
DEPARTMENT OF INFORMATION ENGINEERING

COMPUTER ENGINEERING - AI & ROBOTICS

Gait Generation for Lower Limb Exoskeletons

through Reinforcement Learning

Candidate:

Francesco Crisci

Supervisor:

Prof. Stefano Tortora

Co-Supervisor:

Dr. Edoardo Trombin

December 2nd, 2024

Academic year 2023-2024

Abstract

Using deep reinforcement learning (DRL) in the control of lower limb ex-

oskeletons (LLE) remains largely unexplored, with most prior research fo-

cusing on bipedal or general walking robots. This study investigates the

application of DRL to generate trajectory patterns for LLE movement,

specifically targeting the foot’s trajectory. By leveraging DRL, an agent

can learn optimal behaviors by interacting with the environment. By defin-

ing an appropriate reward function, designing the network architecture,

and conducting rigorous testing, we successfully generated the foot’s tra-

jectory for the LLE. The results demonstrate the potential of DRL to

produce functional movement trajectories for lower limb exoskeletons.

Contents

Abstract i

List of Figures v

List of Tables vi

List of Acronyms vii

1 Introduction 1

1.1 Exoskeletons . 1

1.2 Reinforcement Learning for Bipedal Walking 2

1.2.1 Deep Reinforcement Learning: Temporal Difference 3

1.3 Thesis aim and objectives 4

2 Methods 5

2.1 Problem Description . 5

2.2 Agent Environment . 6

2.3 Temporal Difference . 9

2.3.1 Off-Policy TD Control 10

2.3.2 On-Policy TD control 10

2.3.3 N-Step TD Prediction 11

2.3.4 TD(λ) . 12

2.3.5 Function Approximation 13

2.4 The Agent . 15

2.4.1 The TD(λ) class 15

2.4.2 Selection Strategy 15

2.4.3 Agent training . 16

ii

2.4.4 Network update . 16

2.5 The Reward Function . 16

2.5.1 The Trajectory Reward Function 17

2.5.2 Calculating minimum distance from the obstacle . . 21

2.5.3 The LLE Kinematics Reward Function 21

2.6 Testing . 24

2.7 Trajectory Interpolation 25

3 Experiments and Results 26

3.1 Experiment Setup . 26

3.2 Experiments . 28

3.2.1 Experiments . 28

3.3 Evaluated Metrics . 30

3.4 Results . 30

4 Discussion 51

5 Conclusions 54

iii

List of Figures

1.1 Image of an LLE . 1

1.2 Basic Scheme of RL . 3

2.1 Example of initial configuration of the LLE in the environment 7

2.2 Neural Network used to learn the environment 14

2.3 Example of generated trajectory during test 25

3.1 10000 epochs LLE initial configuration of experiment (a) . 28

3.2 10000 epochs LLE initial configuration of experiment (b)) . 29

3.3 10000 epochs LLE initial configuration of experiment (c) . 29

3.4 Training trends of experiments: (a), (b), (c), (1), (2), (3) . 31

3.5 Trajectories generated by experiment (a) on the training

samples . 32

3.6 Trajectories generated by experiment (b) on the training

samples . 33

3.7 Trajectories generated by experiment (c) on the training

samples . 34

3.8 Trajectories generated by experiment (1) on the training

samples . 35

3.9 Trajectories generated by experiment (2) on the training

samples . 36

3.10 Trajectories generated by experiment (3) on the training

samples . 37

3.11 Average Joint variation of the knee angles of experiment (a) 38

3.12 Average Joint variation of the knee angles of experiment (b) 39

3.13 Average Joint variation of the knee angles of experiment (c) 39

3.14 Average Joint variation of the knee angles of experiment (1) 39

iv

3.15 Average Joint variation of the knee angles of experiment (2) 40

3.16 Average Joint variation of the knee angles of experiment (3) 40

3.17 Average Joint variation of the hip angle of experiment (a) 40

3.18 Average Joint variation of the hip angle of experiment (b) 41

3.19 Average Joint variation of the hip angle of experiment (c) . 41

3.20 Average Joint variation of the hip angle of experiment (1) 41

3.21 Average Joint variation of the hip angle of experiment (2) 42

3.22 Average Joint variation of the hip angle of experiment (3) 42

3.23 Angular variations of joint angles of experiment (a) in con-

dition (b) and (c) . 43

3.24 Angular variations of joint angles of experiment (b) in con-

dition (a) and (c) . 43

3.25 Angular variations of joint angles of experiment (c) in con-

dition (a) and (b) . 44

3.26 Angular variations of joint angles of experiment (1) in con-

dition (2) and (3) . 44

3.27 Angular variations of joint angles of experiment (2) in con-

dition (1) and (3) . 46

3.28 Angular variations of joint angles of experiment (3) in con-

dition (1) and (2) . 46

3.29 Trajectories generated by the final model 47

3.30 Average Joint variation of the hip and knee angles and train-

ing trend of the final model 48

v

List of Tables

3.1 List of obstacles used during the experiments 27

3.2 Tabular results of the six experiments 38

3.3 Configurations for experiment (a) 42

3.4 Configurations for experiment (b) 43

3.5 Configurations for experiment (c) 44

3.6 Configurations for experiment (1) 45

3.7 Configurations for experiment (2) 45

3.8 Configurations for experiment (3) 46

3.9 Tabular results of the final model 47

3.10 Comparison of the final model with the 6 experiments . . . 49

3.11 Comparison of the Final Model with the CFFTG 50

vi

List of Acronyms

LLE Lower Limb Exoskeleton

RL Reinforcement Learning

DRL Deep Reinforcement Learning

NN Neural Network

TD Temporal Difference

HLC Hip Lowering Constraint

ROS Robot Operating System

CFFTG Collision-Free Foot Trajectory Generator

vii

Chapter 1

Introduction

1.1 Exoskeletons

Exoskeletons are biomechatronic devices coupled to the person’s body. In

general, exoskeletons are composed of a structural mechanism with joints

and links, which is worn by a human user [1]. This thesis will focus on

lower limb exoskeletons (LLEs).

A LLE is an exoskeleton designed for the lower limbs of the human body.

As shown in Figure 1.1, each wearable leg is composed of:

• Hip

• Shin

• Thigh

• Foot

Each of the links is connected through joints, where some of them are pow-

ered by an electrical actuator.

Figure 1.1: Image of an LLE

1

Powered and passive exoskeletons differ primarily in their use of external

energy sources. Powered exoskeletons rely on batteries or cables to acti-

vate actuators, enabling them to assist or enhance the user’s movements.

In contrast, passive exoskeletons lack these powered components, relying

solely on mechanical structures like springs or dampers. This fundamental

limitation prevents passive exoskeletons from enhancing the user’s capa-

bilities to the same extent as powered ones, as their passive joints cannot

actively generate or amplify movement [2].

1.2 Reinforcement Learning for Bipedal Walking

Bipedal walking has always been a challenge in robotics. Most of the

research done on bipedal walking is focused on bipedal robots and ex-

oskeletons. In the literature, such as in [3, 4, 5] Reinforcement Learning

(RL) used for Gait Planning is still an emerging field, focusing mainly on

walking robots than exoskeletons. Using RL to generate trajectories for

bipedal robots, and more specifically for LLE, is an open challenge, since

the research is still new to this day.

Reinforcement Learning is a machine learning technique used to teach an

agent how to interact within an environment. The agent learns about the

environment through feedback from its actions. A RL model is composed

of:

• An agent, learning how to solve a specific problem;

• States, i.e., the possible configurations the agent can find itself in;

• Actions, i.e., the possible decisions the agent can take in a given state;

• An environment where the agent operates, giving feedback as rewards.

Further exploring the research on the employment of RL on bipedal walk-

ing, we discovered some researches, as in [6, 7, 8], that explored the use

of Deep Reinforcement Learning (DRL), a variation of RL that uses Deep

Neural Networks to learn the environment. As stated in [8], DRL ap-

proaches can provide accurate and robust control in robotics applications

2

Figure 1.2: Basic Scheme of RL

and have shown potential for LLEs. Considering this statement, I decided

to employ DRL to achieve the goal of this thesis, i.e., to generate trajec-

tories for the LLE’s foot.

1.2.1 Deep Reinforcement Learning: Temporal Difference

TD(λ) - a general reinforcement learning approach that covers a broad

spectrum of methods ranging from Monte Carlo to SARSA to Q-Learning

[9].

By changing the parameters of the aforementioned RL algorithm, it is

possible to obtain the behaviors of different RL models. For the purpose

of this thesis, I decided to set the parameters in order to achieve the same

behavior as the Q-Learning model.

How the DRL and the TD model behave will be discussed further in the

thesis. In our case, having a RL algorithm that can be tuned offers a

variety of advantages that can be exploited for different needs. First of

all, we are learning a model, so that the agent does not have a prefixed

strategy when generating the trajectory. On the other hand, we can switch

from a basic Q-Learning algorithm to a more complex one, such as SARSA

(State-Action-Reward-State-Action), which is considered a state-of-the-art

method.

3

1.3 Thesis aim and objectives

In this research we used a lower limb exoskeleton (LLE), with the aim of

assisting people avoiding low obstacles while walking. The nature of the

thesis is also related to the fact that this kind of robots have started to

emerge as rehabilitation tools [10], so I decided to further explore their

application with the goal of assisting people during daily life.

As stated, the aim of the thesis is Gait Generation for Lower Limb Ex-

oskeletons through Reinforcement Learning, that is, employing DRL to

generate the trajectory of the foot of the LLE. This research is a continua-

tion of [11] carried previously. This solution, and the majority of obstacle

avoidance methods, are polynomial. In this thesis, I decided to employ a

different approach in order to introduce more generality in the generations

of the trajectories. As a further development, taking into account the pre-

vious section, we decided to investigate the use of RL, and later of DRL,

to achieve the same goal. That is, teach the agent to generate trajectories,

autonomously, according to the obstacle it has to overcome.

4

Chapter 2

Methods

In this research the LLE used is a powered exoskeleton, where the joint of

the ankle is passive, i.e. is not powered, while the others are, allowing the

LLE to move.

2.1 Problem Description

The problem we address in the thesis is the following: we want to generate

the foot trajectory of the LLE through the use of DRL in order to avoid

low obstacles. The RL elements in our experiment are the following:

• The agent is the foot, which can move in a 2 dimensional space, the

y-z plane (see Figure 2.1), with 10° increment between each direction.

• The environment is the 2 dimensional plane representing the sagittal

plane where the foot, and in general the whole exoskeleton, can move

and execute a given trajectory.

• The set of actions are the possible movements the foot can make in

the plane, in our case are all directions with a 10° difference. That is,
the agent can take 36 possible actions of unit distance from its current

position, covering an angle of 360° of possible directions.

• The states are all the possible points in the positive y-z Cartesian

plane where the agent can find itself.

• The reward function is a weighted sum of two components: the tra-

jectory rewards and the exoskeleton constraint rewards. The form of

5

the reward function is the following:

r = α · T + β · E, with r ∈ [−∞, 0] (2.1)

with T and E the reward vectors and α, β the weights of each reward

vector, respectively, and · is the scalar product. We also want the

following to be true: ∑
i∈α

i = 0.5,
∑
i∈β

i = 0.5 (2.2)

2.2 Agent Environment

In the environment it is not considered the LLE’s movements in the x-axis,

and it has the following characteristics:

1. The agent’s initial position, in our case the foot initial position, which

is the origin of the Sagittal plane. We put the agent in this position

to not have transformations between the LLE’s reference frame and

the generated trajectory points.

2. An obstacle, which is set according to the received data. That is, once

the position of the obstacle is known, we set it in the environment and

this position is known to the agent during training and testing time.

3. The goal position which is where we want the agent to be after it

overcame the obstacle. This position is set according to the desired

step length, which for the purpose of this thesis has been set equal to

the average step length, which is 70 cm.

4. The mid-goal position, which is a way-point set on a safe distance on

top of the obstacle where we want the agent to go through when cal-

culating the trajectory. The midpoint is centered w.r.t. the obstacle

alongside the y axis.

The environment takes as input the initial position of the agent, the posi-

tion of the obstacle and the step length. Then, considering the length of

the two joints, the shin and the thigh as 50 cm each, we also calculated the

6

initial position of the hip from fixing the pivot foot position. An example

can be seen in the Figure 2.1, where we set the position of the pivot foot

in correspondence to the center of the obstacle. As it can be seen from

Figure 2.1: Example of initial configuration of the LLE in the environment

Figure 2.1, the starting position is the heel’s starting position and it has

been assigned the label ’S’. An example of obstacle is reported, represented

as a gray rectangle and it has been assigned the label T. The mid-goal is

the green square on top of the obstacle and has label ’M’. The goal is thin

yellow line with label ’G’.

The hip starting position has been calculated as follows:

y = (t+ s) cos(α), z = (t+ s) sin(α) (2.3)

where t is the length of the thigh, s is the length of the shin and α is the

angle between the line connecting the two heels and the hip.

The measurements reported in Figure 2.1 are on the scale of dm, and the

sagittal plane as been enlarged for clarity.

The trajectory generated in this example is going to be the trajectory of

the left foot while keeping fixed the right one, i.e. the pivot foot.

Once the hip position and the foot position are known, we can calculate

the position of the knee by using inverse kinematics. We can then write

the following equations:

r =
√

(hy − fy)2 + (hz − fz)2 (2.4)

7

where r is the euclidean distance between the hip (h) and the considered

foot (f).

γ =
t2 + r2 − s2

2 · t · r
(2.5)

where γ will be used to calculate the angle formed by the hip and r is the

value calculated in (2.4). As a safety measure, γ is clamped in the interval

[−1, 1] according the following strategy, since the arccos can only get values

from [−1, 1]:

γ =

1 if γ > 1

−1 if γ < −1
(2.6)

We then calculate the hip angle as:

θ = arccos(γ) (2.7)

We compute the angle between the horizontal axis and the pointing vector

from the hip to the foot as:

α = atan2

(
(fz − hz), (fy − hy)

)
(2.8)

Now we have two solutions for the knee, i.e., the solution that considers

the knee to bend backwards and the solution that considers the knee to

bend forward. To solve this problem, we calculated both cases and took

the one with an higher y value. That is, we always consider the knee that

goes forward since a knee can only bend, naturally, in that direction.

k′y = hy + t · cos(α + θ), k′′y = hy + t · cos(α− θ) (2.9)

k′z = hz + t · sin(α + θ), k′′z = hz + t · sin(α− θ) (2.10)

From equations (2.9) and (2.10), we can find the final value of the knee

position as follows:

ky =

k′y if k′y > k′′y

k′′y otherwise
, kz =

k′z if k′y > k′′y

k′′z otherwise
(2.11)

8

The same reasoning is then applied for the pivot foot, obtaining the y and

z coordinates of the knee.

We now have all the elements of the environment and all the elements to

know the position of the exoskeleton and the states of the links and joints.

2.3 Temporal Difference

TD learning is a combination of Monte Carlo ideas and dynamic program-

ming (DP) ideas. [12]. The main advantage of TD learning is that the

agent does not have to wait for the final outcome in order to update the

estimates, but it can update them starting from other estimates. That is,

the estimate of the current state St can be updated at time t+1 instead of

waiting for the whole episode to end. To achieve so, they use the reward

at time t + 1, i.e., Rt+1 and the estimate V (St+1). In the case of the base

implementation of TD, known as TD(0), we have the following estimate

update rule [12].

V (St)← V (St) + α

[
Rt+1 + γV (St+1 − V (St)

]
(2.12)

We can now write the pseudo-code for TD(0) estimating vπ, i.e., the esti-

mate of the states under policy π: Now, to deal with the trade-off between

Algorithm 1 TD(0) prediction

Input: The policy π to be evaluated
Initialize V(s) arbitrarily
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

A← action given by π for S
Take action A; observe reward, R, and next state, S’
V (S)← V (S) + α[R + γV (S ′)− V (S)]
S ← S ′

until S is terminal

exploration and exploitation, we need to introduce two kind of TD con-

trols: On-policy and off-policy TD controls. In RL exploitation is the

process of choosing an action with the aim to get the best reward possible.

Exploration is the process of choosing an action in order to explore new

9

states. Finding a balance between these two elements is important to have

an algorithm that performs and converges efficiently.

2.3.1 Off-Policy TD Control

In the case of one-step Q-learning, we approximate the optimal action-value

function with the learned one, by following the update rule:

Q(St, At)← Q(St, At) + α

[
Rt+1 + γmax

a
Q(St+1, a)−Q(St, At)

]
(2.13)

This method updates the action-value function independently from the

policy being followed. On the other hand, we still take into account the

pairs of state and action to visit and how they are updated. A fundamental

requirement that leads to convergence is the constant update of all action-

state pairs. Below, we show the Q-learning algorithm in procedural form

[12]:

Algorithm 2 Off-policy TD control

Initialize Q(S,A), ∀s ∈ S, a ∈ A(s), arbitrarily, and Q(terminal-state,.)=0
Repeat (for each step of episode):

Initialize S
Repeat (for each episode):

Choose A from S using policy derived from Q
Take action A; observe reward, R, S’
Q(St, At)← Q(St, At) + α

[
Rt+1 + γmaxaQ(St+1, a)−Q(St, At)

]
S ← S ′

until S is terminal

2.3.2 On-Policy TD control

The main difference w.r.t. the off-policy method is that in this case we

focus on learning action-value function rather than state-value ones [12].

That is, for all states s and actions a following the current policy π, we

need to estimate Qπ(s, a), which can achieved as described in the TD(0)

method. We can write the update as follows:

Q(St, At)← Q(St, At) + α

[
Rt+1 + γQ(St+1, At+1)−Q(St, At)

]
(2.14)

10

After every transition from a non-terminal state St we execute the update.

If St+1 is a terminal state, we defineQ(St+1, At+1) as zero [12]. In Algorithm

3, the implementation of On-Policy control is reported:

Algorithm 3 Off-policy TD control

Initialize Q(S,A), ∀s ∈ S, a ∈ A(s), arbitrarily, and Q(terminal-state,.)=0
Repeat (for each episode):

Initialize S
Choose A from S using policy derived from Q
Repeat (for each step of episode):

Take action A; observe reward, R, S’
Choose A’ from S’ using policy derived from Q
Q(St, At)← Q(St, At) + α[Rt+1 + γQ(St+1, At+1)−Q(St, At)]
S ← S ′, A← A′

until S is terminal

2.3.3 N-Step TD Prediction

Differently from TD(0) methods, n-step TD models are not just based on

the next reward, but on the next N rewards. As done in the TD methods,

the estimates of the rewards are changed according to the future rewards

[12]. To describe more formally how a n-step approach works, we are gonna

introduce the notion of cumulative discounted reward at time t. For the 1

step case we can write it as:

G
(1)
t = Rt+1 + γV (St+1) (2.15)

Following the same reasoning, we can write the 2 step case as follows:

G
(2)
t = Rt+1 + γRt+2 + γ2V (St+2) (2.16)

Following (2.15) and (2.16), we can now write the cumulative discounted

reward at time t for n-steps:

G
(n)
t = Rt+1 + γRt+2 + ...+ γn−1Rt+n + γnV (St+n) (2.17)

where Rt is the reward at time t, V (St+n) is the estimated value of the

next state and γ is the discount factor. The value calculated in equation

(2.17) is the addition between the estimated value of the n-th state and

11

the truncated return after n steps. Moving toward a tabular state-value

implementation we can write the increment to VT (St) as [12]:

∆Vt(St) = α

[
G

(n)
t − Vt(St)

]
(2.18)

where α is a positive step-size parameter.

In this approach, we need to deal with the size of n, i.e., the number of

steps to observe before updating the state-value pairs. That means, in

real word scenarios we cannot use extremely high values of n since it can

become problematic.

2.3.4 TD(λ)

TD(λ) can be achieved by two different meanings: the forward view or the

mechanistic (backward) view.

In the forward view we can extend further the concept of n-step returns.

In fact, we can calculate the increment not only depending on the n-step

returns, but also with any average of the n-steps. We can think of TD(λ)

as a specific way to average the n-steps [12]. We can introduce now a

different kind of return by using the so called λ-return:

Gλ
t = (1− λ)

∞∑
n=1

λn−1G
(n)
t (2.19)

As it can be seen from equation (2.19), the λ-return contains all the n-steps.

The more steps we take into account, the smaller the weight of the next

return. We want to give a bigger importance to the closer states than the

ones further away. According to the choice of λ, we can tune the behavior

of the return:

• if λ = 1, we calculate the return as done in a Monte-Carlo approach.

• if λ = 0, we reduce ourselves to the TD(0) approach.

12

We can now write the update rule for the TD(λ) model in terms of incre-

ment:

∆Vt(St) = α

[
Gλ

t − Vt(St)

]
(2.20)

Also in this case, the update can be on-policy or off-policy. [12].

By working in a continuous space, it is not ideal to use the forward view.

That is because we need to wait for an episode to end before the current

state St can be updated; in a continuous environment it could possibly take

an infinite amount of time. By using eligibility traces, i.e., by assigning

how much credit to a previous state, we can update the current state St

[9]. We can express the state-value update as follows:

V (s)← V (s) + α[Vt − V̂ (St)]Et(s) (2.21)

where we can define the expected value of state s at time t as follows:

Et(s) =

γEt−1(s) ∀s ∈ visited

γEt−1(s) + 1 if s = St

(2.22)

2.3.5 Function Approximation

The framework described in section 2.3.4 is the baseline of the approach

used in the thesis. Considering the fact that it would be impossible to

know all the state-value values for all possible infinite states in a continuous

environment, we need to approximate the values of states that are similar

to each other. We can refine the action-value function as a weighted sum

of features [9]:

Q(s, a; θ) = f(θTϕ(s, a)) (2.23)

where θ are the parameters of our network and ϕ(s, a) are the features of

the state-action pair. For the purpose of the thesis, we adopted the same

approach as done in [9], which uses a neural network to approximate the

action-value function. The neural network used, as you can see from Figure

2.2, is a 5-layer network, with the following characteristics:

• The input layer is composed of two nodes, i.e. the y-z coordinate of

13

the agent.

• The second layer is composed of 64 neurons.

• The third, fourth and fifth layer are composed of 32 neurons each.

• The output layer is composed of 36 neurons, each one indicating a

possible action the agent can take.

All neurons in the hidden layer uses the ReLU activation function [13],

and all the layers are fully-connected. Now, to update the parameters of

Figure 2.2: Neural Network used to learn the environment

the neural network we use the gradient descent rule. Starting from the

following equation:

Q(s, a)← Q(s, a) + α[Qt − Q̂(St, At)]Et(s, a) (2.24)

and by using the mean squared error as loss function:

J(θ) =
1

2
||[Qt −Q(St, At; θ)]Et(s, a)||2 (2.25)

obtaining equation (2.26)[9]:

θ ← θ + α · δt · Et(s, a)∇θQ(St, At; θ), δt = Qt − q(St, At; θ) (2.26)

14

2.4 The Agent

The agent of our DRL problem is the LLE’s foot, which moves in a continu-

ous 2D environment in order to reach the desired final position. The agent

is represented by the NN defined in section 2.3.5, and an action selection

strategy. The NN and the selection strategy are then used in the TD(λ)

algorithm.

2.4.1 The TD(λ) class

Once we set the architecture of the NN, we created the TD(λ) class, which

is composed of two identical networks with an ADAM optimizer [9]. The

reason why we need two NNs is simple: while the weights of the network

change during training, our estimates will improve, but our target output

will change, making the agent not being able to understand the target we

are focusing on. As done by [9], we have the following two NNs:

1. Qmain related to the estimates Q(St, At; θ);

2. Qtarget related to the target value Qt, which is updated periodically.

While Qmain will be updated systematically at each step, improving our

estimates

Q(St, At; θ), as stated previously Qtarget is updated periodically from the

newly learned parameters from Qmain, allowing us to decouple the relation

between Qt and Q(St, At; θ).

2.4.2 Selection Strategy

As a baseline strategy for the agent to choose the best action, as done by

[9], we used a ϵ-greedy policy, meaning that the agent will explore new

actions with probability ϵ, while it will choose the best action seen so far

with probability 1− ϵ, with ϵ small. That means that the agent will prefer

to take the best action discovered so far the majority of time,i.e., the agent

will prefer exploitation over exploration.

15

2.4.3 Agent training

As baseline for the project, as done in [9], we decided to employ a limit to

the number of steps the agent can take during each episode. That is, the

agent cannot go on forever in order to reach the desired goal, so we are

interested in finite episodes. To update the NN parameters, we store the

outputs of all the steps taken into a buffer, from which a batch is randomly

sampled. With the use of a dictionary we keep track of the trace of visited

state-actions pair, and they are then reset at the beginning of each episode

to keep them independent one from another [9]. In RL a trace is the ability

of the agent to keep track of the states and the actions encountered while

interacting with the environment. This allows the agent to learn from past

experiences, making the learning process more efficient [14].

2.4.4 Network update

Once the batch is sampled from the memory buffer, the weights of the NN

are updated taking into account if the model is on or off-policy.

• On-policy: starting from the Qtarget we obtain:

Qt = [Rt+1 + γQ(St+1, At+1)] (2.27)

• Off-Policy: we try to find the action that returns the best Q-value

Qt = [Rt+1 + γmax
a

Q(St+1, a)] (2.28)

From here, we use the value of Qt, Q(St, At; θ) and the eligibility trace

Et(s, a) to calculate the loss and then update the parameters of the network

[9].

2.5 The Reward Function

To evaluate the behavior of the agent during each episode we needed to

implement a specific reward function in order to teach him how to behave.

As can be seen from equation (2.2), the reward function is composed of two

16

elements: the reward related to the foot trajectory itself, so how the agent

should move to recreate a physiological step, and a second part related

to the exoskeleton kinematic constraints, so how the trajectory should be

in order to be feasible for the LLE. Each one of the two components of

the reward function are calculated with a different number of constraints,

according to the behavior of the agent during training.

2.5.1 The Trajectory Reward Function

The trajectory reward function is composed of 8 constraints that controls

and corrects the behavior of the agent so that the generated trajectory is

as close as possible to a feasible trajectory.

The first constraint takes care of the number of steps the agent takes in the

environment to reach the goal. The aim is that the agent does not take to

many steps in order to achieve the final position, but also we don’t want it

to take to few so that the trajectory is too flat. So, we set a threshold to

decide whether the number of steps are to many or to few. The reward of

this component is then normalized by the threshold, so that the maximum

reward is achieved when the agent takes exactly threshold steps to reach

the goal. More formally, the first constraint can be expressed as:

r0 =

 s
n if s ≤ n

− s
n otherwise

(2.29)

where s is the number of steps the agent took so far and n is the threshold.

The second constraint checks whether the agent hits the obstacle while

trying to reach the goal. That is, since we are in a simulated environment,

if the agent finds itself ”inside” the region filled by the obstacle, the agent

will receive a penalty. Otherwise it is rewarded. More formally, we can

express the second constraint as:

r1 =

−c if agent ∩ obstacle

0 otherwise
(2.30)

17

where c is a defined positive constant. This constraint ensures that the

agent never hits, or more precisely goes into, the obstacle. That is, we want

the agent to learn that the obstacle is a region to avoid while generating

the trajectory.

The third constraint is related to the behavior of the trajectory alongside

the y axis. Since we want the agent to overcome an obstacle and to reach

the goal, we want to make sure that the agent always has a monotonically

increasing tendency alongside the y axis. That is, the position of the agent

always as to be further, or in the same position, alongside the y direction.

More formally, we can express the third constraint as:

r2 =

−y if yt−1 > yt

0 otherwise
(2.31)

where y is a defined positive constant, yt is the position of the agent along-

side the y direction at time t, and yt−1 is the position of the agent alongside

the y direction at time t− 1.

The fourth constraint checks if the agent reached the goal position. We

check if the position of the heel or the tip of the foot is inside the region

where the goal position has been placed. If that is the case, we highly

reward the agent and we reset the episode. If that is not the case, the

agent is neither penalized nor rewarded. More formally we have:

r3 =


g if heel ∈ goal

g if tip ∈ goal

0 otherwise

(2.32)

where g is a defined positive constant.

The fifth constraint takes care of the agent going through the midpoint

position above the obstacle. This constraint has been introduced to suggest

the agent to avoid the obstacle by going above it. That is, we want to ensure

that the generated trajectory has a parabolic shape, passing through the

midpoint. Unlike the constraint for the goal position, expressed in (2.32),

we penalize the agent if the generated trajectory doesn’t go through the

18

midpoint. We can express this constraint as:

r4 =

0 if foot ∈ goal

−m otherwise
(2.33)

where m is a defined positive constant.

The sixth constraint controls the agent displacement alongside the z-axis.

We don’t want the trajectory to be too high in order to avoid the obsta-

cle. That is, when overcoming low obstacles, it would be inefficient and

unnatural to raise the leg too much. For this purpose, we set a maxi-

mum acceptable height, defined as max z. We can now express the sixth

constraint as:

r5 =

−z if zt > max z

0 otherwise
(2.34)

where zt is the z-axis position of the agent at time t and z is a defined

positive constant.

The seventh constraint makes the agent going around the obstacle with a

given distance. While avoiding the obstacle, we want the agent to be far

enough in order to ensure that the collision with the latter is unlikely. The

safety distance is defined as a positive constant, expressed in dm, while

the distance between the foot and the obstacle is calculated with a specific

function explained in the next sub-section. If the foot-obstacle distance is

below the defined constant, we heavily penalize the agent, otherwise we do

not reward it. We can define the constraint as:

r6 =

−f if dt < min dt

0 otherwise
(2.35)

where f is a positive defined constant, dt is the distance from the obsta-

cle calculated through get min distance from trap, (see subsection 2.5.2)

and max dt is the minimum required distance from the obstacle we want

the agent to achieve.

The eight constraint is related to the behavior of the trajectory alongside

the z-axis. We want the trajectory to be monotonically increasing before

19

the reach of the midpoint and monotonically decreasing after. That is, we

want to induce a raising behavior before reaching the obstacle position,

while we want to induce a descending behavior after. To achieve so, we

introduced the following constraint, divided in two smaller constraints:

rbm7 =

0 if zt+1 ≥ zt

−k otherwise
, ram7 =

0 if zt+1 ≤ zt

−k otherwise

(2.36)

From equation (2.36), we can write the constraint as follows:

r7 =

rbm7 if yt <= mt

ram7 otherwise
(2.37)

Where rbm7 is the reward before the midpoint, ram7 is the reward after, k is

a defined positive constant, zt+1 is the position of the agent alongside the

z-axis at time t+1, and zt is the position of the agent alongside the z-axis

at time t.

All the 8 constraints are then multiplied with a corresponding weight vec-

tor, that is then normalized as follows:

α =
α∑
i∈α i

(2.38)

Putting everything together, we can now rewrite the first part of the reward

function as:

rtraj = αT · T =
7∑

i=0

αi · ri (2.39)

with:

α =



α0

.

.

.

α7


, T =



r0

.

.

.

r7


(2.40)

20

2.5.2 Calculating minimum distance from the obstacle

In order to calculate the distance between a segment and a point, following

[11], we adapted the point to segment function. In the thesis’ case, the

segment would be the connection between the heel and the tip of the foot.

The points to which we want to calculate the distance are sampled from

the obstacle region, and then the minimum is kept. That is, we consider

the smallest distance between the heel-tip segment and the closest obstacle

point to it. If the newly found distance is below the given threshold, the

agent is penalized. We now report the code for calculating the distance

between the obstacle and the heel-tip segment, visible in Algorithm 4.

Algorithm 4 point to segment

Input: heel and hip positions
Initialize dist = 0, ab (heel-hip segment), bp (distance between heel and trap closest
point) and ap (distance between tip and furthest point)
ab bp = ab · bp
ab ap = ab · ap
if ab bp > 0 : return

√
bp2x + bp2y

else if ab bp < 0 : return
√

ap2x + ap2y
else :

mod =
√

ab2x + ab2y
return seg dist (eq. (2.41))

seg dist =
abx · apy − aby · apx

mod
(2.41)

2.5.3 The LLE Kinematics Reward Function

The LLE kinematics reward function is composed by 4 different constraint.

They ensure that the generated trajectory is feasible for the LLE, and that

the LLE does not violate the physical joint limits or finds itself in an

unfeasible position.

The first constraint checks if the hip position is below a given value during

the execution, or generation, of a trajectory. To better understand this

constraint, we need to introduce how the hip position is calculated from

the position of the foot at time t, i.e., when the agent is at a given state

at time t. The constraint, the Hip Lowering Constraint (HLC), is related

only to the z position of the hip. In order to check if it is violated, we need

21

to compute the z position of the hip as follows:

dist y =
py − pz

2
, hz =

√
(t+ s)2 − dist y2 (2.42)

where py, pz are the positions of the pivot foot in the y-z plane, t is the

thigh length, s the shin length and hz is the hip position alongside the z

axis. Now, we can express the HLC and the agent reward as follows:

r0 =

−
o·(t+s)

hz
if hz

t+s < hlc

0 otherwise
(2.43)

where s is the shin length, t is the thigh length, hz is the hip position

alongside the z axis, HLC is the defined threshold and o is a defined positive

constant. As you can see, the agent is penalized the more the constraint is

violated, so that it can learn not to lower the hip to much when overcoming

the obstacle.

The second constraint is the kinematic constraint, related to the leg length

during the generation of the trajectory. That is, we check if the euclidean

distance between the hip and the heel is physically feasible during the

execution of the trajectory. To do so, we calculate the euclidean distance

as follows:

M =
√
(fy − hy)2 + (fz − hz)2 (2.44)

where f is the heel position and h is the hip position. Now we can defined

the constraint and the reward as follow:

r1 =

−l if M − s− t > n

0 otherwise
(2.45)

where l is a defined positive constant, s is the shin length, t is the thigh

length and n is the threshold value.

The third constraint is related to the limits of the left and right knees and

hip angles. From equation (2.43) we know the distance between the heel

and the hip. Using that distance, we can calculate the hip angle, following

22

the reasoning applied in equations (2.5) and (2.6):

α = arccos

(
t2 +M 2 − s2

2 · t ·M

)
(2.46)

We now have to calculate the tilt angle to get the knee position from the

hip’s one:

tilt = arcsin

(
hy − fy

M

)
(2.47)

Now, as done in equations (2.9) and (2.10), we get the hip positioning as

follows:

ky = hy + t+ sin(α + tilt), kz = hy − t+ cos(α + tilt) (2.48)

Now we can get the hip and knees angles in order to check the joint limits:

hθ = arcsin

(
ky − hy

t

)
, kθ =

(
arcsin

(fy − ky
s

)
− hθ

)
(2.49)

We can now express the constraint and the reward formally as follows:

r2 =



−j if hθ > HU
θ

−j if hθ < HL
θ

−j if kθ > KU
θ

−j if kθ < KL
θ

0 otherwise

(2.50)

where j is a defined positive constant, HU
θ is the hip upper bound limit,

HL
θ is the hip lower bound limit, KU

θ is the knee upper bound limit and

KL
θ is the knee lower bound limit.

The fourth constraint controls that the hip z position is not to high while

executing the trajectory. That is, we do not want the agent to move to

much forward making the trajectory unfeasible and physically impossible

to execute in a real world environment. We can express the constraint and

23

the reward as follows:

r3 =

−n if hz > max hz

0 otherwise
(2.51)

where n is a defined positive constant and max hz is the maximum z

position allowed.

We can now express, as done in equation (2.39) the LLE kinematics reward

function as:

rexo = βT · E =
3∑

i=0

βi · ri, with β =
β∑
i∈β βi

(2.52)

As done for the weights of the trajectory reward function, we normalized

the weights of the LLE reward as well.

2.6 Testing

After the agent has been trained on a given number of episodes, we stop

the training phase and we move onto the testing. During testing, the agent

has to reach the goal autonomously using an ϵ-greedy policy in order to

reach the goal position.

For each test episode we save the total reward the agent got while trying to

reach the goal and we store the trajectory it executed. Once we have the

trajectory, we plot it in order to see whether it is qualitatively acceptable

and if the agent actually reached the goal autonomously. As can be seen

in Fig 2.3, we plot the whole structure of the LLE, with a bigger focus to

the moving leg. The arrows describe the trajectory taken by the foot in

order to reach the goal position. As it can be seen in Fig 2.3, the trajectory

looks smooth, because the generated trajectory by the agent is smoothed

using a B-spline interpolation, which will be explained in section 2.7.

24

Figure 2.3: Example of generated trajectory during test

2.7 Trajectory Interpolation

Trajectory interpolation is used for two purposes: the first one is to smooth

the agent trajectory in order to avoid sudden changes while executing it;

the second one is to calculate the whole hip trajectory knowing the hip

starting and finishing positions.

As anticipated in the previous section, we used a B-spline interpolation to

achieve these two goals. As it can be seen in Algorithm 5, the interpolation

is calculated as follows: where points is a 2 × n matrix, and it contains

Algorithm 5 B-Spline Interpolation

Input: points, n=100, k=3, s=0.5
x point← points[:, 0]
y point← points[:, 1]
tck ← splprep([x points, y points], k, s)
u← linespace(0, 1, n)
x int, y int← splev(u, tck)
return list(x int, y int)

the list of points we want to interpolate, n is the number of points we

want in our interpolated trajectory, k is the degree of the spline, i.e., the

grade of the function we want to use (for example k=3 represents a cubic

function). s is the smoothing factor (for example s=0 means that the spline

will interpolate all the points).

25

Chapter 3

Experiments and Results

In order to understand the results of the model we crafted, we run the

experiments in two different environments: a plotting environment to un-

derstand if the generated trajectory qualitatively makes sense; a simulated

environment where we run simulations of the exoskeleton in order to see

the execution of the proposed trajectory in a more complex environment

and to see the behavior of the knee and the hip as well.

The Robot Operating System (ROS) is a framework used in the robotics

community due to its incredible advantages. It is possible to use other

developers code easily without the need to adapt or rewrite the code from

zero. That is due to the fact that ROS uses software modules in the form

of packages, allowing the communication between them using a a structure

based on nodes that can publish or subscribe to other nodes. Each node or

package can be coded in a different programming languages, giving priority

to C++ and python as baseline coding languages.

3.1 Experiment Setup

The experiments we carried were divided in two categories: the ones were

the agent was trained over 10000 epochs and the ones were the agent

was trained over 25000 epochs. Then, for each of the two categories we

decided to test the behavior of the agent when the position of the pivot

foot changed. We decided over 3 different pivot foot positions:

• The pivot foot and the agent are aligned alongside the x axis, so they

26

both have same starting y coordinate;

• The pivot foot is aligned alongside the x axis with the center of the

obstacle;

• The pivot foot is between the agent starting position and the center

of the obstacle.

During training the agent is trained over three different kind of obstacles

with different heights and widths, as reported in Table 3.1. During test-

ing, we introduce also two new different kinds of obstacle, with completely

different shapes and different dimensions compared to the ones used in

training. The measurements reported in Table 3.1 are the ones from the

Name Width (cm) height (cm) Training/Testing

Base 1 20 10 Training

Base 2 10 15 Training

Base 3 5 20 Training

Triangle 20 20 Testing

Half-circle 20 25 Testing

Table 3.1: List of obstacles used during the experiments

simulated environment since the majority of the testing has been carried

out in a simulation.

During the testing phase, the results of the trained DRL model are com-

pared with the results of the Collision-Free Foot Trajectory Generator

27

(CFFTG) from [11] in terms of execution time, time needed to generate

the trajectory and correctness of the trajectory.

3.2 Experiments

As stated in the previous section, we divided the experiments into two

macro categories and for each of them we run 3 different scenarios. For

the 10000 epochs we named the experiments from (a) to (c), while for the

25000 epochs we named the experiment from (1) to (3). For all experi-

ments, we considered the average human step length to position the final

goal position, i.e., the step length is 70 cm.

3.2.1 Experiments

For experiment (a) the initial configuration of the LLE and the agent is

visible in Figure 3.1. The positions of the pivot foot and the agent are

Figure 3.1: 10000 epochs LLE initial configuration of experiment (a)

shifted. That is, the pivot foot is aligned with the center of the obstacle,

while the agent is positioned in the origin of the sagittal plane.

For experiment (b) the initial configuration of the LLE and the agent is

visible in Figure 3.2. The positions of the pivot foot and the agent are the

same alongside the y and z directions. That is, the pivot foot is aligned

28

Figure 3.2: 10000 epochs LLE initial configuration of experiment (b))

with the agent in the origin of the Sagittal plane and they lie on the same

line alongside the x direction.

For experiment (c), the initial configuration of the LLE and the agent is

visible in Figure 3.3. The positions of the pivot foot and the agent are

Figure 3.3: 10000 epochs LLE initial configuration of experiment (c)

shifted. The pivot foot is placed between the agent and the obstacle, while

the agent is positioned in the origin of the sagittal plane.

As done for experiment (a), in experiment (1) the initial position of the

29

agent and the pivot foot are shifted, with the latter being aligned with the

center of the obstacle alongside the x direction.

As for experiment (b), in experiment (2) the agent and the pivot foot are

aligned alongside the x direction.

In experiment (3), the agent and the pivot are not aligned, with the latter

being positioned between the agent and the center of the obstacle.

3.3 Evaluated Metrics

To evaluate the results of the experiments we used as metrics the following:

• time elapsed to generate a trajectory, in ms;

• angle variations of the LLE joints, such as hip and knee angles;

• difference between generated trajectory of CFFTG [11] and the one

generated by the model.

• Accuracy, defined as:

Accuracy =
g − h

g
(3.1)

where g is the number of generated trajectories and h is the number

of trajectories that go through the obstacle region.

3.4 Results

In this section, we show the results achieved from the 6 different exper-

iments and the training trend of the reward of each of them. We then

show also the results of each of the trained model if put in new conditions.

In other words, we will show the scenario where, for example, the model

trained in experiment (a) is used in the conditions of the model trained in

experiment (c). The experiments have been run on the following setup:

• CPU: Ryzen 7 7000 Series;

• GPU: Nvidia GeForce 4060 Laptop 8GB;

30

Figure 3.4: Training trends of experiments: (a), (b), (c), (1), (2), (3)

• RAM: 16GB DDR5;

The training trends shown in Figure 3.4 have an increasing trend, converg-

ing to the maximum reward achievable. As it can be seen from 3.4, the

plot present positive and negative spikes. The negative spikes are related

to the episodes where the agent hits the obstacle. When this happens, the

agent gets a high penalization, leading to a low reward for that episode.

The positive spikes tends to emerge more frequently through the episodes,

and they represent the episode in which the agent took the optimal num-

ber of steps and reached the goal. As it can be seen from Table 3.2,

the Average Generation Time for each model, considering all 5 kinds of

obstacle discussed in Table 3.1, is of the order of 2 ms, exception made for

the model of experiment (2).

31

Figure 3.5: Trajectories generated by experiment (a) on the training samples

Table 3.2 also reports the Average Joint Angles formed by the knees and

the hip during the generation of the trajectories. This metric is important

to evaluate the trajectories because small angles variations means that

the trajectory is less costly during execution and is aligned to a natural

step behavior. To further explain the Average Joint Angles metric, we

sampled randomly some generated trajectories to analyze how the joints

angles varies during each test episode. What we expect is that the the an-

32

Figure 3.6: Trajectories generated by experiment (b) on the training samples

gles do not oscillate too much in a wide range of values, but that they stay

inside a small interval. As shown in Figure 3.11, during experiment (a),

the angle of the knee in the agent leg varies uniformly between states. As it

can be seen from the first plot in Figure 3.11, the angle variation between

states is small. That means, that the knee angle increases, or decreases,

with slight variations between the states of the episode, which is exactly

what we want. On the other hand, as it can be seen from the second plot

33

Figure 3.7: Trajectories generated by experiment (c) on the training samples

of Figure 3.11, there are some cases where the angle varies really quick

between states. This is also expected since, being a learned model, there

can be cases where the agent does not take the most natural action. That

is visible, for example, in the second plot of Figure 3.11, in the iterations

between 16 and 18.

The concave shape of the plot reflects the behavior of the knee angle while

taking over the obstacle. That is because while raising the leg, to pass the

34

Figure 3.8: Trajectories generated by experiment (1) on the training samples

obstacle, the knee is flexed, meaning a decrease in the angle. When the

agent passes over the obstacle, the knee is extended, meaning that the an-

gle increases. As it can be seen from the experiments (a),(b),(c),(1)

and (3), the hip angle varies without sudden changes and they follow a

natural behavior: the hip extends when over taking the obstacle, so the

angle increases, while it is flexed when the obstacle is avoided, making the

angle decrease. The only exception is from experiment (2), where it can be

35

Figure 3.9: Trajectories generated by experiment (2) on the training samples

seen that the angle only increases. That is because the trajectories tends

to be flat, as earlier stated. Meaning that the LLE only moves the agent

leg such that the hip angle only increases.

Now, we discuss the results of all 6 models in the other conditions, to see

which one of the proposed ones adapts the best to different configurations

without earlier training. I have decided to opt for this option in

order to recreate the same methodology used in DL to evaluate the results

36

Figure 3.10: Trajectories generated by experiment (3) on the training samples

of the models. The methodology I am referring to is the validation of the

model. To better understand the strengths and weaknesses of each singular

configuration, I have firstly decided to do a separate analysis for each of

the configurations. As it can be seen from Table 3.7, experiment (2), the

Average Generation Time is really low, that is, because as stated previ-

ously, the agent, in this specific model, prefers to go through the obstacle

region. That can also be seen from the average knee and hips angle, as

37

Name
Average Generation

Time (ms)
Average Joint Angles

[knees, hip]
Number of Test

Episodes

(a) 2.46 [−51.031, 35.363] 1000

(b) 2.03 [−52.995, 33.744] 1000

(c) 2.12 [−49.407, 33.0341] 1000

(1) 2.50 [−50.483, 33.729] 1000

(2) 1.21 [−10.544, 14.458] 1000

(3) 2.64 [−49.462, 33.703] 1000

Table 3.2: Tabular results of the six experiments

Figure 3.11: Average Joint variation of the knee angles of experiment (a)

shown in Figure 3.27, where the plots tend to increase or decrease only,

meaning that the agent is only moving the hip, either flexing it (first plot),

or extending it (second plot). In other words, the agent is not overtaking

the obstacles but just moving the limbs without bending the knees.

The other 5 experiments tend to deal well with the new conditions pro-

38

Figure 3.12: Average Joint variation of the knee angles of experiment (b)

Figure 3.13: Average Joint variation of the knee angles of experiment (c)

Figure 3.14: Average Joint variation of the knee angles of experiment (1)

posed, without having one of them standing out particularly compared to

the others. In general, the models trained over 10000 epochs tend to deal

better than the ones trained over 25000 epochs. This could be related to

the fact that the 10000 epochs model have generalized better the environ-

39

Figure 3.15: Average Joint variation of the knee angles of experiment (2)

Figure 3.16: Average Joint variation of the knee angles of experiment (3)

Figure 3.17: Average Joint variation of the hip angle of experiment (a)

ment, while the 25000 might have learned more specifically theirs, having

less generalization power. The final model I trained and opted for has the

following characteristics:

• seeing the training trend from the previous models according to the

40

Figure 3.18: Average Joint variation of the hip angle of experiment (b)

Figure 3.19: Average Joint variation of the hip angle of experiment (c)

Figure 3.20: Average Joint variation of the hip angle of experiment (1)

initial configurations of the pivot foot, and how the model tends to

forget what it learned, the final model has been trained over 50000

episodes;

• to introduce more variety and more complexity, the final model has

41

Figure 3.21: Average Joint variation of the hip angle of experiment (2)

Figure 3.22: Average Joint variation of the hip angle of experiment (3)

pivot aligned with agent pivot not aligned

Average Generation Time
(ms)

2.53 2.30

Average Knee Angle -47.175 -52.136

Average Hip Angle 41.131 39.453

Table 3.3: Configurations for experiment (a)

been trained with 6 different starting scenarios: 3 of them are the sce-

narios regarding the pivot foot as done in the 6 previous experiments;

42

Figure 3.23: Angular variations of joint angles of experiment (a) in condition (b) and (c)

pivot aligned with obstacle pivot not aligned

Average Generation Time
(ms)

2.28 2.27

Average Knee Angle -52.334 -56.731

Average Hip Angle 29.733 38.730

Table 3.4: Configurations for experiment (b)

Figure 3.24: Angular variations of joint angles of experiment (b) in condition (a) and (c)

while the other 3 configurations are related to the agent. In other

words, we change the starting position of the agent by going closer to

43

pivot aligned with obstacle pivot aligned with agent

Average Generation Time
(ms)

2.55 2.06

Average Knee Angle -46.396 -52.572

Average Hip Angle 28.419 41.442

Table 3.5: Configurations for experiment (c)

Figure 3.25: Angular variations of joint angles of experiment (c) in condition (a) and (b)

Figure 3.26: Angular variations of joint angles of experiment (1) in condition (2) and (3)

the obstacle;

• the obstacle used for training and testing are the same used for the

44

pivot aligned with agent pivot not aligned

Average Generation Time
(ms)

2.46 2.19

Average Knee Angle -51.204 -51.066

Average Hip Angle 41.345 37.621

Table 3.6: Configurations for experiment (1)

pivot aligned with obstacle pivot not aligned

Average Generation Time
(ms)

2.49 1.23

Average Knee Angle -8.377 -11.675

Average Hip Angle 11.367 16.849

Table 3.7: Configurations for experiment (2)

previous 6 models;

• the model has been tested over 1000 episodes. In other words, we

generated 1000 trajectories with different obstacles and configurations.

As it can be seen from Figure 3.29, the trajectories are smooth and com-

pliant to the type of obstacles, even thought some of them might hit the

obstacle. After a qualitative check, the majority, around 94.7% of the gen-

erated trajectories do not hit the obstacle. In other words, out of the 1000

generated trajectories, 53 go through the obstacle region.

Now I will report, in Table 3.10 the accuracy of all the models and con-

45

Figure 3.27: Angular variations of joint angles of experiment (2) in condition (1) and (3)

pivot aligned with obstacle pivot aligned with agent

Average Generation Time
(ms)

2.14 2.52

Average Knee Angle -49.266 -49.424

Average Hip Angle 29.942 41.001

Table 3.8: Configurations for experiment (3)

Figure 3.28: Angular variations of joint angles of experiment (3) in condition (1) and (2)

front them with the final model. From Table 3.10, we can see that the Final

model has the highest accuracy. The increment in the accuracy compared

46

Figure 3.29: Trajectories generated by the final model

Average Generation Time
(ms)

Average Knee Angles Average Knee Angles

2.31 -56.604 37.532

Table 3.9: Tabular results of the final model

to the other models can be determined from the fact that the model has

seen more initial configurations and it became more compliant to different

47

Figure 3.30: Average Joint variation of the hip and knee angles and training trend of the
final model

scenarios.

It can also be seen from Figure 3.30 that the behavior of the hip angle and

the knee angle follows the expected behavior, that is, the hip is extending

and then flexing before and after, respectively, passing over the obstacle,

while the knee is doing the opposite.

Now, I am going to report in Table 3.11 the comparison between the

CFFTG [11] and the Final Model in order to understand if the proposed

project can perform at least as the previous version. As it can be seen,

the CFFTG has a generation time lower than the Final Model’s one. This

topic is gonna be discussed later on in the Discussion chapter.

48

Name Accuracy (%)

Final Model 94.7

(a) 58.2

(b) 75.8

(c) 74.1

(1) 56.9

(2) 3.8

(3) 58

Table 3.10: Comparison of the final model with the 6 experiments

49

Obstalce
CFFTG Generation

Time
Final Model Generation

Time

Base 1 2.055 ms 3.001 ms

Base 2 1.974 ms 3.028 ms

Base 3 2.003 ms 3.002 ms

Triangle 1.982 ms 3.353 ms

Half-circle 1.958 ms 3.001 ms

Table 3.11: Comparison of the Final Model with the CFFTG

50

Chapter 4

Discussion

On a qualitative basis, experiments (a),(b) and (c) have a more natu-

ral and aligned behavior with respect to the hypothesis, i.e., generating

a trajectory of the foot of the LLE that is aligned with a physiological

step. On the other hand, these 3 experiments are subject to more errors

in trajectory generations. Some of the trajectories have strange behaviors,

such as moving slightly backwards or oscillating. This can be related to

the number of episodes used for training.

While training the models, there was an important difference between the

models trained over 10000 episodes and the ones trained over 25000. For

the latter ones, it was noticeable that the agent preferred, in the long run,

to hit the obstacle more than to take extra steps, making some of the tra-

jectories going through the obstacle region. Taking this into account, it is

reasonable that the Average Generation Time is shorter than in the other

case. This situation is mainly present in experiment (2), where the ma-

jority of generated trajectories suffers from the problem discussed earlier.

The experiments (1),(2) and (3) have a smoother trend on average, as

shown in Figures 3.14, 3.15 and 3.16, but there are trajectories where the

swing knee’s angle varies significantly, as it can be seen in the second plot

of Figure 3.15. That is related, as explained previously, to the fact that

in the long run, the agent will start to prefer to make shorter trajectory

through the obstacle region than making a longer trajectory.

As it can be seen specifically from the plots in Figure 3.15, the shape of the

functions are in a V shape cause the majority of the generated trajectories

51

are flat, making the knee angle vary in a small interval of values.

As it can be seen from the 6 experiments proposed and from the Final

Model, it is possible to train an agent with a DRL approach in order to

generate trajectories. The single models pointed out the best environment

and conditions for the agent to be trained. For example, the models (b)

and (2) showed that training the agent by always considering it aligned

with the pivot foot is not optimal in the long run, especially after 10000

episodes of training. Training the agent in different starting configurations

of the agent and the pivot foot, and with different obstacles allowed us to

obtain a model compliant to the different scenarios with a success rate of

94.7%.

The average generation time of the Final Model is 3 ms on average, which

is acceptable considered that the code is written in python, which is not

efficient in terms of execution time. Compared to the CFFTG, which takes

2 ms on average to generate a trajectory, we can say that the Final Model

is comparable in terms of performances. Another advantage of the Final

model is that, since it is a learned model, it can try to generate trajec-

tories of new obstacles, or obstacles that pose problems for the CFFTG

in a more reliable way. On the other hand, it is more likely to generate

wrong trajectories, making the LLE colliding with the obstacles. In other

words, the CFFTG is more reliable to find a trajectory, since at the end of

the execution it is gonna find one, meaning that it can take a considerable

amount of time in the real world case scenarios. The Final model, is more

subject to errors, but it can find trajectories in a faster and more consistent

way, meaning that it should be able to always generate a trajectory in a

acceptable amount of time.

With regards to the training performances, the models from experiment

(a),(b) and (c) took on average 12 minutes ± 3 minutes to train, while the

other 3 scenarios took on average 29 minutes ± 5 minutes. The final model

took 55 minutes and 27 seconds to train. The increase of training time,

given that the experiments (a),(b) and (c) and the Final model have been

trained on the same amount of episodes, is related to the fact that both the

agent position and the pivot foot position change over episodes, making

52

it more challenging for the agent to learn. In terms of generation time of

the 1000 testing trajectories, the Final model employed 1.764 seconds to

generate all of them after the training phase.

The generated trajectories have been made compliant with the real ex-

oskeleton, taking into account the whole kinematic chain and the real mea-

surements of the links. That is, the generated trajectories also take into

account the position of the joints and links, making the proposed solution

suitable for real world implementations.

53

Chapter 5

Conclusions

The aim of the thesis, and the solution I proposed, was to use DRL tech-

niques in order to allow Lower-Limb Exoskeletons to autonomously avoid

low obstacles in different contexts and conditions, allowing the generation

of the trajectories to be compliant to the current environment and LLE

state. The proposed approach allows the LLE to overcome some of the

limitations found in the CFFTG.

We can say that the proposed solution has been effective in allowing the

LLE to avoid obstacles in different scenarios, due to the fact that the agent

was able to complete the simulations tasks successfully. Taking into ac-

count that the model is learned and that the real world is different than the

simulated one, the results showed that it is possible to implement a DRL

solution to generate trajectories autonomously for exoskeletons. Consider-

ing this, the future work will be introducing more constraints and variables,

such as different obstacles and configurations in order to have a model that

is more complete and compliant with real world environments. To further

validate the solution, the method will be implemented and tested on a real

exoskeletons, to further assess the capabilities of the proposed solution.

54

Bibliography

[1] A. F. Ruiz-Olaya, A. Lopez-Delis, and A. F. da Rocha, “Chapter eight

- upper and lower extremity exoskeletons,” Accademic Press, pp. 283–

317, 2019.

[2] D. Kawamoto, “Exoskeleton suits: 26 real-life examples,

https://builtin.com/robotics/exoskeleton-suit,” builtin, 2024.

[3] H. Hu and Y. Liu, “Blind adaptive gait planning on non-stationary

environments via continual reinforcement learning,” in 2021 IEEE In-

ternational Conference on Unmanned Systems (ICUS), pp. 280–284,

2021.

[4] A. Dastider, S. J. A. Raza, and M. Lin, “Safe locomotion within

confined workspace using deep reinforcement learning,” in 2021 Fifth

IEEE International Conference on Robotic Computing (IRC), pp. 111–

114, 2021.

[5] X. Wang, H. Fu, G. Deng, C. Liu, K. Tang, and C. Chen, “Hierarchi-

cal free gait motion planning for hexapod robots using deep reinforce-

ment learning,” IEEE Transactions on Industrial Informatics, vol. 19,

no. 11, pp. 10901–10912, 2023.

[6] L. Bao, J. Humphreys, T. Peng, and C. Zhou, “Deep reinforcement

learning for bipedal locomotion: A brief survey,” arXiv, 2024.

[7] A. Luo, Androwis, “Robust walking control of a lower limb rehabilita-

tion exoskeleton coupled with a musculoskeletal model via deep rein-

forcement learning,” Journal of NeuroEngineering and Rehabilitation,

2023.

55

[8] M. C. B. Lowell Rose, “A model-free deep reinforcement learning ap-

proach for control of exoskeleton gait patterns,” Robotica, 2021.

[9] S. Ruo Xi Yong, “Reinforcement learning: Implementing td(λ) with

function approximation,” medium, 2023.

[10] G. A. S., “Robotic exoskeletons: The current pros and cons,” World

journal of orthopedics, pp. 112–119, 2018.

[11] E. M. Edoardo Trombin, Stefano Tortora, “Low obstacles avoidance

for lower limb exoskeletons,” Master’s thesis, Università degli studi di

Padova, 2022.

[12] A. B. R. Sutton, Reinforcement Learning: An Introduction. The MIT

Press, 2018.

[13] Y. Bai, “Relu-function and derived function review,” SHS Web of

Conferences, 2022.

[14] S. Mohan, “A brief overview of eligibility traces in reinforcement learn-

ing,” Nerd For Tech, 2024.

56

Acknowledgements

I’d like to thanks my parents and my brother to support me during this

years, through the difficulties and the good times. I want to thank Prof.

Tortora, Dr. Trombin and the University of Padua for allowing me to work

on this research. At last, but not least, I’d like to thanks my childhood

friends Alessia, Stefania, Marco, Damiano and Carlo, and my colleagues

from Computer Engineering Lorenzo L., Lorenzo G., Riccardo, Marco F.,

Marco R., Giovanni, Francesco and Lorenzo C.

57

