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ABSTRACT 

In the context of the new Common Agricultural Policy the territorial administration 

institutions (e.g. regional government) are called to provide evidence of the actions 

taken and the results obtained to achieve the objectives set by agricultural and 

environmental policies. DNDC (DeNitrificationDeComposition) is a process-based 

model of C and N biogeochemical cycles which can model the outcomes from different 

agricultural practices by simulating greenhouse gases (GHGs) emission, crop yield and 

leaching from the agroecosystems. Therefore, it can be used to help valuating 

contrasting agricultural managements. The recent upgrade of the model (DNDCv.CAN) 

allows to simulate fluctuating and active water table (WT) conditions thanks to new 

features among which the tile drain option (TD). This is of interest considering the low-

lying conditions of the Italian region Veneto’s plain. In this work it was attempted to 

calibrate and validate DNDCv.CAN for a set of lysimeters located at an experimental 

site of the University of Padova in Legnaro (PD), and to compare the use of TD or not 

(noTD) in terms of GHGs emissions simulations for carbon dioxide (CO2), nitrous oxide 

(N2O) and methane (CH4). Observed data used in the comparison with modelling 

outcomes were soil moisture, water percolation and nitrate leaching, as well as the 

GHGs emission from soils, which were retrieved between 2011 and 2014 in the 

lysimeters cultivated with maize (Zea mays L.). For the 12 lysimeters considered, two 

fertilization levels were applied of organic and inorganic N (250 kg ha-1 yr-1and 368 kg 

ha-1 yr-1) and three WT setting were employed, that are a WT at the depth of 60 cm 

(WT60), at 120 cm (WT120), and free drainage conditions (FD). All these field 

conditions were implemented as input in the model with the addition of 

meteorological data. The calibration performed was a manual parametrization of 

specific coefficients and parameters related to the decomposition rate, nitrate and 

water leaching, N2O soil emission and crop parameters specific for Veneto. Simulated 

TD, noTD and observed data were compared, and statistic metrics like the root mean 

square error (RMSE) the percent bias (PBIAS) and the coefficient of correlation (R2) 

were evaluated. Daily soil moisture (mm) and nitrate leaching (kg N-NO3
- ha-1 yr-1) were 

simulated better with TD than noTD. For example, considering lysimeter 7 PBIAS for 
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the soil moisture was equal to 1.87 with TD and to 52.2 with noTD, while for nitrate 

leaching values, at WT120 lysimeters RMSE was 4.41 kg N-NO3
- ha-1 yr-1 for TD and 46 kg 

N-NO3
- ha-1 yr-1 for noTD. Whereas for the simulation of water percolation (mm yr-1), 

grain production (kg C ha-1 yr-1), CO2 soil emission (kg C-CO2 ha-1 yr-1), N2O soil emission 

(kg N–N2O ha-1 yr-1) and CH4 soil emission (kg C-CH4 ha-1 yr-1) no significative differences 

between the two options were detected. For instance, RMSE was equal to 1.50 kg N–

N2O ha-1 yr-1 for TD simulations at WT60, and to 1.58 kg N–N2O ha-1 yr-1 for noTD records. 

It is necessary further research to evaluate and calibrate the model in different regions 

and in a more efficient manner for GHGs emissions. The algorithms at the foundation 

of biogeochemical fluxes and soil hydrology simulations could be upgraded to improve 

GHGs emissions output. Nonetheless, for all the parameters mentioned expect CH4 soil 

emissions, a good agreement between observed and simulated data was observed 

considering annual average values, with R2 = 0.601 for TD and R2 = 0.644 for noTD 

considering CO2 emission values and R2 = 0.516 for TD and R2 = 0.821 for noTD in grain 

production simulations. This confirmed the positive effect of the parametrization 

performed, beyond TD or noTD options.  
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RIASSUNTO 

Nel contesto della nuova Politica Agraria Comunitaria, le amministrazioni e le 

istituzioni territoriali, come per esempio le regioni, sono chiamate a mostrare 

l’evidenza delle azioni intraprese e dei risultati ottenuti al fine di raggiungere gli 

obbiettivi prefissati da politiche agricole e ambientali. DNDC 

(DeNitrificationDeComposition) è un modello basato sui processi biogeochimici del 

ciclo del carbonio e dell’azoto, di cui può predire gli andamenti considerando diverse 

pratiche agricole, simulando l’emissione di gas serra, percolazione di nitritati e 

produttività di agroecosistemi. Il recente aggiornamento del modello (DNDCv.CAN) 

permette di simulare condizioni di tavola d’acqua variabile, grazie a nuove funzionalità, 

tra cui l’opzione “tile drain” (TD). Ciò è di interesse considerando le condizioni di bassa 

pianura della regione Veneto in Italia. In questo lavoro, è stato provato a calibrare e 

validare DNDCv.CAN per un insieme di lisimetri situati in un sito sperimentale 

dell’Università di Padova a Legnaro (PD), e di confrontare l’utilizzo di TD o meno in 

termini di simulazione dell’emissione di gas serra, per quanto riguarda il biossido di 

carbonio (CO2), il biossido di azoto (N2O)  e il metano (CH4). I dati osservati utilizzati per 

la calibrazione erano il contenuto idrico del suolo, la percolazione di acqua, la 

percolazione di nitrati, così come le emissioni dei sopracitati gas serra dal suolo. Questi, 

sono stati misurati tra il 2011 e il 2014 nei lisimetri coltivati a mais (Zea mays L.). Per i 

12 lisimetri considerati, sono stati applicati due livelli di fertilizzazione organica ed 

inorganica di azoto (250 kg ha-1 yr-1 e 238 kg ha-1 yr-1), e sono state valutate tre modalità 

di gestione della tavola d’acqua (falda a 60cm, 120cm e condizioni di drenaggio libero). 

Tutte queste condizioni sperimentali sono state implementate come input per il 

modello, oltre ai dati meteo. È stata effettuata una calibrazione manuale, 

parametrizzando dei coefficienti specifici legati al tasso di decomposizione, alla 

percolazione di acqua e nitrati, alle emissioni di N2O dal suolo e parametri colturali 

specifici per la regione Veneto. In particolare, sono stati confrontati i dati simulati con 

TD, senza TD e i dati osservati in campo considerando coefficienti statistici come la 

Radice dell'errore quadratico medio (RMSE), il bias percentuale (PBIAS) e il coefficiente 

di correlazione (R2). I dati di contenuto idrico del suolo giornalieri (mm) di percolazione 
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di nitrati (kg N-NO3
- ha-1 yr-1) sono stati simulati meglio con TD che senza. Per esempio, 

considerando il lisimetro 7 il PBIAS per il contenuto idrico del suolo era 1.87 con TD e 

52.2 senza, mentre per i valori di percolazione di nitrati nei lisimetri WT120 RMSE era 

4.41 kg N-NO3
- ha-1 yr-1 con TD e 46 kg N-NO3

- ha-1 yr-1 senza. Mentre per quanto riguarda 

la simulazione della percolazione di acqua (mm yr-1), della produzione di granella (kg C 

ha-1 yr-1), dell’emissione di CO2 dal suolo (kg C-CO2 ha-1 yr-1), dell’emissione di N2O dal 

suolo (kg N–N2O ha-1 yr-1) e dell’emissione di CH4 dal suolo (kg C-CH4 ha-1 yr-1)  non è stata 

registrata nessuna differenza significativa tra le due opzioni. Per esempio, RMSE era 

pari a 1.50 kg N–N2O ha-1 yr-1 nelle simulazioni con TD a WT60 e pari a 1.58 kg N–N2O ha-

1 yr-1 per quelle senza TD. Risulta necessaria ulteriore ricerca a riguardo, per valutare e 

calibrare questa nuova versione del modello in diverse regioni e più precisamente per 

l’emissione di gas serra in agricoltura, per esempio, implementando gli algoritmi che 

determinano la simulazione dei flussi biogeochimici. Ciononostante, per tutti i 

parametri menzionati escluso il metano, è stata osservata una buona concordanza tra 

i dati simulati e i dati osservati considerando i valori medi annuali con un R2=0.601 con 

TD e R2=0.644 senza (simulazione di CO2) e un R2=0.516 con TD e R2=0.821 senza 

(produzione di granella). Ciò conferma l’effetto positivo della parametrizzazione 

effettuata, oltre l’opzione TD.  
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1 Introduction  

In recent years climate change is seen as one of the main challenges facing humanity. 

Political agendas of individual countries and international initiatives proclaim 

greenhouse gas (GHG) neutrality, e.g., by the year 2050 (European Commission 2019, 

UNFCCC 2015). Climate change is a challenge in its regulation, monitoring and tackling 

because it is a complex problem and it is diffused in time and space; so it needs to be 

addressed with a multidisciplinary approach. Worldwide, greenhouse gas emissions 

from agriculture, including crop and livestock production, forestry and associated land 

use changes, are responsible for a significant fraction of anthropogenic emissions, up 

to 18.4% (figure 1). The crucial issue is the emission of carbon dioxide (CO2), methane 

(CH4) and nitrous oxide (N2O) from soil due to microbial respiration (Oertel et al., 2016) 

and crop-related activity like deforestation, land use change and crop burning.  

 

 

Figure 1: World GHG emissions by sector (OurWorldinData.org) 

 

Carbon dioxide emission from agricultural soils is generated by the organic matter 

decomposition (heterotrophic respiration), from root respiration, (autotrophic 

respiration), from microbial decomposition of dead plant remains and from microbial 

decomposition of rhizodeposits from living roots (rhizomicrobial respiration) 
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(Kuzyakov, 2006). These fluxes are influenced by the chemical and physical properties 

of the soil, by meteorological conditions and agricultural management practices. 

Furthermore, CH4 emission from soil derives as the result of the balance between the 

production activity of methanogens bacteria and the degradation activity of 

methanotrophic bacteria. Agronomic practices that may influence the activity of 

bacterial strains are tillage, organic fertilization, crop types, irrigation, etc. It follows 

that irrigated or rainfed croplands and grasslands might be either valuable CH4 sinks or 

sources that usually do not exceed a few ±kg ha-1 yr-1, e.g. when slurry is used as an 

organic amendment (Bayer et al., 2012; Hütsch, 2001). Anyway, it must be noted that 

most of the CH4 emissions from agricultural management practices are due to paddy 

rice soils, reaching tens or hundreds of kg ha-1 yr-1 (Sanchis et al., 2012). Finally, nearly 

all emissions of N2O, produced by microbes in nearly all soils, come from agriculture 

(figure 2), which is also characterized by the highest Global Warming Potential (GWP) 

among CO2 (GWP = 1), CH4 (GWP ≈ 30 over 100 years), N2O (GWP ≈ 273 over 100 years). 

The application of nitrogen fertilizers makes much more nitrogen readily available for 

microbes – this is because not all of the applied nutrients are taken up by crops. As the 

application of both inorganic synthetic nitrogen fertilizers and organic fertilizers such 

as animal manure has rapidly increased over the past 50 years, N2O emissions have 

also increased. Raw calculation of N2O emission directly from cropping systems is 

based on an emission factor of about 1.25 ± 1% of total N applied as fertilizer according 

to the IPCC guidelines (De Klein et al., 2006). However, these guidelines for estimating 

N2O emission from agricultural soils have some limitations. They do not consider the 

pedoclimatic variability of the agroecosystems, which are assumed to be the same 

throughout the world. Moreover, they do not take into account different crops, tillage 

operations, and irrigation or fertilization management, all of which are known to affect 

the nitrification–denitrification equilibrium and therefore the N2O production and 

emission (Del Grosso et al., 2005).  
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Figure 2: World N2O emission per sector  

 

1.1 Water table depth in agricultural soils 

Wide agricultural areas around the world are cultivated under shallow water table 

(WT) conditions (e.g., < 3 m), which might modify the biogeochemical fluxes of C  N P 

towards the atmosphere and/or the groundwater. This is the case for the low-lying 

plain of the Veneto region (figure 3), located in north-eastern Italy.  

 

 

Figure 3:  interpolated WT level in the Veneto region (arpav.it) 
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Water table depth influences environmental impacts in agriculture, for instance, a 

shallow WT showed to increase the N leaching vulnerability. On the other hand high 

soil moisture can also lower water N concentrations through denitrification processes 

(Morari et al., 2012). Moreover, WT level plays a major role in influencing the net flux 

of GHG emissions from soil, such as N20 (Cocco et al., 2018), (Jurado et al., 2017), 

(Shcherbak et al., 2019) and especially CH4 (Zona et al., 2009), (Topp et al., 1997), 

(Hütsch, 2001). Nitrification and denitrification are known to be the main pathways of 

N2O production and are controlled by soil microbes and their metabolisms. The two 

factors that most affect N2O emission are the genetic capability of denitrifiers and 

nitrifier microorganisms to perform these pathways and the environmental conditions 

required to sustain and allow these processes (Saggar et al., 2013), (Li et al., 2021). The 

latter factor includes NO3
− and NH4

+ supply, C availability (electron donors), 

temperature, soil redox conditions linked to waterfilled pore space (WFPS%), 

consequent aeration status, and pH (Cocco et al., 2018). All these parameters are 

directly or indirectly influenced by the WT level, which needs to be considered as 

driving factor in N2O emissions from soil. In particular, shallow WT level and a 

consequent O2 low level (anaerobic condition) is recognised as a potential factor in 

limiting the emission of such potent GHG (von Arnold et al., 2005), (Li et al., 2021). 

Recent experiments conducted in the Veneto region revealed that a shallow 

groundwater can reduce N2O emissions (Cocco et al., 2018). 

 

1.2 Common Agricultural Policy  

Since the 2000s many efforts have been made at European level to enhance the 

environmental quality of agroecosystems of EU Member State by reducing the GHGs 

emissions as well as by preserving the ecosystem services that they provide. The main 

tool provided by EU is the Common Agricultural Policy (CAP), which has been 

modernised after the CAP reform of 2018. The policy focuses on ten specific objectives, 

linked to common EU goals for social, environmental, and economic sustainability in 

agriculture and rural areas. The budget involved in this strategy is remarkable: for the 

period 2021-27 €387 billion in funding has been allocated. This will come from two 

different funds: the European agricultural guarantee fund (“first pillar” of the CAP), 
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which has been set at €291.1 billion; and the European agricultural fund for rural 

development (“second pillar”), which will amount to €95.5 billion. The first pillar is 

allocated for income schemes support and for supporting agricultural markets. The 

budget of the second pillar is destinated for financing rural development programs 

(RDPs). Overall, 40% of total CAP expenditure will be dedicated to climate action 

(European Parliament, 2020). Farmers are financially supported through the RDPs, 

specifically, they receive contributes if they implement specific agroclimatic-

environmental measures (AEMs). These measures include among the others crop 

rotations, reduced fertilizer and pesticide application rates, organic farming, 

undersowing, cover crops, buffered strips and water used reduction. The biggest 

change of the CAP 2021-2027 against the previous policy (2014-2020) is that money 

allocation will seek to place more emphasis on a “result-based” approach rather than 

the traditional “action-based”. Farmers will be no longer be paid for the adoption of 

specific land management practices only, but part of the funds should be provided 

according to the production of outcomes with the aim of accompanying any agri-

environmental measure with a scientifically based evaluation (Dal Ferro et al., 2016).  

 

1.3 Agroecosystem modelling  

Different approaches are still the object of study and debate to quantify the 

effectiveness of the financially supported measures to reduce GHG emission from 

agriculture, and consequently to maximize the cost-effectiveness. In fact, favouring 

certain agro-environmental measures (AEM), can be either effective or not, depending 

on many different pedo-climatic characteristics. 

 Process-based biogeochemical models are complex tools that have the potential to 

describe environmental and agronomic benefits and drawbacks of agro-climate-

environment measures implemented by farmers’ over large scale. These cost-effective 

tools integrate different biogeochemical cycles providing site specific assessment at 

the regional, national or even global scale. It must be noted that within the renewed 

interest towards the carbon farming approach –a strategy that encompasses the 

management of carbon pools, flows, and GHG fluxes at the farm level– agroecosystem 

models are among the suggested tools for an effective monitoring, reporting, and 
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verification (MRV) scheme that will provide incentives to farmers and landowners 

based on the results achieved (COWI, 2021). However, models can provide accurate 

outcomes under well-known conditions, but they are less consistent when applied to 

unusual soils or climate. In fact, they must be calibrated under controlled conditions 

to provide reliable data. The most frequently used calibration procedure is through the 

optimization of model performances, which is carried out by comparing observed and 

simulated data. Searching for the best parameter values can be carried by following a 

trial-and-error procedure, which can be done manually or automatically with 

algorithms that allow to include several parameters in very short times. The process to 

estimate in advance which parameters should be used for the calibration is called 

sensitive analysis.  After a model has been calibrated, it needs to be validated to assess 

the forecasting performance that can offer to the users. Different statistical metrics 

can be considered to report the results of a validation analysis, such as the root mean 

square error (RMSE), the relative root mean square error, the model efficiency (EM), 

the mean difference, and the coefficient of determination (R2). 

Biogeochemical models still have recognized knowledge gaps and thus require new 

targeted measurements for the development of improved mechanisms to ensure that 

the iterative process for model development continues. For instance, model structure 

is often limited by the oversimplified representation of soil and hydrological processes. 

In a review of nine GHG models, Brilli et al., (2017) found that 46% of the deficiencies 

in models were due to issues with the simulation of pedo-climatic conditions including 

soil-water simulation. The DNDC model is the most prominent process-based model 

used for simulating GHG emissions worldwide, however, it has known issues in 

simulating soil hydrology (Smith et al., 2019; He et al., 2019; Brill et al., 2017; Congreves 

et al., 2016; Abdalla et al., 2011). 

 

Veneto, is affected by high anthropogenic pressures due to population increase and 

highly intensive and productive agriculture, leading to increased GHG emissions. 

Therefore, in the context of the Rural Development Programs Veneto financed AEMs 

to obtain good environmental quality targets, especially mitigating climate change.  
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Aims of the study 

 The work presented here is part of a wide project in collaboration with the Veneto 

Region and the DAFNAE department, University of Padova,  aiming to assess the effect 

of alternative practices on soil, water, and air quality. 

In particular, with the aim to calibrate and validate a new version of the 

biogeochemical model DNDC (DeNitrification DeComposition), whose code has been 

recently upgraded with functions that should be able to describe shallow and 

fluctuating groundwater conditions and related GHGs emissions at high temporal 

resolution. This is of high interest considering the conditions of the low-lying Venetian 

plain, that has peculiar shallow water table fluctuations that can strongly modify the 

biogeochemical cycles and consequently the GHG emissions. This can help 

policymakers and consultants, to evaluate the effectiveness of agro-climate-

environment measures that are supported by the CAP in the Veneto region to provide 

ecosystem services.   
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2 Materials and Methods  

2.1.Experimental data description  

The data used to test and validate the DNDC model were collected from three 

experiments conducted between June 2011 and September 2014 at the experimental 

farm L. Toniolo, Legnaro (PD) of the University of Padova in north-eastern Italy 

(45 ̊19′N, 11 ̊31′E, 8 m asl) (figure 4, left). 

 

  

Figure 4: Experimental site location (left) and an on overview of the lysimeters cultivated with maize (right)  

 

The study site consists of 20 drainable lysimeters of size equal to 1-m×1-m×1.5-m 

(length × width × depth) (figure 4, right), made of reinforced concrete and buried into 

the soil (Giardini et al.,1988). To prevent border effects, crops are usually grown 

outside lysimeters, creating a buffer. The principle of communicating vessels was used 

to control WT conditions. The bottom of each lysimeter is funnel-shaped and 

connected to an equally high external column (150-cm height) fitted with a valve to 

regulate both the water table level and leached discharge (figure 5).  
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Figure 5: Lysimeter section 

 

Each lysimeter column was equipped with a water level sensor, to avoid the water level 

deviating more than ±10 cm from the set reference level. Accordingly, well water was 

manually added by mean of the external columns to compensate upward flux when 

water level was at least 10 cm lower than the reference level. On the contrary, 

percolation water was collected through the bottom valve when, following rainfall or 

irrigation, the water level raised>10 cm compared with the reference level. Each 

lysimeter was filled in 1984 with soil excavated from the adjacent experimental farm 

using a method that preserved the original soil horizons. To facilitate water drainage 

and prevent soil washout, a 15-cm layer gravel was used to cover the bottom of each 

lysimeter. The lysimeter soil is a Fluvi-Calcaric Cambisol (CMcf; WRB, 2015) and is 

representative of ∼50% of the low-lying Venetian plain, whose main properties are 

reported in figure 6. Soil particle size distribution was determined using a particle size 

analyzer (Mastersizer 2000, Malvern Panalytical; Bittelli et al.,2019); pH and electrical 

conductivity were measured by an electrode in soil suspensions with a soil/water ratio 

of 1:2.5 (Kabała et al.,2016) and 1:2 (w/v) (ISO 11265; ISO 1994) respectively; total N 

was analyzed with the Kjeldahl method (ISO11261; ISO 1995); soil organic C content 

was measured with an elemental analyzer (VARIO MACRO, Elementar Analy-

sensysteme); total and active carbonates were measured with the  Dietrich-Fruehling 

calcimeter (ISO 10693; ISO 1995) and ammonium oxalate titration method (Jeffery & 
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Hutchinson,1981), respectively; available P was measured with the Olsen method (ISO 

11263; ISO 1994); and exchangeable K was measured by the extraction with 

ammonium acetate (Schollenberger & Simon,1945). Field capacity (−33 kPa) and 

permanent wilting point (WP, −1500 kPa) were derived from the soil water retention 

curve, which was estimated through the wind’s evaporation method and dewpoint 

potentiometer. In addition, soil texture, bulk density and soil organic C were available 

for each lysimeter in the following layers: 0–30, 30–55, 55–75, 75–95, and 95–135 cm.  

 

 

Figure 6: Soil characteristics 

 

2.1.1 Treatments and managements techniques 

Given the considerable portion of the Veneto Region occupied by shallow water table 

(ARPAV, 2014), two groundwater (GW) conditions were tested and remained fixed 

variables throughout all the trials in a comparison with free drainage (FD) conditions. 

The shallow water table was set at 120-cm depth (WT120) and at 60-cm depth (WT60). 

Beyond groundwater conditions, the experiment included throughout the years 

different fertilization levels and mineral/organic N types to determine a factorial 

combination (170organic + 80mineral kg N ha-1 yr-1 vs. 250organic + 118mineral kg N ha-1 yr-1). 

Mineral nitrogen was applied as urea and it was distributed for the 40% during the 

sowing, and the remaining portion on the surface with one dose in 2011 and two doses 

in 2012-2014. Organic nitrogen was applied as cattle manure in 2011-2012 

guaranteeing precise input of organic carbon and fertilizer mineral elements, with the 

following characteristics: 84% dry matter, 55% OM of the dry matter, 2.8% N, 1.3% P, 

1.7% K, and with a C/N =13. In the years 2013-2014, the manure was replaced with 
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slurry with the following characteristics: in 2013 8% dry matter, 0.28% N, 0.05% P; in 

2014 8% dry matter, 0.25% N, 0.035% P. The organic fertilizer was applied during the 

sowing and incorporated in the first 25 cm of the soil profile digging manually. For the 

2011–2014 years, three GW conditions against two N input levels (in total 250 vs. 368 

kg N ha−1 yr−1) have been tested. The main crop was maize (Zea mays L.), which was 

grown as monoculture according to conventional tillage operations. Soil was left bared 

during winter. At the end of each growing season, crop grain and residues were 

collected and weighted. Crop grain and residue samples were dried at 65 °C in a forced 

draft oven for 72h for dry weight determination. In all cases, the trials followed a 

randomized block design with two replicates, such that 12 lysimeters were used (three 

bottom boundary conditions × two treatment levels × two replicates) (table 1).  

 

Lysimeters Organic N Ureic N Total N Drainage Replicates Treatments 
 

kg N ha-1 y-1 kg N ha-1 y-1 kg N ha-1 y-1 

   

8 & 20 170 80 250 free drainage 2 170+80 FD 

7 & 13 170 80 250 water table at 120 cm 2 170+80 WT120 

2 & 11 170 80 250 water table at 60 cm 2 170+80 WT60 

10 & 12 250 118 368 free drainage 2 250+118 FD 

3 & 6 250 118 368 water table at 120 cm 2 250+118 WT120 

16 & 19 250 118 368 water table at 60 cm 2 250+118 WT60 

Table 1: treatments and WT levels for the 12 lysimeters tested 

 

Surface water input was regulated throughout the period by a mobile plastic roof that 

automatically closed to cover the lysimeters during rain events, when required. This 

prevented natural uncontrolled rainfall and protection from extreme weather such as 

hailstorms. During this period, water inputs were provided by a series of simulated 

rainfall events applying amounts of water through irrigation, which were previously 

precisely weighted. Summer simulated-rainfall events were applied according to the 

average crop water needs measured in FD treatments; in the other seasons, water 

input was randomly distributed over the typical rainy months. In both cases, manual 

water application was kept uniform among lysimeters. During each week from 2011 to 

2013, an active time domain reflectometry (TDR) sensor (Moisture Point MP-917, ESI 

Environmental Sensors) connected to previously installed vertical waveguides 

measured the soil water content (SWC) across three different soil layers (0–15, 15–30, 
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and 60–90 cm). Starting in 2013, every lysimeter was equipped with an automated 

monitoring system that allowed the continuous measurement of SWC, soil 

temperature and soil matrix potential. The system was composed of CS635 TDR probes 

(Campbell Scientific), electronic tensiometers (T4e probes, UMS GmbH, Munich - 

Germany) installed at 15, 30, and 60 cm depths. Soil temperature was monitored in 

continuous utilizing 2 thermocouples per lysimeter at the depth of 15 cm and 30 cm 

(figure 7).  

 

 

Figure 7: Probes inserted in the lysimeter 

 

The TDR, the tensiometers and the thermocouples probes were connected to a CR-10X 

datalogger (Campbell Scientific Inc. Lincoln Nebraska - USA) through a series of 

multiplexers. Measurements were taken every 30 min (figure 8).   
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Figure 8: Datalogger and Multiplexers, connected with the measurement probes 

 

2.2 Measurement of greenhouse gases emissions from soil  

Besides chemical-physical soil and water soil parameters, it was detected the emission 

of nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) form soil. In order to 

monitor the fluxes of these GHGs it was installed an automated closed dynamic 

chamber system (Delle Vedove et al., 2007), accordingly to the definition of Livingston 

and Hutchinson (1995). The chambers were located in the “250 + 118” and “170 + 80” 

lysimeters, considering all the water table levels and the replicates (12 chambers in 

total). The closed chamber is a top-closed and base-open box placed on the soil 

surface. The chamber method relies on the measurement of increasing, or decreasing, 

concentration of trace gases of interest inside the chamber’s headspace atmosphere. 

Each chamber consists of a steel collar (16 cm of diameter and 15 cm height) and a 

motor closing steel lid is placed on a steel collar inserted into the soil. Tightness of the 

lid closure is ensured by a neoprene cover on the inner surface of the lid and a rubber 

ring covering the top perimeter of the collar (figure 9). The CO2 and N2O move from 

where they are produced (soil porosity) to the atmosphere mostly through diffusion 

even if in certain situations the movement can be due to pressure difference between 

the chamber and the atmosphere. To avoid air pressure difference between inside and 

outside the chamber, a pressure vent was built according to the indication of Xu et al. 

(2006) and placed on the top of the chamber (Hutchinson and Livingston, 2001). The 

adopted vent design allows static pressure changes inside the chamber to follow 
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whatever static pressure changes occur in the surrounding air outside the chamber 

both in calm and windy conditions while remaining insensitive to wind direction. 

Carbon dioxide analysis was conducted through an infrared beams analyzer (IRGA, 

infrared gas analyzer). The air circulation in the pipes system was guaranteed thanks 

to two pumps and 26 electro-valves. A datalogger (CR-1000 Campbell Sci. Inc. Lincoln 

Nebraska – USA) commands all the operation of the gas emission monitoring through 

32 relays, managing the closing of the chambers, the activation of the IRGA analyzer 

and the pumps. An automated sampling system was employed to monitor N2O and 

CH4. Inside the sampling machine there is a plate with 20 glass vials closed with a 

specific porous sect that allows the sample gas inlet through needles. The sampling 

machine has two needles on a mobile component that align with the vials and insert 

the sample gas. The needles are connected to the chamber through high density PVC 

tubing and managed form two valves. The gases in the vials have been analyzed with 

a gas chromatograph (Agilent 7890A, mod. G3440A) equipped with a flame ionization 

detector (FID) for methane and with an electron capture detector (ECD) for nitrous 

oxide.  

 

 

Figure 9: Schematic of chamber’s parts with collar inserted into the soil 

 

2.3 The DNDC model  

The Denitrification-Decomposition (DNDC) model (Li et al., 1992a, 1992b, 1994, 1996; 

Li, 2000) is a process-based model of carbon (C) and nitrogen (N) biogeochemistry in 

agricultural ecosystems. The core of DNDC trace-gas emission predictions consists of 

microbe-mediated biogeochemical processes commonly occurring in terrestrial soils. 
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The model DNDC simulates rates of the processes by tracking activities of different 

groups of microbes which are activated under different environmental conditions 

including temperature, moisture, pH, redox potential (Eh) and substrate concentration 

gradient in soils. The DNDC model has been intensively and independently tested by a 

wide range of researchers worldwide with encouraging results (e.g., Gilhespy et al., 

2014; Giltrap et al., 2010) and it has also been widely utilized for inventory and 

mitigation of GHGs emissions in North America, Europe, Asia and Oceania. The model 

consists of two components, the first one includes soil climate, crop growth, 

decomposition sub-models and it predicts soil temperature, soil moisture, pH, Eh, and 

substrate concentration profiles (e.g. ammonium, nitrate, DOC) based on ecological 

drivers (e.g., climate, soil, vegetation and anthropogenic activity). The second 

component, consisting of the nitrification, denitrification and fermentation sub-

models, predicts C and N gases fluxes, such as nitric oxide (NO), N2O, CH4 and NH3 

fluxes, based on the soil environmental variables. 

The DNDC model is the most prominent process-based model used for simulating GHG 

emissions worldwide, however, it has known issues in simulating soil hydrology as also 

observed in other biogeochemical models such as Century or EPIC (Smith et al., 2020). 

Several iterations of the DNDC model have been developed for different region, in 

order to include additional processes and management options and to overcome 

problems related to specific pedo-climatic conditions. Specifically, the Canadian 

version (DNDCv.CAN) has been recently updated with new features of interest that 

improve soil hydrology simulations (figure 10). In particular Smith et al., (2020) 

reported that after development, simulation of soil water storage, daily drainage, N 

loss to runoff and N loss to tile drains were improved. This new version of the model 

gave good results because of an improved water flow down the profile, thanks to new 

root density functions, to the setting option for a fluctuating water table and a new 

mechanistic tile drainage option (TD). Moreover, the new version can include an 

heterogenous soil profile, extend soil depth to 2 m, accommodate better the effective 

root penetration, and was implemented with additional crop parameters.  
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Figure 10: Schematic of Canada DNDC before and after development of improved hydrological processes. 

Shaded areas show which algorithms were modified. Revised model version available at 

https://github.com/BrianBGrant/DNDCv.CAN. 

 

2.4 Description of the simulation experiment  

In this thesis work, simulations with DNDCv.CAN have been carried out, the revised 

version of the DNDC model available at https://github.com/BrianBGrant/DNDCv.CAN.  

The DNDC model runs were performed by comparing soil water, C and N fluxes from 

simulating WT dynamics with mechanistic tile drainage (TD) versus the absence of a 

water table control (noTD) (figure 11) according to the traditional model without a 

water table module. In particular, it is of interest to understand how this new option 

influences the simulation of the soil moisture and the consequent influence in the 

GHGs fluxes. The observed data retrieved in the experimental site described above 

(section 2.1) have been compared with simulated data. More precisely, the latter were 

the results of simulation recreating the real-field conditions of the 12 lysimeters (table 

1) both with active water table and not (TD and noTD). In the following sections are 

presented the parameters used to create the .dnd files readable from the model, to 

run the simulations. The 12 lysimeters simulated in this analysis are referred as 

“2_60_250”, “3_120_368”, 6_120_368”, “7_120_250”, “8_FD_250”, “10_FD_368”, 

“11_60_250”, “12_FD_368”, “13_120_250”, “16_60_368”, “19_60_368”, “8_FD_250”. 

https://github.com/BrianBGrant/DNDCv.CAN
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From now on in order to describe the main parameters that the model requires as 

input, it will be taken into account the lysimeter “2_60_250” as example.  

 

 

Figure 11:   Water Table setting: "0" to set an active WT (TD) , "1" to set free drainage conditons (noTD) 

 

2.4.1 Climate Tab  

First model information are related to site name, latitude and longitude, number of 

years simulated and the climate conditions (figure 12). In this work the simulations 

were conducted for a 5-year time span that was related to the experimental one. 

Despite the observed data that were used for the comparison have been retrieved 

between 2011 and 2014, on year more is run. The run of 2010 was used as a spin-up 

period to let the model set up and arrange itself, but output data will not be 

considered. Moreover, the observed data for 2011 were not complete, so the 

comparison was performed for 2012,2013 and 2014. Daily meteorological data files 

have been prepared in advance with 365 days for a year; each year has an individual 

file in a plain text format. In this set of simulations, minimum/maximum temperature 

(° C) and precipitation (cm) were included in the meteorological files. Between 2011 

and 2013 meteorological data were retrieved from a database collected by ARPAV, 

while in 2014 it was implemented an in situ meteorological station. Meteorological 

data are important because they are implemented by the model to calculate the 

potential evapotranspiration (PET) of the site. 
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Figure 12:  Climate tab input 

 

2.4.2 Soil tab  

In this section, soil physical-chemical characteristics of each lysimeter were 

implemented (figure 13). Firstly, the land-use was selected. Parameters like texture 

(“loam” in our case) and pH were the same for every lysimeter, while bulk density 

(g/cm3), water-filled porosity at field capacity and at wilting point (0-1), porosity (0-1), 

saturated water conductivity (m/hr), and clay fraction (0-1) were specific for each 

lysimeter. These parameters were included according to the soil layer of sampling and 

analysis (figure 14). Free drainage conditions or active WT were selected in this tab.  

 

 

Figure 13: Soil tab 
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Figure 14: Heterogeneous soil profile 

 

 

2.4.3 Cropping tab  

All information related to the crop system is reported in the “Cropping tab”, including 

farm management practices for every single year of the simulation such as date of 

sowing and harvest, crop growth parameters, etc. The first section (“Crop”) was the 

same for all lysimeters, including the number of crops per year, the crop type, the 

planting and harvest day and the crop variety (figure 15). These parameters have been 

implemented considering a specific database available for the study area of interest, 

the adjusted values can be observed in the following figure.  
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Figure 15: Crop section 

 

Besides, in the cropping tab it can be set up the tillage activity and the fertilization and 

manure amendment characteristics. For all the 12 lysimeters the tillage activity 

selected was “ploughing with moldboard, 20cm”, performed at the day of the planting. 

Beyond the soil characteristics, what differentiates the .dnd files representing the 

lysimeters is the amount of inorganic N fertilization and of manure amendment applied 

(see section 2.1.1). The last sections of this tab (irrigation, flooding, film much, grazing) 

have not been considered in this analysis. The irrigation was not applied through this 

tab because since the model reads both precipitation and irrigation as input sources of 

water. In this work, all input water that entered each lysimeter was provided through 

the climate file. Finally, conditions such as film much, flooding conditions and grazing 

were not applied being not representative of the study site.  

 

2.4.4 Tile Drain and Model parms tab  

The “Tile drain” tab (figure 16) has been added with the upgraded version of the DNDC 

model and it presents some sub-sections. The tile drain module was designed by Smith 

et al. (2020) in DNDC model to better emulate what is observed in Eastern Canada 

(high water table in the spring, then drops during the summer and returns during the 
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late fall-winter). It is meant to define the general tile drain setup for the simulation and 

allows for a greater control over internal parameters that affect major outputs. 

Specifically, it is possible to set the drain depth (m), the drain spacing (m) and its radius 

(m), the depth to bedrock (m) and a factor (keDrain) that controls the rate of horizontal 

effective saturated conductivity to the tiles. Other parameters specific for NO3 

percolation, urea hydrolysis, N runoff, trace gas fluxes, soil temperature and water 

balance can be calibrated. More information that describe all these new parameters 

are available at  

https://github.com/BrianBGrant/DNDCv.CAN/blob/master/DNDCvCAN%20User%20G

uide.pdf.  

 

Figure 16: Tile drain parameters 

 

2.5 Calibration and evaluation of model performance  

In this work, one of the parameters used for calibration was the drain depth, in order 

to match the experimental soil moisture with the modelled one. It follows that best 

performances were found by setting the tile drain at 100 cm depth for WT60, and at 

130 cm for WT60. The drain depth values arise after an empirical manual calibration 

performed considering the daily soil moisture (mm) in the two year-period 2013-2014, 

when the daily observed data have been retrieved on field with the new TDR system. 

https://github.com/BrianBGrant/DNDCv.CAN/blob/master/DNDCvCAN%20User%20Guide.pdf
https://github.com/BrianBGrant/DNDCv.CAN/blob/master/DNDCvCAN%20User%20Guide.pdf
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More precisely, the target of this calibration was to choose the drain depth setting that 

allowed to have the trend and the average of soil moisture daily values the more 

similar as possible to the observed data. Slight variations in SOM mineralization 

coefficients, N leaching, and crop growth parameters were also made across lysimeters 

(not lysimeter-specific calibration was performed) to close experimental and modelled 

yearly averaged data. In addition to the drain depth, the parameters were changed as 

reported in the following table (2), in order to better simulates the fluxes of GHG 

emissions and water and nitrate percolation.  

 

Parameter Original value Changed value 

Bypass flow rate 0.422 0 
Adjusted_litter_factor 0.0179 3 
Adjusted_humads_factor 0.9721 3 
Adjusted_humus_factor 1 3 
MaxNF overall N movement 0.5 0.05 
N not pref leach when sat 0.75 0.95 
N2:N2O factor 2 100 

Table 2: DNDC parameters before and after calibration 

 

In order to evaluate the performance of the model three statistic metrics have been 

considered, that are the root mean square error (RMSE), the percent bias (PBIAS) and 

the coefficient of determination (R2). They have been calculated considering observed 

data measured directly in the study area and corresponding simulated data, obtained 

running the model both with the WT option active (TD) and not (noTD). Particularly, 

for the following parameters: grain production (kg C ha-1 yr-1), N2O soil emission (kg N 

ha-1 yr-1), CO2 soil emission/consumption (kg C ha-1 yr-1), CH4 soil emission/consumption 

(kg C ha-1 yr-1), NO3
- percolation (kg N ha-1 yr-1) and water percolation (mm). While for soil 

moisture, a graphical analysis of time series of simulated and observed data was 

carried out. 

RMSE is very common in modelling evaluation (Moriasi et al., 2007), and it is 

considered an excellent general purpose error metric for numerical predictions. It is 

defined as in equation (1): 

RMSE = √ 
∑  (𝑂𝑏𝑠𝑖−𝑆𝑖𝑚𝑖) 𝑛

𝑖=1

𝑛
,        (1) 
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where Obsi are the real observed values, Simi the predicted values, and n the number 

of observations available for analysis. RMSE is a good measure of accuracy, but only to 

compare forecasting errors of different models or model configurations for a particular 

variable and not between variables, as it is scale dependent. RMSE values of 0 indicate 

a perfect fit.   

PBIAS measures the average tendency of the simulated data to be larger or smaller 

than their observed counterparts (Gupta et al., 1999). It is calculated with equation (2)  

PBIAS =  
∑  (𝑂𝑏𝑠𝑖−𝑆𝑖𝑚𝑖)∗ 100𝑛

𝑖=1

∑ 𝑂𝑏𝑠𝑖𝑛
𝑖=1

.         (2) 

The optimal value of PBIAS is 0, with low-magnitude values indicating accurate model 

simulation. Positive values indicate model underestimation bias, and negative values 

indicate model overestimation bias (Gupta et al., 1999).  

The coefficient of determination (R2) describes the degree of collinearity between 

simulated and measured data. The correlation coefficient, which ranges from −1 to 1, 

is an index of the degree of linear relationship between observed and simulated data. 

If r = 0, no linear relationship exists. If r = 1 or −1, a perfect positive or negative linear 

relationship exists.  

These analyses were done using Microsoft Excel software. 
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3 Results and Discussion  

3.1 Soil moisture calibration and model performance  

Smith et al., (2020) asserted that the enhancements to DNDC hydrological framework 

should enable the development of improved biogeochemical processes. With the 

purpose of investigating this development, the starting point was to reproduce a 

similar dynamic of water in the soil profile, between observed daily data and simulated 

data with TD. The parameterization (i.e., drain depth and bypass flow rate setting) was 

satisfying and a good conformity was observed. In the following graphs the simulated 

and observed trends of daily soil water were reported for all the WT60 and WT120 

lysimeters,  during the two-year period 2013-2014 (figure 17).  
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Figure17: Observed and simulated (TD and noTD) soil moisture (mm) daily data in 2013-2014, for the 8 
lysimeters with WT60 and WT120 

 

The above results suggested that the calibrated TD option improved the effectiveness 

of soil hydrology simulations in respect with noTD conditions (Smith et al., 2020). As 

reported in table 3, the average values of soil moisture (mm) were more similar to the 

observed ones when simulated with TD option than noTD, leading to a high 

underestimation using the latter. Furthermore, RMSE and PBIAS coefficients were 

closer to 0 for every lysimeter. In our case, soil water was overestimated in a few 

events, namely in September and November 2013, causing an overall overprediction 

of the average values. In the former event, experimental WT dropped causing a fall in 

soil moisture, which could not be reproduced by the model. In the latter event, the 

model did not catch the high amount of water loss through percolation. To be 

mentioned, DNDC simulates soil hydrology through the empirical cascade (tipping 

bucket) flow algorithm, which may lead to an overestimation of soil moisture in free 

drained soils, as observed by (Macharia et al., 2021), (Li et al., 2017), (Uzoma et al., 

2015), Smith et al. (2019). Likewise, Zhang & Niu, (2016) contended that this is also 
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possible because DNDC does not include unsaturated flow and underestimates the 

rainfall loss caused by surface runoff and leaf interception. Nevertheless, with the 

presence of a WT an underestimation of soil water content may occur because the 

model does not take into account capillary rise in its simulations. In fact, the amount 

of water deriving from WT up-flux is not considered. Finally, we can confirm also for 

the peculiar Veneto pedoclimatic conditions the better performance of DNDCv.CAN, 

run with the TD option,  in simulating soil hydrology, as already observed by Smith et 

al., (2020). 

 

 Observed TD noTD TD noTD TD noTD 

Lysimeter Average  Average  Average  RMSE RMSE PBIAS PBIAS 

2 506 549 245 109 266 -10.3 50.8 

3 486 494 244 70 244 -2.34 49.4 

6 506 462 235 81 273 7.98 53.1 

7 496 484 236 70 263 1.87 52.2 

11 525 540 266 62 261 -3.50 48.9 

13 514 451 232 91 285 11.6 54.5 

16 533 618 239 116 295 -16.8 54.8 

19 525 554 283 75 247 -6.14 45.9 
Table 3: Average soil moisture (mm), RMSE (mm2) and PBIAS, for TD and noTD conditions 

 

During the calibration stage, it was important to obtain simulated values in agreement 

with observed ones beyond soil hydrology, and some improvements were observed 

after the parameterization process. An overall evaluation of the model performances 

both with TD and noTD can be accomplished considering the RMSE, PBIAS and R2 

calculated after grouping the lysimeters considering the WT conditions (table 4). The 

evaluation was developed for grain production (kg C ha-1 yr-1), N2O soil emission (kg N 

ha-1 yr-1), CO2 soil emission/consumption (kg C ha-1 yr-1), CH4 soil emission/consumption 

(kg C ha-1 yr-1), NO3
- leaching (kg N ha-1 yr-1) and water percolation (mm). More 

considerations about each one of these parameters will be discussed specifically in the 

following sections. In particular TD_WT60 and noTD_WT60 include lysimeters 

“2_60_250”, “11_60_250”, 16_60_368” and “19_60_368”. TD_WT120 and 

TD_noTD120 include lysimeters “3_120_368”, 6_120_368”, “7_120_250” and 

“13_120_250”. While noTD_FD include “8_FD_250”, “10_FD_368”, “12_FD_368” and 

“8_FD_250”. 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/unsaturated-flow
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/interception
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TD_WT
60 

noTD_WT
60 

TD_WT1
20 

noTD_WT1
20 

noTD_F
D 

Grain production 
RMS

E 1275 1232 1534 1533 1317 

 

PBIA
S 4.58 5.82 16.6 18.1 -24.4 

 R2 0.443 0.615 0.516 0.821 0.030 

N2O soil emission 
RMS

E 1.50 1.58 1.65 1.68 1.62 

 

PBIA
S -19.2 24.2 -18.8 23.0 30.6 

 R2 0.058 0.050 0.008 0.003 0.001 

CO2 soil 
emission/consumpt

ion 
RMS

E 1677 1391 1188 1083 1820 

 

PBIA
S 21.7 17.3 16.0 14.4 23.0 

 R2 0.119 0.224 0.601 0.644 0.117 

CH4 soil 
emission/consumpt

ion 
RMS

E 3.11 3.10 3.14 3.14 2.76 

 

PBIA
S 1326 1322 1238 1236 8334 

 R2 0.356 0.352 0.366 0.370 0.368 

NO3
- percolation 

RMS
E 6.60 46.1 4.41 46.0 29.9 

 

PBIA
S 12.9 -388 -23.5 -484 13.4 

 R2 0.032 0.482 0.564 0.571 0.892 

water percolation 
RMS

E 195 188 162 161 387 

 

PBIA
S -53.2 -51.3 -39.9 -37.8 -540 

 R2 0.043 0.037 0.081 0.173 0.025 
Table 4: RMSE, PBIAS and R2 for water percolation, NO3- percolation, CH4 soil emission/consumption, CO2 soil 

emission/consumption, N2O soil emissions, and grain production for the simulations of WT60, WT120, FD 
lysimeters with TD and noTD 
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3.2 Water percolation  

In order to evaluate DNDCv.CAN in its soil hydrology simulation performances, also 

water percolation was taken into account. Simulated percolation data showed to be 

higher than the observed ones, both in TD and noTD run. This appears both graphically, 

considering figure 18, and statistically. In fact, PBIAS is negative for all the combination 

of WT setting and TD/noTD options, in particular: -53.2 for TD_WT60, -51.3 for 

noTD_WT60, -39.9 for TD_WT120,  -37.8 for noTD_WT120 , -540  for noTD_FD. This 

overestimation of water percolation by DNDC is even larger if FD lysimeters are taken 

into account. In this case observed data were lower, while simulated (TD and  noTD) 

data did not differ much in respect with WT60 and WT120 lysimeters. This higher 

overestimation is well depicted by the PBIAS coefficient, which is one order of 

magnitude lower (-39.9 for TD_WT120 and -540 for noTD_FD). Furthermore, no 

correlation between observed and simulated data appeared, considering all the 

combination of WT setting and TD/noTD options, with a maximum R2 of 0.173 for 

noTD_WT120.  
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Moreover, in simulating water percolation TD option did not demonstrate to be 

better than noTD. Specifically, in 2012 the average values of the replicated lysimeters 

simulated showed to be comparable among these two options (table 5), in 2013 TD 

simulated data were closer to the observed ones, while in 2014 the opposite 

occurred.  

 

Percolation (mm) EXP TD noTD EXP TD noTD EXP TD noTD 

WT Treat 2012 2012 2012 2013 2013 2013 2014 2014 2014 

60 250 258 400 465 331 465 547 402 552 422 

120 250 249 437 474 333 479 564 405 577 438 

FD 250 8.40  435 83.1  528 133  391 

60 368 263 451 429 296 427 518 401 517 393 

120 368 288 448 462 333 471 568 401 567 446 

FD 368 11.8  429 81.5  513 108  399 

Table 5: Average water percolation values (mm) of observed, TD simulated and noTD simulated data 

 

DNDC simulates soil moisture in each layer by calculating both surface and vertical 

water movements, including surface runoff, transpiration, evaporation, infiltration, 

water redistribution, and drainage. Primary factors influencing soil moisture include 

weather conditions (e.g., temperature, humidity, and wind speed), soil properties (e.g., 

texture, field capacity, wilting point, and hydrological conductivity, and previous soil 

water availability), crop growth, and FMPs (irrigation, flooding, film mulch etc.). Since 

all of these factors are similar or identical among the different lysimeters the simulated 

water balance is similar too. Hence, water percolation, that is a component of this 

balance, showed to be quite regular in all the records.  

 One possible factor that may have played a role is that transpiration  was quite low in 

respect with the observed ones, and consequently the evapotranspiration (no data 

showed). If there is a certain amount of water in the system and runoff is more or less 

constant, either this amount of water leaves the system through the plant-soil system 

or it percolates. If the plant transpires less water, water percolation can increase.  

On a broader sense, it is more likely that this overestimation was due to the core of 

DNDC model water simulation system. That is, like already reported, the employment 

of empirical tipping bucket system that neglects the role of water potentials in driving 

water flow in soil. In fact, the conceptual basis of a tipping bucket flow model does not 
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allow for upward water flows, which control both evaporation at the soil surface as 

well as capillary rise from groundwater into the root zone to maintain crop 

transpiration during dry summer periods (McBean et al., 2020; Longo et al., 2021; Jarvis 

et al., 2022). More specifically, in the cascade approach, water percolates if field 

capacity in a soil layer is reached. This also explains why with TD option the simulation 

did not improve, since this setting does not change the empiricism at the base of soil 

hydrology simulation. This limitation is not specific for the DNDC model, but for many 

crop models that relies on empirical components to describe soil hydrology. Capacity 

or tipping bucket models of soil water flow can be classified as 

phenomenological/empirical as they attempt to mimic the physical process of water 

flow without directly addressing the physical forces driving the flow, nor the soil 

hydraulic properties that control it. As Jarvis et al., (2022) stated, when a physics-based 

approach is just as easy to use as a corresponding (more) empirical approach, then it 

should be preferred, and that there are not any convincing reasons to still use empirical 

models of soil water flow. In fact, there are many studied reporting that models based 

on Richards' equation (physic-based approach) generally perform better (e.g. 

Diekkrüger et al., 1995; Maraux et al., 1998; Vanclooster and Boesten, 2000; Herbst et 

al., 2005; Wegehenkel et al., 2008; Kröbel et al., 2010; Soldevilla-Martinez et al., 2014; 

Guest et al., 2017; McBean et al., 2020; Groh et al., 2022). 

 

3.3 Grain production  

Crop growth and yields are controlled by complex interactions of weather, soil 

conditions and crop physiological properties. Because crop growth affects soil water 

content, DOC, soil N pools, and production of plant litter  incorporated into SOC pools, 

it influences almost all the biogeochemical processes in DNDC through influencing soil 

environmental factors and/or substrates concentrations. Hence, a good agreement 

between observed crop production and modelled productivity is necessary to 

satisfactorily simulate N and C biogeochemical cycles and consequent GHG emissions. 

Despite the model did not fully reproduce the high variability of observed grain yield, 

independently from the WT level, nevertheless, the average values were comparable 

(table 6), (figure 19).  
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Grain (kg C/ha) EXP TD noTD EXP TD noTD EXP TD noTD 

WT Treat 2012 2012 2012 2013 2013 2013 2014 2014 2014 

60 250 5299 4806 4935 6233 5207 5234 3826 4993 4698 

120 250 5226 4866 5006 5516 5155 5195 3644 4942 4777 

FD 250 3207  4663 4372  5074 4280  4652 

60 368 7774 5183 5229 7516 5354 5278 5478 5098 4795 

120 368 6636 5166 5209 7240 5354 5241 4393 5113 4685 

FD 368 2802   5156 4352   5246 4472   4414 
Table 6: Average grain production values (kg C/ha) of observed, TD simulated and noTD simulated data 

 

Besides, a good agreement was observed between simulated and observed data (R2 > 

0.5 for noTD_WT60, TD_WT120 and noTD_WT120). Considering that DNDC model was 

not specifically developed to simulate crop growth and yield, results of the internal 

plant growth sub-model were adequate. Focusing on the differences between TD e 

noTD simulations in all WT conditions, no significative discrepancies arose (PBIAS and 

RMSE were 4.58 and 1275 kg C ha-1 yr-1  for TD_WT60  and 5.82 and 1232 kg C ha-1 yr-1   

for noTD_WT60), being  the presence of a simulated WT the only different parameter. 

The fact that TD and noTD determined similar outcomes denotes that the model did 

not simulate a condition of stress for the plant in the absence of WT simulation. But 

this is not in agreement considering the observed FD data (in 2012, 2802 kg C/ha in 
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average in FD_368 records) and FD lysimeters grain production results simulated with 

noTD (figure 19, EXP_FD).  

 

3.4 Nitrate leaching  

Running the DNDC model with the default tile drain and model parms tab parameters 

resulted in a large overestimation of NO3
- percolation simulated data in respect with 

the observed ones. Though, after adjusting of “MaxNF overall N movement” and “N 

not pref leach when sat” parameters, TD simulations exhibited good agreement with 

the observed NO3
- percolation values. In fact,  “MaxNF overall N movement” is a factor 

that controls that maximum threshold value that primary controls the maximum 

nitrogen movement across soil layers, and it was highly decreased. While “N not pref 

leach when sat” regulates the fraction of N that is not susceptible to preferential 

leaching when the water table is above the tiles, so its increase also played a big role. 

After this manual calibration an important result was observed, that is, with TD the 

simulation of NO3
- percolation was much better than with noTD. In fact, for TD_WT60 

and TD_WT120 RMSE is 6.60 kg N ha-1 yr-1 and 4.41 kg N ha-1 yr-1, while for noTD_WT60,   

noTD_WT120 and noTD_FD is 46.1 kg N ha-1 yr-1, 46.0 kg N ha-1 yr-1 and 29.9 kg N ha-1 yr-1. 

In fact, noTD simulations gave as result an overestimation of  NO3
- percolation, with 

PBIAS coefficient that is equal to -388 and -484 for noTD_WT60 and noTD_WT120. This 

is clear also considering figure 20, where for WT60 and WT120 records the simulated 

values were significatively higher than the observed ones.    
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A possible explanation about these differences is that the calibration performed, 

despite having a positive influence in both the simulation settings (TD/noTD), was 

developed for parameters that are specifically referred for the TD option system, like 

expressed in DNDCv.CAN manual user guide (Grant, 2020). If averaged values are 

considered for TD and noTD simulations (table 7), this pattern was even clearer, 

suggesting that different soil N dynamics occurred between TD and noTD. 

 

N - NO3 (kg/ha) EXP TD noTD EXP TD noTD EXP TD noTD 

WT Treat 2012 2012 2012 2013 2013 2013 2014 2014 2014 

60 250 4.95 9.41 41.9 6.95 12.1 63.6 8.53 11.4 54.8 

120 250 5.36 9.00 42.6 15.8 10.1 64.8 13.5 9.66 55.9 

FD 250 2.05  29.8 60.0  47.3 55.1  41.9 

60 368 4.07 10.3 41.8 13.0 12.2 67.7 15.8 14.9 63.8 

120 368 3.74 8.93 40.6 21.2 11.2 66.7 13.0 10.8 63.3 

FD 368 4.65   35.3 101   56.6 85.1   55.4 
Table 7: Average soil NO3-percolation values (kg N-NO3/ha) for observed, TD simulated and noTD simulated 

data 

 

Except for 2012, average experimental values for FD lysimeters were higher than WT60 

and WT120 lysimeters, which is predictable in the conditions of an absent water table. 

In fact, there was a high correlation between observed FD NO3
- percolation values and 

noTD_FD simulations, with R2 equal to 0.892. Lastly, considering the simulation of the 

of TD_WT60, TD_WT120 and noTD_FD and the respective observed values, there is a 
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high correlation (R2 = 0.768) that again depicts the positive effect of different TD and 

noTD simulations for different WT conditions (figure 21).   

 

 

Figure 21: Linear regression between observed and simulated NO3 percolation values (kg N/ha/yr)  

 

The noTD nitrate movement in DNDC is described simply as a function of the water flux 

and nitrate concentration per layer. Soil nitrate is considered to be mobilized by a 

positive water flux (90% mobilized) and transferred to the layer below as a one-

dimensional vertical N flux towards the bottom soil profile. Additionally, another 

fraction (10% of the NO3
-
 in a layer) was considered to be lost through preferential 

water flow via macropores directly out of the soil profile. This preferential loss was 

calculated regardless of whether the soil layer directly below also met the condition of 

having a positive water flux. For simulations with tile drainage, the movement of 

nitrate is an iterative step through each of the saturated layers per hour that are 

drained to tiles. In DNDCv.CAN this preferential N leaching function has been modified 

to ensure correlation with water movement. In fact, It was previously found that DNDC 

sometimes simulated N losses when there was no water flux out of the bottom of the 

soil profile. In DNDCv.CAN the fraction of NO3
- available to be transferred to the layer 

below at an hourly time step can now be parameterized as described above. Nitrate 

losses to tile drains are calculated starting from the layer situated at the top of the 

saturated water table down to the layer at the bottom of the tile drains (Smith et al., 

2020).   

y = 0.4997x + 9.3668
R² = 0.768

0

20

40

60

80

100

0 20 40 60 80 100

O
b

se
rv

ed
  N

O
3

p
er

co
la

ti
o

n
 

(k
g 

N
/h

a/
yr

) 

Simulated  NO3 percolation (kg N/ha/yr) 



44 

 

3.5 CO2 soil emission 

The modification of the decomposition rates by multiplying a factor 3 to each of the 

three-soil organic carbon (SOC) pools  led simulated CO2  values in line with the 

observed ones. This was true for WT120 lysimeters (R2=0.601 for TD simulations) but 

not for WT60 and FD lysimeters (R2=0.119 and R2=0.117 for TD simulations). In fact, 

decomposition in DNDC is a process mediated by the microbes living in the soil 

describing degradation of the organic matter; part of the SOC is employed as energy 

source resulting in CO2 production, and another part of the SOC is utilized for the 

microbial construction. During the decomposition, labile C is gradually lost with 

resistant C become relatively more abundant in the soil. DNDC simulates SOC 

decomposition by simultaneously calculating the decomposition rate for each of the 

SOC sub-pools (i.e., litter, microbes, humads and humus). The parameterization that 

increased the decomposition rate was performed for all the lysimeters combination, 

resulting in average soil CO2 emissions similar among the different lysimeters (table 8).  

Moreover, also crop properties in the DNDC model were adjusted to conform to 

Veneto standards for all the lysimeters, in particular actual yield, temperature degree-

day (TDD), grain:stem:root ratio and the C/N ratio of grain, stem and root. 

Furthermore, since  CO2 emissions are positively correlated with temperature, water 

filled pore space and soil temperature (Chen et al., 2013) and since these parameters 

are similar in the lysimeters, it is possible that this can lead in similar CO2 emission 

amounts for all of them. Still, the simulated emissions underestimate the observed 

ones (14.4 < PBIAS > 23.0 for TD_WT60, noTD_WT60, TD_WT120, noTD_WT120, 

noTD_FD), (figure 19).  

 

C - CO2 (kg/ha) EXP TD noTD EXP TD noTD EXP TD noTD 

WT Treat 2012 2012 2012 2013 2013 2013 2014 2014 2014 

60 250 7524 5380 5736 5753 5055 5330 6394 5342 5496 

120 250 7524 5350 5678 5753 4935 5199 6394 5264 5441 

FD 250 5849  4993 5675  4707 7476  4748 

60 368 8088 6196 6350 6220 5805 5913 7120 5993 6019 

120 368 7670 5660 5963 6385 5210 5467 6448 5762 5825 

FD 368 6289   5953 7293   5501 8393   5669 
Table 8: Average soil CO2 emission values (kg C- CO2/ha) for observed, TD simulated and noTD simulated data 
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Despite the parameterization described above, that allowed a good agreement 

between observed and simulated data, further development is still possible. In fact, 

the manual calibration performed was simply to increase the decomposition rates, but 

it is also possible to calibrate the SOC pools and their C/N ratio in order to better 

describe C biogeochemical cycle. Moreover, another possibility to decrease this 

underestimation is to increment the spin up period run, in order to allow the model to 

equilibrate itself and auto-calibrate the SOC pools.  

Anyway, the improved model was not able to differentiate heterotrophic CO2 

emissions according to different soil moisture conditions, being CO2 values similar 

between TD and noTD. This suggest that further improvement is required to better 

simulate the relationship between SOM mineralization conditions and soil moisture. 

  

3.6 N2O soil emission 

The modification of N2:N2O factor allowed to increase the amount of N2 formed from 

N2O, which was shown to be necessary considering the initial high N2O soil emission 

values simulated by the DNDC model. Since this parameterization occurred for both 

TD and noTD simulations, and WT60, WT120, FD settings, in general the model 

responded well despite the peculiar  conditions (RMSE was 1.50 kg N- N2O ha-1 yr-1 for 

TD_WT60, 1.58 kg N- N2O ha-1 yr-1 for noTD_WT60, 1.65 kg N- N2O ha-1 yr-1  for TD_WT120, 
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1.68 kg N- N2O ha-1 yr-1 for noTD_WT120, 1.62 kg N- N2O ha-1 yr-1 for noTD_FD). An overall 

agreement among observed and simulated N2O values can be inferred by figure 23, in 

which the distribution of the data is not significantly different, in any records. 

 

 

Considering the improvement of soil moisture simulations with TD option active, it was 

expected a possible progress in the simulation of N2O soil emission in these conditions. 

In fact, the nitrification/denitrification scheme at the foundation of the model is the 

concept of an “anaerobic balloon” which swells or shrinks according to redox potential 

of the soil (Li et al., 2004a). For each layer substrates (such as DOC, NH4
+and NO3

-) are 

allocated to the anaerobic or aerobic compartments based on oxygen availability. In 

these terms, improved soil hydrology description would imply a more accurate redox 

potential evaluation. However, TD option in the simulation improves soil hydrology in 

the whole soil profile (2m), but in DNDC, nitrification and denitrification reactions 

occur primarily near the soil surface where substrates are high (Smith et al., 2020), and 

water content here is not necessarily improved in respect with noTD option.   

 

 

 

 



47 

 

 

N-N2O (kg/ha) EXP TD noTD EXP TD noTD EXP TD noTD 

WT Treat 2012 2012 2012 2013 2013 2013 2014 2014 2014 

60 250 2.29 1.64 0.555 0.57 2.70 1.93 2.16 2.45 1.78 

120 250 1.43 1.57 0.544 1.06 2.68 1.95 2.97 2.24 1.66 

FD 250 3.18  0.378 0.450  1.45 1.51  1.20 

60 368 1.69 1.64 0.575 1.00 3.60 2.65 4.23 2.88 2.09 

120 368 3.22 1.54 0.504 1.23 3.07 2.28 2.45 2.89 2.05 

FD 368 1.90   0.540 1.71   2.55 3.36   2.28 
Table 9: Average soil N2O  emission values (kg N- N2O /ha  for observed, TD simulated and noTD simulated data 

 

For TD_WT60 and TD_WT120 PBIAS was -19.2 and -18.8, while for noTD_WT60, 

noTD_WT120 and noTD_FD is 24.2, 23.0 and 30.6. These values depicted a clear 

tendence by TD simulations to overestimate N2O soil emission, and a tendence by 

noTD simulations to underestimate them. The trend was also confirmed by considering 

observed  TD and noTD averages between the replications (table 7). Especially for 

2012, this underestimation was clear. The simulation option with noTD was 

comparable with the DNDC model version before the recent upgrade, in fact in 

different studies evaluating N2O soil emission such as Abdalla et al., (2009), Macharia 

et al., (2021), Smith et al. (2008) and Gaillard et al., (2018), there were simulated lower 

values  in respect with measured data. It is worth noting that N2O production often 

occurs above field capacity, usually at about 80% WFPS (Butterbach-Bahl et al., 2013). 

It is therefore likely that a significant lower soil water content using noTD than TD 

(section 3.1) was sometimes reached, leading to a slight underestimation. As a final 

remark, more work is left to be done in understanding the biogeophysical system that 

produces soil N2O and in harmonizing the process-based models that simulate that 

system (Gaillard et al., 2018).  

 

3.7 CH4 soil emission 

Figure 24 depicts CH4 soil emissions (positive values) and sink (negative values) trends 

for observed and TD and noTD simulated data, at different WT settings. There were no 

differences arising between TD and noTD simulated data, like it is also clear observing 

the average values for every simulated year (table 10). In fact, considering both TD and 

noTD simulations in 2012-2013-2014 for all the lysimeters replicates, there was a CH4 
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consumption (between 2.54  and 2.95 kg C-1 ha-1 yr-1)  by the soil, which acted as a sink. 

While considering observed data, the sink effect was less present with a maximum of 

0.379 kg C-1 ha-1 yr-1 consumed in 2013 in the replicates FD_368. 

 

C - CH4 (kg /ha)  EXP TD noTD EXP TD noTD EXP TD noTD 

WT Treat 2012 2012 2012 2013 2013 2013 2014 2014 2014 

60 250 -0.071 -2.85 -2.84 -0.192 -2.71 -2.70 0.661 -2.92 -2.91 

120 250 -0.208 -2.87 -2.86 -0.170 -2.76 -2.76 1.29 -2.95 -2.94 

FD 250 0.031  -2.63 -0.066  -2.54 -0.089  -2.69 

60 368 0.009 -2.78 -2.78 -0.268 -2.69 -2.68 1.30 -2.86 -2.86 

120 368 -0.089 -2.76 -2.76 -0.102 -2.69 -2.68 0.693 -2.86 -2.85 

FD 368 -0.110  -2.77 -0.379  -2.66 0.808  -2.84 

Table 10: Average soil CH4 emission values (kg C- CH4/ha)  for observed, TD simulated and noTD simulated data 

 

 

 

Probably, the model is not particularly sensitive to varying soil conditions originating 

from different WT setting. Hence, since the model does not simulate capillary rise, it 

most likely underestimates soil moisture in the surface layers, where the dynamics of 

formation  of GHGs are more effective. DNDC simulates denitrification, reductions of 

Mn4+, Fe3+, and SO4
2-, and methane production as consecutive reactions with each 

reaction occurring under certain Eh conditions (Li et al., 2004). DNDC simulates 

methane production after depletions of NO3
-, Mn4+, Fe3+, and SO4

2-, when soil Eh is 

below -150 mV (Li et al., 2004). Methane consumption is simulated as an oxidation 

reaction involving electron exchange between CH4 and oxygen. This means that in 
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respect with the real conditions, in this work DNDC probably detected a major 

presence of oxygen in the soil pore space. This determines more methane 

consumption than production because soil Eh does not reach levels low enough to 

allow methanogenesis bacteria to work. Another important factor that surely 

influences methane cycle is the substrate, that is SOC. As already stated in CO2 section 

DNDC allows to parametrize the distribution of SOC in different pools. It is possible that 

a calibration of these parameters would increase the agreement between simulated 

and observed methane emissions/consumption. Furthermore, during the two-year 

period 2011-2012 it was applied a commercial typology of manure as organic input, 

with high level of maturity of the organic component and low water content. On the 

contrary, during 2013-2014 it was applied cattle slurry with significatively higher water 

content and chemical properties variable during the years. Probably, the slurry applied 

in 2014 was not completely mature. Because of this, the production of methane may 

have already happened during the storage period, or in the days immediately  after its 

application.  Since in the input section of the model, It is not possible to describe the 

peculiar and variable characteristics of 2013 and 2014, it is not possible for DNDCv.CAN 

to depict these higher emissions of CH4. On the contrary, it simulated a constant sink 

effect of the soil because of the redox conditions and because of constant manure and 

slurry compositions.  
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4 Conclusion  

In this study a new version of the DNDC model (DNDCv.CAN) was tested after 

calibration for a set of lysimeters with shallow WT in an attempt to simulate the Veneto 

low-lying plain conditions. Among the new features of this upgraded version, the 

model ability to simulate soil moisture conditions was encouraging, being a fluctuating 

shallow groundwater condition and maintenance of high soil moisture well described 

in correspondence with rainfall events. Considering soil moisture, we can therefore 

assess even for these peculiar pedoclimatic conditions the better performance of 

DNDCv.CAN, run with the TD option which allows to simulate an active WT. 

Notwithstanding, simulated percolation data showed to be higher than the observed 

ones, although this was observed regardless the use of TD or noTD. So, the 

improvement of soil hydrology is not fully accomplished. In fact, the absence of 

capillary rise and low evapotranspiration rate has likely determined more water output 

from the system than under field experimental conditions. This disagreement is 

probably due to the fact that DNDCv.CAN remains a biogeochemical model, not 

specifically developed for soil hydrology. In fact, the empiricism applied in the 

hydrological sub-model may be limiting if compared for example with a physics-based 

simulation’s algorithm. Additionally, it was also observed a good agreement between 

the simulated and observed data of crop growth and yields, thanks to the utilization in 

input of crop parameters specific for the Veneto region. This was important since N 

and C biogeochemical cycles and consequent GHG emissions are indirectly dependent 

on this parameter. With a new N leaching function correlated with water movement, 

and with the possibility to parameterize the fraction of nitrate available to be 

transferred to the layer below, DNDCv.CAN with TD allowed to model in a good way 

NO3
- leaching when a WT was present. With regard to GHGs, it was detected a nice 

overall agreement between observed and simulated data of CO2 and N2O soil emission. 

This was possible thanks to the parametrization of the decomposition rates and of the 

N2:N2O ratio coefficient. Considering CH4, the model simulated soil as a sink, whilst 

this was not observed in every lysimeter and every year under real conditions. In 

general, for the fluxes of GHGs no significant differences arose between TD and noTD 

simulated data, suggesting that improvement of average soil moisture conditions 
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along the soil profile was not a driving factor to affect the C and N biogeochemical 

fluxes. It is likely that the model inability to simulate the capillary rise had low effects 

on the surface moisture conditions, in turn limiting changes in C and N forms. Hence, 

in this study the improvement of soil moisture and nitrate leaching simulation 

employing the TD option of DNDCv.CAN emerged, but this did not result in a significant 

improvement of soil GHGs emission simulations. In the end, this work helped in the 

purpose of advancing the prediction of agroecosystems water, C and N fluxes under 

shallow groundwater conditions, therefore helping policymakers and practitioners in 

the valuation of ecosystem services provided by the agricultural sector. Anyway, this 

was one of the first attempts of calibration and validation of agroecosystem outcomes 

under shallow conditions typical for the Venetian low-lying plain. This determines an 

important first step, but more work and research is required to implement soil 

hydrology dynamics and effects on GHGs emissions.  
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