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ABSTRACT(EN) 

 
 

This Master's Thesis presents an analysis of shared bike usage based on weather 

conditions, utilizing machine learning algorithms capable of predicting future shared 

bike usage based on weather forecasts. As these services become increasingly integral 

to urban mobility, the reliability of supporting activities, such as accurate weather 

forecasts, is crucial to enhancing the overall efficiency of the system. 

 

The machine learning algorithms employed in this Thesis belong to the category of 

supervised learning techniques. These algorithms learn to predict the desired parameter 

by analyzing a vast dataset containing numerous historical examples. The dataset, in 

this case, spans one year of records detailing the number of bikes rented in Vicenza, 

along with the corresponding weather conditions during that period. 

 

Among the various algorithms explored, the random forest algorithm emerged as the 

most effective in providing accurate results.  

 

This study identifies an opportunity for the municipality to formulate targeted strategies 

promoting year-round bike usage based on weather-related patterns. The positive 

correlation between mean temperature, solar radiation, and extended trip durations in 

summer suggests a propensity for heightened bike activity during warmer and sunnier 

conditions. In light of these findings, initiatives such as promoting bike-sharing 

programs, improving bike-friendly infrastructure, and organizing events during the 

summer months are recommended to capitalize on this observed trend, fostering 

increased community engagement and sustainable transportation habits. 
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ABSTRACT(IT) 

 

 
Questa tesi di laurea presenta un'analisi dell'utilizzo condiviso delle biciclette in base 

alle condizioni meteorologiche, utilizzando algoritmi di apprendimento automatico 

capaci di prevedere l'utilizzo futuro delle biciclette condivise in base alle previsioni 

meteorologiche. Poiché questi servizi diventano sempre più fondamentali per la 

mobilità urbana, la affidabilità delle attività di supporto, come le previsioni 

meteorologiche accurate, è cruciale per migliorare l'efficienza complessiva del sistema. 

 

Gli algoritmi di apprendimento automatico impiegati in questa tesi appartengono alla 

categoria delle tecniche di apprendimento supervisionato. Questi algoritmi imparano a 

prevedere il parametro desiderato analizzando un vasto set di dati contenente numerosi 

esempi storici. Il set di dati, in questo caso, copre un anno di registrazioni che 

dettagliano il numero di biciclette noleggiate a Vicenza, insieme alle condizioni 

meteorologiche corrispondenti durante quel periodo. 

 

Tra i vari algoritmi esplorati, l'algoritmo random forest è emerso come il più efficace 

nel fornire risultati accurati. 

 

Questo studio identifica un'opportunità per il comune di formulare strategie mirate a 

promuovere l'utilizzo delle biciclette durante tutto l'anno basandosi su modelli legati 

alle condizioni meteorologiche. La correlazione positiva tra temperatura media, 

radiazione solare e durata prolungata dei viaggi durante l'estate suggerisce una 

propensione per un'attività più intensa delle biciclette durante condizioni più calde e 

soleggiate. Alla luce di questi risultati, si raccomandano iniziative come la promozione 

di programmi di condivisione delle biciclette, il potenziamento dell'infrastruttura amica 

delle biciclette e l'organizzazione di eventi durante i mesi estivi per capitalizzare su 

questa tendenza osservata, favorendo un maggiore coinvolgimento della comunità e 

abitudini di trasporto sostenibili. 
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ABBREVIATION TABLE  

  

 
Variable Variable description Type of 

variable 

Ct The city that the data was collected. All data was collected in 

Vicenza 

nominal 

B_N Each bike is assigned a unique identification number discrete 

V_T The Ridemovi application is designed for both bike and e-

bike sharing, but this study specifically focuses on bike 

sharing 

binary 

U_I Each user is given a unique user ID discrete 

U_T There are two recorded user types: paying users and pass 

users 

binary 

S_T The exact date and time the trip had started temporal 

E_T The exact date and time the trip had ended temporal 

Dur The duration of each trip is recorded in minutes continues 

Dis The distance between the starting and ending points of trips is 

recorded in meters 

continues 

SLa The system captures the latitude coordinate of the starting 

point per trip 

continues 

SLo The system captures the longitude coordinate of the starting 

point per trip 

continues 

ELa The system captures the latitude coordinate of the ending 

point per trip 

continues 

ELo The system captures the longitude coordinate of the starting 

point per trip 

continues 

Mon The recorded data includes the total payment amount per trip discrete 

Pro Price difference to calculate payment amount discrete 

Pas A binary variable to show that the user was pass or paying binary 

S_I station ID discrete 

Day day of the month nominal 

Mon month of the year nominal 

Year data has been collected in year 2022 discrete 

Time time of the day data has been obtained temporal 

T_M Medium temperature at 2 m(°c) continues 

Pre precipitation (mm) continues 

H_MI minimum humidity at 2m (%) continues 

H_MA maximum humidity at 2m (%) continues 

S_R solar radiation (MJ/m2) continues 

W_S average wind speed(m/s) 

 

continues 

M_G maximum gust(m/s) continues 

D_R direction prevailing 

 

nominal 
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1 INTRODUCTION 

 
 

Bike sharing stands as a crucial pillar in the realm of sustainability, offering a 

compelling solution to the environmental and urban challenges of our time. As cities 

grapple with issues like traffic congestion and air pollution, the significance of bike 

sharing becomes even more pronounced. By providing a green and efficient alternative 

to conventional transportation, bike sharing systems actively contribute to the reduction 

of carbon emissions, easing the strain on urban infrastructure. 

Moreover, the importance of having a robust and user-satisfying bike sharing network is 

underscored by the changing dynamics of weather patterns and the escalating concerns 

about pollution. In the face of climate change, cities are experiencing more extreme 

weather events, making sustainable modes of transport like biking increasingly 

attractive. Bike sharing not only mitigates the impact of these changes but also 

encourages a healthier, more active lifestyle among citizens. 

The utilization of bicycles and bike-sharing programs is inherently influenced by 

weather conditions and air quality. Weather can significantly impact the feasibility and 

comfort of cycling. Harsh weather, such as heavy rain, extreme heat, or severe cold, 

may deter individuals from choosing bikes as a mode of transport. Adverse weather 

conditions can affect both the safety and convenience of cycling, potentially reducing 

the uptake of bike-sharing services. Additionally, poor air quality resulting from 

pollution is a growing concern in many urban areas. Cyclists, especially those using 

bike-sharing services, may be reluctant to navigate through heavily polluted areas due to 

health concerns. Conversely, favorable weather conditions can enhance the appeal of 

cycling, making it a more attractive and enjoyable option for commuters, thereby 

positively influencing the usage of bike-sharing systems. Therefore, the interplay 

between weather conditions and air quality plays a significant role in shaping the 

practicality and popularity of biking and bike-sharing initiatives in urban environments. 

This study has been undertaken due to the paramount importance of bike sharing in 
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fostering sustainability within urban environments. Recognizing the pivotal role 

weather conditions and air quality play in influencing the practicality and appeal of bike 

usage, the research aims to comprehensively analyze the relationship between shared 

bike usage and various weather parameters. Utilizing a machine learning algorithm, the 

study seeks to extract meaningful patterns from historical data and integrate weather 

forecasts to predict future shared bike usage. By addressing the dynamic nature of 

weather-related challenges, this research contributes valuable insights that can inform 

urban planners and policymakers in optimizing bike-sharing systems for changing 

weather conditions. Ultimately, the study aligns with the broader goal of promoting 

sustainable transportation by enhancing the adaptability and resilience of bike-sharing 

initiatives, particularly in the city of Vicenza, which is situated in northeastern Italy, 

about 60 kilometers west of Venice and 200 kilometers east of Milan. 

The data for this study was sourced from the Municipality of Vicenza for the year 2022. 

Specifically, information pertaining to daily bike-sharing usage was obtained from 

municipal records. In tandem with this, comprehensive weather data, encompassing 

both weather conditions and air quality, was acquired from the ARPAV (Regional 

Environmental Protection Agency) website. The daily weather conditions were utilized 

to capture a nuanced understanding of the atmospheric context, including factors such 

as temperature, precipitation, and wind speed, etc. Simultaneously, air quality metrics 

were harnessed to gauge the environmental conditions influencing bike-sharing patterns 

throughout the specified period. This dual-sourced data approach ensures a robust and 

multifaceted analysis of the relationship between shared bike usage and the prevailing 

weather conditions in Vicenza during the year 2022. 

In this study, our methodology involves the application of a machine learning 

algorithms to predict bike-sharing usage in Vicenza based on data collected from the 

Municipality of Vicenza for the year 2022 and daily weather information from the 

ARPAV website. The machine learning algorithms will be specifically tailored for 

regression tasks, utilizing historical data to discern patterns and relationships between 

weather variables and bike-sharing usage. Through rigorous model training, validation, 

and fine-tuning, we aim to develop a predictive tool capable of forecasting future bike-

sharing demand, thus enhancing our understanding of how weather conditions influence 

the dynamics of bike-sharing patterns in Vicenza. 
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This study is organized into several chapters, with the first chapter dedicated to a 

comprehensive literature review of studies conducted on shared bikes across various 

fields. The second chapter focuses on a descriptive analysis of bike data sourced from 

the municipality of Vicenza city in northern Italy, utilizing information obtained 

through the Ridemovi application and preparing the data for analysis. The third chapter 

involves a literature review of various studies concerning weather data and the 

methodologies employed for their analysis. The fourth chapter is dedicated to a 

descriptive analysis of weather data obtained from the ARPAV website and preparing 

data for analysis. The fifth chapter delves into the analysis conducted in this study, 

employing various machine learning algorithms to predict the usage of shared bicycles 

based on different weather conditions and weather quality. The sixth and final chapter 

pertains to the conclusions derived from the analysis conducted in the fifth chapter. 

1.1 Methodology 
 
In this study, machine learning methods will be applied using three specific algorithms: 

linear regression, support vector machine, and random forest. These algorithms will be 

theoretically explained as follows: 

1.1.1 Machine learning (1) 
Machine learning is a branch of computer science that broadly aims to enable computers 

to “learn” without being directly programmed. It has origins in the artificial intelligence 

movement of the 1950s and emphasizes practical objectives and applications, 

particularly prediction and optimization. Computers “learn” in machine learning by 

improving their performance at tasks through “experience”. In practice, “experience” 

usually means fitting to data; hence, there is not a clear boundary between machine 

learning and statistical approaches. Indeed, whether a given methodology is considered 

“machine learning” or “statistical” often reflects its history as much as genuine 

differences, and many algorithms (e.g., least absolute shrinkage and selection operator 

(LASSO), stepwise regression) may or may not be considered machine learning 

depending on who you ask. Still, despite methodological similarities, machine learning 

is philosophically and practically distinguishable. At the liberty of (considerable) 

oversimplification, machine learning generally emphasizes predictive accuracy over 

hypothesis-driven inference, usually focusing on large, high-dimensional (i.e., having 

many covariates) data sets. Regardless of the precise distinction between approaches, in 
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practice, machine learning offers epidemiologists important tools. In particular, a 

growing focus on “Big Data” emphasizes problems and data sets for which machine 

learning algorithms excel while more commonly used statistical approaches struggle. 

This primer provides a basic introduction to machine learning with the aim of providing 

readers a foundation for critically reading studies based on these methods and a 

jumping-off point for those interested in using machine learning techniques in 

epidemiologic research. The “Concepts and Terminology” section of this paper presents 

concepts and terminology used in the machine learning literature. The “Machine 

Learning Algorithms” section provides a brief introduction to 3 common machine 

learning algorithms: linear regression , decision trees and support vector machines 

These are important and commonly used algorithms that epidemiologists are likely to 

encounter in practice, but they are by no means comprehensive of this large and highly 

diverse field. The following two sections, “Ensemble Methods” and “Epidemiologic 

Applications,” extend this examination to ensemble-based approaches and 

epidemiologic applications in the published literature. “Brief Recommendations” 

provides some recommendations for incorporating machine learning into epidemiologic 

practice, and the last section discusses opportunities and challenges. 

1.1.2 Concepts and terminology 
For epidemiologists seeking to integrate machine learning techniques into their 

research, language and technical barriers between the two fields can make reading 

source materials and studies challenging. Some machine learning concepts lack 

statistical or epidemiologic parallels, and machine learning terminology often differs 

even where the underlying concepts are the same. Here we briefly review basic machine 

learning principles and provide a glossary of machine learning terms and their 

statistical/epidemiologic equivalents (Table 1). 

 

Machine 

Learning  

Term(s) 

Epidemiology 

Term(s) 
Definition and Notes Example 

Attribute, 

feature, 

predictor, or 

field 

Independent 

variable 

Machine learning uses 

various terms to reference 

what epidemiologists 

would 

consider an “independent 

variable,” including 

In a data set with 4 

independent 

variables 

(BMIa, age, race, 

and SES) and a 

dependent variable 
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attribute, feature, 

predictor, and field. 

(diabetes mellitus), 

BMI, age, race, and 

SES are attributes. 

Domain 

Range of 

possible variable 

values 

The domain is the set of 

possible values of 

an attribute. It can be 

continuous or 

categorical/binary. 

If race is recorded in 

a data set as “1 = 

Caucasian, 2 = 

African-American, 

and 3 = other,” its 

domain is 

categorical and 

includes only the 3 

referenced 

categories. 

Input and 

output 

Independent 

(exposure) 

and dependent 

(outcome) 

variables 

In machine learning, 

“input” refers to all of the 

predictors or independent 

variables 

that enter the model, and 

“output” generally refers 

to the predicted value 

(whether a number, 

classification, etc.) of 

the dependent variable or 

outcome. 

BMI, age, race, and 

SES are model 

input. In a binary 

classification 

algorithm, the model 

output is a 

prediction of 

whether a subject 

does (D = 1) or does 

not (D = 0) have 

diabetes. 

Classifier, 

estimator 
Model 

“Classifiers” or 

“estimators” are used 

generally in the machine 

learning literature to refer 

to algorithms that perform 

a prediction or 

classification of 

interest. Their less 

common, though more 

technical, usage 

specifically refers to fully 

parameterized models that 

are used to predict or 

classify. 

A decision tree is 

one type of machine 

learning classifier 

(general usage). The 

more specific usage 

of this term would 

refer only to a 

parameterized 

decision tree that has 

been fit in a data set 

(e.g., that 

predicts diabetes 

outcomes from BMI, 

age, 

sex, and SES). 

Learner 
Model-fitting 

algorithm 

A learner inputs a training 

set and outputs a classifier. 

Usually, but not always, 

learner 

refers to the fitting 

algorithm, while classifier 

refers to the fitted model. 

In decision tree 

learning, the 

classification 

and regression trees 

(CART) algorithm, 

developed by 

Breiman et al. (27) 
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in 1984, 

is one of multiple 

available learners for 

developing a 

decision tree 

classifier. 

Dimensionali

ty 

No. of 

covariates 

No. of independent 

variables under 

consideration in a model. 

A data set with 4 

independent 

variables (BMI, age, 

race, and SES) and a 

dependent 

variable (diabetes) 

has 4 dimensions. 

Label 

Value of 

dependent 

variables, 

outcomes 

A variable’s label is its 

value for each observation 

(e.g., 0 or 1). Although 

labels can technically 

describe any variable, 

common shorthand is that 

“labeled data” 

refers to data in which the 

dependent variable 

assumes a value for all 

observations. 

In a data set for 

which an 

investigator has 

collected 

information on 

diabetes status 

(outcome) for all 

subjects, this is 

“labeled” 

data. The label for 

diabetes is 0 or 1. 

Partially labeled data 

would have diabetes 

status missing for 

some subjects. 

Imbalanced 

data 

Data set in 

which some 

cases or risk 

categories occur 

much less 

frequently than 

the others 

In imbalanced machine 

learning data sets, 

the outcome or another 

risk category of interest 

occurs much less 

frequently, 

either because of the 

intrinsic nature of the 

problem (e.g., a rare 

disease in a database of 

medical records) or 

because 

of the sampling strategy 

(e.g., prevalence of cases 

in the study population is 

much 

lower than that in the 

target/source population). 

Heavily imbalanced data 

may 

Assume a 

hypothetical data set 

of pediatric, 

normal-weight 

patients in which the 

prevalence of 

diabetes is 2%. This 

data set is 

imbalanced because 

the outcome is 

very rare, which can 

lead to poor 

sensitivity 

of classification 

algorithms without 

parameter tuning or 

other corrective 

methods. This 

imbalance is due to 

the 
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pose challenges in some 

classification algorithms 

and require tuning 

parameters 

in order to correct for or 

otherwise address this 

imbalance. One method 

for 

addressing imbalanced 

data sets is to “balance” 

them artificially, either by 

oversampling instances of 

the minority class or 

undersampling instances 

of the majority class. 

intrinsic nature of 

the population we 

are 

evaluating (i.e., 

healthy children) 

and not 

due to the sampling 

strategy or other 

bias. 

Loss function Error measure 

In machine learning, a loss 

function is generally 

considered a penalty for 

misclassification when 

assessing a model’s 

predictive performance. 

A simple loss 

function may be the 

absolute 

value of (predicted 

value minus true 

value). 

If a model predicts 

that a subject has 

diabetes (D = 1) and 

the subject does not 

(D = 0), the value of 

the loss function for 

this prediction is 

“1.” 
Table 1: Glossary of Machine Learning and Epidemiology Terminology 

                

1.1.3 Supervised, unsupervised, and semi-supervised learning 
Machine learning is broadly classifiable by whether the computer’s learning (i.e., 

model-fitting) is “supervised” or “unsupervised.” Supervised learning is akin to the type 

of model-fitting that is standard in epidemiologic practice: The value of the outcome 

(i.e., the dependent variable), often called its “label” in machine learning, is known for 

each observation. Data with specified outcome values are called “labeled data.” 

Common supervised learning techniques include standard epidemiologic approaches 

such as linear and logistic regression, as well as many of the most popular machine 

learning algorithms (e.g., decision trees, support vector machines). 

In unsupervised learning, the algorithm attempts to identify natural relationships and 

groupings within the data without reference to any outcome or the “right answer”. 



17 

 

Unsupervised learning approaches share similarities in goals and structure with 

statistical approaches that attempt to identify unspecified subgroups with similar 

characteristics (e.g., “latent” variables or classes). Clustering algorithms, which group 

observations on the basis of similar data characteristics (e.g., both oranges and beach 

balls are round), are common unsupervised learning implementations. Examples may 

include k-means clustering and expectation-maximization clustering using Gaussian 

mixture models. 

Semi-supervised learning fits models to both labeled and unlabeled data. Labeling data 

(outcomes) is often time-consuming and expensive, particularly for large data sets. 

Semi-supervised learning supplements limited labeled data with an abundance of 

unlabeled data with the goal of improving model performance (studies show that 

unlabeled data can help build a better classifier, but appropriate model selection is 

critical). For example, in a study of Web page classification, fit a naive Bayes classifier 

to labeled data and then used the same classifier to probabilistically label unlabeled 

observations (i.e., fill in missing outcome data). They then retrained a new classifier on 

the resulting, fully labeled data set, thereby achieving a 30% increase in Web page 

classification accuracy on data outside of the training set. Semi-supervised learning can 

bear some similarity to statistical approaches for missing data and censoring (e.g., 

multiple imputation), but as an approach that focuses on imputing missing outcomes 

rather than missing covariates. 

1.1.4 Classification versus regression algorithms 
Within the domain of supervised learning, machine learning algorithms can be further 

divided into classification or regression applications, depending upon the nature of the 

response variable. In general, in the machine learning literature, classification refers to 

prediction of categorical outcomes, while regression refers to prediction of continuous 

outcomes. We use this terminology throughout this primer and are explicit when 

referring to specific regression algorithms (e.g., logistic regression). Many machine 

learning algorithms that were developed to perform classification have been adapted to 

also address regression problems, and vice versa. 

1.1.5 Generative versus discriminative algorithms 
Machine learning algorithms, both supervised and unsupervised, can be discriminative 

or generative. Discriminative algorithms directly model the conditional probability of an 

outcome, Pr(y|x) (the probability of y given x), in a set of observed data—for example, 
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the probability that a subject has type 2 diabetes mellitus given a certain body mass 

index (BMI; weight (kg)/height (m)2). Most statistical approaches familiar to 

epidemiologists (e.g., linear and logistic regression) are discriminative, as are most of 

the algorithms discussed in this primer. 

In contrast, while generative algorithms can also compute the conditional probability of 

an outcome, this computation occurs indirectly. Generative algorithms first model the 

joint probability distribution, Pr(x, y) (the probabilities associated with all possible 

combinations of x and y), or, continuing our example, a probabilistic model that 

accounts for all observed combinations of BMIs and diabetes outcomes (Table 2). This 

joint probability distribution can be transformed into a conditional probability 

distribution in order to classify data, as Pr(y|x) = Pr(x, y)/Pr(x). Because the joint 

probability distribution models the underlying data-generating process, generative 

models can also be used, as their name suggests, for directly generating new simulated 

data points reflecting the distribution of the covariates and outcome in the modeled 

population. However, because they model the full joint distribution of outcomes and 

covariates, generative models are generally more complex and require more 

assumptions to fit than discriminative algorithms. Examples of generative algorithms 

include naive Bayes and hidden Markov models. 

Table 2: Matrix of Joint Probabilities for Body Mass Indexa (x) and Diabetes Mellitus 

(y) in a Data Set With 4 Dichotomized Observations: (0, 1), (0, 1), (0, 1), and (0, 0) 

 

 

Diabetes Status 

BMI Status 

Overweight BMI = 

1 

Overweight BMI = 

0 

      

D = 1 0/4 1/4 

D = 0 2/4 1/4 
Table 2: Abbreviation: BMI, body mass index= Weight (kg)/height (m)2 

                                       
 

 

1.1.6 Reinforcement learning 
In reinforcement learning, systems learn to excel at a task over time through trial and 

error. Reinforcement learning techniques take an iterative approach to learning by 
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obtaining positive or negative feedback based on performance of a given task on some 

data (whether prediction, classification, or another action) and then self-adapting and 

attempting the task again on new data (though old data may be reencountered). 

Depending on how it is implemented, this approach can be akin to supervised learning, 

or it may represent a semi-supervised approach (as in generative adversarial neural 

networks). Reinforcement learning algorithms often optimize the use of early, 

“exploratory” versions of a model—that is, task attempts—that perform poorly to gain 

information to perform better on future attempts, and then become less labile as the 

model “learns” more. Medical and epidemiologic applications of reinforcement learning 

have included modeling the effect of sequential clinical treatment decisions on disease 

progression (e.g., optimizing first- and second-line therapy decisions for schizophrenia 

management) and personalized, adaptive medication dosing strategies. For example, 

Nemati et al. used reinforcement learning with artificial neural networks in a cohort of 

intensive-care-unit patients to develop individualized heparin dosing strategies that 

evolve as a patient’s clinical phenotype changes, in order to maximize the amount of 

time that blood drug levels remain within the therapeutic window. 

1.1.7 Cross-validation 
Cross-validation is a resampling technique that is often used to assess the adequacy of a 

statistical model. The idea is to randomly split the data into one set to fit the model and 

a second separate set to test the accuracy of the model for prediction. This approach 

came about in classification problems because the resubstitution method which tests the 

model on the same data used to fit the model is optimistically biased and the bias can be 

very large in small samples. 
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A special case of cross-validation is called leave-one-out. The leave-one-out method fits 

the model to all but one data point and then tests the accuracy of the model on the data 

point left out. Because this is such an extreme splitting of the data, the evaluation on 

just one data point is of course not enough to get a good estimate of the model's 

prediction accuracy. So for the leave-one-out estimate all n splits (leaving n − 1 points 

for fitting and keeping one for testing) are used to get an overall estimate of the model's 

prediction accuracy based on these n evaluations. 

 

For the problem of estimating the error rates for a classification algorithm (with two or 

Figure 1 – Cross-validation 

Figure 2 – Leave-one-out Cross Validation 



21 

 

more classes), the leave-one-out approach was popular because it led to nearly unbiased 

estimates and fully exploits the data in contrast to a 50–50 split cross-validation which 

only uses half the data in the fit and the other half in the evaluation. However, Efron47 

was the first to discover that for linear discriminant functions with multivariate normal 

class-conditional densities, a form of the bootstrap algorithm called the 632 estimator is 

superior to the leave-one-out estimator. 

Other important applications of cross-validation have to do with smoothing density 

functions and splines. Here cross-validation is used to determine the appropriate degree 

of smoothing. Similarly, cross-validation can be used to determine the order of a model 

or the subset of variables to use in regression models to protect against overfitting. 

It is similar to other methods, such as the Akaike information criterion (AIC), which 

penalizes the likelihood function for the number of variables included in the model. For 

AIC, you find the model that minimizes the penalized likelihood. For cross-validation, 

you look for the model that best predicts the observations that were left out of the fit. 

Cross-validation is also used to determine how much to prune a classification or 

regression tree when using the CART procedure for constructing these types of trees. 

For neural networks cross-validation has been used to make a proper choice of the 

number of nodes. So neural networks and classification trees, which are important data 

mining tools rely on cross-validation. 

1.1.8 Machine learning algorithms 
In this section, we introduce 3 common machine learning algorithms: linear regression, 

decision trees and support vector machines. For each, we include a brief description, 

summarize strengths and limitations, and highlight implementations available on 

common statistical computing platforms. This section is intended to provide a high-

level introduction to these algorithms, and we refer interested readers to the cited 

references for further information. 

1.1.9 Linear regression 
Linear regression is a statistical method used to model the relationship between a 

dependent variable and one or more independent variables by fitting a linear equation to 

the observed data. The goal is to find the best-fitting line (or hyperplane in the case of 

multiple independent variables) that minimizes the difference between the predicted 

values and the actual values of the dependent variable. The equation of a simple linear 

regression model with one independent variable is often written as: 
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𝑌 = 𝛽0 + 𝛽1 𝑋 + 𝜀 

where: 

-  Y  is the dependent variable. 

-  X  is the independent variable. 

- 𝛽0 is the y-intercept (constant term). 

- 𝛽1 is the slope of the line. 

- 𝜀 represents the error term. 

1.1.9.1 Strengths and limitations 
Strength of Linear regression 

1.Simplicity: Linear regression is a simple and easy-to-understand method, making it a 

good starting point for analyzing relationships between variables.   

2. Interpretability: The coefficients  𝛽0 and 𝛽1 have clear interpretations.  𝛽0  

represents the expected value of the dependent variable when the independent variable 

is zero, and 𝛽1 represents the change in the dependent variable for a one-unit change in 

the independent variable. 

3.Efficiency: Linear regression can be computationally efficient and works well with 

large datasets. 

 

Limitations of Linear Regression: 

1.Linearity Assumption: Linear regression assumes a linear relationship between the 

independent and dependent variables. If the relationship is not linear, the model may 

provide inaccurate predictions. 

2. Sensitivity to Outliers: Linear regression is sensitive to outliers, which can 

significantly influence the regression equation and coefficients. 

3. Assumption of Independence: The model assumes that the residuals (the differences 

between predicted and actual values) are independent. If this assumption is violated, it 

can lead to biased and inefficient parameter estimates. 

4. Multicollinearity: When multiple independent variables are included in the model, 

multicollinearity (high correlation between independent variables) can cause issues in 

accurately estimating individual variable effects. 
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5. Homoscedasticity: Linear regression assumes homoscedasticity, meaning that the 

variance of the residuals is constant across all levels of the independent variable. 

Violations of this assumption can lead to inefficient parameter estimates. 

Despite these limitations, linear regression is a valuable tool in many situations and 

serves as a foundation for more advanced modeling techniques. It is important to 

carefully assess the assumptions and limitations of the method before applying it to a 

particular dataset. 

 

1.1.10 Decision trees 

Decision trees (i.e., classification and regression trees (CART)) create a series of 

decision rules based on continuous and/or categorical input variables to predict an 

outcome. Classification trees predict categorical outcomes, and regression trees predict 

continuous outcomes. CART analysis has been popularized as an umbrella term for any 

decision tree learning method. However, “CART” is also a common implementation 

algorithm in the epidemiologic and medical literature, although a number of other 

decision tree algorithms have also been developed (e.g., ID3, CHAID). 

Figure 3 presents a hypothetical classification tree for a binary outcome, diabetes. To 

derive a decision tree, the algorithm applies a splitting rule on successively smaller 

partitions of data, with each partition being a node on the tree. The partition consisting 

of all data is the root node; in Figure 3 this node is split on the basis of BMI. Splits are 

selected to minimize some measure of node impurity (i.e., diversity of classes) or 

heterogeneity (i.e., variance) in each resulting partition (the “daughter nodes”). The 

splitting process repeats on each branch of the tree until additional splits yield no further 

reductions in node impurity, or some other stopping criterion is reached (e.g., a 

specified minimum number of observations in terminal nodes or the value at which 

error is minimized in cross-validation). In many algorithms, this splitting is often 

followed by a “pruning” step in which partitions are remerged (i.e., some bottom nodes 

are removed, making the final tree smaller) based on some criterion designed to 

increase generalizability. 
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Figure 3: hypothetical decision tree to predict type 2 diabetes. BMI is the primary factor, with age, sweetened 

beverage consumption, and physical activity as subsequent factors. 

 

Predictions are made in terminal nodes based on majority rule, using algorithm-derived 

cutpoints for BMI and age, suggesting interaction effects between age and diabetes 

based on BMI levels and sweetened beverage consumption. 

A hypothetical classification decision tree for predicting a binary outcome, type 2 

diabetes mellitus. Body mass index (BMI; weight (kg)/height (m)2) occupies the root 

node (the most discriminatory variable in the data set); age, consumption of sweetened 

beverages, and physical activity occupy daughter nodes; and predicted diabetes status 

(yes/no) is reflected in the terminal or “leaf” nodes. Terminal node predictions proceed 

on the basis of simple majority rule (e.g., if 60% of patients in a terminal node are 

diabetes-positive, the entire terminal node will be classified as “Diabetes”). The 

cutpoints for the continuous variables, BMI and age, are algorithm-derived. The 

presence of age at different cutpoints in 2 different daughter nodes reflects likely 

interaction effects: The relationship between age and diabetes differs in patients with 

BMI ≤32 compared with patients with BMI >32 who  

1.1.10.1 Strengths and limitations 
Decision trees are generally easy to understand—its having been said that “[o]n 

interpretability, trees rate an A+” -making their output ideal for a range of target 

audiences. They are also flexible to nonlinear covariate effects and can incorporate 
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higher-order interactions between covariates. Trees may lose information by 

dichotomizing or categorizing variables where associations are continuous, and they can 

be unstable to even small data changes. Because most decision tree algorithms are 

“greedy” (splitting decisions are locally optimized at nodes), through a domino effect, 

dramatically different trees can result if even a single higher-level node shifts to a 

different variable. Hence, decision trees can be highly sensitive to small perturbations in 

data. Perhaps most fundamentally, decision trees are prone to overfitting, and their 

ultimate utility depends heavily on appropriately implemented pruning and/or stopping 

criteria. Ensemble-based decision trees (e.g., random forests) can address some of these 

concerns (see “Ensemble Methods” section), but they do not produce a single, easily 

interpretable tree.do not routinely consume sweetened beverages. 

1.1.11 Support vector machines 
Support vector machines (SVMs) are a set of supervised learning methods used for 

classification and regression problems. SVMs construct an optimal boundary, called a 

hyperplane, that best separates observations of different classes. In 1 dimension, this 

boundary is a point; in 2 dimensions, a line; and in 3, a plane (Figure 4). However, 

many observations often need to be transformed before they can be separated by a 

hyperplane. SVMs address this problem by applying a data transformation called a 

“kernel function” to the data. Kernel functions project the data into a higher-

dimensional space where the input variables are separable (Figure 4). The optimal 

kernel function is usually chosen from a set of commonly used kernel functions selected 

through cross-validation. Popular kernel functions include polynomial kernel, gaussian 

kernel, and sigmoid kernel. Following kernel function transformation, the best 

hyperplane maximizes the separation between the different classes (i.e., the margin, 

defined as the distance from the hyperplane to the closest data point), while tolerating a 

specified level of misclassification. SVMs are traditionally used for binary 

classification, but multiple pairwise comparison can be applied for multiclass 

classification. Extensions to SVM techniques have also been developed that can be used 

to predict continuous outcomes (called support vector regression). 
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Figure 4: An illustration of data transformation with a support vector machine for predicting diabetes status. A) 

Hypothetical age and body mass index (BMI; weight (kg)/height (m)2) distribution of diabetic (black dots) and 

nondiabetic (gray dots) patie 

 

An illustration of data transformation with a support vector machine for predicting 

diabetes status. A) Hypothetical age and body mass index (BMI; weight (kg)/height 

(m)2) distribution of diabetic (black dots) and nondiabetic (gray dots) patients in 2-

dimensional space. a and b are fixed parameters estimated from the data (see text). B) 

After transformation, these dots/patients who are not linearly separable in 2-dimensional 

space become linearly separable in 3-dimensional space. A hyperplane in 3-dimensional 

space is shown as a surface. 

In Figure 4, persons with and without diabetes cannot be separated by a line in the 2-

dimensional space based upon the predictors, age and BMI (Figure 4A). However, when 

we project the data into a 3-dimensional space by applying a kernel given by φ((age, 

BMI) = (age, BMI, (BMI − a) × (age − b)), where φ(.) is the feature mapping, a and b 

are fixed parameters estimated from the data, (age, BMI): the original two-dimensional 

input data representing age and body mass index. the data are now separable in the 3-

dimensional space by a plane (Figure 4B). 

1.1.11.1 Strengths and limitations 
SVMs generally demonstrate low misclassification error and scale well to high-

dimensional data. SVMs have reasonable interpretability, especially when a kernel 

function is not used. Where a kernel function is necessary, however, selecting the 

optimal kernel function typically requires experimenting with a set of standard 

functions. This approach can be time-consuming and does not guarantee that the set of 
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standard kernel functions that were evaluated included the optimal function, and in 

some cases hand-crafted kernel functions are used instead. 

Additionally, in this study, Shapley values are employed to elucidate the output of 

machine learning models, especially in the context of black-box models. This method is 

applied using The Kernel SHAP Method. 

1.1.12 The Kernel SHAP Method 
Assume a predictive model f(x) for a response value y with features x∈RM, trained on a 

training set, and that we want to explain the predictions for new sets of data. This may 

be done using ideas from cooperative game theory, letting a single prediction take the 

place of the game being played and the features the place of the players. Letting N 

denote the set of all M players, and S⊆N be a subset of |S| players, the “contribution” 

function v(S) describes the total expected sum of payoffs the members of S can obtain 

by cooperation. The Shapley value ([Shapley ,1953]) is one way to distribute the total 

gains to the players, assuming that they all collaborate. The amount that player I gets is 

then  

ϕi(v) = ϕi = ∑
|S|! (M − |S| − 1)!

M!
S⊆N∖{i}

(v(S ∪ {i}) − v(S)), 

f(x): Represents the predictive model, which takes a feature vector x ∈ ℝ^M and 

predicts a response value y. 

N: Denotes the set of all M players (features in this context). 

S: A subset of players (features), where S ⊆ N, and |S| represents the number of players 

in the subset. 

v(S): The "contribution" function, which describes the total expected sum of payoffs 

that the members of subset S can obtain by cooperation. 

ϕi(v): The Shapley value for player i. It represents the fair share or average contribution 

of player i to all possible combinations of players in N. 

that is, a weighted mean over all subsets S of players not containing player i. Lundberg 

and Lee (2017) define the contribution function for a certain subset S of these features 

xS as v(S)=E[f(x)|xS], the expected output of the predictive model conditional on the 

feature values of the subset. [Lundberg and Lee ,2017] names this type of Shapley 

values SHAP (SHapley Additive exPlanation) values. Since the conditional 

expectations can be written as 



28 

 

E[f(x)|xs = xS
∗] = E[f(xS¯, xS)|xS = xS

∗] = ∫ f(xS¯, xS
∗)p(xS¯|xS = xS

∗)dxS¯, 

the conditional distributions p(xS¯|xS=x∗
S) are needed to compute the contributions. The 

Kernel SHAP method of [Lundberg and Lee ,2017] assumes feature independence, so 

that p(xS¯|xS=x∗
S)=p(xS¯). If samples xk

S¯,k=1,…,K, from p(xS¯|xS=x∗
S) are available, the 

conditional expectation in above can be approximated by 

vKerSHAP(S) =
1

K
∑ f(xS¯

k , xS
∗)

k

k=1

. 

In Kernel SHAP, xk
S¯,k=1,…,K are sampled from the S¯ -part of the training data, 

independently of xS . This is motivated by using the training set as the empirical 

distribution of xS¯ , and assuming that xS¯ is independent of xS=x∗
S . Due to the 

independence assumption, if the features in a given model are highly dependent, the 

Kernel SHAP method may give a completely wrong answer. This can be avoided by 

estimating the conditional distribution p(xS¯|xS=x∗
S) directly and generating samples 

from this distribution. With this small change, the contributions and Shapley values may 

then be approximated as in the ordinary Kernel SHAP framework. [Aas, Jullum, and 

Løland ,2019] propose three different approaches for estimating the conditional 

probabilities. The methods may also be combined, such that e.g. one method is used 

when conditioning on a small number of features, while another method is used 

otherwise. 

1.1.13 Multivariate Gaussian Distribution Approach 
The first approach arises from the assumption that the feature vector x stems from a 

multivariate Gaussian distribution with some mean vector μ and covariance matrix Σ. 

Under this assumption, the conditional distribution p(xS¯|xS=x∗
S) is also multivariate 

Gaussian N|S¯|(μS¯|S,ΣS¯|S), with analytical expressions for the conditional mean vector 

μS¯|S  and covariance matrix ΣS¯|S, see [Aas, Jullum, and Løland ,2019] for details. 

Hence, instead of sampling from the marginal empirical distribution of xS¯ 

approximated by the training data, we can sample from the Gaussian conditional 

distribution, which is fitted using the training data. Using the resulting samples 

xk
S¯,k=1,…,K, the conditional expectations be approximated as in the Kernel SHAP. 

1.1.14 Gaussian Copula Approach 
If the features are far from multivariate Gaussian, an alternative approach is to instead 

represent the marginals by their empirical distributions and model the dependence 
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structure by a Gaussian copula. Assuming a Gaussian copula, we may convert the 

marginals of the training data to Gaussian features using their empirical distributions, 

and then fit a multivariate Gaussian distribution to these. 

To produce samples from the conditional distribution p(xS¯|xS=x∗
S), we convert the 

marginals of xS to Gaussians, sample from the conditional Gaussian distribution as 

above, and convert the marginals of the samples back to the original distribution. Those 

samples are then used to approximate the sample from the resulting multivariate 

Gaussian conditional distribution. While other copulas may be used, the Gaussian 

copula has the benefit that we may use the analytical expressions for the conditionals 

μS¯|S and ΣS¯|S.  

Finally, we may convert the marginals back to their original distribution and use the 

resulting samples to approximate the conditional expectations as in the Kernel SHAP. 

1.1.15 Empirical Conditional Distribution Approach 
If both the dependence structure and the marginal distributions of x are very far from 

the Gaussian, neither of the two aforementioned methods will work very well. Few 

methods exist for the non-parametric estimation of conditional densities, and the classic 

kernel estimator [Rosenblatt ,1956] for non-parametric density estimation suffers 

greatly from the curse of dimensionality and does not provide a way to generate 

samples from the estimated distribution. For such situations, [Aas, Jullum, and Løland 

,2019] propose an empirical conditional approach to sample approximately from 

p(xS¯|x∗
S). The idea is to compute weights wS(x∗,xi), i=1,...,ntrain for all training 

instances based on their Mahalanobis distances (in the S subset only) to the instance x∗ 

to be explained. Instead of sampling from this weighted (conditional) empirical 

distribution, [Aas, Jullum, and Løland ,2019] suggests a more efficient variant, using 

only the K instances with the largest weights: 

vcondKerSHAP(S) =
∑ wS(x∗, x[k])f(xS¯

[k]
, xS

∗)K
k=1

∑ wS(x∗, x[k])K
k=1

, 

The number of samples K to be used in the approximate prediction can for instance be 

chosen such that the K largest weights accounts for a fraction η, for example 0.9, of the 

total weight. If K exceeds a certain limit, for instance 5,000, it might be set to that limit. 

A bandwidth parameter σ used to scale the weights, must also be specified. This choice 

may be viewed as a bias-variance trade-off. A small σ puts most of the weight to a few 
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of the closest training observations and thereby gives low bias, but high variance. When 

σ→∞, this method converges to the original Kernel SHAP assuming feature 

independence. Typically, when the features are highly dependent, a small σ is typically 

needed such that the bias does not dominate. [Aas, Jullum, and Løland ,2019] show that 

a proper criterion for selecting σ is a small-sample-size corrected version of the AIC 

known as AICc. As calculation of it is computationally intensive, an approximate 

version of the selection criterion is also suggested. Details on this is found in [Aas, 

Jullum, and Løland ,2019]. 

1.1.16 Conditional Inference Tree Approach 
The previous three methods can only handle numerical data. This means that if the data 

contains categorical/discrete/ordinal features, the features first have to be one-hot 

encoded. When the number of levels/features is large, this is not feasible. An approach 

that handles mixed (i.e numerical, categorical, discrete, ordinal) features and both 

univariate and multivariate responses is conditional inference trees [Hothorn, Hornik, 

and Zeileis ,2006]. 

Conditional inference trees is a special tree fitting procedure that relies on hypothesis 

tests to choose both the splitting feature and the splitting point. The tree fitting 

procedure is sequential: first a splitting feature is chosen (the feature that is least 

independent of the response), and then a splitting point is chosen for this feature. This 

decreases the chance of being biased towards features with many splits [Hothorn, 

Hornik, and Zeileis ,2006]. 

We use conditional inference trees (ctree) to model the conditional distribution, 

p(xS¯|x∗
S), found in the Shapley methodology. First, we fit a different conditional 

inference tree to each conditional distribution. Once a tree is fit for given dependent 

features, the end node of x∗
S is found. Then, we sample from this end node and use the 

resulting samples, xk
S¯,k=1,…,K, when approximating the conditional expectations as in 

Kernel SHAP. See [Redelmeier, Jullum, and Aas ,2020] for more details. 

The conditional inference trees are fit using the party and partykit packages (Hothorn 

and Zeileis (2015)). 
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2   BIKE LITERATURE REVIEW 

  

 

With the growing emphasis on sustainability in the contemporary world, 

numerous research studies have explored various facets of bicycle usage and bike 

sharing. These investigations have delved into diverse aspects, including the influence 

of weather conditions, air quality, calendar events, and more. The data for such research 

endeavors has been drawn from a range of sources, encompassing surveys, GPS data, 

direct observations, and other relevant means. 

Furthermore, researchers have employed a variety of analytical techniques to decipher 

the insights within the collected data. Among these approaches, machine learning 

algorithms have gained prominence for yielding the highest predictive accuracy and 

effectiveness in analysis. This underscores the pivotal role of machine learning in 

extracting meaningful patterns and correlations from the complex datasets associated 

with bicycle usage and bike sharing. In recent years a lot of research have been done in 

this topic. 

[Huthaifa I. Ashqar et al, 2019] conducted a study on bike counts in a bike-sharing 

system, investigating the influence of weather conditions. To achieve this, a dataset was 

utilized. The dataset was collected from August 2023 to August 2025 and comprised 

essential information such as station ID, the number of available bikes, number of 

available docks, and the precise time of recording. The time data included details like 

the year, month, day-of-the-month, time-of-the-day, and minutes at which each incident 

was recorded. As each minute was documented for 70 stations in San Francisco over the 

span of two years, the dataset contained a substantial number of recorded incidents. To 

identify instances when there were changes in bike counts at each station, the data was 

subjected to a change detection process. The similar research was done by [Joost de 

Kruijf et al., 2021], the researchers conducted a segmentation of all GPS data into 

journeys and stages (segments). They used a tool to impute the specific travel purpose 
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for each journey based on the location of origin and destination. This imputation was 

done by considering the proximity to various facilities and using information from self-

reported data about facility locations. The identified travel purposes included work, 

shopping groceries, social, and recreational activities. 

After segmenting the data, the researchers determined the number of different modes of 

transport (stages) that were used during one relocation. They also identified the specific 

mode of transport used for each stage. 

Focused on using daily commuting. GPS data was collected from January 2014 until 

mid-September 2014. The dataset consisted of a total of 242,179 journeys and 355,996 

stages. From these records, the researchers selected 71,772 journeys made by 573 

participants, specifically those that were commutes from their "home" to their "work" 

destinations. 

To account for trip chains, where participants made stops at certain locations (e.g., 

drinks after work) on their way home, these stops were treated as separate journeys in 

the analysis. However, in [Huthaifa I. Ashqar et al, 2019], through pre-processing, 

specific features were extracted from the dataset, including the station ID, number of 

available bikes, month, day-of-the-week, and time-of-the-day. Time-of-the-day was 

transformed to a time resolution of 0:23 (representing hours in a day) and used as a 

feature in the study. One year later a study conducted by [Jan Wessel ,The University of 

Münster, 2020] and hourly bicycle count data from 188 bicycle counting stations 

located in 37 different cities and regions across Germany was collected. Among these 

stations, 140 provided hourly bicycle counts for the entire sample period, spanning from 

January 1, 2017, to December 31, 2018. Additionally, 175 stations offered data for at 

least 365 consecutive days. 

On average, each bicycle counting station in the sample provided hourly data for 

approximately 668.2 days, covering around 91.5% of the total sample period. 

For their regression analysis, the researchers decided to utilize data from all 188 

stations. They made this choice because the missing observations appeared to be 

randomly distributed across the entire sample period. By including all stations in the 

analysis, they ensured the data's representativeness and minimized any potential biases 

in the results. Similar to this study a 6-year dataset was collected by [Craig Morton, 

2020] to analyze data on cycle hires, weather conditions, and local air pollutant 
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concentrations at daily intervals from January 1st, 2012, to January 1st, 2018. The 

number of cycle hires on the London Bicycle Sharing Scheme (LBSS) was obtained 

from Transport for London's system management platform, which offers public access 

to disaggregated trip data for research purposes. Two distinct demand levels were 

recorded: one for LBSS members (individuals with annual subscriptions) and the other 

for individuals paying the £2 daily charge by debit or credit card. These separate records 

were used to distinguish user types, with LBSS members representing regular cyclists 

and individuals paying by debit or credit card representing casual cyclists. Three years 

later a study titled Investigating the temporal differences among bike sharing users 

through comparative analysis based on count, time series, and data mining models 

conducted by [Ahmed Jaber et al., 2023]. They collected bike usage statistics from Citi 

Bike's website for the months of April, May, June, and July 2014. The dataset 

comprises information on start station id, end station id, station latitude, station 

longitude, and trip time for each bike trip. Among the 332 bike stations with at least one 

originating bike trip, 253 were located in Manhattan, and the remaining 79 were situated 

in Brooklyn. The researchers then conducted data processing to determine the number 

of bike trips between each station pair specifically during morning rush hours. 

In their study, [Ahmadreza Faghih-Imani et al, 2017] developed an information systems 

infrastructure with a web crawler to collect real-time snapshot data of bike sharing 

systems from the programs' websites. The dataset covers the period from May 1 to 

September 20, 2009 and captures the state information of all bike stations in the city at 

5-minute intervals (due to crawler restrictions). However, intermittent errors in the 

information systems infrastructure resulted in some missing data for certain stations and 

time points. The researchers performed data cleaning to obtain 34 days and 21 days of 

5-minute state data for each station in Barcelona and Seville, respectively. Trip rate 

information was derived from this collected state data. Additionally, the latitude and 

longitude of each bike station in the city and the total number of bike stations in each 

Spatial Contextual Division (SCD) were recorded, creating a unique longitudinal dataset 

on usage at each individual station and SCD. 

To convert this data into the dependent variables used in their models, the researchers 

computed the total arrival and departure rates at each station at a 5-minute level. They 

noted that total arrivals and departures of bikes could be influenced by both customer 
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usage and rebalancing operations by the operator. To distinguish between these 

influences, they divided the apparent total arrival rate and total departure rate into four 

components: (i) arrival rate due to customer usage, (ii) departure rate due to customer 

usage, (iii) refilling rate due to operator rebalancing, and (iv) removal rate due to 

operator rebalancing. This separation was achieved using a heuristic approach. 

The heuristic approach is based on the assumption that when the operator rebalances 

bikes at a station, there will usually be a significant change in the total number of bikes 

at the station (either refilling or removal) in a short span of time, compared to the rate at 

which users borrow and return bikes. Therefore, when the researchers observed a 5-

minute total arrival (or total departure) rate that exceeded the 99th percentile of the 

arrival (or departure) rate for that station, they assumed that a rebalancing operation 

(refilling or removal) was performed by the operator. Specifically, the heuristic assumed 

that when the total arrival (or total departure) rate exceeded the 99th percentile of the 

arrival (or departure) rate for that station, the arrival (or departure) rate due to public 

demand was approximated as the average rate of the last two 5-minute arrivals (or 

departures) for that station, and the remainder was attributed to refilling (or removal) by 

the operator. The 5-minute level data of the arrival rate, departure rate, refilling rate, 

and removal rate were further aggregated temporally and spatially to create their 

corresponding hourly metrics at the SCD-hour level. Four years later a study was 

conducted by [Hongtai Yang et al., 2021], and the same data was gathered. The 

researchers gathered an extensive dataset comprising over 2,870,000 bike sharing trips 

spanning from March 2019 to October 2019. This dataset encompasses valuable trip-

related details such as the start and end times, originating and concluding stations, trip 

duration, user category (including annual members, 15-day members, and non-

members), and demographic information for annual and 15-day members, covering age 

and gender (the demographic attributes of non-members remain undisclosed). 

Alongside trip data, the bike sharing dataset also provides the geographic coordinates 

and capacity information for each individual bike station. 

Five years before what is done by [Ahmed Jaber et al., 2023], an analysis was done by 

[Yongping Zhanga,2018], the data was sourced from Mobike, a prominent provider of 

bike-sharing services that leverages IoT (Internet of Things) technology to facilitate 

short urban trips with convenient parking options. As of March 2017, Mobike boasted a 
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fleet of over 4 million red-framed bicycles distributed across nearly 80 cities globally. 

Their operational scale was substantial, processing around 20 million daily orders, 

equivalent to 56.56% of the total market share. This marked them as the largest 

dockless bike-sharing company in the world. 

The dataset employed, generously shared by Mobike, encapsulates approximately 

56.62% of the total trip orders from August 2016. Within this dataset, a total of 

1,023,603 orders were made by 306,936 users, encompassing 17,688 individual bikes. 

Each order entry comprises essential trip details, including the order ID, user ID, bike 

ID, start time, origin's longitude and latitude, end time, destination's longitude and 

latitude, and the track. These attributes are represented as columns in the dataset. The 

'track' attribute entails a sequence of longitude and latitude pairs between the start and 

end points. In cases of N-location tracks, the 'track' column's format is exemplified as 

'longitude1, latitude1# longitude2, latitude2# ... longitudeN, latitudeN#'. It's noteworthy 

that all bikes were GPS-tracked, effectively rendering a bike trip as a sequence of GPS 

points ordered chronologically, such as p1 → p2 → ··· → pn, where each point is 

described by geospatial coordinates and a timestamp, denoted as p = (x, y, t). However, 

to address privacy concerns, Mobike preprocessed the tracks within the dataset. 

Consequently, each track contains solely an assortment of chronologically disordered 

spatial locations, devoid of temporal data, implying that the actual trip routes of users 

remain undisclosed. 

Upon extracting the sequentially ordered trips, the researchers proceeded to compute the 

distances for all trips. Subsequently, they filtered out trips exceeding a distance of 50 

km or a time duration surpassing 10 hours. Following this rigorous data cleaning 

process, a refined dataset containing 1,023,529 trips was obtained. 

In analyzing the data, the calculated mean trip distance stood at 2.4 km, accompanied by 

a standard deviation of 2.2 km. Cumulatively, the summation of distances for all bike 

trips amounted to an impressive 2.4 million kilometers. 

As for travel time, the average duration was determined to be 16.8 minutes, with a 

corresponding standard deviation of 18.5 minutes. Remarkably, the cumulative travel 

time for all bike trips translated to an astonishing 32.7 years. 
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Authors 

 

Bicycle variables 

 

Target variable 

 

[Huthaifa I. Ashqar et al, 

2019] 

station ID, the number of 

available bikes, number of 

available docks, and the 

precise time of recording 

 

Bike counts at different 

stations 

[The University of 

Münster, 2020] 

hourly bicycle counts  

[Joost de Kruijf et al., 

2021] 

Longitude and latitude of 

the stops 

Reduction in car use 

[Craig Morton, 2020] cycle hires demand for cycling 

 

[Ahmed Jaber et al., 2023] 

on start station id, end 

station id, station latitude, 

station longitude, and trip 

time for each bike trip 

 

Members’ bike-sharing 

use 

 

 

[Ahmadreza Faghih-Imani 

et al, 2017] 

arrival rate due to 

customer usage, departure 

rate due to customer 

usage, refilling rate due to 

operator rebalancing, and 

removal rate due to 

operator rebalancing 

 

Demand (consisting of 

customer arrivals and 

departures), and 

Rebalancing (consisting of 

the frequency and quantity 

of operator refills and 

removals) 

 

 

 

 

[Hongtai Yang et al., 

2021] 

the start and end times, 

originating and concluding 

stations, trip duration, user 

category, and demographic 

information for annual and 

15-day members, covering 

age and gender, 

geographic coordinates 

and capacity information 

for each individual bike 

station 

 

 

 

Usage of bike sharing 

 

 

[Yongping Zhanga,2018] 

order identification (ID), 

user ID, bike ID, start 

time, the longitude and 

latitude of the origin, end 

time, the longitude and 

latitude of the destination, 

and track. Each attribute is 

a column in the dataset 

 

 

Petrol saving, reducing 

CO2 and NOx  emission  

Table 3: summary of articles, bike variables and target variables 
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3   BIKE DESCRIPTIVE ANALYSIS AND DATA PREPARATION 

  

The objective of this study is to analyze the usage of shared bikes based on weather 

conditions utilizing machine learning algorithms able to predict the future shared bike 

usage based on the weather forecasts. 

3.1 Descriptive analysis and data preparation 
The dataset utilized for analysis was sourced from the municipality of Vicenza city in 

northern Italy through the Ridemovi application, which is specifically designed for bike 

and e-bike sharing. The dataset comprises 12 separate Excel files, each corresponding to 

a month of the year 2022. In total, the dataset contains 30,378 rows of data. As it is 

expressed in Excel file: the first row includes 16 parameters, while the subsequent rows 

provide the  

corresponding parameter values for each individual trip. 

 

 

3.2 Recorded parameters:  
Variable Variable description Type of 

variable 

Ct City: The city that the data was collected. All data was 

collected in Vicenza 

nominal 

B_N Bike number: Each bike is assigned a unique identification 

number 

discrete 

V_T Vehicle type: The Ridemovi application is designed for both 

bike and e-bike sharing, but this study specifically focuses on 

bike sharing 

binary 

U_I User id: Each user is given a unique user ID discrete 

U_T User type:There are two recorded user types: paying users binary 

Ct B_N V_T U_I U_T S_T E_T Dur Dis Sla Slo Ela Elo Mon Pro Pas

Vicenza IB12A00796bike 555.314 PAYG User01/01/2022 14:47:0101/01/2022 14:47:360.583300 6 45.545911 11.547220 45.55 11.547002 100 0 0

Vicenza IB12A01095bike 154.219 PAYG User01/01/2022 15:50:5201/01/2022 15:55:334.683300 12 45.545391 11.550808 45.54 11.541374 100 0 0

Vicenza IB12A04412bike 44.586 Pass User01/01/2022 17:05:4901/01/2022 17:21:4715.966700 1,996 45.560380 11.529404 45.55 11.547403 100 100 1

Vicenza IB12A00835bike 544.095 PAYG User01/01/2022 20:07:1701/01/2022 20:33:1425.950000 3,016 45.544987 11.523768 45.53 11.508011 200 0 0

Vicenza IB12A00354bike 287.271 PAYG User02/01/2022 07:01:5202/01/2022 07:12:4610.900000 1,689 45.542053 11.540565 45.56 11.544154 100 100 0

Vicenza IB12A01692bike 449.899 PAYG User02/01/2022 09:08:1802/01/2022 09:20:4412.433300 0 45.508005 11.561179 45.51 11.561179 100 0 0

 Table 4: dataset obtained from Ridemovi application 
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and pass users 

S_T Start time:The exact date and time the trip had started temporal 

E_T End time: The exact date and time the trip had ended temporal 

Dur Duration: The duration of each trip is recorded in minutes continues 

Dis Distance: The distance between the starting and ending points 

of trips is recorded in meters 

continues 

SLa Start latitude: The system captures the latitude coordinate of 

the starting point per trip 

continues 

SLo Start longitude: The system captures the longitude coordinate 

of the starting point per trip 

continues 

ELa End latitude: The system captures the latitude coordinate of 

the ending point per trip 

continues 

ELo End longitude: The system captures the longitude coordinate 

of the starting point per trip 

continues 

Mon Amount: The recorded data includes the total payment 

amount per trip 

discrete 

Pro Promotion: Price difference to calculate payment amount discrete 

Pas Pass: A binary variable to show that the user was pass or 

paying 

binary 

Table 5: Recorded parameter description 

In order to fulfill the objective of analyzing shared bike usage in relation to daily 

weather conditions, the data was transformed to a daily basis. This was achieved by 

merging the data using SQL techniques. Consequently, a dataset was created, consisting 

of 365 rows, each representing a unique day throughout the year 2022. 

Given that the city remains consistent across all data entries and the bike number and 

user type do not significantly impact our analysis and this study's focus is solely on 

bikes. Consequently, five attributes were deemed irrelevant and eliminated from the 

dataset, leaving a total of 11 remaining attributes for analysis. 

3.3 Univariate Analysis 
  dur dis U_I mon pro pas Sla Slo Ela Elo 

average 1197.097 106439.718 83.195 10063.014 4885.496 5.617 45.548 11.544 45.548 11.544 

max 4608.100 235522.000 176.000 22800.000 12900.000 19.000 45.581 11.554 45.581 11.556 

min 47.183 5030.000 4.000 500.000 100.000 0.000 45.541 11.536 45.526 11.495 

std-dv 631.647 48867.966 34.701 4362.502 2525.125 4.643 0.002 0.003 0.003 0.004 

Table 6: average, maximum, minimum and standard deviation of dataset 

As can be seen in the table the longest distance traveled was 235522 meters and the 

standard deviation is 48867.96 showing the high variability within the dataset distance 

values.  

Moreover, a significant variation exists in trip durations, resulting in a substantial 

disparity between the maximum and minimum durations observed. 

To gain deeper insights into the evolution of trip duration throughout the year 2022, a 
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comprehensive plot has been created. The plot reveals distinct fluctuations in bike usage 

across various days of the year, highlighting the dynamic nature of trip durations. 

In the plot, it is evident that the trip duration experienced an upward trend from May to 

October after a downward in January and February, followed by a subsequent decline in 

November, December. 

 
Chart 1: Trip duration based on the days of 2022 

                                                                

It is also possible to see the difference in demand for shared bike between weekdays and 

weekends. 

 
Chart 2: Trip duration in weekdays and weekends 

A statistical hypothesis has been done on the data of year 2022, in order to assess the 

difference trips’ duration between weekdays and weekend. Firstly, a new variable has 

been defined to show the weekdays and weekend by assigning the value 0 to weekdays 

and 1 to weekend. The result obtained out of this analyze is as follows: 

 A small p-value (usually less than 0.05) suggests that the difference between the groups 
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is statistically significant. In this case, the p-value is 0.01086, which indicates some 

evidence against the null hypothesis. 

The 95% confidence interval (41.38988 to 313.97530). The mean value of weekdays 

(1247.725) is higher than the mean value of weekends (1070.042), but the difference is 

not statistically significant.  

 

 

3.4 Data visualization 

3.4.1 Normality 
Normality typically refers to the distribution of data. A normal distribution, also known 

as a Gaussian distribution or bell curve, is a symmetrical probability distribution where 

the majority of observations cluster around the mean, and the data points are evenly 

distributed on both sides. In a normal distribution, the mean, median, and mode are all 

equal.  

Visual inspection of the distribution may be used for assessing normality, although this 

approach is usually unreliable and does not guarantee that the distribution is normal. 

However, when data are presented visually, readers of an article can judge the 

distribution assumption by themselves. The frequency distribution (histogram), stem-

and-leaf plot, boxplot, P-P plot (probability-probability plot), and Q-Q plot (quantile-

quantile plot) are used for checking normality visually. The frequency distribution that 

plots the observed values against their frequency, provides both a visual judgment about 

whether the distribution is bell shaped and insights about gaps in the data and outliers 

outlying values. The boxplot shows the median as a horizontal line inside the box and 

weekdays weekends

ssss 

Trip duration 

Chart 3: box plot of weekdays and weekends 
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the interquartile range (range between the 25th to 75 the percentiles) as the length of the 

box. The whiskers (line extending from the top and bottom of the box) represent the 

minimum and maximum values when they are within 1.5 times the interquartile range 

from either end of the box. 

In order to assess the normality of variables, RStudio programming language was 

utilized to visually represent the distribution of each variable through box plots, which 

can be observed as depicted below. 

 

As evident from the boxplots, the variables exhibit different ranges. Consequently, a 

scaling function was applied to the data in order to standardize them, resulting in a new 

boxplot shown below. 

As can be seen almost all of boxplots are symmetric and the distribution of variables are 

normal. 

To examine the normality of the data distribution, histogram plots were utilized for the 

Chart 4:box plot of distribution of each variable 

Chart 5: boxplot of normalized variables 
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variables. The outcomes of this analysis are presented below. 

                

        

 
 

 

   
 

 

 

 
Chart 10:  histogram plot of pass_user 

 
Chart 11:  histogram plot of promotion_deduction 

 

 

 

 

                                                                     

In the histogram plots, it is evident that the distance, original amount, promotion 

deduction, and user ID follow a normal distribution, characterized by a bell-shaped 

curve. However, the pass user data does not exhibit a normal distribution. Similarly, the 

distribution of trip time is not completely normal and tends to skew towards the left 

side. 

When assessing bike usage based on each season, the following results are observed: 

Chart 6:histogram plot of trip duration Chart 7: histogram plot of ride_distance 

Chart 8: histogram plot of original_total_amount Chart 9: histogram plot of user_id 
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 spring summer fall winter 

dur 118531.9 147942.7 116393.7 54072.22 

dis 10160614 12290400 11410554 4988929 
Table 7: bike usage in different seasons 

The table clearly indicates that trip durations during winter are the shortest, while trip 

durations substantially increase during the summer season. This observation holds true 

for the distance traveled by bike as well. 

 

3.5 Main points of the trips 
Data has been merged by using the SQL based on the User_id. This merging process 

resulted in a dataset comprising 4626 rows. 

U_I Sla Slo Ela Elo 

1.073.603 45.56467 11.53926 45.5689 11.52446 

784.348 45.56161 11.53042 45.54741 11.54615 

1.060.599 45.54607 11.5571 45.55231 11.54846 

588.143 45.54486 11.52781 45.556 11.53377 

573.691 45.54608 11.55893 45.54603 11.55907 

942.258 45.54193 11.55821 45.54382 11.56305 

540.5 45.54322 11.51911 45.54318 11.5175 

947.6 45.54744 11.54487 45.54746 11.54485 
                          Table 8: dataset based on the user_id                

 

The starting and ending points are visualized on the Vicenza map using the R 

programming language by instalation the leaflet package. The leaflet library is 

employed for this purpose. The plot clearly illustrates that some points overlap, as each 

ending point can be a starting point for another trip. 

 

 
                                                                                   

  Figure 6: starting points Figure 5: ending points 
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To determine the main starting and ending points, R Studio was utilized to calculate the 

frequency of each location. The most frequently occurring location was then chosen as 

the main point for both starting and ending points. 

 longitude latitude 

Starting point 11.540927 45.541862 

Ending point 11.54055 45.541638 
Table 9:  main starting and ending point 

As was expected the main starting and ending points are located at train station of 

Vicenza. The red point indicates the starting point, and the blue point indicates the 

ending point. 

 

 

 

 

 

 

 

                                                                   

 

 

 

 

 

 

 

 

 

Figure 7: starting and ending points 

Figure 8: location of starting and ending point 
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4   WEATHER DATA METHOD LITERATURE REVIEW 

 

 

Weather conditions and weather quality data are typically collected from various 

sources, including weather stations, satellites, and weather balloons. Weather condition data 

typically encompasses parameters such as temperature, humidity, and wind speed, among 

others. On the other hand, weather quality data incorporates essential information about harmful 

airborne particles like NO, CO, O3, and PM10, making it critical for understanding air quality 

and its impact on human health and the environment. The data collected includes various types, 

such as categorical and numerical data. For facilitating a comprehensive analysis of weather 

patterns and air pollution levels the appropriate preparation is required. 

In recent years, the application of machine learning (ML) and artificial intelligence (AI) in 

weather data analysis has witnessed significant growth. ML algorithms are effectively utilized 

for tasks like pattern recognition, anomaly detection, and enhancing the accuracy of weather 

forecasts. Additionally, AI-driven decision support systems play a crucial role in interpreting 

complex weather data, enabling timely warnings for extreme events, such as hurricanes and 

storms. As a result, adequate preparation and preprocessing of data for ML algorithms become 

paramount, and researchers have explored various approaches to achieve this.  

Different weather condition data including: 1. Real temperature in °C, 2. Apparent temperature 

in °C, 3. Humidity in percentage (%), 4. Wind speed in km/h, 5. Category of weather (e.g., 

rainy, foggy, cloudy, etc.) gathered by [El Arbi Abdellaoui Alaoui et al, 2021]. In order to 

manage the bike sharing in smart cities by using machine learning and internet of things. 

To facilitate the usage of this weather data in machine learning algorithms, the researchers 

employed a process of data preparation. Categorical data was codified, with each weather 

condition being assigned a numerical value. This transformation allowed the incorporation of 

weather categories into the machine learning model. Additionally, all the features of the weather 

data were normalized using the following formula:     

 𝑉ij ⟵
𝑉ij − min𝑗(𝑉ij) 

max𝑗(𝑉ij) − min𝑗(𝑉ij)
 

This normalization process was carried out to minimize the impact of varying scales among the 

different features, ensuring that no single variable dominated the predictor performance. By 
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conducting this comprehensive analysis and data preparation, [El Arbi Abdellaoui Alaoui et 

al,2021] aimed to enhance the accuracy and effectiveness of their machine learning-based 

intelligent bike sharing management system. 

The same variables plus solar intensity were also assessed by [Mahmoud Elgendi et al, 2023]. 

They improved the accuracy of predictions, by eliminated outliers from the dataset (Outliers are 

data points that deviate significantly from the rest of the data and can adversely impact the 

performance of machine learning models). Like what has been done by [El Arbi Abdellaoui 

Alaoui et al,2021], to further enhance the accuracy and training speed of the machine learning 

model, the features including solar intensity, temperature, humidity, wind speed were scaled to a 

specific range. Feature scaling is essential because it ensures that all features contribute equally 

to the model, preventing one dominant feature from overshadowing others. The researchers 

used the same formula used by [El Arbi Abdellaoui Alaoui et al,2021] for scaling the features: 

XScaled =  
X –  Xmin

Xmax –  Xmin
 

In this formula: 

- XScaled represents the scaled value of a feature. 

- X represents the original value of the feature. 

- Xmin represents the minimum value of the feature. 

- Xmax represents the maximum value of the feature 

By performing feature scaling, the researchers allowed the gradient descent algorithm to 

converge faster to the optimal minima during the training process. Scaling the features to similar 

and small ranges aids in the optimization process, leading to more accurate predictions. 

In contrast, [Jan Wessel, 2020] to prepare the weather condition data, used dummy variables as 

following:  

During this study two weather variables, average monthly temperature and monthly 

precipitation have been collected and three different types of regression models were applied to 

analyze the average monthly temperature and monthly precipitation data. Non-linear impacts 

were observed for actual and forecasted air temperature, as well as precipitation levels. 

Consequently, so, six dummy variables indicating light drizzle (precipitation<0.5 mm/h), strong 

drizzle (0.5 mm/h precipitation <1 mm/h), light rain (1 mm/h precipitation <2 mm/h), moderate 

rain (2 mm/h precipitation <5 mm/h), heavy rain (5 mm/h precipitation <10 mm/h), and very 

heavy rain (10 mm/h precipitation) have been replaced the continuous data. Moreover, another 

dummy variable is used in the regression model to control for actual snowfall. It takes the value 

1 if we have precipitation and sub-zero air temperatures, and otherwise 0. 

Two years before what is done by [El Arbi Abdellaoui Alaoui et al, 2021], snow data was 

treated as categorical, where a value of 1 indicated the occurrence of snow and 0 represented 
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non-occurrence of snow on a given day by [Ran An et al, 2019]. Other weather variables were 

analyzed as follows: 

Rainfall Data: Rainfall data was analyzed by calculating the total daily rainfall. Each day's 

rainfall amount was recorded and used for further analysis. 

Temperature, Wind, and Humidity Data: For temperature, wind, and humidity, the average daily 

values were calculated. This approach allowed the researchers to obtain representative figures 

for these weather conditions and use them in their subsequent analysis. 

In 2018 and 2020 two research were done to analyze weather condition data namely: 

temperature, humidity, wind speed and precipitation by [Kyoungok Kim, 2018] and [Craig 

Morton, 2020] however different methodology was applied on data. 

[Kyoungok Kim, 2018] collected weather data at various time intervals, ranging from 1 hour to 

a year. Recognizing that temperature and humidity may not independently impact people's 

activities, the researchers considered the Temperature Humidity Index (THI) as an explanatory 

variable, which accounts for the interaction between these two variables. The THI serves as a 

combined indicator of environmental temperature and relative humidity, and it was employed as 

a discomfort index to assess the risk of heat stress. THI is defined as follows: 

𝑇𝐻𝐼 =
9

5
𝑇 − 0.55(1 − 𝑅𝐻)(

9

5
T-26) +32 

where T represents temperature in degrees Celsius (°C) and RH represents relative humidity in 

percentage (%). When the THI exceeds 80, it indicates discomfort for most people, while a THI 

of less than 70 implies no discomfort. To establish the relationship between the THI and 

discomfort, the THI was further transformed using the logit function as follows: 

𝑓(𝑥) =
1

1 + exp {−0.8(𝑥 − 75)}
 

Through this transformation, the final THI values were scaled within the range of [0, 1], with 

values close to 0 indicating low discomfort (THI < 70) and values close to 1 representing high 

discomfort (THI > 80). 

To ensure comparability and standardization of variables, the researchers converted the unit of 

relative humidity from percentage to ratio and adjusted the unit of precipitation from 

millimeters (mm) to centimeters (cm). Subsequently, daily weather variations were calculated 

based on meteorological observations at one-hour intervals. Mean values were utilized for 

temperature, relative humidity, wind speed, and THI, while the total sum of precipitation was 

employed as the representative value for each day. But [Craig Morton, 2020] utilized weather 

data for study examining the demand for cycle sharing and its association with weather 

conditions, air quality levels, and cycling patterns among regular and casual users in London, 

including maximum air temperature (Temp), mean wind speed (Wind), mean relative humidity 
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(Humid), and precipitation, sourced from the Centre for Environmental Data Analysis, which 

stores information from the UK Met Office weather stations. As mentioned, [Craig Morton, 

2020] analyzed the weather quality data as well. 

Air quality data, specifically the mean concentration levels of ozone (O3), nitrogen oxides 

(NOX), and particulate matter 10 (PM10), were obtained from the monitoring station in London 

Bloomsbury, managed by the Department for Food, Environment, and Rural Affairs. 

To process the weather data, a two-step transformation procedure was followed. Firstly, a 9-

term moving average was calculated using a weekly index (τ). This index allowed for a 

comparison of the observed value (Dt) on a given day (e.g., a Tuesday) with the same day in the 

preceding and succeeding 4 weeks, as summarized in Eq: 

𝐷𝑡
𝑀𝐴±4 =

∑ 𝐷𝑡+7𝜏
4
𝜏=−9

9
 

Secondly, the residuals were computed to capture deviations from the moving average, as 

shown in Eq: 

∆𝐷𝑡 =
𝐷𝑡−𝐷𝑡

𝑀𝐴±4

𝐷𝑡
𝑀𝐴±4   

However, for precipitation, daily residuals were deemed unsuitable due to occurrences of days 

with no recorded rainfall. Instead, precipitation was included in the analysis as two dummy 

variables: light rainfall (LPrecip) represented by precipitation between 0.1 and 4.9 millimeters, 

and heavy rainfall (HPrecip) classified as precipitation of 5 millimeters or higher. 

Two different researchers conducted in 2019 and 2021 and researchers used dummy variable for 

data preparation method. 

[Anik Das et al, 2019] employed qualitative-based measures extracted from NDS (Naturalistic 

Driving Study) videos to categorize fog into two types: heavy fog and distant fog. This 

classification was based on multiple factors such as the visibility of road markings, road signs, 

roadside surroundings (e.g., delineators, guardrails, New Jersey barriers), and the horizon. A 

foggy condition was labeled as "heavy fog" when the majority of these elements could not be 

recognized, indicating severe visibility impairment. On the other hand, "distant fog" was 

defined as a foggy weather condition where all the above-mentioned elements could still be 

distinguished, except for the horizon.  

To account for the high variability of weather conditions within a single trip, the researchers 

divided each trip into one-minute time chunks. This division allowed them to create 

homogeneous segments with similar traffic and environmental conditions. Manual observation 

templates were provided to video observers, who reported the traffic and environmental 

conditions for each one-minute segment, facilitating accurate data collection. In addition, [Ying 
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Wang et al, 2021] used dummy variables for weather quality features and ranked air quality into 

six levels based on AQI: excellent (0 = AQI≤50), good (50 < AQI≤100), lightly polluted (100 < 

AQI≤150), moderately polluted (150 < AQI≤200), heavily polluted (200 < AQI≤300) and 

severely polluted (300 < AQI≤500). As previous studies have observed, tourists may react to air 

quality according to the air quality standards established by the government (Yoon, 2019). We 

therefore used the government air quality levels (LEVEL) as an alternative measure for air 

quality. they designed six dummy variables (EXCELLENT, GOOD, LIGHTLY, 

MODERATELY, HEAVILY, SEVERELY) to record the six levels.  

They also included weather conditions as independent variables in their model. A number of 

studies have shown that temperature, precipitation, wind and cloudiness affect tourist perception 

and tourism activity. Thus, daily average temperature (TEMPERATURE), wind level (WIND), 

precipitation (RAIN) and cloudiness (CLOUD) in the tourist attraction were considered. 

4.1 Summary of weather condition and weather quality data: 
 

 

Authors 

 

Weather condition variables 

 

Weather 

quality 

variables 

 

Model 

 

Target variable 

El Arbi 

Abdellaoui 

Alaoui et al, 

2021 

Real temperature, Apparent 

temperature, Humidity, Wind speed, 

Category of weather 

 Linear regression, 

random forest, 

XGBoost, SVR, 

AdaBoost, 

bagging regressor 

 

 

number of bikes shared 

Mahmoud 

Elgendi et 

al, 2023 

solar intensity, temperature, 

humidity, wind speed 
 machine learning 

algorithms: LR 

and ANN 

solar still locations 

Jan Wessel, 

2020 
Light drizzle, Strong drizzle, Light 

rain, Moderate rain, Heavy rain, Very 

heavy rain, Snowfall 

 Log-linear 

regression 

bike ridership 

Ran An et al, 

2019 
Snow, Rainfall, Temperature, Wind, 

Humidity 
 multilevel 

regression 

number of cycling trips 

Kyoungok 

Kim, 2018 
Temperature, Humidity, wind speed, 

precipitation 
 Clustering  number of bike rentals 

Craig 

Morton, 

2020 

Max Temperature, Mean wind speed, 

Mean relative humidity, Mean 

relative precipitation 

O3 ,NOX , 

PM10 

ADL regression 

models 

 

cycling demand 

Anik Das et 

al, 2019 
Heavy fog, Distant fog   

 

logistic 

regression 

significant 

driver behavior and 

performance differences 

between driving in foggy 

conditions and clear weather 

conditions 

Ying Wang 

et al, 2021 

AQI excellent, AQI good, AQI 

lightly polluted, AQI moderately 

polluted, AQI heavily polluted, AQI 

severely polluted, average 

temperature, wind level, precipitation, 

cloudiness 

 

 Sentiment 

analysis 

 

tourists’ emotional experience 

Table 10: Summary of weather condition and weather quality data 
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5   WEATHER DATA DESCRIPTION AND DATA PREPARATION 

 

 

During this study, weather data has been obtained from ARPAV website, 

comprising two distinct types of information: data pertaining to weather quality and 

data concerning weather conditions, encompassing parameters such as temperature, 

humidity, wind speed, and other relevant factors. These data sets have been recorded in 

Excel files, facilitating organization and analysis for the research. 

5.1 Weather condition data: 
The data collected encompasses 13 variables, and dataset contains 8,760 rows of 

information. Each row corresponds to a specific time of day during the entire year 2022, 

providing a comprehensive representation of the weather conditions throughout the 

year. These variables capture various aspects of the weather, allowing for detailed 

analysis and insights into the meteorological patterns and trends during the specified 

period. 

S_I day mon year time T_M pre H_MI H_MA S_R W_S M_G D_R 

451 1 1 2022 1 1.3 0 99 99 0 0.5 157.5 SSE 

451 1 1 2022 2 1.2 0 99 99 0 0.5 135 SE 

451 1 1 2022 3 1 0 99 99 0 0.6 157.5 SSE 

451 1 1 2022 4 0.7 0 99 99 0 0.7 202.5 SSO 

451 1 1 2022 5 0.8 0.2 99 99 0 0.4 112.5 ESE 

451 1 1 2022 6 0.5 0 99 99 0 0.5 180 S 

451 1 1 2022 7 0.3 0 99 99 0 0.7 180 S 

451 1 1 2022 8 -0.1 0 99 99 0 0.5 90 E 

Table 11: Dataset obtained from ARPAV website 

5.1.1 Recorded attributes: 
Variables Variables’ description Type of variable 

S_I station ID discrete 

Day day of the month nominal 

Mon month of the year nominal 

Year data has been collected in year 2022 discrete 

Time time of the day data has been obtained temporal 

T_M Medium temperature at 2 m(°c) continues 
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Pre precipitation (mm) continues 

H_MI minimum humidity at 2m (%) continues 

H_MA maximum humidity at 2m (%) continues 

S_R solar radiation (MJ/m2) continues 

W_S average wind speed(m/s) 

 

continues 

M_G maximum gust(m/s) continues 

D_R direction prevailing 
 

nominal 

Table 12: Recorded parameters description 

Utilizing SQL, we merged the dataset based on the day of the year 2022 and 

subsequently computed the weather conditions. 

day AVG(t_m) AVG(pre) Min(h_mi) Max(h_ma) AVG(s_r) AVG(w_s) Max(m_g) 

1/1/22 2.041667 0.008333 94 99 0.1875 0.566667 270 

2/1/22 -0.08333 0.008333 99 99 0.128583 0.429167 315 

3/1/22 4.329167 0.008333 90 99 0.056458 0.3 337.5 

4/1/22 5.966667 0.1 90 99 0.0295 0.3 337.5 

5/1/22 6.8375 0.291667 60 99 0.016792 0.970833 337.5 

6/1/22 4.054167 0.108333 44 99 0.23725 0.95 225 

7/1/22 0.683333 0.008333 46 99 0.22225 0.3125 337.5 

Table 13: Merged dataset 

Certain variables, namely S_I, day, mon, year, time, and D_R, were excluded from the 

analysis, while eight variables were retained. 

  T_M Pre H_MI H_MA S_R W_S M_G 

Average 14.36525 0.093311 48.85753 97.42192 0.595962 0.862135 272.8664 

Max 29.20417 2.783333 99 99 1.231625 3.195833 337.5 

Min -0.28333 0 15 66 0.0055 0.129167 67.5 

Std_dv 8.300384 0.280486 17.46949 4.309147 0.349135 0.446818 55.30656 
Table 14: average, maximum, minimum and standard deviation of variables 

The table reveals that the average temperature in Vicenza is approximately 14°C, while 

the humidity spans from 48% to 97%, accompanied by an average wind speed of 0.8 

m/s. 
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To assess the normality of the variables, we utilized the RStudio programming language 

to generate box plots, visually depicting their distributions. Given the variability in 

ranges among these variables, we applied data standardization to alleviate this disparity. 

The resultant presentation is illustrated in the subsequent box plot. 

As can be seen all variables except precipitation and maximum humidity, have 

symmetric distribution and are normal. 

We can also evaluate normality using a Q-Q plot, as depicted below.  All variables 

display normal distribution characteristics, with the exception of precipitation. 

 

 

                             T_M                               Pre                              H_MI

 Chart 12: Box plot of weather condition variables 
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5.2 Weather quality data: 
The collected data is comprised of information stored within four distinct Excel files. 

The variables encompass measurements of CO, NO2, O3, PM10, and PM2.5. 

 

 

 

 

 

 

 
 

 

 

 

 

 

                               H_MA                           W_S                                  S_R

                           M_G                               

Attenzione : I dati tengono conto dei limiti di rilevabilità.

Periodo da   Jan-22 Dec-22

Quartiere Italia Quartiere Italia

PM10 PM2.5

Giorno µg/m3 µg/m3

1/1/22 62 53

1/2/22 43 40

1/3/22 50 40

1/4/22 58 52

Dati Rete Qualità dell'aria 

Nota : I dati provengono direttamente dalle centraline automatiche e possono subire 

parziali modifiche anche dopo la validazione.

Chart 13: Q-Q plot of attributes 

 Figure 9: weather quality data provided by ARPAV website 
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The map illustrates the data acquired from two distinct stations: Quartiere Italia and San 

Felice.  

 

 

The NO2 data from Quartiere Italia was excluded from consideration due to a significant 

prevalence of null values within the dataset. Instead, the focus of the analysis was 

directed towards the data collected in San Felice. Additionally, in the case of PM10, the 

average values from both station datasets were employed, as the null value occurrences 

were consistent between the two stations. The data for PM2.5 and O3 was sourced from 

the Quartiere Italia station, whereas the CO data was acquired from the San Felice 

station. 

The dataset containing 365 rows and encompassing six variables, delineated as follows. 

 

day CO NO2 O3 PM10 PM2.5 

1/1/22 1.049005 23.19024 8.798593 60 53 

2/1/22 1.016667 25.625 6.5 43.5 40 

3/1/22 0.744838 35.85691 9.048593 47 40 

4/1/22 0.8375 29.5 7 57.5 52 

5/1/22 0.561505 24.27357 19.92359 31.5 27 

6/1/22 0.429167 28.41667 30.45833 15 15 

7/1/22 0.528171 41.02357 15.75693 26.5 24 
Table 15: weather quality data 

PM10(µg/m3): stands for "Particulate Matter 10," which refers to airborne particles with 

a diameter of 10 micrometers or smaller. They can come from various sources and are 

inhalable, potentially impacting respiratory health. Monitoring and controlling PM10 

 Figure 10 :Stations for obtaining weather quality data 
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levels are essential for maintaining air quality and protecting public health. 

PM 2.5(µg/m3): stands for "Particulate Matter 2.5," which refers to fine airborne 

particles with a diameter of 2.5 micrometers or smaller. These particles are smaller than 

PM10 and can penetrate deep into the lungs, posing significant health risks when 

inhaled. Sources include vehicle emissions, industrial processes, and combustion. 

Monitoring and limiting PM2.5 levels are crucial to safeguard public health and 

maintain good air quality. 

CO(mg/m3): carbon monoxide, a colorless, odorless gas formed from incomplete 

combustion. It can be harmful when inhaled, leading to symptoms like headache and 

dizziness. Monitoring and controlling CO levels are crucial for indoor air quality and 

public health. 

NO2 (µg/m3): nitrogen dioxide, a reddish-brown gas from vehicle and industrial 

emissions. It causes respiratory irritation and affects air quality. Reducing emissions is 

crucial for public health. 

O3(µg/m3): ozone, a harmful gas in smog formed by sunlight and pollutants. High levels 

can harm respiratory health. Reducing emissions is crucial for air quality and public 

health. 

  CO NO2 O3 PM10 PM2.5 

Average 0.376112 25.56578 49.16624 31.63826816 22.98886 

Max 1.079167 63.875 121.0486 97 78 

Min 0.0685 8.708333 2.291667 3 2 

Std_dv 0.179045 11.58488 32.62447 18.08241728 15.46264 
Table 16 : average, maximum, minimum, standard deviation of variables 

The table illustrates significant variability in the ranges of the variables, with substantial 

gaps between the maximum and minimum values for each variable. 

In order to evaluate the normality of the data, the box plots were constructed using the 

standardized values of the variables. This approach was chosen due to the substantial 

disparity in the magnitude of the values. 
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As can be seen in the plot all variables are normal and distributed symmetrically. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chart 14:  Boxplot of weather quality data 
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6   METHODOLOGY 

 

 

6.1 Training set and testing set 

Before proceeding with further transformations, it is imperative to allocate a portion of 

the data for evaluating the performance of the developed model. To achieve this, a 

percentage of the data has been reserved for testing purposes. Specifically, 80% of the 

data is designated for training the models, while the remaining 20% is dedicated to the 

testing set for performance assessment. 

The dataset comprises 365 rows corresponding to the year 2022. In the context of 

training and testing, four-fifth of the data, which equates to 292 rows, has been allocated 

to the training set, while the remaining 73 rows constitute the testing set. 

6.2   Ride distance case study 

6.2.1   Correlation Analysis of Weather Data Variables with 

Ride Distance 
Utilizing the RStudio programming language, an analysis was conducted to evaluate the 

correlations between various variables, encompassing weather conditions, weather 

quality, and ride distance. 

Results of correlation analysis: 

  dis t_m pre h_mi h_ma s_r w_s m_g co no2 O3 
pm10 pm2.5 

dis 1 0.5811862 -0.22517 -0.351 -0.0103 0.5335 0.079761 -0.15508 -0.48 -0.326 0.458 -0.347656 -0.4217 

t_m    0.5812 1 -0.02854 -0.3683 -0.0728 0.7685 0.363302 -0.23272 -0.68 -0.71 0.846 -0.565152 -0.661 

pre   -0.225 -0.028537 1 0.36314 0.11938 -0.236 0.205561 0.093908 -0.1 -0.194 -0.06 -0.174052 -0.1835 

h_mi  -0.351 -0.368325 0.36314 1 0.36544 -0.743 -0.34661 0.245588 0.357 -0.08 -0.6 0.2642296 0.2889 

h_ma  -0.01 -0.072771 0.11938 0.36544 1 -0.223 -0.3575 0.203635 0.1 -0.051 -0.25 0.0206459 0.0296 

s_r   0.5335 0.7685317 -0.23571 -0.7435 -0.2228 1 0.491775 -0.27008 -0.61 -0.379 0.897 -0.50786 -0.5484 

w_s  0.0798 0.3633017 0.20556 -0.3466 -0.3575 0.4918 1 -0.26166 -0.49 -0.359 0.592 -0.420377 -0.4607 

m_g  -0.155 -0.232719 0.09391 0.24559 0.20364 -0.27 -0.26166 1 0.258 0.1678 -0.31 0.2086432 0.2314 

co  -0.484 -0.675198 -0.10011 0.35656 0.09976 -0.614 -0.49093 0.257705 1 0.656 -0.65 0.7687008 0.8348 

no2 -0.326 -0.709565 -0.19418 -0.0802 -0.0506 -0.379 -0.35904 0.167804 0.656 1 -0.54 0.6604687 0.702 

o3    0.4577 0.8462223 -0.05962 -0.5964 -0.2543 0.8967 0.592178 -0.31055 -0.65 -0.543 1 -0.559144 -0.613 

pm10 -0.348 -0.565152 -0.17405 0.26423 0.02065 -0.508 -0.42038 0.208643 0.769 0.6605 -0.56 1 0.9654 

pm2.5 -0.422 -0.661009 -0.18347 0.28888 0.02961 -0.548 -0.4607 0.231445 0.835 0.702 -0.61 0.9653592 1 
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Table 17:  correlation between different variables 

 

 

 The table demonstrates several noteworthy correlations among the variables. 

Specifically: 

• There is a high correlation between two independent variables, PM2.5 and 

PM10. Due to multicollinearity concerns, it is advisable to remove one of them. 

In this case, PM10, which has the lower correlation with the dependent variable 

(ride distance), will be eliminated. 

• Strong correlations are observed between O3 and mean temperature, as well as 

between O3 and solar radiation. 

• There is a notable correlation between PM2.5 and CO. 

• Mean temperature and solar radiation exhibit the highest correlations with the 

distance of trips conducted within a given day of the year 2022. 

• Conversely, the maximum gust and minimum humidity variables display the 

lowest reverse correlations with ride distance. 

6.2.2   Training models for predicting the distance traveled by shared 

bike 

6.2.2.1     Linear regression model 
By applying the linear model on the data, we can derive the following results: 

 

Min 1Q Median    3Q Max 

-145833 -24413 -771 24573 94344 
Table 18: analyzing the symmetricity of residuals 

• Residual standard error: 36860 on 281 degrees of freedom 

• Multiple R-squared:  0.4752  

• Adjusted R-squared:  0.4546  

• F-statistic: 23.13 on 11 and 281 DF 

• p-value: < 2.2e-16 

As can be seen in the results the distribution of residuals is not symmetric, indicating 

that the model may have limitations in capturing certain patterns in the data. The 

average difference between the actual data points and the predicted value by model is 

36860. R square is equal to 0.47 so approximately 47.52% of the variability in the 

dependent variable is accounted for by independent variables. The adjusted R-squared 
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value, which is 0.4546, is a modified version of R-squared that accounts for the number 

of independent variables in model. It penalizes the addition of unnecessary variables. In 

this case, suggested that the model explains 45.46% of the variance while considering 

the model's complexity. 

The analysis reveals that the most significant coefficients are associated with medium 

temperature and carbon dioxide. Hence, these two factors assume a pivotal role in 

predicting the distance traveled. It is notable that variables such as precipitation, solar 

radiation, wind speed, and ozone exhibit relatively lower importance in the predictive 

model. 

The F-statistic is 23.13, and it has associated degrees of freedom (DF) values. 

The p-value associated with the F-statistic tests the null hypothesis that all coefficients 

(independent variables) are equal to zero (i.e., the model has no predictive power). A 

very low p-value, as indicated by "< 2.2e-16" (essentially zero), suggests that at least 

one of the independent variables is significant in explaining the variation in the 

dependent variable. Therefore, the model, as a whole, is statistically significant. 

 

6.2.2.1.1      Fine tuning the linear model 
o Feature Selection/Engineering 

Some features that have the highest value of Pr, have been eliminated from the 

model and the best model that can be obtained is as bellow, 

 

  Min    1Q 

  

Median   3Q  Max 

-148984 -24414 -742 25694 96279 
Table 19: analyzing the symmetricity of residuals 

                 

• Residual standard error: 36760 on 286 degrees of freedom 

• Multiple R-squared:  0.4686 

• Adjusted R-squared:  0.4575  

• F-statistic: 42.03 on 6 and 286 DF 

• p-value: < 2.2e-16 

It is apparent that several variables, notably medium temperature, solar radiation, 

and carbon dioxide, play pivotal roles in predicting the traveled distance. 

The R-squared values (Multiple R-squared and Adjusted R-squared) suggest that the 
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independent variables in the model explain approximately 46.86% of the variance in 

the dependent variable. This implies that the model has moderate explanatory 

power.  

The residual standard error is now 36,760, which is an improvement of 100 

compared to the previous model. The adjusted R-squared value is 0.45, implying 

that the model explains 45.75% of the variance while considering the model's 

complexity. The F-statistic is 42.03, indicating that at least one independent variable 

in the model has a statistically significant effect on the dependent variable.  

6.2.2.1.2    Shapley values: 
By employing the kernel SHAP (SHapley Additive exPlanations) method within the 

linear regression framework, Shapley values have been derived as follows: 

 

 

The graph illustrates that mean temperature and solar radiation positively influence 

the distance traveled by shared bikes. Conversely, ozone, carbon monoxide, wind 

speed, and precipitation exhibit a negative impact on the distance traveled. In 

simpler terms, higher mean temperature is associated with a greater distance 

traveled. 

6.2.2.1.3   Cross-Validation 
The model has been refined using cross-validation techniques to provide a more 

Chart 15: Shapley values for linear regression 
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accurate assessment of its generalization performance. This approach enhances 

the model's ability to make predictions on unseen data. 

 

RMSE R-squared MAE 

37382.93 0.4427339 30345.87 
Table 20: results of using cross validation 

The RMSE of approximately 37,382.93 suggests that the model's predictions have 

some variability from the true values. Similarly, the MAE of approximately 

30,345.87 represents the average absolute error. 

The R-squared value of approximately 0.4427 indicates that the linear regression 

model explains 44.27% of the variance in the dependent variable. While this 

suggests a moderate level of explanatory power, there is still a significant portion of 

unexplained variance. 

 

 

6.2.2.2    Support vector machine 
When applying the Support Vector Machine (SVM) with a five-fold cross-validation 

approach to predict the distance traveled by bike based on various variables, the 

following results have been obtained: 

C  RMSE 

  

Rsquared MAE  

0.25 37641.29 0.437308 30348.38 

0.5 37473.23 0.439156 29989.25 

1 37615.87 0.437603 29739.91 

2 38126.46 0.428617 29672.37 

4 39191.12 0.407241 30225.07 

8 40030.92 0.398058 30762.69 

16 42710.12 0.355171 32589.7 

32 44306.86 0.342901 34039.71 

64 46099.36 0.327732 35027.72 

128 49367.32 0.306216 37888.94 
Table 21: support vector machine results 

 

In the obtained results, it is evident that when the regularization parameter ‘C’ is set 

to small values (e.g., 0.25, 0.50, 1.00), the model exhibits a decrease in both RMSE 

(Root Mean Squared Error) and MAE (Mean Absolute Error). This reduction 

signifies enhanced predictive accuracy, but it raises concerns of potential 
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overfitting. 

Nevertheless, it is important to note that the R-squared values remain relatively low 

across these ‘C’ values. This observation implies that the model may not effectively 

account for a substantial portion of the variance in the target variable. In other 

words, it may not adequately capture the underlying relationships and patterns in the 

data. 

With the increase in ‘C’ values (e.g., 16.00, 32.00, 64.00, 128.00), a noteworthy 

trend emerges in the model’s performance. Specifically, the RMSE (Root Mean 

Squared Error) and MAE (Mean Absolute Error) values progressively rise, 

signifying a decline in predictive accuracy. Concurrently, the R-squared values 

decline, pointing to a reduction in the model’s explanatory power. 

This pattern underscores the trade-off between model complexity, governed by the 

‘C’ parameter, and the model’s ability to generalize effectively. As ‘C’ grows, the 

model becomes less prone to overfitting but may sacrifice predictive accuracy and 

explanatory capability. Hence, the selection of ‘C’ necessitates careful consideration 

to strike an optimal balance between these competing factors. 

Sigma’ being held constant suggests that the width of the RBF kernel was 

determined to be optimal at 0.1280465 for my dataset, and further variations in 

‘sigma’ did not significantly improve the model’s performance. 

‘C’ was chosen as 2, which represents the regularization parameter. A smaller ‘C’ 

typically results in a larger margin with more support vectors, while a larger ‘C’ can 

lead to a narrower margin with fewer support vectors. The value of 2 suggests a 

moderate level of regularization. 

6.2.2.2.1   Shapley values: 
By employing the kernel SHAP (SHapley Additive exPlanations) method within the 

Support Vector Machine framework, Shapley values have been derived as follows: 
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Chart 16:  Shapley value for support vector machine 

 

The graph clearly indicates that mean temperature and solar radiation have a direct 

impact on the target variable (distance traveled), with higher temperatures 

associated with greater ride distances. In contrast, PM2.5, CO, and wind speed exert 

a negative impact on the distance, signifying that higher PM2.5 levels and wind 

speed are linked to lower distances traveled. Notably, minimum humidity appears to 

have no discernible effect on the target variable. However, for maximum humidity, 

the distance traveled reaches its maximum around zero. 

6.2.2.3   Random Forest 
Random Forest was applied to the dataset using a five-fold cross-validation 

approach, yielding the following results: 
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mtry RMSE Rsquared MAE 

2 35859.37 0.491164 27770.5 

3 35585.3 0.496719 27356.52 

4 35689.3 0.493135 27294.35 

5 35721.4 0.49178 27321.85 

6 35750.55 0.491136 27273.8 

7 35994.14 0.485027 27453.12 

8 36078.77 0.482076 27529.04 

9 35725.46 0.492086 27414.89 

10 36082.12 0.482481 27608.94 

11 35979.53 0.485422 27460.93 
Table 22:  random forest results 

The results indicate that a larger value for “mtry” (Number of Variables Randomly 

Selected at Each Split), specifically a value of 6, resulted in improved model 

performance. This improvement is evident in both predictive accuracies, as 

indicated by lower values of RMSE (Root Mean Squared Error) and MAE (Mean 

Absolute Error), and increased explanatory power, as reflected in a higher R-

squared. 

It’s worth highlighting that increasing “mtry” tends to make individual trees in the 

Random Forest more decorrelated, which can effectively reduce overfitting. 

However, the choice of the optimal “mtry” value should be made judiciously, 

considering both cross-validation results and domain knowledge. This ensures that 

the model generalizes effectively to new, unseen data. 

In this context, the selection of “mtry = 6” represents a well-balanced choice, 

striking the optimal trade-off between predictive accuracy and model complexity 

based on the MAE criterion. This finding underscores the importance of thoughtful 

hyperparameter tuning in Random Forest modeling to achieve the best possible 

performance. 

6.2.2.3.1    Shapley values: 

Utilizing the kernel SHAP (SHapley Additive exPlanations) method within the 

framework of Random Forest, Shapley values have been computed as follows: 
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The graph reveals that mean temperature and solar radiation positively influence the 

distance traveled by shared bikes. Conversely, carbon monoxide, wind speed, 

precipitation, and PM2.5 exhibit a negative effect on the distance traveled. Notably, 

when max humidity is approximately zero, the distance traveled is high. Other 

variables do not show a clear impact on the target variable. 

6.2.3   Comparing the results of trained models 
Results obtained by three models containing linear regression, support vector 

machine and random forest are as following: 

 

 RMSE R-squared MAE 

Linear Regression 37382.93 0.442734 30345.87 

Support Vector Machine 38126.46 0.428617 29672.37 

Random Forest 35750.55 0.491136 27273.8 
Table 23: comparing the results of different algorithms on training data 

Chart 17: Shapley value for Random Forest 
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Among the three models, Random Forest performs the best in terms of predictive 

accuracy, as indicated by the lowest RMSE and MAE values. It also has the highest 

R-squared value, indicating a relatively better fit to the data. 

The Support Vector Machine (SVM) model has the second-best performance in 

terms of RMSE and R-squared. While its RMSE is slightly higher than that of 

Linear Regression, it has the lowest MAE, suggesting better accuracy. 

Linear Regression performs the least favorably in terms of RMSE and MAE, 

indicating relatively higher prediction errors. Its R-squared value also suggests it 

explains less variance in the target variable compared to the other models. 

6.2.4   Testing the models applied for predicting the distance traveled 

by shared bike 
When applying three different models—namely, Linear Regression, Support Vector 

Machine, and Random Forest to the testing dataset, the following results have 

emerged: 

 

  RMSE 

R-

squared MAE 

Linear Regression 30779.0225 0.531819 24044.03 

Support Vector Machine 3.31E+04 4.65E-01 2.61E+04 

Random Forest 3.15E+04 5.12E-01 2.55E+04 
Table 24:  comparing the results of different algorithms on test data 

Linear Regression has the lowest RMSE (Root Mean Squared Error) and MAE 

(Mean Absolute Error), which indicates better predictive accuracy and smaller 

prediction errors on the testing dataset. So, in terms of RMSE and MAE, Linear 

Regression outperforms both Support Vector Machine (SVM) and Random Forest 

on the testing dataset. Additionally, the higher R-squared value for Linear 

Regression suggests that it explains a larger proportion of the variance in the target 

variable compared to the other models. 

Therefore, based on these specific metrics (RMSE, MAE, and R-squared), Linear 

Regression is the best-performing model among the three for this dataset. 

Concluding that consistent model performing well on both the training and test sets 

and indicating learning meaningful patterns in the data is random forest so this 

algorithm can be used to predict the traveled distance based on the weather 

variables. 
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Furthermore, according to the results derived from the Shapley values, mean 

temperature, carbon monoxide, and solar radiation emerge as the most influential 

factors in bike usage. This suggests that bike users exhibit a higher inclination to 

utilize shared bikes in conditions characterized by sunny weather, warmth, and clean 

air. As a recommendation to the municipality of Vicenza, it is advised to allocate 

more bikes on days with such favorable weather conditions. Additionally, creating 

incentives, such as discounts, for colder or rainy days could encourage bike usage 

during less favorable weather. Given the frequent rainy days in Vicenza, especially 

in winter, the suggestion extends to providing rain covers, as depicted in the 

attached picture, to enhance the convenience and appeal of bike-sharing services on 

such days. 

 

 

 

Figure 11:  bicycle with cover 
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6.3   Trip duration case study 

6.3.1   Correlation Analysis of Weather Data Variables with Trip 

duration 
The correlation between various variables, encompassing weather conditions, 

weather quality, and ride distance, has been evaluated using RStudio as the 

programming language. 

Results are as following: 

 

  dur t_m pre h_mi h_ma s_r w_s m_g co no2 O3 pm10 pm2.5 

dur 1 0.61 -0 -0.39 -0 0.61 0.1 -0.17 -0.5 -0.35 0.572 -0.4 -0.4 

t_m 0.61 1 -0 -0.34 -0 0.75 0.3 -0.21 -0.7 -0.71 0.832 -0.6 -0.7 

pre -0.17 -0 1 0.34 0.12 -0.2 0.2 0.11 -0.1 -0.2 -0.049 -0.2 -0.2 

h_mi -0.39 -0.3 0.3 1 0.34 -0.7 -0.4 0.22 0.36 -0.09 -0.59 0.25 0.28 

h_ma -0.04 -0 0.1 0.34 1 -0.2 -0.3 0.22 0.08 -0.1 -0.195 -0 0.01 

s_r 0.61 0.75 -0 -0.73 -0.2 1 0.4 -0.26 -0.6 -0.35 0.893 -0.5 -0.5 

w_s 0.14 0.3 0.2 -0.35 -0.3 0.43 1 -0.24 -0.4 -0.29 0.542 -0.4 -0.4 

m_g -0.17 -0.2 0.1 0.22 0.22 -0.3 -0.2 1 0.26 0.174 -0.281 0.21 0.24 

co -0.5 -0.7 -0 0.36 0.08 -0.6 -0.4 0.26 1 0.655 -0.65 0.77 0.84 

no2 -0.35 -0.7 -0 -0.09 -0.1 -0.4 -0.3 0.17 0.65 1 -0.52 0.66 0.69 

O3 0.57 0.83 -0 -0.59 -0.2 0.89 0.5 -0.28 -0.6 -0.52 1 -0.6 -0.6 

pm10 -0.37 -0.6 -0 0.25 -0 -0.5 -0.4 0.21 0.77 0.664 -0.556 1 0.97 

pm2.5 -0.44 -0.7 -0 0.28 0.01 -0.5 -0.4 0.24 0.84 0.694 -0.609 0.97 1 

Table 25: correlation between different variables 

 

 

• The table illustrates the correlation among variables. Notably, a substantial 

correlation exists between PM10 and PM2.5. To mitigate multicollinearity, a 

decision was made to remove one of these variables. Specifically, PM10, 

which exhibited a lower correlation with the dependent variable (trip 

duration), was eliminated. 

• Additionally, noteworthy correlations were observed between O3 and mean 

temperature, as well as O3 and solar radiation. 

• The correlation between CO and PM2.5 is high. 
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6.3.2   Training models for predicting the trip duration traveled by 

shared bike 

6.3.2.1   Linear regression model 
Upon applying the linear regression model to the training dataset to predict trip 

duration, the ensuing results are as follows: 

Min 1Q Median 3Q Max 

-1370.9 -288.35 -15.86 254.69 2429.59 
Table 26: analyzing the symmetricity of residuals 

• Residual standard error: 458.1 on 281 degrees of freedom 

• Multiple R-squared:  0.4631  

• Adjusted R-squared:  0.4421  

• F-statistic: 22.03 on 11 and 281 DF 

• p-value: < 2.2e-16 

As evident from the results, the distribution of residuals does not exhibit symmetry. 

Several variables, notably medium temperature, solar radiation, wind speed, and carbon 

dioxide, have stronger correlation with the target variable, trip duration. 

The RSE of 458.1 indicates the average absolute difference between the observed and 

predicted values in the model. 

The multiple R-squared value of 0.4631 suggests that the independent variables in the 

model collectively explain approximately 46.31% of the variance in the dependent 

variable. 

The adjusted R-squared value of 0.4421, while slightly lower than the multiple R-

squared value, accounts for the number of predictors in the model and provides a more 

conservative estimate of the model's goodness of fit. 

6.3.2.1.1   Fine tuning the linear model 
o Feature Selection/Engineering 

After removing certain features with the highest p-values from the dataset, the 

following results were obtained: 



75 

 

 

 

Min 1Q Median 3Q Max 

-1388.77 -279.22 -18.68 261.09 2439.22 
Table 27 : analyzing the symmetricity of residuals 

  

 

•  Residual standard error: 455 on 285 degrees of freedom 

• Multiple R-squared:  0.4628 

• Adjusted R-squared:  0.4496  

• F-statistic: 35.08 

As can be seen some variables, notably medium temperature, solar radiation, wind 

speed, and carbon dioxide, play pivotal roles in predicting the trip duration. 

The RSE of 455 indicates the average absolute difference between the observed and 

predicted values in the model. 

The multiple R-squared value of 0.4628 suggests that the independent variables in the 

model collectively explain approximately 46.28% of the variance in the dependent 

variable. 

The adjusted R-squared value of 0.4496, while slightly lower than the multiple R-

squared value, accounts for the number of predictors in the model and provides a more 

conservative estimate of the model's goodness of fit. 

The significant F-statistic of 35.08 indicates that the overall model is statistically 

significant, suggesting that at least some of the independent variables are relevant in 

explaining the variance in the dependent variable. 

Chart 18: linear regression 
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6.3.2.1.2    shapely value:  

Utilizing the kernel SHAP (SHapley Additive exPlanations) method within the 

framework of linear regression model, Shapley values have been computed as follows: 

 

 

The graph illustrates that mean temperature and solar radiation have a positive impact 

on the target variable, indicating that higher temperatures result in longer trip durations. 

Additionally, lower levels of carbon monoxide (CO) and wind speed are associated with 

extended trip durations. 

6.3.2.1.3   Cross validation 
 The model has undergone refinement through the application of cross-validation 

techniques, aiming to offer a more precise evaluation of its generalization 

performance. This iterative process significantly augments the model's capability to 

make accurate predictions on previously unseen data. 

 

Chart 19: Shapley value for linear regression 
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RMSE R-squared MAE 

456.2802 0.456366 337.8266 
Table 28: cross validation results 

                                        

The RMSE value of 456.2802 indicates that, on average, the linear regression 

model's predictions have an absolute error of approximately 456.28 units. 

The R-squared value of 0.456366 suggests that the model explains about 45.64% of 

the variance in the dependent variable. This indicates a moderate level of predictive 

power. 

The MAE value of 337.8266 represents the average absolute prediction error, which 

is the average absolute difference between the actual and predicted values. 

6.3.2.2   Support vector machine 
Upon implementing the Support Vector Machine (SVM) model and employing a five-

fold cross-validation approach, the following results have been achieved: 

C RMSE R-squared MAE 

0.25 460 0.45 346 

0.5 454 0.46 339 

1 450 0.47 335 

2 453 0.45 336 

4 462 0.43 340 

8 476 0.41 349 

16 500 0.37 367 

32 545 0.32 393 

64 598 0.26 426 

128 638 0.24 458 

Table 29: support vector machine results 

                                           

The final SVM regression model with 'sigma' = 0.08886073 and 'C' = 1 achieved the 

lowest MAE, indicating that it has the smallest average absolute prediction error 

among the tested models. 

The R-squared values indicate how well the selected model explains the variance in 

the target variable. An R-squared value of 0.4651 suggests that this model explains 
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approximately 46.51% of the variance in the target variable. 

RMSE values show the model's prediction accuracy. Smaller RMSE values indicate 

better accuracy, and in this case, the selected model has a relatively low RMSE. 

6.3.2.2.1   shapely value: 

 Utilizing the kernel SHAP (SHapley Additive exPlanations) method within the 

framework of support vector machine, Shapley values have been computed as 

follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                              

 

As evident in the graph, solar radiation, mean temperature, and ozone exhibit a 

direct positive impact on trip duration. Consequently, on sunny days characterized 

by higher temperatures and stronger solar radiation, the trip duration by shared bike 

tends to be longer. Conversely, precipitation, PM2.5, and carbon monoxide show a 

negative impact on trip duration. Notably, concerning maximum humidity, the graph 

Chart 20: Shapley value for support vector machine 
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illustrates that humidity around zero is associated with longer trip durations. 

6.3.2.3   Random forest 
When applying the Random Forest model and utilizing a five-fold cross-validation 

technique, the ensuing results have been obtained:  

 

mtry RMSE R-squared MAE 

2 439.1396 0.48846 324.2596 

3 437.9219 0.490296 324.721 

4 437.7012 0.490982 323.4035 

5 437.836 0.491031 324.6855 

6 439.3314 0.487287 325.0474 

7 439.1621 0.487955 324.409 

8 440.3393 0.485417 325.9317 

9 439.5299 0.487639 327.124 

10 439.3902 0.487605 326.1184 

11 440.9964 0.484334 326.8041 

Table 30: random forest results 

 

 

 The Random Forest regression model with mtry = 4 achieved the lowest MAE, 

indicating that it has the smallest average absolute prediction error among the tested 

models. This suggests that it provides the most accurate predictions. 

The R-squared values indicate how well the selected model explains the variance in 

the target variable. An R-squared value of 0.4909815 suggests that this model 

explains approximately 49.10% of the variance in the target variable. 

RMSE values show the model's prediction accuracy. Smaller RMSE values indicate 

better accuracy, and in this case, the selected model with mtry = 4 has a relatively 

low RMSE. 

6.3.2.3.1   shapely value 
Utilizing the kernel SHAP (SHapley Additive exPlanations) method within the 

framework of random forest model, Shapley values have been computed as follows: 
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As observed in the graph, solar radiation and mean temperature positively impact trip 

duration. Conversely, PM2.5, carbon monoxide, and wind speed exhibit a negative 

impact on trip duration. This implies that on days characterized by windiness and higher 

pollution levels, the duration of trips tends to be shorter. 

6.3.3   Comparing the results of trained models 
Three distinct models including linear regression, support vector machine and 

random forest were applied to the training dataset, yielding the following results: 

  RMSE R-squared MAE 

linear regression 456.2802 0.456366 337.8266 

support vector machine 449.9948 0.465095 335.1681 

random forest 437.7012 0.490982 323.4035 

    
Table 31: comparing the results of different algorithms on training data 

                    

Random Forest appears to be the best-performing model among the three, with the 

lowest RMSE, highest R-squared, and lowest MAE. It offers better predictive 

accuracy and explains a larger portion of the variance in the target variable 

compared to Linear Regression and Support Vector Machine. 

Chart 21: Shapley value for Random Forest 
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6.3.4   Testing the models applied for predicting the trip duration 

traveled by shared bike 
When subjecting various regression models, including Linear Regression, Support 

Vector Machine, and Random Forest, to the testing dataset, the following outcomes 

have been observed: 

 

 

  RMSE R-squared MAE 

linear regression 515.91 0.477097 294.5791 

support vector machine 554.3282 0.403741 312.0009 

random forest 510.6293 0.48583 306.5038 
Table 32:comparing the results of different algorithms on test data 

                       

 

As can be seen, Random Forest appears to be the best-performing model among the 

three, with the lowest RMSE, highest R-squared, and lowest MAE. It offers better 

predictive accuracy and explains a larger portion of the variance in the target 

variable compared to Linear Regression and Support Vector Machine. 

Concluding that the random forest is the consistent algorithm that has the best 

performance in both testing and training data set. So for the prediction of the travel 

duration by bikes based on the weather variables random forest can be used. 

Given the positive impact of mean temperature and solar radiation on trip duration, 

it becomes evident that during summer, characterized by more sunny and warm 

days, there is likely to be increased bike usage. As a strategic initiative, it is 

recommended that the municipality of Vicenza consider investing more in providing 

bikes during the summer season. Furthermore, organizing winter cycling events or 

challenges could serve as a motivational factor for residents to continue biking 

during colder months. Collaborating with local businesses to sponsor winter biking 

initiatives can prove beneficial in fostering community engagement. 

To enhance the winter biking experience, the municipality can conduct workshops 

on winter biking techniques and safety. These workshops would educate cyclists on 

navigating winter conditions and dressing appropriately for the weather. Such 

educational efforts contribute not only to the safety of cyclists but also to the 

promotion of biking as a viable transportation option throughout the year. 
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8   CONCLUTION 

 

This study aimed to analyze shared bike usage patterns in relation to weather 

conditions in Vicenza, a city situated in the north of Italy. Machine learning algorithms, 

including linear regression, support vector machine, and random forest, were employed 

for this analysis. 

The results obtained from machine learning algorithms indicated that the random forest 

model outperformed others in predicting bike shared usage in various weather 

conditions, showcasing superior performance in both testing and training datasets. 

Upon closer examination of the model, it was revealed that variables such as mean 

temperature and solar radiation had a positive impact on bike usage. In contrast, carbon 

monoxide and PM2.5 showed a negative impact, suggesting that residents exhibit 

greater inclination to use shared bikes in sunny, warm weather with lower pollution 

levels. Conversely, in rainy, cold, and polluted conditions, residents prefer alternative 

means of transportation. 

Based on these findings, the municipality has an opportunity to tailor strategies to 

encourage year-round bike usage. The positive correlation observed between mean 

temperature, solar radiation, and increased trip duration during summer underscores the 

potential for heightened bike usage in warmer and sunnier weather. Initiatives such as 

promoting bike-sharing programs, enhancing bike-friendly infrastructure, and 

organizing events during the summer months can capitalize on this trend. 

Considering the prevalence of rainy days, particularly in winter, specific measures are 

recommended to address challenges posed by wet weather. Implementing rain-ready 

infrastructure, promoting weather-appropriate gear, offering promotions on rainy days, 

and integrating biking with alternative transportation during adverse weather conditions 

can mitigate the impact of rain on biking and create a more resilient biking culture. 

However, it is essential to acknowledge some limitations in this study, such as not 

considering users' age, gender, and standard of living. Future research could extend the 
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study by incorporating additional variables like cycling patterns, safety perceptions, 

user characteristics, and the influence of seasonal tourism on bike-sharing usage in the 

city. 

Moreover, conducting a similar study in larger cities like Milan, Rome, or Berlin would 

provide insights into how factors like longer distances between starting and ending 

points can affect bike usage, contributing to a more comprehensive understanding of 

shared bike utilization in urban environments. 
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APPENDIX 

 
Bike descriptive analysis 
 
library(readr) 
install.packages("rlang") 
packageVersion("rlang") 
 
install.packages("ggplot2")   
library(ggplot2) 
 
data <- read_csv("main_data.csv") 
View(data) 
 
bar_chart <- ggplot(data, aes(x = data$start_time, y = data$duration_minutes)) + 
  geom_bar(stat = "identity", fill = "blue") + 
  labs(title = "Bar Chart with Trend Line", 
       x = "Category", 
       y = "Value") + 
  theme_minimal() 
 
# Add a linear trend line using a second y-axis 
trend_line <- bar_chart + 
  geom_smooth(method = "lm", se = FALSE, color = "red") + 
  scale_y_continuous( 
    sec.axis = sec_axis(~ ., name = "Trend Line", breaks = NULL) 
  ) 
 
# Display the chart with the trend line 
print(trend_line) 
#################################### 

library(readr) 
library(dplyr) 
library(corrplot) 
library(car) 
library(stringi) 
library(ggplot2) 
library(plyr) 
library(readxl) 
library(lattice) 
library(reshape2) 
main_data <- read_excel("main_data.xlsx") 
View(main_data) 
hist(residuals(duration_minutes),col="red4",prob=TRUE,breaks=10) 
boxplot(residuals(duration_minutes), col = "green") 
hist(main_data , breaks = 10, main = "Histogram of Data", xlab = "Value") 
boxplot(duration_minutes) 
p<- ggplot(main_data, aes(x=duration_minutes, y=user_id)) 
p 
boxplot(main_data$duration_minutes,main_data$ride_distance_meters, 
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main_data$user_id,main_data$promotion_deduction,main_data$pass_user,col = "red") 
data_long<- melt(main_data) 
ggplot(data_long,aes(x=variable, y=value)) 
boxplot(value~variable,data_long) 
 
 
scaled_duration<- scale(main_data$duration_minutes) 
scaled_ride<- scale(main_data$ride_distance_meters) 
scaled_user<- scale(main_data$user_id) 
scaled_amount<- scale(main_data$original_total_amount) 
scaled_promotion<- scale(main_data$promotion_deduction) 
scaled_pass<- scale(main_data$pass_user) 
my_table<- 
data.frame(scaled_duration,scaled_ride,scaled_user,scaled_amount,scaled_promotion,scale
d_pass) 
boxplot(my_table ,names = c("duration","distance", 
"users","payed","promotion","passed"), col="red", 
        main = "Multiple Box Plot of Variables", ylab = "Scaled Value") 
View(my_table) 
data.stand<- scale(main_data$duration_minutes) 
View(data.stand) 
boxplot(scaled_user) 
boxplot(scaled_duration, scaled_ride, scaled_user, names = c("duration_minutes", 
"ride_distance_meters", "user_id"), 
        main = "Multiple Box Plot of Variables") 
 
boxplot(duration_minutes,ride_distance_meters,user_id,original_total_amount,promotion_
deduction,pass_user,names = c("duration","distance", 
"users","payed","promotion","passed"), col="red", 
        main = "Multiple Box Plot of Variables", ylab = "Value") 
View(duration_minutes) 
hist(main_data$duration_minutes, main = "Histogram of duration_minutes", xlab = 
"Value", col="green") 
curve(dnorm(x, mean(main_data$user_id), sd(main_data$user_id)), add = TRUE, col = 
"red", lwd = 2) 
 
hist(main_data$ride_distance_meters, breaks = 365, freq = FALSE,col = "blue", main = 
"Histogram with Curve Line") 
 
hist(main_data$ride_distance_meters, main = "Histogram of ride_distance_meters",   
xlab="Days",ylab = "value", col="red" ,breaks = 365) 
hist(main_data$original_total_amount, main = "Histogram of original_total_amount", xlab = 
"Value", col="blue") 
hist(main_data$promotion_deduction, main = "Histogram of promotion_deduction", xlab = 
"Value", col="violet") 
hist(main_data$pass_user, main = "Histogram of pass_user", xlab = "Value", col="orange") 
hist(main_data$user_id, main = "Histogram of user_id", xlab = "Value", col="brown") 
 
################################# 

 
library(readr) 
install.packages("ggplot2") 
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library(ggplot2) 
data <- read_csv("main_data.csv") 
View(data) 
datta<- data[,c("duration_minutes","weekend")] 
weekdays <- subset(datta, weekend == 0) 
weekends <- subset(datta, weekend == 1) 
result <- t.test(weekdays$duration_minutes, weekends$duration_minutes) 
print(result) 
View(weekdays) 
View(weekends) 
boxplot(weekdays$duration_minutes,weekends$duration_minutes, col = "green") 
 
mean(weekdays$duration_minutes) 
mean(weekends$duration_minutes) 
 
dataa<- data[,c("ride_distance_meters","season","duration_minutes")] 
spring<-  subset(dataa,season==1) 
summer<- subset(dataa,season==2) 
fall<- subset(dataa,season==3) 
winter<- subset(dataa,season==4) 
sum(spring$ride_distance_meters) 
sum(spring$duration_minutes) 
sum(summer$ride_distance_meters) 
sum(summer$duration_minutes) 
sum(fall$ride_distance_meters) 
sum(fall$duration_minutes) 
sum(winter$ride_distance_meters) 
sum(winter$duration_minutes) 
 
############################################################## 

Weather data descriptive analysis 
 
library(readr) 
library(dplyr) 
library(corrplot) 
library(car) 
library(stringi) 
library(ggplot2) 
library(plyr) 
library(readxl) 
library(lattice) 
library(reshape2) 
library(readxl) 
library(dbscan) 
library(ggplot2) 
library(maps) 
library(sf) 
library(leaflet) 
 
install.packages("dbscan") 
install.packages("factoextra") 
install.packages("ggplot2") 
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install.packages("maps") 
install.packages("sf") 
install.packages("leaflet") 
library(readr) 
start_points <- read_csv("start_end_points.csv") 
View(start_end_points) 
end_point <- read_csv("end_point.csv") 
 
 
 
ending <- read_excel("ending.xlsx") 
starting <- read_excel("starting.xlsx") 
 
start <- read_csv("start.csv") 
 
end <- read_csv("end.csv") 
frequency_start<- table(ending$longitude) 
frequency_start 
max(frequency_start) 
most_frequent_data <- names(frequency_start)[which.max(frequency_start)] 
most_frequent_data 
 
print(frequency_start) 
View(end) 
final.f=ending 
View(final.f) 
 
results<kmeans(final.f,1) 
results$centers 
table(final$type,results$cluster) 
plot(final.f,type="p",col=results$cluster+1) 
 
db<- dbscan(final.f,eps=0.01, minPts = 2) 
plot(final.f, col=db$cluster , main="dbscan") 
centers <- final.f %>% 
  filter(db$cluster != 0) %>% 
  group_by(db$cluster) %>% 
  summarize(center_longitude = mean(longitude), center_latitude = mean(latitude)) 
 
clustered_points <- final.f[db$cluster != -1, ] 
 
# Calculate centroid using group_by and summarize 
centers <- clustered_points %>% 
  group_by(cluster = factor(db$cluster[db$cluster != -1])) %>% 
  summarize(center_longitude = mean(longitude), 
            center_latitude = mean(latitude)) 
 
centers 
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plot(start$latitude,start$longitude, type = "p") 
 
db <- dbscan(cordination, eps = 0.5, MinPts = 5) 
 
# Access the cluster labels 
cluster_labels <- db$cluster 
print(core_points) 
 
 
print(startpoint) 
#plotting the poits on the map 
 
m <- leaflet() %>% addTiles() 
m <- m %>% addCircleMarkers( 
  data = start_points, 
  lng = ~longitude, 
  lat = ~latitude, 
  color = "red", 
  radius = 5 
) 
n <- m %>% addCircleMarkers( 
  data = end_point, 
  lng = ~longitude, 
  lat = ~latitude, 
  color = "blue", 
  radius = 5 
) 
print(n) 
 
############################################################## 
 
Algorithm 
 
 
library(caret) 
library(mlbench) 
library(dplyr) 
library(parallel) 
library(doParallel) 
library(pROC) 
library(caTools) 
library(readr) 
library(corrplot) 
library(car) 
 
data <- read_csv("data.csv") 
View(data) 
set.seed(1234) 
ids<-createDataPartition(data$duration_minutes,p=0.80,list=FALSE) 
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training<-data[ids,] 
testing<-data[-ids,] 
View(training) 
dim(training) 
dim(testing) 
# Calculate correlations for multiple variables 
correlations <- cor(training[, c('t_m', 'pre', 'h_mi', 'h_ma', 
's_r','w_s','m_g','co','no2','o3','pm10','pm2.5')], training$duration_minutes) 
print(correlations) 
corrplot(correlations, method = "color") 
correlations <- cor(training[, c('duration_minutes','t_m', 'pre', 'h_mi', 'h_ma', 
's_r','w_s','m_g','co','no2','o3','pm10','pm2.5')]) 
print(correlations) 
ctrl<-trainControl(method="cv",number=5,summaryFunction = 
defaultSummary,allowParallel = TRUE) 
cv_model <- train(ride_distance_meters ~ 
t_m+pre+h_mi+h_ma+s_r+w_s+m_g+CO+NO2+O3+PM2.5, data = training, method = "lm", 
trControl = ctrl) 
cv_model 
mod<- lm(ride_distance_meters~ 
t_m+pre+h_mi+h_ma+s_r+w_s+m_g+CO+NO2+O3+PM2.5  , data= training    ) 
summary(mod) 
mod1<- lm(ride_distance_meters~ t_m+pre+s_r+w_s+CO+O3  , data= training    ) 
summary(mod1) 
abline(coef=coef(mod1), col="red") 
 
 
plot(training$t_m+training$pre+training$s_r+training$w_s+training$CO+training$m_g+tr
aining$NO2+training$O3+training$PM2.5 , training$ride_distance_meters, type='p') 
 
plot(training$t_m+training$pre+training$s_r+training$CO+training$O3+training$w_s , 
training$ride_distance_meters, type='p') 
 
 
 
#/////////////////////////////////////////////////////////////////////////////
///// 
ctrl<-trainControl(method="cv",number=5,summaryFunction = 
defaultSummary,allowParallel = TRUE) 
set.seed(1234) 
svm_mod<-train( 
  form=ride_distance_meters~ t_m+ pre+ h_mi+ h_ma+s_r+w_s+m_g+CO+NO2+O3+PM2.5, 
  data=training, 
  method="svmRadial", 
  trControl=ctrl, 
  tuneLength=10, 
  metric="MAE" 
) 
svm_mod 
 
vif(svm_mod) 
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set.seed(123) 
rf_mod<- train( 
  ride_distance_meters ~ t_m+ pre+ h_mi+ h_ma+s_r+w_s+m_g+CO+NO2+O3+PM2.5, 
  data = training, 
  method = "rf", 
  tuneLength = 10, 
  trControl = ctrl, 
  metric = "MAE" 
) 
rf_mod 
#Evaluate using the test set 
postResample(pred=predict(mod1,testing),obs=testing$ride_distance_meters) 
postResample(pred=predict(svm_mod,testing),obs=testing$ride_distance_meters) 
postResample(pred=predict(rf_mod,testing),obs=testing$ride_distance_meters) 
 
#-------------------------------------------------------------------- 
 #duration_minutes 
 
 
correlations <- cor(training[, c('duration_minutes','t_m', 'pre', 'h_mi', 'h_ma', 
's_r','w_s','m_g','CO','NO2','O3','PM10','PM2.5')]) 
correlations 
ctrl<-trainControl(method="cv",number=5,summaryFunction = 
defaultSummary,allowParallel = TRUE) 
cv_model <- train(duration_minutes ~ 
t_m+pre+h_mi+h_ma+s_r+w_s+m_g+CO+NO2+O3+PM2.5, data = training, method = "lm", 
trControl = ctrl) 
cv_model 
mod<- lm(duration_minutes~ t_m+pre+h_mi+h_ma+s_r+w_s+m_g+CO+NO2+O3+PM2.5  , 
data= training    ) 
summary(mod) 
plot(training$t_m+training$pre+training$s_r+training$w_s+training$CO+training$m_g+tr
aining$NO2+training$O3+training$PM2.5 , training$duration_minutes, type='p') 
 
abline(coef=coef(mod), col="red") 
mod1<- lm(duration_minutes~ t_m+pre+h_mi++s_r+w_s+CO+NO2  , data= training    ) 
summary(mod1) 
plot(training$t_m+training$pre+training$s_r+training$w_s+training$CO+training$NO2 , 
training$duration_minutes, type='p') 
 
abline(coef=coef(mod1), col="red") 
ctrl<-trainControl(method="cv",number=5,summaryFunction = 
defaultSummary,allowParallel = TRUE) 
cv_model <- train(duration_minutes ~ t_m+pre+h_mi++s_r+w_s+CO+NO2, data = training, 
method = "lm", trControl = ctrl) 
cv_model 
ctrl<-trainControl(method="cv",number=5,summaryFunction = 
defaultSummary,allowParallel = TRUE) 
set.seed(1234) 
svm_mod<-train( 
  form=duration_minutes~ t_m+ pre+ h_mi+ h_ma+s_r+w_s+m_g+CO+NO2+O3+PM2.5, 
  data=training, 
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  method="svmRadial", 
  trControl=ctrl, 
  tuneLength=10, 
  metric="MAE" 
) 
svm_mod 
set.seed(123) 
rf_mod<- train( 
  duration_minutes ~ t_m+ pre+ h_mi+ h_ma+s_r+w_s+m_g+CO+NO2+O3+PM2.5, 
  data = training, 
  method = "rf", 
  tuneLength = 10, 
  trControl = ctrl, 
  metric = "MAE" 
) 
rf_mod 
postResample(pred=predict(mod1,testing),obs=testing$duration_minutes) 
postResample(pred=predict(svm_mod,testing),obs=testing$duration_minutes) 
postResample(pred=predict(rf_mod,testing),obs=testing$duration_minutes) 
#/////////////////////// 
 
install.packages("kernelshap") 
library(ggplot2) 
library(kernelshap) 
library(shapviz) 
 
diamonds <- transform( 
  training, 
  log_ride_distance_meters = log(ride_distance_meters),  
  log_t_m = log(t_m) 
) 
mod1<- lm(log_ride_distance_meters~ log_t_m+pre+s_r+w_s+CO+O3  , data= diamonds    ) 
fit_lm <- lm(log_price ~ log_carat + clarity + color + cut, data = diamonds) 
 
# 1) Sample rows to be explained 
set.seed(10) 
xvars <- c("log_t_m","pre","s_r","w_s","CO","O3") 
X <- diamonds[sample(nrow(diamonds), 100), xvars] 
 
# 2) Select background data 
bg_X <- diamonds[sample(nrow(diamonds), 200), ] 
 
# 3) Crunch SHAP values for all 1000 rows of X (~7 seconds) 
system.time( 
  shap_lm <- kernelshap(mod1, X, bg_X = bg_X) 
) 
shap_lm 
 
sv_lm <- shapviz(shap_lm) 
sv_importance(sv_lm) 
sv_dependence(sv_lm, "log_carat", color_var = NULL) 
#//////////////////////////////////////// 
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library(ranger) 
 
set.seed(10) 
xvars <- c("t_m","pre","h_mi","h_ma","s_r","w_s","m_g","CO","NO2","O3","PM2.5") 
X <- training[sample(nrow(training), 100), xvars] 
 
# 2) Select background data 
bg_X <- training[sample(nrow(training), 200), ] 
shap_rf <- kernelshap(mod1, X, bg_X = bg_X) 
shap_rf 
#////////////////////////////////////// 
#linear model for distance traveled 
library(caret) 
library(kernelshap) 
library(shapviz) 
library(ranger) 
 
mod1<- lm(ride_distance_meters~ t_m+pre+s_r+w_s+CO+O3  , data= training    ) 
summary(mod1) 
set.seed(10) 
xvars <- c("t_m","pre","s_r","w_s","CO","O3") 
X <- training[sample(nrow(training), 100), xvars] 
bg_X <- training[sample(nrow(training), 200), ] 
shap_rf <- kernelshap(mod1, X, bg_X = bg_X) 
shap_rf 
sv_rf <- shapviz(shap_rf) 
sv_importance(sv_rf, kind = "bee", show_numbers = TRUE) 
sv_dependence(sv_rf, "CO") 
dade<-c(t_m,pre,s_r,w_s,training$CO,training$O3,training$ride_distance_meters) 
 
s <- kernelshap(mod1, dade[, -1], predict, bg_X = dade) 
sv <- shapviz(s) 
sv_waterfall(sv, 1) 
#///////////////////////////////////// 
#random forest for distance traveled 
library(caret) 
library(kernelshap) 
library(shapviz) 
library(ranger) 
 
rf_mod<- train( 
  ride_distance_meters ~ t_m+ pre+ h_mi+ h_ma+s_r+w_s+m_g+CO+NO2+O3+PM2.5, 
  data = training, 
  method = "rf", 
  tuneLength = 10, 
  trControl = ctrl, 
  metric = "MAE" 
) 
 
s <- kernelshap(rf_mod, training[, -1], predict, bg_X = training) 
 
sv <- shapviz(s) 
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sv_waterfall(sv, 1) 
 
sv_rf <- shapviz(shap_rf) 
sv_importance(sv_rf, kind = "bee", show_numbers = TRUE) 
sv_dependence(sv_rf, "t_m") 
#///////////////////////////////////////////// 
#support vector machine for distance traveled 
library(caret) 
library(kernelshap) 
library(shapviz) 
set.seed(1234) 
svm_mod<-train( 
  form=ride_distance_meters~ t_m+ pre+ h_mi+ h_ma+s_r+w_s+m_g+CO+NO2+O3+PM2.5, 
  data=training, 
  method="svmRadial", 
  trControl=ctrl, 
  tuneLength=10, 
  metric="MAE" 
) 
svm_mod 
shap_rf <- kernelshap(svm_mod, X, bg_X = bg_X) 
shap_rf 
sv_rf <- shapviz(shap_rf) 
sv_importance(sv_rf, kind = "bee", show_numbers = TRUE) 
sv_dependence(sv_rf, "CO") 
 
s <- kernelshap(svm_mod, training[, -1], predict, bg_X = training) 
sv <- shapviz(s) 
sv_waterfall(sv, 1) 
#////////////////////////////////////// 
#linear model for trip duration 
library(caret) 
library(kernelshap) 
library(shapviz) 
library(ranger) 
 
mod1<- lm(duration_minutes~ t_m+pre+h_mi++s_r+w_s+CO+NO2  , data= training    ) 
xvars <- c("t_m","pre","s_r","w_s","CO","h_mi","NO2") 
X <- training[sample(nrow(training), 100), xvars] 
bg_X <- training[sample(nrow(training), 200), ] 
s <- kernelshap(mod1, training[, -1], predict, bg_X = training) 
sv <- shapviz(s) 
sv_waterfall(sv, 1) 
bg_X <- training[sample(nrow(training), 200), ] 
shap_rf <- kernelshap(mod1, X, bg_X = bg_X) 
shap_rf 
sv_rf <- shapviz(shap_rf) 
sv_importance(sv_rf, kind = "bee", show_numbers = TRUE) 
sv_dependence(sv_rf, "t_m") 
#/////////////////////////////////////// 
#SUPPORT VECTOR MACHINE for trip duration 
library(caret) 
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library(kernelshap) 
library(shapviz) 
set.seed(1234) 
svm_mod<-train( 
  form=duration_minutes~ t_m+ pre+ h_mi+ h_ma+s_r+w_s+m_g+CO+NO2+O3+PM2.5, 
  data=training, 
  method="svmRadial", 
  trControl=ctrl, 
  tuneLength=10, 
  metric="MAE" 
) 
 
s <- kernelshap(svm_mod, training[, -1], predict, bg_X = training) 
sv <- shapviz(s) 
sv_waterfall(sv, 1) 
shap_rf <- kernelshap(svm_mod, X, bg_X = bg_X) 
shap_rf 
sv_rf <- shapviz(shap_rf) 
sv_importance(sv_rf, kind = "bee", show_numbers = TRUE) 
sv_dependence(sv_rf, "CO") 
#///////////////////////////////////////////////////////////// 
#random forest for trip duration 
library(caret) 
library(kernelshap) 
library(shapviz) 
 
set.seed(123) 
rf_mod<- train( 
  duration_minutes ~ t_m+ pre+ h_mi+ h_ma+s_r+w_s+m_g+CO+NO2+O3+PM2.5, 
  data = training, 
  method = "rf", 
  tuneLength = 10, 
  trControl = ctrl, 
  metric = "MAE" 
) 
 
s <- kernelshap(rf_mod, training[, -1], predict, bg_X = training) 
sv <- shapviz(s) 
sv_waterfall(sv, 1) 
shap_rf <- kernelshap(rf_mod, X, bg_X = bg_X) 
shap_rf 
sv_rf <- shapviz(shap_rf) 
sv_importance(sv_rf, kind = "bee", show_numbers = TRUE) 
sv_dependence(sv_rf, "t_m") 
 
 
 
 
 
 
 
 


