
Università degli Studi di Padova

Department of Mathematics “Tullio Levi-Civita”

Degree Course in Computer Science

Generating Realistic Marble Textures using
Generative Adversarial Networks

Thesis

Supervisor

Prof. Lamberto Ballan

Student

Marco Bernardi

Accademic Year 2022-2023

Marco Bernardi: Generating Realistic Marble Textures using Generative Adversarial
Networks, Thesis, © July 2023.

Summary

This document presents the outcomes of the internship conducted by Marco Bernardi
at Breton S.p.A, spanning approximately three hundred hours. The internship encom-
passed various objectives, the first of which involved conducting a feasibility study
on the utilization of Generative Adversarial Networks (GANs) for generating lifelike
marble textures. Following the confirmation of feasibility, the subsequent goal was
to develop a model capable of generating marble textures with a notable level of
realism and diversity. Lastly, the final objective involved integrating the model into
fundamental software designed for the creation of marble textures.

ii

Contents

1 Introduction 1
1.1 The company . 1

1.1.1 Products and Services . 1
1.1.2 Certifications . 2

1.2 The idea . 2
1.2.1 Side Idea . 3

1.3 Goals . 3
1.4 Text structure . 4

2 Process and methodologies 5
2.1 GANs . 5
2.2 Train process . 6
2.3 Evaluation process . 6

2.3.1 The problem of evaluating GANs 6
2.3.2 Manual evaluation . 7
2.3.3 Qualitative evaluation . 7
2.3.4 Quantitative evaluation . 9

3 Internship description 12
3.1 Initial analysis . 12
3.2 Requirements & Goals . 12

3.2.1 Requirements . 12
3.2.2 Goals . 12

3.3 Planning . 13
3.3.1 Road-map . 13
3.3.2 Study Period: . 16
3.3.3 First Period: . 16
3.3.4 Second Period: . 17
3.3.5 Third Period: . 18
3.3.6 Fourth Period: . 22

4 Design and coding 23
4.1 Technology and tools . 23

4.1.1 Python . 23
4.1.2 CUDA . 23
4.1.3 CuDNN . 24
4.1.4 ML libraries . 24
4.1.5 GANs Models . 25

iii

CONTENTS iv

4.1.6 Tools . 26
4.1.7 Adobe Photoshop . 26
4.1.8 Hardware . 27

4.2 Final implementation . 27
4.2.1 Network Type . 27
4.2.2 PatchGAN Discriminator . 30
4.2.3 Adam optimizer . 31
4.2.4 Training process . 32
4.2.5 User Interface . 33

5 Verification and validation 35
5.1 Metrics . 35

5.1.1 Loss function . 35
5.2 Results . 36

5.2.1 Evaluation metrics . 36
5.3 Different Network Configurations . 37

6 Conclusion 38
6.1 Goals achieved . 38

6.1.1 CAD to GAN . 38
6.2 Hourly summary . 40
6.3 Acquired knowledge . 40
6.4 Personal evaluation. 41

Acronyms and abbreviations 42

Glossary 43

Bibliography 45

List of Figures

2.1 GAN architecture . 5

3.1 Story map . 13
3.2 Example of a slab . 17
3.3 Cropped image . 18
3.4 Canny Edge Detection . 19
3.5 Meijering & Contrast filter . 20
3.6 HED . 21
3.7 Generated images . 22

4.1 U-Net architecture . 28
4.2 TensorFlow implementation of the U-Net generator 29
4.3 PatchGAN discriminator. 30
4.4 TensorFlow implementation of the PatchGAN discriminator 31
4.5 Generator training process . 33
4.6 Discriminator training process . 33
4.7 User interface . 34

6.1 CAD drawing . 39
6.2 Result IMG . 39

List of Tables

1.1 Goals . 4

5.1 Mean FID score for each model . 36
5.2 Mean Inception score for each model 37

v

LIST OF TABLES vi

6.1 Reached Goals . 38

Chapter 1

Introduction

1.1 The company
Breton S.p.A is an Italian company specialized in the design, engineering and production
of machinery and advanced systems for various industries. Established in 1963 by
Marcello Toncelli, Breton gained international recognition as a leader in the production
of cutting-edge industrial equipment. The company’s headquarters are located in
Castello di Godego, Italy, with numerous production facilities and branches strategically
located around the world. Breton’s experience spans multiple industries, including
stone working, metal working, aerospace, automotive and more. Their extensive
product portfolio includes a wide variety of machinery, catering for the needs of both
small workshops and large industrial companies. With a strong focus on research and
development, Breton has been instrumental in driving advances in automation and
digitization within various industries. The company constantly invests in cutting-edge
technologies such as the artificial intelligence, Internet of Things (IOT[g]) and machine
learning to provide cutting-edge solutions to its customers. Also, Breton places a
significant emphasis on sustainability and environmentally friendly practices. Through
the development of energy efficient machinery, waste reduction initiatives and the
promotion of sustainability production processes, Breton actively contributes to a
greener and more sustainable environment future.

1.1.1 Products and Services
Products

Breton’s product portfolio encompasses a wide range of machinery, including:

• CNC machines: Breton’s CNC[g]machines are designed to provide high precision
and accuracy in machining operations. The company offers a wide range of CNC
machines, including vertical machining centers, horizontal machining centers,
and 5-axis machining centers.

• Cutting and shaping systems: Breton’s cutting and shaping systems are
designed to provide high precision and accuracy in cutting and shaping operations.
The company offers a wide range of cutting and shaping systems, including
waterjet cutting systems, laser cutting systems, plasma cutting systems, and wire
cutting systems.

1

CHAPTER 1. INTRODUCTION 2

• Polishing equipment: Breton’s polishing equipment is designed to provide
high precision and accuracy in polishing operations. The company offers a wide
range of polishing equipment, including polishing machines, polishing robots,
and polishing systems.

• Robotic solutions: Breton’s robotic solutions are designed to provide high
precision and accuracy in robotic operations. The company offers a wide range
of robotic solutions, including robotic arms, robotic cells, and robotic systems.

• Software: Breton provides software solutions for the management of the produc-
tivity process, that can be fully integrated with the existing systems, for grant
the best performance of the machinery and grant the control over the production
plant.

Services

Breton offers a wide range of services to its customers, including:

• Consulting: Breton provides consulting services to its customers, helping them
choose the right machinery for their needs. The company’s experts analyze the
customer’s requirements and recommend the most suitable solutions.

• Installation: Breton’s technicians install the machinery at the customer’s site
and ensure that it is functioning properly.

• Training: Breton offers training programs to its customers, teaching them how
to operate the machinery and get the most out of it.

• Maintenance: Breton provides maintenance services to its customers, ensuring
that the machinery is running smoothly and efficiently.

1.1.2 Certifications
Breton is continuously improving its products, services and workflows to meet the
highest standards of quality, safety, and environmental protection.
The company is certified according to the following standards:

• ISO 9001: Breton is certified according to the ISO 9001 standard, which specifies
requirements for a quality management system.

• ISO 14001: Breton is certified according to the ISO 14001 standard, which
specifies requirements for an environmental management system.

• UNI INAIL ed. 2001: Breton is certified according to the UNI INAIL ed.
2001 standard, which specifies requirements for a health and safety management
system.

1.2 The idea
The concept originated from a request made by the company aiming to extract key
characteristics of a marble slab, including its veins, texture, and colors, in order to
automatically generate a digital representation, or fingerprint, of the slab. This digital
fingerprint can be effectively created using a conventional machine learning (ML[g])

CHAPTER 1. INTRODUCTION 3

model. However, accurately teaching the model to distinguish between veins and other
features in marble slabs poses significant challenges, as the veins can vary and the
slabs themselves are not always flawless.

To address this issue, a substantial number of images depicting the veins’ paths
are required to train the model effectively. However, obtaining such images is often
problematic for various reasons:

• The company Breton primarily works with test slabs and thus lacks a large
collection of images.

• Depending on customers for image contributions is not always feasible, as they
may be unwilling to share their own images.

Manually extracting the veins’ paths from images is an extremely time-consuming
task that demands significant human resources. Consequently, the proposed solution
involves creating a generative model capable of producing a substantial quantity of
images that include the respective veins’ paths. These generated images can then be
utilized to train the machine learning model effectively.

1.2.1 Side Idea
Derived from the main concept, an ancillary idea emerged: the creation of a computer
numerical control (CNC[g]) program based on an image file. This would enable
the recreation of veins on engineered stone slabs using a CNC machine. However,
implementing this idea presents considerable challenges, as converting an image file
into a CNC program is a complex task. A CNC program consists of a sequence of
instructions for the machine, while an image file is composed of a matrix of pixels.

Consequently, the ancillary idea was revised and transformed into the following:
“Generating a marble slab image from a computer-aided design (CAD[g]) model“. This
approach proves more viable, as the CAD model can be readily converted into a CNC
program, which in turn can be utilized to fabricate a marble slab.

To accomplish this, a generative adversarial network (GAN[g]) model is required.
The GAN model must possess the ability to accurately reproduce colors, textures,
and veins that adhere to the path defined by the CAD model. This approach offers
increased feasibility, as the CAD model can be easily transformed into a CNC program,
enabling the subsequent production of a marble slab.

1.3 Goals
The goals of the project can be categorized into three main categories denoted by the
following letters:

• M: Mandatory goals, which represent the primary objectives of the project and
are explicitly required by the commissioning company.

• D: Desirable goals, which serve as secondary objectives for the project and are
not essential for the commissioning company but can add value to the overall
outcome.

• O: Optional goals, which are additional objectives for the project that may be
pursued based on feasibility and available resources.

CHAPTER 1. INTRODUCTION 4

Each goal is assigned a unique code consisting of the category letter followed by a
number that identifies the specific objective. The goals are listed in the following table:

Table 1.1: Goals

Code Description Category
M1 Get an analytic and multidisciplinary thought, thanks to the

decomposition of the problem in sub-problems
M

M2 Reach a level of autonomy in the management of the project,
with synthesis and critical thinking of the problems

M

M3 Quality on the production of technological artifacts and on
the documentation

M

D1 Development of a POC[g]for generating marble images with
a GAN model or similar technology

D

D2 Development of a POC for augmenting resolution of an image D
D3 Validation of the artifacts produced D
O1 First product engineering approaches developed O
O2 Product testing in a manufacturing production environment O

1.4 Text structure
First chapter The first chapter introduce the company and its products and services.

It also describes the idea of the project and the text structure.

Second chapter The second chapter describes the process and the methodology used
for the development of the project.

Third chapter Third chapter describes the internship experience, and how the project
was planned and developed.

Fourth chapter The fourth chapter describes how the project technologies were
implemented for reach the objectives.

Fifth chapter The fifth chapter describes how the project was tested and validated.

Sixth chapter The sixth chapter describes the conclusions of the project.

During the writing of this document, the following conventions were adopted:

• acronyms, abbreviations and ambiguous or uncommon terms mentioned are
defined in the glossary, located at the end of this document;

• for the first occurrence of the terms defined in the glossary, the following nomen-
clature is used: word [g];

• the terms that require further explanation like technical words are marked with
a subscript italic;

Chapter 2

Process and methodologies

In this chapter, we delve into the comprehensive exploration of the technologies employed
during the internship and their broader application.

2.1 GANs

Figure 2.1: GAN architecture

The concept of Generative Adversarial Networks (GAN) was first introduced by Ian
Goodfellow and his colleagues in 2014 in their paper titled "Generative Adversarial
Networks"1 published at the Neural Information Processing Systems (NIPS) conference.
Goodfellow, along with his co-authors, proposed a novel framework that revolutionized
the field of generative modeling. GANs are a groundbreaking approach to generative
modeling that combines elements of both supervised and unsupervised learning. They
consist of two interconnected neural networks: a generator and a discriminator. The
generator network learns to generate new data samples, such as images or text, by
mapping random input vectors to output samples that resemble the training data.
The discriminator network, on the other hand, aims to distinguish between real data
samples from the training set and those generated by the generator. These two networks
engage in a competitive process, where the generator strives to produce samples that
the discriminator cannot differentiate from real data, while the discriminator aims to

1I. Goodfellow et al. “Generative Adversarial Networks”. In: Advances in Neural Information
Processing Systems 27 (), pp. 2672–2680. url: http://papers.nips.cc/paper/5423-generative-
adversarial-nets.pdf.

5

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

CHAPTER 2. PROCESS AND METHODOLOGIES 6

correctly classify the samples. (ref. 2.1) Through iterative training, GANs are able
to improve the quality of the generated samples, leading to increasingly realistic and
high-fidelity outputs. GANs have since become a cornerstone in the field of generative
modeling and have found applications in various domains, including image synthesis,
text generation, and video generation.

2.2 Train process
The training process of a GAN model involves a unique adversarial framework that
iteratively improves the generator and discriminator networks. Initially, both networks
are randomly initialized. During training, the generator takes random input vectors
and generates synthetic data samples. Simultaneously, the discriminator receives both
real data samples from the training set and generated samples from the generator. The
discriminator’s objective is to accurately distinguish between real and fake samples,
while the generator aims to produce samples that can fool the discriminator into
classifying them as real. The training process occurs in alternating steps. In each step,
the discriminator is trained by optimizing its parameters to minimize the classification
error, correctly identifying real and generated samples. Conversely, the generator is
trained by adjusting its parameters to maximize the error rate of the discriminator,
essentially trying to generate samples that are indistinguishable from real data. This
adversarial game continues for multiple iterations, with the generator and discrim-
inator networks continuously updating their weights to improve their performance.
Through this iterative process, the generator learns to produce increasingly realistic
samples, while the discriminator becomes more adept at distinguishing between real
and generated data. The training process of a GAN is complex and requires careful
balancing. If the generator becomes too powerful, it may produce samples that closely
resemble the training data but lack diversity. On the other hand, if the discriminator
becomes too strong, it can easily detect generated samples, resulting in poor-quality
outputs. Achieving a delicate equilibrium between the two networks is essential for
training a successful GAN model.

2.3 Evaluation process

2.3.1 The problem of evaluating GANs
In contrast to conventional deep learning models that are trained with a loss function
until convergence, Generative Adversarial Networks (GANs) operate within a zero-
sum game framework involving two interconnected networks: the generator and the
discriminator. The generator aims to deceive the discriminator by generating realistic
samples, while the discriminator endeavors to accurately differentiate between genuine
and fake samples. The training process concludes when the discriminator becomes
incapable of distinguishing between real and synthetic samples, signifying that the
generator has successfully captured the underlying distribution of the training data.

This unique training approach of GANs poses a significant challenge when it
comes to objective evaluation and assessment. Unlike traditional models that have
objective functions to minimize or maximize, GANs lack a definitive metric for gauging
training progress and determining the absolute or relative performance of a GAN
model solely based on loss. This presents several complexities in various scenarios,
such as selecting a final GAN model during training, showcasing the capabilities of

CHAPTER 2. PROCESS AND METHODOLOGIES 7

a GAN through generated samples, comparing different GAN models, or comparing
different hyperparameters for the same GAN model.

To date, the most prevalent approach for evaluating GANs involves a combination
of qualitative and quantitative metrics that center around the quality and diversity of
the generated samples.

2.3.2 Manual evaluation
Manual evaluation often serves as a means of assessing GAN models through the visual
inspection of generated samples. This evaluation method relies on human judgment to
gauge the quality of a batch of generated samples, rendering it subjective in nature.
Although manual inspection is a straightforward approach to model evaluation, it
entails several limitations. Firstly, subjectivity is introduced due to the evaluator’s
biases towards the model and the data. Secondly, expertise in the specific domain of the
data is required to effectively evaluate the samples. Furthermore, manual evaluation is
time-consuming, imposing constraints on the number of images that can be thoroughly
assessed.

. . . evaluating the quality of generated images with human vision is expensive and
cumbersome, biased [. . .] difficult to reproduce, and does not fully reflect the capacity
of models2.

Consequently, while manual evaluation provides an initial impression of a model’s
performance, it should not be solely relied upon for the final selection of a model.
Fortunately, alternative and more objective evaluation methods have been proposed
and embraced within the field.

2.3.3 Qualitative evaluation
Qualitative evaluation plays a crucial role in assessing the visual quality and performance
of GAN models. While subjective in nature, it provides valuable insights into various
aspects of the generated samples, including their fidelity, coherence, diversity, and
novelty. Several commonly used metrics and evaluation techniques have been developed
to facilitate qualitative assessment.

• Nearest neighbors: Nearest neighbors evaluation involves comparing the
generated samples with real samples from the training dataset. By computing
the similarity between the generated samples and their nearest neighbors in the
real data space, evaluators can assess how well the GAN model captures the
underlying distribution of the training data;

• Rapid Scene Categorization3: aims to evaluate the ability of GAN-generated
samples to be quickly recognized and categorized by human observers. Evaluators
assess how well the generated samples align with the expected scene categories
and their visual characteristics. This evaluation metric provides insights into the
semantic coherence and overall discriminability of the generated samples;

2Ali Borji. “Pros and Cons of GAN Evaluation Measures”. In: arXiv preprint arXiv:1802.03446
abs/1802.03446 (). url: https://arxiv.org/abs/1802.03446.

3Ibid.

https://arxiv.org/abs/1802.03446

CHAPTER 2. PROCESS AND METHODOLOGIES 8

• Rating and Preference judgement4567: involve human evaluators rating
or ranking the quality of generated samples based on predefined criteria. This
qualitative evaluation method provides subjective assessments of visual quality,
realism, and aesthetic appeal. By gathering ratings or preference judgments
from multiple evaluators, a collective assessment of the generated samples can be
obtained;

• Mode Drop and Collapse89: Mode drop and collapse refer to situations where
the GAN model fails to generate samples representing all the diverse modes
or aspects of the training data distribution. Evaluators visually inspect the
generated samples to identify any mode drop, where certain modes or patterns
are missing, or mode collapse, where the generated samples lack diversity and
exhibit repetitive patterns. Assessing mode drop and collapse is crucial for
evaluating the ability of GAN models to capture the full range of variations in
the training data;

• Network Internals101112131415: Analyzing the internal representations and
activations of the GAN model’s neural network can provide insights into the
learning process and the generated samples’ quality. Evaluators examine net-
work internals, such as feature maps and intermediate layers, to gain a better
understanding of how the GAN model generates and captures visual patterns;

The most used qualitative measure is a sort of manual inspection of images, called
Rating and Preference judgement.

. . .These types of experiments ask subjects to rate models in terms of the fidelity
of their generated images. . . 16.

4Xun Huang et al. “Stacked Generative Adversarial Networks”. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (). url: https://arxiv.org/abs/1612.04357.

5Han Zhang et al. “StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative
Adversarial Networks”. In: IEEE International Conference on Computer Vision (ICCV) (). url:
https://arxiv.org/abs/1612.03242.

6C. Xiao et al. “Generating adversarial examples with adversarial networks”. In: arXiv preprint
arXiv:1801.02610 (). url: https://arxiv.org/abs/1801.02610.

7Z. Yi et al. “DualGAN: Unsupervised Dual Learning for Image-to-Image Translation”. In: arXiv
preprint arXiv:1704.02510 (). url: https://arxiv.org/abs/1704.02510.

8A. Srivastava et al. “Veegan: Reducing Mode Collapse in GANs using Implicit Variational
Learning”. In: Advances in Neural Information Processing Systems (). url: https://arxiv.org/
abs/1705.07761.

9Z. Lin et al. “PacGAN: The power of two samples in generative adversarial networks”. In: arXiv
preprint arXiv:1712.04086 (). url: https://arxiv.org/abs/1712.04086.

10A. Radford, L. Metz, and S. Chintala. “Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks”. In: arXiv preprint arXiv:1511.06434 (). url:
https://arxiv.org/abs/1511.06434.

11X. Chen et al. “InfoGAN: Interpretable Representation Learning by Information Maximizing
Generative Adversarial Nets”. In: Advances in Neural Information Processing Systems (). url:
https://arxiv.org/abs/1606.03657.

12I. Higgins et al. “beta-VAE: Learning Basic Visual Concepts with a Constrained Variational
Framework”. In: (). url: https://arxiv.org/abs/1711.00464.

13M. F. Mathieu et al. “Disentangling Factors of Variation in Deep Representation using Adversarial
Training”. In: Advances in Neural Information Processing Systems (). url: https://arxiv.org/
abs/1611.03383.

14M. D. Zeiler and R. Fergus. “Visualizing and Understanding Convolutional Networks”. In:
European Conference on Computer Vision (). url: https://arxiv.org/abs/1311.2901.

15D. Bau et al. “Network Dissection: Quantifying Interpretability of Deep Visual Representations”.
In: Computer Vision and Pattern Recognition (). url: https://arxiv.org/abs/1704.05796.

16Borji, “Pros and Cons of GAN Evaluation Measures”.

https://arxiv.org/abs/1612.04357
https://arxiv.org/abs/1612.03242
https://arxiv.org/abs/1801.02610
https://arxiv.org/abs/1704.02510
https://arxiv.org/abs/1705.07761
https://arxiv.org/abs/1705.07761
https://arxiv.org/abs/1712.04086
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1606.03657
https://arxiv.org/abs/1711.00464
https://arxiv.org/abs/1611.03383
https://arxiv.org/abs/1611.03383
https://arxiv.org/abs/1311.2901
https://arxiv.org/abs/1704.05796

CHAPTER 2. PROCESS AND METHODOLOGIES 9

Usually images are shown in pairs (one real and one fake), and the subjects are
asked to choose the best image. A score or rating is then assigned to the model based
on the number of times it is chosen as the best image. For lowering the variance of the
results, the images are shown to multiple human judges and the results are averaged.
This process is labor intensive, but with the help of crowd-sourcing platforms like
Amazon Mechanical Turk, it can be done at scale (Reducing the cost also).
Another downside of this method is that the human judges performance can improve
with experience, especially if they are given feedback on their performance.

. . . By learning from such feedback, annotators are better able to point out the flaws in
generated images, giving a more pessimistic quality assessment. . . 17.

2.3.4 Quantitative evaluation
In addition to qualitative evaluation, quantitative assessment provides a systematic
and objective analysis of GAN models’ performance. These evaluation metrics aim to
measure various aspects of the generated samples, including their diversity, fidelity,
and similarity to the real data distribution. By quantitatively evaluating GAN models,
researchers can compare different models, assess the impact of hyperparameters, and
track progress during training. Some of the most common quantitative measures
are: Average log-likelihood, Coverage Metric, Inception Score, Modified Inception
Score, Mode Score, AM Score, Fréchet Inception Distance, Maximum Mean Discrep-
ancy, The Wasserstein Distance, Birthday Paradox Test, Classifier Two-Sample Tests,
Classification Performance, Boundary Distortion, Number of Statistically-Different
Bins, Image Retrieval Performance, Generative Adversarial Metric, Tournament Win
Rate, Normalized Relative Discriminative Score, Adversarial Accuracy and Adversarial
Divergence, Geometric Score, Reconstruction Score, Image Quality measures, Low-level
Image Statistics, Precision, Recall and F1 Score.

The most used quantitative measures are Inception Score and Fréchet Inception
Distance .

Inception Score

The Inception Score (IS[g]) is a widely used quantitative metric for evaluating the
quality and diversity of generated samples in GAN models. It was proposed in 2016
by Tim Salimans et al. in "Improved Techniques for Training GANs"18, provides
a measure of both sample quality and class diversity. The IS is computed by first
obtaining the predicted class probabilities for each generated sample using an Inception-
v3 pre-trained classifier. Then, the average of these probabilities is calculated to assess
the quality of the generated samples. Additionally, the entropy of the predicted class
probabilities is computed to measure the diversity of the samples. The formula for
calculating the Inception Score is as follows:

IS = exp (Ex∼pdata [KL (p(y|x)||p(y))]) (2.1)
17Borji, “Pros and Cons of GAN Evaluation Measures”.
18Tim Salimans et al. “Improved Techniques for Training GANs”. In: arXiv preprint

arXiv:1606.03498 abs/1606.03498 (). url: http://arxiv.org/abs/1606.03498.

http://arxiv.org/abs/1606.03498

CHAPTER 2. PROCESS AND METHODOLOGIES 10

The KL divergence is a measure of how one probability distribution is different from a
second, reference probability distribution. The KL divergence is defined as:

KL(P ||Q) =
∑︂
i

P (i) log

(︃
P (i)

Q(i)

)︃
(2.2)

The Inception Score is a good measure of the quality of generated images, but it has some
limitations. It is sensitive to dataset and classifier choice, lacks consideration of spatial
coherence, may not detect mode collapse effectively, offers limited interpretability, and
emphasizes high-quality samples. Complementary metrics and qualitative assessments
are essential for a comprehensive evaluation of GAN models.

Frechet Inception Distance

The Fréchet Inception Distance (FID[g]) score is a widely used metric for evaluating
the quality of generated images in the field of generative adversarial networks (GANs)
introduced by Martin Heusel et al.19.

"FID performs well in terms of discriminability, robustness and computational ef-
ficiency [...] It has been shown that FID is consistent with human judgments and is
more robust to noise than IS".20

It measures the similarity between the distribution of real images and the distri-
bution of generated images by comparing their feature representations extracted from
a pre-trained Inception-v3 network21. A lower FID score indicates better similarity
between the two distributions, suggesting higher-quality generated images that resemble
the real data more closely. The FID score takes into account both the quality and
diversity of generated images, making it a valuable metric for assessing the performance
of GAN models. It provides a quantitative measure that complements visual inspection
and subjective evaluation, enabling researchers to objectively compare and analyze
different GAN architectures and training strategies. The FID score is defined as:

FID(p, q) = ∥µp − µq∥2 + Tr(Σp +Σq − 2(ΣpΣq)
1/2) (2.3)

Where:

• µp and µq are the mean vectors of the real and generated images respectively.

• Σp and Σq are the covariance matrices of the real and generated images respec-
tively.

• Tr is the trace operator.

• ∥ · ∥ is the Euclidean norm.

As the IS score, the FID score has some limitations based on the use of the Inception-v3
network.

19Martin Heusel et al. “GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash
Equilibrium”. In: arXiv preprint arXiv:1706.08500 abs/1706.08500 (). url: http://arxiv.org/abs/
1706.08500.

20Borji, “Pros and Cons of GAN Evaluation Measures”.
21C. Szegedy et al. “Rethinking the Inception Architecture for Computer Vision”. In: Computer

Vision and Pattern Recognition (). url: https://arxiv.org/abs/1512.00567.

http://arxiv.org/abs/1706.08500
http://arxiv.org/abs/1706.08500
https://arxiv.org/abs/1512.00567

CHAPTER 2. PROCESS AND METHODOLOGIES 11

Suggested GAN evaluation procedure

The evaluation of Generative Adversarial Networks (GANs) presents challenges, neces-
sitating a comprehensive approach that combines qualitative and quantitative measures.
Initially, a manual inspection of the generated images is recommended to assess the
quality of the generator model. Subsequently, quantitative measures such as the
Inception Score and the Frechet Inception Distance can be employed to evaluate the
quality and diversity of the generated images. It is important to note that there is
no universally superior measure for GAN evaluation, as the selection of evaluation
measures depends on the specific task and dataset at hand.

As of yet, there is no consensus regarding the best score. Different scores assess
various aspects of the image generation process, and it is unlikely that a single score
can cover all aspects. Nevertheless, some measures seem more plausible than others
(e.g. FID score)22

22Borji, “Pros and Cons of GAN Evaluation Measures”.

Chapter 3

Internship description

This chapter provides an overview of the internship project, including its requirements,
goals, and the planning undertaken for the internship period.

3.1 Initial analysis
The initial phase of the project involved an analysis of the requirements for developing
a functional GAN model. This process entailed posing pertinent questions to determine
the desired outcomes and the appropriate approach. These inquiries encompassed the
nature of the generated images, the input image requirements, the network architecture,
the extracted image features, and the dataset selection. By addressing these questions,
the project’s requirements, goals, and a comprehensive roadmap were established,
laying the foundation for subsequent project execution.

3.2 Requirements & Goals

3.2.1 Requirements
• Requirement 1: The dataset used for training the GAN model must consist of

high-quality images of compound stone slabs to ensure accurate representation;

• Requirement 2: The model should possess the capability to generate realistic
compound stone slab images based on given inputs, such as sketches or other
forms of guidance;

• Requirement 3: The generated images produced by the model should exhibit
a high level of quality, comparable to real images of compound stone slabs, in
terms of visual fidelity, texture, and details;

• Requirement 4: The generated images should be presented in real time, allowing
for immediate visual feedback and preview during the image generation process.

3.2.2 Goals
• Goal 1: Acquire a diverse and high-quality dataset of compound stone slab

images that encompasses various patterns, colors, and textures to train the GAN
model effectively;

12

CHAPTER 3. INTERNSHIP DESCRIPTION 13

• Goal 2: Develop a GAN model that demonstrates the ability to generate accurate
and visually appealing compound stone slab images from provided inputs, such
as sketches or other relevant data;

• Goal 3: Create a desktop application that employs the trained GAN model to
generate compound stone slab images in real time, enabling users to preview the
generated images promptly during the image generation process. This application
should provide an intuitive user interface for seamless interaction.

3.3 Planning
Initially, the project was planned using a story map (See fig. 3.1) to define the main
features of the project and the main steps to achieve them.

Figure 3.1: Story map

3.3.1 Road-map
Following an initial analysis of the story map, it was feasible to establish a project
roadmap encompassing the requirements and objectives to be accomplished during the
internship period. The entire undertaking has been meticulously planned, employing a
distinct temporal division across various phases. These phases are outlined below:

• Train period: This phase entails an in-depth study of the current state of the
art and the technologies that will be employed;

• First period: During this phase, the focus will be on image acquisition;

• Second period: The primary objective of this period is to augment the dataset
by increasing the number of images;

• Third period: In this phase, the key task is to extract the main features;

• Fourth period: Network training constitutes the central objective of this
Internship;

CHAPTER 3. INTERNSHIP DESCRIPTION 14

• Fifth period: The final phase involves the analysis of results and the implemen-
tation of improvements;

C
H

A
P

T
E

R
3.

IN
T

E
R

N
SH

IP
D

E
SC

R
IP

T
IO

N
15

Internship Project

April May June
Train Period

100% completeTechnology exploration

First Period
100% completeImage acquisition

Milestone 1

Second Period
100% completeDataset improvements

Milestone 2

Third Period
100% completeFeatures extraction

Milestone 3

Fourth Period
100% completeNetwork training

Milestone 4

Fifth Period
50% completeGeneral improvements & Docs

Milestone 5

CHAPTER 3. INTERNSHIP DESCRIPTION 16

3.3.2 Study Period:
This designated period was allocated for an in-depth examination of the current state
of the art and the technologies that would be employed throughout the course of the
internship. The primary focus areas encompassed the following key topics:

• Machine Learning: A comprehensive study of the fundamental concepts and
principles underpinning machine learning and deep learning;

• GAN: An extensive exploration of the core concepts and functioning principles
of GANs;

• GAN applications: An examination of the principal applications of GANs and
their practical utilization;

• GAN architectures: A detailed analysis of the primary GAN architectures
and their respective applications;

• GAN training: A thorough investigation into the predominant techniques
employed for training GANs;

• GAN evaluation: An in-depth exploration of the leading methodologies utilized
for evaluating the performance of GANs;

• GAN improvements: A comprehensive study of the key techniques employed
to enhance and refine GAN models;

• GAN applications: An exploration of the primary domains where GANs find
application and their practical implementation;

3.3.3 First Period:
During this designated period, the focus was on acquiring images. Each Breton machine
was already equipped with a camera and a computer featuring specialized software
capable of capturing images from the camera. The camera captured photographs of
each worked slab, which were then transmitted to the database. Subsequently, the
images were retrieved from the database and stored in a designated folder.

Challenges:

The primary challenge encountered during this phase pertained to the quality of the
acquired images. The machine’s image acquisition functionality was not originally
intended for use in a machine learning project, resulting in suboptimal image quality.
The images displayed variations in size, inconsistent backgrounds, and occasionally
contained unwanted elements such as light reflections or machine shadows.

Solutions:

To address these challenges, the following measures were implemented:

• Background Removal: To eliminate extraneous elements from the images, a
pre-trained machine learning model developed by Breton was employed. This
model, in conjunction with the OpenCV library, effectively identified and removed
non-slab components from the images, focusing solely on the slabs themselves.

CHAPTER 3. INTERNSHIP DESCRIPTION 17

Figure 3.2: Example of a slab

• Image Defects: Manual intervention was employed to remove images with light
reflections and shadows from the dataset. This task was feasible due to the
manageable quantity of such images.

• Images Resizing: The images were resized to a standardized dimension while
preserving the original aspect ratio.

Milestone:

At the conclusion of this period, the dataset consisted of 500 images of slabs (See
fig. 3.2), featuring diverse colors and textures. The dataset was subsequently divided
into two separate parts: one for training purposes and the other for validation, with a
split ratio of 70% for training and 30% for validation, respectively.

3.3.4 Second Period:
During this designated period, the dataset was expanded, and the existing images
underwent augmentation techniques.

Image Augmentation:

Image augmentation is a technique employed to increase the number of images in a
dataset by applying various transformations to the original images. This technique
proves valuable when the dataset size is insufficient to train a network effectively. To
expand the dataset, each original image was split into smaller images of dimensions
256×256 pixels (See fig. 3.3). After that the following augmentation techniques were
applied to the images:

• Resize: Each image was resized to a larger dimension, increasing from 256×256
pixels to 286×286 pixels;

• Random Crop: A random cropping operation was performed on each image,
resulting in a standardized size of 256×256 pixels;

• Random Flip: Each image underwent a random horizontal flipping operation;

CHAPTER 3. INTERNSHIP DESCRIPTION 18

Figure 3.3: Cropped image

Milestone:

At the conclusion of the aforementioned period, the dataset consisted of a total of
7000 images depicting slabs, showcasing a wide range of colors and textures. This
accomplishment holds substantial significance, as the dataset has now attained a size
that is deemed adequate for effectively training a network. Consequently, employing
this technique enables not only Breton but also any other company to augment their
dataset and compensate for any inadequacies in terms of available images.

3.3.5 Third Period:
This designated period was dedicated to identifying the optimal method for extracting
features from the images, such as veins, textures, and colors. The extraction of features
from the images is a critical aspect of the project, as the quality of these features
directly impacts the quality of the network. Thus, it was imperative to ensure the
accuracy of the mask containing the extracted features.

Vein Extraction:

Various Python-implemented methods were tested for vein extraction. The tested
methods included:

• Thresholding1: This method utilizes the Threshold algorithm, which applies
a threshold to the image, retaining only the pixels with values higher than the
threshold. To account for varying light conditions across images, the threshold
was calculated using the Otsu’s method.

• Canny Edge Detection2: This method employs the Canny algorithm, which
is an edge detection algorithm utilizing a multi-stage approach to identify edges

1OpenCV: Thresholding Operations. url: https://docs.opencv.org/4.x/d7/d4d/tutorial_py_
thresholding.html.

2OpenCV: Canny Edge Detection. url: https://docs.opencv.org/3.4/da/d22/tutorial_py_
canny.html.

https://docs.opencv.org/4.x/d7/d4d/tutorial_py_thresholding.html
https://docs.opencv.org/4.x/d7/d4d/tutorial_py_thresholding.html
https://docs.opencv.org/3.4/da/d22/tutorial_py_canny.html
https://docs.opencv.org/3.4/da/d22/tutorial_py_canny.html

CHAPTER 3. INTERNSHIP DESCRIPTION 19

in images. The algorithm comprises five steps: noise reduction through Gaussian
filtering, gradient calculation, non-maximum suppression, double thresholding,
and edge tracking by hysteresis. Figure 3.4 illustrates the outcome of Canny
Edge Detection

Figure 3.4: Canny Edge Detection

• Meijering & Contrast filter3: The Meijering filter is based on the Hessian
matrix, which calculates the second-order partial derivatives of a function. Eigen-
values and eigenvectors obtained from the Hessian matrix enable the identification
of line-like structures in the image. The contrast filter is employed to enhance
image contrast. Figure 3.5 presents the result of the Meijering & Contrast filter.

3Meijering Filter. url: https://scikit-image.org/docs/stable/api/skimage.filters.html#
rbd62388c4e81-1.

https://scikit-image.org/docs/stable/api/skimage.filters.html#rbd62388c4e81-1
https://scikit-image.org/docs/stable/api/skimage.filters.html#rbd62388c4e81-1

CHAPTER 3. INTERNSHIP DESCRIPTION 20

Figure 3.5: Meijering & Contrast filter

• HED (Holistically-Nested Edge Detection)4: This method is based on the
HED[g]algorithm, which employs a deep neural network for edge detection in
images. The algorithm involves three steps: utilizing a pre-trained network to
extract features from the image, applying a multi-scale algorithm to extract edges
from the features, and linking the edges using the Canny algorithm. Figure 3.6
showcases the result of the HED algorithm.

4S. Xie and Z. Tu. “Holistically-Nested Edge Detection”. In: International Conference on Computer
Vision (). url: https://arxiv.org/abs/1504.06375.

https://arxiv.org/abs/1504.06375

CHAPTER 3. INTERNSHIP DESCRIPTION 21

Figure 3.6: HED

Milestone:

At the conclusion of this period, the results indicated that the Meijering & Contrast
filter and the Canny Edge Detection methods were the most effective. The HED
method was discarded due to its sluggish performance and subpar results, often
introducing noise in the form of random lines into the images. The two preferred
methods successfully extracted the vein structures from the images, considering that
an unsupervised approach was employed.

Improvements:

One potential avenue for improvement involves the utilization of a supervised method
for vein extraction. This method would offer greater accuracy compared to unsupervised
methods, as it would be trained specifically for vein extraction. However, implementing
a supervised approach necessitates significant time and a substantial number of hand-
labeled images to train the model effectively.

CHAPTER 3. INTERNSHIP DESCRIPTION 22

3.3.6 Fourth Period:
During this designated period, the focus was on training the network. The network
employed for this purpose was a pix2pix network, which utilizes a Conditional Genera-
tive Adversarial Network (CGAN) to generate images. The training process involved
utilizing the dataset created in the preceding periods and the hardware resources
provided by the company (See 4.1.8)

Various configurations of the network were tested during this period, involving the
fine-tuning of hyperparameters to identify the optimal setup. The specific configuration
details of the network will be elaborated upon in Chapter 4.

Milestone:

Upon the conclusion of this period, the network demonstrated its capability to generate
images of slabs exhibiting a diverse range of colors and textures (See 3.7).

Figure 3.7: Generated images

Chapter 4

Design and coding

This chapter covers the project’s design and coding, including the technologies and tools
used, the software life cycle, and the coding phase.

4.1 Technology and tools
In the subsequent sections, we will elucidate the technologies and tools employed within
the project.

4.1.1 Python
Python is a high-level programming language renowned for its simplicity, readability,
and versatility. It offers a clean and concise syntax, making it easy to understand and
write code. Python’s extensive standard library and thriving community contribute
to its vast ecosystem of third-party libraries and frameworks, empowering developers
to accomplish a wide range of tasks efficiently. From web development and scientific
computing to data analysis and machine learning, Python excels in various domains.
Its object-oriented nature, dynamic typing, and automatic memory management
contribute to its flexibility and ease of use. Furthermore, Python’s cross-platform
compatibility enables code portability across different operating systems. With its
consistent updates and improvements, Python continues to evolve, ensuring its relevance
in the ever-changing landscape of software development.

4.1.2 CUDA
CUDA[g](Compute Unified Device Architecture) is a parallel computing platform and
API model developed by NVIDIA. It allows developers to harness the computational
power of NVIDIA GPUs[g]for general-purpose computing. By utilizing CUDA, devel-
opers can offload computationally intensive tasks to the GPU, resulting in significant
performance improvements. CUDA provides a wide range of libraries and tools for
efficient GPU programming, making it a standard for GPU computing in various in-
dustries and research fields. With ongoing advancements, CUDA continues to empower
developers to leverage GPU parallelism for faster and more efficient computations.

23

CHAPTER 4. DESIGN AND CODING 24

4.1.3 CuDNN
CuDNN[g](CUDA Deep Neural Network) is a GPU-accelerated library developed by
NVIDIA for deep learning tasks. It provides optimized implementations of key neural
network operations, such as convolutions and recurrent operations. By leveraging
CuDNN, developers can accelerate deep learning workflows, reducing training times
and improving model performance. It seamlessly integrates with popular deep learning
frameworks and supports mixed-precision training. CuDNN plays a crucial role in
advancing deep learning research and applications by harnessing the power of GPU
acceleration.

4.1.4 ML libraries
TensorFlow

TensorFlow is an open-source machine learning framework developed by Google. It
provides a robust platform for building and deploying machine learning models. With
its computational graph abstraction, TensorFlow enables efficient execution of complex
mathematical computations. It offers a wide range of APIs and tools for different
tasks, including model development, training, and deployment. TensorFlow supports
distributed computing, allowing for parallel processing across multiple devices. It
integrates with various frameworks and libraries, making it versatile and interoperable.
TensorFlow is highly regarded for its scalability, flexibility, and extensive feature set,
making it a popular choice among machine learning practitioners.

PyTorch

PyTorch is an open source machine learning library based on the Torch library, used
for applications such as computer vision and natural language processing, primarily
developed by Facebook’s AI Research lab (FAIR[g]). It is free and open source software
released under the Modified BSD license. PyTorch serves as the foundation for several
deep learning software applications, including Tesla Autopilot, Uber’s Pyro, Hugging
Face’s Transformers, PyTorch Lightning, and Catalyst. It offers two prominent high-
level capabilities: tensor computing, akin to NumPy, with enhanced acceleration
through GPU utilization, and deep neural networks constructed on a tape-based
automatic differentiation system. These features enable efficient computation and
facilitate the development of sophisticated machine learning models.

Keras

Keras is a sophisticated, Python-based high-level neural networks API that can be
seamlessly integrated with popular deep learning framework such as TensorFlow. It
is specifically designed to facilitate rapid experimentation, allowing researchers and
developers to quickly transition from conceptualizing ideas to obtaining meaningful
results. The framework’s core principle is to minimize the time lag between ideation
and outcome, thereby facilitating efficient and effective research endeavors. Prominent
scientific organizations worldwide, including CERN, NASA, NIH, and others, rely on
Keras for their research and applications.

CHAPTER 4. DESIGN AND CODING 25

OpenCV

OpenCV, short for Open Source Computer Vision, is a popular and widely-used open-
source computer vision library. It was initially developed by Intel in 1999 and later
supported by Willow Garage and Itseez (now merged with Intel) before becoming
a community-driven project. OpenCV provides a vast collection of computer vision
algorithms and tools, making it a go-to solution for developers and researchers working
on various vision-related tasks.

The primary goal of OpenCV is to provide a comprehensive and efficient infras-
tructure for computer vision applications. It supports a wide range of programming
languages, including C++, Python, Java, and MATLAB, making it accessible to
developers from diverse backgrounds. OpenCV offers a rich set of functions for image
and video processing, feature detection and extraction, object recognition, camera
calibration, and more.

One of the key strengths of OpenCV is its ability to leverage hardware acceleration,
such as utilizing multicore CPUs and GPUs, to enhance performance. This makes it
suitable for real-time and resource-intensive applications, such as robotics, augmented
reality, surveillance systems, and autonomous vehicles.

The library encompasses a wide range of functionalities, including face detection
and recognition, object identification, human action classification in videos, camera
movement tracking, object motion tracking, 3D model extraction, generation of 3D
point clouds from stereo cameras, image stitching for creating high-resolution panoramic
images, similarity search in image databases, red-eye removal from flash photography,
eye movement tracking, scene recognition, and marker establishment for augmented
reality overlays, among others.

4.1.5 GANs Models
Pix2Pix

Pix2Pix1 is a popular deep learning model used for image-to-image translation tasks.
It is based on a conditional generative adversarial network (GAN) architecture, which
consists of a generator network and a discriminator network. The Pix2Pix model aims
to learn a mapping between an input image and an output image, where the output
image is a transformed version of the input image according to a specific target domain.

The model was trained and evaluated on a large dataset of paired images from
the Berkeley Segmentation Dataset and Benchmark and demonstrates a capability to
generate plausible synthetic images for a variety of image-to-image translation tasks,
such as converting daylight images to night.

Pix2Pix has been successfully applied to various image translation tasks, such as
converting grayscale images to color, generating realistic street scenes from semantic
labels, transforming sketches into photorealistic images, and more.

StyleGAN

StyleGAN is a highly versatile Generative Adversarial Network (GAN) model primarily
developed for the purpose of general image generation. Extensive training and evalua-
tion of the model were conducted using a substantial dataset comprised of unpaired
images sourced from the Flickr-Faces-HQ dataset. Through this rigorous training

1Phillip Isola et al. “Image-to-Image Translation with Conditional Adversarial Networks”. In: arXiv
preprint arXiv:1611.07004 abs/1611.07004 (). url: http://arxiv.org/abs/1611.07004.

http://arxiv.org/abs/1611.07004

CHAPTER 4. DESIGN AND CODING 26

process, StyleGAN exhibits the ability to generate synthetic images that possess a
remarkable level of plausibility across a wide range of image generation tasks. Notably,
the model excels in the generation of realistic human faces, showcasing its proficiency
in capturing the intricate details and characteristics associated with facial features.

4.1.6 Tools
Visual Studio Code

Visual Studio Code is a free source-code editor made by Microsoft for Windows, Linux
and macOS. Features include support for debugging, syntax highlighting, intelligent
code completion, snippets, code refactoring, and embedded Git.

Git

Git is a distributed version-control system for tracking changes in source code during
software development. It is designed for coordinating work among programmers, but it
can be used to track changes in any set of files. Its goals include speed, data integrity,
and support for distributed, non-linear workflows.

GitHub

GitHub is a global company that provides hosting for software development version
control using Git. It is a subsidiary of Microsoft, which acquired the company in
2018 for $7.5 billion. It offers all of the distributed version control and source code
management (SCM) functionality of Git as well as adding its own features. It provides
access control and several collaboration features such as bug tracking, feature requests,
task management, and wikis for every project.

GIMP

GIMP is a free and open-source raster graphics editor used for image retouching and
editing, free-form drawing, converting between different image formats, and more
specialized tasks.

4.1.7 Adobe Photoshop
Adobe Photoshop, a widely recognized raster graphics editor, has been developed and
published by Adobe Inc. for the Windows and macOS platforms. Since its inception
in 1988 by Thomas and John Knoll, Photoshop has established itself as the industry
standard for raster graphics editing and digital art creation. In a recent update, Adobe
introduced a notable feature called "Generative Fill". This feature incorporates a
Generative AI model, enabling users to generate new content within an image, thereby
expanding the creative possibilities and augmenting the editing capabilities of the
software.

Webex

Webex is a video conferencing software developed by Cisco Systems. It is a cloud-
based software that provides video conferencing, online meetings, screen-sharing, and
webinars. It has a free version that allows up to 100 participants, with a 50-minute time

CHAPTER 4. DESIGN AND CODING 27

restriction. The paid version starts at $13.50/month and allows up to 200 participants
and unlimited meeting time.

Outlook

Outlook is a personal information manager software system from Microsoft, available
as a part of the Microsoft Office suite. Primarily an email application, it also includes
a calendar, task manager, contact manager, note taking, journal, and web browsing.

4.1.8 Hardware
The company provided all the necessary hardware for the development of this project.
The hardware configuration utilized during the project is outlined as follows:

• DELL Precision 7670

– CPU[g]: Intel Core i7-12850HX

– GPU: NVIDIA Quadro RTX A2000 8GB GDDR6

– RAM: 32GB DDR4

– Storage: 512GB NVMe SSD

– OS: Windows 10 Pro 64-bit

• DELL Precision 7520

– CPU: Intel Core i7-6820HQ

– GPU: NVIDIA Quadro M2200 4GB GDDR5

– RAM: 16GB DDR4

– Storage: 512GB NVMe SSD

– OS: Windows 10 Pro 64-bit

4.2 Final implementation

4.2.1 Network Type
In the ultimate implementation of the project, the selected network type was the
Pix2Pix model.

Pix2Pix in detail

Pix2Pix is a comprehensive Generative Adversarial Network (CGAN) model specifically
designed for the purpose of image-to-image translation. The Pix2Pix model comprises
two distinct models, which are constructed as follows:

U-Net Generator

The generator follow the U-Net architecture, which is a convolutional neural network
that consists of an encoder (down-sampler) and a decoder (up-sampler). The encoder
downsamples the input image and extracts the features, while the decoder upsamples
the image and produces the segmentation map. The skip connections between the

CHAPTER 4. DESIGN AND CODING 28

encoder and decoder are added to prevent the loss of low-level features during the
upsampling process.

Figure 4.1: U-Net architecture

TensorFlow implementation

The TensorFlow implementation of the U-Net generator is composed by the following
layers (see figure 4.2):

• Encoder: 8 downsampling layers, each downsampling layer is composed by a
convolutional layer, a batch normalization layer, and a Leaky ReLU activation
layer.

• Decoder: 8 upsampling layers, each upsampling layer is composed by a trans-
posed convolutional layer, a batch normalization layer, a dropout layer(applied
to the first 3 layers), and a ReLU activation layer.

• Skip connections: between the encoder and decoder, there are skip connections,
each skip connection.

CHAPTER 4. DESIGN AND CODING 29

Figure 4.2: TensorFlow implementation of the U-Net generator

CHAPTER 4. DESIGN AND CODING 30

4.2.2 PatchGAN Discriminator
The discriminator is a convolutional neural network that classifies the real and fake
images. The discriminator architecture is such that each convolutional block in the
discriminator consists of a convolution layer, a batch normalization layer, and a Leaky
ReLU activation layer. The PatchGAN discriminator architecture is such that it only
penalizes the structure at the scale of patches. This discriminator tries to classify if
each N x N patch in an image is real or fake.

Figure 4.3: PatchGAN discriminator.

Each value of the output matrix in fig. 4.3 represents the probability of whether
the corresponding image patch is real or it is artificially generated.

TensorFlow implementation

The TensorFlow implementation of the PatchGAN discriminator is composed by the
following layers (see figure 4.4):

• Input: 2 input layers, one for the real image and one for the generated image.

• Concatenate: the two input layers are concatenated along the channel axis.

• Downsampling: the concatenated input is downsampled using 3 convolutional
layers, each convolutional layer is composed by a convolutional layer, a batch
normalization layer, and a Leaky ReLU activation layer.

• Output: the output layer is a 30×30×1 matrix, where each patch of the output
classifies a 70×70 portion of the input image as real or fake.

CHAPTER 4. DESIGN AND CODING 31

Figure 4.4: TensorFlow implementation of the PatchGAN discriminator

4.2.3 Adam optimizer
The Adam optimizer is a widely used optimization algorithm for training neural
networks. It was introduced by Diederik P. Kingma and Jimmy Ba in their paper titled
“Adam: A Method for Stochastic Optimization’2 published in 2015. Adam stands for
Adaptive Moment Estimation and combines the benefits of two other optimization
techniques: AdaGrad and RMSProp. It maintains adaptive learning rates for each
parameter, automatically adjusting the learning rate based on the gradient’s past
behavior. By utilizing first and second moments of the gradients, Adam updates the
parameters to accelerate convergence and handle different types of neural networks
effectively. It can be used instead of the classical stochastic gradient descent procedure
to update network weights iterative based on training data. According to Kingma et

2Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”. In:
International Conference on Learning Representations (). url: https://arxiv.org/abs/1412.6980.

https://arxiv.org/abs/1412.6980

CHAPTER 4. DESIGN AND CODING 32

al., the method is “computationally efficient, has little memory requirements, invariant
to diagonal rescaling of gradients, and is well suited for problems that are large in
terms of data and/or parameters“.

Following the pix2pix paper, the Adam optimizer is used with a learning rate of
0.0002 and momentum of 0.5 for both the generator and the discriminator.

4.2.4 Training process
For the generator training the procedure is the following illustrated in fig. 4.5, Meanwhile
for the discriminator training the procedure is the following illustrated in fig. 4.6.

The training process begins with pairs of input images and their corresponding
target output images. The generator network takes the input image as input and
generates a synthesized output image. The discriminator network, on the other hand,
receives both the synthesized output image from the generator and the real target
output image. The discriminator’s objective is to correctly classify whether the input
image is real or synthesized.

The training process involves alternating between two steps: generator update and
discriminator update. In the generator update step, the generator parameters are
updated to minimize the discrepancy between the synthesized output image and the
target output image. This is typically done by minimizing a pixel-wise loss function,
such as mean squared error or binary cross-entropy, which measures the difference
between the synthesized and target images.

In the discriminator update step, the discriminator parameters are updated to
improve its ability to discriminate between real and synthesized images. The discrimi-
nator is trained to correctly classify real images as real and synthesized images as fake.
It aims to maximize its classification accuracy.

The training process continues iteratively, with the generator and discriminator
networks playing a competitive game. The generator learns to generate more realistic
and visually appealing output images that closely resemble the target images, while
the discriminator becomes more skilled at distinguishing between real and synthesized
images.

This adversarial training process creates a feedback loop where the generator tries
to produce images that the discriminator cannot distinguish from real ones, and
the discriminator continuously improves its ability to discriminate between real and
synthesized images. This iterative training process helps the generator network learn
to generate high-quality output images that are visually consistent with the target
images.

The training process of the pix2pix generator and discriminator involves this iterative
interplay, gradually improving the generator’s ability to synthesize realistic output
images and the discriminator’s ability to distinguish between real and synthesized
images.

CHAPTER 4. DESIGN AND CODING 33

Figure 4.5: Generator training process

Figure 4.6: Discriminator training process

4.2.5 User Interface
As a requirements of the project, a user interface (ref 4.7) was developed to allow the
user to draw the input image. It was developed using the Python library Tkinter and
it is composed by a window with a menu bar and a canvas where the user can draw.

CHAPTER 4. DESIGN AND CODING 34

The menu bar consists of the following:

• Colors

– Brush Color: Set the Brush color.

– background Color: Set the background color.

• Options

– Clear canvas: Undo the last action.

– Generate Image: Redo the last action.

– Load CAD: Load a CAD file as input.

– Load PNG/JPG: Load a .PNG file as input.

– Exit: Exit the application.

Figure 4.7: User interface

Once the input is submitted, the application will show the output in the lower canvas.
And save it in the output folder.

Chapter 5

Verification and validation

In this chapter we will discuss the verification and validation process of the trained model.
We will discuss the metrics used to evaluate the model and the results obtained.

5.1 Metrics

5.1.1 Loss function
According to the pix2pix paper1, the loss function used is a combination of a conditional
GAN loss and a L1 loss. In a general CGAN the objective function is defined as:

LcGAN (G,D) = Ex,y[logD(x, y)] + Ex,z[log(1−D(x,G(x, z)))] (5.1)

here G tries to minimize this function against an adversarial D that tries to maximize
it. To assess the significance of conditioning the discriminator, we also compare it to
an unconditional variant where the discriminator does not have access to the input x.
The loss function for this unconditional variant can be expressed as:

LcGAN (G,D) = Ex,y[logD(y)] + Ex,z[log(1−D(G(x, z)))] (5.2)

Previous studies have shown the advantages of incorporating a traditional loss, such
as L2 distance2, alongside the GAN objective. While the discriminator’s role remains
unchanged, the generator is not only responsible for fooling the discriminator but also
for producing outputs that closely resemble the ground truth in terms of L2 similarity.
Additionally, we explore an alternative option by employing L1 distance instead of L2,
as L1 promotes reduced blurring: The L1 loss for the generator can be defined as:

LL1(G) = Ex,y,z [∥y −G(x, z)∥1] (5.3)

Our ultimate objective is to find the optimal generator G that minimizes the loss
function while simultaneously maximizing the performance of the discriminator D.
This objective can be represented by the equation:

G∗ = argmin
G

max
D

(LcGAN (G,D) + λLL1(G)) (5.4)

1Isola et al., “Image-to-Image Translation with Conditional Adversarial Networks”.
2D. Pathak et al. “Context Encoders: Feature Learning by Inpainting”. In: Computer Vision and

Pattern Recognition (). url: https://arxiv.org/abs/1604.07379.

35

https://arxiv.org/abs/1604.07379

CHAPTER 5. VERIFICATION AND VALIDATION 36

In previous conditional GAN approaches, the inclusion of Gaussian noise z alongside
the input x was employed to prevent deterministic outputs and allow for the modeling
of diverse distributions. However, in our experiments, this strategy was found to be
ineffective as the generator learned to ignore the noise, aligning with the findings of
Mathieu et al.3. Instead, in our final models, we introduce noise through the use of
dropout applied to multiple layers of the generator during both training and testing.
Despite the presence of dropout noise, we observe only minor stochasticity in the
generated outputs. The development of conditional GANs that can produce highly
stochastic outputs, capturing the full entropy of the conditional distributions they
model, remains an open and important question for future research.

5.2 Results

5.2.1 Evaluation metrics
During the training process, the evaluation metrics were calculated every 100 epochs.
For get a more accurate result, the evaluation metrics were calculated using the same
couple of image-mask for each epoch, generating ten images for each epoch. Each
generated image was compared with the corresponding real image.

FID score

During the training process, the FID score was calculated every 100 epochs.

Model FID score Epoch
M1 32,98 100
M2 26,42 200
M3 25,39 300
M4 22,29 400
M5 22,29 500
M6 22,29 600

Table 5.1: Mean FID score for each model

According to the results obtained, the best model is the M3 model.

Inception score

During the training process, the Inception score was calculated every 100 epochs.
3M. Mathieu, C. Couprie, and Y. LeCun. “Deep Multi-Scale Video Prediction Beyond Mean Square

Error”. In: International Conference on Learning Representations (). url: https://arxiv.org/abs/
1511.05440.

https://arxiv.org/abs/1511.05440
https://arxiv.org/abs/1511.05440

CHAPTER 5. VERIFICATION AND VALIDATION 37

Model Inception score Epoch
M1 0,6589 100
M2 0,7461 200
M3 0,7596 300
M4 0,7435 400
M5 0,7005 500
M6 0,7362 600

Table 5.2: Mean Inception score for each model

According to the results obtained, the best model is the M3 model.

5.3 Different Network Configurations
During the training process, a problem was encountered where the image quality
started to deteriorate after a certain number of epochs. Upon analyzing the loss curve,
it became evident that the discriminator’s loss was decreasing rapidly. This led me to
believe that the discriminator was learning features at a faster rate than the generator.
To address this issue, I made several adjustments to the network’s hyper-parameters:

• Initially, I started training with the standard configuration and disabled discrim-
inator training after 140k steps to prevent it from surpassing the generator’s
performance. Unfortunately, this modification resulted in even worse outcomes.

• I also experimented with disabling dropout on the three layers, suspecting that
it might be responsible for the poor results and adversely affecting the model.

• Another attempt involved training the model for 150k steps and reducing the
discriminator’s learning rate to 0.0001, instead of completely disabling its training.
However, this approach also yielded unsatisfactory results.

Ultimately, it was discovered that the issue did not lie with the network’s hyper-
parameters, but rather with the training dataset itself. The training dataset posed a
challenge as it was created through an unsupervised process, resulting in the inclusion
of numerous low-quality images. Some of these images contained only white spots
instead of a complete line representing a vein, which affected the overall image quality.
Recognizing this issue, I took steps to address it by removing such problematic images
from the dataset.

As the training progressed and these flawed images were eliminated, the image
quality gradually improved with each epoch. This suggests that the removal of these
specific images played a crucial role in enhancing the overall performance and realism
of the generated images.

Chapter 6

Conclusion

In this chapter we will present the conclusions of our work, the results obtained and the
future developments of the project.

6.1 Goals achieved
In the following table we will show the goals achieved and the ones that are still in
progress. (Refer to table 1.1 for the meaning of the acronyms)

Table 6.1: Reached Goals

Code Status
M1 Achieved
M2 Achieved
M3 Achieved
D1 Achieved
D2 Not Achieved
D3 Achieved
O1 Achieved
O2 Partially Achieved

All the goals marked as achieved are fully implemented and tested. D2 was tested
but the results were not satisfactory, so it was decided to not implement it. O2 was
partially implemented, the model and the technologies are too young to be used in a
manufacturing production environment.

6.1.1 CAD to GAN
The transformation from a CAD file (ref. 6.2) to the final image representation of a
slab involved a series of steps aimed at producing a realistic output. The objective was
not only to preserve the visual characteristics and details of the CAD file’s outlines
but also to create an image that closely resembled a real slab.

Initially, the CAD file was converted into an image format, ensuring that the
geometric information was accurately represented. This conversion facilitated further
processing and manipulation of the CAD data.

38

CHAPTER 6. CONCLUSION 39

Figure 6.1: CAD drawing

Figure 6.2: Result IMG

Following the conversion, the image file was divided into smaller portions, each
conforming to the input requirements of the GAN model, with dimensions set at 256
X 256 pixels. By segmenting the image, we enabled the GAN model to process the
data efficiently and generate high-quality results.

Subsequently, the GAN model was applied to each segment, generating a set
of individual images. These images captured various characteristics and textures
associated with slabs, enhancing the realism of the final output.

To create a cohesive representation of the slab, the individual images were carefully
arranged and merged together. Through meticulous alignment and blending techniques,
the resulting composite image closely resembled a genuine slab, incorporating the
appearance and details that one would expect from a real-world sample.

By employing this comprehensive transformation pipeline, the CAD file was suc-
cessfully translated into an input image that, when combined and processed by the
GAN model, resulted in a realistic depiction of a slab. This process ensured that the
final image conveyed the visual attributes and authenticity typically associated with
real slabs.

Challenges

The output obtained, as depicted in Figure 6.2, reveals visible imperfections, notably
the noticeable line between the two merged images. This discrepancy arises from
generating the image components separately and subsequently merging them, resulting
in imperfect alignment. While the main veins align reasonably well, the background
color fails to exhibit proper uniformity.

During the internship period, significant efforts were dedicated to addressing this
issue by enhancing the model’s quality. However, the achieved results fell short of
expectations. To overcome this challenge, it was proposed to generate the entire image
in a single iteration. Regrettably, the current model does not support this approach, as
it would necessitate increased computational resources and time, rendering it unfeasible

CHAPTER 6. CONCLUSION 40

within the constraints of the internship period.

6.2 Hourly summary
As per the initial work plan, a total of 320 hours were allocated for the project, with
an intentional overestimation of hourly commitments to account for potential absences
or unforeseen circumstances. The purpose of this buffer was to ensure that the project
could be completed comfortably within the allocated time frame. Upon completion of
the project, it was found that the actual total hours invested in the project amounted
to 300 hours. This indicates that the project was completed within the expected time
frame, demonstrating a commendable consistency between the planned and actual
hours spent. The adherence to the projected hour count is indicative of effective project
management and efficient utilization of resources. The slight underestimation of hours
compared to the initial estimate further highlights the successful management of time
and effort throughout the project duration.

6.3 Acquired knowledge
During the course of the project, I had the opportunity to acquire valuable managerial
and interpersonal skills while working in a collaborative research team comprising three
individuals. Additionally, I delved into fields of AI that were previously unfamiliar
to me, gaining comprehensive knowledge not only about AI in general but also, in
particular, about Generative Adversarial Networks (GANs).

One of the significant areas of growth was in the realm of project management.
Collaborating with team members allowed me to enhance my ability to coordinate tasks,
set goals, and allocate resources effectively. I also developed strong communication and
teamwork skills through regular interactions, discussions, and brainstorming sessions.
This experience highlighted the importance of clear and concise communication, active
listening, and the ability to work harmoniously towards a common objective.

In terms of technical knowledge, I embarked on an exploration of AI fields that were
previously unfamiliar to me. This journey broadened my understanding of AI principles,
methodologies, and techniques. More specifically, I gained in-depth knowledge about
Generative Adversarial Networks (GANs) and their applications in various domains.
This encompassed comprehending the underlying architecture, training procedures,
and optimization techniques related to GANs.

Furthermore, I expanded my expertise in Python libraries specifically tailored
for computer vision and AI applications. Through hands-on experience, I became
proficient in utilizing popular libraries such as TensorFlow, PyTorch, and OpenCV.
These libraries proved instrumental in implementing computer vision algorithms and
working with AI models efficiently.

In summary, this project provided me with valuable insights and knowledge in both
managerial and technical domains. The collaborative research environment fostered
the development of essential interpersonal skills, while the exploration of unfamiliar AI
fields and the utilization of Python libraries enhanced my technical proficiency. The
acquired knowledge and skills from this project will undoubtedly contribute to my
future endeavors in the field of AI and beyond.

CHAPTER 6. CONCLUSION 41

6.4 Personal evaluation.
My internship experience has been truly invaluable and has provided me with a
multitude of learning opportunities and personal growth. Throughout the duration of
the internship, I have had the chance to work in a professional setting, applying the
knowledge and skills I acquired during my studies.

One aspect of the internship that I found particularly rewarding was the exposure
to real-world scenarios and challenges. This allowed me to bridge the gap between
theory and practice, gaining a deeper understanding of how concepts and principles
are applied in a professional context. The hands-on experience has enhanced my
problem-solving abilities and critical thinking skills, enabling me to approach tasks
with a more practical and solution-oriented mindset.

Moreover, the internship provided me with a chance to collaborate with a diverse
team of professionals. This collaborative environment allowed me to learn from others,
exchange ideas, and contribute to meaningful projects. Working alongside experienced
colleagues has not only expanded my technical knowledge but has also helped me refine
my interpersonal skills such as effective communication, teamwork, and adaptability.

also appreciated the mentorship and guidance provided by my supervisor throughout
the internship. Their support and feedback have been instrumental in my growth and
development. They provided valuable insights, challenged me to think outside the
box, and encouraged me to take ownership of my work. This guidance has not only
enhanced my technical skills but has also boosted my confidence in tackling complex
tasks and projects.

In terms of personal growth, this internship has helped me develop a greater sense
of professionalism and work ethic. It has instilled in me a strong sense of responsibility,
time management, and the importance of meeting deadlines. The experience has also
reinforced my passion for the field and has motivated me to continue exploring and
expanding my knowledge beyond the internship.

Overall, my internship experience has been incredibly rewarding. It has provided
me with practical skills, industry exposure, and personal growth opportunities. I am
grateful for the chance to apply my knowledge, collaborate with professionals, and learn
from experienced mentors. The lessons and experiences gained during this internship
will undoubtedly have a lasting impact on my future career endeavors.

Acronyms and abbreviations

API Application Programming Interface. 43

CAD Computer-aided Design. 43

CGAN Conditional Generative Adversarial Network. 43

CNC Computerized Numerical Control. 43

CPU Central Processing Unit. 43

CUDA Compute Unified Device Architecture. 43

CuDNN CUDA Deep Neural Network. 43

FAIR Fair Artificial Intelligence Research. 43

FID Fréchet Inception Distance. 43

GAN Generative Adversarial Network. 43

GPU Graphics Processing Unit. 43

HED Holistically-Nested Edge Detection. 43

IOT Internet of Things. 44

IS Inception Score. 44

ML Machine Learning. 44

POC Proof Of Concept. 44

SCM Source Control Management. 44

42

Glossary

API API, Application Programming Interface. It is a set of clearly defined methods
of communication between various software components. 23, 24, 42

CAD CAD, Computer-aided Design. It is the use of computers to aid in the creation,
modification, analysis, or optimization of a design. 3, 34, 38, 39, 42

CGAN CGAN, Conditional Generative Adversarial Network. It is a type of GAN
that uses additional information to generate images. 22, 27, 35, 42

CNC CNC, Computerized Numerical Control. It is a computerized manufacturing
process in which pre-programmed software and code controls the movement of
production equipment. 1, 3, 42

CPU CPU, Central Processing Unit. It is the electronic circuitry within a computer
that executes instructions that make up a computer program. 27, 42

CUDA CUDA, Compute Unified Device Architecture. It is a parallel computing
platform and application programming interface model created by Nvidia. 23,
24, 42

CuDNN CuDNN, CUDA Deep Neural Network. It is a GPU-accelerated library of
primitives for deep neural networks. 24, 42

FAIR FAIR, Fair Artificial Intelligence Research. It is a research unit within Facebook
that is focused on advancing the state of the art in AI. 24, 42

FID FID, Fréchet Inception Distance. It is a metric used to evaluate the quality of
generated images. v, 10, 11, 36, 42

GAN GAN, Generative Adversarial Network. It is a class of machine learning systems
invented by Ian Goodfellow in 2014. Two neural networks contest with each
other in a game. Given a training set, this technique learns to generate new data
with the same statistics as the training set. 3–13, 16, 25, 35, 36, 39, 42

GPU GPU, Graphics Processing Unit. It is a specialized electronic circuit designed
to rapidly manipulate and alter memory to accelerate the creation of images in a
frame buffer intended for output to a display device. 23–25, 27, 42

HED HED, Holistically-Nested Edge Detection. It is a state-of-the-art method for
edge detection. 20, 21, 42

43

Glossary 44

IOT IOT, Internet of Things. It is the network of physical devices, vehicles, home ap-
pliances, and other items embedded with electronics, software, sensors, actuators,
and connectivity which enables these things to connect and exchange data. 1, 42

IS IS, Inception Score. It is a metric used to evaluate the quality of generated images.
9, 10, 42

ML ML, Machine Learning. It is the study of computer algorithms that improve
automatically through experience. It is seen as a subset of artificial intelligence.
2, 42

POC POC, Proof Of Concept. It is a realization of a certain method or idea in order
to demonstrate its feasibility, or a demonstration in principle with the aim of
verifying that some concept or theory has practical potential. 4, 42

SCM SCM, Source Control Management. It is the practice of tracking and managing
changes to software code. 26, 42

Bibliography

Book bibliography
Wang, Xintao et al. Real-ESRGAN: Training Real-World Blind Super-Resolution with

Pure Synthetic Data. 2021.

Web-Site bibliography
Meijering Filter. url: https://scikit-image.org/docs/stable/api/skimage.

filters.html#rbd62388c4e81-1 (cit. on p. 19).

OpenCV: Canny Edge Detection. url: https://docs.opencv.org/3.4/da/d22/
tutorial_py_canny.html (cit. on p. 18).

OpenCV: Thresholding Operations. url: https://docs.opencv.org/4.x/d7/d4d/
tutorial_py_thresholding.html (cit. on p. 18).

Article bibliography
Bau, D. et al. “Network Dissection: Quantifying Interpretability of Deep Visual Repre-

sentations”. In: Computer Vision and Pattern Recognition (). url: https://arxiv.
org/abs/1704.05796 (cit. on p. 8).

Borji, Ali. “Pros and Cons of GAN Evaluation Measures”. In: arXiv preprint arXiv:1802.03446
abs/1802.03446 (). url: https://arxiv.org/abs/1802.03446 (cit. on pp. 7–11).

Chen, X. et al. “InfoGAN: Interpretable Representation Learning by Information
Maximizing Generative Adversarial Nets”. In: Advances in Neural Information
Processing Systems (). url: https://arxiv.org/abs/1606.03657 (cit. on p. 8).

Dosovitskiy, Alexey and Thomas Brox. “Generating Images with Perceptual Similarity
Metrics based on Deep Networks”. In: Advances in Neural Information Processing
Systems (). url: https://arxiv.org/abs/1602.02644.

Goodfellow, I. et al. “Generative Adversarial Networks”. In: Advances in Neural Infor-
mation Processing Systems 27 (), pp. 2672–2680. url: http://papers.nips.cc/
paper/5423-generative-adversarial-nets.pdf (cit. on p. 5).

Heusel, Martin et al. “GANs Trained by a Two Time-Scale Update Rule Converge to a
Local Nash Equilibrium”. In: arXiv preprint arXiv:1706.08500 abs/1706.08500 ().
url: http://arxiv.org/abs/1706.08500 (cit. on p. 10).

45

https://scikit-image.org/docs/stable/api/skimage.filters.html#rbd62388c4e81-1
https://scikit-image.org/docs/stable/api/skimage.filters.html#rbd62388c4e81-1
https://docs.opencv.org/3.4/da/d22/tutorial_py_canny.html
https://docs.opencv.org/3.4/da/d22/tutorial_py_canny.html
https://docs.opencv.org/4.x/d7/d4d/tutorial_py_thresholding.html
https://docs.opencv.org/4.x/d7/d4d/tutorial_py_thresholding.html
https://arxiv.org/abs/1704.05796
https://arxiv.org/abs/1704.05796
https://arxiv.org/abs/1802.03446
https://arxiv.org/abs/1606.03657
https://arxiv.org/abs/1602.02644
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://arxiv.org/abs/1706.08500

BIBLIOGRAPHY 46

Higgins, I. et al. “beta-VAE: Learning Basic Visual Concepts with a Constrained
Variational Framework”. In: (). url: https://arxiv.org/abs/1711.00464 (cit.
on p. 8).

Huang, Xun et al. “Stacked Generative Adversarial Networks”. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (). url: https://arxiv.
org/abs/1612.04357 (cit. on p. 8).

Isola, Phillip et al. “Image-to-Image Translation with Conditional Adversarial Networks”.
In: arXiv preprint arXiv:1611.07004 abs/1611.07004 (). url: http://arxiv.org/
abs/1611.07004 (cit. on pp. 25, 35).

Kingma, Diederik P. and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.
In: International Conference on Learning Representations (). url: https://arxiv.
org/abs/1412.6980 (cit. on p. 31).

Lin, Z. et al. “PacGAN: The power of two samples in generative adversarial networks”. In:
arXiv preprint arXiv:1712.04086 (). url: https://arxiv.org/abs/1712.04086
(cit. on p. 8).

Mathieu, M., C. Couprie, and Y. LeCun. “Deep Multi-Scale Video Prediction Beyond
Mean Square Error”. In: International Conference on Learning Representations ().
url: https://arxiv.org/abs/1511.05440 (cit. on p. 36).

Mathieu, M. F. et al. “Disentangling Factors of Variation in Deep Representation using
Adversarial Training”. In: Advances in Neural Information Processing Systems ().
url: https://arxiv.org/abs/1611.03383 (cit. on p. 8).

Pathak, D. et al. “Context Encoders: Feature Learning by Inpainting”. In: Computer
Vision and Pattern Recognition (). url: https://arxiv.org/abs/1604.07379
(cit. on p. 35).

Radford, A., L. Metz, and S. Chintala. “Unsupervised Representation Learning with
Deep Convolutional Generative Adversarial Networks”. In: arXiv preprint arXiv:1511.06434
(). url: https://arxiv.org/abs/1511.06434 (cit. on p. 8).

Salimans, Tim et al. “Improved Techniques for Training GANs”. In: arXiv preprint
arXiv:1606.03498 abs/1606.03498 (). url: http://arxiv.org/abs/1606.03498
(cit. on p. 9).

Srivastava, A. et al. “Veegan: Reducing Mode Collapse in GANs using Implicit Varia-
tional Learning”. In: Advances in Neural Information Processing Systems (). url:
https://arxiv.org/abs/1705.07761 (cit. on p. 8).

Szegedy, C. et al. “Rethinking the Inception Architecture for Computer Vision”. In:
Computer Vision and Pattern Recognition (). url: https://arxiv.org/abs/1512.
00567 (cit. on p. 10).

Xiao, C. et al. “Generating adversarial examples with adversarial networks”. In: arXiv
preprint arXiv:1801.02610 (). url: https://arxiv.org/abs/1801.02610 (cit. on
p. 8).

Xie, S. and Z. Tu. “Holistically-Nested Edge Detection”. In: International Conference
on Computer Vision (). url: https://arxiv.org/abs/1504.06375 (cit. on p. 20).

https://arxiv.org/abs/1711.00464
https://arxiv.org/abs/1612.04357
https://arxiv.org/abs/1612.04357
http://arxiv.org/abs/1611.07004
http://arxiv.org/abs/1611.07004
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1712.04086
https://arxiv.org/abs/1511.05440
https://arxiv.org/abs/1611.03383
https://arxiv.org/abs/1604.07379
https://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1606.03498
https://arxiv.org/abs/1705.07761
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1801.02610
https://arxiv.org/abs/1504.06375

BIBLIOGRAPHY 47

Yi, Z. et al. “DualGAN: Unsupervised Dual Learning for Image-to-Image Translation”.
In: arXiv preprint arXiv:1704.02510 (). url: https://arxiv.org/abs/1704.
02510 (cit. on p. 8).

Zeiler, M. D. and R. Fergus. “Visualizing and Understanding Convolutional Networks”.
In: European Conference on Computer Vision (). url: https://arxiv.org/abs/
1311.2901 (cit. on p. 8).

Zhang, Han et al. “StackGAN: Text to Photo-realistic Image Synthesis with Stacked
Generative Adversarial Networks”. In: IEEE International Conference on Computer
Vision (ICCV) (). url: https://arxiv.org/abs/1612.03242 (cit. on p. 8).

https://arxiv.org/abs/1704.02510
https://arxiv.org/abs/1704.02510
https://arxiv.org/abs/1311.2901
https://arxiv.org/abs/1311.2901
https://arxiv.org/abs/1612.03242

	Summary
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 The company
	1.1.1 Products and Services
	1.1.2 Certifications

	1.2 The idea
	1.2.1 Side Idea

	1.3 Goals
	1.4 Text structure

	2 Process and methodologies
	2.1 GANs
	2.2 Train process
	2.3 Evaluation process
	2.3.1 The problem of evaluating GANs
	2.3.2 Manual evaluation
	2.3.3 Qualitative evaluation
	2.3.4 Quantitative evaluation

	3 Internship description
	3.1 Initial analysis
	3.2 Requirements & Goals
	3.2.1 Requirements
	3.2.2 Goals

	3.3 Planning
	3.3.1 Road-map
	3.3.2 Study Period:
	3.3.3 First Period:
	3.3.4 Second Period:
	3.3.5 Third Period:
	3.3.6 Fourth Period:

	4 Design and coding
	4.1 Technology and tools
	4.1.1 Python
	4.1.2 CUDA
	4.1.3 CuDNN
	4.1.4 ML libraries
	4.1.5 GANs Models
	4.1.6 Tools
	4.1.7 Adobe Photoshop
	4.1.8 Hardware

	4.2 Final implementation
	4.2.1 Network Type
	4.2.2 PatchGAN Discriminator
	4.2.3 Adam optimizer
	4.2.4 Training process
	4.2.5 User Interface

	5 Verification and validation
	5.1 Metrics
	5.1.1 Loss function

	5.2 Results
	5.2.1 Evaluation metrics

	5.3 Different Network Configurations

	6 Conclusion
	6.1 Goals achieved
	6.1.1 CAD to GAN

	6.2 Hourly summary
	6.3 Acquired knowledge
	6.4 Personal evaluation.

	Acronyms and abbreviations
	Glossary
	Bibliography

