
University of Padova
Department of Information Engineering

Master’s degree in ICT for Internet and Multimedia

An Adversarial Learning Framework for
Privacy Preserving Communications

Supervisor: Prof. Nicola Laurenti
Co-supervisor: Prof. Deniz Gunduz

Student: Thomas Marchioro
ID 1184445

Padova, 2019
ACADEMIC YEAR 2018-2019

Acknowledgements

Since my university studies have been long and harsh, there are a lot of people that I
have to acknowledge and I will inevitably forget someone, so I apologize in advance.
First of all, I would like to thank my parents and my sister, who have not kicked
me out yet and who have supported me both morally and economically.
I also would like to thank my supervisor, professor Nicola Laurenti, who has endured
me since my bachelor’s studies and who has been the best supervisor I could ask
for. I thank professor Deniz Gunduz, who supervised my work along with Nicola
and who has provided excellent ideas for the realization of this thesis.
Moreover, I have to thank professor Leonardo Badia, who helped me in different
contexts and allowed me to find the PhD project to which I will participate for the
next years.
I would like to thank all the other professors of the department, who taught me a
lot more than what I would have been able to learn by myself.
Dulcis in fundo, I thank my friends from the University (in particular Alice, Davide,
Gabriella, Gaia, Pier Angelo and Virginia), without whom I probably would not
have finished my studies, and my old friends (unfortunately I cannot list them all)
who are always there for me, despite of all the times I have bailed on them.
Really, thank you all.

Abstract

We develop a machine learning-based approach that allows to achieve privacy in
communications by exploiting an advantage at the physical layer. Our goal is to
transmit useful data to the intended receiver while preventing sensitive data from
leaking to an eavesdropper who has access to the channel. We adopt an adversarial
approach involving two competing neural networks to learn efficient coding schemes
that allow to regulate the tradeoff between quality and privacy.

Contents

1 Introduction 1
1.1 Notation . 2

2 Learning framework for the physical layer 5
2.1 Autoencoders . 5

2.1.1 Activation functions . 7
2.1.2 Cross-entropy minimization 9
2.1.3 Stochastic optimization . 10

2.2 Design of a simple autoencoder . 12
2.2.1 Training results for a simple autoencoder 14

3 Physical layer secrecy 17
3.1 The wiretap channel . 17

3.1.1 Secrecy condition . 18
3.2 Secrecy capacity . 19

3.2.1 Stochastic encoding . 20
3.2.2 Characterization of the secrecy capacity 23

3.3 Channels separability . 24
3.3.1 Channel orderings . 25

4 Deep learning for the wiretap channel 29
4.1 The Gaussian wiretap channel . 29
4.2 Adversarial learning . 31
4.3 Cross-entropy based approach . 33

4.3.1 PMD equalization . 35
4.4 Adversarial network model . 36

4.4.1 Training results . 37
4.5 Possible extensions . 39

5 Privacy preservation 41
5.1 Privacy-preserving data release mechanisms 41
5.2 Adversarial learning for privacy-preservation 43
5.3 Results on the MNIST dataset . 46

6 Privacy-preserving communications 49
6.1 Information theoretic model . 49
6.2 Privacy capacity . 51
6.3 Minimax game formulation . 53
6.4 Adversarial network for image transmission 54
6.5 Distortion function and performance measures 56
6.6 Training phases of the adversarial network 57

6.6.1 Tradeoff regulation with fixed channels 58
6.6.2 Robustness of the trained model 59

6.7 Training with PMD equalization . 61
6.7.1 Robustness with PMD equalization 63

7 Conclusions 65
7.1 Future work . 65

Chapter 1

Introduction

Over the years, physical layer secrecy and related topics kept gaining popularity
among the main conferences and journals concerning communications and informa-
tion theory. The main reason is that physical layer secrecy has the potential to
provide confidentiality in the transmission without using cryptographic methods,
and hence without the need of relying on some secret key. In 1975, in fact, an arti-
cle from A. Wyner [1] has shown from an information theoretic point of view that
it is possible to achieve secrecy exploiting physical properties of the communication
channel, which may be, as discussed by Leung and Hellman in [2], an advantage in
terms of signal-to-noise ratio with respect to an eavesdropper who has access to such
channel. The physical advantage is exploited by means of suitably chosen coding
scheme that make impossible for the adversary to distinguish the codewords. The
efficiency and the secrecy of the transmission depend on the choice of the code, as
well as from the channel properties. It has been shown in [16] that artificial neural
networks can be used to learn efficient schemes that provide physical layer secrecy
and that are robust to noise variation. Moreover, neural network-based frameworks
provide the ability of coping on-the-fly with changes in the channel scenario.
Our work addresses a problem which is strongly related to physical layer secrecy: we
aim to achieve efficient transmission of useful information along a physical channel
while preventing sensitive information leaking to an eventual adversary, who acts as
an eavesdropper. The goal of releasing data that enable useful information diffusion
while keeping sensitive information secret is known is literature as privacy preser-
vation. Such problem has been widely studied in contexts where no transmission is
involved [18] and thus a legitimate user and a malicious attacker are able to observe
the same data, which is created by some release mechanism. Also in this case, ad-
versarial neural networks have been proven to be a versatile tool allowing to learn
release mechanisms that can regulate the tradeoff between distortion of the useful

1

2 CHAPTER 1. INTRODUCTION

data and privacy of the sensitive data. The transmission along a noisy channel
creates an opportunity to increase the privacy, in case of an advantage of the legit-
imate user with respect to the eavesdropper. We addressed the problem first from
an information theoretic point of view and analyze its connection to physical layer
secrecy. Secondly, we try to achieve privacy preserving communications of some
data exploiting adversarial neural networks. Since we analyze the transmission of
actual data instead of symbols, we adopt a joint source and channel coding learning
framework.

1.1 Notation

In this work, we make a wide use of concepts from probability and information
theory, therefore in this section we briefly describe the notation that we use.

Vectors and matrices We write both scalars and vectors as lower case characters,
the difference will be clear by the context or eventually specified when necessary.
The i-th component of a vector x is denoted by x(i). Matrices are written as bold
capital letters, in order to distinguish them from random variables.

Probability A random variable (r.v.) X is written with a capital letter. Its
alphabet is denoted with X and it is always assumed to be discrete. A generic
realization x of the random variable X is denoted with the corresponding lower case
letter. The probability mass distribution (PMD) of a random variable X will be
simply called distribution and denoted with pX(x), which is defined as pX(x) =
Pr[X = x], x ∈ X . When it is important to highlight the length of a vector of
n random variables, such vector is denoted with Xn and the same is done for its
realization xn. A sequence X0, X1, . . . , Xn of random variables that satisfies the
Markov property

Pr[Xk|X0, . . . , Xk−1] = Pr[Xk|Xk−1], ∀k = 1, . . . , n

is called Markov chain and is denoted with X0 → X1 → · · · → Xn.

Information theory The expectation of a function g(X) applied to X is written
E[g(X)] and is defined as ∑x∈X pX(x)g(x).
The information provided from a certain realization x of X is

I(x) = log 1
pX(x) , x ∈ X ,

1.1. NOTATION 3

where the logarithm is considered base 2 when the base is omitted. The entropy
H(X) is the expected value of the information function, i.e., H(X) = E[I(X)].
The conditional entropy of the r.v. Y given X is defined as

H(Y |X) = E
[
log 1

pY |X(Y |X)

]

=
∑

x∈X ,y∈Y
pXY (x, y) log 1

pY |X(y|x)

=
∑
x∈X

pX(x)
∑
y∈Y

pY |X(y|x) log 1
pY |X(y|x) ,

where pXY is the joint distribution of X and Y , and pY |X is the conditional dis-
tribution of Y given X. The mutual information between two random variables is
defined as

I(X, Y) = E
[
log pXY (X, Y)

pX(X)pY (Y)

]
=
∑
x∈X

∑
y∈Y

pXY (x, y) log pXY (x, y)
pX(x)pY (y) .

and one remarkable property that we use in our calculations is that I(X, Y) =
H(X)−H(X|Y) = H(Y)−H(Y |X).
Given two distributions pX and q of the same random variable X, the Kullback-
Leibler divergence is defined as

D(pX‖q) = EX∼pX

[
log pX(X)

q(X)

]
=
∑
x∈X

pX(x) log pX(x)
q(x) .

The cross-entropy between the distributions is defined as

H(pX , q) = EX∼pX

[
log 1

q(X)

]
=
∑
x∈X

pX(x) log 1
q(x) .

but can also be expressed as

H(pX , q) = H(X) + D(pX‖q).

In this work, we will always assume that a random variable X is uniquely identified
by its true distribution pX . However, in the following chapters we will need to
evaluate the cross-entropy between the true distribution pX of X and other possible
distributions of the same random variable.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Learning framework for the
physical layer

In this chapter, we show how physical layer communication scenarios can be modeled
using artificial neural networks before going deep into the applications to privacy
preservation. We consider a basic end-to-end communication in which the trans-
mitter needs to send a message s ∈ M to the receiver over an AWGN channel.
At the transmitter side, the message s is encoded into the codeword x ∈ X n, with
X = R. The codeword is then transmitted along the noisy channel, that introduces
additive Gaussian noise N ∼ N (0, σ2

B) and thus the receiver obtains the vector y,
where yi = xi + N 1. At the receiver side, y is decoded into the message ŝ and the
transmission is successful if ŝ = s.

s Transmitter x AWGN Channel
y

Receiver ŝ

2.1 Autoencoders

An autoencoder is a type of artificial neural network that turns out to be particu-
larly handy to model communication scenarios. Autoencoders are aimed to learn a
representation for a specific set of data, that for a given input allows to reconstruct
in output some data that are as close2 as possible to the input, even if some noise
or compression is introduced in the hidden layers. It is natural to think of using

1This notation means that to each component xi an independent realization of N is added.
2Of course, “close”is a generic term and for a specific autoencoder it is necessary to specify a

distance function between input and output that needs to be minimized.

5

6 CHAPTER 2. LEARNING FRAMEWORK FOR THE PHYSICAL LAYER

this kind of networks to model communications over noisy channel: the input and
output layer can be considered as the transmitter and receiver side, respectively, of
a communication channel, and the intermediate layers represent the encoder, the
noisy channel and the decoder. In the next paragraphs, we introduce some building
blocks for the construction of neural networks that are often employed in the design
of autoencoders learning end-to-end coding schemes.

One-hot encoding Suppose we have ` distinct symbols that we can send along
the channel. The first step that is usually performed on such symbols is one-hot
encoding. Assuming that among the available symbols, that are numbered from 0
to `− 1, the j-th symbol is chosen to be transmitted, the one-hot encoding of such
symbol is a vector ej of length `, whose components are defined as

e
(i)
j =

1, if i = j

0, if i 6= j,

meaning that the vector is made of all zeros, with the exception of a 1 in the j-
th position. The motivation behind this operation will be more clear in the next
paragraph, but the main idea is that the one-hot encoding vector ej can be considered
as a pseudo-distribution, where the probability of the symbol being the j-th symbol
is 1, and it is 0 for all the other symbols. The autoencoder is trained in order to get
an output vector which represents a distribution that must be as close as possible
to the one-hot encoding of the input.

Dense layers The most commonly used type of layers, along with the convolu-
tional layers, are the dense layers. A layer is called dense or fully-connected when
the relation between two consecutive hidden layers is given by the concatenation of
an affine function and a non-linear activation function. If vin is the input of the
dense layer, first the affine function is applied and the output is

z = Wvin + b, (2.1)

where W is a matrix whose elements w(i,j) are called weights and b is a vector whose
elements b(i) are called biases. Then, a non-linear activation function σ is applied
to the output z of the affine function. The final output of the dense layer is thus

vout = σ(z) = σ(Wvin + b). (2.2)

2.1. AUTOENCODERS 7

The weights and the biases are tuned during the training phase, while the activation
function is usually fixed or contains only few parameters. The activation function
is non-linear because concatenating multiple linear transformation leads again to a
linear transformation and this would make pointless to use multiple layers.
The name “fully-connected”derives from the fact that each element (neuron) v(i)

out of
the output layer is obtained as a function of z, which is a linear combination of all
the neurons v(j)

in of the input layer. The weight w(i,j) determine how much the i-th
neuron of the input layer affects the j-th neuron of the output layer and since the
weights are trained by the neural network it is rare for them to be exactly zero.

Convolutional layers The main components of the so-called convolutional neural
networks are the convolutional layers. A convolutional layer differs from a dense layer
from the fact that in this type of layers not all the neurons are connected. Moreover,
while dense layers usually have flat input and output vectors (i.e., one-dimensional),
convolutional layers have bidimensional input and output matrices and can be used,
for instance, to process images or video frames. The operation performed by such
layers is the 2-D convolution, which employs a window filter with a certain dimension
M ×N as follows:

v
(i,j)
out =

M−1∑
m=0

N−1∑
n=0

w(m,n)v
(s1·i+m,s2·j+n)
in . (2.3)

The parameters s1 and s2 are called strides and need to be adjusted when the neural
network structure is designed, as well as the size of the filter, which is often called
kernel. The weights are learned during the training phase, as for the dense layers.

2.1.1 Activation functions

There are several possible activation functions that can be applied after the affine
transformation of a dense layer. The main idea is that the activation function should
introduce some non-linearity, but should also be differentiable and smooth.

ReLU The rectifier linear unit (ReLU) is an activation function that is applied
independently to each component z(i) of the input vector z, according to the rule

σReLU(z(i)) =

z
(i), if z(i) ≥ 0

0, otherwise
(2.4)

which can be also written more compactly as σReLU(z(i)) = max(0, z(i)). This kind of
function is mostly used in networks with a high number of hidden layers. The main

8 CHAPTER 2. LEARNING FRAMEWORK FOR THE PHYSICAL LAYER

−2 −1 0 1 20

0.5

1

1.5

2

z(i)

σ
(z

(i
))

ReLU

−6 −4 −2 0 2 4 6

0

0.5

1

z(i)

Sigmoid

Figure 2.1: The ReLU and sigmoid activation functions.

motivation is that the function is the identity when the value of z(i) is non-negative
and thus overcomes the problem of the vanishing gradient which is introduced by
applying other activation functions (e.g., hyperbolic tangent or sigmoid) for a high
number of hidden layers.

PReLU The parametric ReLU (PReLU) is a variation of the ReLU activation
function which is defined as

σPReLU(z(i)) =

z
(i), if z(i) ≥ 0

αz(i), otherwise
(2.5)

where α > 0 is a parameter that is tuned during the training phase along with the
other parameters.

Sigmoid The sigmoid activation function is defined for each element z(i) of the
input as

σsigmoid(z(i)) = 1
1 + e−z(i) . (2.6)

The output of the sigmoid is a vector whose components are bounded in the range
(0, 1) and for this reason using this activation function on multiple layers tends to
make the gradient vanish during the backpropagation. Therefore, the sigmoid is
usually employed only in the last layer, while in the intermediate layer ReLU and
PReLU are more often used. On the other hand, the output of the sigmoid can be
interpreted as a probability measure of an element being or not in a certain class
and can hence be used for logistic purposes.

2.1. AUTOENCODERS 9

Softmax Another activation function that is commonly used for autoencoders is
the softmax, that given an input z returns a vector whose components are defined
by

σ
(i)
softmax(z) = ez

(i)∑`−1
j=0 e

z(j) . (2.7)

Assuming vout is the output of the softmax, its components v
(0)
out, . . . , v

(`−1)
out are

bounded in the range (0, 1) and also satisfy

`−1∑
i=0

v
(i)
out = 1,

meaning that its output can be interpreted as a vector of likelihoods which describe
a PMD over the alphabet {0, . . . , `− 1} (or any alphabet of cardinality `).

2.1.2 Cross-entropy minimization

One of the most common techniques employed in neural networks to solve multiclass
classification tasks is cross-entropy minimization. The main idea is to minimize the
average cross-entropy between the one-hot encoded class of the input of the neural
network and the output of the last layer of the neural network, that in this case must
use the softmax as activation function. The motivation behind this operation is that
if we consider the class of the input as a random variable S, with finite alphabet of
cardinality `, the one hot encoding of such r.v. is

1, if S = j

0, if S 6= j,

and hence represents the pseudo-distribution pS|S. On the other hand, the output
of the softmax can represent a probability distribution, and since it is the results of
operations which involve the input, such distribution can be interpreted as a vector
of likelihoods of S. Therefore, the output of the softmax represents an estimate
distribution q and performing the cross-entropy minimization using a given training
set with labels s0, . . . , sm−1, si ∈ {0, . . . , `− 1} of size m means minimizing

1
m

m−1∑
i=0

H(pS|S, q|S = si) = 1
m

m−1∑
i=0

`−1∑
j=0

pS|S(j|si) log 1
q(j|si)

. (2.8)

10 CHAPTER 2. LEARNING FRAMEWORK FOR THE PHYSICAL LAYER

From the strong law of large numbers, it holds

Pr
[

lim
m→∞

1
m

m−1∑
i=0

H(pS|S, q|S = si) = H(pS|S, q)
]

= 1, (2.9)

meaning that when m becomes large, the minimization of the average cross-entropy
over the training set is equivalent to the minimization of the actual cross-entropy
between the distributions pS|S and q. When the structure of the neural network
allows to reduce significantly the cross-entropy – taking the Kullback-Leibler diver-
gence close to zero – the distribution q gets close to pS|S and thus a good estimation
Ŝ of the true class S for a given input consists in taking the argmax of the output
of the softmax, i.e.,

arg max
j∈{0,...,`−1}

q(j). (2.10)

For example, if there are four classes {0, 1, 2, 3} and the output of the softmax is
[0.1, 0.8, 0.08, 0.02]>, the best estimation of the class is 1.

2.1.3 Stochastic optimization

Artificial neural networks usually have lots of parameters that must be trained and
hence require to be trained using a huge amount of data. Nevertheless, computing
the gradient of the loss function employing all the data at every iteration of some
gradient-based optimization method has a huge computational cost. This is why it
is common to compute an approximation function and the relative gradient using
only a small portion of the available data, which takes the name of mini-batch. The
approximate loss function L(θt, ξt) computed at time t3 over a mini-batch ξt using
the parameters θt obtained at the previous iteration, can be seen as a stochastic
realization of a random function, which depends on ξt, which can be considered as
the realization of a random variable Ξt. The mean value of such random function is

E [L(θt,Ξt)] = L̂(θt) (2.11)

where L̂ is the loss function computed on all the available training set. When the
batch size is chosen too small, the variance of the random outcomes might becomes
too high and provides unstable updates which do not lead to the optimal solution.
On the other hand, if the batch size is too large, the computational cost becomes huge
and the optimization process gets slow. That is why the batch size is an important
parameter that must be adequately chosen when training a neural network.

3Time is intended as iteration number and is discrete.

2.1. AUTOENCODERS 11

Stochastic gradient descent One of the simplest and most popular stochastic
optimization methods is called stochastic gradient descent (SGD) and consists in
simply applying a gredient based method – either the standard gradient or Nesterov’s
method – to the randomized function computed on the mini-batch. The complete
algorithm employing the standard gradient method is reported below.

Algorithm 1 Stochastic gradient descent
Input: the objective function L, the training set T

1: Choose the starting parameters θ0
2: for t = 0, 1, . . . do
3: if θt satisfies some specific condition then STOP
4: end if
5: Sample the mini-batch ξt from T
6: Set θt+1 = θt − αt∇L(θt, ξt), with αt suitably chosen stepsize
7: end for

The stepsize αt must be suitably chosen according to the properties of the func-
tion and must be always a diminishing stepsize in order to guarantee convergence.
Unfortunately, it is rare for neural network loss functions to have properties such
as strong convexity or Lipschitz continuous gradient, for which it is easy to define
a stepsize that guarantees convergence within a certain number of iterations. The
stepsize is usually parametrized by a constant η > 0, which is called learining rate
and determines how large are the initial update steps. Again, the learning rate must
be chosen carefully: a high learning rate leads to unstable gradient updates, while
a low learning rate causes slow convergence.
One last problem that must be highlighted is the choice of the starting parameters.
Usually the initial parameter vector θ0 is chosen at random and in case function
L is convex with respect to the parameters θ this is not a problem. However, for
large neural networks, the objective function usually is not convex and thus the
optimization process might lead to local optima. In order to avoid this problem,
the optimization algorithm should be run multiple times using different starting
parameters.

Adam Adaptive Moment Estimation (Adam) is probably the most popular opti-
mization algorithm in the context of neural networks and it is used in particular for
convolutional neural networks and other learning frameworks that involve functions
having sparse gradient. A sparse gradient means that most of the components of
the gradient are zero or close to zero. Since each component of the gradient is asso-
ciated to one parameter of the neural network, functions having a sparse gradient
have some weights that are updated more frequently than others. Adam employs

12 CHAPTER 2. LEARNING FRAMEWORK FOR THE PHYSICAL LAYER

an adaptive learning rate which is different for each parameter and that provides
larger steps for the weights that are updated less frequently.

Algorithm 2 Adam
Input: the objective function L, the training set T , the learning rate η > 0, the
decay rates for the moment estimates β1, β2 ∈ (0, 1), the constant ε > 0

1: Choose the starting parameters θ0
2: Initialize m0 = 0, v0 = 0, m̂0 = 0, v̂0 = 0
3: for t = 0, 1, . . . do
4: if θt satisfies some specific condition then STOP
5: end if
6: Sample the mini-batch ξt from T
7: Set gt = ∇L(θt, ξt)
8: Set mt+1 = β1mt + (1− β1)gt
9: Set vt+1 = β2vt + (1− β2)g2

t , where g2
t denotes the elementwise square

10: Set m̂t+1 = mt+1/(1− βt1)
11: Set v̂t+1 = vt+1/(1− βt2)
12: Set θt+1 = θt − ηm̂t+1/(

√
v̂t+1 + ε)

13: end for

The hyperparameters β1, β2 regulate the exponential decay rates for the first and
second moment estimates, respectively, while ε is a small constant which is added
to the denominator of the update term to guarantee numerical stability. In this
work, these hyperparameters are set to their default values β1 = 0.9, β2 = 0.99 and
ε = 10−8, which are suggested in the original paper. The learning rate η, instead,
cannot be fixed to the default vaue, but must be tuned depending on the complexity
of the neural network.

2.2 Design of a simple autoencoder

In order to clarify how the tools introduced in the previous section are employed,
we describe the design of a simple autoencoder which learns an end-to-end coding
scheme that combats the noise introduced by an additive Gaussian channel. The
neural network model is structured in three main blocks: the encoder, the channel
and the decoder.

Encoder First of all, the input message s ∈M = {0, . . . , `−1} is one-hot encoded
into es ∈ {0, 1}`. Then, es is processed by two dense layers:

• the first layer applies a linear transformation {0, 1}` → R` and employs a
ReLU as activation function;

2.2. DESIGN OF A SIMPLE AUTOENCODER 13

s

O
ne

-h
ot

en
co

di
ng

0
...
0
1
0
...
0

es

M
ul

tip
le

de
ns

e
la

ye
rs

N
or

m
al

iz
at

io
n

la
ye

r
Transmitter

x

N
oi

se
la

ye
r

Channel

y

M
ul

tip
le

de
ns

e
la

ye
rs

So
ft

m
ax

0.01
...

0.03
0.82
0.02

...
0.03

q

Receiver

ŝ

Figure 2.2: Structure of a simple autoencoder that learns a coding scheme for transmis-
sion over a noisy channel.

• the second layer applies a linear transformation R` → Rn and performs an
`2−normalization of the output to model the constraints to the energy of the
symbols.

The obtained codeword is x ∈ Rn, that is subject to the power normalization con-
straint ‖x‖2 = 1.

Channel In order to model the transmission along the Gaussian channel, the
codeword must be processed by a noise layer, that generates a Gaussian random
vector of n i.i.d. components that follow the distribution N (0, 1

ΛB
) and adds them

to x. The variance σ2
B of the channel is the reciprocal of the SNR at the receiver

side ΛB an accounts also an eventual gain applied at the transmitter side.

Decoder The decoder receives in input the noisy vector y ∈ Rn and returns as
output the decoded message ŝ ∈M. The decoder is also made of two dense layers:

• the first layer applies a linear transformation Rn → R` and the ReLU;

• the second layer applies a linear transformation R` → R` followed by the
softmax to compute q ∈ [0, 1]`.

The ` components of q represent the likelihoods of the symbols 0, . . . , ` − 1 being
the actual input message. Thus, the natural choice of the output of the decoder is

ŝ = arg max
j∈{0,...,`−1}

q(j).

14 CHAPTER 2. LEARNING FRAMEWORK FOR THE PHYSICAL LAYER

Table 2.1: Parameters used for the simulation

Parameter Symbol Value
Number of symbols ` 4
Codeword size n 2
Receiver’s SNR ΛB 12 dB
Learning rate η 0.01
Size of training set mtrain 3000
Size of test set mtest 1000

Figure 2.3: The encoding rule and the decision regions obtained by training the neural
network on 3000 examples with η = 0.01.

The parameters θ of the neural network that need to be estimated are the coefficients
of the linear functions in the dense layers. The cost function L to be minimized is
the average cross-entropy between the one-hot encoded message es and the output
of the softmax q.

2.2.1 Training results for a simple autoencoder

As an example, we trained an autoencoder with TensorFlow using ` = 4 symbols
and codewords of length n = 2, so that the decision regions can be visualized on
a bidimensional plane. The parameters used for the training are reported in Table
2.1. We used 3000 examples for the training phase and measured the accuracy, i.e.
the fraction of correctly decoded messages, on a test set of size 1000. We obtained,
even with such a small training set, that more than 99% of the messages have been
correctly classified and both the encoding rule. The decision regions are shown in
figure 2.3.

Confusion matrix The confusion matrix is a useful tool that allows to visualize
the accuracy of a predictor on a test set. The rows of the matrix represent a predicted
label for an example of the test set, while the columns are the actual labels and in
the context of our simple autoencoder the rows are the output messages while the

2.2. DESIGN OF A SIMPLE AUTOENCODER 15

columns are the input messages. The performance of the decoder is hence higher
when the confusion matrix is close to a diagonal matrix and the nonzero terms out
of the diagonal represent which messages are mostly confused (e.g., if the term C(i,j)

if the matrix is high, this means that the message i is often incorrectly decoded into
the message j). In figure 2.4, we inserted a visual representation of the confusion
matrix of our simple autoencoder, where darker shades of blue represent higher
values of the elements of the matrix.

Figure 2.4: The confusion matrix computed on a test set of 1000 samples.

16 CHAPTER 2. LEARNING FRAMEWORK FOR THE PHYSICAL LAYER

Chapter 3

Physical layer secrecy

Secrecy has always been of vital importance for communication systems, in par-
ticular when sensitive information needs to be transmitted. Traditionally, secrecy
is achieved by means of cryptographic key-based ciphering mechanisms. In this
chapter, we show how the inherent randomness present in physical channels can be
exploited to achieve secure communications. The confidentiality obtained from the
physical properties of the channel is known in literature with the name of physical
layer secrecy, because it is handled at the physical layer, differently from encryption
algorithm, which are applied in the upper layers.

3.1 The wiretap channel

A general model which represents a communication scenario in presence of an eaves-
dropper is the wiretap channel, originally introduced by Wyner [1]. The wiretap
channel describes the communication from an information theoretical point of view.
Three main actors are involved in the model: a transmitter (A), a receiver (B) and
an eavesdropper (E). A wants to send some message S to B, while E is eavesdropping
to the channel. In order to transmit the message, A encodes it into the codeword
Xn, of length n, using a mechanism characterized by the conditional distribution
pXn|Sn . The encoded message is transmitted along a channel, which is defined by the
distribution pY nZn|Xn , and thus B and E end up receiving Y n and Zn respectively.
In our discussion, we always refer to a memoryless channel, i.e., such that

pY nZn|Xn(ynzn|xn) =
n−1∏
i=0

pY Z|X(y(i), z(i)|x(i)), (3.1)

meaning that the noise applied to each symbol is independent from the others. When
the channel is memoryless, it is uniquely identified by the conditional distribution

17

18 CHAPTER 3. PHYSICAL LAYER SECRECY

per symbol pY Z|X . The legitimate receiver B applies the decoding function fB to Y n,
obtaining Ŝ. The eavesdropper E, instead, applies the decoding function fE to Zn,
obtaining S̃. Both B and E aim to acquire a perfect copy of S. Moreover, A and B
aim to have E not being able to recover the original message, i.e., S̃ 6= S. Since they
cannot change the decision rule fE, the only way for them to reduce the probability
of E correctly decoding the original message S is achieving independence between S
and the codeword Zn leaked to E.

A pXn|S pY nZn|Xn fB

fE

B

E

S Xn Y n

Zn

Ŝ

S̃

Figure 3.1: Wyner’s wiretap channel model.

3.1.1 Secrecy condition

The condition that is used in the context of cryptography to guarantee independence
between a plaintext S and the corresponding encoded message Zn is the perfect
secrecy condition, which requires

H(S|Zn) = H(S), or, equivalently, I(S,Zn) = 0 (3.2)

that intuitively means that no information on S can be obtained from Zn. Such
condition, however, is too stringent to apply for physical layer secrecy between the
message S and the codeword Zn received by the eavesdropper. A more realistic
requirement is to achieve asymptotic independence between S and Zn when the
length n of the codeword goes to infinity. This asymptotic independence can be
measured by a distance measure between the joint distribution pUZn and the product
of the marginal distributions pSpZn . If Kullback-Leibler divergence is chosen as
distance measure, the condition becomes

lim
n→∞

D(pUZn‖pSpZn) = 0. (3.3)

Applying the definitions of Kullback-Leibler divergence and mutual information, it
holds

D(pUZn‖pSpZn) =
∑
S∈M

∑
zn∈Zn

pUZn(S, zn) log pUZn(S, zn)
pS(S)pZn(zn) = I(S,Zn)

3.2. SECRECY CAPACITY 19

and thus the requirement can be rewritten as

lim
n→∞

I(S,Zn) = 0. (3.4)

This condition is the asymptotic equivalent of the perfect secrecy condition and is
called strong secrecy condition (or simply secrecy condition). There exists also a less
stringent formulation, that goes under the name of weak secrecy condition, which is

lim
n→∞

1
n
I(S,Zn) = 0 (3.5)

meaning that the rate of information leaked must vanish when n grows to infinity.

3.2 Secrecy capacity

The metric used in literature to quantify the secrecy that can be achieved on a given
channel pY Z|X is the secrecy capacity. Such metric has a definition that is similar to
the channel capacity and represents the number of secret bits that can be achieved
in a single channel use. In order to give a formal definition of the secrecy capacity,
we first need to formally characterize a code for a wiretap channel.

Definition 3.1. A (2nR, n) code Cn for a wiretap channel consists of

• a message set M with finite cardinality |M| = 2nR;

• a random encoding mechanism pXn|S :M→ X n, which maps a message S to
a codeword xn;

• a deterministic decoding mechanism fB : Yn → M, which maps a codeword
yn to the decoded message Ŝ.

The two requirements that a code for a wiretap channel must satisfy are relia-
bility, i.e., the message must be correctly decoded by the intended receiver B, and
secrecy, i.e., having independence between the original message S and the leaked
codeword Zn. The reliability is asymptotically guaranteed if

lim
n→∞

Pr[Ŝ 6= S] = 0, (3.6)

i.e., if, when n grows, the probability of decoding the wrong symbol using the
codebook Cn becomes negligible. The secrecy is given by the condition on the mutual
information limn→∞ I(S,Zn) = 0, as discussed in the previous sections. These two
conditions naturally lead to the definitions of secrecy rate and secrecy capacity.

20 CHAPTER 3. PHYSICAL LAYER SECRECY

Definition 3.2. The quantity Rs > 0 is an achievable secrecy rate for the memory-
less wiretap channel pY Z|X if there exists a sequence of message setsMn and a code
Cn such that

• the code rate Rs is achieved, i.e.,

|Mn| ≥ 2nRs ; (3.7)

• the reliability condition is satisfied, i.e.,

lim
n→∞

Pr[Ŝ 6= S] = 0; (3.8)

• the secrecy condition is satisfied, i.e.,

lim
n→∞

I(S,Zn) = 0. (3.9)

The secrecy capacity of the memoryless wiretap channel pY Z|X is defined as

Cs = sup{Rs : Rsis an achievable secrecy rate for the channel}. (3.10)

If no secrecy rate is achievable, then Cs = 0.

3.2.1 Stochastic encoding

A crucial point that needs to be highlighted is that a code for a wiretap channel
employs a random encoding mechanism. We assume that A has access to a local
source of randomness – i.e., such that its realizations are known only to A – described
by the random variable R of alphabet R, and encodes the messages using the func-
tion fA : M× R → X n. Once the random source R and the encoding function
fA are fixed, the encoding mechanisms is uniquely identified by some conditional
distribution pXn|S. In order to clarify why stochastic encoding is needed for secret
transmission we provide a simple example, from [15].

Example 3.1. Consider a uniform wiretap channel, in which the marginal distribu-
tions of the channel pY |X and pZ|X are described by

pY |X(y|x) =

1/NY |X , y ∈ TY |X(x)

0, y /∈ TY |X(x)

3.2. SECRECY CAPACITY 21

and

pZ|X(z|x) =

1/NZ|X , z ∈ TZ|X(x)

0, z /∈ TZ|X(x)

meaning that a specific symbol x is mapped with uniform probability into a symbol y
of the set TY |X(x) ⊆ Y of cardinality NY |X and into a symbol z of the set TZ|X(x) ⊆
Z of cardinality NZ|X . For the sake of simplicity, we assume that the cardinalities
Ny|x and Nz|x are the same for all x ∈ X and that the codewords are made of a
single symbol, i.e., n = 1. In order to have a reliable transmission of the symbols,
the random encoding mechanisms must map the messages from M into a sequence
of symbols belonging to a subset X ′ of X such that B is able to correctly decode the
received symbols, i.e.,

TY |X(x) ∩ TY |X(x′) = ∅,∀x, x′ ∈ X ′, x 6= x′.

Moreover, in order to have secrecy, the encoding mechanism pX|S must be defined
as

pX|S(x|S) =

1/NX|S, x ∈ TX|S(S)

0, x /∈ TX|S(S)

where {TX|S(S)}S∈M is a suitably chosen partition of X ′, for which it holds

⋃
x∈TX|S(S)

TZ|X(x) = Z,∀S ∈M

i.e., any message S is mapped to every possible z ∈ Z with equal probability. If both
the conditions are met, the intended receiver B always obtains the correct symbol,
i.e.,

Pr[Ŝ 6= S] = 0,

while the eavesdropper E is not able to obtain any information from Z, i.e.,

I(S,Z) = 0.

Therefore, when such conditions hold, the requirement for the secrecy capacity are
met. Furthermore, such conditions provide constraints on the cardinality of the
message set M. In particular, the reliability condition implies

|X ′| ≤ |Y|
NY |X

22 CHAPTER 3. PHYSICAL LAYER SECRECY

X Y Z
Figure 3.2: A possible configuration of a perfect code on a uniform channe with |M| = 4
possible messages (red, blue, green and yellow). Each message is encoded with uniform
distribution in one of the possible bins in X ′ and transmitted along the uniform chan-
nel. The legitimate receiver is perfectly able to recover the original message, while the
eavesdropper receives no information and can only randomly guess the correct message.

and the secrecy condition leads to

NX|S ≥
|Z|
NZ|X

.

A further constraint derives inherently from the stochastic encoding

|M| ≤ |X
′|

NX|S
.

Combining the three constraints, it holds

|M| ≤ |X
′|

NX|S
≤ |Y|
NY |X

NZ|X

|Z|
.

Assuming a uniform distribution of the input messages overM and that the symbols
received by the eavesdropper are more noisier than the symbols obtained by the
legitimate receiver, the number of secret bits achieved per channel use are

log |M| ≤ log |Y|
NY |X

NZ|X

|Z|
= log |Y| − logNY |X + logNZ|X − log |Z|
= (log |Y| − logNY |X)− (log |Z| − logNZ|X)
= (H(Y)−H(Y |X))− (H(Z)−H(Z|X))
= I(X, Y)− I(X,Z).

3.2. SECRECY CAPACITY 23

The upper bound to the number of secret bits that can be achieved per channel use
is the secrecy capacity of the uniform wiretap channel, therefore

Cs = I(X, Y)− I(X,Z).

3.2.2 Characterization of the secrecy capacity

The result obtained in the uniform channel example can actually be generalized to
a generic memoryless channel.

Theorem 3.1. If there exists a probability distribution pX over X such that 0 <

Rs < I(X, Y) − I(X,Z), then Rs is an achievable secrecy rate for the memoryless
channel pY Z|X .

The complete proof is given in [8] using the channel equivocation region and in
[9] using channel resolvability. The main idea is that when n grows to infinity, a
generic symbol vector xn ∈ X n is ε-typical for ε > 0 arbitrarily small and thus, by
the asymptotic equipartition property,

Pr
[

lim
n→∞

I(xn)
n

= H(X)
]

= 1.

Therefore, the information provided by the codeword xn is nH(X), where H(X) is
the entropy of a single symbol, with probability 1. Moreover, the following equalities
hold with probability 1, when n approaches infinity:

|Y|n = 2nH(Y), |Z|n = 2nH(Z),

|TY |X(x(0))× · · · × TY |X(x(n−1))| = 2nH(Y |X)

and
|TZ|Y (y(0))× · · · × TZ|Y (y(n−1))| = 2nH(Z|Y).

Hence, if 0 < Rs < I(X, Y)− I(X,Z), then

2nRs ≤ 2n[I(X,Y)−I(X,Z)]

= 2n[H(Y)−H(Y |X)−H(Z)+H(Z|X)]

= 2nH(Y)

2nH(Y |X)
2nH(Z|X)

2nH(Z)

= |Y|n

|TY |X(x(0))× · · · × TY |X(x(n−1))|
|TZ|Y (y(0))× · · · × TZ|Y (y(n−1))|

|Z|n

24 CHAPTER 3. PHYSICAL LAYER SECRECY

which is the same bound obtained for the uniform channel, meaning that the same
approach can be leveraged to infer the existence of a wiretap code Cn achieving Rs.
The secrecy capacity is hence characterized, by applying its definition as the supreme
of the set of achievable secrecy rates.

Corollary 3.1. The secrecy capacity of a memoryless wiretap channel pY Z|X is

Cs =

maxpX
[I(X, Y)− I(X,Z)], if maxpX

[I(X, Y)− I(X,Z)] > 0

0, otherwise
. (3.11)

This result can be expressed more compactly as

Cs = max
pX

[I(X, Y)− I(X,Z)]+ = max{0,max
pX

[I(X, Y)− I(X,Z)]}.

3.3 Channels separability

The channel pY Z|X can be split into two channels that are characterized by the
marginal distributions pY |X and pZ|X , which represent the legitimate channel and
the channel of the adversary, respectively.

Lemma 3.1 (Liang et al.). The secrecy capacity of a wiretap channel pY Z|X depends
only on the marginal transition probabilities pY |X and pZ|X .

Proof. Consider a wiretap code Cn achieving secrecy rate Rs > 0. For such code,
reliability is given by limn→∞ Pr[Ŝ 6= S], which depends on the marginal distri-
bution pY |X but does not involve Z. On the other hand, the secrecy condition
limn→∞ I(Xn, Zn) = 0 depends on the transition probability pZ|X and, once pZ|X is
fixed, the dependence from Y becomes irrelevant. Since this holds for every achiev-
able secrecy rate, it holds for the secrecy capacity.

This separation makes possible to obtain a lower bound to the secrecy capacity,
which relates the capacities of the two marginal channel. In particular, if CAB =
maxpX

I(X, Y) is the capacity of the legitimate channel and CAE = maxpX
I(X,Z)

is the capacity of the eavesdropper’s channel, it holds

Cs = max
pX

[I(X, Y)− I(X,Z)]+

≥ [max
pX

I(X, Y)−max
pX

I(X,Z)]+

≥ [CAB − CAE]+.

3.3. CHANNELS SEPARABILITY 25

There are some cases in which the bound is met with equality: a remarkable example
is the case of weakly symmetric channels.

Definition 3.3. A channel pY |X is said to be weakly symmetric if the rows of the
channel transition-probability matrix are permutations of each other and the sum
of the columns ∑

x∈X
pY |X(y|x)

is the same for every y.

An example of weakly symmetric channel is the channel with input alphabet X =
{0, 1} and output alphabet Y = {0, 1, 2} described by the transition probability
matrix

PY |X =
 1

12
1
3

7
12

7
12

1
3

1
12

 ,
where P(i,j)

Y |X denotes the transition probability from the i-th symbol to the j-th
symbol.

Proposition 3.1. If the legitimate channel pY |X and the eavesdropper’s channel
pZ|X are both weakly symmetric, then

Cs = [CAB − CAE]+, (3.12)

where CAB is the capacity of pY |X and CAE is the capacity of pZ|X .

3.3.1 Channel orderings

Dividing the channel pY Z|X into two separate channels also allows to compare them
and hence better characterize the secrecy capacity, depending on the channel order-
ing.

A pXn|S pY |X

pZ|X

fB

fE

B

E

S Xn Y n

Zn

Ŝ

S̃

Figure 3.3: Memoryless wiretap channel model with separate channels.

Definition 3.4. Consider two channels, pY |X and pZ|X .

26 CHAPTER 3. PHYSICAL LAYER SECRECY

• Channel pZ|X is physically degraded with respect to pY |X if X → Y → Z

forms a Markov chain, meaning that ∀(x, y, z) ∈ X × Y × Z, pZ|X,Y (z|x, y) =
pZ|Y (z|y).

• Channel pZ|X is stochastically degraded with respect to pY |X if there exists a
channel pZ|Y such that ∀(x, z) ∈ X ×Z pZ|X(z|x) = ∑

y∈Y pZ|Y (z|y)pY |X(y|x).

• Channel pZ|X is noisier than pY |X if, for any stochastic encoder pX|S(x|S) such
that S → X → (Y, Z) forms a Markov chain, it holds I(S, Y) > I(S,Z).

• Channel pZ|X is less capable than pY |X if, for any distribution pX of X, it holds
I(X, Y) > I(X,Z).

The relation between the three orderings, in terms of secrecy strength, is

physically degraded � stochastichally degraded � noisier � less capable,

where “ordering 1” � “ordering 2” means that “ordering 1” provides stronger se-
crecy than “ordering 2”. Moreover, the following chain of implications holds:

physically degraded⇒ stochastichally degraded⇒ noisier⇒ less capable.

A pXn|S pY |X fB

pZ|X fE

B

E

S Xn Y n

Zn

Ŝ

S̃

Figure 3.4: Memoryless wiretap channel model with degraded eavesdropper’s channel.

Intuitively, when the channel of the eavesdropper is physically degraded with re-
spect to the legitimate channel, it means that the codeword Zn received by the
eavesdropper is the codeword Y n affected by some additional noise. A physically
degraded channel can be modeled as a second channel pZ|Y concatenated to pY |X .
The same holds for stochastically degraded channels: since secrecy capacity depends
only on marginal distributions, a stochastic degradation is equivalent to a physical
degradation.
When the channel of the eavesdropper is noisier than the legitimate one, instead, it
means simply that the the legitimate channel enables to share more information than
the eavesdropper’s. Finally, having a less capable eavesdropper’s channel means that
CAE < CAB.

3.3. CHANNELS SEPARABILITY 27

If the channel ordering is known, it is possible to provide an even more precise
characterization of the secrecy capacity.

Proposition 3.2. Let pY |X be a legitimate communication channel and pZ|X the
channel of an eavesdropper.

• If pZ|X is less capable than pY |X , the secrecy capacity is given by

Cs = max
pX

[I(X, Y)− I(X,Z)]. (3.13)

• If pZ|X is noisier than pY |X and both are weakly symmetric, the secrecy capacity
is given by

Cs = CAB − CAE. (3.14)

The last statement makes possible to provide an explicit formulation of the secrecy
capacity for some common channel models.

Example 3.2. A binary symmetric channel (BSC) pY |X is a memoryless channel in
which symbols are binary – meaning that X = Y = {0, 1} – and the transition
probability matrix is of the form

PY |X =
 1− a a

a 1− a

 .
The parameter 0 < a < 1, called incorrect transition probability, uniquely charac-
terize the channel BSC(a). The capacity of BSC(a) is

C = H2(a) = a log 1
a

+ (1− a) log 1
(1− a) ,

where H2(a) is the binary entropy of a, i.e., the entropy of a Bernoulli random
variable of parameter a.
Consider a wiretap channel in which both the channels pY |X and pZ|X are binary
symmetric, with parameters a and b, respectively, and 0 < b < a < 1. It is easy to
see that the channels are weakly symmetric, by looking at the transition probability
matrices, and that the eavesdropper’s channel is noisier than the legitimate one.
Therefore, it is possible to apply 3.14, obtaining

Cs = CAB − CAE

= H2(a)−H2(b)

= a log 1
a

+ (1− a) log 1
(1− a) − b log 1

b
− (1− b) log 1

(1− b) .

28 CHAPTER 3. PHYSICAL LAYER SECRECY

Chapter 4

Deep learning for the wiretap
channel

It has been shown in [16] that it is possible to employ neural networks to learn
efficient end-to-end schemes that provide physical layer secrecy. In particular, the
article focuses on a specific type of channel, which is the Gaussian wiretap channel.
In this chapter, we describe the properties of the Gaussian wiretap channel and we
characterize its secrecy capacity. We also describe how a Gaussian wiretap channel
can be modeled using adversarial neural networks and introduce a cross-entropy
based approach that allows to learn coding schemes for a Gaussian wiretap channel.

4.1 The Gaussian wiretap channel

Additive white Gaussian noise (AWGN) channels, which we simply refer to as Gaus-
sian channels, are a basic channel model that is often used in the context of wireless
communications and also for other physical layer communication scenarios. As we
mentioned in Chapter 2, a Gaussian channel taken in input a codeword xn of real
valued symbols, generates a vector of n random symbols, which are independent
realizations of a Gaussian random variable N ∼ N (0, σ2), and sums each symbol of
the codeword with one of the generated symbols. A Gaussian channel is uniquely
identified by its the parameter σ of the Gaussian random variable. We assume that
the input of the channel is subject to an average power constraint, i.e.,

1
n

n−1∑
i=0

E[(X(i))2] ≤ P

and that the channel has a gain γ.
The channel can be hence equivalently characterized by the SNR, which is defined

29

30 CHAPTER 4. DEEP LEARNING FOR THE WIRETAP CHANNEL

as
Λ = γ2 P

σ2 .

Gaussian channels are a particularly useful model because they provide an easy and
intuitive expression for the capacity.

Proposition 4.1. The capacity of a Gaussian channel with SNR Λ is

C = 1
2 log(1 + Λ). (4.1)

When the marginal communication channels of a wiretap channel are both Gaussian,
the whole model is called Gaussian wiretap channel.

Definition 4.1. A Gaussian wiretap channel is a wiretap channel in which both pY |X
and pZ|X are Gaussian and are characterized by the SNRs ΛB and ΛE, respectively,
with ΛB > ΛE.

A common type of Gaussian wiretap channel, that is widely studied in literature is
the degraded Gaussian wiretap channel. In this communication scenario, the adver-
sary’s channel is degraded with respect to the legitimate channel: if we assume the
variance of the legitimate channel pY |X is σ2

B, the eavesdropper’s can be considered
concatenated to pY |X and hence characterized by a conditional distribution pZ|Y ,
which is again Gaussian with variance

(σ′E)2 = σ2
E − σ2

B,

where σ2
E is the overall variance of the eavesdropper’s channel (given by the con-

catenation of the two channels). The degraded Gaussian wiretap channel is depicted
in Figure 4.1, where NB ∼ N (0, σ2

B) and NE ∼ N (0, (σ′E)2) represent the additive
noise introduced by the two channels. The legitimate receiver obtains

Y n = Xn +Nn
B, (4.2)

while the eavesdropper receives

Zn = Y n +Nn
E = Xn +Nn

B +Nn
E. (4.3)

It is easy to see that each Zn contains more noise than Y n, thus if pZ|X is degraded
with respect to pY |X , then it is also noisier.

4.2. ADVERSARIAL LEARNING 31

The SNRs of the two channels are

ΛB = γ2
B

P

σ2
B

and ΛE = γ2
E

P

σ2
E

,

and the respective capacities are

CAB = 1
2 log(1 + ΛB) and CAE = 1

2 log(1 + ΛE).

Since Gaussian channels are not discrete, they cannot possibly weakly symmetric,
but it has been shown in [2] that 3.14 holds also for a degraded Gaussian wiretap
channel.

Theorem 4.1. (Leung et al.) The secrecy capacity of a degraded Gaussian wiretap
channel is given by

Cs = CAB − CAE = 1
2 log 1 + ΛB

1 + ΛE

, (4.4)

where ΛB and ΛE are the signal-to-noise ratios of the intended receiver and of the
eavesdropper, respectively.

A pXn|S +

Nn
B

fB

+

Nn
E

fE

B

E

S Xn Y n

Zn

Ŝ

S̃

Figure 4.1: Degraded Gaussian wiretap channel model.

4.2 Adversarial learning

In order to build a neural network-based framework that allows to learn efficient
schemes for confidential physical layer communications, it is necessary to formulate
the task as an optimization problem, i.e., a problem of the kind

min
θ∈Θ
L(θ), (4.5)

32 CHAPTER 4. DEEP LEARNING FOR THE WIRETAP CHANNEL

where θ is the vector of the parameters of the neural network.
Actually, in our case we need to model a scenario in which there is a legitimate part,
which consists in the transmitter and the intended receiver, and an adversary, which
is the eavesdropper. This kind of problem is known as adversarial learning problem
and is usually modeled by two competing neural networks. The competition consists
in the two networks playing a minimax game, in which the legitimate network aims
to solve

min
θM

max
θE

LM(θM , θE), (4.6)

while the enemy’s network aims to solve

min
θE

max
θM

LE(θM , θE), (4.7)

where θM and θE are the parameters that can be tuned by the main network and
the adversary, respectively.
The minimax game is played by alternating the training of the two networks, having
both minimizing their respective loss function until convergence. If the training is
properly done, convergence is reached at the Nash equilibrium of the game.

Algorithm 3 Adversarial training
Input: the loss functions LM and LE , the training sets TM and TE , the number
of training iterations of the two networks NM and NE, the optimization algorithms
AM and AE.

1: Choose the starting parameters θM,0 and θE,0
2: for t = 0, 1, . . . do
3: if θM,t and θE,t satisfy some specific condition then STOP
4: end if
5: Sample the mini-batch ξM,t from TM,t

6: Train the main network for NM iterations using algorithm AM on the mini-
batch ξM,t, minimizing LM with respect to θM and obtaining θM,t+1

7: Sample the mini-batch ξE,t from TE,t
8: Train the adversary’s network for NE iterations using algorithm AE on the

mini-batch ξE,t, minimizing LE with respect to θE and obtaining θE,t+1
9: end for

Remark: training a network means employing the optimization algorithm to tune
the parameter with the aim of minimizing the loss function.

In the case of the wiretap channel, θM = (θA, θB) is the vector of the parameters
of the main network, which define the encoder of the transmitter and the decoder
of the legitimate receiver. On the other hand, θE parametrizes the eavesdropper’s
decoder. In the following sections, we show a formulation of the optimization prob-
lem which is cross-entropy based and that allows to build efficient encoding and

4.3. CROSS-ENTROPY BASED APPROACH 33

decoding mechanisms for a degraded Gaussian wiretap channel scenario.

4.3 Cross-entropy based approach

We start by assuming that the input of the encoder is a vector sn whose sym-
bols are independent realizations of a certain random source pS of alphabet M =
{0, . . . , ` − 1}. We also assume that, for each symbol, both the decoder of the in-
tended user and the adversary’s decoder output a vector of likelihoods – q̂ and q̃,
respectively – who represent an estimation of the probability of each symbol be-
ing the transmitted symbol. In order to obtain the best possible estimation, both
need to minimize a statistical distance between their likelihood vectors and the
pseudo-distribution pS|S. We have already shown in 2.1.2 that this can be done,
by minimizing the approximate cross-entropy, computed on the training samples.
Furthermore, the legitimate network also needs to maximize the statistical distance
between pS|S and the adversary’s prediction q̃, which can be done by maximizing
the cross-entropy between the two. Therefore, a straightforward formulation of the
optimization problem could be

min
θA,θB

max
θE

LM(θA, θB, θE) = H(pS|S, q̂)− λH(pS|S, q̃) (4.8)

for the main network and

min
θE

max
θM

LE(θM , θE) = H(pS|S, q̃) (4.9)

for the adversary. The parameter λ > 0 regulates how much importance is given to
security for the legitimate network. Again, the approximate cross-entropy between
pS|S and an estimate likelihood vector q is computed on a given training set with
labels s0, . . . , sm−1, si ∈ {0, . . . , `− 1}, of size m as follows

H̄(pS|S, q) = 1
m

m−1∑
i=0

H(pS|S, q|S = si) = 1
m

m−1∑
i=0

`−1∑
j=0

pS|S(j|si) log 1
q(j|si)

. (4.10)

Even if the loss function

LM(θA, θB, θE) = H(pS|S, q̂)− λH(pS|S, q̃)

can be employed from the legitimate channel, one main issue is that the function
does not have a lower bound, or rather, the lower bound is −∞. Such lower bound
is reached when the value of H(pS|S, q̂) is finite, while there exists a symbol j for

34 CHAPTER 4. DEEP LEARNING FOR THE WIRETAP CHANNEL

which the likelihood vector q̃ satisfies

q̃(j) = 0,

i.e., has the j-th component equal to 0, implying a completely wrong prediction by
the adversary’s decoder. Even if it is rare to have the components of the likelihood
vector being exactly zero, the legitimate network can get close to the lower bound
by applying a permutation of the one-hot encoding matrix, so that a symbol j is
mapped into a different one-hot encoded vector ei, with i 6= j.

Example 4.1. Consider a simple case in which the symbols take values in M =
{0, 1, 2} and the corresponding one-hot encoding matrix is given by

I3 =

1 0 0
0 1 0
0 0 1

 ,

i.e. symbol 0 is mapped into [1, 0, 0]>, symbol 1 into [0, 1, 0]> and symbol 3 into
[0, 0, 1]>. If the adversary’s network is trained on this kind of encoding, if its like-
lihood vector is, for instance, q̃ = [0.02, 0.72, 0.26]>, its optimal choice would be to
choose s̃ = 1 as predicted symbol. In this case, in order to diminish its cost function,
the legitimate network just needs to apply the permutation

A =

0 1 0
0 0 1
1 0 0

 ,

to the one-hot encoded symbols during the encoding process, so that [0, 1, 0]> is
mapped into [1, 0, 0]> and to apply the inverse permutation A> in the decoding
process, for the legitimate decoder. The adversary would be applying the decoding
process without applying the inverse permutation, hence mistaking the symbol 0
with the symbol 1, meaning that the cross-entropy value for the symbol 0, for the
adversary’s decoder, would be

1 · log 1
0.02 ' 7.64386

which would give an important negative contribution contribution to the loss func-
tion.

4.3. CROSS-ENTROPY BASED APPROACH 35

4.3.1 PMD equalization

It is easy to see why encoding permutation is not particularly suitable for adver-
sarial learning applications: the adversary can easily mimic the same permutation
with further training and therefore the overall adversarial training would lead to
an oscillatory behaviour of the loss functions, which makes convergence difficult to
be reached. A possible solution, which has been proposed in [16], is to employ a
different loss function for the main network. The alternative loss function mimics
the initial idea of coset pre-coding, adopted in [11] to construct efficient wiretap
codes. The core idea is to divide the message alphabet into clusters and having
the adversary seeing the same probability for all the messages in a certain cluster.
In order to achieve this goal, the legitimate network must be trained in order to
minimize the cross-entropy between an equalized conditional distribution and the
adversary’s likelihood vector q̃. The equalized conditional distribution p̄S|S divides
the message alphabet into k clusters of almost equal size and builds a transition
probability matrix which maps a symbol into one of the symbols in the same clus-
ter, with equal probability. The transition probability matrix is called equalization
operator, denoted with E, and is applied by multiplying E by the one-hot encod-
ing of a message. The clusters are defined according to the well-known k-means
clustering algorithm [3].

Algorithm 4 PMD equalization operator
Input: the number of clusters k, the cardinality of the message alphabet |M| = `.
Output: the equalization operator E ∈ R`×`

+ .
1: Initialize E = 0`×`
2: Set kmeans.labels = kmeans(I`)
3: for t = 0, 1, . . . , k − 1 do
4: for i = 0, 1, . . . , `− 1 do
5: if kmeans.labels(i) = t then
6: for j = 0, 1, . . . , `− 1 do
7: if kmeans.labels(j) = t then
8: Ei,j = 1
9: end if

10: end for
11: end if
12: end for
13: end for
14: Normalize E w.r.t. the rows

Example 4.2. Consider a message set M = {0, 1, 2, 3} and assume k = 2. The

36 CHAPTER 4. DEEP LEARNING FOR THE WIRETAP CHANNEL

corresponding equalization operator is

E =

0.5 0.5 0 0
0.5 0.5 0 0
0 0 0.5 0.5
0 0 0.5 0.5

 ,

meaning that messages {0, 1} are put into one clusters and {2, 3} into the other.
For instance, the message s = 1 is first one-hot encoded into e1 = [0, 1, 0, 0]> and
then equalized into Ee1 = [0.5, 0.5, 0, 0]>. If the cross-entropy is minimized between
the equalized distribution and the likelihood vector q̃, the adversary won’t be able
to decide between s̃ = 0 and s̃ = 1.

Remark. The equalization operator can also be interpreted as the ideal confusion
matrix of the adversary’s predictions, which is reached in case the cross-entropy
between the equalized conditional distribution p̂S|S and the likelihood vector q̃ is
taken to zero.

The technique of minimizing the cross-entropy H(p̄S|S, q̃) between the equalized
conditional distribution and the adversary’s likelihood is called PMD equalization.
The new loss function of the main network employing the PMD equalization is

LM(θA, θB, θE) = (1− α)H(pS|S, q̂) + αH(p̄S|S, q̃), (4.11)

where 0 < α < 1, is a tradeoff parameter that regulates how much importance is
given to security.

4.4 Adversarial network model

We now present the simple adversarial neural network model introduced in [16]
to model a degraded Gaussian wiretap channel. The idea is similar to the simple
autoencoder shown in Chapter 2, with the difference that in this case one encoder
and two competing decoders are employed. The channel is again modeled by a
noise layer which generates additive Gaussian noise and the eavesdropper’s degraded
channel is obtained by inserting an additional noise layer after the noise layer of the
main channel.

4.4. ADVERSARIAL NETWORK MODEL 37

s

O
ne

-h
ot

en
co

di
ng

0
...
0
1
0
...
0

es

M
ul

tip
le

de
ns

e
la

ye
rs

N
or

m
al

iz
at

io
n

la
ye

r
Transmitter

x

N
oi

se
la

ye
r

Channel

y

M
ul

tip
le

de
ns

e
la

ye
rs

So
ft

m
ax

0.02
...

0.01
0.77
0.08

...
0.14

q̂

Receiver

ŝ

−→

N
oi

se
la

ye
r

Channel

z

M
ul

tip
le

de
ns

e
la

ye
rs

So
ft

m
ax

0.04
...

0.11
0.61
0.03

...
0.22

q̃

Eavesdropper

s̃

Figure 4.2: Structure of a simple adversarial network that models a Gaussian wiretap
channel.

4.4.1 Training results

In [16], the adversarial network model has been implemented in TensorFlow using
Adam as optimization algorithm, gradually decreasing the learning rate from η =
10−1 to η = 10−3. The size of the training batch is gradually increased from 25
to 300. During the training, the main channel’s SNR is ΛB = 12 dB, while the
eavesdropper’s channel has ΛE = 5 dB and the average power constraint of the
channel’s input is set to 1

n

∑n−1
i=0 E[X(i)] ≤ P = 1.

Training is divided in three main phases:

1. First, the main network’s parameters (θA, θB) are trained only to efficiently
combat noise, i.e., using 4.11 with α = 0 as loss function. The parameters θE
of the adversary’s decoder are kept frozen.

2. The adversary is then trained to learn a decoding scheme to decode the symbols

38 CHAPTER 4. DEEP LEARNING FOR THE WIRETAP CHANNEL

Figure 4.3: The encoding rule and the decision regions obtained training the adversarial
network.

sent along the channel, while the legitimate network’s parameters are kept
frozen. The loss function 4.9 has been minimized.

3. Finally, the main network is trained again using 4.11 with α = 0.7, freezing
the adversary again.

Figure 4.4: Performance for a constellation with ` = 16 symbols and codewords of length
n = 4, with respect to different values of SNR. The difference between the main network’s
SNR and the eavesdropper’s is fixed to 17 dB.
Note: Bob and Eve are the names which are historically assigned to the legitimate receiver
and to the eavesdropper, respectively.

Since steps 2 and 3 are done only once, instead of being repeated until convergence,
the results are not the solution of a minimax game and since the last network to be
trained is the legitimate one, the performance of the adversary – which is measured
in terms of symbol error rate – is worse than the performance that would be achieved
with a complete training. Nevertheless, Figures 4.3 and 4.4 show that the network

4.5. POSSIBLE EXTENSIONS 39

learns a constellation that hinders the information leakage to the adversary. It is
hence possible to conclude that adversarial neural networks can be employed to
learn efficient codes that enable a tradeoff between communication rate and secrecy.
We used these results as a base for our adversarial learning model, which we will
describe in the next chapters.

4.5 Possible extensions

Even if the approach used in [16] turned out to be useful, it does not guarantee
to reach the secrecy capacity of the channel. A possible idea to improve the rate
might be using the characterization of the secrecy capacity to define a corresponding
optimization problem. Assuming that minimizing the cross-entropies H(pS|S, q̂) and
H(p̄S|S, q̃) is sufficient to achieve reliability and secrecy, the problem of achieving
the secrecy capacity can be formulated as

min
pXn|S ,pŜ|Y n

I(X, Y)− I(X,Z) subject to H(pS|S, q̂) = 0, H(p̄S|S, q̃) = 0. (4.12)

Since constrained optimization is difficult to handle, especially when dealing with
neural networks, an unconstrained formulation, like

min
pXn|S ,pŜ|Y n

I(X, Y)− I(X,Z) + αH(pS|S, q̂) + βH(p̄S|S, q̃), α, β > 0 (4.13)

is more favourable. Another unconstrained optimization approach could consist in
using the Lagrangian dual of 4.12, which introduces additional parameters but is
more likely to provide results that are close to the optimum. The function 4.13
would be employed as loss by the main network, while the objective function of the
adversary would remain unchanged, assuming that an eavesdropper has no reason
to attempt at reducing the channel’s rate.

40 CHAPTER 4. DEEP LEARNING FOR THE WIRETAP CHANNEL

Chapter 5

Privacy preservation

We have shown in the previous chapters that physical layer secrecy does not come
for free and that the price to have secure communications is paid with a lower rate
in the transmission. However, when transmitting information, in general we might
not want every single bit of information to be secret. The most trivial solution is
to apply a secure code to encode the sensitive bits, while using a standard channel
code for non-sensitive data. Splitting information in this way, the upper bound
to the transmission rate of non-sensitive data would be the channel capacity C,
instead of the secrecy capacity Cs. Nevertheless, there are cases in which separating
sensitive data from the rest is no trivial task. One may think, for example, to the
problem of sending images without revealing the subject that is depicted: there is
a lot of information – namely colours, background, details – that alone does not
characterize the subject, but that is part of the whole picture. The problem of
processing data in order to reduce as much as possible sensitive information leakage
is widely studied outside the communication context and is known with the name
of privacy preservation.
In this chapter, we introduce the problem of privacy preservation and we model it
from an information theoretical point of view. We also show that it is possible to
employ adversarial neural networks to build privacy-preserving release mechanisms.

5.1 Privacy-preserving data release mechanisms

The objective of a privacy-preserving data release mechanism is, given some ob-
servable data W , containing some useful information U and sensitive information
S, to provide a release X carrying the useful information with minimal distortion
while minimizing the amount of sensitive information leaking from X. We assume
that U , S, W and X are discrete random variable with finite alphabets M, S, W

41

42 CHAPTER 5. PRIVACY PRESERVATION

and X , and that the data model pUS and observation constraint pW |US are defined
by the specific application of the problem. Therefore, the distribution of the triple
(U, S,W) ∼ pUSpW |US is considered fixed and hence cannot be part of the release
mechanism.

Definition 5.1. A data release mechanism is a stochastic function uniquely defined
by the conditional distribution pX|W , which takes some observable data W and
returns a release X, such that (U, S)→ W → X forms a Markov chain.

The efficiency of a release mechanism is determined by two main measures: distortion
and privacy.

Distortion The distortion introduced by a release mechanism pX|W is measured
by some distance function d :M×X → R, which quantifies how much a realization
x of X differs from a realization u of U . As a distance function, d must be non-
negative and it must be d(u, x) = 0 if and only if u = x. An efficient release
mechanism minimizes the average distortion E[d(U,X)].

Privacy The privacy guaranteed by a release mechanism pX|W is inversely related
to the amount of information about S leaked by X. The quantity used to measure
the so-called privacy leakage is thus the mutual information I(S,X), that an efficient
release mechanism should minimize.
A perfect release mechanism satisfies both

E[d(U,X)] = 0, (5.1)

which is called the no distortion condition, and

I(S,X) = 0, (5.2)

which is called the perfect privacy condition.
However, it is almost impossible to have both the conditions holding.

Proposition 5.1. A data release mechanism pX|W guarantees no distortion and
perfect privacy if both the following conditions hold:

1. the useful information and the sensitive information are independent;

2. the release coincides with the useful information.

Proof. We first prove by contradiction that in order to have E[d(U,X)] = 0, the
output of the release mechanism must be X = U . Assume X is different from U

5.2. ADVERSARIAL LEARNING FOR PRIVACY-PRESERVATION 43

and E[d(U,X)] = 0. Then there exist some ū ∈ M such that pU(ū) > 0 and some
x̄ 6= ū such that pX|U(x̄|ū) > 0. Since d(u, x) > 0 for all x 6= u, it holds

E[d(U,X)] =
∑
u∈M

pU(u)
∑
x∈X

pX|U(x|u) ≥ pU(ū)pX|U(x̄|ū) > 0,

which is in contrast with the initial assumption.
Then we prove, again by contradiction, that the useful and the sensitive information
must be independent. We know that the release of the mechanism must be X = U .
Assume that I(S,X) = 0 and that U and S are not independent, i.e., there exist
some ū ∈M and some s̄ ∈ S such that 0 < pUS(ū, s̄) 6= pU(ū)pS(s̄). It follows that

I(S,X) = I(S, U)

=
∑
u∈M

∑
s∈S

pUS(u, s) log pUS(u, s)
pU(u)pS(s)

≥ pUS(ū, s̄) log pUS(ū, s̄)
pU(ū)pS(s̄) > 0,

which leads to a contradiction.

We can hence conclude that if there is any dependence between U and S, the only
option to guarantee the secrecy of S is to allow some distortion. A release mechanism
must hence be suitably chosen according to the privacy-distortion tradeoff that must
be reached (which depends on the application).

5.2 Adversarial learning for privacy-preservation

The privacy-utility tradeoff can be expressed as an optimization problem, with two
possible formulations. One option consists in fixing a distortion budget δ, i.e., the
maximum value of E[d(U,X)] that we allow for the sake of preserving privacy, and
minimizing the privacy leakage I(S,X) over all the possible data release mechanism
satisfying the constraint. This leads to a constrained formulation of the optimization
problem, which is

min
pX|W

I(S,X) subject to E[d(U,X)] ≤ δ. (5.3)

The advantage of this formulation is that it is possible to bind the amount of distor-
tion in the release X, but, on the other hand, constrained optimization problem are
hard to be handled, in particular when neural networks are involved. Therefore, we

44 CHAPTER 5. PRIVACY PRESERVATION

will focus on the second option, which consists in solving the unconstrained problem

min
pX|W

I(S,X) + λE[d(U,X)], (5.4)

where λ > 0 regulates how much importance is given to distortion. The tradeoff
provided by this formulation is more difficult to regulate, since the mutual informa-
tion and the distortion are in general completely different metrics and thus tuning
λ is not trivial.
Another issue which must be considered is that both the formulations need to mini-
mize the mutual information, which is in general difficult to compute, as it requires
an estimate of the input distribution. However, this problem can be overcome ex-
ploiting a variational lower bound to the mutual information.

Lemma 5.1. Let S be a random variable distributed according to pS over S and X be
a random variable distributed according to pX over X . Then, for all the distributions
of S̃ over S, it holds

I(S,X) ≥ H(S)−H(pS|X , pS̃|X). (5.5)

Proof. Using the definitions of mutual information and conditional entropy, it holds

I(S,X) = H(S)−H(S|X).

The conditional entropy H(S|X) can be rewritten in terms of Kullback-Leibler di-
vergence and cross-entropy, for all distributions pŜ|X , as

H(S|X) = H(pS|X , pS̃|X)− D(pS|X‖pS̃|X).

Combining the two equations, the mutual information can be expressed as

I(S,X) = H(S)−H(S|X) = H(S)−H(pS|X , pS̃|X) + D(pS|X‖pS̃|X)

and the bound follows from the non-negativity of Kullback-Leibler divergence.

The bound is called “variational” because its tightness depends on the distribution
pS̃|X , which in principle can be chosen arbitrarily. It is worth remarking that the
bound is met with equality when pS̃|X = pS|X , since the Kullback-Leibler divergence
is zero. Moreover, in that case, the cross-entropy is minimized as well. The bound
can exploited to formulate an optimization problem which is equivalent to 5.4, but
does not require to compute the mutual information.

5.2. ADVERSARIAL LEARNING FOR PRIVACY-PRESERVATION 45

Proposition 5.2. The problem

min
pX|W

(
max
pS̃|X

[−H(pS|X , pS̃|X)]
)

(5.6)

is equivalent to
min
pX|W

I(S,X).

Proof. The variational lower bound guarantees

I(S,X) ≥ H(S)−H(pS|X , pS̃|X).

The entropyH(S) is independent from pS̃|X , hence we can work only on cross.entropy.
Since the cross-entropy is given by

H(pS|X , pS̃|X) = H(S|X) + D(pS|X‖pS̃|X),

the value of H(pS|X , pS̃|X) is minimized (and, thus, −H(pS|X , pS̃|X) is maximized)
when the Kullback-Leibler divergence is taken to zero, i.e., when pS̃|X = pS|X . In
that case, the bound is met with equality, meaning that

I(U,X) = H(S|X)−min
pS̃|X

[H(pS|X , pS̃|X)]

= H(S|X) + max
pS̃|X

[−H(pS|X , pS̃|X)].

Since the equation is always true, it holds also when I(S,X) is minimized with
respect to minpX|W .

It is therefore possible to use

min
pX|W

(
max
pS̃|X

[−H(pS|X , pS̃|X)]
)

+ λE[d(U,X)] (5.7)

as an alternative to 5.4, in order to optimize the release mechanism. This formu-
lation is a minimax problem and hence it is possible to find its solution by means
of an adversarial learning framework, as in the case of secret communications. In
particular, an adversarial learning model might consist in two competing neural net-
works, one modeling the release mechanism, which receives in input U and outputs
X, trying to minimize the loss function

LM(θM , θE) = −H(pS|X , pS̃|X) + λE[d(U,X)] (5.8)

46 CHAPTER 5. PRIVACY PRESERVATION

Figure 5.1: Comparison between the input of a PPAN, the output and the input with
the same amount of distortion, applied randomly.

and the other modeling an adversary, who aims to leak sensitive information by
minimizing

LE(θM , θE) = H(pS|X , pS̃|X). (5.9)

This approach has been presented in [18] and has been named privacy-preserving
adversarial networks (PPAN).

5.3 Results on the MNIST dataset

We show an example in which PPANs are employed to train efficient data release
mechanisms that guarantee privacy-preservation. Namely, we present the work of
[18] on the MNIST dataset, which consists of 70K labeled images of handwritten
digits, 60K for the training set and 10K for the test set. The images are 28× 28 in
grayscale – normalized in the range [0, 1] – and can hence be considered either as
matrices in [0, 1]28×28 or vectors in [0, 1]784. In this example, the images are handled
as vectors and are hence flattened and processed using dense layers. The useful data
coincide with the observation, i.e., W = U , and the sensitive information S is the
label of the image. The main network takes as input the images and process it,
obtaining a release X, while the adversary acts as a classifier, taking X as input
and outputting an estimate S̃ of the true label S. The function used to measure
distortion between an original image u and the relative release x is the Kullback-
Leibler divergence between corresponding pixels

d(u, x) = 1
784

783∑
i=0

s(i) log 1
x(i) + (1− s(i)) log 1

1− x(i) , (5.10)

where pixels are treated as Bernoulli random variables. The main network also
concatenates a vector of 20 random realizations uniformly distributed on [−1, 1],
which allow to introduce randomness in the process (otherwise the release would be
a deterministic function of the input). Both the networks employ two dense layers of
1000 nodes each, with the hyperbolic tangent as activation function. Moreover, the

5.3. RESULTS ON THE MNIST DATASET 47

release mechanism applies the sigmoid activation function to the output, while the
adversary applies first the softmax and then the argmax, like the classifiers described
in the previous chapters. Figure 5.1 shows that the noise is exploited by the release
mechanism in order to confuse the adversary.

48 CHAPTER 5. PRIVACY PRESERVATION

Chapter 6

Privacy-preserving
communications

In this chapter, we present the core of our work, which combines physical layer
secrecy with privacy preservation. The idea is to extend the principle of the release
mechanism to a communication scenario, aiming to obtain an end-to-end coding
scheme which transmits as much useful information as possible to the legitimate
receiver, while preventing the adversary from be able to leak sensitive information.
We considered the problem of transmitting actual data instead of symbols, making it
a joint source and channel coding design problem. We built an adversarial learning
framework, which is based on neural network, employing the approach used in [17]
for learning a joint source and channel coding scheme. Furthermore, we developed
an adversarial neural network that implements our approach for labeled images.
The network simulates a wiretap channel in which images must be transmitted to a
legitimate receiver, while keeping the eavesdropper unable to classify them.

6.1 Information theoretic model

Consider a model with three main actors: a transmitter (A), a receiver (B) and an
eavesdropper (E). Suppose A has some useful information U and wants to transmit
it to B, but also wants to prevent some sensitive information S = h(U) – where h is
a deterministic function – leaking to E.
A transmits some message Xn along the channel, having B and E receiving Y n and
Zn, respectively. A chooses Xn to achieve the following objectives:

• B must obtain the useful information U from Y n;

• E must not obtain the sensitive information S from Zn.

49

50 CHAPTER 6. PRIVACY-PRESERVING COMMUNICATIONS

A chooses the message X to be transmitted according to pX|U . The channel is as-
sumed to be memoryless and characterized by a conditional joint distribution pY Z|X .
B obtains Û by using its decoding mechanism, that is described by a deterministic
function fB, aiming to have Û = U ; E, instead, applies fE, to obtain S̃, aiming to
have S̃ = S = h(U). A further assumption is that h is known to all the actors A,B
and E, meaning that obtaining U is sufficient to obtain S. If this last assumption
holds, the conditional probability pS|U is defined by

pS|U(s|u) = χ[s = h(u)] =

1, if s = h(u)

0, otherwise
(6.1)

and it can be shown that if h is not injective, then for the adversary obtaining S is
in general easier than obtaining U .

Proposition 6.1. Given the true useful-sensitive information pair (U, S), if S =
h(U), it holds

P[S̃ = S] ≥ P[Ũ = U]. (6.2)

If h is not injective, then the inequality is strict.

Proof.

P[S̃ = S] =
∑
s

pS(s) · P[S̃ = s|S = s]

=
∑
u

pU(u)
∑
s

pS|U(s|u) · P[S̃ = s|S = s]

=
∑
u

pU(u)
∑

s:s=h(u)
P[S̃ = s|S = s]

=
∑
u

pU(u)
∑

s:s=h(u)

∑
u:h(u)=s

∑
u′:h(u′)=s

P[Ũ = u′|U = u]

=
∑
u

pU(u)
∑

u′:h(u′)=h(u)
P[Ũ = u′|U = u]

≥
∑
u

pU(u) · P[Ũ = u|U = u]

= P[Ũ = U].

Intuitively, the sensitive data contains a part of the information carried by the useful
data and this makes easier for the adversary to obtain it. However, this allows to
transmit the remaining useful information without caring about keeping it secret.

6.2. PRIVACY CAPACITY 51

A pX|US pY Z|X fB

fE

B

E

U, S X Y

Z

Û

S̃

Figure 6.1: Information theoretic model of a wiretap channel used for privacy preserva-
tion.

6.2 Privacy capacity

In our model, A is interested in transmitting secretly only a part of the information
that is sent along the channel. Therefore, the secrecy capacity would be an exces-
sively stringent bound for the rate that can be achieved. We hence define a new
type of capacity, which we call the privacy capacity of the channel.

Definition 6.1. A rate Rp > 0 is a privacy rate for the memoryless channel pY Z|X ,
if for all n ∈ Z+, there exist a message setMn, an encoder and a decoder such that

•
|Mn| ≥ 2nRp ; (6.3)

•
lim
n→∞

P[Û 6= U] = 0; (6.4)

•
lim
n→∞

I(S,Zn) = 0. (6.5)

The privacy capacity of the memoryless channel pY Z|X is

Cp = sup{Rp|Rp is an achievable privacy rate}. (6.6)

When no privacy rate is achievable, the privacy capacity is 0.

In order to give an intuition on how transmitting less secret information makes
possible to improve the rate, we get back to Example 3.1, that we used to introduce
the bounds provided by the secrecy capacity.

Example 6.1. Consider the uniform channel from Example 3.1 and assume that the
pair (U, S) is uniformly jointly distributed over M× S so that each realization u

of U is associated to a unique realization s of S, i.e., S is deterministic given u.

52 CHAPTER 6. PRIVACY-PRESERVING COMMUNICATIONS

Assume also that for all s ∈ S

|TU |S(s)| = |U|
|S|

= NU |S, ∀s ∈ S,

where TU |S(s) is the set of u ∈ M that are mapped into s. Since S is mapped
uniformly into U , we can rearrange (U, S)→ X → (Y, Z)→ (Û , S̃) into the Markov
chain S → U → X → (Y, Z) → (Û , S̃), where the source pS and the conditional
distribution pU |S are both uniform. We can adopt the same reasoning that we
followed in the secrecy capacity case. The condition to achieve reliability is

|X ′| ≤ |Y|
NY |X

while secrecy requires

NX|S = NX|UNU |S ≥
|Z|
NZ|X

⇒ NX|U ≥
|Z|

NZ|XNU |S
.

Combining both with the constraints with the bound on the cardinality of M, it
holds

|M| ≤ |X |
′

NX|U
≤ |Y|
NY |X

NZ|XNU |S

|Z|
.

The bound can be applied to the definition of privacy rate to obtain

Rp ≤
1
n

log2 |Mn| ≤
1
n

log2
|Y|
NY |X

NZ|XNU |S

|Z|
, (6.7)

which can be rewritten exploiting the properties of the logarithm as

Rp ≤
1
n

log2 |Y| −
1
n

log2 |NY |X | −
1
n

log2 |Z|+
1
n

log2 |NZ|X |+
1
n

log2 |NU |S|. (6.8)

Using again the properties of typical sequences, it follows that

Cp = H(Y)−H(Y |X)−H(Z) +H(Z|X) +H(U |S)
= I(X, Y)− I(X,Z) +H(U |S)
= Cs +H(U |S),

meaning that privacy capacity can overcome the bound given by the secrecy capacity.

Intuitively, the improvement on the bound of the rate is given by the fact that there
is a lot of information contained in U that can be transmitted without caring about
such information leaking to the adversary, thus, in principle, when NU |S grows, the

6.3. MINIMAX GAME FORMULATION 53

privacy capacity approaches the channel capacity.

Remark. The reliability condition of the privacy capacity can be expressed using the
distortion function d adopted in the privacy-utility tradeoff. Since d(u, û) = 0 when
u = û, if it is possible to find an encoder and a decoder such that

E[d(U, Û)] < εn, εn > 0

with εn vanishing when n grows, reliability is satisfied.

Remark. The encoder-decoder pair of a wiretap channel can be seen as a relaxation
of the concept of release mechanism, since it allows to make the intended receiver ob-
taining a release Y n and the eavesdropper obtaining a release Zn, which is correlated
to Y n but different.

6.3 Minimax game formulation

Since both secret physical layer communications and the privacy-utility tradeoff ad-
mit an adversarial formulation, which can be expressed as a minimax game, it is
natural to extend the reasoning to privacy-preserving communications. The straight-
forward approach consists in using the privacy-utility minimax game

min
pXn|U ,pÛ|Y n

(
max
pS̃|Zn

[−H(pS|S, pS̃|S)]
)

+ λE[d(U, Û)]. (6.9)

A clear issue in this formulation is that, even if the problem admits a unique solution
from a game theoretical point of view – i.e., the Nash equilibrium of the minimax
game – the objective function combines two different metrics. We hence adopted a
reparametrization of the problem:

min
pXn|U ,pÛ|Y n

αβ

(
max
pS̃|X

[−H(pS|S, pS̃|S)]
)

+ (1− α)λE[d(U, Û)]. (6.10)

The parameter β > 0 is suitably chosen to take the two metrics to a similar order
of magnitude, while 0 < α < 1 regulates the tradeoff between the minimization of
the two metrics, expressing it as a convex combination.
The corresponding adversarial learning formulation is given by the loss function

LM(θA, θB, θE) = −αβH(pS|S, q̃) + (1− α)E[d(U, Û)] (6.11)

to be minimized by the main encoder and decoder – i.e., with respect to θM =

54 CHAPTER 6. PRIVACY-PRESERVING COMMUNICATIONS

Dataset
Legitimate
Encoder fA Channel

Channel

Legitimate
Decoder fB

Adversary’s
Predictor fE

û

s̃

u, s x y

z

Figure 6.2: Adversarial network model of a wiretap channel used for privacy preservation.

(θA, θB) – and the loss function

LE(θA, θB, θE) = H(pS|S, q̃) (6.12)

to be minimized by the adversary – i.e., with respect to θE. The distribution q̃

is the output of the softmax of the adversary. It is hence possible to build an
adversarial neural network to play the minimax game, by applying Algorithm 3
using the specified loss functions.

6.4 Adversarial network for image transmission

We built a neural network using TensorFlow to evaluate the performance of our
framework for the purpose of image/video transmission. We performed both training
and tests on the CIFAR-10 datasets, which consists of 60000 (50000 for training
and 10000 for test) coloured images of size 32 × 32 divided in 10 possible classes:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck. The fact that
the images are coloured and 32 × 32 means that they have 3 channels (using the
BGR scale) and thus can be handled either as 32 × 32 × 3 matrices or 1024 × 3
matrices. The main network is an autoencoder which performs joint source and
channel coding on the input images, while the adversary acts as a classifier. An input
image u ∈ M = [0, 1]32×32×3 is first processed by the encoder of the main network
and mapped into a codeword x ∈ Rn, subject to the average power constraint
1
n

∑n−1
i=0 E[(X(i))2] ≤ 1 – without loss of generality with respect to a general power

constraint P . The codeword x is fed to the noise layers which represent the two
channels. We decided to relax the assumption of the adversary’s channel being
degraded with respect to the main channel, since it might be too stringent. The
two channels map x into y and z, respectively. The noise introduced by the two
channels are independent and the amount of noise that is added is determined by the
SNRs ΛB and ΛE. The codeword y is processed by the legitimate network’s decoder,
which aims to invert the encoding procedure and outputs the reconstructed image

6.4. ADVERSARIAL NETWORK FOR IMAGE TRANSMISSION 55

û. The adversary’s classifier, instead, takes z as input and outputs an estimate of
the label s̃. In the next paragraphs, we describe more in details the structure of
the main components of the neural network, namely, the encoder, the legitimate
decoder and the adversary’s predictor. For the main encoder and decoder, we used
the network structure employed in [17] for joint source and channel coding. The
notation (kernel1 × kernel2 × filter/strides) for a convolutional layer denotes a layer
with output dimension equal to the “filter” parameter, convolutional window of
size “kernel1 × kernel2” and strides equal to the “strides” parameter. Dense layers,
instead, are denoted only with their output size.

Encoder The encoder processes the input u through five convolutional layers, all
applying the PReLU as activation function. The output of the last convolutional
layer is fed to a normalization layer, which flattens it and divides it by its power
to satisfy the average power constraint, to obtain the actual codeword x. The
bandwidth – i.e., the compression rate given by the overall joint source and channel
encoding – is

`

n
= cout

16 · 3 .

We adopted cout = 16, hence the bandwidth is `/n = 1/3. The denominator 16× 3
is due to the 2× 2 strides that are applied in two convolutional layers, for an overall
compression of 16, for all the three image channels.

u
Conv

+
PReLU

Conv
+

PReLU

Conv
+

PReLU

Conv
+

PReLU

Conv
+

PReLU

N
or

m
al

iz
at

io
n

x

5× 5× 16/2 5× 5× 32/2 5× 5× 32/1 5× 5× 32/1 5× 5× cout/1

Figure 6.3: Encoder’s structure.

Main decoder The intended receiver’s decoder expands the noisy codeword y and
processes it through five deconvolutional layers, which are basically convolutional
layers that also employ upsampling operations, aiming to invert the convolutions
performed by the encoder. The first three deconvolutional layers apply the PReLU,
while the last one employs the sigmoid that performs a non-linear operation and
produces an output whose elements are in [0, 1] and can hence be interpreted as
normalized image pixels.

56 CHAPTER 6. PRIVACY-PRESERVING COMMUNICATIONS

y
D

en
or

m
al

iz
at

io
n

Deconv
+

PReLU

Deconv
+

PReLU

Deconv
+

PReLU

Deconv
+

PReLU

Deconv
+

Sigmoid
û

5× 5× 32/2 5× 5× 32/1 5× 5× 32/1 5× 5× 16/2 5× 5× 3/2

Figure 6.4: Main decoder’s structure.

Adversary’s classifier The classifier used by the eavesdropper’s network, instead
of decoding the image, directly tries to leak as much information as possible from the
the received vector z, which is more convenient since, by data processing inequality,
any additional process can only reduce the amount of information on s carried by z.
The classifier is made of two dense layers, the first applies the ReLU activation, while
the second employs the softmax to obtain a vector of 10 components, representing
the likelihoods of each image label being the correct one. The final prediction s̃ is
the argmax of the softmax, i.e., the label with maximum likelihood.

z

D
en

se
la

ye
r

+
R

eL
U

D
en

se
la

ye
r

+
So

ftm
ax

A
rg

m
ax

s̃

128 10

6.5 Distortion function and performance measures

The loss employed by the main network is a convex combination of two functions:
one is cross-entropy, which is well defined, while the other is a distortion function d,
that must be suitably chosen depending on the application. In this case, the natural
distortion function to be used is the mean square error (MSE), which is defined
between the original image u and the reconstructed image û, both of size a× b with
3 channels, as

MSE(u, û) = 1
3ab

3∑
c=0

a−1∑
i=0

b−1∑
j=0

(
u(i,j,c) − û(i,j,c)

)2
. (6.13)

The measure is averaged on all the the pairs (u, û) over a batch sample. The MSE
is the function to be minimized during the training phases. On the tests, instead,
we measure the quality of the transmitted image with the peak signal-to-noise ratio

6.6. TRAINING PHASES OF THE ADVERSARIAL NETWORK 57

(PSNR), which is a logarithmic scaled ratio between the maximum possible power
of a signal and its relative error, measured in decibels (dB). Since CIFAR-10 images
take values in [0, 1]32×32×3 the maximum power is 1 and hence PSNR is defined for
a batch u0, . . . , um−1 as

PSNR = 1
m

m−1∑
i=0

10 log10

(
1

MSE(ui, ûi)

)
= − 1

m

m−1∑
i=0

10 log10 MSE(ui, ûi). (6.14)

The higher the PSNR, the better the average quality of the reconstructed images.
The performance of the adversary’s predictor, instead, is measured by the accuracy,
i.e., the ratio between the correct predictions and the total number of predictions.
For a batch of m predictions s̃0, . . . , s̃m−1 compared to the true labels s0, . . . , sm−1,
the accuracy is

1
m

m∑
i=1

χ(s̃i = s0), (6.15)

where χ denotes the indicator function.

6.6 Training phases of the adversarial network

We divided the training in three main phases, using an approach similar to [16].

1. On the first phase, the main network trains the parameters of the encoder
and the decoder – i.e., (θA, θB) – in order to learn an efficient code for image
transmission only, without combating the adversary (using the loss function
with α = 0).

2. On the second phase, the adversary trains the parameters θE of the predictor.
This step is done in order to avoid the adversary’s network to be immediately
outperformed by the main network, which would make the adversarial training
pointless.

3. On the third phases, the two networks play the minimax game by performing
the alternate training described in Algorithm 3. Instead of using a stopping
criterion based on convergence, we employed a fixed number of adversarial
epochs, where one epoch consists in training first the main network (θA, θB)
for a fixed number of iterations and then the adversary’s classifier θE for a fixed
number of iterations. On this phase, the main network actually minimizes the
loss function with a value of α ∈ [0, 1] that is specified in advance. The number
of epochs is chosen large enough to ensure the performance of both network
reaching the steady-state.

58 CHAPTER 6. PRIVACY-PRESERVING COMMUNICATIONS

6.6.1 Tradeoff regulation with fixed channels

The first problem that we faced was finding a suitable value of the tradeoff parameter
α, to guarantee a sufficient level of privacy without excessively compromising the
transmitted images. Since the CIFAR-10 dataset contains 10 classes of images, the
best achievable privacy would be obtained when the accuracy of the adversary’s
predictor is 0.1, i.e., having the adversary randomly guessing the class. We hence
performed several complete trainings, varying the parameter α and evaluating the
PSNR of the images reconstructed by the main network and the accuracy of the
adversary’s predictor. We report the parameters used for the simulations in Table
6.1. The number of epochs Nepoch is referred to the adversarial training epochs.
On each epoch, the main network has been trained for NAB iterations, while the
adversary has been trained forNE iterations. Since the main network has an inherent
advantage given by the encoder and the decoder being jointly trained, the adversary
must train for a higher number of iterations, to avoid having the predictor being
quickly outperformed. For the same reason, we did not allow a great advantage in
terms of SNR to the legitimate channel.

Table 6.1: Parameters used for training

Parameter Symbol Value
Iterations in Phase 1 N1 30000
Iterations in Phase 2 N2 30000
Number of epochs Nepoch 40
Main network’s iterations NAB 500
Adversary’s iterations NE 4000
Main receiver’s SNR ΛB 10 dB
Adversary’s SNR ΛE 5 dB
Learning rate η 10−4

Size of training batch mbatch 32
Size of test set mtest 10000

We show the behaviour of the curves with respect to the number of iterations and
the steady-state values for different values of α. For each value, we averaged the
results of 5 simulations, randomizing the training batches, and we show the maxi-
mum variation from the mean value on the steady-state plot. It is easy to see that
changing the parameter α actually enables to regulate the tradeoff between quality
and privacy. The tradeoff is non-linear with respect to α, mainly because of the
inherent difference between the two metrics that are employed. Nonetheless, it is
important to notice that the steady state curves of accuracy and PSNR follow a
similar behaviour, meaning that the tradeoff is balanced despite the non-linearity.

6.6. TRAINING PHASES OF THE ADVERSARIAL NETWORK 59

Furthermore, for higher values of α the results are subject to a higher variance,
which is due to the adversarial training. We focus on the range 0.9 ≤ α < 1, since
when α belongs to such range, the adversary’s accuracy is taken under 0.5.

0.5 1 1.5 2
·104

20

22

24

26

28

30

32

Traning iterations

PS
N

R
(d

B)

Curve behaviour on training

α=0
α=0.2
α=0.4
α=0.6
α=0.8
α=0.9
α=0.95

0 0.2 0.4 0.6 0.8 114

16

18

20

22

24

26

α

Steady-state results

0.5 1 1.5
·105

0.4

0.5

0.6

0.7

0.8

Traning iterations

A
cc

ur
ac

y
on

pr
ed

ic
tio

n

Curve behaviour on training

α=0
α=0.2
α=0.4
α=0.6
α=0.8
α=0.9
α=0.95

0 0.2 0.4 0.6 0.8 10.2

0.3

0.4

0.5

0.6

0.7

α

Steady-state results

Figure 6.5: PSNR of the reconstructed images and accuracy of the adversary’s predictor
obtained training the network with the legitimate receiver having an SNR of ΛB = 10 dB
and the adversary having ΛE = 5 dB. The values shown in the curves are sampled at the
end of an epoch.

6.6.2 Robustness of the trained model

We saved the network’s weights for fixed values of α and tested the robustness of
the adversary’s network with respect to noise variations. In particular, we show the

60 CHAPTER 6. PRIVACY-PRESERVING COMMUNICATIONS

test performed on a network trained with α = 0.95 with ΛB = 10 dB and ΛE = 5
dB. On the tests, we varied the value of ΛE. It can be seen from the plot that the
predictor trained by the adversary’s network does not improve when the SNR is
increased, while instead drops, as expected, when the SNR is lowered.

−15 −10 −5 0 5 10 15 200.1

0.2

0.3

0.4

0.5

0.6

ΛE (dB)

A
cc

ur
ac

y
on

pr
ed

ic
tio

n

Figure 6.6: Results on the tests performed on the adversary’s network trained with
α = 0.95, ΛB = 10 dB and ΛE = 5 dB.

The lack of scalability when the SNR increases is mainly due to the fact that when
the value of α is increased, the main encoder is trained to behave as a release
mechanism for privacy-preservation and hence the codewords transmitted along the
channel contain less sensitive information on the labels than the original images.
This can be seen also by looking to the image reconstructed by the main decoder,
in Figure 6.7.

Figure 6.7: The original images compared to the images reconstructed by the legitimate
receiver with α = 0.95, ΛB = 10 dB and ΛE = 5 dB.

6.7. TRAINING WITH PMD EQUALIZATION 61

6.7 Training with PMD equalization

Although the results obtained training the adversarial neural network are positive,
the loss function 6.11 presents the same issues of 4.11: the objective of the main
network is to maximize the cross-entropy of the adversary’s predictor, which can
be easily done by performing a permutation of the encoding scheme, as we showed
in 4.3. In order to overcome this issue, we adopted the PMD equalization method
described in 4.3.1. We employed a unique cluster for the classes, meaning that the
goal of the main network is to learn an encoding scheme that makes the output of
the adversary’s softmax almost uniform, which implies that for a given codeword z

all the images must have the same likelihood.

Figure 6.8: The equalization matrix obtained with k = 1 clusters.

Therefore, we changed the loss function employed by the main network into

LM(θA, θB, θE) = αβH(p̄S|S, q̃) + (1− α)E[d(U, Û)] (6.16)

where H(p̄S|S, q̃) is the equalized distribution, which is represented by the equaliza-
tion matrix shown in Figure 6.8. We performed again 5 simulations and averaged
the results. We employed the same parameters used for the training with the cross-
entropy maximization approach, which we refer to as “naive approach”. In order to
compare the stability of the two approaches, we trained the network both with the
naive approach and with PMD equalization, measuring the accuracy and the PSNR

62 CHAPTER 6. PRIVACY-PRESERVING COMMUNICATIONS

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
·105

0

0.2

0.4

0.6

0.8

1

Number of traning iterations

A
cc

ur
ac

y

Results for α =0.95, ΛB = 10 dB, ΛE = 5 dB

Naive approach
PMD equalization

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
·104

18

20

22

24

Number of traning iterations

PS
N

R
(d

B)

Results for α =0.95, ΛB = 10 dB, ΛE = 5 dB

Naive approach
PMD equalization

Figure 6.9: Stability comparison between the naive approach and the PMD equalization
approach, with α = 0.95, ΛB = 10 dB and ΛE = 5 dB.

both after training the main network and after training the adversary’s network.
Figure 6.9 shows that at the end of each epoch of the main network the accuracy
is brought to 0.1. This means that the encoding scheme learnt by the network is
trained to specifically combat the adversary’s classifier. At the end of each overall
epoch, i.e. after also the adversary has trained, in fact, the accuracy is raised back
to a higher value, which is more indicative of the performance of the trained net-
work in terms of privacy. This oscillating behaviour leads also to unstable results
on steady-state, which can be seen by comparing the sizes of the error bars. On the
other hand, PMD equalization reveals to be a much more stable approach and does
not present the oscillating behaviour in the accuracy curve. Then, we trained the
network employing the PMD equalization approach with different values of α.

6.7. TRAINING WITH PMD EQUALIZATION 63

0 0.2 0.4 0.6 0.8 114

16

18

20

22

24

26

α

PSNR (dB)

Naive
PMD eq.

0 0.2 0.4 0.6 0.8 10.2

0.3

0.4

0.5

0.6

0.7

α

Accuracy

Naive
PMD eq.

Figure 6.10: Steady-state PSNR with respect to the tradeoff parameter α.

The steady-state results appear different in the range 0 ≤ α ≤ 0.8, but in our
region of interest, i.e. 0.9 ≤ α < 1, the provide really similar results, on average.
Nonetheless, PMD equalization’s results are subject to a lower variance, making the
approach more reliable.

6.7.1 Robustness with PMD equalization

We tested the PMD equalization approach, measuring PSNR and accuracy while
varying the SNR of the adversary’s channel, and compared it to the naive approach.

−10 0 10 20

16

18

20

22

24

ΛE (dB)

PSNR

Naive approach
PMD equalization

−10 0 10 200.1

0.2

0.3

0.4

0.5

0.6

ΛE (dB)

Accuracy

Naive approach
PMD equalization

Figure 6.11: Results on the tests performed on the adversary’s network trained with
α = 0.95, ΛB = 10 dB and ΛE = 5 dB.

64 CHAPTER 6. PRIVACY-PRESERVING COMMUNICATIONS

Of course the PSNR does not vary at all, since it depends on the main channel: we
measured it to show that with α = 0.95 the steady-state value of PSNR is almost
equivalent, as can be noticed also by the training results. Figure 6.11 shows that
PMD equalization leads to a slightly lower accuracy for the adversary, i.e. more
privacy, and to a higher stability in the results.

Figure 6.12: Images reconstructed by the legitimate receiver using the naive approach
and PMD equalization, with α = 0.95, ΛB = 10 dB and ΛE = 5 dB.

Figure 6.13: An original image of the CIFAR-10 representing a frog, compared to the
reconstructed images, with α = 0.95, ΛB = 10 dB and ΛE = 5 dB. The image is correctly
classified by the adversary when the adversarial network is trained with the naive approach,
while it is misclassified as a deer when the network is trained using PMD equalization.

Figure 6.12 shows that, in any case, the coding scheme learnt by the network with
the naive approach and with PMD equalization are quite similar. However, in some
cases, even if the reconstructed images at the receiver side are similar, the adversary’s
classifier makes different predictions. The difference are in some cases due to the
decision regions determined by the adversary and in some other cases are due to the
encoding rule learnt by the main network.

Chapter 7

Conclusions

In this work, we have developed a neural network-based framework to learn coding
schemes allowing to increase the amount of privacy provided for communications
over a wiretap channel. We have adopted an adversarial formulation that leads to
the solution of a minimax game where a main network and an adversary network
compete. The minimax can be interpreted as a game with two players, where at
every epoch of training each actor plays their best response to the previous player’s
move. When the adversarial training reaches the convergence point, that is the
Nash equilibrium of the game. We also have implemented our approach to an
adversarial neural network that is aimed to transmit image from the CIFAR-10
dataset while preventing the adversary to correctly classifying them. The network
is able to guarantee a privacy-distortion tradeoff, which becomes more convenient
when the disturb in the adversary’s channel is increased. We have adopted first
a naive approach, which consists in maximizing the adversary’s cross-entropy, and
also a more stable approach which aims to take the adversary’s softmax output close
to a uniform distribution. The results that we have obtained are quite encouraging
and we infer that the model should be investigated further in the future.

7.1 Future work

In order to have a better understanding of the limits of the approach, some additional
tests should be performed. First of all, it should be verified how much increasing
the bandwidth of the channel enables an improvement in terms of privacy. From the
results obtained on the secrecy capacity in previous works, we expect that, when
the bandwidth is increased, a higher privacy is achievable. Moreover, in order to
train the network to be robust to noise variation, fading should be introduced in the
channel model. Furthermore, we propose some possible variations that may improve

65

66 CHAPTER 7. CONCLUSIONS

the model. In our implementation, the encoder is fed with the images, but this does
not follow the stochastic encoding principle that is employed in the design of codes
achieving the secrecy capacity. In order to mimic the approach with neural network,
some randomness should be given in input to the encoding function along with the
input image. Another idea to improve the performance of the decoder might be
introducing a discriminator that decides whether the reconstructed image belong to
the original dataset or not.

Bibliography

[1] A. D. Wyner, The wire-tap channel, Bell Syst. Tech. J., vol. 54, pp. 1355-1387,
Oct. 1975

[2] S. Leung-Yan-Cheong, M. Hellman, The Gaussian wire-tap channel, IEEE
Transactions on Information Theory, vol. 24, no. 4, pp. 451-456, 1978

[3] S. P. Lloyd, Least squares quantization in PCM, Information Theory, IEEE
Transactions on 28.2, pp. 129-137, 1982

[4] D. Barber, F. Agakov, The IM algorithm: A variational approach to infor-
mation maximization, In Proceedings of the 16th International Conference on
Neural Information Processing Systems, NIPS’03, pp. 201-208, MIT Press, 2003

[5] T. M. Cover, J. A. Thomas, Elements of information theory, Second Edition,
Wiley-Interscience, 2006.

[6] Y. Liang, H. V. Poor, S. Shamai (Shitz), Secure communication over fading
channels, IEEE Transactions on Information Theory, vol. 54, no. 6, pp. 2470-
2492, June 2008.

[7] N. Benvenuto, M. Zorzi, Principles of Communications Networks and Systems,
First Edition, Wiley, 2011

[8] M. R. Bloch, J. Barros, Physical-Layer Security: From Information Theory to
Security Engineering, First edition, Cambridge University Press, 2011

[9] M. R. Bloch, J. N. Laneman, Strong Secrecy From Channel Resolvability, IEEE
Transactions on Information Theory, 59(12), pp.8077-8098, 2013

[10] D. P. Kingma, J. Ba, Adam, A method for stochastic optimization,
arXiv:1412.6980, 2014

[11] M. Yi, X. Ji, K. Huang, H. Wen, B. Wu, Achieving strong security based on
fountain code with coset pre-coding, in IET Communications, vol. 8, no. 14, pp.
2476-2483, Sept. 2014.

67

68 BIBLIOGRAPHY

[12] Y. O. Basciftci, Y. Wang, P. Ishwar, On privacy-utility tradeoffs for constrained
data release mechanisms, in Information Theory and Applications Workshop,
Feb. 2016.

[13] S. Ruder, An overview of gradient descent optimization algorithms,
arXiv:1609.04747, June 2016

[14] T. O’Shea, J. Hoydis, An Introduction to Deep Learning for the Physical Layer,
arXiv:1702.00832v2, July 2017

[15] N. Laurenti, Physical layer secrecy, Course of Information Security, De-
partment of information engineering (DEI), University of Padova. Available:
https://elearning.dei.unipd.it/mod/resource/view.php?id=115414

[16] R. Fritschek, R. F. Schaefer, G. Wunder, Deep Learning for the Gaussian Wire-
tap Channel, arXiv:1810.12655v2, Oct. 2018

[17] E. Bourtsoulatze, D. B. Kurka, D. Gunduz, Deep Joint Source-Channel Coding
for Wireless Image Transmission, arXiv:1809.01733v3, March 2019

[18] A. Tripathy, Y. Wang, and P. Ishwar Privacy-Preserving Adversarial Networks
arXiv:1712.07008v3, June 2019

	Introduction
	Notation

	Learning framework for the physical layer
	Autoencoders
	Activation functions
	Cross-entropy minimization
	Stochastic optimization

	Design of a simple autoencoder
	Training results for a simple autoencoder

	Physical layer secrecy
	The wiretap channel
	Secrecy condition

	Secrecy capacity
	Stochastic encoding
	Characterization of the secrecy capacity

	Channels separability
	Channel orderings

	Deep learning for the wiretap channel
	The Gaussian wiretap channel
	Adversarial learning
	Cross-entropy based approach
	PMD equalization

	Adversarial network model
	Training results

	Possible extensions

	Privacy preservation
	Privacy-preserving data release mechanisms
	Adversarial learning for privacy-preservation
	Results on the MNIST dataset

	Privacy-preserving communications
	Information theoretic model
	Privacy capacity
	Minimax game formulation
	Adversarial network for image transmission
	Distortion function and performance measures
	Training phases of the adversarial network
	Tradeoff regulation with fixed channels
	Robustness of the trained model

	Training with PMD equalization
	Robustness with PMD equalization

	Conclusions
	Future work

