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Abstract

The increasing capability of 3GPP NR V2X standard for next-generation vehicu-
lar systems, will support Vehicle-to-Vehicle (V2V) communication in the Millimeter
Waves (mmWaves) spectrum to address the communication requirements of future in-
telligent automotive networks. This new connectivity will enable the evolution towards
Cooperative and Intelligent Transportation Systems (C-ITSs) with the aim of delivering
improved traffic safety and efficiency. This concept is crucial because vehicles, even
with advanced sensor systems, may not perceive every detail of their surroundings. By
establishing connectivity, vehicles can enable a collaborative approach for object per-
ception, where they can collectively enhance their awareness of the environment.
In V2V, data sharing puts a strain on traditional vehicular communication technologies
due to high demands in data rate, reliability, and latency. Researchers are exploring
new radio systems, like at mmWaves, to address these challenges.
However, the propagation at these frequencies raises many concerns. So, simply in-
creasing channel capacity may not meet the demanding Quality of Service (QoS) re-
quirements of future automotive applications, especially in scenarios with challenging
automation levels. Therefore, it is crucial to limit the amount of data broadcast over
bandwidth-limited channels.
In this thesis, clustering-based algorithms are studied and analyzed to demonstrate how
the burden on the network can be reduced exploiting NR V2V connectivity: first the
vehicles are grouped into clusters and exchange information with the master of their
cluster using a sidelink connectivity, then the master will communicate with the Base
Station (BS), thus reducing the number of vehicles that are exchanging information and
enabling the masters to select the information to be shared in a smart way.
Through simulations, we demonstrate how the processing delay required by the ap-
proaches that select information to transmit in a smart way may be too high to meet
the strict requirements of critical environment such as vehicular networks; hence, a
random approach where what to transmit is selected in a random way by the masters
of the clusters, performs better. Furthermore, we evaluate the potential of the proposed
cluster-based dissemination algorithms as a function of several parameters, including
the channel condition and the number of vehicles.





Sommario

La crescente capacità di 3GPP NR V2X supporterà le operazioni veicolo-veicolo (V2V)
nello spettro delle onde millimetriche (mmWave) per affrontare le esigenze di comuni-
cazione delle future reti automobilistiche intelligenti. Questa nuova connettività con-
sentirà la creazione di Sistemi di Trasporto Intelligenti Connessi (C-ITS) con l’obiettivo
di migliorare la sicurezza e l’efficienza del traffico. Questo concetto è cruciale perché i
veicoli, anche con sistemi avanzati di sensori, potrebbero non percepire ogni dettaglio
del loro ambiente circostante. Stabilendo la connettività, i veicoli possono adottare un
approccio collaborativo per la percezione degli oggetti, dove possono migliorare col-
lettivamente la loro consapevolezza dell’ambiente. Nel V2V, la condivisione dei dati
mette a dura prova le tecnologie tradizionali di comunicazione veicolare a causa delle
elevate richieste di velocità di trasmissione, affidabilità e latenza. I ricercatori stanno
esplorando nuovi sistemi radio, come le mmWave, per affrontare queste sfide. Tuttavia,
i problemi di propagazione alle frequenze superiori a 6 GHz pongono ostacoli. Pertanto,
aumentare semplicemente la capacità del canale potrebbe non soddisfare le esigenze
di Qualità del Servizio (QoS) delle future applicazioni automobilistiche, soprattutto in
scenari con diversi livelli di automazione. È quindi cruciale limitare la quantità di dati
trasmessi su canali a larghezza di banda limitata.

In questa tesi algoritmi basati su clustering sono studiati e analizzati per capire
come ridurre il carico sulla rete sfruttando la connettività NR V2X: innanzitutto, i
veicoli vengono raggruppati in cluster e scambiano informazioni con il capo del loro
cluster utilizzando un collegamento laterale, quindi il capo comunicherà con la stazione
base, riducendo così il numero di veicoli che scambiano informazioni e consentendo ai
capi di selezionare in modo intelligente le informazioni da condividere.

Attraverso simulazioni, dimostriamo come il tempo di elaborazione richiesto dagli
approcci che selezionano in modo intelligente le informazioni da trasmettere potrebbe
essere troppo elevato per soddisfare i requisiti rigorosi di ambienti critici come le reti
veicolari; pertanto, un approccio casuale, in cui le informazioni da trasmettere vengono
selezionate in modo casuale dai capi cluster, risulta più efficace. Inoltre, valutiamo il
potenziale degli algoritmi di disseminazione basati su cluster proposti in funzione di
diversi parametri, inclusi le condizioni del canale e il numero di veicoli.
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1
Introduction

The increasing use of on-board communication devices allows smart vehicles
to transmit their sensor data to cloud platforms and other vehicles [1]. While
this opens up opportunities for new applications, the large volume of data traffic
in vehicular networks is likely to become a significant long-term communication
challenge.
In this context, V2V connectivity offers the ability for vehicles to communicate
and share data with each other in real-time. This concept is crucial because
vehicles, even with advanced sensor systems, may not perceive every detail
of their surroundings [2]. By establishing connectivity, vehicles can enable a
collaborative approach for object perception, where they can collectively enhance
their awareness of the environment.

1.1 Connected Intelligent Transportation Systems

Advancements in vehicle automation are an ongoing process that offers nu-
merous benefits, including reducing driver fatigue, enhancing road safety, im-
proving fuel efficiency, and enabling smart parking solutions. An Autonomous
Vehicle (AV), commonly referred to as self-driving car, is a vehicle that require
minimal driver assistance [3]. It is essential to distinguish between terms like
AV, Connected Vehicle (CV) and Connected Autonomous Vehicle (CAV). Atkins
defines an AV as "a car that is capable of fulfilling the operational functions of
a traditional car (e.g., driving, lane-change, parking, etc.) without the aid of a
human operator" and a CV is described as "a car that is equipped with a tech-
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1.1. CONNECTED INTELLIGENT TRANSPORTATION SYSTEMS

nology enabling it to connect and communicate with other devices within the
car, and also to other surrounding cars and external networks (e.g., internet,
navigation, environment data, etc.)"[4]. Therefore, a CAV is a vehicle that can
not only perform traditional car functions independently but also communicate
with surrounding vehicles and infrastructure for safer driving. As pointed out
in [5], introduction of CAVs brings many advantages, such as crash avoidance/-
severity reduction [6] ,[7], attention monitoring [8] and congestion assistant or
traffic jam assist [9], [10].
Besides, in recent years, the automotive sector has shifted towards C-ITSs, both
for economic reasons [11] and to enhance safety during travel [12] and streamline
traffic control [13]. These applications, for their generality and complementarity,
are good representatives of future vehicular services [14].
The introduction of C-ITSs brings the possibility of creating advanced systems
like connected adaptive cruise control [15], [10], hence the creation of vehicle
platoonings [16].
Moreover, Teleoperated Driving (TD), has been gaining traction in the industry
and is becoming crucial in assisting self-driving cars with navigating challeng-
ing situations they can’t manage independently [17]. The performance of TD is
highly dependent on network conditions, as transmitting high-resolution sen-
sor data from the vehicle to the remote control center can require hundreds of
megabits per second, thus researches have explored Predictive Quality of Ser-
vice (PQoS) [18], [19] as a tool to predict unanticipated degradation of the QoS,
and allow the network to react accordingly.
This thesis work will focus on a TD scenario, where the vehicles transmit their
perception records to the BS, where the (software) operator sits, maximizing
the information regarding critical elements such as walkers, bikers and other
vehicles, and, at the same time, meeting the strict requirements of the 5G
specifications set by the 5G Automotive Association (5GAA). In particular, for
Infrastructure-Based TD, the service-level latency between the vehicle and the
remote driver is set at 50 ms for both uplink and downlink. The service-level
reliability is 99% for data transmission from sensors to the remote host, while the
reverse direction, which involves commands from the remote driver, requires a
higher reliability level of 99.999% [20].
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CHAPTER 1. INTRODUCTION

1.2 NR V2X and Millimeter-Wave Communication

Several studies have shown that to experience the positive impacts of C-ITSs
and smart vehicles in general, an high market penetration is required [21], [22].
Thus, to meet the needs of the increasing number of smart vehicles on the net-
work connectivity, in terms of high demands in data rate, reliability, and latency
[23], researchers are exploring new radio systems, like mmWaves, to address
these challenges [24],[25].
The introduction of 5th Generation (5G) wireless networks brought new stan-
dards for peak data rates, latency, mobility, connection density and reliability,
which can support critical applications such as vehicular networks. Moreover,
since 5G also enables the possibility to communicate in the mmWaves spectrum,
it can offer nominal data rates significanlty higher than other V2V communi-
cation protocols such as Dedicated Short-Range Communication (DSRC) [26].
To meet the demanding requirements of future vehicular networks, the 3rd
Generation Partnership Project (3GPP) has developed the New Radio Vehicle-
to-Everything (NR V2X) standard as part of its Release 16 specifications. NR
V2X is tailored for Vehicle-to-Infrastructure (V2I) and other vehicle communi-
cation modes, also operating at high frequencies, including the mmWaves spec-
trum. Recent advancements include improvements to sidelink and network
architecture, the introduction of a flexible numerology, and a new resource
allocation scheme that allows vehicles to autonomously schedule sidelink re-
sources (known as mode 2). Notably, both standards will support operations at
mmWaves frequencies, up to 71 GHz. At these frequencies, the large available
bandwidth can theoretically enable data connections with rates in the range of
several gigabits per second [1], [25].

Despite its potential, mmWaves communication in vehicular networks presents
several challenges due to the unique propagation characteristics of high-frequency
signals. These challenges include:

• Path and Penetration Loss: Signals in the mmWaves spectrum experience
significant path loss and are easily obstructed by physical objects, limiting
their range.

• Beamforming and Directional Communication: To overcome path loss,
mmWaves communication relies on highly directional beams that require
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1.3. THESIS PURPOSE AND OUTLINE

precise alignment between the transmitter and receiver. However, this
introduces complexity in maintaining stable connections, especially in dy-
namic vehicular environments.

• Interference: Vehicles, particularly their metallic structures, can act as re-
flectors, causing strong interference in the mmWaves band. Additionally,
the high frequency of mmWaves makes the communication link suscepti-
ble to time-varying channel conditions, which can affect the reliability of
the connection [27].

1.3 Thesis Purpose and Outline

Even with high data rates offered by the transmission at mmWaves, the de-
manding requirements of C-ITSs applications may exceed those capabilities [28].
Thus, a possible approach to overcome this limitation, is to reduce the data to
transmit by investigating the Value of Information (VoI) [29]. With this approach
we select the most important and useful data for our purpose and transmit only
those. The concept of VoI, although its abstract nature, has already been studied
under an economic perspective to support data management and decision mak-
ing [30] and applied to underwater systems to decide how much information to
transmit through resource constrained networks [31]. Traditional approaches
in information management focus on monitoring the Age of Information (AoI)
[32] to determine if data is outdated and drop it if necessary. However, VoI
considers additional factors like proximity and information quality. Various
methods, such as heuristic and analytic approaches like Analytic Hierarchy Pro-
cess (AHP) [33], have been proposed to characterize VoI [34]. However, utilizing
VoI effectively in vehicular networks faces several challenges. First of all, VoI
should depend on the dynamic nature of the vehicular environment and there
is a need to explore vehicular attributes for better VoI assessment. Moreover,
algorithms assessing VoI need to consider the prevalence of non-smart vehicles
on the roads, and adapt dissemination strategies accordingly.
With this thesis, we propose the design and evaluation of clustering-based al-
gorithms to enhance cooperative perception in vehicular networks, with focus
on a TD scenario.
In particular, we exploit V2V connectivity in a smart way, by grouping vehicles
in clusters, thus letting vehicles communicate with each other only when they
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CHAPTER 1. INTRODUCTION

are near in space, and adapt the number of clusters according to the state of the
network and distances between vehicles.
The research focuses on exploring how to assess VoI of vehicles data within the
clusters using various dissimilarity metrics and determine optimal data dissem-
ination methods for vehicular communication, with emphasis on reducing the
burden on the communication network while maintaining high-quality percep-
tion records.
To achieve this, we utilize K-means clustering algorithms to leverage the spatial
correlation of vehicles, and hierarchical clustering to prioritize data that carries
more information (in terms of higher number of recognized objects) or stands
out as more unique compared to other data.
We evaluate the performance of the proposed algorithms using data from
SELMA [35], a synthetic dataset for vehicular networks developed by the Uni-
versity of Padova, where we implemented a channel model to characterize V2V
communication in the cluster and the communication between the cluster head
and the BS. The dataset represents a portion of a city with all its structures
and critical elements (pedestrian, bikers, vehicles, etc.) and we test how the
performance changes with different level of processing delays at the application
level, different channel conditions and different number of smart vehicles (i.e.
vehicles which can capture and transmit perception records).
We compare the results of the simulations also with some benchmark ap-
proaches, where there is no concept of VoI and what to transmit is selected
randomly or everyone tries to transmit to the BS without any form of V2V com-
munication.

1.3.1 Thesis Outline

In chapter 2 different dissimilarity metrics for comparing vehicles’ percep-
tion records are discussed, such as based on the geometric distance and CD,
each with its merits and limitations in a dynamic environment.
In chapter 3 we describe our proposed cluster-based data dissemination meth-
ods, and the relative benchmark schemes. Clustering methods and Reinforcement
Learning (RL) are key techniques used in the proposed approaches. In particular
we propose a double-layer clustering technique where the first layer is addressed
at the BS with a K-means clustering algorithm, where the choice of K is carried

5



1.3. THESIS PURPOSE AND OUTLINE

out by a RL agent. Then, for every resulting cluster, the vehicle with the best
channel with the BS is elected as master, and receives all the perception records
from the other vehicles in the cluster; it then assigns different values of VoI and,
based also on his channel capacity, selects what to transmit. In one approach,
higher VoI will be assigned to perception records more distinct within each
other, while, in another approach, higher VoI will be assigned to perception
records with higher number of recognized objects. The benchmark methods
include an approach where the perception records to transmit are selected ran-
domly by the master vehicles, which we call a single layer approach; Moreover,
we implement an approach where every smart vehicle tries to transmit its data,
without considering the V2V communication thus there are no clusters.
In chapter 4 we analyze the simulation environment: The SELMA dataset and
channel model used for simulating the algorithms are described. Additionally,
the object recognition and data streamline techniques to improve computational
efficiency are detailed.
Finally we discuss the results of the simulations in chapter 5 analyzing the perfor-
mance of the different proposed approaches. Processing delays, signal-to-noise
ratio (SNR) degradation, and the number of vehicles are evaluated to determine
their impact on system performance.
The obtained results show that the processing delays at the application level,
that are needed to process data from vehicles to assign different levels of VoI, and
select what to transmit, are too high to be efficient in a vehicular environment.
However, all the approaches using V2V communication outperforms those that
do not, and, with idealized processing delays, the approach that gives higher
value of VoI to perception records with higher number of recognized objects,
performs better with respect to the approach that gives more VoI to perception
records that stands out as more unique compared to other ones.
In chapter 6 we provide the conclusions and future works for this thesis.

6



2
Dissimilarity Metrics

In this chapter, we explore various dissimilarity metrics that are crucial
for comparing the perception records of vehicles in a dynamic environment.
These metrics allow us to quantify the differences between vehicles’ observa-
tions, which is key to enabling more effective data fusion, improving situational
awareness, and enhancing decision-making in vehicular networks. We begin
with the simplest geometric distance metric and move on to more complex and
computationally intensive measures, such as the CD, that take into account the
vehicles’ surrounding environment and sensor data. Additionally, we discuss
other potential metrics and their applicability to this problem space.

2.1 Geometric Distance

The first metric that we consider is also the simplest one, which takes into
account the geometric distance between vehicles. Closer vehicles are, in fact,
likely to have a perception record more similar than far away vehicles. We use
the L2 norm or Euclidean Distance to measure how close the vehicles are. The
L2 norm, also known as the Euclidean norm, is a measure of the length (or
magnitude) of a vector in Euclidean space. It is defined as the square root of
the sum of the squares of its components. For a vector x in R𝑛 with components
𝑥1, 𝑥2, . . . , 𝑥𝑛 , the L2 norm is given by:

‖x‖2 =
√
𝑥2

1 + 𝑥2
2 + · · · + 𝑥2

𝑛

7



2.2. CHAMFER DISTANCE

In our scenario, 𝑛 is equal to 3, since we are in a 3D space and the com-
ponents correspond to the 𝑥, 𝑦, 𝑧 coordinate of the vehicles and to obtain the
Euclidean Distance between two vehicles,𝑉1 and𝑉2 with coordinates [𝑥1, 𝑦1, 𝑧1]
and [𝑥2, 𝑦2, 𝑧2]we compute the L2 norm of the vector v = [𝑥1−𝑥2, 𝑦1−𝑦2, 𝑧1−𝑧2]:

‖v‖2 =
√
(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 + (𝑧1 − 𝑧2)2

This metric yields the space correlation between vehicles thus it is used to group
them in different areas of the map but does not take into account any obstacles
or road structures that could make the perception record of two close vehicles
very different.

2.2 Chamfer Distance

To consider the surroundings of the vehicles and take into account more
precise spatial information, we implement the CD between the point clouds
acquired by the on board Light Detection and Ranging (LiDAR) on board of the
vehicles. The CD has also previously been used in the PQoS framework [18] to
compute the difference between acquired point clouds at different time instants
of the same vehicle.

It is defined as following:
Given two point clouds 𝑃 and 𝑄, where 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑚} and 𝑄 =

{𝑞1, 𝑞2, . . . , 𝑞𝑛}, the Chamfer Distance between 𝑃 and 𝑄 is defined as:

𝐶𝐷(𝑃, 𝑄) =
∑
𝑝∈𝑃

min
𝑞∈𝑄 ‖𝑝 − 𝑞‖

2 +
∑
𝑞∈𝑄

min
𝑝∈𝑃 ‖𝑞 − 𝑝‖

2 (2.1)

This formula can be broken down into two parts:

1. For each point in 𝑃, find the closest point in 𝑄 and compute the squared
Euclidean distance. Sum these distances for all points in 𝑃.

2. For each point in 𝑄, find the closest point in 𝑃 and compute the squared
Euclidean distance. Sum these distances for all points in 𝑄.

The CD is symmetric and is a measure of how similar two point clouds are.
From a computational perspective, it is highly expensive and time-consuming

to compute, posing significant challenges, particularly in scenarios with tight
time constraints such as vehicular networks. To address this issue, in [36] is
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CHAPTER 2. DISSIMILARITY METRICS

proposed to organize the point clouds in a k-dimensional tree structure so that
becomes faster to obtain the nearest neighbour. However this technique is still
not efficient enough for our purposes, leading to peaks of exectuion times of
700𝑚𝑠 so we use the built in method of the Open3D library [37] to compute the
distance between two point clouds which we empirically measured to be the
faster one, lowering down the computation time to 8𝑚𝑠.

2.3 Other Metrics

Some alternative methods that could be used to address dissimilarity include
voxelization and clustering. However, they were not considered in this study
due to their high computational demands, which make them impractical for our
specific needs, as pointed out in previous studies [38]. While object recognition
is also computationally expensive to compute [39], the main advantage is that it
can be parallelized assuming all the vehicles have dedicated hardware on board.
We decide then to consider it since it introduces a valuable metric: the number
of recognized objects by a vehicle. This allows us to assign greater importance
to vehicles that identify more objects, and less importance to those recognizing
fewer. This approach opens up interesting applications, which will be explored
in sec. 3.2.

9





3
Data Aggregation for Cooperative

Perception

In this chapter we will analyze different techniques that can be used to
aggregate the data collected by the vehicles. The aim is to gather as much
information as possible so that the BS will have as much visibility as possible
of what is happening in the scenario, crucial point to take into account in the
context of TD.

3.0.1 Clustering

To address this, we will make an extensive use of clustering, a Machine
Learning (ML) technique which falls under the category of unsupervised learn-
ing which is supposed to organize data in some meaningful way. Formally
speaking, clustering is the task of grouping a set of objects such that similar ob-
jects end up in the same group and dissimilar objects are separated into different
groups.

Lloyd’s K-means Clustering

Lloyd’s K-means algorithm is a widely used method for clustering that aims
to partition a set of points into 𝑘 distinct clusters minimizing the average distance
of every point to the center of the cluster, called centroid. The algorithm operates
in an iterative manner, refining the cluster centroids until convergence. The
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primary goal of the K-means algorithm is to minimize the sum of squared
distances between the data points and their respective cluster centroids.

The K-means algorithm consists of the following steps:

1. Initialize 𝑘 cluster centroids randomly.

2. Assign each data point to the nearest centroid.

3. Recompute the centroids as the mean of all points assigned to each cen-
troid.

4. Repeat steps 2 and 3 until convergence (until the position of the centroids
is stable over successive iterations [40]).

Pseudocode The pseudocode for Lloyd’s K-means clustering algorithm is as
follows:

Algorithm 1 Lloyd’s K-means Clustering Algorithm
1: Input: Dataset X = {x1, x2, . . . , x𝑛}, Number of clusters 𝑘
2: Output: Set of clusters C = {𝐶1, 𝐶2, . . . , 𝐶𝑘}, Centroids 𝜇1, 𝜇2, . . . , 𝜇𝑘
3: Initialize 𝑘 centroids 𝜇1, 𝜇2, . . . , 𝜇𝑘 randomly from X
4: repeat
5: Assignment Step: Assign each data point x𝑖 to the nearest centroid 𝜇𝑗
6: for each cluster 𝐶 𝑗 do
7: 𝐶 𝑗 ← {x𝑖 : ‖x𝑖 − 𝜇𝑗 ‖2 ≤ ‖x𝑖 − 𝜇𝑙 ‖2,∀𝑙 ≠ 𝑗}
8: end for
9: Update Step: Recalculate the centroid 𝜇𝑗 for each cluster 𝐶 𝑗

10: for each cluster 𝐶 𝑗 do
11: 𝜇𝑗 ← 1

|𝐶 𝑗 |
∑

x𝑖∈𝐶 𝑗 x𝑖
12: end for
13: until centroids do not change
14:
15: return the set of clusters C and centroids 𝜇1, 𝜇2, . . . , 𝜇𝑘

Explanation

1. Initialization: Centroids are initialized randomly from the data points.

2. Assignment Step: Each data point is assigned to the cluster with the
nearest centroid. The Euclidean distance is typically used to determine
the nearest centroid.

12



CHAPTER 3. DATA AGGREGATION FOR COOPERATIVE PERCEPTION

3. Update Step: The centroid of each cluster is recalculated as the mean of
all points assigned to that cluster. This updated centroid will then be used
in the next iteration.

4. Convergence: The algorithm iterates between the assignment and update
steps until the centroids stabilize, meaning they no longer change signifi-
cantly or the assignments no longer alter.

Lloyd’s K-means clustering is effective for finding spherical clusters but may
struggle with clusters of varying shapes and sizes or when the number of clus-
ters is not specified accurately. Its performance can be sensitive to the initial
placement of centroids and may require multiple runs to achieve an optimal
clustering solution.
The resulting clusters will have a gaussian distribution, with means the position
of centroids.

Complexity The time complexity of Lloyd’s K-means clustering algorithm is
𝑂(𝑡 · 𝑛 · 𝑘 · 𝑑), where 𝑡 is the number of iterations, 𝑛 is the number of data points,
𝑘 is the number of clusters, and 𝑑 is the number of dimensions. The space
complexity is 𝑂(𝑘 · 𝑑) for storing the centroids and 𝑂(𝑛 · 𝑑) for storing the data
points and assignments. To improve the performance we use the Scikit python
library [40] dedicated method to perform the K-means clustering which is able
to achieve a time complexity of 𝑂(𝑘 · 𝑛 · 𝑡) [kmeansperformance].

Hierarchical Clustering

Another important clustering method analysis that we will use extensively
is Hierarchical Clustering, which seeks to build a hierarchy of clusters. Unlike
partition-based methods like K-means clustering, hierarchical clustering does
not require the number of clusters to be specified in advance. Instead, it produces
a tree-like structure called a dendrogram, which illustrates the arrangement of
the clusters formed at different levels of hierarchy.

There are two main types of hierarchical clustering: agglomerative and divisive.
Agglomerative Hierarchical Clustering
Agglomerative hierarchical clustering, also known as bottom-up clustering,

starts with each data point as its own individual cluster. The algorithm then
iteratively merges the closest pairs of clusters until all data points are contained
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in a single cluster or until a stopping criterion (like a predefined number of
clusters) is reached.

The process involves the following steps:

1. Initialization: Each data point is initially considered as a separate cluster.

2. Similarity Computation: At each step, the algorithm calculates the dis-
tance between every pair of clusters. In our framework, we will consider
both the CD and the geometric distance as similarity metrics.

3. Merging: The two clusters with the smallest distance are merged together
to form a new cluster.

4. Termination: This process is repeated until the desired number of clusters
is achieved or all points are merged into a single cluster.

The result is a dendrogram, where the root represents the final cluster con-
taining all data points, and the leaves represent the individual data points. The
height of the connection at which two clusters are merged represents the distance
between them.

Divisive Hierarchical Clustering
Although we will not utilize this technique, Divisive hierarchical clustering,

or top-down clustering, is still worth noting: it begins with all data points in a
single cluster and then the algorithm recursively splits the cluster into smaller
clusters until each data point is in its own cluster or a predefined stopping
criterion is met.

The key steps in divisive clustering are:

1. Initialization: All data points start in one cluster.

2. Splitting: At each step, the algorithm identifies the cluster that is the
most heterogeneous and splits it into two smaller clusters, typically using
a clustering method such as K-means.

3. Update: The process is repeated by selecting the next cluster to split.

4. Termination: The algorithm stops when a specified number of clusters is
formed or when splitting further is not meaningful.

Linkage Criteria
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A crucial aspect of hierarchical clustering is how the distance between clus-
ters is computed, which is determined by the linkage criterion. Common linkage
criteria include:

• Single Linkage: The distance between two clusters is defined as the short-
est distance between any single data point in the first cluster and any single
data point in the second cluster.

• Complete Linkage: The distance between two clusters is the greatest
distance between any single data point in one cluster and any single data
point in the other cluster.

• Average Linkage: The distance between two clusters is the average of all
pairwise distances between points in the two clusters.

• Wards Method: This method minimizes the total within-cluster variance.
At each step, the pair of clusters with the smallest increase in variance after
merging is chosen.

Advantages and Disadvantages
Hierarchical clustering has several advantages:

• It does not require the number of clusters to be specified in advance.

• It produces a dendrogram, which gives a visual representation of the data
and can help in determining the number of clusters.

• It is particularly useful for small datasets and for data that naturally forms
a hierarchical structure, just like in our case, where the number of vehicle
is not too big and the similarity measure between them is suitable to form
a hierarchical structure.

However, there are also some disadvantages:

• Hierarchical clustering is computationally expensive, especially for large
datasets, since it has a time complexity of 𝑂(𝑛3).

• The choice of distance metric and linkage criterion can significantly influ-
ence the final clusters, which may not always be intuitive.

• Once a merge or split is done, it cannot be undone, leading to potentially
suboptimal clustering solutions.
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3.0.2 Reinforcement Learning Agent

As we have seen, in K-Means clustering the choice of the parameter K is
very important and can deeply affect the performance of the whole framework.
Since vehicular networks are highly dynamic environments, it’s impossible to
determine a single optimal value for K that works in all situations. For instance,
if we set K to 10 when there are 30 vehicles, we might achieve good clustering
and conclude that this is a suitable value. However, if most of the vehicles
leave, leaving only 9 or fewer, the same value for K would no longer be effective.
Additionally, changes in the spatial distribution of the vehicles could also lead
to poor performance. Therefore, we need to develop a method to choose K
dynamically and intelligently. To address this requirement we use a RL agent.

RL is a branch of machine learning that deals with how an agent should take
actions in an environment to maximize cumulative rewards. It involves learning
through interaction with the environment, making decisions that affect the state
of the environment and receiving feedback in the form of rewards.

In its simplest form, RL can be understood through the multi-armed bandit
problem. This problem is a straightforward example of reinforcement learning,
where an agent is faced with multi different actions (or arms), each associated
with an unknown probability distribution of rewards. The agent’s objective is
to maximize its total reward over time by selecting the best action as often as
possible.

Key Concepts in the Multi-Armed Bandit Problem

• Agent: The decision-maker that interacts with the environment by choos-
ing actions (pulling arms).

• Action (A): The set of possible choices or arms the agent can pull. Each
action has an associated but unknown reward distribution.

• Reward (R): The immediate feedback received by the agent after selecting
an action. Each action has a reward distribution, and the agent aims to
maximize the sum of the rewards over time.

• Exploration vs. Exploitation: A critical trade-off that is faced in the multi-
armed bandit problem where the agent must choose between exploiting the
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Figure 3.1: Reinforcement Learning Paradigm
Image is taken from [41]

action that has yielded the highest reward so far and exploring less-known
actions that might lead to better rewards in the future.

The Multi-Armed Bandit Algorithm

The multi-armed bandit problem serves as a fundamental model in RL,
illustrating the exploration-exploitation dilemma. Several strategies can be used
to solve this problem:

• Epsilon-Greedy Strategy is one of the simplest methods where, with prob-
ability 1−𝜖, the agent exploits the action with the highest observed reward,
and with probability 𝜖, it explores a random action. This strategy balances
exploration and exploitation by adjusting the value of 𝜖.

• Upper Confidence Bound (UCB) is a more advanced strategy that selects
actions based on both the average reward and the uncertainty or variance in
the reward estimates. This approach systematically balances exploration
and exploitation by considering the potential for higher rewards from less
frequently chosen actions.
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• Gradient Bandit Algorithm (GBA) is an approach that encourages ex-
ploration without choosing randomly the action to explore. In GBA, we
define a preference for each action and the larger the preference, the more
often the action is taken.

In dynamic environments, such as vehicular networks, conditions can change
rapidly, and the optimal action may vary over time. The multi-armed bandit
algorithm is well-suited to our scenario because the distribution of the rewards
is stationary since we do not operate major changes to the Signal to Noise
Ratio (SNR) or the capacity within one simulation run, but we do that for
different runs, as we show in chapter 5.

For example, in the context of dynamically selecting the parameter 𝐾 for
K-Means clustering in vehicular networks, the multi-armed bandit algorithm
can be employed to choose the optimal value of 𝐾 over time. By treating each
possible value of 𝐾 as an arm, the agent can explore different values and exploit
the one that provides the best clustering performance, adapting as the number
and arrangement of vehicles change.

This adaptability makes the multi-armed bandit algorithm a powerful tool for
managing dynamic systems where the optimal choice can shift due to changes
in the environment.

In our framework, since we seek for a faster convergence, we implement the
multi-armed bandit algorithm with an Epsilon-Greedy Strategy using optimistic
initialization values, meaning that we encourage exploration in the early stages
of learning by initializing the estimated values of actions to be higher than their
expected values. The pseudocode of the algorithm is taken from [42] and is
provided in Algorithm 2.

We define the reward 𝑅 as follows:

𝑅 =
𝑛recognized objects

𝑛recognizable objects

and we set 𝑄init = 2, so higher than the maximum reward value which will be 1
and 𝜀 = 0.2.
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Algorithm 2 Optimistic Initialization for K-Armed Bandit with Epsilon-Greedy
Strategy

Initialize, for 𝑎 = 1 to 𝑘:
𝑄(𝑎) ← 𝑄init
𝑁(𝑎) ← 0

Loop forever:

𝐴←
{

arg max𝑎 𝑄(𝑎) with probability 1 − 𝜀
a random action with probability 𝜀

𝑅← bandit(𝐴)
𝑁(𝐴) ← 𝑁(𝐴) + 1
𝑄(𝐴) ← 𝑄(𝐴) + 1

𝑁(𝐴) [𝑅 −𝑄(𝐴)]

3.1 Double Layer Clustering

To take advantage of both the local awareness of vehicles and the broader
perspective of the BS, we propose a two-layers clustering method. We call it
two-layers because it involves two separate clustering steps: first, a K-means
clustering, followed by a second clustering process within each resulting group
of vehicles.

3.1.1 K-means Clustering at the Base Station

The first clustering layer is handled by BS. Since the BS has continuous access
to vehicle data, including their Global Positioning System (GPS) coordinates, it
is aware of the exact locations of all vehicles.

Using this location data, the BS performs K-means clustering based on the
geometric distance between vehicles. This method groups nearby vehicles into
clusters. After this clustering, the BS selects one vehicle from each cluster to act
as the master vehicle (or centroid). The selection is based on which vehicle in
each group has the highest SNR.

Once the master vehicle is selected, the BS informs all vehicles in the cluster
which vehicle has been chosen as their master. Each vehicle then knows both its
cluster and the identity of the master vehicle to which it should send its data.
This clustering approach takes advantage of V2V communication by allowing
nearby vehicles to share information about their local environment in an efficient
manner.
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3.1. DOUBLE LAYER CLUSTERING

Figure 3.2 shows an example of the K-means clustering results applied to
our scenario. At this stage, the master vehicles have full access to the data (in
the form of point clouds) collected by all the vehicles within their respective
clusters.

The decision on how many clusters (K) to use is determined by a RL agent,
which optimizes this parameter.
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Figure 3.2: K-means clustering at the BS; different colors of the vehicles represent
the different clusters they belong to. In red the master vehicle elected for each
cluster

3.1.2 Hierarchical Clustering at the Master’s Vehicles

All the master vehicles are now able to identify which are the best point
cloud that will be transmitted. Based on their channel quality, they compute the
number of point clouds they are able to send 𝑛pcds with the following formula:

𝑛pcds =


(
𝐶×106

8

)
× 𝑡𝑎

𝑠pcd

 (3.1)
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where 𝑐 is the capacity and is computed using the Shannon Capacity Theorem:

Theorem 1 (Shannon Capacity Theorem) The channel capacity 𝑐, which is the
maximum rate at which information can be transmitted over a communication channel
without error, is given by:

𝐶 = 𝐵 log2

(
1 + 𝑆

𝑁

)
Where:

• 𝐶 is the channel capacity in bits per second (bps),

• 𝐵 is the bandwidth of the channel in hertz (Hz),

• 𝑆
𝑁 is the signal-to-noise ratio (SNR).

𝑡𝑎 is the time available that is left for the actual transmission of the data, af-
terwards the delay required for the processing of the data and is computed
as:

𝑡𝑎 = 𝑡target − 𝑡processing

and we set 𝑡target to 50𝑚𝑠, based on the requirements in the standard [43], 𝑠pcd is
the average size of the point cloud expressed in KBytes, which we measured to
be of 30𝐾𝐵 after compression (see sec. 4.1) and we set 𝐵 = 50𝑀𝐻𝑧.

The master vehicles know how many point clouds they can afford to send
based on their data rate so they have to make an informed choice trying to max-
imize the amount of information that they send to the BS.
To do that, they perform an agglomerative hierarchical clustering using as dis-
tance metric the CD between the point clouds of the vehicles in the clusters and
Average Linkage as linkage criteria (Figure 3.3). In this way the master vehicles
are able to build the dendrogram and cut it based on the number of point clouds
they can send. When cutting the dendrogram, in fact, based on the height of the
cut, different numbers of clusters are formed: the lower the cut the higher the
number of clusters.
The master vehicles then form a number of cluster equals to the number of point
clouds that they are able to send and then select one representative at random
per cluster; an example is shown in Figure 3.4.
The primary advantage of this approach is that the selected point clouds will be
the most distinct from one another, providing a greater amount of information.
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3.2. OBJECT RECOGNITION EXPLOITATION

In fact, if we only use the spatial information available at the BS we would pick
just vehicle far apart in the space. But, if two or more vehicles that are close to
each other suffer from an obstructed view or there are obstacles between them,
the perception record will be very different, and this knowledge can only be
extracted by processing the point clouds.
Nonetheless there is a major drawback: the number of comparisons 𝑛comparisons

the master vehicle has to make in order to compute the dendrogram is quadratic
in the number of the vehicles in the cluster. It is given by:

𝑛comparisons =
𝑛vehicles

2 − 𝑛vehicles
2

This results in an high value of 𝑡processing. We measured the average time required
to compute the CD between two point clouds to be 8𝑚𝑠.
To reduce the burden of the computation, the CD between vehicle is computed
only if their distance is below a certain threshold, which we set to 100𝑚, which is
the LiDAR range of operation, so vehicles that are further than the threshold will
not have anything in common in their perception records. This rarely happens
since, due to the way the clusters are formed, vehicles are unlikely to be far away
from each other if they belong to the same cluster.

3.2 Object Recognition Exploitation

In this approach we first perform a K-means clustering at the BS, and then
we elect the master (or centroid) in the same way as before. Then, all the vehicles
in the cluster perform the object recognition task for their own point cloud, and
send to the master their point cloud with the number of recognized objects.
At this point the master vehicles perform an agglomerative hierarchical cluster-
ing using the geometric distance between vehicles as distance metric to build
the dendrogram.
They then compute the number of point clouds 𝑛pcds that they are able to send
based on their SNR and cut the dendrogram to form exactly 𝑛pcds clusters. Now,
unlike in the previous approach, they do not select one representative per clus-
ter at random but select the vehicle which has the higher number of recognized
objects.
This is done to overcome the possibility that two or more vehicles that have an
high number of recognized objects but are really close to each other are selected
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Figure 3.3: Example of Agglomerative Hierarchical Clustering performed by the
master vehicle for its cluster

as representatives since they likely see the same objects.
In this approach the main drawback is given by the fact that the object recogni-
tion task is pretty expensive to perform, state of the art algorithms takes about
16𝑚𝑠[39]. On the other hand, if we assume that every vehicle has dedicated
on board hardware, the task can be parallelized and performed simultaneously
by all the vehicles. In this way the processing delay is fixed and will not grow
increasing the number of vehicles in the cluster.

3.3 Single Layer Clustering

In this last approach we firstly perform the K-means clustering at the BS as
before, also selecting the master vehicles using the same strategy. All the vehicles
will then send their point clouds to the master vehicles without processing them
and the master vehicles will select at random the point clouds to send to the BS
without any kind of processing. This way, the processing delay will be none and
this is the major advantage of this approach, but at the same time the perception
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Figure 3.4: Dendrogram cut examples
On the left, the cut performed if we want to send 4 point clouds while on the
right if we want to send 6 point clouds. Vehicles which point cloud is selected

for transmission are marked in red.

record will likely be less informative, since the choice is not informed at all.
A comparison of the three approaches can be seen in Figure 3.5

3.4 Benchmark Methods

Finally, we implement a couple of methods to have a benchmark comparison
with respect to solutions that do not exploit the V2V connectivity, thus vehicles
will exchange information only with the BS.

3.4.1 Simple K-means

In this approach the BS will perform a K-means clustering of the vehicles
using the geometric distance as distance metric using as K the same value of K
used for the approach described in Section 3.1.1. At this point, the BS will only
exchange information with the vehicle in the cluster with the higher SNR. The
vehicles in the cluster will not exploit the sidelink communication so the BS will
receive at most 1 point cluster, the one from the vehicle with the higher SNR in
the cluster. If the sending vehicle will not meet the 50𝑚𝑠 requirement to send
the point cloud, it will not be considered valid. The main advantage is given by
the fact that there is neither delay associated to sidelink communications nor for
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processing the point clouds, but the drawback is given by the fact that in general
the BS will always receive less point clouds than the other approaches, since the
V2V connectivity is not exploited.

3.4.2 Everyone Transmits

The last approach is the simplest one, since every vehicle tries to transmit its
point cloud to the BS. We obviously expect very poor performance from this
approach since if everyone is transmitting the bandwidth will be significantly
lower for every vehicle, leading to a lower data rate. Moreover, vehicles with a
bad channel will affect the performance of vehicles with good channels, since
they will try to transmit anyway.
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Figure 3.5: Comparison of three different approaches; on the left, the approach
based on hierarchical clustering using CD, in the middle the one exploiting
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4
Simulation Environment

In this chapter we provide an overview of the simulation environment used to
carry out the analysis of the proposed approaches. We first explore the synthetic
dataset used to simulate the city with its structures, vehicles, bikers and walkers
and how the data is collected and formatted. We then cover the methodology
used for simulating communication channels, essential for transmitting data
between vehicles and the BS.

4.1 SELMA Dataset

Autonomous and TD tasks, such as Semantic Segmentation (SS) and Vehicle-
to-Everything (V2X) communication, pose several challenges, particularly due to
the complex and dynamic environments in which autonomous vehicles operate
[44], [45]. In this context, ML and Deep Learning (DL) offer valuable approaches
to tackle these challenges and enhance driving decisions [46]. However, these
techniques require large amounts of labeled data for effective training, and
obtaining and annotating such data is both expensive and time-consuming.
Consequently, existing open-source datasets like Waymo [47], Cityscapes [48],
and KITTI [49] are often limited in scope and diversity. Many datasets are
too small to encompass the complexities of urban environments, lack coverage
across various sensor types, and include unlabeled scenes, which compromise
the training of ML models [50].

To address these limitations, the research community has turned to syn-
thetic, computer-generated datasets, where simulations manage the entire data
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generation process. This approach reduces costs, increases flexibility, and al-
lows for the creation of large quantities of data compared to real-world data
[51], [52], [53], [54], [55] . Simulations enable data collection across different
conditions, scenarios, and sensor configurations. One open-source simulator
that generates synthetic data is CAR Learning to Act (CARLA) [56]. CARLA
offers urban layouts, diverse environmental conditions, models for vehicles,
buildings, pedestrians, and supports flexible sensor setups. Currently, several
synthetic datasets are available for SS in autonomous driving [51], [57], [58], [59],
[60]. However, these datasets have limitations. The samples typically cover only
a limited number of settings, similar viewpoints, and limited weather, lighting,
and time-of-day conditions, often relying on data from a single sensor. Addi-
tionally, they often lack detailed control over weather conditions or alignment
with common benchmark semantic class sets, such as Cityscapes.

The address these limitations, [35] presents SEmantic Large-scale Multi-
modal Acquisitions (SELMA). This dataset was designed for SS tasks in au-
tonomous driving systems and provides a rich collection of data across varying
environmental conditions. The SELMA dataset includes data from 24 sen-
sors, such as RGB cameras, depth cameras, semantic cameras, and LiDAR, all
mounted on vehicles in simulated urban and rural settings. The data was gen-
erated using a customized version of the CARLA simulator, which allowed for
more diverse weather and lighting conditions, and included sensors specifically
optimized for autonomous driving research. In particular, all the vehicles are
equipped with a full sensor suite including:

• 7 RGB cameras: these have a 90-degree horizontal Field of View (FoV) and
a native resolution of 5120 × 2560, which is downsampled to 1280 × 640
to enable 4× anti-aliasing. Post-processing effects include vignette, grain
jitter, bloom, auto exposure, lens flare, and depth of field.

• 7 depth cameras: these also feature a 90-degree horizontal FoV with a
resolution of 1280 × 640. Anti-aliasing is omitted as it would degrade the
quality of depth information.

• 7 semantic cameras: these share the same specifications as the depth
cameras.

• 3 semantic LiDARs: each capable of producing 64 vertical channels and
generating up to 100,000 points per second, with a range of 100 meters.
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LiDAR sensors
Cameras

Figure 4.1: Placement of the sensors in a car

This provides a high-resolution, omnidirectional view of the surroundings,
which is critical for understanding the vehicle’s environment in various
conditions, including fog, rain, and different times of day.

The placement of the sensors is illustrated in Figure 4.1.
For our analysis, we utilized the data from the LiDAR sensors, which gen-

erates a 3D point cloud representation of the environment around the vehicles,
namely, their perception record. In particular, we use the point clouds generated
by the LiDAR placed on top of the vehicle.
This choice is driven by many factors:

1. Semplicity: taking into account all the sensor on board of the vehicles
would simply be too complex in this first explorative phase of our analysis
and would introduce even larger processing delays which we definitely
want to avoid.

2. Reliability: data acquired by the LiDAR on top provides reliable depth
information compared to image based detection [61], [62]. Moreover, it
offers full view of the surrounding scene of the vehicle, since it acquires
data with a 360-degree FoV.

3. Robustness to different weather and lighting conditions: LiDAR acqui-
sitions are the more robust to weather conditions, such as fog and rain as
well as difficult light conditions such as backlight and night time.

4. Efficiency: point clouds can be efficiently compressed via Draco compres-
sion [63] while keeping a good level of information [64], making them
suitable for fast transmissions.
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Figure 4.2: Side view of the LiDAR offset

The point clouds generated by the LiDAR sensor mounted on top of the
vehicles need to have a common reference frame to allow a correct computation
of the CD between them.

The acquired point clouds must be then aligned with respect to the relative
location of the LiDAR placement on top of the vehicles and then adjusted with
respect to the word reference frame of the simulated city. In particular, the
LiDAR placement offset, with respect to the position of the vehicle, can be found
in the blueprint of the vehicles provided in the dataset and is expressed by the
vector 𝑜L:

𝑜L =


𝑑𝑥

𝑑𝑦

𝑑𝑧


whose components represents the offset in the 3 components of 3D space; an
example of one side view can be seen in Figure 4.2. It is also worth noting that
𝑑𝑥 = 0 for all the vehicles considered in our simulations. Then we need to take
care of the word reference frame; to do that, we have to account for a translation
with respect to the vehicle location in the map, which is provided in the vector
𝑉𝑙 :

𝑉𝑙 =


𝑉𝑥
𝑉𝑦
𝑉𝑧


as well as the orientation of the vehicle with respect to the origin, provided in
the vector 𝑉𝑜 :

𝑉𝑜 =


𝜃𝑥
𝜃𝑦
𝜃𝑧


Using the euler angles convetions [65] we will also refer to these angles as
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Figure 4.3: Euler’s angle conventions

roll for rotations along the 𝑥 axis, pitch for rotations along the 𝑦 axis and yaw for
rotations along the 𝑧 axis, as in CARLA conventions, see Figure 4.3.

The alignment process is an affine transformation composed by a rotation
and a translation: a rototranslation. The affine transform in 2D space is formally
defined as: [

𝑥

𝑦

]
= A

[
𝑣

𝑤

]
+ 𝑏® (4.1)

Where 𝑥 and 𝑦 are the coordinates of the projected point; A is a matrix that, based
on its content, allows different transformations like scaling, shearing, reflection
and, in our case, rotation; 𝑣 and 𝑤 are the coordinates of the point to transform
while 𝑏® is the translation vector, which will translate the point in the space.
In our case of rototranslation, in the 𝑥𝑦 coordinate plane, so the top view of the
map, eq. 4.1 will become as follows:[

𝑥𝑡
𝑦𝑡

]
=

[
cos𝜃𝑧 − sin𝜃𝑧
sin𝜃𝑧 cos𝜃𝑧

] [
𝑥𝑝
𝑦𝑝

]
+

[
𝑉𝑥
𝑉𝑦

]
(4.2)

with 𝑥𝑝 and 𝑦𝑝 the coordinate of the point as we read it straight out of the dataset
and 𝑥𝑡 and 𝑦𝑡 the coordinate of the rototranslated point.To ease the computation,
we express all the points coordinate using homogenous coordinates (we add an
extra dimension equal to 1), as this allows to represent affine transforms in a
single matrix multiplication, as well as combining multiple transforms in a single

31



4.1. SELMA DATASET

matrix. A generic point 𝑃 = (𝑥𝑝 , 𝑦𝑝) of the point cloud will then be expressed as

𝑃ℎ =


𝑥𝑝
𝑦𝑝
1


and eq, 4.2 will become:

𝑥𝑡
𝑦𝑡
1

 =


cos𝜃𝑧 sin𝜃𝑧 𝑉𝑥
− sin𝜃𝑧 cos𝜃𝑧 𝑉𝑦

0 0 1



𝑥𝑝
𝑦𝑝
1

 (4.3)

We now want to extend this definitions to the 3D case, so we will combine
three matrices to perform the rototranslation along the three axis by following
the procedure in [65], with the difference that we also take into account that
CARLA uses left-handed triplets, so 𝑥 and 𝑦 indices will be swapped. To build
the rototranslation matrix Tword to adjust the point cloud with respect to the
position and orientation of the vehicle we define 𝑐𝑟 = cos(roll), 𝑠𝑟 = sin(roll),
𝑐𝑝 = cos(pitch), 𝑠𝑝 = sin(pitch), 𝑐𝑦 = cos(yaw), and 𝑠𝑦 = sin(yaw). The final
matrix will be as follows:

Tworld =


𝑐𝑝𝑐𝑦 𝑐𝑦𝑠𝑝𝑠𝑟 − 𝑠𝑦𝑐𝑟 −𝑐𝑦𝑠𝑝𝑐𝑟 − 𝑠𝑦𝑠𝑟 −𝑉𝑦
𝑠𝑦𝑐𝑝 𝑠𝑦𝑠𝑝𝑠𝑟 + 𝑐𝑦𝑐𝑟 −𝑠𝑦𝑠𝑝𝑐𝑟 + 𝑐𝑦𝑠𝑟 −𝑉𝑥
𝑠𝑝 −𝑐𝑝𝑠𝑟 𝑐𝑝𝑐𝑟 𝑉𝑧
0 0 0 1


(4.4)

Then, to adjust the point cloud with respect to the relative position of the
LiDAR on the vehicle, we build a transformation matrix Tcar. Since the orien-
tation of the LiDAR is the same for every vehicle, to ease the computation, we
only take into account the relative location of it, expressed in the vector 𝑜L:

Tcar =


1 0 0 𝑑𝑦

0 1 0 𝑑𝑥

0 0 1 𝑑𝑧

0 0 0 1


(4.5)

We now need to take the inverse of this matrix, because the raw data from the
dataset have already applied this transformation to the point cloud and we want
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to undo it. Finally, we are able to apply these matrices together to perform the
rototranslation in one step. We compute the dot product as follows:

Ptransformed = Tworld · T−1
car · P (4.6)

To perform this computation, we once again use the Open3D library [37], in
particular its method transform. Example of rototranslation application can be
seen in Fig. 4.4 and Fig. 4.5

Figure 4.4: Point cloud before transformation; we can see the reference frame
origin on top of the car.

Figure 4.5: Point cloud after transformation; the reference frame origin has
moved to the bottom left due to the transformation and defines where are the
coordinates (𝑥, 𝑦, 𝑧) = (0,0,0)
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4.2 Channel Model

To simulate the transmission of data between the vehicles and the BS, we
use the specification provided in the 3GPP 38.901 release 17 [66] focusing on the
Urban Macro (UMa) scenario. In particular, we first compute the LOS probability
𝑃𝑟LOS as follows:

𝑃𝑟LOS =



1 , 𝑑2D-out ≤ 18 m[
18

𝑑2D-out
+ exp

(
−𝑑2D-out

63

) (
1 − 18

𝑑2D-out

)]
·

·
(
1 + 𝐶′(ℎUT)54

(
𝑑2D-out

100

)3
exp

(
−𝑑2D-out

150

)) , 18 m < 𝑑2D-out
(4.7)

where

𝐶′(ℎUT) =


0 , ℎUT ≤ 13m(
ℎUT−13

10

)1.5
, 13m < ℎUT ≤ 23m

and ℎUT is the height of the antenna placed on the vehicle, and to simulate it
we have used the height of the LiDAR on top of the vehicle; in our case we
always have 𝐶′(ℎUT) = 0 since vehicles are never higher than 13m; 𝑑2D and 𝑑3D

are defined in Fig. 4.6. We then compute the Path Loss (PL) using the formulas
provided in table 4.1, where we define

𝑑
′
𝐵𝑃 = 4ℎ′𝐵𝑆ℎ

′
𝑈𝑇 𝑓𝑐/𝑐

with
ℎ
′
BS = ℎBS − ℎE,

ℎ
′
UT = ℎUT − ℎE

and we set the environment height ℎE = 1m, carrier frequency 𝑓𝑐 = 24.25𝐺ℎ𝑧 in
Frequency Range 2 (FR2). We then add a term related to the shadow fading as a

Scenario PL[dB]

LOS

{
𝑃𝐿 = 28 + 22 log10(𝑑3𝐷) + 20 log10( 𝑓𝑐), if 10 ≤ 𝑑2𝐷 ≤ 𝑑′𝑏𝑝
𝑃𝐿 = 28 + 40 log10(𝑑3𝐷) + 20 log10( 𝑓𝑐) − 9 log10(𝑑

′2
𝑏𝑝 + (ℎ𝑏𝑠 − ℎ𝑢𝑡)2), if 𝑑2𝐷 > 𝑑

′
𝑏𝑝

NLOS
𝑃𝐿𝑁𝐿𝑂𝑆 = max(𝑃𝐿, 𝑃𝐿′)
𝑃𝐿′ = 13.54 + 39.08 log10(𝑑3𝐷) + 20 log10( 𝑓𝑐) − 0.6(ℎ𝑢𝑡 − 1.5)

Table 4.1: Path loss formulas for LOS and NLOS scenarios

34



CHAPTER 4. SIMULATION ENVIRONMENT

Scenario Shadow Fading std [dB]
LOS 𝜎SF = 4

NLOS 𝜎SF = 6

Table 4.2: Shadow Fading for LOS and NLOS scenarios

d2D

d3D

hUT

hBS

 

Figure 4.6: Definition of 𝑑2D and 𝑑3D

random variable normally distributed, centered in 0𝑑𝐵 with standard deviation
𝜎SF depending on the LOS and NLOS scenario as described in table 4.2. The
final path loss 𝑃𝐿 𝑓 will be then given by:

𝑃𝐿 𝑓 = 𝑃𝐿 +N(0𝑑𝐵, 𝜎𝑆𝐹) (4.8)

The final 𝑆𝑁𝑅 value is then given by:

𝑆𝑁𝑅[dB] = 𝑃RX[dBm] − 𝑃N[dBm] (4.9)

with the received power 𝑃RX[dBm] = 𝑃TX[dBm] − 𝑃𝐿 𝑓 [dBm] where we set the
transmitting power 𝑃TX = 30𝑑𝐵𝑚 and the noise power 𝑃N = −97𝑑𝐵𝑚. The SNR
value is then converted to linear and can be used to compute the capacity of the
channel as explained in sec. 3.1.2.
Moreover, we choose to implement this channel model also to simulate the V2V
communication, because, in the initial phase of this project, we assumed ideal
the communication between vehicles, meaning that every vehicle has perfect
knowledge of the data of other vehicles without the need to exchange infor-
mation. This assumption led the RL agent to always choose the lowest value
of 𝐾 available, 2 in our case, because having just 2 master vehicles means that
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they can take the most informed choice since they can see a lot of vehicles and
at the same time they would have the best channels since they can be near the BS.

The downside is that the clusters formed have a huge number of vehicles
in them and they are far apart from each other, hence making it an unreal
scenario. Thus, by implementing our channel model, we added a delay for the
V2V communication which is proportional to the distance between vehicles that
led the choice of 𝐾 to be more sensible, as we show in chapter 5. It is worth
noting that a more precise model for V2V communication is provided in [67],
but, for our purposes, which are to introduce a realistic delay to make the choice
of 𝐾 more plausible, the goal can be achieved also with the current model.

4.3 Object Recognition

To implement the approach described in sec. 3.2 we need to perform the
object recognition task. In our simulation, to define if an object has been recog-
nized or not, we base our object recognition task on the VoxelNet approach [62].
In the paper, they propose a threshold 𝑇 = 45 points to determine if the object
recognition task can be performed with a good level of confidence or not.
In our case, if the vehicle, or the BS, can see at least 𝑇 points of an object, that
object is marked as recognized.

4.4 Data Streamline Techniques

To reduce the computation time of the CD between point clouds, we filter
points by retaining only those above a given threshold and external to a specified
radius. In particular, we retain all the points above −1.5𝑚 coordinate of the Z-
axis of the LiDAR reference frame to exclude all the road structures and all the
points farther than 1𝑚 to exlcude the points of the vehicle itself, see fig. 4.7.
With this approach the CD computation time dropped from roughly 30𝑚𝑠 to
roughly 8𝑚𝑠.
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1.5m

2m

Figure 4.7: How the point clouds are sliced
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5
Results Discussion

In this chapter, we analyze the performance of the algorithms presented
in chapter 3. We begin by examining the outcomes under ideal conditions
and gradually introduce different levels of processing delay at the application.
Through simulations involving 100 smart vehicles, we compare our proposed
cluster-based solutions that select the most valuable data to transmit against
a benchmark scheme that does not implement any form of control. We then
proceed by further exploring the impact of varying processing delays and SNR
values, as well as the effect of different numbers of smart vehicles on overall
system performance.

5.1 Simulation Scenario, Parameters and Metrics

The simulation scenario is the portion of a city with 200 smart vehicles in it.
Moreover, it includes a total of 424 critical objects, which are cars, pedestrians
and bikers. The number of critical objects is fixed and does not depend on the
number of smart vehicles in the simulation. The BS is placed at the center of the
city.
To understand how the algorithms perform in different conditions and to explore
different trade-offs, we tune the following parameters:

• SNR: we apply a scaling factor to the SNR computed with the channel
model described in sec. 4.2 for every channel between master vehicles and
the BS, progressively decreasing it to simulate a global degradation of the
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performance of the network caused by, e.g, a congestion. By doing so, we
can observe how the performance changes in different channel conditions.

• Number of smart vehicles: we select different percentages of smart vehi-
cles in the simulation, to understand how the performance changes with
different levels of market penetration. The number of vehicles in the sim-
ulation is fixed to 200, but we consider different percentages of them to
be smart. This means that we use different percentages of the available
perception records and we divide the network resources accordingly.

• Processing delay at the application: we use different values of processing
delays for the object recognition task and CD computation. We begin
by evaluating the performance in the ideal case, with processing delays
equal to 0𝑚𝑠 for both tasks, up until the real case of 16𝑚𝑠 for the object
recognition task and 8𝑚𝑠 for the CD computation task. We also test the
behavior of the algorithms with some intermediate values, to understand
what could be the differences if, in the future, better hardware and software
optimization of these task, would lead to lower processing delays.

To evaluate the goodness of the algorithms, we evaluate the following perfor-
mance metrics:

• Percentage of recognized objects: we measure the performance of the al-
gorithms based on the percentage of objects that they are able to recognize.
In this way we can observe the trade-off between having a large number of
smart vehicles which can collect a lot of data, but at the same time creating
a congestion on the channel, making it difficult to transmit them.

• Ratio of recognized objects by the informed choice approaches and by
the single layer approach: we evaluate this metric to understand how bet-
ter the informed choice approaches (meaning the ones that select what to
transmit by processing the data using object recognition and CD) perform
with respect to the single layer approach, with different values of SNR.

5.2 Comparison of Different Approaches

We begin by evaluating the performance of the various approaches discussed
in chapter 3 assuming idealized processing delays for each method. The results
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of a simulation involving 100 vehicles are presented in Fig. 5.1. As expected,
the three algorithms that utilize a cluster-based approach, first three on the left
side of the chart, outperform those that do not. This confirms that V2V con-
nectivity and cluster-based algorithms enhance the effectiveness of cooperative
perception. In particular, thanks to a communication between vehicles that are
grouped together using spatial information, the perception records to transmit
can be selected in a such a way to give more importance to those that are more
informative for the receiver. The K-means only approach, even though does not
exploit any type of V2V connectivity, is still performing better than the everyone
transmits approach. This means that the spatial correlation that is exploited by
the K-means algorithm and the fact that fewer vehicles try to transmit over the
channel, impact positively on the performance.
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Figure 5.1: Approaches Results Comparison with 100 smart vehicles in the
simulation and idealized processing delay at the application; value of K is
around 20 for all the cluster based approaches.

We can see that the performance of the single layer approach and the CD
approach is nearly identical. This may seem counterintuitive, as we would
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expect a random selection to perform worse than an informed one (meaning
that the perception records to transmit are processed and then selected in such a
way to maximize the overall information), especially when the processing delay
for making the informed decision is idealized at 0𝑚𝑠. There are three main
reasons for this:

1. When the channel conditions are good, leading to an high value of SNR,
the master vehicles can transmit a large number of point clouds, and in the
best-case scenario, they may not even need to make a selection, and send
all of them.

2. The CD approach guarantees that we send the point clouds that are the
most distinct to each other; this does not imply that they contain the highest
number of objects.

3. The random selection is actually more similar to the informed choice than
one might expect, as we demonstrate below.

If we have a group of 𝑛 vehicles, which are the vehicles inside a cluster
obtained with K-means, and the master vehicle is able to send 𝑚 point clouds, it
will pick 𝑚 point clouds from the 𝑛 available point clouds. Formally speaking
the master vehicle is choosing one combination of 𝑚 vehicles from

(𝑛
𝑚

)
possible

combinations.
Then, the probability 𝑃ri of picking the same combination of vehicles chosen by
the informed choice with a random guess is given by:

𝑃ri = 𝑃[random guess = informed guess] = 1(𝑛
𝑚

) (5.1)

This probability, however, does not offer enough explanation of the problem,
because, actually, there can be more than one optimal choice.
As explained in sec. 3.1.2, when we cut the dendrogram we divide the vehicles
in 𝑚 subclusters. At this point, we pick at random one of them per subcluster
and transmit its perception record. This means that also the other vehicles in the
subcluster could have been picked up, so they also have to be considered when
evaluating the possible optimal choices. We consider as optimal choice every
choice that picks one vehicle for each subcluster.
Formally, we define 𝑆𝑙 as the number of vehicles in the l-th subcluster formed
when cutting the dendrogram, with 1 < 𝑙 < 𝑚 and

∑𝑚
𝑙=1 𝑆𝑙 = 𝑛.
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To compute the total number of available optimal choices we have to take the
product of all 𝑆𝑙 :

# optimal choices =
𝑚∏
𝑙=1

𝑆𝑙 (5.2)

because we account for how many possibilities we have for each subcluster.
Then, the probability 𝑃ro of the random guess to be the same as the optimal
choice is given by:

𝑃ro = 𝑃[random guess = optimal choice] = # optimal choices
# possible choices

=

∏𝑚
𝑗=1 𝑆 𝑗(𝑛
𝑚

) (5.3)

We define 𝜎v as the variance of number of vehicles per subcluster and in fig.
5.2 we plot the behaviour of 𝑃ro for different values of 𝜎v; in fact, the value of∏𝑚

𝑙=1 𝑆𝑙 is maximum when all 𝑆𝑙 values are equal (in particular, when they are
all equal, 𝑆𝑙 = 𝑛

𝑚∀𝑙), so each subcluster has the same number of vehicles. When
this happens, 𝜎v = 0, thus we can observe how the values of 𝑃ro are higher in
correspondence of that value. In particular we can observe that in the case of
𝑚 = 2, hence bad channel conditions since we can send a few point clouds, the
value of 𝑃ro for 𝜎v = 0 is higher than 55%, and, in the worst case of 𝜎v > 8,
remains a substantial 25%. Therefore, we can conclude that under poor channel
conditions, the random choice is more likely to align with an optimal choice.
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Figure 5.2: Values of 𝑃ro vs 𝜎v. In both cases 𝑛 = 8 while 𝑚 = 2 in the plot on
the left and 𝑚 = 4 in the plot on the right.
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5.3 Comparison of Performance with Different Pro-
cessing Delays and SNR Values

We then proceed with further analysis on the three main approaches that uti-
lize V2V connectivity. In particular, we test the performance of the approaches
varying the processing delays, from the ideal case of 0𝑚𝑠 to 8𝑚𝑠 for the CD
computation and 16𝑚𝑠 for the object recognition task, with also some interme-
diate levels, considering, at first, 100 smart vehicles in the simulation.
Moreover, we vary the value of the SNR for all the vehicles in the scene by
applying a scale factor to it.
In fig. 5.3 we can observe how, with a decreasing level of SNR, the performance
decreases, as we expect. But, in the ideal case with processing delay set to 0𝑚𝑠,
we notice how the informed choices perform better compared to the random
choice, enlightening how, with a degraded channel, the importance of an in-
formed choice increases. However, when processing delays differ from 0𝑚𝑠, the
performance of the CD approach is consistently lower than that of the single-
layer approach. In contrast, for the object recognition approach, performance
remains comparable at a delay of 5𝑚𝑠, but for longer delays, it is consistently
worse than the single-layer approach.
To highlight even more this behavior, in fig. 5.4 we plot the ratio 𝑅is given by:

𝑅is =
Recognized Objects by the Informed Choice Approaches

Recognized Objects by the Single Layer Approach
(5.4)

and the plot actually shows how for lower levels of SNR the informed choices
algorithms perform better. Even though we observe a slight increasing trend
in the last step of the object recognition approach, it is only of 1.3% and can be
traced back to random fluctuations given by the randomness of the simulation
in terms of channel capacity, the epsilon greedy policy of the Reinforcement
Learning (RL) agent and the randomness component of the K means clustering
algorithms.

We then proceed by plotting in fig. 5.5 the values of K chosen by the RL
agent, both in the case of idealized processing delays (0𝑚𝑠) for CD computation
and object recognition task, and in the case of real processing delays (8𝑚𝑠 for
CD computation and 16𝑚𝑠 for object recognition). We observe, how, for the
idealized processing delays, K is around 20, which appears as the best trade-off
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Figure 5.3: Comparison of the performance varying the SNR scale factor. Sim-
ulation with 100 smart vehicles in the scenario.
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Figure 5.4: Ratio of recognized object varying the SNR scale factor. Simulation
with 100 smart vehicles in the scenario. Processing delays are idealized

between a good channel capacity (the more vehicles in the cluster, the lower the
capacity for sidelink transmissions), and an high performance of the informed
choice algorithms (the more vehicles in the cluster, the better the informed choice
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algorithms can select what to transmit). Moreover, by selecting a low value of
K, the capacity of the channel between the master vehicles and the BS will be
higher, since less vehicles have to transmit to it.
Meanwhile, in the non idealized case, we observe how the choice of K for the
single layer and object recognition approaches does not change, since the overall
processing delay is still 0𝑚𝑠 for the single layer approach and, in the case of
object recognition, does not vary depending on the number of vehicles in the
cluster, as it does in the CD approach, as explained in sec. 3.1.2. This leads
the RL agent to choose an higher value of K for the CD approach, in order to
reduce the overall processing delay of CD computation between the vehicles in
the same clusters.
The sparsity of chosen values that can be observed throughout the whole simula-
tion is given by the epsilon greedy policy that we adopted which keeps selecting
other values of K rather than the optimal one to encourage exploration, while
during the first steps of the simulation we can observe how all the possible
values of K are chosen, as a consequence of the optimistic initialization values,
that encourage exploration at the beginning.
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Figure 5.5: Values of K chosen by the RL agent in case of idealized processing
delays (on the left) and real processing delays (on the right). 100 smart vehicles
in the simulation

5.4 Comparison of Performance With Different Num-
bers of Smart Vehicles

We then evaluate the performance with different numbers of smart vehicles
in the scene, where the smart vehicles are the ones who are actually able to
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CHAPTER 5. RESULTS DISCUSSION

capture and transmit.
In fig. 5.6 we plot the results of the simulations for 25 smart vehicles in the
scene. In fig. 5.7 we can see how the values of 𝑅is defined in Eq. 5.4 are lower
than the 50 smart vehicles case, thus indicating that the performance advantage
with respect to the single layer approach of both the CD approach and the object
recognition approach is lower when we have less vehicles in the scene. This
is because, with few smart vehicles in the scene, there is a lot of bandwidth
available, thus an high capacity that enables the masters of the clusters to send
almost all the available point clouds, hence undermining the advantage of an
informed choice. Moreover, vehicles with a bad channel and far away from
the BS, won’t be able to send their data regardless of the selected transmission
algorithm, while with more smart vehicles in the scene they could end up in the
same cluster of another vehicle that has a good channel with the BS, to which
they can send their data.
In fig. 5.6 we can observe how, with respect to the case with 100 smart vehicles in
the simulation, the difference between the clustering based approaches and the
everyone transmits approach is lower and the impact of increasing processing
delays is less evident. Both of these behaviors are given by the fact that with few
smart vehicles in the scene, the capacity will likely be high, so in the everyone
transmits approach there will be more bandwidth available for all the vehicles
and in the cluster based approaches the processing delays will have less impact
since the transmission time will be lower.
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Figure 5.6: Comparison of the performance varying the SNR scale factor. Sim-
ulation with 25 smart vehicles in the scenario.
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Figure 5.7: Ratio of recognized object varying the SNR scale factor. Simulation
with 25 smart vehicles in the scenario. Processing delays are idealized

In fig. 5.8 and 5.9 we can see the results with 50 smart vehicles in the scene.
As expected, overall performance is higher with respect to the simulation with
25 vehicles in the scene since there are more smart vehicles that can capture
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more perception records and share them; the trend of the values of 𝑅is is still
descending as far as the object recognition approach is concerned, while for the
CD approach the values fluctuate around 1.04, indicating similar performance
with the single layer approach. As explained in sec. 5.2, there are three different
reasons to explain this behavior.
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Figure 5.8: Comparison of the performance varying the SNR scale factor. Sim-
ulation with 50 smart vehicles in the scenario.
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Figure 5.9: Ratio of recognized object varying the SNR scale factor. Simulation
with 50 smart vehicles in the scenario. Processing delays are idealized
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VEHICLES

Finally, in 5.10 and 5.11 we plot the results of simulations with 200 smart
vehicles in the scene. We can observe how, for the full channel capacity (SNR
scale = 1) the performance is the highest in all the simulations, because in good
channel conditions the master vehicles can transmit to the BS a lot of collected
perception records. However, at the lowest capacity (SNR scale = 0.2), the
performance is the lowest of all the previous scenarios, indicating how, with a
degraded channel, the congestion created by the large number of smart vehicles
impacts more on the overall performance.
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Figure 5.10: Comparison of the performance varying the SNR scale factor. Sim-
ulation with 200 smart vehicles in the scenario.
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Figure 5.11: Ratio of recognized object varying the SNR scale factor. Simulation
with 200 smart vehicles in the scenario. Processing delays are idealized

We enlight this behavior in fig. 5.12 where, using idealized processing delays,
we observe how, when the channel conditions are good, the performance of the
different approaches increases with increasing number of smart vehicles. This
is because, when channel condition allows most of them to be shared, more
perception records collected allow to recognize more critical objects.
However, when the channel is degraded (SNR scale = 0.2), the best performance
is achieved either with the lowest number of smart vehicles or with a number of
smart vehicles in the scene around 75%, because when a lot of smart vehicles try
to transmit they create a congestion if the channel conditions are already bad. So
with a few smart vehicles there is more bandwidth available, while, to explain the
increase of performance when there are 75% smart vehicles, we have to consider
that smart vehicles are deployed uniformly in the simulation area so, when we
increase the number of smart vehicles in the scene, we also increase the number
of smart vehicles that are closer to the BS, and experience a better channel, so can
transmit more data. We can also observe the comparison with the performance
of the everyone transmits approach, which, when channel conditions are bad, is
close to 0% in almost all cases, except when there are few smart vehicles, so the
available bandwidth is higher and allows more transmissions. When channel
conditions are good, it always perform worse than the cluster-based approaches
in the same channel conditions; moreover, with more than 40% smart vehicles,
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performs worse than cluster-based approaches in bad channel conditions.
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Figure 5.12: Comparison of performance with different scales of SNR values.
Processing delays are idealized.

In fig. 5.13 we plot the number of recognized objects by the single layer, object
recognition and everyone transmits approaches with a processing delay of 5𝑚𝑠
for the object recognition task, with different number of smart vehicles, with
an SNR scaling factor of 1, hence full channel capacity. With this intermediate
level of delay we can observe how the performance of the two cluster-based
approaches is similar up until we have 40% of smart vehicles in the scene,
then the object recognition approach starts to perform better, showing how an
informed choice gets more important when there are more smart vehicles, thus
more information to process and select.
When we approach an even higher number of smart vehicles, up to 200 in
our case, this behavior changes and the single layer approach performs better,
showing how, with a very congested channel, even a small processing delay
impacts the performance, thus indicating that the best choice in that case would
be to use the single layer approach.
As far as the everyone transmits approach is concerned, we observe how, initially,
performance increases with the number of smart vehicles involved, since there
are more vehicles, so more perception records, and the channel conditions are
good enough to support a reasonable amount of transmissions. Nevertheless, its
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performance decreases with a number of smart vehicles in the scene higher than
25% (so approximately 50 smart vehicles), because of the congestion created
by them; hence the quality of the perception record with 200 smart vehicles
approaches 0%.
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Figure 5.13: Performance of object recognition, single layer and everyone trans-
mit approaches with different numbers of smart vehicles in the simulation.
Processing delay for the object recognition task set to 5𝑚𝑠
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6
Conclusions and Future Works

6.1 Conclusions

This thesis explored the effectiveness of different clustering-based approaches
for data dissemination in vehicular networks. By leveraging V2V communica-
tion and RL techniques, it was demonstrated that clustering-based algorithms
significantly enhances the performance of cooperative perception.
We showed how cluster-based approaches using V2V connectivity outperforms
those that do not, and how a k-means clustering algorithm can efficiently group
vehicles into clusters where they can exchange information.
In the end, comparing the performance using real processing delays for the ob-
ject recognition ad CD approaches, the best performance is obtained with the
single layer approach. This shows how, in critical applications with strict re-
quirements such as vehicular networks, the processing delays are deal-breakers
that do not make an informed approach suitable for real time applications.
We demonstrated how a CD based approach does not improve the overall per-
formance with respect to the single layer approach that selects what to transmit
in a random way.
Moreover, we showed how, when processing delays are close to zero, the best
informed approach is the object recognition based one. Thus, to fully exploit ad-
vanced data selection techniques like object recognition, smart vehicles must be
equipped with hardware that can handle computationally intensive tasks in real
time. Without this capability, the benefits of such methods are outweighed by
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the processing delays, which undermines their performance in dynamic vehicu-
lar environments. In the end, we provided a solution to exploit V2V connectivity
to enhance cooperative perception, which is the single layer approach, and we
indicated that, when future hardware and software updates will enable a faster
execution of the object recognition task, it will be the best choice to asses the VoI
and select what to transmit.

6.2 Future Works

Future works for this project include:

• Implementing the whole simulation framework using a powerful network
simulator such as ns3 [68], which will enable a full-stack end-to-end eval-
uation of the performance of the proposed approaches.

• Testing the algorithms in a different simulated city, expanding the existing
SELMA dataset by generating new maps using the CARLA simulator.

• Implementing a stateful RL approach, to understand if the introduction
of a state could improve the choices of the RL agent, resulting in better
performance, or if the larger processing delays would make it perform
worse.
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