced by
the symmetric monoidal structure on FinSet (with skeleton ∆) via

FinSet ≃ ∆
Im(δ)−→ Im(δ) ≃ C×(−) m−→ C

The latter fact is hidden in the proof of Lemma,B.1.0.4, and it is the reason why the given functors form
a categorical equivalence, so that it assigns a very deep algebraic role to the 2-category of correspondences
Span.

We are now ready to provide the anticipated generalization to the ∞-world. As in the classical case, we
leverage on a ”universal” cartesian commutative monoid Cat×∞ to define arbitrary commutative monoids
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internally as commutative monoid objects. At the moment, such a perspective is mostly motivational, so we
refer to [36],5.24 for a universal property defining a cartesian structure on a category with finite products.

Definition B.1.0.6. (Commutative ∞-monoid - straightened, [36],4.12) Let C ∈ Cat∞ admit finite prod-
ucts; define the ∞-category of commutative ∞-monoids in C as

CMon(C) := Fun×(Span, C) ≃ FunSeg(FinSet∗, C)

where Fun×(Span, C) is the full sub-∞-category of Fun(Span, C) spanned by those functors which take
finite coproducts to products, and it is equivalent to the full sub-∞-category of FunSeg(FinSet∗, C) ⊆f.f.
Fun(FinSet∗, C) spanned by those functors satisfying the Segal condition (see B.1.0.5).

Remark. As we will observe in B.2.0.7, let it be given a commutative monoidM ∈ CMon(C) in an∞-category
C with finite products; then, the restriction along any (this is the ”commutativity”) of the two canonical
inclusions ∗+ → [1]+ induces an ”encoded tensor product” ⊗ :M(∗+)×M(∗+)→M(∗+).

Definition B.1.0.7. (Commutative ∞-groups - straightened, [36],4.12) For a commutative monoid M ∈
CMon(C) in an ∞-category C with finite products, define the shear map s : M ×M →M ×M by acting
as the projection pr1 on the first coordinate and as the encoded tensor product ⊗ on the second one. We
call M a commutative group in C iff the shear map s is an equivalence.
Define CGrp(C) ⊆f.f. CMon(C) as the full subcategory spanned by commutative group objects in C.

Definition B.1.0.8. (Symmetric monoidal∞-category) Define a symmetric monoidal ∞-category to be
a commutative∞-monoid in Cat×∞. Moreover, we refer to arrows in CMon(Cat×∞) as symmetric monoidal
functors.

While developing the theory of derived algebraic geometry, we will have to be dealing with non-commutative
group stacks, so let us include also a definition of a not necessarily commutative group object in a category
with finite products. If the ambient category is a topos, notice that this retrieves a contractible groupoid
object as in C.1.0.5. After this, we will restrict the focus of our presentation to commutative gadgets.

Definition B.1.0.9. (Arbitrary monoids and group - straightened, [8],I.1.3.1.1-2-3) Let C ∈ Cat∞ be an
∞-category with finite products. We define an arbitrary monoid in C to be a functor M : ∆op → C
satisfying the following axiom:

Arbitrary Segal condition, [aSeg]: For any i, n ∈ N, consider the edges ϵni : [1] → [n] acting as 0, 1 ↦→
i, i + 1. Then, M : ∆op → C satisfies the arbitrary Segal condition iff M([0]) = ∗ and the canonical maps∏︁
ϵni :M([n])→

∏︁
M([1]) are equivalences.

Let Mon(C) := FunaSeg(∆op , C) ⊆f.f. Fun(∆op , C) denote the full subcategory of arbitrary monoids in C.

A monoid M ∈ Mon(C) comes equipped with canonical maps:

� the edge [1] → [2] acting as 0, 1 ↦→ 0, 2 induces the encoded tensor product ⊗ : M([1]) ×M([1]) ≃
M([2])→M([1]);

� the canonical edge [1]→ [0] defines a point 1M : ∗ ≃M([0])→M([1]), namely the unit of the monoidal
structure on M ;

� the shear map s := (pr1,⊗) : M([1])×M([1]) → M([1])×M([1]) is induced by the projection on the
first component and the multiplication on the second one.

Define an arbitrary group in C as a monoid G ∈ Mon(C) for which the shear map is an equivalence. Let
Grp(C) ⊆f.f. Mon(C) denote the full subcategory of groups in C.

Let us close this subsection with a general observation. The reader should beware that for many applications
(e.g. exhibiting symmetric monoidal structures on ∞-categories) such a definition is often not workable
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enough, because it is hard in practice to construct functors into ∞-categories. In the next subsection we will
provide a more manageable definition in terms of cocartesian fibrations.
Nevertheless, the perspective of Segal functors is very useful to exhibit ”algebraic” objects in topoi; an
example will be the animated rings and modules which we will extensively study in the section on ”Higher
Algebra” or group stacks, which will be introduced in ”Quotient Stack” in order to classify vector bundles
on schemes, as more generally discussed in ”Principal ∞-bundles”.

B.2 Commutative Monoids in Symmetric Monoidal ∞-categories

With the help of the Straightening Theorem [24],3.2, we can rephrase the previous functorial approach by
means of cocartesian fibrations. We choose to work with Segal functors from FinSet∗, since the formalism is
easier to be handled. So, let us start by introducing a bit of terminology.

Notation. It will be sometimes useful to identify FinSet∗ ∼= Fin∗ with its skeleton ∆, where we regard [n] ∈ ∆
to be pointed by 0; under this identification, write ⟨n⟩ for the image of the latter, ⟨1⟩ for any (∗+ =)∗ ∼= {i}+
and ∗ stands here for [0].
Moreover, let us give a name to two special families of arrows in ∆ which will play a major role in constructing
”algebraic” structures. Recall that arrows in ∆ come from Fin∗, so are partially defined maps of finite sets;
when dealing with them, we will stick to the following convention: i denotes an element of the source, whereas
j one of the target:

� f : ⟨n⟩ → ⟨m⟩ is called inert iff #f−1(j) = 1 for each j ̸= 0, i.e. f is an injective partially defined map;

a prominent example are Segal maps ρ
⟨n⟩
i : ⟨n⟩ → ⟨1⟩, as given by ρ

⟨n⟩
i (i) = 1;

� f : ⟨n⟩ → ⟨m⟩ is called active iff f−1(0) = 0, i.e. f is a (globally defined) map of finite sets; a prominent
example is the canonical map m : ⟨n⟩ → ∗.

Let us start by rephrasing the needed terminology in terms of cocartesian fibrations.

Definition B.2.0.1. (Segal condition - unstraightened) Let St(F ) :
∫︁
F → FinSet∗ be a cocartesian fibration

associated to the functor F : FinSet∗ ≃ ∆→ Cat∞ under the Straightening equivalence [24],3.2. Then, St(F )
satisfies the Segal condition iff, for each ⟨n⟩ ∈ ∆, the canonical map of fibres∏︂

i

ρî :
(︁ ∫︂

F
)︁
⟨n⟩ −→

∏︂
i

(︁ ∫︂
F
)︁
⟨1⟩

induced by the Segal maps {ρi}i is an equivalence.

Definition B.2.0.2. Let p : C → ∆ be a cocartesian fibration between ∞-categories. We say that an edge
f in C is inert iff it is a p-cocartesian lift of an inert map p(f) in ∆.

The following gives the unstraightened analogous to the straightened definition of ”symmetric monoidal
∞-categories”. Soon we will observe that - in a cartesian symmetric monoidal ∞-category - ”straightened
commutative monoids” coincide with ”unstraightened commutative algebras”; then, we will retrieve ”sym-
metric monoidal ∞-categories” as ”unstraightened commutative algebras” in Cat×∞, so the two approaches
will be perfectly equivalent.

Definition B.2.0.3. (Symmetric monoidal ∞-category - unstraightened, [36]5.3) Consider the cartesian
symmetric monoidal ∞-category Cat×∞ of [36],5.24. Define the ∞-category of symmetric monoidal ∞-
categories in Cat×∞ as the full subcategory SymMon ⊆f.f. CoCart(∆) spanned by those cocartesian fi-
brations which satisfy the unstraightened Segal condition B.2.0.1. In particular, the arrows of SymMon
are morphisms of cocartesian fibrations between symmetric monoidal ∞-categories; call them symmetric
monoidal functors.
Define SymMonlax ⊆f.f. (Cat∞)/∆ as the full subcategory with the following 1-skeleton:

� Obj: symmetric monoidal ∞-categories;
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� Mor: functors between symmetric monoidal ∞-categories which preserve inert edges (and not neces-
sariliy all the cocartesian ones); call them lax symmetric monoidal functors.

Definition B.2.0.4. (Commutative algebra in a symmetric monoidal∞-category) For a symmetric monoidal
∞-category A⊗ ∈ CMon(Cat×∞), consider the pull-back in Cat∞ of the universal cocartesian fibration πuniv
along A⊗ (see the Straightening Theorem [24],3.2):∫︁

A⊗

∈CoCart

↓↓

→→ Cat∞//∗

πuniv

↓↓
FinSet∗

M

A⊗
→→ Cat∞

Define the ∞-category of commutative algebras in the symmetric monoidal ∞-category A⊗ to be the full
subcategory CAlg(A⊗) ⊆f.f. Fun(FinSet∗,

∫︁
A⊗) consisting of those sections of St(A⊗) which preserve inert

maps, i.e. spanned by lax symmetric monoidal functors M : FinSet∗ →
∫︁
A⊗ sitting in the commutative

triangle:

FinSet∗
M →→

∫︁
A⊗

St(A⊗)↙↙
FinSet∗

Remark. Under the Straightening Theorem we recover the ordinary intuition: morally, a ”straightened lax
symmetric monoidal functor” turns out to be the associate non-invertible natural transformation of symmetric
monoidal ∞-categories: UnSt(M) : constFinSet∗ =⇒ A⊗.

As in the classical setting the functoriality of our algebraic structure is due to the ”left morphisms” (i.e. spans
whose right arrow is an isomorphism), here it is supplied by the inert maps in ∆. However, our requirement
is actually redundant, in that sending the (inert) Segal maps to cocartesian edges suffices.

Lemma B.2.0.5. (Functoriality can be checked on Segal maps) Equivalently, a commutative algebra M in
the symmetric monoidal ∞-category A⊗ ∈ CMon(Cat×∞) is a section M of St(A⊗) :

∫︁
A⊗ → FinSet∗ which

takes Segal maps to cocartesian edges.

Proof. One implication is clear, so let us show only that it suffices to impose our condition on Segal maps;
we will work in FinSet∗, where inert maps correspond to injective ”left morphisms”. Assume that M sends
Segal maps to cocartesian edges of

∫︁
A⊗, i.e. that the following edge be cocartesian:

ρi : [I ←−↩ {i} = {i}] ↦−→
(︁
ρi :M(I)

resi−→M({i})
)︁

Observe that the inclusions of sets {i} ⊆ J ⊆ I exhibit the following composition ρIi = ρJi ◦ (I → J) : I →
J → {i} in FinSet∗:

{i}
←↑

↙↙
J← ↑

↙↙

{i}
←↑

↙↙
I →→ J →→ {i}

Now, apply M ; by assumption, it sends maps lying over Segal maps to cocartesian morphisms, so that, by
[20],3.1.7, also M(I → J) must be cocartesian, as needed. □

Moreover, observe that, for any symmetric monoidal∞-category A⊗, inspection of the Straightening construc-
tion yields an inclusion CAlg(A⊗) ⊆ CMon(A⊗), so that commutative algebras are in particular commutative
monoids, as it should be.
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Lemma B.2.0.6. (Commutative algebras satisfy the Segal condition) Let M ∈ CAlg(A⊗) be a commutative
algebra in a symmetric monoidal∞-category. Then, M satisfies the Segal condition, i.e. for each I ∈ FinSet∗
the canonical map M(I) →

∏︁
IM({i}) induced by the Segal maps is an equivalence. Hence, there is an

inclusion CAlg(A⊗) ⊆ CMon(A⊗) ≃ FunSeg(FinSet∗,
∫︁
A⊗).

Proof. Recall that there is an identification describing the fibre (
∫︁
A⊗)⟨n⟩ ≃ A⊗(⟨n⟩), and that a symmetric

monoidal ∞-category A⊗ satisfies the Segal condition, i.e. for each I ∈ FinSet the canonical map A⊗(I) →
A⊗(∗)I is an equivalence.
Then, consider a commutative algebra M ∈ CMon(A⊗). Being M a section of the ”first projection” St(A⊗),
(up to equivalence) we can describe the action of M on objects as in the classical Grothendieck construction:

� I = ∗(= ∗+): M(∗) := (∗, A⊗(∗) ∋ x);

� I ∈ FinSet∗ arbitrary: M(I) = (I, A⊗(I) ≃ A⊗(∗)I ∋ (xi)I) for some tuple (xi)I ∈ A⊗(∗)I .

Then, observe that the Segal maps (ρi : I → {i})I induce a canonical comparison arrow M(I)→
∏︁
IM({i})

given by the projections (I,A⊗(∗)I , (xi)I) → ({i}, A⊗(∗), xi). Finally, the functoriality of M carries the
canonical isomorphism {i} ∼= ∗ to an equivalence M({i}) ≃ M(∗), so that in particular xi = x for each i.
Thus, the previous comparison arrow is an equivalence and we retrieve the Segal condition for M . □

The latter observation allows the following generalization of Lemma B.1.0.4.

Definition B.2.0.7. (Underlying algebra) Given a symmetric monoidal ∞-category A⊗ : FinSet∗ → Cat∞
(resp. a commutative algebraM), define its underlying category (resp. underlying algebra) to be A⊗(∗)
(resp. M(∗)).
The latter comes equipped with an unbiased encoded tensor product ⊗ (or just tensor product) given by
the Segal condition and a representative of the canonical active map m as in the following triangle (similarly
for M):

A⊗(I)
A⊗(m) →→

≃
↓↓

A⊗(∗)

∏︁
i∈I A

⊗({i}) A⊗(∗)×I

⊗

↑↑

The more familiar biased definition is retrieved for I = [1]+, which yields the familiar bi-functor ⊗ : A⊗(∗)×
A⊗(∗)→ A⊗(∗) (similarly for M).

Remark. In particular, in agreement with the ”microcosm principle”, A⊗ acts at each algebra M ∈
CAlg(A⊗(∗)) as expM , so that the environment-tensor induces the second operation ofM via the construction
of the previous section.
In other words, informally on the 1-skeleton one has that: for each I+ → J+ in FinSet+, A

⊗ acts on

(f, g) : I+ → J+ at M by A⊗(f, g) := mg ◦ resf (−); i.e. it sends the span I
f← K

g→ J to the 1-morphism:

A⊗(I)
resf−→ A⊗(K)

mg−→ A⊗(J)

M(I) ≃ (M({i}) | i ∈ I) ↦−→ (M({i})|i ∈ K) ≃M(K) ↦−→ (M⊗g−1(j) := ⊗k∈g−1(j)M({k}) | j ∈ J) ≃M(J)

where mg acts as ⊗-multiplication on the fibres of g.

Remark. As expected, in general the inclusion is faithful but not full - and hence in particular not an
equivalence. However, for a cartesian symmetric monoidal∞-category (see [36],5.24) the notion of an algebra
object coincides with that of a monoid object (see e.g. [36],5.27). Intuitively, this means that the cartesian
monoidal structure of an ”algebraic” object should be thought as an implicit datum.

Remark. Informally, by the Segal condition a commutative monoid M ∈ CMon(A⊗) can be ”represented”
by the distinguished object x ∈ A⊗ of its underlying commutative monoid M(∗) = (∗, A⊗(∗) ∋ x). In the
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applications we will abuse notation and mention only such an object in place of the commutative monoid at
stake.

Remark. Notice that in our construction the multiplication is fibre-wise induced by the (symmetric) cartesian
structure of Cat∞ and is, therefore, intrinsically symmetric.
One could then define arbitrary monoidal ∞-categories to be ”finitely additive” simplicial objects in Cat∞
(see B.1.0.9); our symmetric monoidal ∞-categories would then turn out to be a special instance of the
arbitrary ones, and one could express them in the more general setting via pulling back along a suitable
comparison functor ∆op → FinSet∗ (see [8],3.3).

Arrows in Symmetric Monoidal ∞-Categories. In view of our future applications, we need a descrip-
tion of morphisms in unstraightened symmetric monoidal ∞-categories in terms of ∆. To this end, let us
record here a couple of combinatorial results. We will start by introducing a piece of notation.

Notation. Let A⊗ : ∆ → Cat∞ be a symmetric monoidal ∞-category, and let St(A⊗) : A⊗ :=
∫︁
A⊗ → ∆

denote its unstraightened version. By the Segal condition we have canonical equivalences of fibres:

A⊗
⟨n⟩ ≃ A

⊗(⟨n⟩) ≃ A⊗(⟨1⟩)n ≃
∏︂
⟨n⟩◦

A⊗
⟨1⟩

where (−)◦ : FinSet∗ ≃ ∆→ FinSet forgets the pointing, i.e. it drops the 0.
So, we can identify an object x in the left-hand side with an n-tuple (xi)

n
i=1; we will denote the latter by

⊕i∈⟨n⟩◦xi.

The next Proposition explains in which sense the ambient symmetric monoidal ∞-category Cat∞ acts at a
commutative monoid A⊗ by expA⊗ .

Proposition B.2.0.8. (Lifts in A⊗, [36],5.14) Let A⊗ → FinSet∗ be an (unstraightened) symmetric monoidal
∞-category. Consider two objects x := ⊕i∈⟨n⟩◦xi ∈ A⊗

⟨n⟩ and y := ⊕j∈⟨m⟩◦yj ∈ A⊗
⟨m⟩ in A⊗. Then, the fibre

of the action
St(A⊗) : MapA⊗(x, y)→ Map∆(⟨n⟩, ⟨m⟩)

over any map f : ⟨n⟩ → ⟨m⟩ in ∆ is the space

Fibf (St(A
⊗)) =

∏︂
j∈⟨m⟩◦

MapA
(︁
⊗f(i)=j xi , yj

)︁
where A = A⊗(⟨1⟩) ≃ A⊗(∗) is the underlying symmetric monoidal ∞-category.

Proof. Inspection of the Straightening equivalence yields a lift A⊗(f) : A⊗
⟨n⟩ → A⊗

⟨m⟩ over f : ⟨n⟩ → ⟨m⟩.
Then, observe that the 1-truncation of the section A⊗ to St(Cat×∞) can be described by means of our exp-
construction, so the action of A⊗(f) at x includes also an arrow in A⊗ connecting x and its image A⊗(x):

expx(f) = ⊗f ◦ resf : x = ⊕i∈⟨n⟩◦xi −→ ⊕j∈⟨m⟩◦
(︁
⊗f(i)=j xi

)︁
= A⊗(f)(x)

Now, observe that such an equivalence is a St(A⊗)-cocartesian edge over the identity 1⟨m⟩. Then, by Lemma
[20],3.19 the cocartesian fibration St(A⊗) induces a fibre sequence in Spc pointed by f : ⟨n⟩ → ⟨m⟩:

MapA⊗
⟨m⟩

(A⊗(f)(x), y)→ MapA⊗(x, y)→ Map∆(⟨n⟩, ⟨m⟩)

Indeed, recall that MapA⊗(x, y) ≃ ∪g:⟨n⟩→⟨m⟩MapA⊗
⟨m⟩

(A⊗(g)(x), y) by the construction of the universal

fibration πuniv : Cat∞//∗ → Cat∞ and the fact that A⊗ is a pull-back of πuniv along A⊗. □

Lemma B.2.0.9. (Characterization of cocartesian lifts, [36],5.15) Let A⊗ be an (unstraightened) symmetric
monoidal ∞-category and consider a map ϕ : ⊕xi → ⊕yj in A⊗ living over f := St(A⊗)(ϕ) in FinSet∗. By
the Segal condition, the latter can be identified with (the product of) a family of maps {ϕj : ⊕f(i)=jxi → yj}j.
Then, ϕ is a cocartesian lift of f iff ϕj is an equivalence for each j.

Proof. By the above Proposition B.2.0.8, the space of lifts over f is a product of mapping spaces of the form
MapA(⊗f(i)=jxi, yj) over the identity 1⟨1⟩. So, from the very definition of St(A⊗)-cocartesian edges, a lift
ϕ = (ϕj)j over f is cocartesian iff each ϕj is such, iff each ϕj is an equivalence (see [20],3.1.6). □
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Lax Symmetric Monoidal Functors. Transporting the symmetric monoidal structure preserves algebra
objects.

Lemma B.2.0.10. ([36],5.19) A (unstraightened) lax symmetric monoidal functor F : A⊗ → B⊗ induces -
under the post-composition Fun(FinSet∗, F ) - a functor CAlg(A⊗)→ CAlg(B⊗).

Proof. The categories of commutative algebras are full subcategories of FunSeg(FinSet∗), A
⊗) (resp. with

B⊗), so it suffices to show that F ◦M : FinSet∗ → B⊗ is a commutative algebra (i.e. a section of St(B⊗)
which preserves inert maps) whenever M ∈ CAlg(A⊗). The section part is a consequence of Striaghtening,
while the compatibility with inert maps amounts precisely to the fact that F is lax symmetric monoidal. □

B.3 Localization of Symmetric Monoidal ∞-categories

Our goal for this section is to provide a verifiable condition for a (Bousfield) left-localization in order for
it to be promoted to a symmetric monoidal adjunction. This will be our main ingredient to show that the
PΣ-construction transports symmetric monoidal structures.

Definition B.3.0.1. (Algebraic localization, [23],2.2.1.6 as in [36],8.1-2) Let A⊗ be a symmetric monoidal
∞-category and let L : C → A[S−1] ⊆ A be a left-localization of the underlying ∞-category A = A⊗(∗) with
respect to some set S ⊆ Mor(A) of S-local weak equivalences. Then, the localization L is compatible with
the symmetric monoidal structure (or algebraic localization for short) iff S is tensor-closed, i.e. iff
one of the following two equivalent conditions holds:

1. For each local equivalence (f : x→ y) ∈ S and each object z ∈ A, then also (f ⊗1z : x⊗z → y⊗z) ∈ S
is a weak equivalence.

2. For every finite collection {fi : xi → yi}i ⊆ S of weak equivalences, their tensor product (⊗fi : ⊗xi →
⊗yi) ∈ S is again a weak equivalence.

We are now ready to state the main result of the Appendix.

Lemma B.3.0.2. (Algebraic localizations are symmetric monoidal, [36],8.3) Let A⊗ be a symmetric monoidal
∞-category and set A := A⊗(∗) for the underlying ∞-category. Let L : A → A[S−1] ⊆ A be an algebraic
(Bousfield) left-localization functor of A with respect to S-local maps, for S ⊆ Mor(A) a small ⊗-tensor-closed
set.
Define LA⊗ ⊆f.f. A⊗ to be the (unstraightened) full subcategory spanned by the class

{⊕i∈⟨n⟩◦Lxi | ⟨n⟩ ∈ ∆ , xi ∈ A = A⊗(⟨1⟩)}
Then, the following statements hold true:

1. The restriction LA⊗ → FinSet∗ of St(A⊗) exhibits LA⊗ as a symmetric monoidal ∞-category with
underlying ∞-category L(A).

2. L ⊢⊆ extends to a left-localization L⊗ : LA⊗ −⇀↽− A⊗ :⊆, i.e. such that L⊗
|A = L. Moreover, the unit

u⊗ of L⊗ ⊢⊆ can be chosen so that St(A⊗)(u⊗) = idFinSet∗ retrieves the identity of FinSet∗.

3. L⊗ is a symmetric monoidal functor, and the inclusion LA⊗ ⊆ A⊗ is a lax symmetric monoidal functor.

Before proving the Proposition we need a technical Lemma; it is a particular case of Lurie’s more general
formulation.

Lemma B.3.0.3. (Left localizations are morphisms in CoCart, [23],2.2.1.11) Let p : E → C be a cocartesian
fibration and let L : E → LE ⊆ E be a left-localization whose unit induces p ≃ p ◦ L. Then,

1. L : E → L(E) preserves p-cocartesian edges;

2. The restriction p : L(E)→ C is again a cocartesian fibration.
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Proof. (1) : Given any p-cocartesian edge f : x→ y in C, we want to show that also p(f) is p-cocartesian. In
other words, from the very definition (see [24],2.4.4.3) we want the following square of Kan complexes to be
homotopy cartesian for each z′ ∈ LE :

ELf/ ×E {z′}
L(f)∗ →→

p

↓↓

ELx/
×E {z′}

p

↓↓
Cp(Lf)/ ×C {p(z′)}

pL(f)∗ →→ Cp(Lx)/ ×C {p(z′)}

In order to prove it, observe first that by assumption f is p-cocartesian, so that the corresponding square
(drop L in the previous one) is homotopy cartesian in Kan. Now, pre-composition with the unit u : idE → L
of the localization L ⊢⊆ gives a natural transformation comparing the two squares, so we are left to show
that the latter be an equivalence at each vertex (see [20],2.2.2).
To this end, notice that we can assume wlog z′ ∈ L(E) has the form z′ ≃ L(z) with z = Le ∈ L(E), since
L2 = L. Thus, u induces equivalences of the upper vertices:

Ef/ ×E {Le} → ELf/ ×E {Le} ; Ex/
×E {Le} → ELx/

×E {Le}
As for the comparison maps of the lower vertices:

Cp(f)/ ×C {p(e)} → Cp(f)/ ×C {p(e)} ; Cp(x)/ ×C {p(e)} → Cp(Lx)/ ×C {p(e)}
the assumption p ◦ L ≃ p allows us to consider fibres over p(Lz) = p(z) = p(Le) = p(e), so we can infer that
they are also equivalences by remarking that p(u) : p→ p ◦ L = p amounts to the identity transformation of
p, so that the maps between the first factors is always equivalent to the identity of the under-slices.

(2) : We need to show that, for any arbitrary choice of x ∈ LE and f : p(x) → c in C, there exists a p-
cocartesian lift f̄ : x → c̄ in LE of f . By assumption, f admits some p-cocartesian lift f ′ : x → e in E with
x ∈ LE ; then, set f̄ := L(f ′) : x → Lc̄ in LE : it is p-cocartesian by (1) and, by assumption, p ◦ L ≃ p, so
that also p(f̄) = p ◦ L(f ′) ≃ p(f ′) = f gives the sought edge up to the equivalence p ◦ u. But now, p is also
an isofibration, so - by Joyal’s Lifting Horn’s Theorem [20],2.1.10 - we can lift the equivalence p ◦ u : f̄ → f
to one in LE , say f̃ → f for some f̃ such that p(f̃) = f . Finally, recall that, from the very definition,
p-cocartesian edges are stable under equivalence, so that f̃ is also p-cocartesian, as wished. □

We are now ready to prove the Proposition.

Proof. (of the Prop.B.3.0.2) (2) : Let’s construct the localization functor L⊗ : A⊗ → LA⊗. By the theory
of Bousfield left-localizations, it suffices to specify a family of local equivalences W ⊆ Mod(LA⊗) for which
LA⊗ consists of W-local objects.
For u : idA → L the unit of the localization L ⊢⊆, define:

W := {⊗iu(xi) : ⊗i∈⟨n⟩◦xi → ⊕i∈⟨n⟩◦L(xi) | ⟨n⟩ ∈ ∆, xi ∈ A = A⊗
⟨1⟩}

We need to check that each object ⊕j∈⟨m⟩◦Lyj ∈ LA⊗ ⊆f.f. A⊗ is W-local, namely that pre-composition

with any map of W induces an equivalence of mapping spaces of A⊗:(︁
⊕i u(xi)

)︁∗
: MapA⊗

(︁
⊕i∈⟨n⟩◦ L(xi) , ⊕j∈⟨m⟩◦Lyj

)︁
−→ MapA⊗

(︁
⊗i∈⟨n⟩◦ xi , ⊕j∈⟨m⟩◦Lyj

)︁
We can canonically decompose the arrow above as a disjoint union of its fibres over each of the maps
f : ⟨n⟩ → ⟨m⟩ in ∆; now, by our previous computation B.2.0.8, the fibre over a fixed f in ∆ is the product
indexed by j ∈ ⟨m⟩◦ of the mapping spaces MapA(⊗f(i)=jzi, Lyj) with zi = xi or Lxi.

Then, observing that pre-composition with the units ⊕f(i)=ju(xi) lives in the fibre A⊗
⟨n⟩ over ⟨n⟩ (and hence

respects the decomposition), it suffices to show that, for each j ∈ ⟨m⟩◦, pre-composition with the units
⊕f(i)=ju(xi) induces an equivalence MapA(⊗f(i)=jxi, Lyj)→ MapA(⊗f(i)=jLxi, Lyj).
But now, the latter claim follows from the assumption that L is an algebraic left-localization of A with respect
to the S-local maps (which comprise S = {u(x) : x→ Lx | x ∈ A}) with S ⊗-tensor-closed.

Thus, the fully faithful embedding LA⊗ ⊆f.f. A⊗ admits a left adjoint L⊗ and the adjunction L⊗ ⊢⊆ exhibits
LA⊗ as a left-localization of A⊗ with respect to the W-local-equivalences. Moreover, pre-composition with
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the restriction to A preserves the adjunction, so that L⊗
|A is still a left-adjoint to the restriction of the

embedding, and hence it must coincide with L, as required.
Finally, our construction implies that the unit u⊗ takes as values edges which are the tensor product of values
of u. Thus, since by assumption St(A⊗) ◦ u : St(A⊗) ≃ St(A⊗)L is the identity on ⟨1⟩, the composition
St(A⊗) ◦ u⊗ takes values into the identities of (the objects of) ∆.

(1), (3), i : They are a consequence of our technical Lemma B.3.0.3:

� the map St(A⊗) ◦ L⊗ is a cocartesian fibration satisfying the Segal condition, because L⊗ preserves
St(A⊗)-cocartesian edges, and a fortiori also the equivalences induced by the Segal maps (which in turn
live over the canonical product equivalences, so we can conclude by [20],3.1.6);

� moreover, L⊗ is a symmetric monoidal functor, since it takes W-local maps to equivalences, thus
exhibiting L⊗(⊗xi) ≃ ⊗Lxi as in the decomposition above (remark that the canonical active map m
expresses any ⟨n⟩ as the pre-image of a point in ⟨1⟩).

(3), ii : We are left to prove that the inclusion LA⊗ ⊆f.f. A⊗ is lax symmetric monoidal, i.e. that it preserves
inert edges. Recall that an inert edge ϕ : ⊕i∈⟨n⟩◦xi → ⊕j∈⟨m⟩◦yj in the unstraightened symmetric monoidal

∞-category A⊗ is a St(A⊗)-cocartesian edge living over an inert map f : ⟨n⟩ → ⟨m⟩ in ∆. By our previous
computations B.2.0.8 and B.2.0.9, recall that the St(A⊗)-cocartesian edge ϕ corresponds to a family (ϕj :
⊗f(i)=jxi → yj)j∈⟨m⟩◦ consisting of equivalences in A, so over ⟨1⟩. Now, being it inert, #f−1(j) = 1 for each

j, thus the tensor products are unary. The same reasoning holds in LA⊗ → FinSet∗, so the inclusion clearly
respects inert edges. □

B.4 Closed Symmetric Monoidal ∞-category

An ordinary symmetric monoidal category (C,⊗) is called closed iff, for each x ∈ C, (left or equivalently
right) tensoring with x admits a right adjoint, say x ⊗ (−) ⊢ [x,−]. Such a notion immediately generalizes
to symmetric monoidal ∞-categories as follows.

Definition B.4.0.1. (Closed symmetric monoidal ∞-category, [23],4.1.1.15) A symmetric monoidal ∞-
category C⊗ is closed iff, for each x ∈ C := C⊗(∗), (left or equivalently right) tensoring (see B.2.0.7) with
x admits a right adjoint, say x ⊗ (−) ⊢ [x,−], i.e. there is a point-wise equivalence MapC(x ⊗ (−), ⋆) ≃
MapC(−, [x, ⋆]).

By [20],5.1.10, adjunctions can be defined (and checked) point-wise via the triangle identities. So, the
requirement amounts to the fact that, for each pair of objects x, y ∈ C := C⊗(∗), there exists a third
object yx ∈ C together with an arrow yx⊗x→ y inducing point-wise homotopy equivalences MapC(⋆, y

x) ≃
MapC(⋆⊗ x, y).
Then, the construction [y ↦→ yx] can be promoted to an endofunctor of the ∞-category C supplying the
right-adjoint to (−)⊗ x.

As an example, we will endow animated modules with a closed symmetric monoidal structure. The same
reasoning holds for any ∞-category - such as Ani(CRing) - obtained via the PΣ-construction.

Construction B.4.0.2. (ModA is a closed symmetric monoidal ∞-category) For any animated ring A ∈
Ani(CRing), recall that ModA ≃ PΣ(FFreeA) (see 3.2.5.14) is a Bousfield left-localization of the category
P(FFreeA) of presheaves over FFreeA with respect to the S-local equivalences, for a small set S as in the
proof of A.2.0.2,i:

S =

{︃
j(

m∏︂
i=1

Ani)→
m∐︂
i=1

j(Ani)

⃓⃓⃓⃓
m < ω , (Ani)mi=1

}︃
Now, consider the following symmetric monoidal ∞-categories:

� FFreeA admits finite coproducts, so it can be endowed with a cocartesian symmetric monoidal structure

FFree⨿A (via a construction dual to the cartesian one, see [36],5.24-29-30).
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� FFreeA admits a ”non-trivial” symmetric monoidal structure defined as follows.

(a) For A := R ∈ CRing static, the classical tensor product of modules ⊗R induces a symmetric
monoidal structure FFree⊗R;

(a) For an arbitrary A ∈ Ani(CRing), applying fibre-wise ”extension of scalars” induces by the Se-
gal condition a map p⊗A : FFree⊗A := A ⊗Z FFree⊗Z → ∆. The ”extension of scalars” functor

takes p⊗Z -cocartesian edges to p⊗A-cocartesian ones, since it preserves finite products and by the

characterization B.2.0.9. Hence, it defines a symmetric monoidal functor FFree⊗Z → FFree⊗A.

� On the other hand, Spc admits a cartesian symmetric monoidal structure whose encoded tensor product
× preserves small colimits separately in each variable (binary products are pull-backs on the terminal
object, so we conclude by the universality of colimits in the ∞-topos Spc).

Then, by [23],4.8.1.12 each symmetric monoidal structure on FFreeA induces one on P(FFreeA), namely
P(FFreeA)⊗, which is characterized (up to symmetric monoidal equivalence) by the following universal prop-
erty:

� The Yoneda embedding j : FFreeA ↪→ P(FFreeA) can be extended to a symmetric monoidal functor;

� The tensor product ⊗ : P(FFreeA) × P(FFreeA) → P(FFreeA) preserves small colimits separately in
each variable.

As observed in the subsequence [23],4.8.1.13, a candidate exhibiting such a structure is given by Day con-
volution (see [23],2.2.6.17 or [10]); in other words, the encoded tensor product ⊛ is the left Kan extension
of ×Spc ◦ ×P(FFreeA) along either the cocartesian tensor product ⨿ : FFreeA × FFreeA → FFreeA or the
module-theoretic tensor product ⊗A : FFreeA × FFreeA → FFreeA.
Informally, this means that, for each pair of presheaves F0, F1 ∈ P(FFreeA), in the co-cartesian case one has
the following point-wise formula:

F0 ⊛ F1(A
n) ≃ colim

−−−−−→

(︁
F0(A

n0)×F1(A
n1) | (An0 , An1 , u : An0+n1 → An) in FFreeA

)︁
or along maps u : An0 ⊗A An1 ≃ An0n1 → An in the case of FFree⊗A.
Hence, in order to endow ModA with a symmetric monoidal structure, we are left to check one more Claim:

Claim 1. The localization functor L : P(FFreeA)→ PΣ(FFreeA) is algebraic; hence, we can apply B.3.0.2.

Proof. It suffices to prove that the class S of morphisms inducing the localization is ⊛-tensor-closed; this
follows almost tautologically by abstract non-sense and does not depend on the chosen symmetric monoidal
structure on FFreeA. So, for eachM , N ∈ ModA and any map in S we wish the following to be an equivalence
of mapping spaces:

MapP(A)

(︃∐︂
i

j(Ani)⊛M,N

)︃
−→ MapP(A)

(︃
j(
∏︂
i

Ani)⊛M,N

)︃
Since ⊛ preserves colimits (being it a left Kan extension), the following manipulation of the target allows us
to forget about products and coproducts in the local map and concludes then the verification:

Map

(︃
j(
∏︂
i

Ani)⊛M,N

)︃
≃(i) Map

(︃∏︂
i

j(Ani)⊛M,N

)︃
≃(ii) Map

(︃∐︂
i

j(Ani)⊛M,N

)︃
where (i) holds because mapping spaces commute with limits in the covariant argument, while (ii) is obtained
as follows: by A.2.0.2,ii, our mapping spaces are wlog in PΣ(FFreeA), and there finite products coincide with
finite coproducts, since the set S above is taken by the localization L to equivalences of PΣ(FFreeA). ■

Thus, we have promoted ModA to a symmetric monoidal∞-category Mod⊗A. Let’s make a consistency remark
about the computation of tensor products.

Claim 2. The encoded tensor product ⊗A := L◦⊛ can be computed via sifted resolutions, where ⊛ is extended
along either ⨿ or (⊗A)|FFreeA .
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In other words, let it be given any M , N ∈ ModA, together with sifted simplicial diagrams p, q : K → FFreeA
whose geometric realizations exhibit |p| ≃M and |q| ≃ N . Then, M ⊗A N ≃ |p⊗A q|.
Proof. The statement is tautological: L preserves colimits, so we are left to show that the Day convolution
can be computed via geometric resolutions, and this is clear: the Yoneda embedding is symmetric monoidal
and the Day convolution commutes with colimits.
Nevertheless, in order to foster the intuition let us get our hands dirty with a more explicit (although rather
informal) computation. There is a canonical map between the two modules in the statement, so (by virtue
of [20],2.2.2) let’s unwind the definition of the encoded tensor product ⊗A := L ◦ ⊛ on objects: given any
M ≃ |p|, N ≃ |q| ∈ ModA as in the statement, M ⊗A N = L(M ⊛N) preserves finite products in FFreeopA ,
so it suffices to compute only the underlying space of the Day convolution on A ∈ FFreeA: being the Yoneda
embedding symmetric monoidal, we will drop it in the notation; there is a chain of equivalences of colimits
indexed over (An0 , An1 , u : An0+n1 → A) in FFreeA

M ⊛N(A) ≃ colim
−−−−−→

(n0,n1,u)

|p(A)|n0 ⊕ |q(A)|n1 ≃ colim
−−−−−→

(n0,n1,u)

|p(A)n0 ⊕ q(A)n1 | ≃ | colim
−−−−−→

(n0,n1,u)

p(A)n0 ⊕ q(A)n1 |

and the last term is equivalent to the sought geometric realization |p(A) ⊛ q(A)| ≃ colimsift
K

(︁
p(k) ⊗A q(k)

)︁
,

as desired. ■

Finally, let us show the closure part. Again, this follows from the presentability of non-abelian localizations
of small categories and does not depend on the chosen symmetric monoidal structure to be animated.

Claim 3. PΣ(FFreeA)
⊗ is a closed symmetric monoidal ∞-category. In other words, for each M ∈

PΣ(FFreeA), the induced functor M ⊗A (−) ”tensoring with M” admits a right adjoint [M,−].
Proof. It follows from abstract non-sense: by A.2.0.2 the ∞-category PΣ(FFreeA) is presentable, so we can
apply the I Adjoint Functor Theorem 1.2.0.5 to the colimit-preserving functor M ⊗A (−) : PΣ(FFreeA) →
PΣ(FFreeA). ■

Remark. The same construction allows, for instance, the definition of MOD⊠ := Ani(CRMod)⊠. This time
we considered the external product ⊠ on CRModsfp, whose encoded tensor product acts informally as follows:
given any (A,An), (B,Bm) ∈ CRModsfp, define (A,An)⊠ (B,Bm) := (ι1)∗A

n ⊗A⊗B (ι2)∗B
m where ιi is the

canonical map into A⊗B and (ιi)∗ tensors by A⊗B.

B.5 A Symmetric Monoidal enhancement of the Straightening Theorem

In this section we briefly present an enhancement of the Straightening Theorem which allows to construct
functors with values in the ∞-category SymMon of symmetric monoidal ∞-categories. Our reference is the
Appendix of [5],A.

We start with the definition of a relative symmetric monoidal ∞-category. Throughout this section, we will
adopt the following notation.
Notation. Given a symmetric monoidal ∞-category p⊗A := St(A⊗) : A :=

∫︁
A⊗ → FinSet∗ ≃ ∆ denote the

corresponding underlying symmetric monoidal ∞-category with any of the following symbols: A := A⊗(∗) ≃
A⊗(⟨1⟩) ≃ A⊗

⟨1⟩; let pA : A → FinSet∗ denote the canonical map. p⊗A induces an encoded tensor product,

which will be denoted by either ⊗ or ⊗A in case of need.

Definition B.5.0.1. (Relative symmetric monoidal ∞-category - unstraightened, [5],A.2) Let π⊗
B : B⊗ →

∆ be a symmetric monoidal ∞-category. Define the ∞-category of relative symmetric monoidal ∞-
categories over B⊗ as the full subcategory SymMonB⊗ ⊆f.f. CoCart(B⊗) spanned by those cocartesian

fibrations p⊗ : A→ B⊗ which satisfy the following axiom:
Relative Segal Condition, [rSeg]: A cocartesian fibration p⊗ : A⊗ → B⊗ in SymMon satisfies the relative
Segal condition iff for each b = ⊕j∈⟨m⟩◦bj ∈ B⊗

⟨m⟩ ≃ Bm, the (inert) Segal maps ϵj : b → bj induce an

equivalence A⊗
b →

∏︁n
j=1A

⊗
bj
.
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Remark. ([5],A.3) As commented by the authors, clearly the composite (p⊗ ◦ π⊗
B : A⊗ → ∆) ∈ CoCart(∆)

exhibits A⊗ as a symmetric monoidal ∞-category.
Moreover, Drew and Gallauer proved in [5],A.4 that - with reference to the notation above - p⊗ is a morphism
of cocartesian fibrations over ∆, so that SymMonB⊗ can indeed be seen as a (not full) subcategory of the
slice SymMon/B⊗ , whence our notation.

Consistently with the rest of the Appendix, let us propose also an equivalent straightened formulation.

Definition B.5.0.2. (Relative commutative monoid - straightened, [5],A.10) Let B⊗ ∈ FunSeg(∆,Cat∞) be
a symmetric monoidal ∞-category. Define the ∞-category of relative commutative monoids over B⊗

as the full subcategory CMonB⊗(Cat∞) ⊆f.f. Fun(B⊗,Cat∞) spanned by those functors M : B⊗ → Cat∞
which satisfy the straightened relative Segal condition: with notation as above, functoriality along the Segal
maps induces canonical equivalences M(b)→

∏︁m
j=1M(bj) for each b = ⊕j∈⟨m⟩◦bj ∈ B⊗.

Remark. ([5],A.11) Under the Straightening Theorem, there is a canonical equivalence SymMonB⊗ ≃
CMonB⊗(Cat∞).

Lemma B.5.0.3. (SymMon Straightening Equivalence, [5],A.12) Let B⨿ ∈ SymMon be a cocartesian sym-
metric monoidal ∞-category. Then, the Straightening Theorem induces an equivalence:

SymMonB⨿ ≃ Fun(B,CAlg(Cat∞))

Construction B.5.0.4. We report the informal description [5],A.13 of the symmetric monoidal Straightening
equivalence in the Lemma B.5.0.3 above.
Let B ∈ Cat∞ admit finite products, so that B := Bop has finite coproducts; endow it with the cocartesian
symmetric monoidal structure B⨿. Let’s spell out both directions of the equivalence.

� Suppose to have a functor F : Bop → CAlg(Cat∞) ≃ SymMon. Its action on the 1-skeleton of B can
be informally described as follows:

– Obj: b ↦→ F (b)⊗ ∈ SymMon;

– Mor: (f : b′ → b) ↦→ (f∗ : F (b)→ F (b′)) in SymMon (so f∗ is a symmetric monoidal functor).

Under the equivalence of B.5.0.3, we obtain a relative symmetric monoidal∞-category over B⨿, namely
(p⊗ : A⊠ → B⨿) ∈ SymMonB⨿ . Moreover, its underlying cocartesian fibration p : A→ B is also induced
by an application of the Straightening Equivalence to the post-composition of the given functor F with
the forgetful functor into Cat∞. On the 1-skeleton one retrieves the classical Grothendieck construction,
so we can describe informally the underlying category A as follows:

– Obj: triples (b, F (b) ∋M) for b ∈ B;

– Mor: triple of morphisms: (f, F (f), ϕ) : (b′, F (b′) ∋ M ′) → (b, F (b) ∋ M) for some morphisms
f : b′ → b in B and f∗M →M ′ in F (b′);

– External Product: (b,M)⊗ (b′,M ′) :=M ⊠M ′ := (pr1)
∗M ⊗b×b′ (pr2)∗M ′ in F (b× b′)⊗ for

pr i the canonical projection from b× b′.

Then, by the relative Segal conditions, objects of A⊠ are obtained as products of objects of A, while
morphisms in A⊠ over maps f : d′ → d admit a description similar to B.2.0.8 for the corresponding
tensor products.

Moreover, in [5],A.6,ii it is observed that p-cocartesian edges are closed under tensor product along the
identities of A; hence, the external product is compatible with the action of F : each f : b′ → b in B
induces a canonical equivalence (f ⨿ 1b′)

∗(M ⊠M ′)→ f∗M ⊠M ′ in F (b′).

� Conversely, let it be given a B⨿-relative symmetric monoidal ∞-category p⊗ : A⊠ → B⨿. Then, the
cocartesian fibration at the level of the underlying categories (see [5],A.6) defines a functor F : Bop →
Cat∞ under the Straightening equivalence.
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Informally, it acts on objects by taking the fibre F : b ↦→ Ab into the underlying category A. Under
the equivalence in B.5.0.3, the image of F factors through SymMon, so each fibre is endowed with a
symmetric monoidal structure A⊗

b such that the transition maps in the diagram of F are symmetric
monoidal functors. Moreover, by an application of the previous discussion to the construction [F : b ↦→
A⊗
b ], such symmetric monoidal structures turn out to be induced by that of A⊠.

In other words, the encoded tensor product of A⊗
b can be described as follows: for any M,M ′ ∈ A⊗

b ,
M ⊗bM ′ := ∆∗(M ⊠M ′) for ∆ : b→ b× b the diagonal map in B.

C The ∞-Topos of Sheaves

The notion of a topos plays a prominent role in modern Mathematics. In this section we will review the
generalization of it to the ∞-world, according to Lurie’s [24],6.
The author aims at motivating the several compatible definitions of ∞-sheaves which lay the foundations of
Derived Algebraic Geometry. For such a reason, after a brief digression on ∞-topoi, we will immediately
present Grothendieck sites on∞-categories and D-valued∞-sheaves on C, for any ’nice’∞-categories C and
D.
However, if in the classical case this would provide a complete description of topoi, in the ∞-world this is no
longer true.
Indeed, every ordinary topos is equivalent to a Grothendieck topos, namely to a category of sheaves on some
Grothendieck site. More explicitly, every ordinary topos is equivalent to a left exact localization of some
presheaf category SetC

op

and, for each ordinary category C ∈ Cat1, such localizations are in bijection with
Grothendieck topologies on C.
Inspired by such a feature, we will define an ∞-topos to be an accessible exact Bousfield localization of a
presheaf ∞-category over some small C ∈ Cat∞.
However, what will no longer hold is the bijection between such localizations and Grothendieck topologies
on C. More explicitly, we will observe that Grothendieck sites on an ∞-category C arise as ’topological’
localizations of P(C). This will lead us to define ∞-sheaves as ’topologically’-local presheaves.
Then, as in the classical case, the notion of an ∞-sheaf will admit a number of more manageable compatible
reformulations, according to the level of generality needed. This will be the content of our last section, which
will also be concerned with providing a proof of such compatibilities, whenever they are simultaneously
well-defined.

C.1 ∞-Topoi

In the current subsection we will generalize to the∞-world the notion of an ordinary topos, both extrinsically
and intrinsically.
In order to do so, we will state an enhanced ∞-version of Giraud’s Theorem and motivate Čech nerves of
morphisms. In what follows, the latter will generalize the classical notion of a sheaf on a topological space
to the ∞-world. We defer to section [24],6.1 for more details.

Definition C.1.0.1. (Extrinsic, [24],6.1.0.4) Call ∞-topos an accessible (left) exact Bousfield localization
of the presheaf category over any small ∞-category.

In other words, to quote Lurie’s comment, we are extrinsically characterizing∞-topoi among all∞-categories
to be those which constitute the smallest class in Cat∞ containing Spc and being stable under certain
operations, such as left exact localizations and the formation of functor categories.

On the other hand, an enhancement of the well-known classification theorem for Grothendieck topoi provides
a more intrinsic perspective.
The latter result is generally known as Giraud’s Theorem and we defer to [27],A.1.1 for a detailed discussion.
In what follows, however, we will adopt a more elegant formulation for presentable categories, as stated by
Lurie in [24],6.1.0.1.
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Theorem C.1.0.2. (Intrinsic, [24],6.1.0.6) For an ∞-category X , tfae:

� X is an ∞-topos;

� X satisfies the following version of Giraud’s Axioms:

1. X is presentable;

2. colimits in X are universal, i.e. base-change along any morphism in X preserves colimits or,
equivalently (by 1.2.0.5), any base-change functor admits a right-adjoint;

3. coproducts in X are disjoint, i.e. given any product of two objects in X , the base-change of a
canonical inclusion along the other one is an initial object of X ;

4. groupoid objects in X are effective.

The first three axioms are an evident generalization of Giraud’s, whereas the fourth one imports a notion
of ’effective equivalence’ in the ∞-world. A few comments on this are noteworthy, since it will lead us to
introduce Čech nerves.

In the classical context, given C ∈ Cat1, we define an equivalence relation R on x ∈ C to be a subobject of
the self-cartesian product R ≤ x× x inducing a set-theoretical equivalence relation of generalized points.
Whenever C is finitely bi-complete, we notice that, for any f : x → y, the kernel pair x ×y x is always an
equivalence on the source x. Therefore, it makes sense to wonder whether they actually exhaust the whole
class of equivalences. This is generally not the case, so we call effective those equivalences arising in such a
way, namely as kernel pairs of epimorphisms. Consistently, by extension also these special epimorphisms are
said to be effective.

Again quoting Lurie: being it intimately connected with the notion of epimorphism, a straightforward gen-
eralization of the notion of equivalence is however out of sight: the ’correct’ corresponding notion of spaces
is that of a ’surjection on path components’, but homotopy kernel pairs need no longer be subobjects of
homotopy self-products.
This pathological behaviour occurs because we are willing to represent kernel pairs ’internal to’ spaces by
the limit of a 1-truncated co-simplicial object of Spc.
In order to solve such an issue, we are forced to generalize kernel pairs with a suitable simplicial object of
Spc and let an equivalence be the canonical morphism out of its geometric realization.
More explicitly, given a surjection f : X → Y in Spc, a ’kernel pair’ for f should be a space consisting of pairs
of connected components of X which are (universally) coequalized by f . The homotopy-coherence condition
will be achieved by considering the geometric realization of a ’nice’ simplicial object U• in C starting with
U0 ≃ X, which will be called a groupoid object of C. On the other hand, the coequalizing property will mean
that U• will admit a particular ’coherent’ augmentation U+

• by f - called the Čech nerve of f - which will
(geometrically) realize U• as a simplicial resolution of Y ; in other words, we will have the following exact
diagram

U•+1
−→−→ U0 ≃ X

f−→ Y

with |U•| ≃ U+
• (−1) ≃ Y .

As in the classical case, such an f will be called effective epimorphism.

Before stating our definitions, however, we need to introduce some preliminary notation. First of all, for any
C ∈ Cat∞, write sC := Fun(N (Delta)op , C).
It will be convenient to perform a square-zero extension of our simplicial objects; to this end, define ∆+ :=
{[−1]} ∪∆ by ’adjoining’ the iso-class of the linearly ordered set with no elements [−1] := ∅ together with
the obvious canonical morphisms.
Then, let us call augmented simplicial object of an∞-category C a functor U+

• : N (∆+)
op → C and let its

restriction U• : N (∆)op → C denote its underlying simplicial object. We will freely adopt all the terminology
and conventions relative to simplicial sets, such as geometric realizations | − |; we will furthermore realize

n-truncations by restricting along N (∆≤n
+ ) ⊆ N (∆+).
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Definition C.1.0.3. (∞-Groupoid Object, [24],6.1.2.6) An ∞-groupoid object in an ∞-category C ∈
Cat∞ is a simplicial object U• : N (∆)op → C of C s.t. for every n ∈ N and every partition [n] = S ∪ S′ with
S ∩ S′ = {s}, then the following square is a pull-back in C:

U([n]) →→

↓↓

U(S)

↓↓
U(S′) →→ U({s})

Let Gpd(C) ⊆f.f. sC denote the full subcategory spanned by groupoid objects in C.

In other words, if U• is ’right exact’, i.e. U• takes to a cartesian square any bi-cartesian square (so any short
exact sequence) in ∆ of the form:

[0]
{s}

→→

{s}
↓↓

[m]

S

↓↓
[n−m]

S′
→→ [n]

Remark. Notice that the previous statement actually produces the correct ’definition’ of a groupoid object,
in that it corresponds to a Kan object in C, namely with the analogous of the right lifting property with
respect to every horn inclusion.
This can be seen as follows. First, notice that a partition as in the statement amounts to one of the spine of
the corresponding n-simplex, and that the right lifting property with respect to spine inclusions implies the
one for all the horns of the right dimension. This allows us to proceed inductively on the length n+ 1 of the
n-spine.
The inductive step for n ≥ 1 goes as follows: A copy of a partition of the n-spine in U• amounts to the
angle U([n−m])→ U0 ← U([m]), while the fact that the square be cartesian is precisely the existence and
uniqueness of the filler. Finally, the base of the induction with n = 0 is clear.
Moreover, let us remark that, as for the usual simplicial sets, the fact that every arrow is an equivalence
amounts to being able to fill all 2-horns, so our terminology is not misleading.

Its coherent augmentation will then be achieved by the following extension.

Definition C.1.0.4. (Čech Nerve, [24],6.1.2.11) Consider an augmented simplicial object U+
• : N (∆+)

op →
C of an ∞-category C, and let f : U0 → U−1 denote its 0-th degeneracy. We call U+

• the Čech nerve of f
whenever the following equivalent conditions hold:

� U+
• is the right Kan extension of U+

• |N (∆
≤0
+ )op

along the inclusion N (∆≤0
+ ) ⊆ N (∆+).

� The underlying simplicial object of C, U•, is a groupoid object of C and the diagram U+
• |N (∆

≤1
+ )op

is a

pull-back square in C:
U1

→→

↓↓

U0

f

↓↓
U0

f →→ U−1

Notice that unwinding the second definition each n-simplex of U+
• will recover the familiar n-fold homotopy

self-fibred product of U0 over U−1 along f itself: Un ≃ U0 ×U−1
· · · ×U−1

U0.
Indeed, adding the final additional cartesian square to U• fixes all the higher ones: given any partition of
[n] we can always post-compose cartesian squares of lower dimensions in each suitable direction and recover
the whole stair; the leaves of our graphs of squares will then be zig-zag’s consisting of copies of the angle
U0 → U−1 ← U0, thus yielding the stated expression for Un.

We are finally ready to give content to the previously sketched intuition for an effective relation.
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Definition C.1.0.5. (Effective Groupoid, [24],6.1.2.14) A simplicial object U• in an ∞-category C ∈ Cat∞
is said to be an effective groupoid if it can be extended to a colimit diagram U+

• : N (∆+)
op → C with

U+
• being a Čech nerve.

Remark. As observed by Lurie at the end of section [24],1.2, already in Spc our requirement that every
groupoid be effective is not that trivial. Indeed, any groupoid object U• ∈ sSpc with contractible U0 ≃ ∗
can be regarded as a space U1 equipped with a coherently associative multiplication operation (incarnated
by the composition of morphisms). The augmenting square

U1
→→

↓↓

∗

↓↓
∗ →→ U−1

corresponds to U1 being a loop space. Hence, requiring every groupoid object to be effective means asking
that any associative multiplication on a space can be realized by a loop space.

Now, observe that augmenting a groupoid object and requiring everything to be compatibly made of pull-
backs (so, the property of effectiveness) still needs not imply that the Čech nerve U+

• is the geometric
realization of its underlying simplicial object |U•|. In other words, our map f : X = U+

0 → U+
−1 = Y needs

not be terminal, i.e. (−2)-truncated, in X/Y . However, the following results proves that there must be some
’compatible’ monomorphism f ′ : |U•| ↪−→ Y , i.e. a (−1)-truncated object of X/Y .

Proposition C.1.0.6. ([24],6.2.3.4) Let X ∈ Cat∞ be a (semi)topos (so, we do not require coproducts to
be disjoint), and consider a morphism f : U0 → x in X . Let U• := Č(f)|∆op denote the simplicial object

underlying the Čech nerve of f . Let v ≃ |U•| ∈ X denote a realization of U•.

U0

f
↘↘

→→ v

f ′

↙↙
x

Then, the above triangle identifies f ′ with a (−1)-truncation of f in X/x.

We can then formulate the following criterion describing when an effective groupoid realizes its added object.
We will define the class of effective epimorphisms to be the one consisting of those morphisms f : X → Y
whose Čech nerve Č(f) realizes the target Y .

Corollary C.1.0.7. (Effective Epimorphism, [24],6.2.3.5) Let X ∈ Cat∞ be a (semi)topos. For a morphism
f : U0 → x in X , tfae:

1. As an object over x, the (−1)-truncation of f ∈ X/x is terminal, namely τ≤−1(f) ∈ (X/x)term;

2. The Čech nerve Č(f) is a simplicial resolution of x, i.e. |Č(f)|∆op | ≃ x ≃ Č(f)(−1).

In such a case, we call f an effective epimorphism.

For future reference, let us record (without proof) some properties of effective epimorphisms.

Proposition C.1.0.8. (Properties of effective epimorphisms) Let X be a (semi)topos and let EffEpi(X )
denote the class of effective epimorphisms of X . Then,

� EffEpi(X ) is closed in X under small coproducts ([24],6.2.3.11), composition ([24],6.2.3.12), base-
change ([24],6.2.3.15).

� Given two morphisms f , g and any choice of a composition g ◦ f in X , then g ◦ f ∈ EffEpi(X ) implies
g ∈ EffEpi(X ) ([24],6.2.3.12).

� Base-change along any g ∈ EffEpi(X ) detects effective epimorphisms of X ([24],6.2.3.15) and is con-
servative ([24],6.2.3.16).
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Moreover, effective epimorphisms arise ’naturally’ as those canonical maps expressing simplicial colimits as
quotients of a free coproduct by relations.

Proposition C.1.0.9. (Colimits as quotients, [24],6.2.3.13) Let X be a (semi)topos and consider a simplicial
diagram p : K → X with colimit cone p : K → X . Let∞ denote the terminal point of K. Then, the canonical
map (which is well-defined up to contractible ambiguity as in [20],4.3.21)

∐︁
K0
p(k) ↠ p(∞) is an effective

epimorphism.

After a brief digression on group actions, the rest of this section will be devoted to proving that, as in
the classical case, we can characterize sheaves on a site by the fact that they preserve the effectiveness of
epimorphisms and finite products.

C.2 Group Actions and Principal ∞-Bundles

In this subsection, we briefly present an application of the notion of effective groupoids and of Giraud’s
Axioms, namely the theory of group actions and principal∞-bundles. Two excellent expositions on the topic
are [30] and [16],4, for a more intuitive overview.
Before getting started, let us anticipate a couple of advantages of adopting the ∞-categorical formalism: our
notion of G-action will be automatically principal, so that our G-torsors (equivalently G-principal bundles)
will be automatically locally trivial. This can be intuitively seen as follows: in the classical case, such facts
are shadows of ”higher homotopical coherence conditions”, namely the effectiveness of groupoid objects in
the first case and commutativity up to homotopy in the second one (which automatically encodes gluing
conditions).

In what follows we will consider a topos X and work with its group objects G ∈ Grp(X ), i.e. contractible
groupoid objects in X ; this agrees with Definition B.1.0.9.

Definition C.2.0.1. (Group action, [30],3.1) Let X be a topos and consider a group object G ∈ Grp(X ).
Define a G-action on P ∈ X to be a groupoid object:

(P �G)• :
(︁
· · · −→−→−→ P ×G

ρ=d0−−−−→−−−−→
d1

P
)︁

such that the following conditions are satisfied:

1. d1 : P ×G→ P is the first projection;

2. Base-change along the canonical map P → ∗ induces a morphism (P �G)• → G• of groupoid objects
consisting of cartesian squares:

P ×Gn
pr1 →→

pr ̸=1

↓↓

P

!P

↓↓
Gn

!G →→ ∗

([16],4.14) Equivalently, a G-action on P is a groupoid object U• of X together with an equivalence U0 ≃ P
and a morphism of groupoid objects p : U• → G• induced by [0] → [n] sending 0 ↦→ 0 such that the
squares pn → p0 are always cartesian. In particular, this forces U• ≃ (P � G)• as induced by some action
ρ : P ×G→ P .

We will sometimes denote an action by B(P ;G)• := (P � G)• or simply G ↷ P . Let P � G := [P/G] :=
|P ×G•| ∈ X denote the quotient of the action G↷ P .

Moreover, adopt the following notation for the full sub-slice ∞-category spanned by G-actions:

XG ⊆f.f. Gpd(X )/(∗�G)

Morphisms in XG are called G-equivariant, in that they sit in a commutative triangle over G•.
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Remark. G• is an effective groupoid object by Giraud’s Axioms, i.e. G• ≃ Č(!G)|∆op and the latter resolution
is colimiting. Write BG := [∗/G] ≃ |G•| for the realization. Such a space will play a prominent role in the
theory.

The equivalence in the statement supplies precise mathematical content to the following observation:

Remark. ([30],3.2) Informally, the action ”itself” is given by the map ρ := d0 : P ×G→ P , while requiring it
to fit into such a simplicial diagram enforces the usual axioms of a group action ”up to coherent homotopy”.

Indeed, we can inductively describe the degeneracy maps in (P �G)•; let’s spell out their action in degree 2.
For X := [P/G], we have equivalences:

P ×G×G ≃ (P ×X P )×X P ≃ (P ×G)×X P

Then, the first two degeneracies are the base-change along P → X of those in degree 1, i.e. along the
identification above d0 = ρ×X P ≃ ρ×G and d1 = pr1 ×G. The last one is determined by the equivariance
of p : (P �G)• → G•, namely d2 : P ×m as induced by the multiplication m : G×G→ G (i.e. the self-action
of G).
Hence, the simplicial identities in degree 2 establish the compatibility between the action G ↷ P and the
multiplication G↷ G; in degree 3 they encode compatibility with the associativity-homotopy involved with
acting with three group factors, and so on and so forth for higher compatibility.

Proof. (Of the equivalence) One direction is clear. Conversely, let it be given a groupoid object as in the
definition. Recall that groupoid objects in the topos X are effective by Giraud’s Axioms, so - for X :=
[P/G] ≃ |U•| - it holds U• ≃ Č(P → X). Now, the squares pn → p0 are induced by the n-fold composition
of the 0-th degeneracy maps, which forces P×Xn ≃ P ×Gn; in particular the canonical pull-back projections

(d1, d0) : P ×X P ≃ P ×G −→−→ P can be identified with (ρ, pr1). □

Remark. (Principality condition, [30],3.7) G-actions are automatically principal, in that the effectiveness of

groupoid objects in a topos retrieves - in coordinates - the equivalence (ρ, pr1) : P ×G −→−→ P ×X P .

Remark. (Trivial action, [30],3.10) Let G ∈ Grp(X ) be a group object in a topos X . Any object P ∈ X can
be endowed with a trivial action P ×G• (so with ρ = pr1). These correspond to base-changes g∗(∗ → BG)
along trivial maps g : P → ∗ → BG:

P ×G
pr1
↓↓↓↓

→→ G →→

!G
↓↓↓↓

∗

pt
↓↓↓↓

P
!P →→ ∗ →→ BG

Definition C.2.0.2. (G-torsors and GBund, [30],3.4) Let G ∈ Grp(X ) be a group object in a topos X .
A G-torsor (or G-principal bundle) on an object X ∈ X is a pair (G ↷ P, f : P ↠ X) such that:
f ∈ EffEpi(X ) is an effective epimorphism inducing an equivalence (P � G)• ≃ Č(f)|∆op , i.e. f is the
canonical map f : (P �G)0 → [P/G] ≃ X.

A morphism of G-torsors over X is an equivariant map in XG/X . Such data can be grouped into the following
∞-category of G-torsors:

GBund(X) := XG ×X {X} ≃ FibX
(︁
XG ⊆f.f. Gpd(X )/(∗�G)

for→ Gpd(X ) colim→ X
)︁

Remark. In [16],4.19, A. Khan posits as definition an almost verbatim generalization of the classical approach:
we morally defined a G-torsor over X as a G-action (P � G)• such that [P/G] ≃ X and endowed with a
choice of both an identification α : [P/G] ≃ X and of an equivariant lift of f := α◦ (P → [P/G]) (a canonical
one would be the map f• := f ×G•). The choice of an identification of the quotients is part of the datum of
taking fibres in Cat∞ over X.

Remark. We actually defined a presheaf of ∞-categories GBund : X op → Cat∞ which acts by pull-back
on morphisms f : X → Y . Indeed, as in [30],3.8, one can prove that XG is stable under base-change:
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any base-change f∗[P1/G] of the quotient of an action (P1 � G)• is still the quotient [P2/G] of an action
(P2 � G)• ≃ f∗(P2 � G)•. This holds true because taking pull-backs preserves effective epimorphisms (see
C.1.0.8,i) and Čheck nerves (recursively given by taking pull-backs) together with their colimits (by Giraud’s
Axioms, colimits in a topos are universal).

Our next aim is to exhibit a moduli stack classifying G-torsors for a given group object G ∈ Grp(X ), i.e.
representing a factorisation of the Cat∞-presheaf GBund′ : X op → Spc.

Proposition C.2.0.3. (Universal G-principal bundle, [30],3.13) For each G-torsors (P → X) ∈ GBund(X),
the canonical map !P : P → ∗ induces a cartesian square. The G-torsor ∗ → BG is called the universal
G-principal bundle.

P
!P →→

↓↓↓↓

∗

pt

↓↓
X ≃ [P/G] →→ BG

Proof. First observe that - according to our definition - G-torsors are automatically locally trivial: since they
are automatically locally principal, there exists always some (U ↠ X) ∈ EffEpi(X ) for which U×G ≃ P×XP
over U (e.g. take U = P ). Then, consider a trivialization of P → X:

U ×G →→ →→

pr1
↓↓↓↓

P
!P →→

↓↓↓↓

∗

pt
↓↓↓↓

U →→ →→ X →→ BG
We need to show that the right square in the above diagram is cartesian. Notice first that the left square is
cartesian by definition of local trivialization, so - by C.1.0.8,i - also U ×G→ P is an effective epimorphism;
this is equivalent to P ≃ |(U ×G)×Pn| by the effectiveness of groupoid objects.

Claim. (U ×G)×Pn ≃ (U×Pn)×G
Proof. Let’s argue by induction on n. For n = 1 it is clear, so assume n > 1: this follows by post-composing
with the (cartesian) left-square and by applying the inductive premise:

(U ×G)×P (n+1) ≃ U ×X (U×Xn)×G ≃ U×X(n+1) ×G ■

Hence, we conclude by the following chain of equivalences:

P ≃ |(U ×G)×Pn| ≃ |(U×Xn)×G| ≃ |pt∗(U×Xn)| ≃ pt∗|U×Xn| ≃ pt∗X

which is implied by (in this order) the Claim, the construction of trivial actions (this is a commutative
extension of the original diagram, because also U → BG is trivial), the universality of colimits, and (U ↠
X) ∈ EffEpi(X ). □

Proposition C.2.0.4. (GBund presheaf, [30],3.16) The construction [X ↦→ GBund(X)] assembles into a
presheaf X → Spc.

Proof. The definition is clearly functorial X → Cat∞, so we are left to check that GBund takes values in
∞− Gpd, and hence in Spc by localizing at weak equivalences. Consider GBund(X) for some X ∈ X , and
let’s prove that all its 1-simplices are equivalences. To this end, let f : P0 → P1 be an equivariant map of
G-torsors over X, i.e. a morphism of Čech nerves f• : (P1 � G)• → (P2 � G)• which retrieves f0 = f and
induces an equivalence of geometric realizations |f•| : [P1/G] ≃ [P2/G].
Our setting can be represented as in the diagram below, where the two slanted squares are cartesian by
C.2.0.3; therefore, f ≃ pt∗(1X) is forced to be an equivalence.
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P1

↓↓

↘↘

f

→→
P2

↙↙

↓↓

∗

pt

↓↓↓↓

X

↘↘

X

↙↙
BG

□

Finally, let us record a useful computation of the generalized points (so defined vie the Yoneda Lemma and
the Density Theorem) of a G-torsor. This will specialize in the classical classification result for G-torsors and
exhibit BG as the moduli stack representing GBund(−).
We will mostly apply it when dealing with quotient stacks, so as to classify particularly interesting classes of
vector bundles on a scheme.

Theorem C.2.0.5. (Functor of points of a G-torsor, [16],4.28) Let (G�P )• ∈ XG be an action groupoid, and
let p : (G � P )• ↠ [P/G] be the canonical G-torsor exhibiting its geometric realization. Define the functor
of points of [P/G] as [P/G](−) := MapX (−, [P/G]). Then, base-change along p induces an equivalence

[P/G](−) ≃ MapXG(−, (G � P )•)
The action on objects of [P/G] can then be described as follows: for each T ∈ X , [P/G](T ) is the space
spanned by co-angles of the form:

(G � Y )•
f• →→

π
↓↓↓↓

(G � P )•

T ≃ [Y/G]

for a G-equivariant map f : Y → P and a G-torsor π over the given T .

In particular, for P = ∗, we recover the classification of G-torsors: BG(−) = [∗/G](−) ≃ GBund(−). In
other words, BG is the moduli stack for GBund.

Proof. First recall that all groupoids in the topos X are effective by Giraud’s Axioms. Hence, post-
composition with p yields a map:

p∗ ◦ ev0 : MapXG(−, (G � P )•)→ MapX (−, [P/G])
Let’s prove that it is an equivalence. By [20],2.2.2, it suffices to show the equivalence point-wise on T ∈ X ,
and then fibre-wise on any given ψ : T → [P/G]. In other words, we need to prove the contractility of
the subspace of all the G-equivariant maps f• : (G � Y )• → (G � P )• over ψ : T ≃ [Y/G] → [P/G] for
(G � Y )• → T any G-torsor over T .
To this end, it suffices to show that the essential image of {ψ} under the functor ”base-change along p” is
equivalent to such a subspace. In other words, for any choice of a G-equivariant map f and of a G-torsor π
over T sitting in the following left square, we wish that such a square be cartesian.

(G � Y )•
∀f →→

∀π
↓↓↓↓

(G � P )•
!∗ →→

p
↓↓↓↓

∗

pt
↓↓↓↓

T ≃ [Y/G]
ψ →→ [P/G] →→ BG

Post-compose by the right square, which is cartesian by C.2.0.3; by the pasting law of pull-backs, the left
square is then cartesian iff the total rectangle is such, and this holds true (again by C.2.0.3). □
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C.3 Grothendieck sites

In this subsection we briefly review the Grothendieck sites. A more detailed exposition can be found in
[24],6.2.1-2.
We will start by defining the notions of a sieve and of a Grothendieck site, which stem back to the pioneering
work [39] by Toën and Vezzosi.

Definition C.3.0.1. (Sieve, [24],6.2.2.1) Let C ∈ Cat∞. A sieve on C is a full subcategory C(0) ⊆f.f. C
s.t. for every morphism f : x→ c in C, x ∈ C(0) (i.e. f morphism in C(0)) whenever c ∈ C(0).
Given any c ∈ C, a sieve on c is a sieve on the over-slice ∞-categories C/c.

Moreover, given any morphism f : x→ c in C and any sieve C
(0)
/c , we let f∗C

(0)
/c denote the unique sieve on

x s.t. post-composition by f induces the equivalence C/f ≃ C
(0)
/c as sieves of C/c.

Notation. In what follows, we will introduce a little abuse of notation which will, however, make the
reasoning with Grothendieck topology ’cleaner’. Namely, for any c ∈ C and classes R, S ⊆ C/c of morphisms,

let us denote by S∗(R) the class {f∗(R)|f ∈ S}. Then, we can say, for instance, that a sieve C
(0)
/c on c is

spanned by a class of the form (C/c)
∗(R) for some R ⊆ C/c.

With one additional abuse of notation, we will still use S∗(R) together with symbols (informally) pertaining
to the type ’object’ of S or with functors (etc.) defined object-wise on S, whenever we want to describe a
property which is enjoyed by each element of S.

Definition C.3.0.2. (Grothendieck Topology, [24],6.2.2.1) A Grothendieck topology Cov on an ∞-
category C ∈ Cat∞ is a specification for each c ∈ C of a collection Cov(c) of covering sieves on C which
satisfy the following properties:

1. (Maximum): For each c ∈ C, C/c ∈ Cov(c)

2. (Stability): For every covering sieve C
(0)
/c ∈ Cov(c), (C/c)

∗(C
(0)
/c ) ⊆ Cov(c).

3. (Transitivity): For each c ∈ C and every two sieves C
(0)
/c , C

(1)
/c with C

(0)
/c ∈ Cov(c) covering, then also

C
(1)
/c is covering whenever (C

(0)
/c )

∗(C
(1)
/c ) ⊆ Cov(cod(C

(0)
/c )).

Remark. As in the classical case, the last two properties allow us to check the covering property on ’fibres’
over maps of a sieve.

An interesting feature of our generalization is that we can extend the following property in a non-trivial way:
a Grothendieck topology on the nerve of a 1-category C ≃ N (E) amounts to one on E ∈ Cat1.

Proposition C.3.0.3. (Topology on the homotopy category, [24],6.2.2.3) Let C ∈ Cat∞ be an ∞-category.
Then, a Grothendieck topology on C corresponds precisely to an ordinary Grothendieck site on the homotopy
category ho(C) ∈ Cat1. In other words, for each c ∈ C, there is a bijection of specifications Cov(c) ↔
ho(Cov(c))↔ Covho(c).

Proof. There is a canonical functor η : ho(C/c) → ho(C)/c of ordinary categories which is the identity on
objects and acts on morphisms as follows. Let σ denote an arbitrary 2-simplex in C, namely a choice h of a
composition of the two composable arrows f and g:

x

h ↘↘

f
→→ y

g
↙↙

c

An arbitrary morphism [σ]≃ ∈ Mor(ho(C/c)) corresponds to the homotopy class of the arbitrary 2-simplex
σ ∈ C2 with σ({2}) = c, namely to a choice of a composition of two composable arrows f , g over c.
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On the other hand, an arbitrary morphism σ̄ ∈ Mor(ho(C)/c) is a 2-simplex in the nerve N (ho(C)) with
σ̄({2}) = c and edges homotopy classes of the corresponding morphisms in C. In other words, σ̄ is a
composition of f , g without specifying the choice of the 2-cell realizing it.
Then, the canonical functor η simply acts on morphisms by forgetting the choice of a composition, thus
inducing a surjection on Hom-sets.

But in view of our operative definition of sieves on c ∈ C as classes (C/c)
∗(R) for some R ⊆ C/c, for each

c ∈ C we obtain a bijective correspondence between sieves on c:

{Sieves on ho(C)/c} −→ {Sieves on ho(C/c)}
(ho(C)/c)

∗(R) ↦−→ η−1
(︁
(ho(C)/c)

∗(R)
)︁

with inverse the action of η. Such a bijection is compatible with the axioms of a Grothendieck topology, so
that it restricts to a bijection of covering sieves ho(Cov(c)) ∼= Covho(c). □

Moreover, we can characterize covering sieves on C ∈ Cat∞ by means of a bijection with presheaves in P(C).

Lemma C.3.0.4. ([24],6.2.2.4) Let C ∈ Cat∞ be a small ∞-category. Then, the following functions induce
a bijection between sieves on C and (−1)-truncated presheaves on C.

C(0)(−) : P(C) −→ {Sieves on C}
U ↦−→ C(0)(U) := ⟨{x ∈ C | U(x) ̸= ∅}⟩

δ(−) : {Sieves on C} −→ P(C)
C(0) ↦−→

(︁
δC(0) : C → ∆1 ⊆f.f. Spcop

)︁
where ⟨(−)⟩ denotes the full subcategory of the appropriate ∞-category spanned by the given set. Moreover,
δC(0) is the characteristic functor of the latter category, namely the unique functor C → ∆1 s.t. C(0) ≃
δ−1
C(0)(0). Finally, we regard ∆1 ≃ ⟨{∅,∆0}⟩ ≃ Spc≤−1 ⊆f.f. Spc.

Proof. The construction is self-explanatory. The factorization of δC(0) through P(C)≤−1 is A.5.0.7. □

We will be primarily interested in a relative version of such a construction, which recovers the classical
definition of sieves as standard monomorphisms into representables.
Let us first introduce a bit of terminology. Let X be an ∞-topos, and recall that monomorphisms in X
are (−1)-truncated morphisms; call Mono(X ) ⊆f.f. Fun(∆1,X ) spanned by monomorphisms. Let Sub(c) :=
Mono(X/c) denote the poset of subobjects of c in X . Notice that, by [24],6.2.1.4, they form a small set.

Lemma C.3.0.5. (Sieves as subobjects, [24],6.2.2.5) Let C ∈ Cat∞ be a small∞-category and fix c ∈ C. Let
j : C ↪−→ P(C) denote the Yoneda embedding and define, for any subobject i : U ↪−→ j(c), the full subcategory:

C/c(U) ≃ ⟨
{︁
(f : x→ c) ∈ C/c | ∃σ ∈ P(C)2 : σ{0,2} = j(f) ∧ σ{1,2} = i

}︁
⟩ ⊆f.f. C/c

i.e. f ∈ C/c s.t. j(f) ∈ i∗i∗(P(C)/c).
Then, C/c(U) is a sieve on c ∈ C, and our construction identifies equivalent subobjects of c, so that it defines
a bijection:

C/c(−) : Sub(j(c)) −→ {Sieves on c}
(i : U ↪−→ j(C)) ↦−→ C/c(U)

C.4 Topological Localization

As we already observed in the introduction to this section, sheaves ∞-categories on Grothendieck sites do
not correspond to all exact left localizations of presheaf categories, but only to a special subclass of these,
namely the so-called ’topological’ localizations. In the current subsection we will briefly review this notion,
as presented by Lurie in section [24],6.2.1.

First of all, we establish a criterion for a localization functor of an ∞-category with finite limits for being
left-exact. The proof presented by Lurie is elementary, in that it relies on the theory of Bousfield localizations
and is not a peculiarity of toposes.

Lemma C.4.0.1. (Criterion for left-exact localizations, [24],6.2.1.1) Let L : X → Y be a (Bousfield) left
localization functor of ∞-categories and assume that X admits all finite limits. tfae:
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� L is left-exact, i.e. L preserves finite limits of X.

� For any base-change f ′ of a morphism f in X, then L(f ′) is an equivalence in Y whenever L(f) is such,
i.e. we are performing a localization L with respect to the strong saturation of a class of morphisms
which is stable under pull-backs.

Definition C.4.0.2. (Topological Localization, [24],6.2.1.5) Let X ∈ PrL be a presentable ∞-category, and
consider a strongly saturated class of morphisms S̄ ⊆ Mor(X ). We say that S̄ is topological in case:

1. S̄ is a strong saturation of some subclass S of Mono(X ).

2. S̄ is stable under pull-backs, i.e. for any base-change f ′ of f ∈ Mor(X ), f ∈ S̄ implies f ′ ∈ S̄.

Consider now a left localization of a presentable ∞-category X ∈ PrL, say L : X → Y. L is called a

topological localization whenever Y ≃ X [S̄−1
] for a topological class S̄ ⊆ Mor(X ).

Proposition C.4.0.3. (Properties: topological classes in ∞-topoi) Let X ∈ PrL be a presentable ∞-category
with universal colimits, so e.g. an ∞-topos. Consider a strongly saturated class of morphisms S̄ ⊆ Mor(X ).

1. ([24],6.2.1.2) Assume further that the formation of pull-backs in X commutes with filtered colimits. If
S̄ is strongly generated by some small set S ⊆ Mor(X ), then also the stabilization of S̄ under pull-backs
(so the smallest sup-class of S which is both strongly generated and stable under pull-backs) is generated
by a small set.

2. ([24],6.2.1.6) If S̄ is topological, then it is generated by a small set of Mono(X ).

Proof. (Sketch) Let U ⊆ ob(X ) be a small colimit-dense set of objects in X .
(1) : wlog U := ⟨U⟩ ⊆f.f. X has finite limits. Let S′ be the closure of S in U under (co)base-change and
formation of (co)diagonals. Morphisms of S′ have source and target in U , so the latter is small. One should
then check that S ′̄ is also closed under pull-backs; this is highly non-trivial and technical, so we defer to
Lurie’s work.

(2) : For each x ∈ X , define Sub′(x) := Sub(x)∩S̄
≃ . For each u ∈ U and ˜︁u ∈ Sub′(u) choose a representative

monomorphism f˜︁u ∈ S̄. Let S0 be the collection of all such representatives, and notice that it is small
because, by [24],6.2.1.4 subobjects form small sets. Then, one can check that S0̄ = S̄. □

As a corollary, we obtain the main result of this subsection.

Proposition C.4.0.4. (Topological localizations are accessible and left-exact, [24],6.2.1.7) Topological local-
izations of a presentable ∞-category X ∈ PrL with universal colimits, e.g. X an ∞-topos, are both accessible
and left exact.
In particular, a topological localization of the ∞-topos P(C) of presheaves on any small C ∈ Cat∞ is again
an ∞-topos.

Proof. By the theory of Bousfield left localizations, any localization of X corresponds to the strong saturation
of a class S of local morphisms.
Since X is presentable and colimits are universal, by C.4.0.3, wlog S is a small set. Then, our localization is
accessible by [24],5.5.4.2.
Moreover, by assumption S̄ is stable under pull-backs, which means that the corresponding localization
functor must be left-exact (see C.4.0.1). □

C.5 The ∞-Topos of Sheaves

In the current section we will study several definitions of ∞-categories of sheaves over small Grothendieck
sites. They will achieve different levels of generality and any two of them will be proven to be equivalent
whenever they both make sense.
Furthermore, we will sketch the proofs of the most relevant constructions, such as sheafification, and in-
vestigate in which sense sheaves are determined by the underlying Grothendieck site in homotopy. These
perspectives appear and provide motivation to our approach to derived schemes.
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C.5.1 Sheaves Characterize Sites

Definition C.5.1.1. (Sheaves as local objects, [24],6.2.2.6) Let (C,Cov) be a Grothendieck site on a small
∞-category C ∈ Cat∞. Let S denote the set ∪c∈CCov(c) ⊆ ∪c∈CSub(j(c)) of all covering sieves on C.
Then, a presheaf F ∈ P(C) is a sheaf iff F is S-local. Define then the full subcategory Sh(C) ⊆f.f. P(C)
spanned by S-local presheaves.

Theorem C.5.1.2. (Sheafification is a topological localization, [24],6.2.2.7) Let (C,Cov) be a Grothendieck
site on a small ∞-category C ∈ Cat∞. Then, P(C)→ Sh(C) exhibits the latter as a topological localization.
In particular, Sh(C) is an ∞-topos and one obtains a map of sets:

{(C,Cov) site} −→ {P(C)→ [S−1]P(C) topological loc.}

Proof. (Sketch) Let L : P(C) → Sh(C) be the localization functor with respect to S ≃ ∪c∈CCov(c) ⊆
∪c∈CSub(j(c)). S is generated by monomorphisms, so we need to show its closure under pull-backs or,
equivalently by C.4.0.1, the left-exactness of L.

Let κ be a regular cardinal, s.t. for each c ∈ C and C
(0)
/c ∈ Cov(c), the construction F ↦−→ limF|C(0)

/c

determines a functor P(C)→ Spc which commutes with κ-filtered colimits. By [24],5.3.3.3 it suffices to take
κ > #ob(C)#Mor(C).
We will construct L by transfinite induction as the limit of a continuous chain of functors (Tα : P(C) →
P(C) | α < κ) in such a way that each step Tα will be left-exact.

The inductive step for successor ordinals will consist in an application of the sheafification functor (−)† :
P(C)→ P(C): let’s construct it.
([24],6.2.2.8) On the ordinary site (ho(C),Covho) as in C.3.0.3, define Cov(ho(C)) ∈ Cat1 to be the ordinary

category with objects those pairs (c, ho(C)
(0)
/c ∈ Covho(c)) and morphisms those maps f : c → c′ s.t. base-

changing along them gives f∗(ho(C)
(0)
/c′) = ho(C)

(0)
/c .

This induces the ∞-category Cov(C) := C ×N (hoC) N (Cov(hoC)) together with the forgetful functor ρ :
Cov(C)→ C. Notice that the fibre of ρ over c ∈ C is N (Covho(c)) ∼= Cov(c) as posets.
([24],6.2.2.9) Then, consider the full subcategory C+ ⊆f.f. Fun(∆1, C)×Fun({1},C)Cov(C) spanned by {(x→
c ∈ C(0)

/c ) | C
(0)
/c ∈ Cov(c)}.

The latter comes equipped with the following forgetful functors:

� e : C+ → C given by e = ev0 ◦ ev1;

� π : C+ → Cov(C) given by π = ev1 ◦ ev1 × ev2.

Consider the restriction of presheaf categories induced by the functors e, π and ρ together with the corre-
sponding Kan extensions π∗ ⊢ π∗ and ρ! ⊢ ρ∗.
Then, define the sheafification functor by

(−)† : P(C) e∗−→ P(C+)
π∗−→ P(Cov(C)) ρ!−→ P(C)

By closely inspecting the fibres of the functors involved as in [24],6.2.2.10-11, we can pictorially describe the
action of (−)† on a presheaf F ∈ P(C) as follows:

F† : c ↦−→ colim
−−−−−→

C
(0)

/c
∈Cov(c)

lim
c′∈C(0)

/c

F(c′)

Furthermore, notice that (−)† ≃ ρ! ◦ π∗ ◦ e∗ is left exact, since all functors involved are such.

We will now define our continuous chain of functors as follows. Let [κ] be the initial segment of ordinals
α ∈ Ord which are less than κ. For each F ∈ P(C), define inductively a functor TF : N [κ]→ Fun(P,P(C))
on the spine [κ] as follows:

� TF(0) := idP(C)

� β+ successor ordinal: TF(β+) :=
(︁
TF(β)

)︁†
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� α limit ordinal: TF(α) := colim
−−−−−→

(︁
TF(β) , uβ,γ : TF(β) → TF(γ) | β < γ < α

)︁
with transition

morphisms induced under continuity by uβ := u0(TF(β)) with u0 : idP(C) → (−)† being the natural
transformation of [24],6.2.2.13.

By the properties of the sheafification functor together with [24],5.3.3.3, TF(α) is clearly left-exact at each
step, and hence also at TF(κ), which remains defined by the regularity of κ.
Moreover, notice that for each α ≤ κ we obtain a canonical comparison map F → TF(α).
The last (technical) step will be to show that the construction F ↦−→ TF(κ) acts as the localization functor
L : F ↦−→ LF , i.e. that the canonical map F → TF(κ) is S-local and that TF(κ) ∈ P(C) actually defines a
sheaf in Sh(C,Cov). For these we defer to the proof by Lurie at [24],pp.582.
This will mean, indeed, that the canonical map L(limFi)→ limL(Fi) will be point-wise an equivalence, and
hence an equivalence of functors. □

Now, we wonder whether also a converse result holds, namely whether the map of sets given by (C,Cov) ↦−→(︁
P(C)→ Sh(C,Cov)

)︁
is bijective.

In other words, whether a topological localization of a category of presheaves P(C) on a small C ∈ Cat∞
needs necessarily be a category of sheaves on some site on C.
Clearly, in order to classify sites by presheaves, we would like equivalent topological localizations to yield the
same site. This will be ensured by the next Lemma.

Lemma C.5.1.3. ([24],6.2.2.16) Let (C,Cov) be a site on a small C ∈ Cat∞, and let L : P(C) → Sh(C)
denote the corresponding topological localization with respect to some S as in the definition of the sheaves
∞-topos.

By the bijection of C.3.0.5, any sieve C
(0)
/c on c corresponds to a unique subobject i : U ↪−→ j(c) ∈ Sub(j(c)).

Then, C
(0)
/c is covering iff L(i) is an equivalence, i.e. i ∈ S̄ belongs to the strong saturation of S.

In particular, equivalent localizations with respect to sets S, T (so for equivalent strong saturations S̄, T̄ )
yield the same Grothendieck site (C,Cov).

Proof. ( =⇒ ) : if C
(0)
/c ∈ Cov(c) is covering, then i ∈ S, and L takes S to equivalences of P(C).

(⇐= ) : Assume now that L(i) is an equivalence, i.e. i ∈ S̄ lives in the strong saturation. Then, by A.5.0.7,
π0(Li) ≃ τ≤0(Li) ≃ L(τ≤0i) must be an equivalence. In the ordinary setting, the latter can be identified with
a standard monomorphism η : hoF ⊆f.f. HomhoC(−, c) in Psh(hoC,Set) := Fun(hoC,Set), where

hoF(x) := {(f : x→ c) ∈ hoC/c | f ∈ hoC
(0)
/c
∼= ho(C

(0)
/c )}

Being L(hoF) ∈ Sh(hoC,Set) a sheaf, if η becomes an isomorphism after sheafification, then the identity
1c ∈ L(hoF)(c) ’locally’, by which we mean that there is an arbitrary family {fi : ci → c | i ∈ I} generating
a covering sieve hoC

(1)
/c ∈ hoCov(c) s.t. for each i ∈ I it holds fi = f∗i (1c) ∈ hoF(ci). By C.3.0.3, hoC

(1)
/c =

ho(C
(1)
/c ), so this lifts to a similar condition on our sheaf LF ∈ Sh(C). In particular, then, fi ∈ F(ci) implies

fi ∈ C(0)
/c , and hence C

(1)
/c ⊆ C

(0)
/c . Thus, C

(1)
/c ∈ Cov(c), entails C

(0)
/c covering, as required. □

Then, in view of the previous results, we can finally complete the classification of Grothendieck sites.

Proposition C.5.1.4. (Sheaves classify sites, [24],6.2.2.17) Let C ∈ Cat∞ be a small ∞-category. Then,
Grothendieck sites over C correspond bijectively up to isomorphism to topological localizations of P(C):

{(C,Cov) site} 1:1↔ {P(C)→ [S−1]P(C) topological loc.}/∼=

Proof. (Sketch) By the previous results, we already have an injective map from left to right. We need to

show that it is also surjective, namely that every topological localization L : P(C)→ [S̄
−1

]P(C) comes from
a Grothendieck site on C. Let S̄ ⊆ Mor(P(C)) be the strongly saturated class with respect to which we

localize. Consider the small set S := {i : U
j
↪−→ (c) ∈ Sub(j(c)) | c ∈ C ∧ i ∈ S̄} of S̄-local subobjects of

representables in P(C).
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We will construct a site (C,Cov) s.t. [S̄
−1

]P(C) is equivalent to Sh(C,Cov).
It can be proved that the given S̄ is actually the strong saturation of the constructed S ⊆ MonoP(C). Hence,
with reference to C.3.0.5, define for each c ∈ C the specification Cov(c) := C

(0)
/c (S). Finally, one can show

that (C,Cov) is actually a Grothendieck site: this will automatically yield Sh(C,Cov) ≃ [S−1]P(C) by our
construction. □

C.5.2 Example: Finitary Sites

We provide now an interesting class of examples in view of our applications to Derived Algebraic Geometry.
We defer to Lurie’s Appendix [26],A.3.1 to SAG for more details.

Definition C.5.2.1. ([26],A.3.1.1) Let (C,Cov) be a small site on C ∈ Cat∞ which admits pull-backs.

We say that a covering sieve C
(0)
/c ∈ Cov(c) is a finite cover whenever it is generated by a finite family of

morphisms. A finite cover is then called a covering morphism in the case it admits a single generator.
We say that the site (C,Cov) is finitary iff every sieve in Cov refines (i.e. contains) a finite cover.

Remark. For any site (C,Cov) on C ∈ Cat∞ with pull-backs, consider the finitary site Cov′ consisting of
those covering sieves of Cov which refine a finite cover. Then, (C,Cov′) is the finest finitary topology on C
which is coarser than the original one. Call Cov′ the finitary sub-topology induced by Cov.

Proposition C.5.2.2. (Abundance of finitary sites, [26],A.3.2.1) Let C ∈ Cat∞ admit pull-backs and uni-
versal finite coproducts, and consider a class S ⊆ Mor(C) which enjoys the following stability properties (e.g.
S topological):

1. S is stable under pull-backs;

2. S is closed under equivalence;

3. S is stable under finite coproducts and composition.

Then, we can endow C with a finitary topology (C,Cov) defined as follows:

C
(0)
/c ∈ Cov(c) ⇐⇒ ∃

{︁
ci → c | i ∈ I finite

}︁
⊆ C(0)

/c s.t.
(︁∐︂

ci → c
)︁
∈ S

We call such a site the site of covering morphisms on C with respect to S.

C.5.3 Čech Descent

In this subsection, we will generalize the usual definition of a sheaf on an ordinary site (C,Cov) with values
in an arbitrary (enough complete) category D as a contravariant functor Cop → D which preserves finite
products and ’effective equalizers’.

Definition C.5.3.1. (D-valued C-sheaves) Let (C,Cov) be a site on a small ∞-category C ∈ Cat∞ and let
D ∈ Cat∞ have (enough) limits.

([26],A.3.2) Then, a functor F : Cop → D is a C-sheaf with values in D iff for each c ∈ C and covering

sieve C
(0)
/c ∈ Cov(c), F(c) ≃ limF|(C(0)

/c
)op

.

([22],1.1.9) More explicitly, we are requiring the following extensions to be colimit diagrams in Dop with
equivalent vertex at ∞:

C
(0)
/c ⊆f.f. C/c

for−→ C
Fop

−→ Dop

In other words, a presheaf F : Cop → D is a sheaf iff it is a left Kan extension along the Yoneda embedding
j of the inclusion of each covering sieve.

Let ShD(C) ⊆f.f. Fun(Cop , D) denote the full subcategory spanned by C-sheaves with values in D.
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Remark. As for the equivalence of the two formulations, by the ∞-Density Theorem [24],5.1.5.3:

colim
(︁
C

(0)
/c ⊆f.f. C/c

for →→ C

↓↓

↘ ↙ j →→ P(C) Fop
→→ Dop

)︁
≃ colimFop

|C(0)

/c

colim
(︁
C/c

for →→ C ↘
↙ j →→ P(C) Fop

→→ Dop
)︁
≃ Fop(c)

So, the second formulation amounts to requiring the canonical comparison map to be an isomorphism.

Let us show that we reduce to the previous definition, in the case of D = Spc and that Sh(C) ≃ ShSpc(C).

Lemma C.5.3.2. (Sheaves are exact on covers) Let (C,Cov) be a small site. A presheaf F ∈ P(C) is a

sheaf iff for each c ∈ C and each C
(0)
/c ∈ Cov(c) the canonical comparison map F(c) → limF|(C(0)

/c
)op

is an

isomorphism.

Proof. Let L : P(C) → Sh(C) be the topological localization with respect to S = ∪c∈CCov(c). F ∈
P(C) is a sheaf iff it is S-local, namely iff for every subobject i : U ↪−→ j(c) ∈ Sub(j(c)) it holds F(c) ≃
MapP(C)(j(c),F) ≃ MapP(C)(U,F) ≃ F(U) in Spc.
Now, by the Density Theorem [24],5.1.5.3, we can write U ≃ colimj(x)/U j(x) as a colimit of representa-
bles over the ∞-category of Grothendieck elements. Here, with reference to C.3.0.5, the latter is precisely

C
(0)
/c (U) ∈ Cov(c). Therefore, we can test the sheaf condition by

F(c) −→ F(U) ≃ lim
(C

(0)

/c
(U))op

Map(j(x),F) ≃ limF|(C(0)

/c
(U))op

and we conclude by applying again the above C.3.0.5: each sieve in Cov(c) corresponds to a subobject of the
representable j(c), so in our argument we are actually considering all covering sieves on c. □

Moreover, as proved by Lurie in [22],1.1.12, whenever the source is ’enough’ cocomplete, so e.g. on an ∞-
topos X , then D-sheaves on X are precisely those functors X op → D which preserve arbitrary limits, i.e.
ShD(X ) ≃ FunR(X op , D). More precisely, we have the following compatibility result.

Proposition C.5.3.3. (Sheaves preserve limits, [22],1.1.12) Let (C,Cov) be a small site on C ∈ Cat∞ and
consider a topological localization L : P(C)→ ShSpc(C) = Sh(C).
Let D ∈ Cat∞ admit arbitrary limits. Then, the canonical comparison map is an equivalence:

u∗ := (L ◦ j)∗ : ShD
(︁
Sh(C)

)︁ ≃−→ ShD(C)

Proof. First recall that, by [24],5.1.5.6, right Kan extension along the Yoneda embedding j yields an equiv-
alence (jop)∗ : FunR(P(C)op , D) ≃ Fun(Cop , D), where FunR(P(C)op , D) ⊆f.f. Fun(P(C)op , D) is the full
subcategory spanned by limit-preserving functors, namely by right-derived functors for the presheaf construc-
tion P.
Now, [24],5.5.4.20 together with a formal manipulation, we can embed ShD(Sh(C))

f.f.
↪−−→ FunR(P(C)op , D)

with essential image spanned by those functors F : P(C)op → D s.t.

� F preserves all limits;

� for each cover C
(0)
/c ∈ Cov(c), if i : U ↪−→ j(c) ∈ SubP(C)(j(c)) is the corresponding subobject, then

F(i) ∈ MorD is an equivalence.

By C.5.3.2 and the previous remark, this amounts to F ∈ ShD(C).

Hence, we obtain an embedding of ShD(Sh(C)) into D-valued presheaves on C:

ShD(Sh(C))
f.f.
↪−−→ FunR(P(C)op , D) ≃ Fun(Cop , D)

with essential image ShD(C), as required. □
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Lemma C.5.3.4. Let C, D be ∞-categories. In any statement on D-valued presheaves on a site (C,Cov)
involving (co)limits which exist in D, these (co)limits can be considered wlog in D = Spc.
In particular, given a presheaf F : Cop → D, F ∈ ShD(C) iff MapD(d,−) ◦ F ∈ Sh(C) for each d ∈ D.

Proof. This is the first reduction step in [26],A.3.3.1. By [24],5.1.3.2, corepresentables (resp. representables)
in P(D) commute with those limits (resp. colimits) which exist in D, so wlog they can be computed in
Spc. □

Finally, the next result states the announced generalization. The proof is technical and involved, so we
present the main ideas and defer to Lurie’s [26],A.3.3.1 for more details.

Theorem C.5.3.5. (Sheaves as preserving finite products and effective epimorphisms, [26],A.3.3.1) Let
C ∈ Cat∞ be a small∞-category with pull-backs, and assume further that finite coproducts in C are universal
and disjoint.
Consider a class S ⊆ Mor(C) as in C.5.2.2, so stable under pull-backs, finite coproducts and composition,
and closed under equivalences.
Moreover, let D ∈ Cat∞ be an arbitrary ∞-category with finite products and admitting limits over Čech
nerves.

Then, a functor F : Cop → D is a D-valued C-sheaf on the site (C,Cov) of covering morphisms of C (see
C.5.2.2) iff the following properties hold:

1. F preserves finite products;

2. For each morphism f : U0 → c ∈ S, the augmented simplicial object

∆+
Č(f)op−→ Cop F→ D

is a limit diagram, i.e. F(c) ≃ limF|Č(f)op .

Proof. As observed in C.5.3.4, wlog D = Spc.
( =⇒ ) : Let F : Cop → Spc be a sheaf on C, and let us verify that it enjoys the stated properties.
(1) : For any finite coproduct c :=

∐︁n
i=1 ci ∈ C we will show by induction on n that the canonical map

F(c)→
∏︁n
i=1 F(ci) is an equivalence.

� n = 0. c ∈ C init and the empty sieve := C init ∈ Cov(c) is a covering sieve by the maximality axiom. But,
then, F sheaf implies (by [24],6.2.2.18) that F(c) ∈ Spcterm, which equivalent to the empty product.

� n = 1. There is nothing to prove.

� n = 2. Consider the finite cover C
(0)
/c := ⟨c1 → c← c2⟩ generated by the canonical inclusions. Since F

is a sheaf, F ≃ limF|(C(0)

/c
)op

, so we are left to prove that the latter is equivalent to F(c1)×F(c2).

(Sketch of the proof.) Let p : Λ2
0 → C

(0)
/c be the angle generating C

(0)
/c . Assume p to be cofinal, i.e.

that the exactness of F on a finite cover generated by an angle can indeed be checked on such an
angle. (This is a pretty involved, although instructive, application of Joyal’s Theorem together with
the following observation.)

Let p denote a limiting cone for p, i.e. a pull-back, as represented by

c1 ×c c2 →→

↓↓

c1

↓↓
c2 →→ c1

∐︁
c2 ≃ c

Since coproducts in C are disjoint, c1 ×c c2 must be initial, so that F(c1 ×c c2) ∈ Spcterm. Therefore,
it holds F|(Λ2

0)
op ≃ RanF|{1,2}op , and (by [24],4.3.2.7) the restriction along the inclusion {1, 2} ⊆ Λ2

0 is
cofinal: limF|(Λ2

0)
op ≃ limF|{1,2}op ≃ F(c1)×F(c2).
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� n > 2. Set d :=
∐︁n−1
i=1 , so that c ≃ d

∐︁
cn and apply the induction assumption.

(2) : Let f : U0 =: X ↪−→ j(c) be a morphism in S and let C
(0)
/c ∈ Cov(c) be the covering sieve generated by f .

Notice that, by the construction of Čech nerves, this is precisely the sieve corresponding to U• ≃ Č(f)|∆op

as in C.3.0.5.

By the stability property of sieves under pull-backs, (with a slight abuse of notation) U• : ∆op U•−→ C
(0)
/X

f∗−→
C

(0)
/c factors through the corresponding sieve.

Since F is a sheaf, F(c) ≃ limF|(C(0)

/c
)op

, so that we are left to show that U• : ∆op → C
(0)
/c is coinitial, so as

to obtain that limF|Uop
• (∆) ≃ F ◦ Č(f)op exhibits the latter as a limit diagram.

In order to see it, we will apply Joyal’s Criterion A.1.0.2: we need to prove that for each g : c′ → c ∈ C(0)
/c ,

the category E := ∆op ×
C

(0)

/c

(C
(0)
/c )g/ is weakly contractible.

Under the Straightening Theorem [24],3.2, the left fibration ev1 : E → ∆op ∈ LFib(∆op) is classified by a
functor E : ∆op → Spc.
By [24],3.3.4.5, it suffices to prove that its limit Ê : ∆+ → Spc classifies a weakly contractible category Ê .
Let us unwind the straightening construction: as a simplicial object of Spc, En is the fibre of E over [n] ∈ ∆op ,
namely

E[n] ≃ [n]×
C

(0)

/c

(C
(0)
/c )g/ ≃ MapC/c

(c′, Un) ≃ MapC/c
(c′, U0×c· · ·×cU0) ≃ MapC/c

(c′, U0)×∆0 · · ·×∆0MapC/c
(c′, U0)

In other words, E is the simplicial object lying under the čech nerve of q : MapC/c
(c′, U0)→ ∆0.

By the construction in C.3.0.5, since g ∈ C(0)
/c , it follows that E(0) = MapC/c

(c′, U0) ̸= ∅ is not the empty

space; then, the (−1)-truncation of E(0) is a point, which is terminal in Spc. So, in the ∞-topos Spc, q is
an effective epimorphism of spaces by C.1.0.7, and hence it exhibits E as a simplicial realization of ∆0, i.e.
|E| ≃ Č(q)(−1) ≃ ∆0 is the required weak equivalence.

(⇐= ) : Let F : Cop → D satisfy properties (1) and (2). We need to prove that F is exact on covering sieves

of (C,Cov). For c ∈ C, consider a covering sieve C
(0)
/c ∈ Cov(c).

� C
(0)
/c is a covering morphism: let (f : c′ → c) ∈ C/c generate C

(0)
/c and consider its Čech nerve Č(f). As

we have already proven, Č(f)|∆op is coinitial in C
(0)
/c , so (2) corresponds to the exactness of F on C

(0)
/c .

� C
(0)
/c is a finite cover: (Sketch of the proof) let {fi : ci → c | 1 ≤ i ≤ n} be generating C

(0)
/c , with

f :=
∐︁
fi ∈ S.

Let C
(1)
/c denote the sieve generated by f . Since we have an inclusion ι : C

(0)
/c ⊆f.f. C

(1)
/c (by the universal

property of coproducts), also the latter is a covering sieve. Then, F is exact on C
(1)
/c by the previous

case.

So, we are left to show that the restriction along ι preserves the limit. In order to see this, one can
check that F|(C(1)

/c
)op
≃ Ranι

(︁
F|(C(0)

/c
)op

)︁
and then conclude by the properties of right Kan extensions

(see [24],4.3.2.7).

The proof is omitted because technical; it is noteworthy to remark, however, that here it is exactly
where we need to use all the assumptions on S together with (1).

� C
(0)
/c is an arbitrary covering sieve: by assumption, it must refine some finite covering C

(1)
/c := ⟨{fi :

ci → c | 1 ≤ i ≤ n}⟩ ∈ Cov(c) with
∐︁
fi ∈ S.

By the previous argument, F must preserve the exactness of the finite cover C
(1)
/c , so we are left to show

that F(c) ≃ limF|(C(1)

/c
)op

.
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For this it would suffice to check that F|(C(0)

/c
)op
≃ Ran⊆

(︁
F|(C(1)

/c
)op

)︁
.

Unwinding the definitions, this amounts to the fact that, for each (g : x → c) ∈ C
(0)
/c , we can write

F(x) as the limit of the under-slice F(x)/F|(C(0)

/c
)op

, which is in turn equivalent to F|g∗(C(1)

/c
)op

.

But now, since g∗(C
(0)
/c ) ≃ ⟨g

∗(fi) : ci ×c x → x | i⟩, if also
∐︁
g∗(fi) ∈ S, then we would be done by

applying the previous point to the finite covering g∗(C
(0)
/c ).

Finally,
∐︁
g∗(fi) ∈ S follows from the properties of S: write

∐︁
g∗(fi) as the following composite∐︂

(ci ×c x)
≃−→ (

∐︂
ci)×c x −→ u

where the first arrow is an equivalence, because finite coproducts in C are universal and g∗(
∐︁
fi) in S,

which is closed under pull-backs; being the latter closed also under equivalence and composition, the
whole composite must live in S.

□

Finally, we present a well-known characterization of descent for C-valued sheaves with C ∈ Cat1 an ordinary
category.
We start with a Lemma reducing all simplicial limits of ordinary categories to ”glueing problems”.

Lemma C.5.3.6. (Simplicial limits in ordinary categories) Let p : N (∆)op → D be a simplicial diagram
with values in an ordinary category D. Then, lim p ≃ lim p|N (∆≤2)op .

Proof. Omitted, see [14],A.1. □

The previous useful lemma yields a straightforward characterization of sheaves on a ’nice’ site (C,Cov) with
values in an ordinary category D with enough limits.
In particular, we will apply it to sheaves on a ’geometric site’ (e.g. the Zariski site) with values in an ’algebraic
category’ (namely some Lawvere theory as CRing of commutative rings or Mod(R) of R-modules).

Proposition C.5.3.7. (Descent for sheaves with values in ordinary categories) Let D ∈ Cat1 be an ordinary
category with (enough) limits, and consider an ∞-category C ∈ Cat∞ as in C.5.3.5, so with pull-backs and
whose finite coproducts are universal and disjoint.
For a ’nice’ class of morphisms S ⊆ Mor(C) as in C.5.2.2 (so stable under pull-backs, finite coproducts and
composition, and closed under equivalences), let (C,Cov) be the induced finitary site on C.
Let ShD(C) denote the localization of the∞-category of D-valued presheaves P(C,D) on (C,Cov) at the class
S ⊆ Mor(C).
Then, for a presheaf F ∈ P(C,D), tfae:

� F is a sheaf in ShD(C);

� F preserves 2-truncated simplicial limits;

� F preserves finite products and, for each morphism (f : U0 → c) ∈ S, the 2-truncation of the augmented
co-simplicial object F ◦ Č(f)op is a limit diagram, i.e. the following diagram is ’exact’

F(c) →
(︃
F(U0)

−→−→ F(U1)×F(U0) F(U1)
→→→ F(U1)×F(U0) F(U1)×F(U0) F(U1)

)︃
Proof. The equivalence of the first two statements is C.5.3.3 together with the previous Lemma.
Then, in our setting, C.5.3.5 reduces the sheaf condition F ∈ P(C,D) to preserving finite products and being
exact on Čech nerves. Hence, we are left to show that the stated 2-truncation amounts to the exactness on
Čech nerves. This is a straightforward consequence of the machinery developed: as proven in [24],6.5.3.7, we
can neglect degeneracies while computing simplicial colimits, and we can 2-truncate our co-simplicial objects
by the previous lemma. □
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C.5.4 Example: Sheaves on Topological Spaces

A special case of C.5.3.2 retrieves the classical notion of sheaves on topological spaces.

Definition C.5.4.1. ([26],1.1.2.1) Let X ∈ Top be a topological space and let (Open(X),U ′) denote the
Grothendieck site on the poset of open subsets of X.
Then, a presheaf F : Open(X)op → C with values in a complete ∞-category C ∈ Cat∞ is a C-sheaf on X
iff, for each V ∈ Open(X) and each open covering V of V , there is a natural equivalence F(V ) ≃ limF|U ′(V ).
We will write the following shorthand: ShC(X) := ShC(Open(X),U ′(X))

An application of the relative nerve construction [24],3.2.5.2, namely a particular case of the Straightening
Theorem [24],3.2 for fibrant-objects, will allow us to consider an∞-functor ShC(−) : Top→ sSet introducing
compatibility of sheaf categories with respect to restrictions along continuous maps.

Construction C.5.4.2. (Push-forward of sheaves, [26],1.1.2.2) Let C ∈ Cat∞ and consider any continuous
map π : X → Y in Top. Define the push-forward functor along π to be the functor of ∞-categories of
sheaves induced by the restriction along π:

π∗ : ShC(X) −→ ShC(Y )

F ↦−→ F(π−1(−))
By rectifying Cat∞ ≃ sSetJoyal[Joy

−1], the construction [π ↦→ π∗] induces a functor of ordinary categories:

ShC(−)op : Top −→ sSet

X ↦−→ ShC(X)op

π ↦−→ π∗
Let TopC denote nerve of Top relative to ShC(−)op (see [24],3.2.5.2).
More explicitly, as observed in [26],1.2.1.3 the 1-truncation of the simplicial set TopC can be described as
follows:

� Obj: pairs (X,F) with F ∈ ShC(X);

� Mor: maps of pairs (π, α) : (X,F)→ (Y,G) with π : X → Y in Top and α : G → π∗F in ShC(Y ).

By the refinement of the Straightening Theorem for fibrant objects (as presented in [24],3.2.5.21) the cocarte-
sian fibration given by the first projection TopC → Top is associated to the nerve ShC(−)op : Top → Cat∞
of the previous functor.

Furthermore, as in the classical case the datum of a sheaf on a topological space X, i.e. a sheaf on Open(X), is
equivalent to that of a sheaf on some basis Ue for the topology ofX. The next result attempts an enhancement
of such a feature for a basis Ue of quasi-compact open subsets of X.

Proposition C.5.4.3. (Characterization of sheaves over a basis, [26],1.1.4.4) Let X ∈ Top be a (locally
compact) topological space and consider a complete ∞-category C ∈ Cat∞. Suppose to be given a subset
Ue ⊆ Open(X) such that:

1. Ue consists of a pre-basis for the topology on X, i.e. if we write Open(X) = ∪{τ(x)|x ∈ X} as the
union of all filters of open neighbourhoods of the points of X, then Ue ∩ τ(x) ⊆ τ(x) is always a cofinal
sub-filter with respect to the order induced by reverse inclusion;

2. Ue is stable under finite intersections

3. Ue consists of quasi-compact sets.

Then, the presheaf F : Open(X)op → C is a sheaf in ShC(X) iff

� [ Ue is F-dense into Open(X) ] : F ≃ Ran(F|Uop
e
);
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� [ Sheaf condition over Ue ] : For each finite subset I ⊆ Ue, there is an equivalence

F(∪I) ≃−→ lim
(︁
F(∩S) | ∅ ≠ S ⊆ I

)︁
Remark. More explicitly, by Open(X) we denote the open cover site on Open(X) (see [27],pp.113): it is the
Grothendieck site τ generated by a basis K consisting of finite families of open coverings. Here, generation
must be understood as ”generation of sieves”, so by closing under pre-composition by continuous inclusions
in Open(X).
The following Construction also fixes the notation that will appear in the proof of the Proposition.

Construction C.5.4.4. (Coverings in the open cover topology) Fix some arbitrary U ∈ Open(X); an
element of K(U) consists of a finite subset I ⊆ Open(X) such that ∪I = U . Then, I generates a covering
U ′(I) := ∪IOpen(i) ⊆ Open(∪I) in τ(U).
Remark. Notice that U ′(I) forms a basis of the topology on U = ∪I.

Before proving the Proposition, let us record a couple of properties of such a construction, which will be
useful later on.

Lemma C.5.4.5. (Computations: limits over the covering U ′, [26],1.1.4.4) Let X ∈ Top be a (locally quasi-
compact) topological space and assume to be given a basis Ue of X consisting of quasi-compact sets.
Moreover, Let F ∈ P(Open(X), C) be a C-presheaf on X. Then, the following properties hold.

1. For I ⊆ Ue, the inclusion U ′(I) ∩ Ue ↪→ U ′(I) in sSet is right-cofinal; in particular, the sheaf condition
of F with respect to the covering U ′(I) can be tested on U ′(I) ∩ Ue.
([26],1.1.4.6) Therefore, the sheaf condition of F can be tested with respect to the topology induced on
Ue by intersecting coverings of the open cover site with Ue, i.e. F ∈ ShC(X) iff F|Uop

e
∈ ShC(Ue). We

refer to this fact as ”F satisfies the sheaf condition over Ue”.
we will refer to this fact by writing that ”F satisfies the sheaf condition over Ue”.

2. Let I ⊆ Open(X) and let Pf (I) denote the poset of finite subsets of I. Then the following map in sSet
is right-cofinal:

γ : Pf (I) −→ U ′(I)op

S ↦−→ ∩S
In particular, the second condition in C.5.4.3 amounts to the ”sheaf condition over Ue”.

3. Suppose that F satisfies the sheaf condition over Ue; choose an open covering I ⊆ Open(X) of X and
consider U ′ := U ′(I). Then, F|Uop

e
≃ Ran(F|(Ue∩U ′)op ) is a right Kan extension along the inclusion

Ue ∩ U ′ ⊆ Ue.

Proof. (1) : This is a straightforward consequence of Joyal’s Criterion A.1.0.2: the map is cofinal iff the nerve
N
(︁
Ue ∩ U ′(I)V/

)︁
is weakly contractible for each V ∈ U ′(I), and this clearly holds, since the under-slice is

inhabited (here we use I ⊆ Ue) and stable under finite intersections; hence such a simplicial set is filtered
with respect to the order induced by the reverse inclusion, and we conclude by A.1.0.4. ■

(2) : We will again apply Joyal’s Criterion A.1.0.2: we need to prove that, for each V ∈ U ′(I), the nerve
N
(︁
Pf (I)V/

)︁
is weakly contractible. Now, this holds true: the category is inhabited, since V ∈ U ′(I) =

∪IOpen(i) and I ⊆ Pf (I); moreover, it is filtered, since it is stable under intersections by the construction.
Hence, we conclude by A.1.0.4. ■

(3) : It suffices to show that the comparison map obtained via the universal property of Kan extensions is an
equivalence point-wise in C, i.e. that, for each V ∈ Ue, the canonical map θ : F(V )→ limF|Ue∩U ′∩Open(V ) is
an equivalence.
Since Ue is a quasi-compact basis, V is itself quasi-compact, so - by the fact that I covers X - there exists
some finite subset J ⊆ U ′ ∩ Ue exhibiting an open covering of V . Set U ′′ := U ′(J) ∩ Ue, and observe that we
have an equivalence F(V ) ≃ limF|U ′′ by the assumption that F satisfies the sheaf condition over Ue.
So, we are left to show that the right slanting arrow in the following commutative triangle is an equivalence:
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F(V )
θ →→

≃
↘↘

limF|(Ue∩U ′∩Open(V ))op

←←
limF|(U ′′)op

Since U ′′ ⊆ U ′ and fully faithful restrictions preserve right Kan extensions, this will be implied by our final
observation:

F|(Ue∩Open(V ))op ≃ Ran(F|(U ′′)op )

In order to see this, we need to show that the canonical natural transformation induced by the universal
property of right Kan extensions induces a point-wise equivalence, i.e. that, for each W ∈ Ue ∩Open(V ), the
map ϕ : F(W )→ limF|(U ′′∩Open(W ))op is an equivalence.
But this follows from the assumption that F satisfies the sheaf condition over Ue:

U ′′ ∩Open(W ) = Ue ∩ (U ′(J) ∩Open(W )) = Ue ∩ U ′(J ∩W )

where J ∩W := {j ∩W ↬W}j∈J) ∈ K(W ) generates the covering U ′(J ∩W ) of W . ■ □

Proof. (of C.5.4.3) We will freely adopt the notation of the previous Construction and of Lemma C.5.4.5.

( =⇒ ) : Let’s prove that a sheaf F ∈ ShC(X) satisfies the sheaf condition over Ue.
Given any finite I ⊆ Ue, let U ′ := U ′(I) ∈ τ(∪I) be a covering of ∪I as in the Construction above. Let
γ : Pf (I)→ U ′(I)op be the right-cofinal map of C.5.4.5,ii.
Thus, we can express the sheaf condition C.5.3.3 of F at ∪I by the following chain of equivalences:

F(∪I) ≃−→ limF|U ′op
≃−→ limF ◦ γ

where the second equivalence follows from the aforementioned right-cofinality of γ (see C.5.4.5,ii).

Now we are left to show the F-density of Ue into Open(X), namely that the canonical comparison map
F → Ran(F|Uop

e
) induced by the universal property of right Kan extensions is an equivalence; by [20],2.2.2,

it suffices to check that point-wise. In other words, we wish that, for each U ∈ Open(X), the canonical map
F(U)→ limF(Ue∩Open(U))op be an equivalence.
Notice first that Ue ∩Open(U) = (Ue)/U induces a quasi-compact basis of U , so we can simplify the notation
and assume wlog U = X and Ue ∩Open(U) = Ue.
Being Ue a basis for X, it contains some open cover of X, namely there exists some (possibly infinite)
collection I ⊆ Ue for which ∪I = X. Suppose I to be finite. Define U ′ := U ′(I) = ∪IOpen(i) as in the
Construction above, and consider the following commutative diagram in the ∞-category C:

F(X) →→

≃ (a)

↓↓

limF|Uop
e

≃(b)

↓↓
limF|U ′(I)op

≃
(c)

→→ limF(Ue∩U ′(I))op

where the decorated arrows are equivalences by the following arguments:

� (a) : This is the sheaf condition of F at the covering U ′(I) ∈ τ(X);

� (b) : We proved that F satisfies the sheaf condition over Ue, so F|Uop
e
≃ Ran(F|(Ue∩U ′(I))op ) by C.5.4.5,iii.

� (c) : Since I ⊆ Ue, the inclusion Ue ∩ U ′(I) ↪→ U ′(I) is left-cofinal in sSet by C.5.4.5,i.

For an arbitrary I the argument is the same: the sheaf condition of F at X still forces (a) to be an equivalence
(consider a finite partition of I), while for (b) and (c) the cardinality of I is irrelevant.

(⇐= ) : Conversely, let it be given a presheaf F ∈ P(Open(X), C) which satisfies the two conditions in the
statement; let’s show that F is a C-sheaf on Open(X), i.e. that, for each U ∈ Open(X) and for each open
cover I ⊆ Open(U), the canonical map F(U)→ limF|U ′(I)op is an equivalence.
Again, let us simplify the notation and assume wlog U = X. The F-density of Ue into Open(X) allows us to
express F ≃ Ran(F|Uop

e
) as a right Kan extension. As a consequence, we can infer what follows:
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� by restricting to U ′, one obtains an equivalence F|U ′op ≃ Ran(F|(Ue∩U ′)op ), so that the statements
amounts to showing that the composite F(X) → limF|(U ′)op → limF|(Ue∩U ′)op is an equivalence in C.
Indeed, recall that the canonical map Ran(F|(Ue∩U ′)op ) → F|(Ue∩U ′)op is right-cofinal by the properties
of right Kan extensions.

� F(X) ≃ limF|Uop
e
.

So, finally, we can reduce the statement to proving that the canonical map limF|Uop
e
→ limF|(Ue∩U ′)op be an

equivalence. But this is a consequence of C.5.4.5,iii. □

Therefore, the previous Proposition allows us to define C-valued sheaves on a locally compact topological
space X by defining them on their restriction to a locally compact basis Ue of X. This is made precise in the
following Corollary.

Corollary C.5.4.6. (Sheaves on a basis, [26],1.1.4.5-6) Let X ∈ Top be a (locally quasi-compact) topological
space with a quasi-compact basis Ue and let C ∈ Cat∞ be a complete ∞-category.
Then, there is a fully faithful embedding ShC(X) ↪→ P(Ue) = Fun(Uop

e , C) with essential image spanned by
those presheaves F : Uop

e → C which satisfy the sheaf condition over Ue.
Moreover, the open cover site induces a topology on Ue, so that we can write ShC(X) ≃ ShC(Ue).

Proof. This is a consequence of the previous Proposition C.5.4.3 and of the properties of right Kan extensions
in [24],4.3.2.15. The description of the essential image follows by the following application of the latter result:
let C0 := Uop

e ⊆f.f. Open(X)op =: C and D = D′ := C; consider the following full sub-categories of C-valued
presheaves:

� K := ⟨F : Open(X)op → C | F ≃ Ran(F|Uop
e
)⟩ ⊆f.f. P(X,C)

� K′ := ⟨F0 : Uop
e → C | ∀U ∈ Ue , ∃ lim(F0)|((Ue)/U )op ⟩ ⊆f.f. P(Ue, C) which are those presheaves

satisfying the sheaf condition over Ue.

Then, the restriction functor K → K′ is (in particular) an equivalence. □
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[39] B. TOËN, G. VEZZOSI, ’Homotopical Algebraic Geometry 1: Topos Theory’, Adv. Math. 193 (2005),
no. 2, 257D372.
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