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Chapter 1

Introduction

In the first book of Politics, Aristotle famously stated that “Man is by nature a social

animal”, emphasizing a fundamental aspect of human existence: the need for social con-

nection and interaction, as well as the innate inclination to reflect on the laws governing

relationships within society. Indeed, sociality plays a crucial role in the acquisition of

knowledge. Through the exchange of opinions, dialogue, and interaction with peers,

individuals enrich themselves and advance their development. Therefore, relationships

play a vital role in the growth and progress of individuals and societies alike.

In mathematical terms, the connections between individuals assume the form of a

network whose structure is capable of representing the intricacies of the mechanisms that

underlie numerous real-world phenomena. Rather than focusing on the characteristics

of entities, sometimes it’s of interest to examine relationships among them, whether

they are individuals or abstract objects. In network science, the objects of interest are

no longer the entities that populate the network, but the connections that link them.

Network data arise in many fields, starting from studies on social relationships. One

of the earliest quantitative research on this area was conducted by the psychiatrist Jacob

Levy Moreno (1934), who studied friendship patterns among a group of primary school

students and represented this network through what he called the sociogram. The fun-

damental element of the sociogram is that it focuses on the configuration of relationships

between the actors, rather than on the distribution of the attributes possessed by the

actors themselves.

This framework has then been extended to many applications in the social and be-

havioral sciences. Epidemiologists, for example, are interested in modeling the spread of

infectious diseases, in order to understand and limit the diffusion mechanism. In biology,

networks are employed to describe interactions between genes, proteins, or neurons to

1



2 Section 1.1 - Graphs

unravel biological processes. Through networks, it is also possible to represent interac-

tions among technological infrastructures, such as connections between railway stations

or airports, or analyze the flow of information within websites and social networks.

Before delving into the statistical modeling of network data, it’s necessary to define

mathematical abstractions to represent such data.

1.1 Graphs

Network data can be seen as a set of edges that connect pairs of nodes, where the nodes

represent the individuals/objects in the network, and the edges describe the relationship

among them.

A graph G is defined as the ordered pair G = (V,E), where V = {v1, ..., vN} is the set

of N vertices, or nodes, that populate the network, and E = {e1, ..., eM}, E ⊆ V × V ,

denotes the set of M edges linking these nodes pairwise. Consistent with the graph’s

definition, an edge can connect two distinct nodes, while there is at most one edge

linking any two different nodes.

Alternatively, a graph can be represented through a N ×N square matrix X, called

adjacency matrix, whose elements are defined as follows:

xij =

{

1 if node i relates to node j

0 otherwise
. (1.1)

An edge that connects a node to itself is called a self-loop. In a simple graph, where

interactions between the same individual are not allowed, all elements on matrix’s di-

agonal are set to zero. In (1.1), the entries are either 1 or 0, depending on whether

there exists or not a relationship between two nodes. However, edges can be assigned

a numerical value, known as weights, that represents the strength of the relationship.

We refer to these types of graphs as weighted graphs. Consider a social network where

individuals are represented as nodes and friendships between individuals are depicted

as edges connecting these nodes. In an unweighted graph of this social network, the

edges simply signify the existence of friendships between individuals without specifying

their closeness or frequency of interaction; they only indicate that a friendship exists

between two individuals. In contrast, a weighted graph assigns numerical values to the

edges to convey additional details about the relationships between nodes. For exam-

ple, in a transportation network, nodes may represent cities, and edges may represent

transportation routes between these cities. In a weighted graph of this transportation

network, the edges are assigned weights corresponding to factors such as distance, travel
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time, or transportation cost between cities. A direct flight between two cities may have

a higher weight if it covers a longer distance or if it is more expensive.

According to the nature of the relationships among nodes, graphs can also be clas-

sified as directed or undirected. In undirected graphs, connections between vertices are

bi-directional and symmetric, namely xij = xji for all i, j, i ̸= j. Conversely, directed

graphs, or digraphs, exhibit connections with a specified directionality from one node

to another. Let’s take a communication network as an example, where each person

is a node and the lines between them depict the emails they send to each other. This

network is represented by a directed graph since the direction of the edges indicates who

the sender and receiver are. Alternatively, the social network where the edges between

individuals represent their friendships is an example of an undirected graph because it

reflects the mutual nature of friendship between two individuals.

The development of statistical models for network data started in the Eighties, when

several probabilistic models were introduced to describe and study social network data,

including the p1 model of Holland & Leinhardt (1981), stochastic blockmodels (Wang

& Wong, 1987) and exponential random graph models (Frank & Strauss, 1986). Since

then, many different models and approaches have been proposed to simulate and analyse

graph data; a review of this topic is beyond the scope of this thesis, and we refer readers

interested in the subject to the books of Holland et al. (1983) and Kolaczyk (2009).

1.2 Hypergraphs

Graphs can only represent interactions between pairs of nodes. However, in many real-

world scenarios such representation can be restrictive, and it would be more appropriate

to consider connections involving more than two individuals. Consider, for example, the

relationship among three roommates sharing an apartment, or a team of scientists co-

authoring articles together. In these situations, relationships do not occur just between

pairs of subjects, but involve groups that can contain any number of people. An exten-

sion of the graph called hypergraph can be employed to describe such phenomena. In a

hypergraph, hyperedges can connect any number of nodes, rather than just two.

A hypergraph is defined as H = (V,E), where V = {v1, ..., vN} represents the set of

N nodes, as in the graph discussed previously, while E = {e1, ..., eM} denotes the set of

M hyperedges. A hyperedge e is a subset of V, and repetitions of the same hyperedge

in E are possible.
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Hypergraphs can also be represented through an incidence matrix X, of dimensions

N ×M . The elements of this matrix are

xij =

{

1 if node vi appears in hyperedge ej

0 otherwise
.

As an example, consider a network where a group of five scientists coauthor four scientific

papers. The authors can be seen as nodes v1, v2, v3, v4, v5, and papers as the relationships

that link them, namely the hyperedges e1, e2, e3, e4. We know that paper e1 has been

written by authors (v1, v4), paper e2 by (v2, v3, v4), paper e3 by (v1, v2, v3, v4), and paper

e4 by (v2, v5). This network can be represented by

E = {(v1, v4), (v2, v3, v4), (v1, v2, v3, v4), (v2, v5)}

as well as by the incidence matrix

X =



















1 0 1 0

0 1 1 1

0 1 1 0

1 1 1 0

0 0 0 1



















,

where the four columns represent the papers and the five rows represent the authors.

The entries indicate whether the scientist coauthored the paper or not. Figure 1.1 shows

a graphical representation of the cohautorship hypergraph.

Whereas in the probability literature hypergraphs have been studied extensively in

the past decades (Karoński &  Luczak, 2002), statistical modeling of hypergraphs is more

recent and less developed. Stasi et al. (2014) introduced the hypergraph beta model

with three variants, which is a natural extension of the p1 model for random graphs

(Holland and Leinhardt 1981). In their model, the probability of a hyperedge appearing

in the hypergraph is parameterized by a vector which represents the attractiveness of

each vertex, which is a measure of its importance or centrality within the hypergraph.

Ng & Murphy (2021) proposed an Extended Latent Class Analysis model for hyper-

graphs, where hyperedges are partitioned into latent classes, and the probability that a

hyperedge contains a vertex depends only on its latent class assignment. Chodrow et al.

(2021) and Brusa & Matias (2022) present models that extend the SBM (Stochastic

Block Model) within the framework of random hypergraphs. The publication of Crane
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Figure 1.1: A hypergraph representation of the coauthorship network. The num-
bers correspond to the nodes, representing the authors, while the areas illustrate the
hyperedges, representing the co-authored papers.

& Dempsey (2018) provide in-depth insights and further discussion on the subject mat-

ter.

1.3 Time-stamped hypergraphs

So far, we have introduced the concept of hypergraph, defined as a set of nodes and a

set of hyperedges that can connect multiple nodes. We now turn our focus to dynamic

hypergraphs, also referred to as time-stamped hypergraphs, an extension of hypergraphs

where relationships within the network evolve over time.

Consider the example of scientific papers authored by a group of scientists. Initially,

each researcher is represented as a vertex in the hypergraph, and each scientific paper

they co-author forms a hyperedge connecting the contributing researchers. As time

progresses, new papers are published, and researchers continue to collaborate, leading

to the creation of new hyperedges. Since publications are events that happen in time, it

can be interesting to study the dynamic evolution of the coauthorship hypergraph over

time.
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In a dynamic hypergraph, each hyperedge is associated with a specific time at which

the event occurs. Let N be the number of nodes in the hypergraph, and M be the

number of hyperedges observed over time, namely, the number of events that occur

within the timeframe in which we observe the hypergraph. The dynamic hypergraph is

then defined as H = (V,E, T ), where V = {v1, ..., vN} represents the set of N nodes,

E = {e1, ..., eM} represents the set of the observed hyperedges, and T = {t1, ..., tM}

represents the times tj = (tj1, ..., tjKj
), tjk ∈ R

+, j = 1, ...,M , k = 1, .., Kj at which

each hyperedge occurs. This formulation enables the same hyperedge to be observed

multiple times.

Lately, time-stamped hypergraph modeling has emerged as a new area of research.

Recent work by Lerner & Lomi (2023) has proposed the relational hyper-event models

(RHEM) for the analysis of polyadic interaction networks. RHEM is specifically de-

signed for dynamic hypergraphs, where a sender communicates with multiple receivers

simultaneously. The model considers event rates based on hyperedge covariates associ-

ated with the sender and all receivers collectively.

1.4 Goals

In this thesis, we will propose a new model-based clustering approach for dynamic

hypergraphs, namely a survival generalization of the Latent Class Analysis (LCA) model

for time-dependent hypergraphs, where the hazard rate of the hyperedges depends on

their latent class membership and on some node-specific parameters.

The thesis is structured as follows.

Chapter 2 will introduce two probabilistic models for hypergraphs that capture the

clustering structure of the hyperedges: the Latent Class Analysis model for hypergraphs

and the Extended Latent Class Analysis model proposed by Ng & Murphy (2021). Pro-

cedures for estimating and selecting models for each approach will be outlined. Ad-

ditionally, an algorithm for generating the hypergraph matrix in the Extended Latent

Class Analysis model will be presented, along with a simulation study to evaluate the

performance of ELCA’s estimation algorithm.

In Chapter 3, the proposed model for time-stamped hypergraphs, named Temporal

LCA (TLCA) model, will be developed. The parameter estimation procedure will be

described in detail, focusing particularly on the Expectation-Maximization algorithm

employed for the estimation. Furthermore, we will discuss a sequential algorithm devel-

oped for simulating the hypergraph data, allowing for hyperedge recurrence within the

survival analysis framework.
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Chapter 4 will conduct a simulation study to assess the performance of the proposed

model, analyzing its strengths and weaknesses.

Finally, in Chapter 5, potential future developments will be discussed.





Chapter 2

Latent class analysis models for

hypergraphs

In Chapter 1, we have provided an introduction to the concepts of graphs and hyper-

graphs, elucidating their fundamental properties and differences. We will now present

two models for the analysis of hypergraph data, which inspired the development of the

TLCA hypergraph model that we propose in Chapter 3.

2.1 A latent class analysis model for hypergraph

data

2.1.1 Model specification

The Latent Class Analysis (LCA) model was introduced by Lazarsfeld & Henry (1968)

and then developed by Goodman (1974). It is a mixture model for binary data in which

each observation is assigned to one and only one latent class that assumes that the

observed variables are mutually independent of each other conditionally on their latent

class membership.

Ng & Murphy (2021) proposed to use LCA to model random hypergraphs by cat-

egorizing the hyperedges into G latent classes. In the LCA hypergraph model, the

probability of a hyperedge ej containing a node vi depends only on its latent class

assignment.

Suppose that there exist G clusters of hyperedges, and each node vi has probabilities

pi1, ..., piG of taking part in hyperedges belonging to a cluster g. Denote by zj the

latent group membership of the hyperedge ej (so that zj = g if ej belongs to cluster g),

9
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and by πg = P (Zj = g) the a priori latent class membership probability, which is the

probability of a hyperedge ej being assigned to cluster g. Under these assumptions, the

probability of observing a hyperedge ej = (x1j, ..., xNj) is

P (ej) =
G
∑

g=1

P (ej|zj = g)P (zj = g) =
G
∑

g=1

πg

N
∏

i=1

p
xij

ig (1 − pig)
1−xij ,

and the likelihood function of P = (pig) and π = (π1, ..., πg) takes the form of

L(P, π|X) =
M
∏

j=1

[

G
∑

g=1

πg

N
∏

i=1

p
xij

ig (1 − pig)
1−xij

]

. (2.1)

The LCA hypergraph model has (G − 1) + NG parameters, that can be estimated

via the Expectation-Maximization (EM) algorithm.

2.1.2 Estimation and model selection

The EM algorithm was formalized by Dempster et al. (1977) to compute maximum

likelihood estimates from incomplete data. The EM algorithm can be employed to

estimate finite mixture models, as the LCA hypergraph model is. Each iteration of the

algorithm consists of an expectation step (E-step) followed by a maximization step (M-

step). Let l(θ|x, z) = logL(X,Z|θ) be the log-likelihood function of the model parameter

θ that relies on both the observed data x and unobserved data z. The expectation step

entails computing the expected value of the objective function (here the log-likelihood

function l) conditionally on the estimated parameters from the last M-step, θ(t−1):

EZ [l(Z|X, θ(t−1)].

In the LCA model, the likelihood is the one shown in (2.1). In the maximization step,

the parameters are updated by maximizing the conditional mean derived in the E-step:

θ(t) = argmaxθEZ [l(Z|X, θ(t−1)].

The EM algorithm estimates the model parameters for a given value of the number

of clusters, but it doesn’t give any information about the optimal number of latent

classes. In order to determine it, we can run the EM algorithm with different number

of clusters and then use a criterion to select the best model. For the LCA hypergraph

model, Ng & Murphy suggested using the Bayesian Information Criterion (Schwarz,
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1978), BIC = −2 log l+p logM , where l is the log-likelihood evaluated at the maximum

likelihood estimate (MLE) and p is the number of parameters of the model, to select

the optimal number of latent classes. Other selection criteria can also be used, e.g., the

Akaike Information Criterion (Akaike, 1974). However, existing literature suggests that

the BIC is a reliable indicator of the real number of classes in the context of standard

latent class models (Collins et al. 1993, Nylund et al. 2007).

2.2 The extended latent class analysis model

The LCA hypergraph model captures the clustering tendencies and the size fluctuations

of the hyperedges, while parameter estimation remains relatively straightforward. How-

ever, as the number of nodes in the hypergraph increases, the number of parameters

escalates rapidly. For this reason, Ng & Murphy introduced a more parsimonious ver-

sion of the LCA model, the Extended Latent Class Analysis (ELCA) model, which will

be elaborated upon in the forthcoming section.

2.2.1 Model specification

The ELCA model (Ng & Murphy, 2021) reduces the complexity of the LCA hypergraph

model by making a proportionality assumption on the latent conditional probabilities

(pig)
N
i=1, meaning that some of the conditional probabilities tend to be proportional to

each other for different values of g.

Specifically, the ELCA model assumes that the latent conditional probabilities are

of the form

pig = akϕig, (2.2)

where the ϕig parameters are proportional to the probability of a vertex being included

within a hyperedge for i = 1, ..., N and g = 1, ..., G, while the vector a = (a1, ..., aK)

with 0 ≤ ak ≤ 1, k = 1, ..., K captures the fluctuations in the size of the hyperedges,

measured by the number of vertices that it links. Therefore, the ELCA model is a latent

class model with two clustering structures, a primary clustering structure specified by

the parameter ϕig, with the corresponding cluster assignment probability πg, and a

secondary clustering structure defined by ak, with probability τk of a hyperedge being

assigned to additional cluster k. Note that if K = 1, the ELCA model reduces to the

LCA hypergraph model.

Let z1j and z2j be respectively the primary and secondary latent class membership

of the hyperedge ej. The ELCA model assumes that the two clustering structures
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are a priori independent, therefore the probability that a hyperedge is assigned to

primary cluster g and secondary cluster k is P (ej|z1j = g, z2j = k) = πgτk. Under these

assumptions, the probability of observing a hyperedge ej = (x1j, ..., xNj) becomes

P (ej) =
G
∑

g=1

P (ej|z1j = g, z2j = k)P (z1j = g)P (z2j = k)

=
G
∑

g=1

K
∑

k=1

πgτk

N
∏

i=1

(akϕig)
xij(1 − akϕig)

1−xij .

The likelihood function of the ELCA model can be expressed as

L(π, τ,φ, α|X; ) =
M
∏

j=1

[

G
∑

g=1

K
∑

k=1

πgτk

N
∏

i=1

(akϕig)
xij(1 − akϕig)

1−xij

]

. (2.3)

To ensure the identifiability of the model, some constraints have to be imposed on the

parameters θ = (π, τ,φ, a), in particular:

• π = (π1, ..., πG) ∈ [0, 1]G,
∑G

g=1 πg = 1;

• τ = (τ1, ..., τK) ∈ [0, 1]K ,
∑K

k=1 τk = 1;

• φ = (ϕig) , ϕig ∈ [0, 1]. This follows from pig = akϕig ∈ [0, 1], because if K = 1 we

have ϕig = pig ∈ [0, 1];

• a = (a1, ..., aK), ranked by increasing order 0 < a1 < a2 < ... < aK = 1.

The number of parameters in the ELCA model is GN +2(K−1)+(G−1). Note that

the ELCA model with G primary clusters and K secondary clusters is a restriction of to

the standard LCA hypergraph model with KG clusters. The number of parameters in

the correspondent LCA model is then GKN + (GK − 1). Therefore, the ELCA model

achieves a substantial reduction in the number of parameters.

Tables 2.1 and 2.2 provide numerical insights into the extent of complexity reduction

achieved by the ELCA model in comparison to the LCA model when n = 10 and n = 50.

These tables include the number of primary and secondary clusters in the ELCA model,

the corresponding number of clusters in the LCA model, and the number of parameters

to be estimated in both models.

We observe that the ELCA model substantially reduces the number of parameters

to be estimated compared to the LCA model, even with a small number of primary and

secondary clusters: a reduction of 42% is observed with G = 2 and K = 2 with n = 10,
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and of 48% with n = 50. The gain in model parsimony increases with both the number

of primary and secondary clusters, and with the number of nodes.

N GELCA KELCA GLCA |θLCA| |θELCA| difference reduction

10 2 2 4 43 25 18 42%
10 3 2 6 65 37 28 43%
10 4 2 8 87 49 38 44%
10 2 3 6 65 29 36 55%
10 3 3 9 98 42 56 57%
10 4 3 12 131 55 76 58%

Table 2.1: Model complexity for the ELCA model versus the LCA model with 10
nodes. Here, GELCA and KELCA represents the number of primary and secondary
clusters in the ELCA model, GLCA represents the number of clusters in the LCA
model, |θLCA| and |θELCA| represent the total number of parameters in the LCA and
TLCA model, respectively.

N GELCA KELCA GLCA |θLCA| |θELCA| difference reduction

50 2 2 4 203 105 98 48%
50 3 2 6 305 157 148 49%
50 4 2 8 407 209 198 49%
50 2 3 6 305 109 196 64%
50 3 3 9 458 162 296 65%
50 4 3 12 611 215 396 65%

Table 2.2: Model complexity for the ELCA model versus the LCA model with 50
nodes. Here, GELCA and KELCA represents the number of primary and secondary
clusters in the ELCA model, GLCA represents the number of clusters in the LCA
model, |θLCA| and |θELCA| represent the total number of parameters in the LCA and
TLCA model, respectively.

2.2.2 Estimation and model selection

Although the parameters θ = (π, τ,φ, a) of the ELCA model can be estimated via

the EM algorithm, the M-step is quite complex to compute. Thus, Ng & Murphy

(2021) replaced the Expectation-Conditional Maximization (ECM) algorithm (Meng &

Rubin, 1993), which involves a series of conditional maximizations with respect to the

model parameters. Since the maximizations concerning φ and a do not have a closed-

form solution, Ng & Murphy (2021) proposed to use the Minorization Maximization

(MM) algorithm (Hunter & Lange, 2004), which consists of lower bounding the objective

function to obtain a minorizing function that is subsequently maximized to estimate the

model parameters.
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Similarly to the LCA hypergraph model, also for the ELCA model the number of

primary and secondary clusters can be chosen minimizing the Bayesian Information

Criterion. The BIC tends to be more accurate when the number of hyperedges is much

larger than the number of nodes in the hypergraph.

2.2.3 Simulating hypergraph data

In order to gain a deeper understanding of the data-generating mechanism, which is

crucial for extending these models within the context of dynamic hypergraphs, we de-

scribe the procedure that we developed to simulate the hypergraph data matrix from

the ELCA model. It is worth noting that in the case of a single secondary cluster, so

for K = 1, the ELCA model is equivalent to the LCA model. This data-generating

mechanism will be employed in the simulation studies discussed in Section 2.2.4.

We propose the following procedure to generate the incidence matrix X = (xij), of

dimensions N ×M :

1. Set N,M,G, K;

2. Given N,M,G, K, fix the model parameters π, τ,φ, a;

3. For j = 1, ...,M :

(a) use a pseudo-random number generator from the multinomial distribution to

simulate the primary latent class membership,

z1j ∼ MultinomG(π);

(b) use a pseudo-random number generator from the multinomial distribution to

simulate the secondary latent class membership,

z2j ∼ MultinomK(τ).

Note that the two clustering levels are simulated independently because ELCA

assumes independence between the primary and secondary cluster.

4. Based on z1j, z2j, aiz2j and ϕiz1j , apply the Acceptance-Rejection sampling method

(Rizzo, 2019) to determine X:

(a) Draw NM pseudo-random numbers u1, ..., uNM from a uniform distribution;
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(b) For j = 1, ..,M and i = 1, ..., N : set

xij =

{

1 if uij < ϕiz1jaiz2j

0 otherwise
.

In fact, according to the ELCA proportionality assumption (2.2), the latent con-

ditional probabilities are of the form

P (xij = 1|z1j, z2j, ϕiz1j , aiz2j) = aiz2jϕiz1j .

2.2.4 Simulation study

In this section, we show the results of two Monte Carlo simulation studies based on 1000

replicates that we designed to assess the performance of the ELCA model. In particular,

we want to assess the convergence behavior of the EM algorithm with various values of

the model parameters θ = (π, τ, a,φ) and of N , G and M .

In Table 2.3, the hyperedges are simulated from the ELCA model with G = 2 primary

clusters and K = 2 secondary clusters, in Table 2.4, hyperedges are simulated from

ELCA model with G = 3 and K = 2.

The specific model parameters for Table 2.3 are:

π = (
1

2
,
1

2
)

τ = (
1

2
,
1

2
)

a = (
1

2
, 1)

φ =

(

0.8 ... 0.8 0.1 ... 0.1

0.4 ... 0.4 0.4 ... 0.4

)

.

The model parameters for Table 2.4 are:

π = (
1

3
,
1

3
,
1

3
)

τ = (
1

2
,
1

2
)

a = (
1

2
, 1)

φ =









0.8 ... 0.8 0.1 ... 0.1

0.1 ... 0.1 0.8 ... 0.8

0.4 ... 0.4 0.4 ... 0.4









.
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The l1 distances between the true parameters and the estimated ones are presented

in Table 2.3 and Table 2.4. They are calculated as the sum of the absolute differences

between each element in the parameter divided by its cardinality. The misclassifica-

tion rates, namely the number of incorrect predictions divided by the total number of

predictions, are also presented for both the primary (mis1) and the secondary (mis2)

clusters.

We observe that, for a fixed value of the number of nodes N , the estimated parameters

converge to the true values as the number of hyperedges M increases. Notably, this

convergence tends to occur more rapidly in scenarios characterized by two primary

clusters, compared to those with three primary clusters. Moreover, we observe that the

misclassification rates for both primary and secondary clusters are more significantly

influenced by the number of nodes N rather than the number of hyperedges M in

the hypergraph. Specifically, as the number of nodes grows, we observe a corresponding

increase in the proportion of accurate predictions. The performance of the ELCA model

across varying values of M and N in this simulation study is consistent with the findings

outlined by Ng & Murphy (2021).

N M l1(π) l1(τ) l1(a) l1(φ) mis1 mis2

10 100 0.115 0.158 0.086 0.099 0.232 0.252
500 0.046 0.071 0.029 0.039 0.186 0.224

1000 0.031 0.050 0.020 0.027 0.183 0.218

20 100 0.067 0.088 0.047 0.075 0.128 0.154
500 0.026 0.033 0.015 0.030 0.106 0.131

1000 0.017 0.023 0.010 0.021 0.103 0.129

40 100 0.054 0.066 0.043 0.075 0.062 0.081
500 0.022 0.027 0.014 0.034 0.046 0.061

1000 0.014 0.018 0.010 0.025 0.044 0.060

Table 2.3: Convergence analysis of the EM algorithm for the ELCA model with
2 primary clusters and 2 additional clusters. l1(π), l1(τ), l1(a) and l1(φ) refers to
the l1 distance between the true parameters and the estimated ones. mis1 and mis2

represent the misclassification rates for the primary and the secondary clusters.



Chapter 2 - Latent class analysis for hypergraphs 17

N M l1(π) l1(τ) l1(a) l1(φ) mis1 mis2

10 100 0.102 0.176 0.108 0.139 0.334 0.248
500 0.057 0.071 0.032 0.063 0.275 0.217

1000 0.034 0.048 0.020 0.039 0.253 0.208

20 100 0.086 0.114 0.090 0.110 0.234 0.171
500 0.024 0.031 0.015 0.037 0.146 0.121

1000 0.017 0.022 0.010 0.026 0.141 0.120

40 100 0.066 0.094 0.103 0.096 0.132 0.104
500 0.019 0.023 0.012 0.035 0.060 0.051

1000 0.014 0.016 0.009 0.026 0.059 0.050

Table 2.4: Convergence analysis of the EM algorithm for the ELCA model with
3 primary clusters and 2 additional clusters. l1(π), l1(τ), l1(a) and l1(φ) refers to
the l1 distance between the true parameters and the estimated ones. mis1 and mis2

represent the misclassification rates for the primary and the secondary clusters.





Chapter 3

Model-based clustering for

time-stamped hypergraphs

In this chapter, we propose a model for the analysis of dynamic hypergraphs that extends

the LCA model by including the temporal component. We call this new model we

propose Temporal LCA (TLCA) model.

First and foremost, it’s essential to underline that the LCA hypergraph model and

TLCA model have significantly different goals. While the LCA model takes the set

of M observed hyperedges as given, and models solely the group membership of such

hyperedges, our model considers every potential hyperedge at risk, and studies which

factors affect the occurrence and timing of hyperedges.

3.1 Model specification

The concept of dynamic hypergraphs involves the association of each hyperedge with a

specific time, indicating the occurrence of an event. We recall that dynamic hypergraphs

can be represented as H = (V,E, T ), where V = {v1, ..., vN} represents the set of N

nodes, E = {e1, ..., eM} represents the set of the M observed hyperedges, and T =

{t1, ..., tM} represents the times tj = (tj1, ..., tjKj
), tkj ∈ R

+, j = 1, ...,M , k = 1, .., Kj

at which each hyperedge occurs.

In a dynamic hypergraph, hyperedges are therefore considered as events that happen

sequentially in time. To model the time process that leads to the formation of hy-

peredges, we approach dynamic hypergraph modeling from the perspective of survival

analysis, and extend the LCA hypergraph model of Ng & Murphy (2021) to a survival

setting.

19
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Survival data are generally described and modeled by means of two related func-

tions, the survival function and the hazard function. Let T ∈ [0,∞) be a continuous

random variable representing the time until an event occurs. Its probability density

function is f(t), and the cumulative distribution function is given by F (t) = P (T ≤

t) =
∫ t

−∞
f(u)du. In the survival analysis framework, the survival function S(t) repre-

sents the probability that the event of interest has not occurred between the time of

origin and time t, and can be expressed as

S(t) = P (T > t) =

∫

∞

t

f(u)du = 1 − F (t).

The hazard function λ(t) expresses the conditional probability that the event will occur

within [t, t + δt), given that it has not occurred before. Its expression is given by

λ(t) = lim
δt→0

P (t ≤ T < t + δt |T ≥ t)

δt
= lim

δt→0

P (t ≤ T < t + δt)

δt · S(t)
=

f(t)

S(t)
.

Finally, the cumulative hazard function

Λ(t) =

∫ t

−∞

λ(u)du = − log(S(t))

measures the ”total amount of risk” that has been accumulated up to time t.

As custumary in survival analysis, in the TLCA model it’s necessary to consider not

only the events that occur over the study period (the M observed hyperedges), but also

all the ones that could have potentially happened and are therefore considered at risk

to occur. For this reason, in our model we consider the set H = {h1, ..., h2N} of all

the possible hyperedges that can be obtained as combinations of the N binary entries

xij ∈ {0, 1} of the hyperedge vector.

In the TLCA model, the same hyperedge can occur multiple times. If a hyperedge

doesn’t occur within the end of the study, it will be classified as right-censored. We

indicate right censoring through the binary variable δ. If δj = 1, the hyperedge hj is

observed, otherwise, if δj = 0 the hyperedge hj does not occur before the end of the

study period.

Since our model is a survival extension of the LCA hypergraph model for time-

stamped hypergraphs, we assume that the 2N possible hyperedges are distributed across

G latent classes. Each hyperedge (hj)
2N

j=1 is characterized by a timestamp vector tj =

(tj1, ..., tjKj
) and an event indicator vector δj = (δj1, ..., δjKj

). It is worth noting that if

k < Kj, then δjk = 1, while δjk = 0 for k = Kj. This means that the hyperedge hj is
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observed Kj − 1 times, and the last time tKj corresponds to the end of the study, when

the hyperedge is censored.

In order to model the hazard function, we turn to the Cox proportional hazards

model (Cox, 1972). This model enables us to examine how the covariates influence the

hazard rate over time. Specifically, for a hyperedge hj belonging to latent class g, the

hazard function is expressed as:

λjg(t) = λ0(t)e
ηjg = λ0(t)e

γg+
∑N

i=1 θigxij ,

where ηjg is the linear predictor, λ0(t) represents the baseline hazard, namely the hazard

calculated in the reference group (where all covariates are equal to zero), and γ =

(γ1, . . . , γG) and θ = (θig) denote the model parameters.

In particular, γg allows for a distinct baseline hazard for each latent group or cluster

g, represented as λg(t) = λ0(t)e
γg . From an interpretive perspective, γg > 0 suggests

that the g-th cluster exhibits a baseline hazard higher than that of the reference group.

In practical terms, this means that within the hypergraph, there is a greater likelihood

of observing a hyperedge associated with group g over time. Consequently, the sur-

vival, defined as the probability of the event not occurring, diminishes within group g,

reflecting a higher risk of event occurrence. Conversely, γg < 0 suggests a lower baseline

hazard, signifying a reduced inherent risk within that specific group. Similarly, the ef-

fects of θig also play a role in shaping the hazard function. These effects determine the

likelihood of a hyperedge occurring, based on the participation of specific nodes within

the hyperedge. In essence, θ influences whether the event of interest is more or less

likely to happen, depending on the composition of nodes within the hyperedge.

Let zj denote the latent group membership of hyperedge hj (so that zj = g if hj

belongs to cluster g), and by πg = P (Zj = g) the a priori latent class membership

probability of a hyperedge hj being assigned to cluster g. According to Andersen & Gill

(1982)’s Cox regression model for recurrent events, the contribution to the full likelihood

of hyperedge hj is

P (hj|zj = g) =

Kj
∏

k=1

[λ0(tjk) eηjg ]δjk exp {−Λ0(tjk) eηjg} , (3.1)

where ηjg is the linear predictor, λ0(t) is the baseline hazard function and Λ0(t) is the

cumulative baseline hazard function. Note that, since Λ0(t) = − log(S0(t)), we can

rewrite (3.1) in terms of the survival function for the reference category (where all the

covariates are equal to zero) as
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P (hj|zj = g) =

Kj
∏

k=1

[λ0(tjk) eηjg ]δjk exp {−(− log(S0(tjk)))eηjg}

=

Kj
∏

k=1

[λ0(tjk) eηjg ]δjk exp {log(S0(tjk))eηjg}

=

Kj
∏

k=1

[λ0(tjk) eηjg ]δjk S0(tjk)e
ηjg

.

(3.2)

Therefore, the probability of observing a hyperedge hj = (x1j, ..., xNj) becomes

P (hj) =
G
∑

g=1

P (hj|zj = g)P (zj = g)

=
G
∑

g=1

πg

Kj
∏

k=1

[λ0(tjk) eηjg ]δjk exp {−Λ0(tjk) eηjg} ,

and the likelihood function of π, γ and θ takes the form of

L(π, γ,θ;X) =
M
∏

j=1





G
∑

g=1

πg

Kj
∏

k=1

[λ0(tjk) eηjg ]δjk exp {−Λ0(tjk) eηjg}



 . (3.3)

To ensure the model’s identifiability, some constraints have to be imposed on the pa-

rameters (π, γ,θ), in particular:

• π = (π1, ..., πG) ∈ [0, 1]G,
∑G

g=1 πg = 1;

• γ = (γ1, ..., γG), γg ∈ R for g > 1, γ1 = 0 ;

• θ = (θig) , θig ∈ R.

The TLCA model thus has 2(G − 1) + NG parameters, which can be estimated using

the EM algorithm.

3.2 Estimation

Since the TLCA model is an extension of the LCA model for hypergraphs, which takes

the form of a finite mixture model, the Expectation Maximization algorithm can be

employed to estimate the model parameters (π, γ,θ).

The E-step of the EM algorithm involves computing the expected value of the com-

plete data log-likelihood given in Equation (3.3). The M-step involves maximizing the

expected log-likelihood from the E-step.
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3.2.1 Algorithm initialization

Let G be the number of latent classes, which is also the number of components in

our mixture model, Zj be the latent membership random variable, P̂
(t)

be a matrix

whose elements p̂
(t)
jg contain the estimated probability memberships for each hyperedge

at iteration t, so that p̂
(t)
jg = P (Zj = g at iteration t). Notice that

∑G

g=1 p̂
(t)
jg = 1

∀j ∈
{

1, ..., 2N
}

. Finally, let π̂(t) = (π̂
(t)
1 , ..., π̂

(t)
G ) be the estimate of π = (π1, ..., πG) at

iteration t, and γ̂(t) = (γ̂
(t)
1 , ..., γ̂

(t)
G ) and θ̂

(t)
= (θ̂

(t)
ig ) be the estimate of the parameters

γ = (γ1, ..., γG) and θ = (θig) at iteration t. We also denote by Ŝ(t) the estimate of the

survival function S(t).

The EM algorithm is initialized by picking a random starting value for π(1) and

then drawing random initial probability memberships P̂
(1)

based on π(1) such that

E(p
(1)
jg ) = π

(1)
g ∀g ∈ {1, ..., G}. The first M-step consists in finding γ(1), θ(1) and Ŝ(1)

that maximizes the conditional log-likelihood that uses P̂
(1)

and π(1).

3.2.2 Expectation step

The expectation step entails computing the expected value of the objective function

conditionally on the estimated parameters from the last M-step. Practically, in the

E-step we update estimates p̂
(t)
jg based on the latest parameter estimates γ̂(t−1), θ̂

(t−1)
,

π̂(t−1) and Ŝ(t−1):

p̂
(t)
jg =

π̂
(t−1)
g f̂jg(tj)

∑G

g=1 π̂
(t−1)
g f̂jg(tj)

=
π̂
(t−1)
g λ̂jg(tj)Ŝ

(t−1)
jg (tj)

∑G

g=1 π̂
(t−1)
g λ̂jg(tj)Ŝ

(t−1)
jg (tj)

=
π̂
(t−1)
g

∏Kj

k=1

[

λ̂jg(tjk)
]δjk

Ŝ
(t−1)
jg (tjk)

∑G

g=1 π̂
(t−1)
g

∏Kj

k=1

[

λ̂jg(tjk)
]δjk

Ŝ
(t−1)
jg (tjk)

=
π̂
(t−1)
g

∏Kj

k=1

[

λ̂0(tjk) eγ̂
(t−1)
g +

∑N
1=1 θ̂

(t−1)
ig xij

]δjk

Ŝ
(t−1)
jg (tjk)

∑G

g=1 π̂
(t−1)
g

∏Kj

k=1

[

λ̂0(tjk) eγ̂
(t−1)
g +

∑N
1=1 θ̂

(t−1)
ig xij

]δjk

Ŝ
(t−1)
jg (tjk)

.

Note that since λ̂0(tjk) does not depend on g, it simplifies. Therefore, we don’t need to

estimate it, and the equation for the E-step becomes:
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p̂
(t)
jg =

π̂
(t−1)
g

∏Kj

k=1

[

eγ̂
(t−1)
g +

∑N
1=1 θ̂

(t−1)
ig xij

]δjk

Ŝ
(t−1)
jg (tjk)

∑G

g=1 π̂
(t−1)
g

∏Kj

k=1

[

eγ̂
(t−1)
g +

∑N
1=1 θ̂

(t−1)
ig xij

]δjk

Ŝ
(t−1)
jg (tjk)

. (3.4)

3.2.3 Maximization step

The maximization step consists of maximizing over the model parameters the expecta-

tion computed in the E-step:

(γ̂(t), θ̂
(t)
, π̂(t), Ŝ(t)) = arg max

γ,θ,π,S

π̂
(t−1)
g

∏Kj

k=1

[

eγ̂
(t−1)
g +

∑N
1=1 θ̂

(t−1)
ig xij

]δjk

Ŝ
(t−1)
jg (tjk)

∑G

g=1 π̂
(t−1)
g

∏Kj

k=1

[

eγ̂
(t−1)
g +

∑N
1=1 θ̂

(t−1)
ig xij

]δjk

Ŝ
(t−1)
jg (tjk)

.

(3.5)

For simplicity, we estimate π̂(t) using the closed-form expression below, instead of ob-

taining it in the numeric optimization in Equation (3.5).

π̂(t)
g ≃

1

2N

2N
∑

j=1

p̂
(t)
jg ∀g = 1, ..., G.

γ̂(t), θ̂
(t)

and Ŝ(t) are estimated numerically using a weighted Cox model for recurrent

events, where the weights are given by p̂
(t)
jg .

3.3 Simulating time-stamped hypergraph data

In this section, we outline the procedure developed to generate the hypergraph data ma-

trix based on the TLCA model that will be employed in the simulation study discussed

in Chapter 4.

It consist of the following steps:

1. Set N,M,G;

2. Given N, M, G, fix the model parameters π, γ,θ.

3. Construct the incidence matrix X = (xij), i = 1, ..., N , j = 1, .., 2N , containing all

the possible hyperedges hj, namely the 2N permutations of the N binary entries

xij ∈ {0, 1} of the hyperedge vector;
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4. For j = 1, ..., 2N , use a pseudo-random number generator from the multinomial

distribution to simulate the latent class membership,

zj ∼ MultinomG(π);

5. Given X and z, apply the Inverse Transform sampling Method (ITM, Bender

et al., 2005) to generate the survival times t = (t1, ..., t2N ) from a Cox model.

(a) Draw 2N pseudo-random numbers u1, ..., u2N from a uniform distribution;

(b) For j = 1, .., 2N , set

tj = Λ−1
0

[

− log(uj) exp(γzj +
N
∑

i=1

xijθizj)

]

.

Note that, in our implementation, times are generated from an exponential distri-

bution with shape parameter λ:

tj = −
log(uj)

λ exp(γzj +
∑N

i=1 xijθizj)
.

However, other probability distributions can be used to generate the times-to-

event, e.g., the Weibull distribution, the gamma distribution, etc;

6. Apply the following sequential algorithm to identify the M observed events em

and their respective occurrence times t(m), where m = 1, ...,M . Here’s how the

algorithm operates:

For m = 1, ...,M :

(a) Determine the index

k = arg min(t)

corresponding to the minimum value in the vector of simulated times t =

(t1, ..., t2N );

(b) Set the observed event time t(m) = tk, the corresponding hyperedge em = hk,

and δm = 1;

(c) Draw a new time

t
′

k = tk + tnew,
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where tnew is sampled similarly to Step 5 and originates from the same dis-

tribution as tk, ensuring it’s associated with the same hyperedge hj and thus

allowing for hyperedge recurrence.

(d) Replace the existing time tk with t
′

k within the t vector.

In the dataset that we obtain from this procedure, each possible hyperedge (hj)
2N

j=1

is associated with the pair (tj, δj), where tj = (tj1, ..., tjKj
) and δj = (δj1, ..., δjKj

). It is

worth noting that if k < Kj, then δjk = 1, while δjk = 0 for k = Kj. This means that

the hyperedge hj is observed Kj −1 times, and the last time tKj corresponds to the end

of the study, when the hyperedge is right-censored. After obtaining the dataset in wide

format, it can be converted into long format, where each observation corresponds to a

specific time point within a hyperedge’s duration. Specifically, each hyperedge (hj)
2N

j=1

will be associated with pairs of start and stop times (tstart, tstop), where tstart represents

the beginning of the time interval and tstop marks the end of it. This dataset can now be

analyzed through a Cox model for recurrent events. The long format dataset comprises

2N + M − 1 observations.

Table 3.1 provides an illustration of the long format for a dynamic hypergraph.

This hypergraph comprises three nodes, eight possible hyperedges, and twelve observed

hyperedges. The first event in this dynamic hypergraph occurs at time t(1) = 0.1, and

this leads to the observation of the first hyperedge, e1 = h2. At time t(2) = 0.8, the

second hyperedge e2 = h7 occurs, followed by the third event at time t(3) = 0.9. This

event is also associated with the hyperedge h7, indicating that we are observing this

hyperedge for the second time, therefore e3 = h7. The same pattern is observed for the

hyperedges e4, e5, .., e11. The final event at time t(12) = 10 corresponds to the end of the

study, and the last hyperedge e12 = h5 is observed. Notably, all hyperedges, even those

that have not occurred yet (namely hyperedges h1, h3, and h4) are censored at t = 10.
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v1 v2 v3 z tstart tstop δ

h1 0 0 0 1 0 10.0 0
h2 e1 1 0 0 2 0 0.6 1
h2 e5 1 0 0 2 0.6 3.2 1
h2 e7 1 0 0 2 3.2 6.6 1
h2 1 0 0 2 6.6 10.0 0
h3 0 1 0 1 0 10.0 0
h4 1 1 0 1 0 10.0 0
h5 e12 0 0 1 2 0 10.0 1
h6 e4 1 0 1 1 0 1.0 1
h6 e10 1 0 1 1 1.0 8.6 1
h6 1 0 1 1 8.6 10.0 0
h7 e2 0 1 1 2 0 0.8 1
h7 e3 0 1 1 2 0.8 0.9 1
h7 e6 0 1 1 2 0.9 3.9 1
h7 e8 0 1 1 2 3.9 7.6 1
h7 0 1 1 2 7.6 10.0 0
h8 e9 1 1 1 1 0 8.5 1
h8 e11 1 1 1 1 8.5 9.3 1
h8 1 1 1 1 9.3 10.0 0

Table 3.1: Time-stamped hypergraph data matrix in long format with N = 3 nodes
(v), 2N possible hyperedges (h), M = 12 observed hyperedges (e) and G = 2 latent
classes (z). tstart and tstop mark the beginning and the end of the time intervals for
each observation, and δ represent the event indicator.





Chapter 4

Simulation study

In this Chapter, we present a Monte Carlo simulation study designed to evaluate the

performance of the proposed TLCA model.

Our primary focus is to evaluate the classification performance of the TLCA model,

that is, its ability to correctly classify hyperedges into the G latent groups in different

scenarios. Thus, the values of two metrics are provided: the accuracy and the Area

Under the ROC Curve (AUC). Accuracy quantifies the percentage of hyperedges cor-

rectly classified, calculated as the ratio of the number of correct predictions to the total

number of predictions, with a fixed classification threshold set at 0.5. On the other

hand, the AUC evaluates the model’s classification performance across the entire range

of possible threshold values.

Additionally, we want to examine the convergence of the proposed method regarding

the latent class membership probability parameter π, the group parameter to model the

baseline hazard γ, and the node-specific parameter θ. We aim to assess whether the

estimated parameters converge to the true values as the number of observed hyperedges

M in the model increases. To do so, we calculate the l1 distance between the true

parameter and the estimated ones, which is the sum of the absolute differences between

each element in the parameter divided by its cardinality. It’s important to note that

in the TLCA model, the number of observations is 2N + M − 1. Therefore, it relies on

both the number of nodes and the number of observed hyperedges in the hypergraph.

We present the results of a Monte Carlo simulation study consisting of 250 repetitions.

For each Monte Carlo repetition, four starting values for the parameter π(1) of the EM

algorithm are considered, and the one that maximizes the log-likelihood function is

chosen. Different simulation scenarios are shown, characterized by different number

of nodes in the hypergraph N , of observed hyperedges M , of latent classes G, and

model parameters (π, γ,θ). To perform this analysis, data are generated using the

29
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data-generating procedure described in Section 3.3. In every scenario, the times-to-

event are drawn from an exponential distribution with shape parameter λ = 1. Below

are the numerical values assigned to the model parameters.

We consider G = 2 latent classes, a number of nodes N equal to 8, 9 and 10, resulting

in 28 = 256, 29 = 512, and 210 = 1024 hyperedges at risk respectively, and M =

250, 500, 1000 and 2000 observed hyperedges. The latent class membership probability

parameter π is set to (2
3
, 1
3
) in every scenario. We show the results for two different

values of γ, γ = (0, 1.3) and γ = (0, 0.4). The θ = (θig) matrices used for the three

values of N are:

θ8×2 =



































−0.127 0.173

−0.055 0.230

0.264 −0.273

0.017 0.235

0.031 −0.026
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4.1 EM algorithm behaviour

Before evaluating the performance of the TLCA model, we need to check the reliability

of the EM algorithm. The E-step of the algorithm entails computing the expected

value of the log-likelihood function conditionally on the estimated parameters from the

last M-step. In the maximization step, the parameters are updated by maximizing

the conditional mean derived in the E-step. This algorithm proceeds iteratively until

convergence, thus maximizing the log-likelihood function.

In Figure 4.1 are some graphs confirming the monotonically increasing trend of the

log-likelihood at each step of the EM algorithm. We observe that the log-likelihood

always stabilizes towards the last iterations, and the convergence of the algorithm is

faster when the number of observed hyperedges M is higher.

Similarly to the likelihood, the parameter estimates also tend to stabilize before the

EM algorithm converges. Figure 4.2 illustrates the trend in estimating the parameter

π1. Four initial values (0.2, 0.4, 0.6, and 0.8) for the parameter estimator π(1) of the

EM algorithm are considered. For each combination of (N,M), the estimators tend to



Chapter 4 - Simulation study 31

converge towards the true value of π1 = 2
3

or π2 = 1
3
. This occurs because the EM

algorithm estimates the parameter π = (π1, π2), but label switching can occur. Label

switching refers to the phenomenon where the assignments of components in a mixture

model can change during iterations, leading to the exchangeability of component labels.

It is evident that as the number of hyperedges M in the hypergraph increases, the

convergence of the parameter becomes faster and more accurate.

Figure 4.1: Log-likelihood behaviour of the EM algorithm in simulations with
γ = (0, 1.3) and different values of N and M. Each of the four lines represents a
distinct starting point for the parameter estimator π(1).
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Figure 4.2: π̂1 behaviour of the EM algorithm in simulations with γ = (0, 1.3)
and different values of N and M. The horizontal lines represent the values of the true
parameter π1 =

2
3 and π2 =

1
3 .

4.2 Clustering accuracy

Our primary interest lies in the classification property of the TLCA model. In Figure

4.3, as the number of observed hyperedges M grows, we observe a corresponding increase

in the proportion of accurate predictions when γ2 = 1.3. As we expect, this trend is less

pronounced if γ2 = 0.4. This difference arises from the effect of γg, g = 1, ..., G, on the

baseline hazard of the hyperedges belonging to latent class g, which is multiplied by a

factor of exp(γg). Here, the likelihood of observing a hyperedge in group 2 is higher if
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γ2 = 1.3 compared to γ2 = 0.4. Therefore, a higher value of γg helps to more clearly

distinguish between the different groups.

In our analysis, we also examine the AUC of the TLCA model, as depicted in Figure

4.4. Here, we observe patterns similar to those seen in the accuracy analysis. Specifically,

with an increase in the number of observed hyperedges, there is a corresponding rise in

the AUC value when γ2 = 1.3. Conversely, this trend is less prominent when γ2 = 0.4.
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Figure 4.3: TLCA model accuracy with different values of N and M . In the left
Figure, γ2 is set to 1.3, while in the right one γ2 = 0.4.

500 1000 1500 2000

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

C

M

A
U

C

N

8
9
10

500 1000 1500 2000

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

D

M

A
U

C

N

8
9
10

Figure 4.4: TLCA model AUC with different values of N and M . In the left Figure,
γ2 is set to 1.3, while in the right one γ2 = 0.4.

4.3 Convergence analysis of the model parameters

In this section, we want to assess the convergence of the model parameters. As depicted

in Table 4.1 and Table 4.2, we observe that, for fixed values of the number of nodes
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N , as the number of observed hyperedges M , and consequently the overall number of

observations, increases, the estimated parameters π̂, γ̂, and θ̂ tend to converge toward

their true values.

On the other hand, we also note that as the number of nodes increases, the dis-

crepancy between the estimated parameters and their true values tends to widen. This

observation necessitates careful consideration when comparing scenarios with different

values of N , given that our model encompasses all hyperedges at risk, leading to a rapid

escalation in the number of observations with increasing N .

Finally, it is evident that the estimation of parameter π = (π1, π2) can be significantly

improved by increasing the value of γ2 from 0.4 to 1.3. This behavior can be explained

by the fact that a higher value of γ2 makes the hyperedges belong to two latent classes

that are more distinguishable, as mentioned earlier.

N M l1(π) l1(γ) l1(θ) accuracy AUC
8 250 0.067 4.161 1.207 0.606 0.608

500 0.076 1.574 0.485 0.682 0.657
1000 0.046 0.501 0.223 0.843 0.821
2000 0.046 0.440 0.187 0.873 0.865

9 250 0.072 5.267 1.167 0.602 0.575
500 0.064 2.767 0.738 0.622 0.610

1000 0.058 0.727 0.271 0.747 0.711
2000 0.032 0.254 0.153 0.877 0.855

10 250 0.096 5.454 1.190 0.630 0.557
500 0.081 5.337 1.090 0.642 0.619

1000 0.060 2.160 0.512 0.641 0.617
2000 0.057 0.868 0.281 0.748 0.720

Table 4.1: Convergence analysis of the EM algorithm for the TLCA model with
G = 2 latent classes and γ = (0, 1.3). l1(π), l1(γ) and l1(θ) refers to the l1 distance
between the true parameters and the estimated ones. The model accuracy and AUC
are also shown.
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N M l1(π) l1(γ) l1(θ) accuracy AUC
8 250 0.081 1.724 0.640 0.605 0.542

500 0.080 0.943 0.428 0.616 0.568
1000 0.080 0.405 0.233 0.703 0.653
2000 0.050 0.205 0.142 0.783 0.724

9 250 0.081 2.815 0.814 0.627 0.520
500 0.088 1.539 0.532 0.609 0.537

1000 0.091 0.716 0.320 0.624 0.586
2000 0.069 0.285 0.182 0.718 0.661

10 250 0.077 4.295 1.011 0.633 0.516
500 0.083 2.387 0.716 0.621 0.530

1000 0.082 1.214 0.437 0.600 0.570
2000 0.078 0.376 0.232 0.701 0.651

Table 4.2: Convergence analysis of the EM algorithm for the TLCA model with
G = 2 latent classes and γ = (0, 0.4). l1(π), l1(γ) and l1(θ) refers to the l1 distance
between the true parameters and the estimated ones. The model accuracy and AUC
are also shown.
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Discussion

In this work, we developed a model-based clustering approach for the analysis of dy-

namic hypergraphs, named Temporal LCA (TLCA). The proposed methodology is a

generalization to time-dependent hypergraphs of the Latent Class Analysis model for

static hypergraphs proposed by Ng & Murphy (2021). In the TLCA model, the hazard

rate of the hyperedges is dependent on the group parameters γg = (γ1, ..., γG), the node-

specific parameters θ = (θig) and the baseline hazard λ0(t). The TLCA model follows

the customary approach of survival analysis, where not only the hyperedges occurring

over the study period are considered, but also the ones that could have potentially hap-

pened, and are therefore considered at risk to occur. The model aims to investigate

which factors affect the occurrence and timing of hyperedges in dynamic hypergraphs.

To achieve this, we adapted a mixture of Cox regression models for recurrent events to

the dynamic hypergraph framework.

As the TLCA model takes the form of a finite mixture model, we implemented the

Expectation-Maximization algorithm to estimate the model parameters. The E-step

involves computing the expected value of the complete data log-likelihood to derive the

estimated probability memberships for each hyperedge conditionally on the parameters

from the last M-step. In the M-step, the parameters are updated by maximizing the

conditional expectation derived in the E-step.

We proposed a procedure to generate the hypergraph data matrix, where we imple-

mented a sequential algorithm to identify the observed hyperedges and their respective

occurrence times over all the possible hyperedges at risk, allowing for hyperedge recur-

rence.

We conducted a simulation study to evaluate the performance of the TLCA model.

The results revealed that as the number of observed hyperedges in the hypergraph

increases, there is a corresponding increase in the proportion of accurate predictions.

37
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This trend is more prominent when the group parameter of the Cox model is higher.

The model parameters tend to converge to their true value as the number of observed

hyperedges increases. It is worth noting that our simulation study was limited to G = 2

latent groups due to time constraints, but the model is extendable to G > 2 groups.

Our TLCA model represents a first attempt to model dynamic hypergraphs using a

model-based clustering approach. This model can be the basis for future extensions and

alternative modelling approaches.

One of the challenges associated with the TLCA model is its computational cost,

which increases exponentially as the number of nodes in the hypergraph grows. Specif-

ically, the sample size increases by a factor of 2N as the number of nodes N increases,

since all possible hyperedges are considered at risk. Indeed, the data matrix in Table

3.1 becomes huge as N increases. To address this issue, Chapter 4 simulations were

conducted with a relatively small number of nodes and with a limited number of Monte

Carlo repetitions. While this limitation makes it difficult to analyze hypergraphs of

larger sizes, one potential solution is to employ nested case-control sampling (CCS, Vu

et al., 2015) to select the at-risk hyperedges. This technique involves randomly sam-

pling an unobserved hyperedge for each observed hyperedge, reducing the number of

hyperedges that become part of the model from 2N to 2M . As a result, the estimation

procedure becomes much more efficient.

One other extension could involve the development of a more parsimonious modeling

approach, similar to the ELCA model proposed by Ng & Murphy (2021). This could

be achieved through the introduction of a double clustering level, where the two inde-

pendent clustering structures would be employed to capture the fluctuations in the size

of the hyperedges.

Furthermore, the TLCA model could be reformulated to semparate the timing of

hyperedges and the decision of nodes to join an event/hyperedge. The Cox model could

capture the event times that arise from G different densities based on their latent class

assignment, while the Bernoulli distribution could model the likelihood of nodes joining

a hyperedge. This alternative model specification relaxes the proportionality assumption

of the Cox model, allowing for greater flexibility in modeling event times that are not

necessarily proportional to each other. Moreover, parametric distributions such as the

exponential or the Weibull distribution can also be employed to model the event times

as an alternative to the Cox model.

Finally, a possible extension to the TLCA model could involve integrating two inde-

pendent clustering structures for the hyperedges and the nodes. This approach could

provide a more comprehensive and accurate representation of the underlying patterns
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of many real-world phenomena.
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