

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE CORSO DI LAUREA MAGISTRALE IN INGEGNERIA ELETTRONICA

Analisi circuitale e valutazione delle prestazioni di un amplificatore audio totalmente bilanciato operante in classe A e classe A-AB

Relatore: Prof. Leopoldo Rossetto

Laureando: Agostino Zamai

Data di laurea: 12 Ottobre 2023

Anno Accademico: 2022-2023

Indice

1	Introduzione			
	1.1	Descrizione dell'azienda	7	
	1.2	Struttura della tesi	8	
2	Descrizione del prototipo			
	2.1	Schema a blocchi	12	
3	Str	uttura dell'amplificatore	15	
	3.1	Schema a blocchi	16	
	3.2	Stadio di ingresso	18	
	3.3	Stadio CA	19	
	3.4	Carico attivo driver	19	
	3.5	Stadio di potenza	19	
	3.6	Stadio Driver	21	
		3.6.1 Modalità di funzionamento in Classe A	21	
		3.6.2 Modalità di funzionamento in Classe A-AB	22	
	3.7	Controllo del modo comune in uscita	24	
	3.8	Sistema di alimentazione	24	
	3.9	Controllo modo comune tra le alimentazioni	25	

INDICE 3

4	Ana	alisi Ci	rcuitale	28		
	4.1	Stadio	di Amplificazione	29		
		4.1.1	Stadio di ingresso	29		
		4.1.2	Reti di ingresso A_{in} e di feedback A_{fb}	32		
		4.1.3	Stadio CA	32		
		4.1.4	Carico attivo driver	34		
		4.1.5	Stadio Driver e Amplificazione di Potenza	35		
	4.2	Contro	ollo modo comune in uscita	39		
	4.3	Sistem	a di Alimentazione	40		
		4.3.1	Ripple residuo su V_D	40		
		4.3.2	Ripple residuo su V_P	42		
	4.4	Contro	Controllo modo comune alimentazioni			
	4.5	Genera	ratori di corrente			
	4.6	Riferin	menti di tensione			
	4.7	Risulta	ati delle misure	49		
		4.7.1	Tensione di alimentazione V_D	49		
		4.7.2	Ripple residuo sull'alimentazione V_D	50		
		4.7.3	Tensione di alimentazione V_P	51		
		4.7.4	Ripple Residuo sull'alimentazione V_P	53		
		4.7.5	Corrente di polarizzazione dei diodi Zener $\ \ .\ \ .\ \ .$	54		
		4.7.6	Corrente erogata dai generatori di corrente	54		
		4.7.7	Corrente di Bias dei transistor dello stadio D-TAS	56		
		4.7.8	Corrente di polarizzazione dello stadio CA $\ \ldots \ \ldots$	57		
		4.7.9	Corrente erogata da Q_{39}	57		
		4.7.10	Circuito di polarizzazione Mosfet superiore dello stadio			
			finale	58		
		4.7.11	Corrente di polarizzazione dei Mosfet finali	60		

		4.7.12 Potenza dissipata dai Mosfet finali	62			
5	Analisi dinamica					
	5.1	Amplificazione dei segnali	63			
		5.1.1 Rete di ingresso e rete di feedback	64			
		5.1.2 Stadio di ingresso	67			
		5.1.3 Stadio CA	72			
	5.2	Driver di Q_{22}	74			
	5.3	Driver di Q_{27}	77			
	5.4	Anello di retroazione di modo differenziale	80			
	5.5	Controllo del modo comune in uscita	81			
		5.5.1 Loop di controllo di v_{O_cm}	83			
6	Misure dinamiche					
	6.1	Setup di misura	87			
	6.2	Risposta in frequenza	90			
		6.2.1 Calcolo della corrente di Gate	92			
	6.3	FFT	96			
	6.4	Misura di THD+N vs v_O	100			
	6.5	Misure di THD+N	102			
	6.6	Misura di impedenza di uscita	105			
	6.7	Verifica stabilità con carico capacitivo	107			
	6.8	Misura di potenza massima	108			
7	Modifiche Proposte 110					
	7.1	Riferimenti di tensione	110			
	7.2	Corrente di gate di Q22	112			
	7.3	Circuito di centraggio delle alimentazioni	114			

INDICE	5

115

8 Conclusioni

Capitolo 1

Introduzione

L'alta fedeltà, in inglese *HI-FI* o *High fidelity*, viene definita da *Treccani* [13] come:

"In elettronica, in elettroacustica, nella tecnica delle telecomunicazioni, proprietà di un dispositivo trasduttore, amplificatore o trasmettitore di trasdurre, amplificare o trasmettere senza apprezzabili distorsioni un segnale ad esso applicato; in partic., (ad) alta f., qualificazione che viene data (per traduz. dell'ingl. high fidelity) a impianti di registrazione e di riproduzione sonora, o a loro componenti (fonorivelatori, altoparlanti, amplificatori, ecc.), dotati di alto grado di fedeltà."

Se ne deduce che l'alta fedeltà è una proprietà che può, o meglio dovrebbe, descrivere tutti gli oggetti impiegati nella catena della registrazione e riproduzione dei suoni; dai microfoni, ai dispositivi di memorizzazione, agli amplificatori e per finire ai diffusori.

Ne consegue che se anche in un solo elemento tra quelli elencati è presente una mancanza di attenzione alla qualità, esso potrebbe limitare fortemente la fedeltà di tutto il processo di acquisizione e riproduzione del suono. In questa catena, l'amplificatore ricopre sicuramente un aspetto cruciale, perché è chiamato ad amplificare un segnale solitamente di piccola ampliezza (come ad esempio l'uscita di un giradischi) aumentando il range dinamico, e sopratutto deve essere in grado di erogare la potenza richiesta per applicare il segnale amplificato sul carico che, nel momento in cui questa tesi è stata scritta, è orientato per la maggior parte dei diffusori commercializzati ad un valore nominale di 4Ω .

Tuttavia, nell'elenco precedentemente presentato, è mancante un tassello fondamentale: la soggettività dell'individuo che ascolta. Sebbene sia possibile trovare dei dati oggettivi che possono stabilire la bontà dell'amplificatore in quanto tale, per decretare la fedeltà dello stesso, è necessario passare per l'ascolto da parte dell'individuo, che porterà inevitabilmente un grado di soggettività determinante per stabilire la reale fedeltà dello strumento.

Nella presente tesi sono stati riportati lo studio e le misure effettuate sul prototipo di un amplificatore integrato stereofonico totalmente bilanciato realizzato dall'azienda Unison Research.

1.1 Descrizione dell'azienda

Unison research è un'azienda fondata nel 1987 da un piccolo gruppo di appassionati audiofili, guidati da Giovanni Maria Sacchetti, e si occupa di progettare e sviluppare oggetti nell'ambito HI-FI.

Nel corso degli anni è stato prediletto lo sviluppo di amplificatori integrati (con stadio di preamplificazione e di potenza nello stesso dispositivo) basati sull'utilizzo di valvole come amplificatori di segnale e di potenza; tuttavia, la novità più significativa degli ultimi anni è stato il ritorno di Unison Research alla progettazione di amplificatori ibridi, che utilizzano sia valvole che dispositivi attivi allo stato solido. Grazie alla collaborazione con l'Università degli

studi di Padova, è nata la serie *Unico*, nella quale lo stadio di preamplificazione è generalmente fatto attraverso l'utilizzo di valvole e lo stadio finale è implementato tramite l'utilizzo di transistor di potenza.

L'azienda Unison Research è riconosciuta come leader italiano per la produzione di amplificatori a valvole, e come una delle migliori 10 aziende in Europa.

1.2 Struttura della tesi

Lo studio effettuato dalla presente tesi è stato suddiviso nei seguenti capitoli:

- Capitolo 2: Descrizione generale del prototipo di amplificatore audio nel quale è stato implementato il circuito di amplificazione studiato in questa tesi.
- Capitolo 3: Descrizione dell'architettura implementata nel circuito di amplificazione, con una breve descrizione dei vari stadi di amplificazione. Sono state descritte le modalità di funzionamento dello stadio finale, e le alimentazioni necessarie per il funzionamento dell'amplificatore.
- Capitolo 4: Analisi circuitale e verifica sperimentale delle tensioni e correnti presenti in vari punti del circuito, in assenza di segnale in ingresso.
- Capitolo 5: Analisi dinamica degli stadi di amplificazione di segnale e di potenza. Studio del comportamento del circuito con ingressi di modo differenziale e di modo comune.

- Capitolo 6: Report delle misure dinamiche effettuate sul circuito di amplificazione, con comparazione delle caratteristiche e performance nelle due diverse modalità di funzionamento.
- Capitolo 7: Proposte e suggerimenti per delle modifiche circuitali implementabili per migliorare le caratteristiche dell'amplificatore.

Capitolo 2

Descrizione del prototipo

Il prototipo analizzato e testato durante l'esperienza di tirocinio è un amplificatore audio integrato stereofonico sviluppato integralmente utilizzando come dispositivi di amplificazione componenti attivi a stato solido. Il dispositivo può operare in 2 modalità di funzionamento, di cui una è la ben nota Classe A, mentre la seconda è una nuova modalità di funzionamento che è stata denominata classe A-AB;

Le due modalità di funzionamento prevedono differenti modalità di polarizzazione degli stadi finali, e la cui descrizione è rimandata ai paragrafi 3.6.1 e 3.6.2.

La struttura del circuito di amplificazione è totalmente bilanciata; ne consegue che le uscite non hanno un collegamento a massa, ma hanno entrambi i morsetti con un andamento differenziale (segnali uguali ed opposti).

L'amplificatore comprende un sistema di monitoraggio e correzione della tensione di modo comune presente all'uscita, per mantenere tale componente prossima a zero ed evitare che si presentino saturazioni degli stadi di uscita.

Sono presenti più ingressi all'amplificatore (come è consueto negli amplificatori audio integrati), sia di tipo bilanciato che sbilanciato, ed è inoltre

presente un ingresso phono, con un circuito di condizionamento del segnale dedicato.

Il guadagno dello stadio di amplificazione è fisso, e quindi è presente uno stadio di controllo del volume.

La selezione degli ingressi, della regolazione del volume e della predisposizione della modalità di funzionamento è stata implementata tramite un microcontrollore.

Tutte le tensioni utilizzate all'interno del dispositivo sono derivate da un trasformatore, con diversi secondari, i quali vengono rettificati attraverso dei ponti di graetz. In alcune alimentazioni sono stati inseriti dei regolatori lineari di tensione per ridurre il ripple residuo e al contempo stabilizzare le tensioni nei punti più critici.

2.1 Schema a blocchi

In figura 2.1 è riportato uno schema a blocchi dell'amplificatore, nel quale sono evidenziate tutte le connessioni tra le varie parti che concorrono all'amplificazione del segnale.

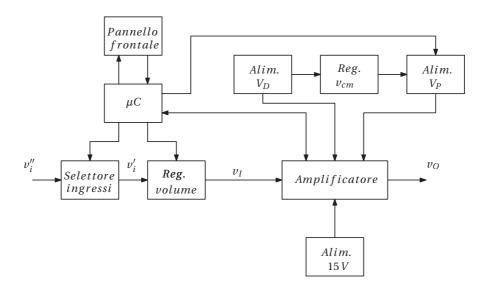


Figura 2.1: Schema riassuntivo dell'architettura dell'amplificatore

I diversi blocchi rappresentati in figura 2.1 hanno le seguenti funzioni:

- Alim. V_D : Alimentazione duale (comprende le tensioni $+V_D$ e $-V_D$) utilizzata per alimentare il circuito di amplificazione del segnale; le due tensioni sono riferite al potenziale GND_POWER
- Alim. V_P: Alimentazione singola, i cui valori estremi sono stati chiamati + ^{V_P}/₂ e ^{V_P}/₂, utilizzata per alimentare il circuito di amplificazione di potenza; è chiamata ad erogare una grande quantità di corrente.
 Viene mantenuta centrata rispetto al potenziale gnd_signal attraverso il blocco (Reg. v_{cm});

- Alim. 15V: Alimentazione duale (comprende le tensioni +15V e −15V) utilizzata per alimentare il regolatore della tensione di modo comune in uscita; questa alimentazione viene riferita al potenziale gnd_signal;
- Pannello frontale: Gestisce l'interazione con l'utente. E' formato da un display a sette segmenti a 2 cifre, 2 pulsanti, 3 led e 2 encoder. I due pulsanti sono utilizzati per selezionare la modalità di funzionamento, mentre i due encoder servono per gestire rispettivamente la selezione degli ingressi e la regolazione del volume;
- μC: Elabora i comandi che derivano dal pannello frontale, gestisce la selezione degli ingressi, il circuito di regolazione del volume, la tensione di alimentazione della parte di potenza e la polarizzazione dello stadio finale. Gestisce inoltre le protezioni presenti nel circuito, inizialmente abbassando il livello impostato nel regolatore del volume, fino ad arrivare ad azzerarlo se necessario;
- Selettore ingressi: Riporta in ingresso al circuito di regolazione del volume l'ingresso selezionato tramite dei relè opportunamente controllati dal μC ;
- Regolatore volume: Regola il volume modificando l'ampiezza del segnale in ingresso. E' implementato tramite il CI PGA2311, il quale implementa un amplificatore analogico, il cui guadagno è definito in maniera digitale. Dal μC i possibili livelli selezionabili sono stati mappati in modo che venga simulato un potenziometro di tipo ALPS, con andamento logaritmico;

- Amplificatore: Amplifica il segnale ricevuto in ingresso dal regolatore del volume. E' caratterizzato dall'avere un guadagno costante, e all'uscita presenta uno stadio di amplificazione di potenza in grado di erogare la corrente necessaria per controllare i carichi per il quale è stato progettato;
- Reg. v_{cm} : Regolatore che gestisce la tensione di modo comune presente fra le alimentazioni $\pm V_P$;

Al suo interno l'amplificatore integrato è suddiviso in schede.

Questa tesi si concentra principalmente sullo studio e sul debug delle schede denominate "Power", mentre nel lavoro di tirocinio svolto presso l'azienda a cui questa tesi è collegata è stato fatto un debug totale del dispositivo in modo da renderlo un prodotto finito e potenzialmente commerciabile.

Le schede "Power" comprendono le 3 alimentazioni precedentemente presentate, il blocco **Amplificatore** e il blocco **Reg.** v_{cm} .

D'ora in poi, se non diversamente specificato, con "amplificatore" si farà riferimento alle sole schede "Power".

Capitolo 3

Struttura dell'amplificatore

Il circuito di amplificazione implementa una struttura modificata della più generale architettura Fully differential difference amplifier (FDDA) (il cui simbolo è riportato in figura 3.1).

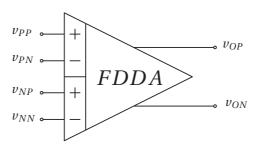


Figura 3.1: Simbolo equivalente della struttura *FDDA*, dove sono presenti due coppie di ingressi differenziali e una coppia di uscite

L'architettura implementata nell'amplificatore sotto esame presenta due ingressi aggiuntivi (in figura 3.2 denominati C_P e C_N), attraverso i quali viene regolata la tensione di modo comune in uscita.

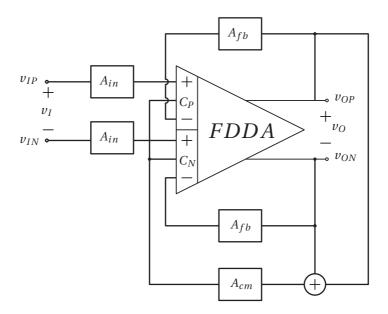


Figura 3.2: Versione modificata della struttura FDDA in retroazione (A_{fb}) con reti di filtro in ingresso (A_{in})

In figura 3.2, i blocchi in ingresso A_{in} servono a filtrare i segnali di ingresso, mentre i blocchi di feedback A_{fb} servono a definire il guadagno dell'amplificatore per il solo modo differenziale; A_{cm} prende in ingresso la somma delle tensioni di uscita, che è proporzionale alla loro tensione di modo comune, e la sua uscita è collegata ai terminali aggiuntivi C_P e C_N . Il blocco A_{cm} implementa un regolatore proporzionale integrale che tende a portare a zero la componente di modo comune della tensione di uscita.

3.1 Schema a blocchi

Come solitamente avviene nei circuiti di amplificazione dei segnali (come ad esempio negli amplificatori operazionali) il grande guadagno in catena aperta viene ottenuto utilizzando diversi stadi in cascata.

Il blocco del *FDDA* modificato riportato in figura 3.2 può essere espanso nelle sue diverse componenti e rappresentato tramite il seguente schema a blocchi:

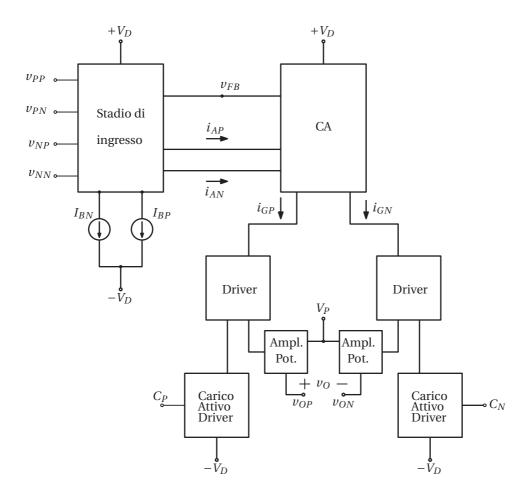


Figura 3.3: Schema a blocchi dell'implementazione della struttura FDDA modificata descritta in figura 3.2

I due blocchi Carico Attivo Driver sono caratterizzati dall'avere ciascuno un ingresso aggiuntivo, rispettivamente C_P e C_N ; i due ingressi vengono controllati dall'uscita di A_{cm} , e sono necessari per regolare la tensione di modo comune tra le uscite.

3.2 Stadio di ingresso

E' il primo stadio di amplificazione che si incontra a valle dei due blocchi A_{in} (figura 3.2).

Essendo lo stadio che effettua il confronto tra i segnali bilanciati in ingresso e l'uscita del feedback, è stato implementato utilizzando due stadi **D-TAS** (*Differential-Transconductance amplifier stage*).

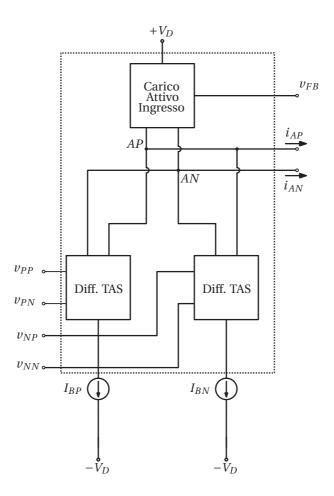


Figura 3.4: Schema equivalente dello stadio di ingresso presente in figura 3.3

Le uscite di questi due stadi sono connesse in parallelo, e la loro uscita è connessa a un carico attivo bilanciato, che garantisce un'elevata impedenza

3.3. STADIO CA

di uscita e al contempo viene utilizzato per limitare il guadagno di modo comune, attraverso il potenziale v_{FB} , che proviene dal blocco **CA**.

Questo stadio è alimentato da diverse sorgenti: l'alimentazione di tensione della parte di amplificazione di segnale $(\pm V_D)$ e due generatori di corrente I_{BP} e I_{BN} , i quali sono necessari per polarizzare i due stadi differenziali.

3.3 Stadio CA

Il blocco **CA** in figura 3.3 rappresenta uno stadio di amplificazione di corrente.

Le correnti in ingresso risultano essere le correnti di uscita dello **stadio** differenziale di ingresso (i_{AP} e i_{AN} in figura 3.3), e in uscita produce una coppia di correnti (i_{GP} e i_{GN} in figura 3.3). Tramite il nodo di feedback v_{FB} modula la corrente circolante sul carico attivo ingresso.

3.4 Carico attivo driver

E' il carico attivo nel quale la corrente di uscita dello stadio CA viene convertita in tensione, attraverso l'impedenza di uscita del carico attivo stesso. Viene inoltre modulata la corrente di modo comune del carico attivo $(i_{GP} e i_{GN})$ attraverso l'ingresso C_P (e C_N) in figura 3.3 per contenere la tensione di modo comune in uscita.

3.5 Stadio di potenza

Lo stadio finale di potenza è composto per ognuno dei due segnali di uscita $(v_{OP} e v_{ON})$ in figura 3.3) da una coppia di dispositivi di potenza a simmetria

complementare, come in figura 3.5, ognuno dei quali è collegato all'uscita tramite una resistenza di source.

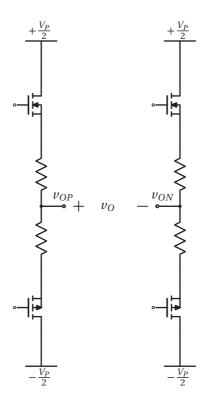


Figura 3.5: Circuito a simmetria complementare di amplificazione di potenza, nel quale si evidenzia come l'uscita v_O sia l'uscita differenziale tra v_{OP} e v_{ON}

Il guadagno di questo stadio deve essere unitario, in quanto il suo compito è di fare da buffer unitario di tensione per poter applicare la tensione di uscita del circuito di amplificazione di segnale e fornire la corrente richiesta al carico collegato, che normalmente varia nel range $(4-8)\Omega$.

Come precedentemente accennato nel capitolo introduttivo, lo stadio di potenza in uscita può funzionare in due modalità di funzionamento: ovvero $classe\ A\ e\ classe\ A-AB$, che si differenziano per la modalità di polarizzazione dei dispositivi di potenza.

3.6 Stadio Driver

Lo stadio driver è stato progettato per controllare i due dispositivi dello stadio finale in maniera asimmetrica; nella topologia realizzata, in entrambe le modalità di funzionamento il dispositivo superiore funziona da buffer unitario di tensione, mentre il dispositivo inferiore funziona da generatore di corrente, necessario per polarizzare il dispositivo superiore.

3.6.1 Modalità di funzionamento in Classe A

Questa modalità di funzionamento fa riferimento alla classica polarizzazione descritta in letteratura come **Classe A**, dove entrambi i Mosfet dello stadio di potenza sono attivi per tutto il periodo del segnale in uscita.

Essendo una configurazione a simmetria complementare, la massima corrente erogabile dallo stadio è di $i_O^{MAX} = 2 I_{BIAS}$, dove I_{BIAS} è la corrente di polarizzazione dei Mosfet in assenza di segnale in uscita.

La massima potenza erogabile dallo stadio risulta quindi, ponendo come limite il punto in cui uno dei mosfet si spegne, pari a $P_O^{MAX} = 2\,I_{BIAS}\,v_O^{MAX}$, che si raggiunge con una resistenza di carico pari a $R_{LOAD} = \frac{V_O^{MAX}}{2\,I_{BIAS}}$. Per valori della resistenza di carico maggiore, si ottiene che lo stadio satura in tensione, mentre per valori della resistenza di carico minori, si ha che lo stadio satura in corrente.

L'insieme dello stadio di potenza e dei circuiti di driver può essere modellizzato come in figura 3.6.

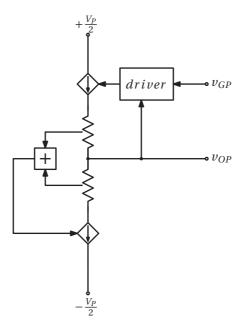


Figura 3.6: Schema equivalente dello stadio Driver+ Stadio di uscita nel funzionamento in Classe A

Lo scopo del generatore controllato inferiore è di mantenere costante la somma delle correnti di polarizzazione misurate con le due resistenze di shunt in figura 3.6; in questo modo entrambi i dispositivi finali contribuiscono all'erogazione della corrente sul carico in maniera complementare (la somma è costante).

3.6.2 Modalità di funzionamento in Classe A-AB

In questa modalità di funzionamento, il dispositivo superiore viene mantenuto acceso per tutto il periodo del segnale in uscita; si trova quindi in una **Classe A Dinamica** nella quale il dispositivo è sempre acceso. La corrente massima che può erogare risulta ben maggiore di due volte la corrente di polarizzazione.

23

Il dispositivo inferiore è polarizzato in una modalità che in letteratura viene chiamata Classe AB, nella quale risulta sempre attivo per potenze in uscita limitate, mentre per valori di corrente sul carico positiva maggiore della corrente di bias si spegne. La corrente di polarizzazione è la medesima del Mosfet superiore. Nel semiperiodo di tensione negativa in uscita il Mosfet inferiore fornisce la corrente necessaria al carico, oltre che la corrente necessaria per mantenere polarizzato il mosfet superiore.

L'insieme dello stadio di potenza e dei circuiti di driver può essere modellizzato come in figura 3.7.

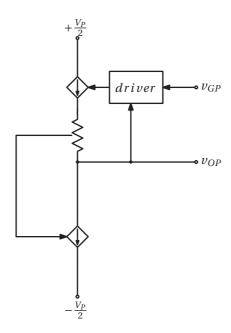


Figura 3.7: Schema equivalente dello stadio Driver+ Stadio di uscita in modalità di funzionamento Classe A-AB

Il generatore di corrente inferiore è controllato in modo da mantenere costante la corrente che scorre sul generatore superiore. Ecco che se la corrente erogata verso il carico dal dispositivo superiore supera la corrente di bias, il dispositivo inferiore si spegne.

3.7 Controllo del modo comune in uscita

Con riferimento al paragrafo 3.5, è evidente che la tensione di uscita v_O dipende dalla sola componente differenziale tra i potenziali v_{OP} e v_{ON} . Ecco che per massimizzare la dinamica del segnale, evitando una saturazione asimmetrica dei dispositivi in uscita, è necessario annullare la componente di modo comune tra le uscite; infatti, sotto l'ipotesi di tensione di modo comune nulla, e di cadute di tensione trascurabili sui dispositivi di potenza e sulle resistenze di source (figura 3.5), la massima tensione differenziale risulta essere $v_O^{MAX} = V_P$ (nella pratica non è possibile arrivare a tale limite, a causa della presenza di dispositivi non ideali).

3.8 Sistema di alimentazione

Come anticipato nei precedenti paragrafi, sono necessari diversi tipi di alimentazione, sia di corrente che di tensione.

Per quanto riguarda le tensioni di alimentazione, come spiegato nel capitolo 2, esse sono ricavate da dei secondari di un trasformatore di linea alimentato dalla tensione di rete. Queste tensioni sinusoidali vengono poi raddrizzate attraverso dei ponti di Graetz e filtrate attraverso degli opportuni banchi di condensatori.

Nel caso di $\pm V_D$, è stato inserito un ulteriore filtro RC, utilizzato per diminuire il ripple residuo sull'alimentazione, come illustrato in figura 3.8.

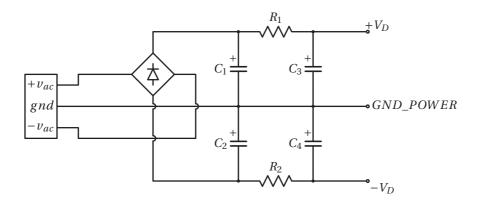


Figura 3.8: Sistema di alimentazione relativo alla tensione di alimentazione V_D

Sono inoltre utilizzati dei regolatori lineari di tensione per stabilizzare la tensione di alimentazione +15V.

I potenziali GND_POWER e gnd_signal sono collegati tra loro tramite un resistore di basso valore, in modo da mantenerli pressoché allo stesso potenziale, pur tuttavia mantenendo la circolazione di corrente sulle masse il più possibile separata tra lo stadio di amplificazione e lo stadio di ingresso.

3.9 Controllo modo comune tra le alimentazioni

Come precedentemente descritto nel paragrafo 2.1, è stato implementato un circuito per mantenere la tensione di modo comune tra $\pm \frac{V_P}{2}$ (definiti in figura 3.9) in un intorno di gnd_signal . Questo sistema è rappresentato in figura 3.9.

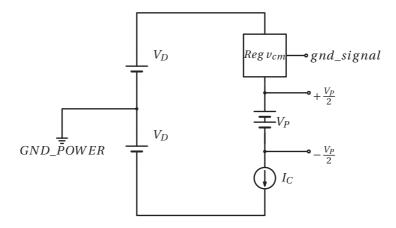


Figura 3.9: Circuito equivalente di centraggio delle alimentazioni V_D e V_P

Nello schema sono presenti un generatore di corrente costante I_C e un regolatore di tensione $Reg.v_{cm}$, che svolgono una duplice funzione: mantenere centrate le alimentazioni ed (idealmente) eliminare il ripple residuo sull'alimentazione $+\frac{V_P}{2}$, facendolo quindi presentare tutto sulla tensione di alimentazione $-\frac{V_P}{2}$. La motivazione di questa scelta risiede sul controllo effettuato sullo stadio di driver e di potenza (il cui modello equivalente è presente in fig. 3.6 e fig. 3.7); infatti essendo il dispositivo superiore dello stadio di uscita utilizzato come inseguitore di tensione, la tensione v_{ON} risulta dipendente non solo dalla tensione imposta dal dispositivo stesso, ma anche dalle ondulazioni presenti sull'alimentazione $+\frac{V_P}{2}$, a causa della presenza della resistenza associata alla modulazione della lunghezza di canale e alla capacità di uscita del Mosfet.

Il dispositivo inferiore invece, essendo controllato per agire come un generatore di corrente, risulta essere meno sensibile alle ondulazioni presenti nell'alimentazione $-\frac{V_P}{2}$ all'uscita.

Il generatore I_C non è un componente aggiuntivo in quanto corrisponde alla corrente assorbita dai due generatori I_{CP} e I_{CN} utilizzati per polarizzare

3.9. CONTROLLO MODO COMUNE TRA LE ALIMENTAZIONI

il circuito driver di ogni Mosfet inferiore dello stadio di uscita (I_{CP} per l'uscita v_{OP} e I_{CN} per l'uscita v_{ON}).

27

Capitolo 4

Analisi Circuitale

L'analisi circuitale riportata nel seguente capitolo è stata svolta nell'ipotesi di assenza di segnale in ingresso, per poter definire i punti operativi delle varie parti del circuito e per ottenere dei valori di riferimento da confrontare con quelli misurati successivamente nel prototipo.

Nello svolgere l'analisi, sono state introdotte delle ipotesi semplificative, le quali certamente introducono maggiore incertezza nelle previsioni di valori di tensione e di corrente nel circuito, ma consentono di semplificare fortemente l'analisi statica.

E' stato assunto:

- BJT: $\beta_F \to \infty$ (conseguentemente $I_B \to 0$ e $R_{in}^{BASE} \to \infty$)
- BJT: $v_{BE} = V_{BE} = 0.65 V$
- OPAMP ideali

4.1 Stadio di Amplificazione

Nell'analisi dello stadio di amplificazione, vista la simmetria tra i circuiti relativi a ingressi e uscite P e i circuiti relativi a ingressi e uscite N, si fa riferimento ai componenti utilizzati per l'implementazione dei circuiti relativi all'uscita P.

4.1.1 Stadio di ingresso

Lo stadio di ingresso descritto in figura 3.4 si compone di due diversi blocchi, ovvero il **carico attivo Ingresso** e gli stadi di **D-TAS**.

Amplificatore a trans-conduttanza differenziale (D-TAS)

In assenza di segnale di ingresso, l'amplificatore è progettato per fornire un'uscita differenziale pari a zero, e il controllo della tensione di modo comune in uscita tende a portare l'uscita di modo comune a $v_{O_cm} = 0V$.

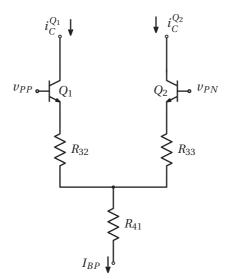


Figura 4.1: Implementazione circuitale del blocco **D-TAS P** di figura 3.4

Di conseguenza entrambe le basi di Q_1 e Q_2 (ricordando l'ipotesi di trascurare la corrente di base e le conseguenti cadute di tensione sulle resistenze di polarizzazione) si trovano connesse al potenziale gnd_signal , e sotto l'ipotesi di perfetta simmetria tra i due transistor, la corrente I_{BP} si ripartisce perfettamente a metà tra i due rami:

$$I_C^{Q_1} = I_C^{Q_2} = \frac{I_{BP}}{2} (4.1)$$

Va detto che vista la presenza di resistenza di degenerazione, eventuali asimmetrie tra i due dispositivi possono essere "corrette" dal feedback locale introdotto da R_{32} e R_{33} .

La resistenza R_{41} , essendo in serie ad un generatore di corrente costante, ha ai suoi capi una caduta di tensione costante pari a $V^{R_{41}} = I_{BP} R_{41}$. È stata posizionata in serie al generatore di corrente per mantenere una impedenza di uscita del generatore di corrente non trascurabile anche ad alte frequenze; infatti, essendo il generatore implementato tramite BJT, ad alta frequenza le capacità parassite fanno diminuire in maniera importante la resistenza di uscita del dispositivo.

Carico attivo ingresso

Il carico attivo rappresentato in figura 4.2, viene polarizzato attraverso il segnale v_{FB} ; tuttavia, viste le assunzioni fatte all'inizio del capitolo, è possibile calcolare le correnti I_{C7} e I_{C8} .

Infatti, come è possibile osservare in figura 3.4, ad ognuno dei collettori di Q_7 e Q_8 è connesso il collettore di un transistor proveniente da ognuno dei due circuiti differenziali (oltre che all'ingresso dello stadio \mathbf{CA} , che è supposto trascurabile). Vista l'equazione 4.1, è possibile calcolare:

$$I_C^{Q_7} = I_C^{Q_8} = \frac{I_{BP}}{2} + \frac{I_{BN}}{2}$$
 (4.2)

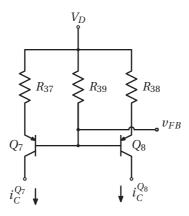


Figura 4.2: Implementazione circuitale del blocco **Carico attivo ingresso** di figura 3.4

I due circuiti differenziali descritti in figura 4.1 per un buon funzionamento del circuito, devono avere un guadagno (di modo differenziale e di modo comune) il più simile possibile. A parità di circuito e di componenti utilizzati, è necessario che anche le correnti di polarizzazione dei dispositivi attivi sia la medesima.

Viste le equazioni 4.1 e 4.2, risulta:

$$I_{BP} = I_{BN} \tag{4.3}$$

E' possibile calcolare anche la tensione ai capi di R_{39} , applicando Kirchoff alla maglia comprendente Q_7 , R_{37} e R_{39} :

$$V^{R_{39}} = R_{37} \frac{I_{BP}}{2} + V_{EB}^{Q_7} \tag{4.4}$$

4.1.2 Reti di ingresso A_{in} e di feedback A_{fb}

L'analisi dinamica delle reti A_{in} e A_{fb} viene effettuata nel paragrafo 5.1.1; tuttavia è stata riportata in questo paragrafo la rete che implementa A_{in} per illustrare come, in assenza di segnale in ingresso, l'ingresso dello stadio di amplificazione sia posto al potenziale gnd_signal tramite R_{26} .

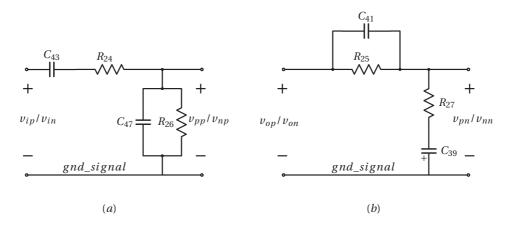


Figura 4.3: Reti elettriche che implementano: (a) filtro in ingresso (A_{in}) , (b) rete di feedback (A_{fb})

Dal circuito 4.3 è possibile stabilire un altro vincolo circuitale, per il quale tuttavia occorre eliminare le ipotesi semplificative. Infatti, in assenza di segnale di ingresso, la corrente di base dei transistor dei blocchi **D-TAS** sono fornite rispettivamente da R_{26} e R_{25} .

 R_{26} è connessa al potenziale di riferimento gnd_power , e quindi per avere lo stesso potenziale in uscita v_{OP} , occorre che $R_{25} = R_{26}$.

4.1.3 Stadio CA

Lo stadio di amplificazione CA è implementato tramite una configurazione cascode (attraverso i transistor Q_{11} e Q_{12} polarizzati attraverso il potenziale di riferimento V_C di figura 4.12) per aumentare la resistenza di uscita dello

stadio e diminuire la tensione fra collettore e emettitore di transistor utilizzati come amplificatori Q_9 e Q_{10} , che possono così essere dispositivi a bassa tensione, più lineari e con frequenza di transizione maggiore di dispositivi ad alta tensione.

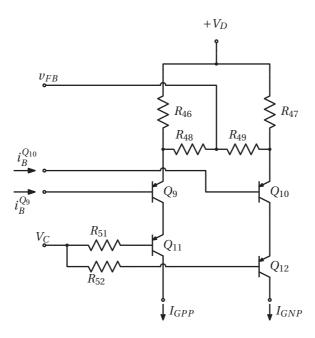


Figura 4.4: Implementazione circuitale del blocco CA di figura 3.3

Il potenziale v_{FB} è un segnale di feedback che dallo stadio **CA** polarizza lo stadio **Carico Attivo Ingresso**: infatti il potenziale $V^{R_{46}}$ (o in condizioni statiche equivalentemente $V^{R_{47}}$) viene ridotto tramite il partitore formato da R_{48} (o in condizioni statiche equivalentemente $V^{R_{49}}$) e l'impedenza pari a $2 R_{39}$ (R_{39} è presente in figura 4.2).

Il potenziale ai capi di R_{46} risulta essere:

$$V^{R_{46}} = \left(1 + \frac{R_{48}}{R_{48} + 2R_{39}}\right)V^{R_{39}} \tag{4.5}$$

 R_{39} è di valore molto superiore rispetto a R_{48} ; la tensione $V^{R_{46}}$ è quindi aprossimabile come:

$$V^{R_{46}} \simeq V^{R_{39}} \tag{4.6}$$

la corrente di polarizzazione dei transistor Q_9 e Q_{10} è:

$$I_C^{Q9} = I_C^{Q_{10}} = \frac{V^{R_{46}}}{R_{46}} \simeq \frac{V^{R_{39}}}{R_{46}} \simeq \frac{R_{37} \frac{I_{BP}}{2} + V_{EB}^{Q7}}{R_{46}}$$
 (4.7)

4.1.4 Carico attivo driver

Lo stadio **CA** viene polarizzato tramite il carico attivo descritto in questo paragrafo. I due generatori di corrente sono stati sviluppati in configurazione cascode, sfruttando i riferimenti di tensione definiti in figura 4.12 e garantendo una resistenza di uscita di valore elevato.

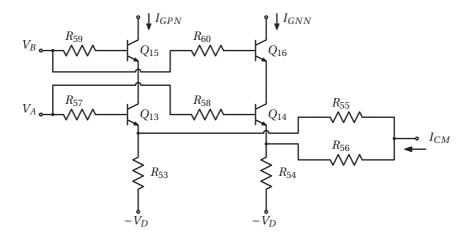


Figura 4.5: Implementazione circuitale del blocco carico attivo driver

La corrente che scorre in R_{53} (o equivalentemente in R_{54}) è:

$$I^{R_{53}} = \frac{V_A - V_{be}^{Q_{13}} + V_D}{R_{53}} \tag{4.8}$$

Dato che il Mosfet Q_{22} (figura 4.6) non assorbe corrente dal gate, deve risultare, in assenza di segnale in ingresso, $I_{GPP} = I_{GPN}$.

La corrente $I^{R_{53}}$, applicando Kirchhoff al nodo connesso all'emettitore di Q_{13} può essere riscritta come:

$$I^{R_{53}} = i_{GPN} + I^{R_{55}} = i_{GPP} + I^{R_{55}} (4.9)$$

4.1.5 Stadio Driver e Amplificazione di Potenza

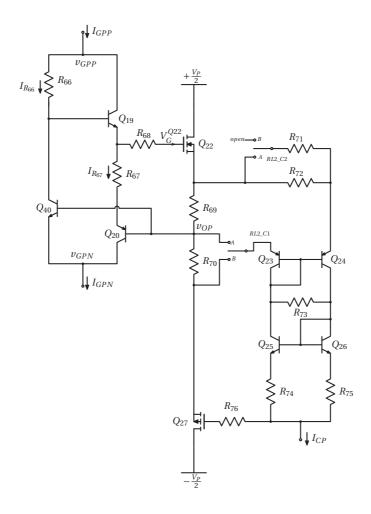


Figura 4.6: Implementazione circuitale dei blocchi **Driver** e **Ampl. Pot.** di figura 3.3 per l'uscita v_{OP}

Il circuito illustrato in figura 4.6 contiene al suo interno tre diverse parti: lo stadio finale di potenza, il circuito di driver del Mosfet Q_{22} e il circuito di driver del Mosfet Q_{27} .

Il circuito di driver del mosfet Q_{27} può essere fatto variare facendo cambiare la posizione dei contatti $RL2_C1$ e $RL2_C2$ (implementati tramite relé):

- Posizione A: Lo stadio finale è polarizzato per lavorare in Classe A-AB
- Posizione B: Lo stadio finale è polarizzato per lavorare in Classe A

Polarizzazione Mosfet Q_{22}

Il circuito di polarizzazione di Q_{22} (in figura 4.6 il circuito in alto a sinistra connesso tra $V_G^{Q_{22}}$ e v_{OP}) viene polarizzato dalla corrente imposta in I_{GPP} dallo stadio \mathbf{CA} .

In tale circuito non è possibile calcolare analiticamente la ripartizione della corrente tra $I^{R_{66}}$ e $I^{R_{67}}$ se non si conoscono con esattezza le caratteristiche di Q_{22} ; tuttavia è possibile calcolare la differenza di potenziale tra i nodi V_{GPP} e V_{GPN} :

$$(V_{GPP} - V_{GPN}) = R_{66} I^{R_{66}} + V_{BE}^{Q_{19}} + R_{67} I^{R_{67}} - V_{BE}^{Q_{20}} + V_{BE}^{Q_{40}}$$
(4.10)

Risulta poi, da progetto, che $R_{66}=R_{67}$, che permette di semplificare l'equazione precedente e consente di calcolare il potenziale sopra descritto come:

$$(V_{GPP} - V_{GPN}) = 3V_{BE} + R_{66} (I^{R_{66}} + I^{R_{67}}) = 3V_{BE} + R_{66} I_{GPP}$$
 (4.11)

Polarizzazione dei finali in Classe A

Come precedentemente descritto, nella polarizzazione in classe A $RL2_C1$ e $RL2_C2$ sono impostati nella posizione B; ne consegue che R_{71} non viene posta in parallelo a R_{72} , e l'emettitore di Q_{23} si trova connesso al source di Q_{27} .

I transistor Q_{25} e Q_{26} , insieme alle resistenze R_{74} e R_{75} formano uno specchio di corrente, e la somma delle loro correnti deve essere uguale alla corrente assorbita dal generatore di corrente I_{CP} , che ha la funzione di polarizzare lo specchio. Nell'ipotesi in cui la corrente assorbita dai transistor Q_{23} e Q_{24} sia trascurabile rispetto alla corrente circolante su R_{69} , R_{70} e R_{73} (in **classe A** quest'ipotesi è ben verificata), si può supporre che, in regime stazionario:

$$I_C^{Q_{25}} = I_C^{Q_{26}} = I_C^{Q_{23}} = I_C^{Q_{24}} = \frac{I_C}{2}$$
 (4.12)

La corrente che scorre sulla resistenza R_{72} è $I^{R_{72}}=I_C^{Q24}$, e la corrente di polarizzazione del transistor Q_{22} risulta essere:

$$I_{BIAS}^{Q_{22}} = \frac{V^{R_{72}}}{R_{69} + R_{70}} = \frac{R_{72} \frac{I_C}{2}}{R_{69} + R_{70}}$$
 (4.13)

Vista l'assunzione che in assenza di segnale di ingresso l'uscita differenziale dell'amplificatore risulta pari a 0, il collegamento tra v_{OP} e v_{ON} può essere supposto come aperto: infatti in questo collegamento nel normale utilizzo è connesso un carico con impedenza resistiva diversa da zero, che nel caso in cui scorresse della corrente provocherebbe una tensione differenziale in uscita.

Ne consegue che, in buona approssimazione,

$$I^{R_{69}} = I^{R_{70}} = I^{Q_{22}} = I^{Q_{27}} (4.14)$$

Polarizzazione dei finali in Classe A-AB

Nella polarizzazione in Classe A-AB i selettori $RL2_C1$ e $RL2_C2$ sono impostati nella posizione A: ne consegue che R_{71} si trova posta in parallelo a R_{72} , e il collettore di Q_{23} si trova connesso al potenziale v_{OP} .

 R_{71} ha un valore di resistenza di molto inferiore rispetto a R_{72} , e risulta quindi predominante nel parallelo tra le due.

Valgono le stesse considerazioni effettuate per il funzionamento in **Classe A** per quanto riguarda le correnti di polarizzazione dei transistor Q_{25} , Q_{26} , Q_{23} e Q_{24} .

Tuttavia essendo l'emettitore di Q_{23} connesso al potenziale di uscita, la corrente di polarizzazione di Q_{22} risulta essere:

$$I_{BIAS}^{Q_{22}} = I^{R_{69}} = \frac{V^{R_{71}}}{R_{69}} = \frac{R_{71}\frac{I_C}{2}}{R_{69}}$$
 (4.15)

Per le stesse considerazioni effettuate per il funzionamento in **Classe** A nel paragrafo precedente, risulta:

$$I_{BIAS}^{Q_{27}} = I_{BIAS}^{Q_{22}} (4.16)$$

L'alimentazione V_P del circuito relativo all'amplificazione di potenza assume due diversi valori nelle due classi di funzionamento; e visto che anche la corrente di polarizzazione è diversa, le potenze dissipate dai Mosfet in assenza di segnale in uscita sono diverse.

In ogni caso, in ogni classe di funzionamento, ogni dispositivo dissipa una potenza, a riposo, pari a:

$$P_D = I_{BIAS} \frac{V_P}{2} \tag{4.17}$$

4.2 Controllo modo comune in uscita

L'equazione 4.9 può essere riscritta come:

$$I^{R_{55}} = I^{R_{53}} - I_{GPP} (4.18)$$

Dove si evidenzia come, nel caso in cui vi sia una differenza di corrente tra i_{GPP} e $I^{R_{53}}$, sia necessaria una corrente che scorra attraverso R_{55} .

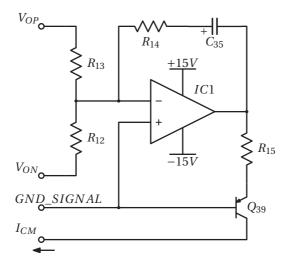


Figura 4.7: Implementazione circuitale del blocco A_{ocm} utilizzato per la regolazione del modo comune presente in uscita all'amplificatore

Per fornire tale corrente, è stato implementato un controllore di tipo PI attraverso l'amplificatore operazionale IC1; dato che è stato implementato un regolatore PI, nella sua funzione di trasferimento è presente un polo nell'origine, che permette di avere in uscita all'operazionale una tensione diversa da zero anche in assenza di segnale in ingresso.

Ecco che in condizioni statiche, deve essere presente una tensione in uscita all'operazionale pari a:

$$V_O^{IC1} = (I^{R_{55}} + I^{R_{56}}) R_{15} + V_{BE}^{Q_{39}}$$
(4.19)

Il controllore PI ha in ingresso una tensione proporzionale alla tensione di modo comune delle uscite v_{OP} e v_{ON} : infatti il morsetto invertente è collegato al nodo in comune tra le resistenze R_{12} e R_{13} (che hanno lo stesso valore di resistenza), le quali sono collegate tramite l'altro morsetto alle due uscite bilanciate.

4.3 Sistema di Alimentazione

Le alimentazioni $+V_D$ e $-V_D$ (alimentazione del circuito di amplificazione di segnale), $+\frac{V_P}{2}$ e $-\frac{V_P}{2}$ (alimentazione dello stadio di potenza), sono ottenute da tensioni sinusoidali raddrizzate e poi filtrate attraverso dei banchi di condensatori, mentre la tensione 15V è stata ottenuta tramite l'utilizzo di un regolatore lineare di tensione.

Un importante parametro che è utile calcolare è il ripple residuo presente su entrambe le alimentazioni non stabilizzate $(V_D \in V_P)$.

4.3.1 Ripple residuo su V_D

L'alimentazione V_D si ottiene dall'uscita di un ponte di Graetz, efficacemente filtrata attraverso un banco di condensatori. All'ingresso del ponte di graetz è posto un secondario del trasformatore di alimentazione dotato di presa centrale; le uscite del ponte sono quindi state riferite entrambe rispetto al potenziale della presa centrale, che è stato denominato GND_POWER .

Come si può notare in figura 3.8, la tensione ottenuta ai capi di C_1 e C_2 viene ulteriormente filtrata attraverso un filtro R-C.

La corrente assorbita (in entrambi i potenziali $+V_D$ e $-V_D$) può essere approssimata con l'andamento di un generatore di corrente costante (e in effetti nel circuito di amplificazione gli stadi differenziali sono polarizzati da generatori di corrente), e quindi modellizzando l'intero carico come un generatore di corrente, è possibile trascurare l'effetto dell'impedenza di uscita del generatore equivalente sulla funzione di trasferimento del filtro.

La corrente totale assorbita dalle alimentazioni $\pm V_D$ è:

$$I^{V_D} = I_{GP} + I_{GN} + I_{GPN} + I_{NN} + 2I_C (4.20)$$

Si suppone che il ripple residuo sui condensatori di filtro C_1 e C_2 sia di molto inferiore rispetto al valore di picco che si trova in uscita al ponte di graetz, e così facendo si suppone quindi che il condensatore C_1 dia corrente al carico per un periodo di tempo pari a un semi periodo (riferito alla frequenza di linea). Utilizzando il principio di charge balance, è possibile quindi scrivere:

$$\Delta V_D^{PP'} = \frac{I^{V_D}}{2 C_1 f_s} \tag{4.21}$$

Dove $\Delta V_D^{PP'}$ è il ripple presente su entrambe le alimentazioni V_D , riferito al potenziale GND_POWER . Vista la presenza dell'ulteriore filtro passa basso in cascata a C_1 , il ripple viene ulteriormente ridotto; trascurando l'impedenza vista da C_3 verso il circuito alimentato, il filtro ha il polo posizionato a $f_{polo} = \frac{1}{2\pi R_1 C_3}$. Dato che il ripple risulta avere frequenza doppia rispetto a quella di rete, è possibile calcolare il ripple in uscita come:

$$\Delta V_D^{PP} = \frac{\Delta V_D^{PP'}}{|1+i\,10|} \simeq \frac{\Delta V_D^{PP'}}{10}$$
 (4.22)

che risulta essere un'ordine di grandezza inferiore rispetto a $\Delta V_D^{PP'}.$

4.3.2 Ripple residuo su V_P

In Classe A-AB, questa alimentazione è chiamata a fornire una corrente altamente variabile (in base al segnale in ingresso e al carico applicato), e non è quindi possibile approssimare il carico come un generatore di corrente costante.

Tuttavia, è possibile stimare il ripple residuo sull'alimentazione nel caso in cui la modalità di funzionamento sia in **Classe A**, nellla quale la corrente assorbita dall'alimentazione di potenza è costante.

A differenza di V_D , l'alimentazione V_P non presenta il filtro aggiuntivo RC presente in 3.8, il circuito è quindi del tipo in figura 4.8.

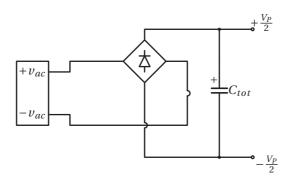


Figura 4.8: Sistema di alimentazione relativo alla tensione di alimentazione \mathcal{V}_{P}

Va aggiunto inoltre un ulteriore elemento rispetto all'alimentazione effettuata per V_D : infatti, essendo C_{tot} una capacità molto grande, ed essendo non trascurabile l'impedenza di uscita del trasformatore, non è più possibile mantenere l'ipotesi di carica istantanea del condensatore. Per questo motivo viene inserito nell'espressione del ripple un fattore 0.7, il quale indica che la scarica del condensatore dura $t_s = 0.7 \frac{T_s}{2}$, dove T_s è il periodo di rete, mentre la ricarica dei condensatori avviene nel restante 30% del tempo. Nella

situazione appena descritta, il ripple residuo presente sull'alimentazione V_P risulta essere:

$$\Delta V_P^{PP} = \frac{0.7 \, I_{BIAS}^A}{2 \, C_{tot} \, f_s} \tag{4.23}$$

Dove C_{tot} è il banco di condensatori utilizzato per filtrare la tensione raddrizzata per V_P , I_{BIAS}^A è la corrente di polarizzazione dei dispositivi dello stadio finale di potenza in **classe A** e ΔV_P^{PP} rappresenta l'intera escursione di tensione ai capi dei condensatori di filtro C_{tot} .

4.4 Controllo modo comune alimentazioni

Come precedentemente descritto nel paragrafo 2.1, le alimentazioni V_D e V_P sono ricavate a partire da due diversi secondari dello stesso trasformatore, e quindi in assenza di collegamenti in comune risulterebbero flottanti l'una rispetto all'altra.

Il circuito realizzato per implementare Reg_{vcm} è illustrato in figura 4.9.

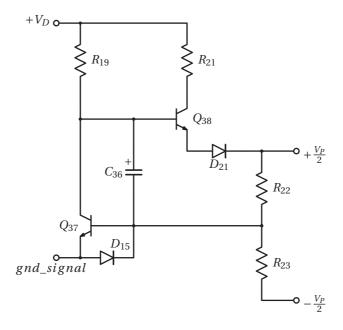


Figura 4.9: Implementazione circuitale del regolatore Reg_{vcm} di figura 3.9

Questo circuito crea un riferimento di tensione, rispetto al potenziale gnd_signal , al catodo di D_{21} , con un ripple trascurabile. Infatti supponendo Q37 sempre attivo, risulta che il potenziale di base di Q_{38} è fornito attraverso un integratore invertente di Miller, a partire dalla tensione di modo comune v_{P_cm} .

 Q_{37} risulta attivo nel caso in cui $V_D-\frac{V_P}{2}>V_{BE}^{Q_{38}}+V_D^{D_{21}}$, e questa situazione nella pratica è ben verificata.

E' possibile calcolare la corrente che scorre attraverso R_{19} , trascurando il ripple residuo presente in base di Q_{38} , ai capi del diodo D_{21} e quindi al potenziale V_P (riferito a gnd_signal) come:

$$I^{R_{19}} = \frac{V^{R_{19}}}{R_{19}} = V_D - V_{BE}^{Q_{38}} - V^{D_{21}} - \frac{V_P}{2} - V_{BE}^{Q_{37}}$$
(4.24)

La corrente circolante su R_{21} è invece dipendente dalla topologia illustrata nella figura 3.9: in tale resistenza scorre la corrente assorbita dal generatore di corrente I_C .

Ne risulta una caduta di potenziale:

$$V^{R_{21}} = R_{21} I_C (4.25)$$

Supponendo il potenziale al catodo di D_{21} costante, il ripple residuo presente sul nodo in comune tra R_{22} e R_{23} risulta essere pari a $\frac{\Delta V_P^{PP}}{2}$.

Supponendo l'impedenza di ingresso di Q_{38} trascurabile (funge da inseguitore), è possibile calcolare il ripple residuo al collettore di Q_{37} tramite il seguente circuito ai piccoli segnali:

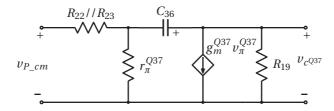


Figura 4.10: Circuito valido per l'analisi ai piccoli segnali dell'amplificatore di miller composto da Q_{37} e C_{36}

Applicando il teorema di Miller, è possibile calcolare il guadagno esatto dello stadio, tra $v_{\pi}^{Q_{37}}$ e $v_{c}^{Q_{37}}$:

$$k(s) = \frac{v_c^{Q_{37}}}{v_\pi^{Q_{37}}} = -\frac{g_m^{Q_{37}} R_{19} - s C_{36} R_{19}}{1 + s C_{36} R_{19}}$$
(4.26)

Che a f = 100Hz risulta essere pari a:

$$|k(j2\pi 100)| \simeq 2$$
 (4.27)

Da questo guadagno è possibile calcolare l'impedenza di Miller riportata all'ingresso, che risulta essere pari a $C'_{36} = C_{36}(1 - k(s))$.

Il partitore in ingresso tra v_{P_cm} e $v_{\pi}^{Q_{37}}$ fornisce una attenuazione di:

$$\frac{v_{\pi}^{Q_{37}}}{v_{P_cm}} = \frac{r_{\pi}^{Q_{37}}}{r_{\pi}^{Q_{37}} + (R_{22}//R_{23})} \frac{1}{1 + s(r_{\pi}^{Q_{37}}//R_{22}//R_{23})C_{36}'}$$
(4.28)

Mettendo insieme le equazioni precedenti, è possibile calcolare il modulo del ripple residuo come:

$$\Delta v_c^{Q_{37}PP} = \left| \frac{\Delta V_P^{PP}}{2} \frac{v_{\pi}^{Q_{37}}}{v_{P,cm}} k(j2\pi 100) \right| \simeq 17mV \tag{4.29}$$

che risulta essere ordini di grandezza inferiore rispetto al ripple residuo sul potenziale $-\frac{V_P}{2}$.

4.5 Generatori di corrente

I generatori I_{BP} e I_{BN} di polarizzazione degli stadi differenziali (figura 3.4) e il generatore I_C di figura 3.9 sono stati implementati tramite il circuito illustrato in figura 4.11, nel quale sono stati dati dei nomi generici ai componenti utilizzati. Questa implementazione dei generatori di corrente sfrutta un riferimento di tensione (quelli prodotti in figura 4.12) per imporre attraverso un transistor BJT una tensione, approssimabile a $V^{R_{EC}} = V_A - V^C_{BE}$ sulla resistenza R_{EC} , e quindi nel caso in cui il dispositivo si trovi in zona attiva, di imporre una corrente al collettore:

$$I_C = \frac{V^{R_{EC}}}{R_{EC}} = \frac{V_A - V_{BE}^C}{R_{EC}} \tag{4.30}$$

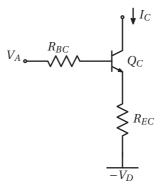


Figura 4.11: Circuito generico che descrive l'implementazione dei generatori di corrente presenti nell'amplificatore

4.6 Riferimenti di tensione

In varie parti del circuito, sono stati utilizzati dei riferimenti di tensione, realizzate tramite dei diodi Zener polarizzati per funzionare nella regione di Breakdown. La rete implementata è la seguente:

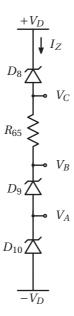


Figura 4.12: Circuito che realizza i riferimenti di tensione

Applicando KVL alla maglia che comprende i diodi Zener si ottiene:

$$V_D - V_Z^{D8} - V_Z^{R_{65}} - V_Z^{D_9} - V_Z^{D_{10}} - (-V_D) = 0 (4.31)$$

E' possibile quindi ottenere la corrente di polarizzazione degli stessi, che risulta essere:

$$I_Z = \frac{2V_D - V_Z^{D_8} - V_Z^{D_9} - V_Z^{D_{10}}}{R_{65}}$$
(4.32)

La corrente di polarizzazione dei diodi zener è importante in quanto i costruttori garantiscono una tensione di ginocchio, all'interno di un certo intervallo, ad uno specifico valore di corrente.

4.7 Risultati delle misure

In questa sezione sono stati riportati i risultati delle misure effettuate sul prototipo descritto nel capitolo 2 in assenza di segnale in ingresso, per verificare la coerenza tra i risultati dell'analisi statica teorica e le misure sperimentali.

Le misure sono state effettuate su entrambi i canali, in entrambe le modalità di funzionamento. Tuttavia, dato che i risultati ottenuti nel canale destro e nel canale sinistro non differivano significativamente, sono state riportate le misure fatte sul solo canale destro.

Inoltre per quanto riguarda le misure effettuate in modalità di funzionamento in **Classe A**, sono state riportate esclusivamente le misure caratterizzanti di questa modalità di funzionamento.

4.7.1 Tensione di alimentazione V_D

La tensione di alimentazione V_D risulta essere l'alimentazione con il maggior valore assoluto presente in questo circuito. Questa tensione deve essere maggiore rispetto a V_P (sia in Classe A che in Classe A-AB) per ogni valore della tensione in uscita, in quanto i circuiti driver dei Mosfet finali devono essere in grado di controllarli correttamente in tutte le condizioni operative dell'amplificatore.

Nome	Valore	Valore	$\epsilon_{R\%}$
	teorico	misurato	
$+V_D$	+45V	+45.5V	1.11%
$-V_D$	-45V	-45.4V	0.89%

Tabella 4.1: Misura delle alimentazioni $\pm V_D$ effettuate in Classe A-AB

Nome	Valore Valore		$\epsilon_{R\%}$
	teorico	misurato	
$+V_D$	+45V	+42.7V	-5.11%
$-V_D$	-45V	-42.6V	-5.33%

Tabella 4.2: Misura delle alimentazioni $\pm V_D$ effettuate in Classe A

Dalle tabelle 4.2 e 4.1, si vede come, nelle due modalità di funzionamento, l'errore tra il valore teorico e il valore misurato è differente.

La motivazione di questo diverso comportamento va ricercata nell'impedenza di uscita del trasformatore, la quale diminuisce il valore della massima tensione di uscita ottenibile, all'aumentare della corrente richiesta ai secondari; in Classe A, la corrente erogata dall'alimentazione V_P è $I^{V_P}=2\,I_{BIAS}^{Q_{22}}\simeq 4.6A$, che è molto maggiore rispetto alla corrente assorbita in Classe A-AB dall'alimentazione V_P , ovvero circa $I^{V_P}=\simeq 0.5A$.

4.7.2 Ripple residuo sull'alimentazione V_D

Per effettuare i calcoli del ripple residuo sulle alimentazioni $\pm V_D$, è stata precedentemente calcolata la totale corrente erogata dall'alimentazione (paragrafo 4.3.1). Sono qui riportate le misure effettuate sulle resistenze R_1 e R_2 , le quali compongono il filtro passa basso aggiuntivo RC, e nelle quali scorre la corrente erogata verso il carico.

Nome	Valore	Valore	$\epsilon_{R\%}$	Grandezza
	teorico	misurato		derivata
V_{R_1}	1.485V	+1.46V	-1.68%	$I^{V_D+} = 44.2mA$
V_{R_2}	1.485V	1.52V	2.36%	$I^{V_D-} = 46.1 mA$

Tabella 4.3: Misura della corrente erogata dalle alimentazioni $\pm V_D$ in Classe A-AB

E' stato poi misurato il ripple residuo presente sull'alimentazione $\pm V_D$, sia ai capi di C_1 , ovvero prima del filtro aggiuntivo passa basso RC (denominato $\Delta V_D^{PP'}$), sia ai capi di C_3 , ovvero dopo il filtro aggiuntivo RC (denominato ΔV_D^{PP}). i valori ottenuti sono i seguenti:

Nome	Valore	Valore	$\epsilon_R\%$
	teorico	misurato	
$\Delta V_D^{PP'}$	0.9V	0.85	-6.7%
ΔV_D^{PP}	0.09V	0.085V	-5.6%

Tabella 4.4: Misura del ripple residuo sulle alimentazioni $\pm V_D$ in Classe A-AB

Il valore del ripple misurato risulta essere leggermente inferiore rispetto a quello calcolato. Questa discrepanza può essere motivata dall'approssimazione introdotta nel calcolo, secondo la quale si ipotizzava il tempo di carica dei condensatori fosse trascurabile (e quindi il tempo di scarica risulta essere $t_{scarica} = \frac{1}{2f_s}$, dove f_s è la frequenza di rete).

4.7.3 Tensione di alimentazione V_P

In Classe A-AB l'alimentazione V_P assume un valore maggiore rispetto alla Classe A, e ciò consente di erogare maggior potenza sul carico, a parità di

carico. E' possibile utilizzare una tensione di alimentazione più alta grazie alla minor corrente di polarizzazione che caratterizza questa classe di funzionamento, che permette di dissipare una potenza inferiore sui Mosfet, in assenza di segnale di ingresso.

Nome	Valore	Valore	$\epsilon_{R\%}$
	teorico	misurato	
$+\frac{V_P}{2}$	+28V	+28.45V	1.61%
$-\frac{V_P}{2}$	-28V	-27.3V	-2.5%

Tabella 4.5: Misura dei potenziali $\pm \frac{V_P}{2}$ in Classe A-AB

Nome	Valore	Valore	$\epsilon_R\%$
	teorico	misurato	
$+\frac{V_P}{2}$	+15V	+15.3V	2%
$-\frac{V_P}{2}$	-15V	-14.2V	-5.33%

Tabella 4.6: Misura dei potenziali $\pm \frac{V_P}{2}$ in Classe A

In entrambe le modalità di funzionamento, l'asimmetria tra i due potenziali misurati è dovuta al fatto che nel valore teorico non viene tenuto in considerazione che il valore di modo comune tra $\pm \frac{V_P}{2}$ non viene centrato sul potenziale gnd_signal , ma ad un potenziale pari a $v_{cm} = v_{BE}^{Q_{37}}$.

Ad ogni modo, in entrambi i casi l'alimentazione V_P (differenza tra i potenziali $+\frac{V_P}{2}$ e $-\frac{V_P}{2}$) risulta leggermente inferiore rispetto a quella teorica. Ciò implica che in uscita si ottiene una potenza massima (oltre la quale si manifesta clipping di tensione) inferiore rispetto a quella attesa.

4.7.4 Ripple Residuo sull'alimentazione V_P

E' stato misurato il ripple residuo presente sull'alimentazione V_P , nella modalità di funzionamento in Classe A, sia sull'alimentazione $+\frac{V_P}{2}$ che sull'alimentazione $-\frac{V_P}{2}$, entrambe riferite a gnd_signal .

Le quantità sono state inoltre visualizzate sull'oscilloscopio:

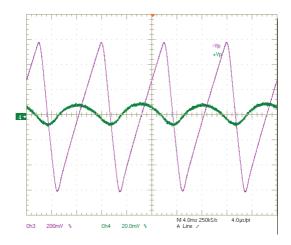


Figura 4.13: Ripple residuo nelle alimentazioni di potenza $\pm V_P$ in classe A. Il ripple sull'alimentazione $+\frac{V_P}{2}$ è in verde, con una scala verticale $20\frac{mV}{div}$, mentre il ripple sull'alimentazione $-\frac{V_P}{2}$ è in viola, con una scala verticale $200\frac{mV}{div}$

Nome	Valore	Valore	$\epsilon_R\%$
	teorico	misurato	
$\Delta(+\frac{V_P}{2}^{PP})$	17mV	16mV	-5.88%
$\Delta(-\frac{V_P}{2}^P)$	1.16V	1.16V	+0%

Tabella 4.7: Misura del ripple residuo sui potenziali $\pm \frac{V_P}{2}$ in Classe A

I ripple ottenuti sono risultati in linea con i calcoli effettuati. Ciò indica che l'approssimazione di tempi di carica dei condensatori non trascurabili è

verificata (paragrafo 4.3.2). Questo fenomeno è visibile anche in figura 4.13, dove si può vedere che la curva in viola non ha la forma di un dente di sega, ma un'onda triangolare i cui tempi di discesa non sono trascurabili rispetto ai tempi di salita.

4.7.5 Corrente di polarizzazione dei diodi Zener

I diodi Zener utilizzati sono diodi con una bassa tolleranza (1%), ma devono essere polarizzati ad un valore di corrente preciso (nel caso dei diodi utilizzati $I_Z = 5mA$), pena lo spostamento della posizione sulla trans-caratteristica del dispositivo e conseguente modifica della tensione di ginocchio.

Nome	Valore	Valore	$\epsilon_{R\%}$	Grandezza
	teorico	misurato		derivata
$V_{R_{65}}$	77.5V	79.2V	2.19%	$I_Z = 5.28mA$

Tabella 4.8: Misura della corrente di polarizzazione in **Classe A-AB** dei diodi Zener utilizzati per creare i riferimenti di tensione

L'errore nella corrente di polarizzazione dei diodi risulta relativamente bassa, e è dovuta principalmente all'incertezza dei dispositivi impiegati, nonché alle tolleranze dell'alimentazione $\pm V_D$.

4.7.6 Corrente erogata dai generatori di corrente

Nel presente paragrafo sono riportate le misure effettuate sui diversi generatori di corrente presenti nell'amplificatore. Tutti i generatori qui riportati sono stati implementati tramite il circuito descritto nel paragrafo 4.5.

Di seguito vengono riportati i nomi esatti (riportati anche nelle misure) delle resistenze di emettitore utilizzate nell'implementazione dei generatori, per ognuno dei generatori di corrente sotto esame:

- $I_{BP}: R_{EC} \to R_{40}$ (fig. 3.4)
- $I_{BN}: R_{EC} \to R_{43}$ (fig. 3.4)
- $I_{GPN}: R_{EC} \to R_{53}$ (fig. 4.7)
- $I_{GNN}: R_{EC} \to R_{54}$ (fig. 4.7)
- $I_{CP}: R_{EC} \to R_{61}$ (fig. 3.9)
- $I_{CN}: R_{EC} \to R_{62}$ (fig. 3.9)

Nome	Valore	Valore	$\epsilon_{R\%}$	Grandezza
	teorico	misurato		derivata
$V_{R_{40}}$	3.28V	3.29V	0.3%	$I^{BP} = 4.01mA$
$V_{R_{43}}$	3.28V	3.29V	0.3%	$I^{BN} = 4.01mA$
$V_{R_{53}}$	3.28V	3.22V	-1.83%	$I^{R_{53}} = 9.76mA$
$V_{R_{54}}$	3.28V	3.22V	-1.83%	$I^{R_{54}} = 9.76mA$
$V_{R_{61}}$	7.15V	7.02V	-1.82%	$I_{CP} = 7.02mA$
$V_{R_{62}}$	7.15V	7.02V	-1.82%	$I_{CN} = 7.02mA$

Tabella 4.9: Misura delle correnti erogate dai generatori di corrente presenti nell'amplificatore, in Classe A-AB

La corrente riscontrata nei generatori di corrente è in linea con i valori di corrente da progetto, con errori relativi inferiori al 2%. Tuttavia, i generatori di polarizzazione dei driver dei Mosfet inferiori sono direttamente

coinvolti nella definizione della corrente di Bias dei Mosfet; un errore di questa corrente può provocare variazioni della corrente di bias, e quindi variare il comportamento dello stadio finale e le performance dello stesso.

4.7.7 Corrente di Bias dei transistor dello stadio D-TAS

Con riferimento alla figura 4.1, il nome dei componenti presenti sull'implementazione del blocco **D-TAS N**, rispetto alla figura che illustra l'implementazione del blocco **D-TAS P**, è il seguente:

- $R_{32} \to R_{34}$
- $R_{33} \to R_{35}$

Nome	Valore	Valore	$\epsilon_{R\%}$	Grandezza
	teorico	misurato		derivata
$V_{R_{32}}$	0.44V	0.44V	0%	$I^{R_{32}} = 2mA$
$V_{R_{33}}$	0.44V	0.44V	0%	$I^{R_{33}} = 2mA$
$V_{R_{34}}$	0.44V	0.44V	0%	$I^{R_{34}} = 2mA$
$V_{R_{35}}$	0.44V	0.44V	0%	$I^{R_{35}} = 2mA$

Tabella 4.10: Misura delle correnti di bias nei transistor utilizzati per implementare le coppie differenziali, in Classe A-AB

I valori misurati rispecchiano fedelmente i valori di corrente teorici; tuttavia nel canale sinistro è presente una piccola asimmetria tra i transistor della stessa coppia differenziale.

In ogni caso, questa ottima ripartizione della corrente, è dovuta alla presenza della resistenza di degenerazione in ognuno dei transistor, che applicando una retroazione locale, mantiene bilanciate le correnti.

4.7.8 Corrente di polarizzazione dello stadio CA

Come visto nel paragrafo 4.1.3, la corrente di polarizzazione dello stadio **CA** è dipendente dalla corrente di polarizzazione dei differenziali, ed è infatti possibile vedere che l'errore associato a questa misura, rispetto al valore teorico, è pressoché trascurabile.

Nome	Valore	Valore	$\epsilon_{R\%}$	Grandezza
	teorico	misurato		derivata
$V_{R_{46}}$	1.73V	1.74V	0.58%	$I^{R_{46}} = 7.91mA$
$V_{R_{47}}$	1.73V	1.74V	0.58%	$I^{R_{47}} = 7.91mA$

Tabella 4.11: Misura delle correnti di bias nei transistor utilizzati per implementare l'amplificatore di corrente CA, in Classe A-AB

In ogni caso, non è particolarmente determinante avere un alto grado di precisione in queste correnti, in quanto attraverso i blocchi Carico attivo driver è possibile correggere eventuali errori di bias.

4.7.9 Corrente erogata da Q_{39}

La corrente erogata da Q_{39} è necessaria a mantenere $v_{O_cm} = 0V$. Questa corrente, nei limiti imposti dallo swing di tensione possibile all'uscita dell'operazionale IC1, può anche compensare a eventuali errori presenti nella polarizzazione dello stadio CA.

Nome	Valore	Valore	$\epsilon_{R\%}$	Grandezza
	teorico	misurato		derivata
V_{IC1}	4.35V	4.14V	-4.83%	
$V_{R_{15}}$	3.75V	3.58V	-4.53%	$I^{R_{15}} = 3.58mA$

Tabella 4.12: Misura della corrente erogata dal circuito che implementa il blocco $Reg.v_{cm}$, in Classe A-AB

L'errore presente nella tensione ai capi di R_{15} è evidente sia dovuto principalmente all'errore della tensione in uscita a IC1.

Una tensione v_{IC1} minore, indica che, per mantenere l'equilibrio, è necessario un minor contributo di corrente da parte di i_{CM} (fig. 4.7). Dalle misure precedenti, si capisce come ciò sia dovuto ad una minor corrente di polarizzazione dei generatori I_{GPN} e I_{GNN} , e alla leggermente maggior corrente di polarizzazione dello stadio \mathbf{CA} .

4.7.10 Circuito di polarizzazione Mosfet superiore dello stadio finale

Come detto precedentemente, non è possibile definire a priori la ripartizione della corrente tra le due resistenze presenti nel circuito driver di ogni Mosfet superiore, se non si conoscono esattamente le caratteristiche del dispositivo.

Sono state effettuate quindi le misure, dalle quali è stato possibile estrapolare la tensione necessaria per imporre nel Mosfet la corrente di Bias ottenuta. Con riferimento alla figura 4.6, il nome dei componenti presenti sull'implementazione dello stesso blocco per l'uscita v_{ON} , è il seguente:

- $\bullet \ R_{66} \to R_{79}$
- $\bullet \ R_{67} \to R_{80}$

Nome	Valore	Valore	$\epsilon_{R\%}$	Grandezza
	teorico	misurato		derivata
$V_{R_{66}}$	NC	4.82V	NC	$I^{R_{66}} = 4.82mA$
$V_{R_{67}}$	NC	3.03V	NC	$I^{R_{67}} = 3.03mA$
$V_{R_{79}}$	NC	4.84V	NC	$I^{R_{79}} = 4.84mA$
$V_{R_{80}}$	NC	2.98V	NC	$I^{R_{80}} = 2.98mA$

Tabella 4.13: Misura della ripartizione della corrente nel driver del Mosfet superiore, in Classe A-AB

Nome	Valore	Valore	$\epsilon_{R\%}$	Grandezza	
	teorico	misurato		derivata	
$V_{R_{66}}$	NC	3.9V	NC	$I^{R_{66}} = 3.9mA$	
$V_{R_{67}}$	NC	3.89V	NC	$I^{R_{67}} = 3.89mA$	
$V_{R_{79}}$	NC	3.87V	NC	$I^{R_{79}} = 3.87mA$	
$V_{R_{80}}$	NC	3.83V	NC	$I^{R_{80}} = 3.83mA$	

Tabella 4.14: Misura della ripartizione della corrente nel driver del Mosfet superiore, in Classe ${\bf A}$

La tensione ${\cal V}^{Q22}_{GS},$ nelle due modalità di funzionamento, risulta:

- Classe A: $V_{GS}^{Q22} = V^{R_{67}} + V_{BE}^{Q_{20}} R_{69}I_{D_A}^{Q_{22}} \simeq 4.3V$

Osservando la ripartizione della corrente nei due casi, si nota come ci sia ancora un buon margine di corrente (nella ripartizione tra le resistenze), che permette di avere delle tensioni di gate maggiori e quindi correnti di uscita maggiori.

4.7.11 Corrente di polarizzazione dei Mosfet finali

La corrente di polarizzazione dei Mosfet finali è fondamentale per definire il punto di lavoro a riposo degli stessi e per definire la potenza dissipata a riposo.

Con riferimento alla figura 4.6, il nome dei componenti presenti sull'implementazione dello stesso blocco per l'uscita v_{ON} , è il seguente:

$$\bullet \ R_{69} \to R_{82}$$

•
$$R_{70} \to R_{83}$$

Nome	Valore	Valore	$\epsilon_R\%$	Grandezza
	teorico	misurato		derivata
$V_{R_{69}}$	0.0254V	0.026V	2.36%	$I^{R_{69}} = 260mA$
$V_{R_{70}}$	0.0254V	0.025V	-1.57%	$I^{R_{70}} = 250mA$
$V_{R_{82}}$	0.0254V	0.021V	-17.3%	$I^{R_{82}} = 210mA$
$V_{R_{83}}$	0.0254V	0.022V	-13.4%	$I^{R_{83}} = 220mA$

Tabella 4.15: Misura delle correnti di bias nei Mosfet di potenza, in **Classe** A-AB

Nome	Valore	Valore	$\epsilon_{R\%}$	Grandezza
	teorico	misurato		derivata
$V_{R_{69}}$	0.23V	0.224V	-2.61%	$I^{R_{69}} = 2.24A$
$V_{R_{70}}$	0.23V	0.223V	-3.04%	$I^{R_{70}} = 2.23A$
$V_{R_{82}}$	0.23V	0.223V	-3.04%	$I^{R_{82}} = 2.23A$
$V_{R_{83}}$	0.23V	0.222V	-3.48%	$I^{R_{83}} = 2.22A$

Tabella 4.16: Misura delle correnti di bias nei Mosfet di potenza, in ${f Classe}$ ${f A}$

Dalle misure effettuate si nota come vi sia un grande errore nella polarizzazione dei mosfet relativi all'uscita v_{ON} (in Classe A-AB), il cui valore arriva a superare il 15% di errore.

Una prima fonte di errore è sicuramente la differente corrente di polarizzazione dello specchio del driver del mosfet inferiore, che provoca una diminuzione della corrente di polarizzazione dei Mosfet.

Un altro problema potrebbe risiedere nelle differenti caratteristiche che possono presentare i due transistor Q_{23} e Q_{24} (o equivalentemente Q_{32} e Q_{33}). Infatti, supponendo una $\Delta v_{BE} = 2mV$, si ottiene:

$$\Delta I_{BIAS} = \frac{\Delta v_{BE}}{R_{69}} = 20mA \tag{4.33}$$

Ecco che quindi la polarizzazione in questa modalità di funzionamento è sensibile dalle caratteristiche dei dispositivi.

In Classe A questo fenomeno è meno evidente, in quanto l'errore introdotto da Δv_{BE} risulta dello stesso ordine di grandezza, ma la corrente di polarizzazione risulta circa 10 volte maggiore, riducendo l'errore relativo percentuale di 10 volte.

4.7.12 Potenza dissipata dai Mosfet finali

Viste le misure effettuate precedentemente, è possibile calcolare la potenza dissipata su ognuno dei Mosfet finali.

Nome	Valore	Valore	$\epsilon_{R\%}$
	teorico	misurato	
$P_D^{Q_{22}}$	7.5W	7.4W	-1.4%
$P_D^{Q_{27}}$	7.1W	6.83W	-3.8%
$P_D^{Q_{31}}$	7.5W	6W	-20%
$P_D^{Q_{36}}$	7.1W	6W	-15.5%

Tabella 4.17: Misura delle potenze dissipate nei Mosfet finali, in **Classe A- AB**

Nome:	Valore	Valore	$\epsilon_{R\%}$
	Teorico:	Misurato:	
$P_D^{Q_{22}}$	36.1W	34.72W	-3.8%
$P_D^{Q_{27}}$	32.9W	31.7W	-3.6%
$P_{D}^{Q_{31}}$	36.1W	34.1W	-5.5%
$P_D^{Q_{36}}$	32.9W	31.5W	-4.18%

Tabella 4.18: Misura delle potenze dissipate nei mosfet finali, in Classe A

La potenza dissipata risulta inferiore rispetto a quella calcolata a causa della minor corrente di polarizzazione riscontrata, nonché per le tensioni di alimentazione inferiori.

Capitolo 5

Analisi dinamica

Sebbene l'analisi statica sia di fondamentale importanza per verificare la corretta polarizzazione dei circuiti implementati, e quindi verificare che i punti operativi dei dispositivi attivi utilizzati siano corretti, la parte dello studio più determinante per descrivere le caratteristiche dell'amplificatore è certamente lo studio dinamico, che fornisce informazioni su come vengono condizionati i segnali forniti in ingresso.

In questo capitolo lo studio viene diviso per le componenti di modo comune e di modo differenziale dei segnali di ingresso e uscita, perché, come già ribadito, il segnale utile all'uscita dell'amplificatore è la sola componente di modo differenziale tra v_{OP} e v_{ON} .

5.1 Amplificazione dei segnali

Il circuito di amplificazione dei segnali, come illustrato in figura 3.3, è formato da vari stadi in cascata, i quali contribuiscono in maniera differente ad amplificare le componenti di modo comune e di modo differenziale dei segnali posti al loro ingresso.

Sono presenti inoltre dei circuiti dedicati per la gestione della tensione di modo comune all'uscita dell'amplificatore, il cui valore dipende non solo dalle tensioni di modo comune in ingresso ai differenziali, ma anche dalle non-idealità dei vari stadi di amplificazione.

5.1.1 Rete di ingresso e rete di feedback

La rete di ingresso A_{in} è un circuito posto tra gli ingressi dell'amplificatore e gli ingressi dello stadio FDDA; implementa una rete passa banda, ed è visibile in figura 5.1(a):

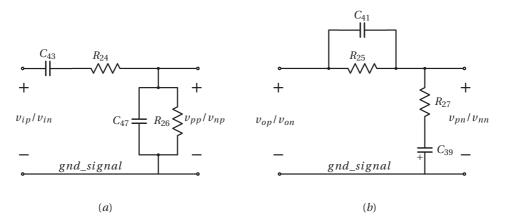


Figura 5.1: Circuiti che implementano: a) A_{in} , filtro in ingresso all'FDDA, b) A_{fb} rete di feedback

Trascurando l'impedenza di ingresso del differenziale, la funzione di trasferimento implementata da A_{in} è:

$$A_{in}(s) = \frac{s R_{26} C_{43}}{1 + s \left[C_{43} \left(R_{24} + R_{26} \right) + R_{26} C_{47} \right] + s^2 \left(R_{24} R_{26} C_{43} C_{47} \right)}$$
 (5.1)

L'impedenza di ingresso del differenziale è differente se si applica un ingresso di modo comune o di modo differenziale (come si vedrà nel paragrafo 5.1.2).

Il diagramma di Bode della funzione di trasferimento appena descritta è visibile in figura 5.2.

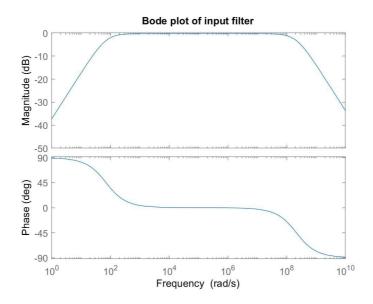


Figura 5.2: Diagramma di Bode della funzione di trasferimento A_{in}

Questa rete limita la banda alle basse frequenze, ponendo l'estremo $f_{min}^{-3dB}\simeq 8Hz$; inoltre a centro banda il guadagno del filtro è $A_{in}^{MB}\simeq 0.98$.

Tenendo in considerazione l'impedenza differenziale in ingresso, si ottiene come effetto un restringimento della banda passante a basse frequenze, con un limite inferiore di circa $f_{min}^{-3dB} \simeq 12 Hz$.

La rete di feedback A_{fb} è posta tra le uscite dell'amplificatore e gli ingressi invertenti dei blocchi differenziali in figura 3.3; il circuito implementato è visibile in figura 5.1(b).

La funzione di trasferimento che descrive il filtro, trascurata l'impedenza di ingresso del differenziale, è la seguente:

$$A_{fb}(s) = \frac{(1 + s R_{27} C_{39})(1 + s R_{25} C_{41})}{1 + s (R_{27} C_{39} + R_{25} C_{41} + R_{25} C_{39}) + s^2 (R_{25} R_{27} C_{39} C_{41})}$$
(5.2)

(b)

Il diagramma di Bode della funzione di trasferimento appena descritta è visibile in figura 5.3.

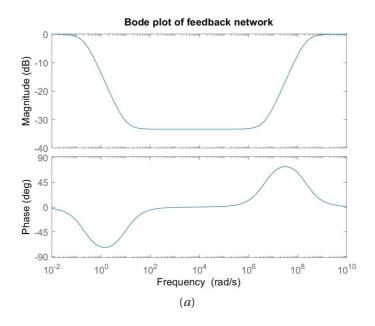


Figura 5.3: Diagramma di Bode della funzione di trasferimento ${\cal A}_{fb}$

La rete implementa un filtro elimina banda; tuttavia, nell'ipotesi di guadagno in catena aperta dello stadio $A_{tot}^{OL} \to \infty$ (o più precisamente $A_{tot}^{OL} A_{fb} >> 1$), è possibile approssimare il guadagno in catena chiusa come $A_{tot}^{CL} \simeq \frac{1}{A_{fb}}$.

Ecco che è possibile calcolare il guadagno dello stadio a centro banda, che risulta essere pari a:

$$A_{tot}^{CL_MB} = \frac{1}{A_{fb}^{MB}} = 45.7 (5.3)$$

In questo caso, l'impedenza differenziale in ingresso al transistor risulta trascurabile.

5.1.2 Stadio di ingresso

Ognuno dei due stadi **D-TAS** in figura 3.4 è uno stadio differenziale i cui ingressi sono connessi (attraverso le reti A_{in} e A_{fb} in figura 3.2) al segnale di ingresso e al segnale di uscita. Il differenziale implementato, visibile in figura 4.1, presenta resistenze di degenerazione elevate, le quali permettono di estendere la linearità dello stadio per valori maggiori di tensione differenziale di ingresso rispetto alla versione senza resistenze, a discapito di una diminuzione del guadagno di trans-conduttanza dello stadio [8].

Infatti la resistenza di emettitore implementa un feedback locale, che linearizza lo stadio nell'intorno del punto operativo; prendendo come riferimento figura 5.4, e ponendo come ingresso un generico segnale v_i , è possibile calcolare le variazioni di v_{π} rispetto alle variazioni di v_i . E' noto che l'approssimazione ai piccoli segnali è valida solo se [8]:

$$\Delta V_{be} \ll 2 V_T \tag{5.4}$$

La variazione di tensione sulla giunzione base emettitore risulta:

$$\Delta V_{be}^{Q_1} = \frac{\Delta V_i}{1 + \frac{(\beta_0 + 1) R_{32}}{r_{\pi}}} \simeq \frac{\Delta v_i}{g_m R_{32}}$$
 (5.5)

Combinando le equazioni 5.4 e 5.5, si ottiene:

$$\Delta V_i << 2 V_T gm R_{32} = I_{BP} R_{32}$$
 (5.6)

Il range di valori di tensione di ingresso per cui l'approssimazione di piccolo segnale è valida, data la presenza di degenerazione, risulta essere di molto maggiore, con un valore approssimato di $v_i \simeq 0.88V$.

Per quanto riguarda il circuito differenziale implementato, non è possibile ricavare un'equazione in forma chiusa ai grandi segnali che descriva l'andamento delle correnti di collettore in funzione della tensione differenziale in ingresso [9]. Tuttavia, visto il range esteso di linearità, è possibile utilizzare lo studio ai piccoli segnali per calcolare il guadagno dello stadio.

Supponendo un ingresso puramente differenziale, è possibile dividere il circuito presente in figura 4.1 in due circuiti simmetrici (come in figura 5.4) in quanto il nodo comune alle due resistenze di emettitore si trova a massa virtuale.

Il circuito equivalente da studiare è il seguente:

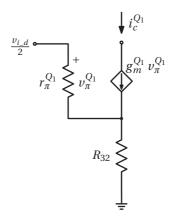


Figura 5.4: Circuito valido ai piccoli segnali per il differenziale di figura 4.1 con ingresso puramente differenziale

Il guadagno differenziale che si ottiene, tra la corrente di collettore e la tensione di base è:

$$\frac{i_c^{Q_1}}{\frac{v_{id}}{2}} = \frac{g_m^{Q_1}}{1 + g_m^{Q_1} R_{32}} \tag{5.7}$$

Dove $g_m^{Q_1}=\frac{I_C^{Q_1}}{V_T}$ è il guadagno di trans-conduttanza intrinseco del BJT nel punto di lavoro caratterizzato da $I_C^{Q_1}=\frac{I_{BP}}{2}$.

Il guadagno differenziale risulta essere:

$$A_{dm}^{D-TAS} = \frac{(i_c^{Q_1} - i_c^{Q_2})}{v_{id}} = \frac{g_m^{Q_1}}{1 + g_m^{Q_1} R_{32}}$$
 (5.8)

Tuttavia, vista la presenza dei due differenziali in parallelo, la corrente in uscita differenziale allo stadio risulta essere la somma algebrica delle correnti di uscita dei singoli stadi **D-TAS**:

$$(i_c^{Q_1} - i_c^{Q_2}) - (i_c^{Q_4} - i_c^{Q_5}) = [(v_{pp} - v_{pn}) - (v_{np} - v_{nn})] \frac{g_m^{Q_1}}{1 + g_m^{Q_1} R_{32}}$$
 (5.9)

Necessità della resistenza di degenerazione

In un normale circuito di amplificazione a retroazione globale, come ad esempio negli amplificatori operazionali, gli ingressi del differenziale in ingresso sono collegati a due potenziali i quali, per il funzionamento del dispositivo, in condizioni di normale utilizzo, si trovano pressoché allo stesso potenziale: la tensione differenziale tra i due è quindi molto piccola e tende ad essere all'interno del range di linearità nel quale è possibile applicare l'approssimazione a piccoli segnali.

Nei differenziali studiati in questo circuito, con ingressi di tipo bilanciato vi è un comportamento medesimo a quello appena descritto.

Tuttavia, con ingressi sbilanciati, il comportamento cambia a causa della presenza del circuito che tende a cancellare la componente di modo comune dell'uscita dell'amplificatore.

L'uscita differenziale v_O rimane invariata, ma viene traslata in modo da rendere $v_{O_cm} \simeq 0V$.

Infatti, con ingresso sbilanciato v_{PP} contiene tutto il segnale, mentre v_{NP} non ha segnale di ingresso (v_{IN} in figura 3.2 è collegato al potenziale di massa della sorgente di segnale). La tensione v_{ON} non risulta essere a un potenziale in un intorno di 0V (come l'ingresso v_{NP}), ma a causa del guadagno di modo

comune quasi nullo, si porta a un potenziale pari a $v_{ON} \simeq -v_{OP}$, e di conseguenza, a centro banda, il potenziale presente all'ingresso v_{NN} è:

$$v_{NN} \simeq \frac{v_{ON}}{A_v} = -\frac{v_{PP}}{2} \tag{5.10}$$

Ecco che la massima tensione differenziale in ingresso n risulterà essere pari a:

$$(v_{NP} - v_{NN}) \simeq 0 + \frac{v_{PP}}{2} = +\frac{v_{PP}}{2}$$
 (5.11)

Lo stesso valore differenziale si trova nel differenziale p, infatti la tensione di uscita si trova a un valore $v_{OP} = \frac{A_v v_{PP}}{2}$.

Il valore massimo di tensione differenziale in ingresso dipende dalla sensibilità dell'amplificatore, e quindi dalla massima potenza erogabile dallo stesso; nel caso del dispositivo in esame, nel funzionamento in **Classe A-AB** (con riferimento alle misure riportate nel paragrafo 6.8), risulta una tensione differenziale massima di:

$$(v_{NP} - v_{NN})^{MAX} = 0.466 V (5.12)$$

Il cui valore rispetta la disequazione 5.6.

Analisi di modo comune dello stadio di ingresso

L'uscita di modo comune dello stadio differenziale, è data dalla somma delle uscite di modo comune dei 2 stadi **D-TAS**. Vista la buona simmetria del circuito, è possibile, solo per quanto riguarda lo studio di modo comune, studiare il circuito come se ad un differenziale fossero posti i due ingressi e all'altro differenziale fossero poste le uscite dei due feedback.

Per quanto riguarda i segnali di ingresso, la presenza o meno di componente di modo comune dipende dal tipo di segnale iniettato; infatti, se il segnale è di tipo bilanciato, per definizione non contiene componente di modo comune, mentre se il segnale di ingresso è di tipo sbilanciato, vi è la presenza di una componente di modo comune pari alla metà dell'ampiezza del segnale.

In ogni caso, il circuito differenziale può essere suddiviso in due circuiti, ponendo in serie alla resistenza di emettitore due volte l'impedenza vista verso il generatore di corrente, come in figura 5.5.

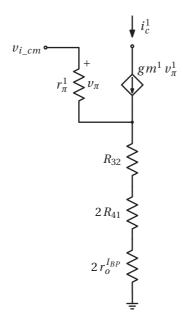


Figura 5.5: Circuito valido ai piccoli segnali per il differenziale di figura 4.1 con ingresso di modo comune

Il guadagno dello stadio è il seguente:

$$i_c^{Q_1} = v_{I_cm} \frac{g_m^{Q_1}}{1 + g_m^{Q_1} \left(R_{32} + 2R_{41} + 2r_o^{I_{BP}} \right)}$$
 (5.13)

Se $g_m^{Q_1}(R_{32}+2R_{41})+2r_o^{I_{BP}})>>1$, il guadagno risulta essere, in buona approssimazione:

$$A_{cm}^{D-TAS} = \frac{i_c^{Q_1}}{v_{I_cm}} \simeq \frac{1}{(R_{32} + 2R_{41} + 2r_o^{I_{BP}})}$$
 (5.14)

Tale guadagno è molto piccolo (grazie alla resistenza di uscita elevata del generatore di corrente), e limita fortemente il propagarsi di segnale di modo comune.

5.1.3 Stadio CA

Con riferimento alla figura 3.3, l'ingresso dello stadio \mathbf{CA} è una coppia di correnti proporzionali alle correnti di uscita dello stadio precedente, le quali si ripartiscono fra le impedenze di uscita dei vari circuiti collegati ai nodi AP e AN; tuttavia, essendo l'ingresso dello stadio \mathbf{CA} una coppia di basi di BJT, l'impedenza di ingresso risulta essere minore rispetto alle impedenze di uscita degli altri dispositivi, e quindi gran parte della corrente viene assorbita dallo stadio \mathbf{CA} .

Lo stadio CA è visibile in figura 4.4, e supponendo un ingresso puramente differenziale, il nodo in comune a R_{48} e R_{49} si trova a massa virtuale.

Il guadagno dello stadio è il guadagno di corrente intrinseco dei transistor BJT utilizzati; i transistor Q_9 e Q_{10} sono stati implementati tramite BJT PNP BC557B, nel cui datasheet è riportato un guadagno ai piccoli segnali di: $240 \le h_{fe} \le 500$, che risulta quindi essere il guadagno dello stadio.

La tensione di uscita del circuito di amplificazione di segnale è il prodotto tra la corrente differenziale di uscita dello stadio ${\bf CA}$ e l'impedenza vista ai nodi di uscita (denominata $r_o^{VGPP} \simeq r_o^{CA}//r_o^{CA_driver}$).

Tale impedenza, assume un valore molto elevato; infatti è il parallelo di 2 configurazioni cascode (trascurando l'impedenza di uscita dello stadio driver di Q_{22}).

La tensione differenziale in uscita risulta essere un "grande segnale", con un'escursione dinamica pari all'escursione della tensione di uscita al circuito di amplificazione di potenza, che è pari alla tensione differenziale di ingresso moltiplicata per il guadagno dell'amplificatore.

Nei circuiti il cui ingresso è collegato a questo nodo non è più possibile effettuare l'analisi sotto l'ipotesi di *piccolo segnale*.

Analisi di modo comune dello stadio CA

Nello studio di modo comune, vi è la presenza di un feedback locale che tende ad attenuare il guadagno delle componenti di modo comune.

Infatti, prendendo in considerazione il nodo denominato v_{FB} nelle figure 4.4 e 4.2, tale nodo viene utilizzato per modulare la corrente assorbita dal carico attivo ingresso, in modo da compensare la corrente di modo comune in uscita agli stadi **D-TAS**.

Studiando la risposta del circuito CA ad un ingresso di modo comune, è possibile separare il circuito in due parti nel nodo comune tra R_{48} e R_{49} , ponendo in ognuno dei due semi-circuiti 2 volte l'impedenza vista da quel nodo verso il **carico attivo ingresso**. Tale impedenza è molto grande rispetto a R_{48} (predominante nella serie delle 2) e la resistenza equivalente risulta trascurabile rispetto a R_{46} (nel parallelo che si forma tra i due). Trascurando gli effetti di carico, è possibile stimare con buona approssimazione il comportamento del feedback locale; infatti il potenziale ai capi di R_{46} viene riportato sul nodo v_{FB} (con una attenuazione trascurabile), e dato che Q_7 ha una resistenza di degenerazione elevata, la corrente di segnale in uscita al suo collettore, data una variazione della tensione in base è calcolabile approssimativamente come $i_c^{Q_7} \simeq -\frac{v_{FB}}{R_{37}}$.

Lo schema equivalente risulta essere:

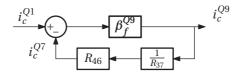


Figura 5.6: Schema a blocchi della retroazione locale per il modo comune tra lo stadio CA e il Carico Attivo Ingresso

Il guadagno approssimato ad anello chiuso è:

$$\frac{i_C^{Q_9}}{i_c^{Q_1}} = \frac{\beta_f}{1 + \frac{\beta_f R_{46}}{R_{37}}} \simeq \frac{R_{37}}{R_{46}} \tag{5.15}$$

e dipende dal valore di queste resistenze. Per i valori utilizzati nell'implementazione reale del circuito risulta un guadagno di modo comune leggermente superiore all'unità.

5.2 Driver di Q_{22}

L'uscita dell'amplificatore di corrente è data in ingresso allo stadio driver del Mosfet superiore con in serie un generatore di corrente (denominato *Carico Attivo driver* in figura 3.3).

Sfruttando l'equazione 4.11 e derivandola, è possibile determinare la resistenza di uscita del driver del Mosfet superiore (visibile in figura 4.6), che risulta essere:

$$r_o^{Driver} = \frac{\delta}{\delta i} (v_{GPP} - v_{GPN}) = R_{66}$$
 (5.16)

Il valore appena trovato è ordini di grandezza inferiore rispetto alla resistenza di uscita del **carico attivo driver**, ed è quindi trascurabile.

E' stato deciso di prendere come riferimento per la tensione di uscita dello stadio di amplificazione di segnale il potenziale v_{GPP} (visibile in figura 4.6).

75

Lo stadio driver di Q_{22} implementa un controllo di tipo feedback error correction, che si basa su uno schema a blocchi come il seguente:

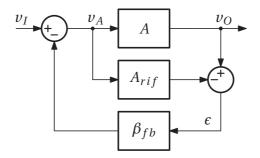


Figura 5.7: Schema a blocchi di un generico feedback error correction

Prima di verificare le corrispondenze circuitali ai blocchi presenti nello schema in figura 5.7, occorre ricordare che in questo amplificatore viene implementato un anello di controllo che limita fortemente la tensione di modo comune all'uscita; ne consegue che è necessario che tra l'uscita dello stadio di amplificazione e l'uscita dello stadio driver+potenza ci sia un guadagno unitario rispetto alle componenti variabili del segnale, mentre per quanto riguarda la componente continua non è necessario rispettare vincoli troppo stringenti.

Per questo motivo, nella rappresentazione del controllo feedback error correction sono utilizzate solo le componenti variabili dei vari segnali.

Avendo a che fare con grandi segnali, è possibile considerare le tensioni $v_{BE} = V_{BE}$, per tutti i BJT del circuito driver di Q_{22} in figura 4.6.

Partendo dal circuito illustrato in figura 4.6, è possibile allora scrivere le seguenti equazioni:

$$v_G^{Q_{22}} = v_{GPP} - R_{67} i^{R_{66}} - v_{BE}^{Q_{19}}$$
 (5.17)

$$i_{GPP} = i^{R_{66}} + i^{R_{67}} (5.18)$$

$$v_O = v_G^{Q_{22}} A_v^{MOS} = v_{GPP} - R_{67} i^{R_{66}} - v_{BE}^{Q_{19}} - R_{67} i_{R_{67}} - v_{BE}^{Q_{20}}$$
 (5.19)

Combinando le equazioni 5.17, 5.18 e 5.19, e valutando le sole componenti variabili nel tempo si ottiene:

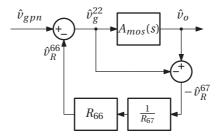


Figura 5.8: Schema a blocchi del circuito Driver con feedback error correction implementato nel circuito

Risolvendo lo schema a blocchi illustrato nella figura 5.8, si ottiene l'equazione:

$$\hat{v_o} = \hat{v_{gpp}} \left(\frac{R_{67}}{R_{67} - R_{66}} A_{mos} \right) \left(\frac{R_{67} - R_{66}}{R_{67} - R_{66} + A_{mos} R_{66}} \right)$$
 (5.20)

Nel caso in cui $R_{66} = R_{67}$, come verificato in questo amplificatore, risulta:

$$\hat{v_o} = \hat{v_{gpp}} \tag{5.21}$$

per qualsiasi valore di A_{mos} .

Ciò permette di correggere eventuali distorsioni introdotte dallo stadio di potenza, se l'assunzione di corrente di gate trascurabile del Mosfet Q_{22} , rispetto a i_{GPP} , è verificata (le condizioni in cui tale ipotesi non è verificata sono state illustrate nel paragrafo 6.2.1).

5.3 Driver di Q_{27}

Come è già stato accennato nel paragrafo 3.6, i Mosfet dello stesso mezzoponte sono controllati per comportarsi in maniera differente, e sono quindi presenti due differenti circuiti di driver.

Il circuito driver di Q_{27} è controllato da un circuito che ha come ingresso una tensione differente nelle due modalità di funzionamento (Classe A e Classe A-AB).

Con riferimento a figura 4.6, in entrambe le configurazioni, la coppia di transistor $Q_{25}-Q_{26}$ insieme alle resistenze $R_{74}-R_{75}$ forma uno specchio di corrente, polarizzato dal generatore di corrente I_C ; ne consegue che in entrambi i transistor, a riposo scorre una corrente $I_C^{Q_{25}}=I_C^{Q_{26}}=\frac{I_C}{2}=3.5\,mA$. Le resistenze R_{74} e R_{75} di emettitore, garantiscono una buona simmetria tra le correnti circolanti tra i due rami dello specchio di corrente.

Applicando KCL, è possibile calcolare la tensione presente tra $RL2L_C2$ e il gate di Q_{27} (che nelle due modalità di funzionamento possibili rappresenta il potenziale tra source e gate di Q_{27} in Classe A o il potenziale tra l'uscita v_{OP} e il gate di Q_{27} in Classe A-AB):

$$(V^{RL2L_C2} - V_g^{Q_{27}}) = v_{BE}^{Q_{23}} + V^{R_{73}} + v_{BE}^{Q_{25}} + V^{R_{74}}$$
(5.22)

Supponendo per ogni BJT $v_{BE} = V_{BE}$, e supponendo la corrente circolante nei due rami dello specchio di corrente pressoché costante, si nota come l'unico modo per modulare il potenziale dell'equazione 5.22 sia far modulare il potenziale ai capi di R_{73} .

Inoltre, Q_{23} e Q_{24} formano un generatore di corrente (al collettore di Q_{24}) il cui valore di corrente è dato dalla tensione in ingresso al circuito driver.

Funzionamento in Classe A

In questa modalità di funzionamento il selettore $RL2_C2$ scollega R_{71} dal parallelo con R_{72} , mentre $RL2_C1$ collega l'emettitore di Q_{23} al source di Q_{27} (figura 4.6).

L'ingresso del circuito driver di Q_{27} è la somma delle tensioni sulle resistenze di source dei due Mosfet.

Lo scopo del circuito driver è di mantenere costante il potenziale in ingresso; così facendo, risulta che le correnti di drain dei Mosfet variano in maniera opposta, ma della stessa quantità, infatti:

$$(V_S^{Q_{22}} - V_S^{Q_{27}}) = R_{69} I^{R_{69}} + R_{70} I^{R_{70}} \simeq R_{69} I_d^{Q_{22}} + R_{70} I_d^{Q_{27}}$$
 (5.23)

Ponendo la quantità calcolata nell'equazione 5.23 come costante, e derivando entrambi i membri, si ottiene:

$$\frac{\partial}{\partial t} I_d^{Q_{22}} = -\frac{\partial}{\partial t} I_d^{Q_{27}} \tag{5.24}$$

In questo modo, ognuno dei due Mosfet contribuisce a metà della corrente erogata verso il carico collegato all'uscita.

Per verificare le affermazioni appena descritte, si può far riferimento allo schema a blocchi in figura 5.9.

Risolvendo lo schema a blocchi, si ottiene la funzione di trasferimento:

$$v^{R_{70}} = v^{R_{69}} \frac{-\frac{R_{70}R_{73}g_m^{Q^{27}}}{R_{72}}}{1 + \frac{R_{70}R_{73}g_m^{Q^{27}}}{R_{72}}}$$
(5.25)

79

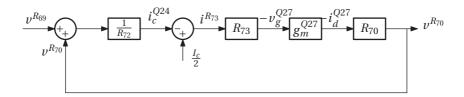


Figura 5.9: Schema a blocchi del circuito comprendente il Mosfet Q_{27} e il circuito driver ad esso associato (figura 4.6), data una perturbazione del segnale all'ingresso del driver, nella modalità di funzionamento in **Classe A**

E nel caso in cui $\frac{R_{70}R_{73}g_m^{Q27}}{R_{72}}>>1$, il guadagno può essere approssimato a:

$$\frac{v^{R_{70}}}{v^{R_{69}}} \simeq -1 \tag{5.26}$$

Ciò è verificato se $R_{73} >> \frac{R_{72}}{R_{70} g_m^{Q27}}$

Funzionamento in Classe A-AB

In questa modalità di funzionamento il selettore $RL2_C2$ collega R_{71} in parallelo con R_{72} , mentre $RL2_C1$ collega l'emettitore di Q_{23} al potenziale v_{OP} (figura 4.6).

La tensione in ingresso al circuito driver di Q_{27} è il solo potenziale della resistenza di source di Q_{22} .

Il principio di funzionamento del circuito driver di Q_{27} è lo stesso, ma agisce in modo differente; infatti tende a non far mai spegnere Q_{22} .

Concettualmente, se la corrente attraverso R_{69} (e quindi attraverso Q_{22}) tende a diminuire, il circuito agisce in maniera di far aumentare la corrente assorbita da Q_{27} .

Nel caso in cui invece la corrente attraverso R_{69} tende ad aumentare, il circuito tende a far diminuire la corrente attraverso R_{70} , fino a far spegnere completamente Q_{27} .

Questo processo, nel caso in cui Q_{27} è acceso, può essere rappresentato tramite schema a blocchi come in figura 5.10:

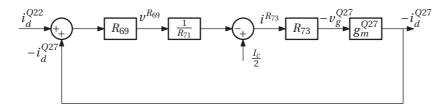


Figura 5.10: Schema a blocchi del circuito comprendente il Mosfet Q_{27} e il circuito driver ad esso associato (figura 4.6), data una perturbazione del segnale all'ingresso del driver, nella modalità di funzionamento in **Classe A-AB**

La funzione di trasferimento implementata dallo schema a blocchi in figura 5.10 è la seguente:

$$\frac{i_d^{Q_{27}}}{i_d^{Q_{22}}} = \frac{-\frac{R_{69} R_{73} g_m^{Q_{27}}}{R_{71}}}{1 + \frac{R_{69} R_{73} g_m^{Q_{27}}}{R_{71}}}$$
(5.27)

Se $\frac{R_{69} R_{73} g_m^{Q_{27}}}{R_{71}} >> 1$, allora è possibile applicare l'approssimazione:

$$\frac{i_d^{Q_{27}}}{i_J^{Q_{22}}} \simeq -1 \tag{5.28}$$

Ecco che le due correnti anche in questo caso hanno derivata di segno opposto.

5.4 Anello di retroazione di modo differenziale

Date le analisi effettuate nei precedenti paragrafi di questo capitolo, è possibile fornire una rappresentazione grafica dell'anello di retroazione relativa a segnali in ingresso di tipo differenziale.

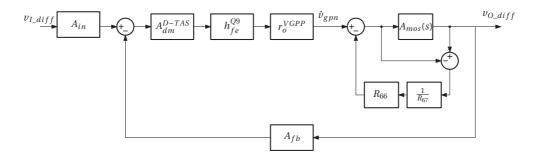


Figura 5.11: Anello di retroazione relativo all'amplificazione della componente di modo differenziale

Il blocco $A_{mos}(s)$ comprende le funzioni di trasferimento dei Mosfet e del driver del Mosfet inferiore.

Nell'ipotesi in cui $A_{dm}^{D-TAS} h_{fe}^{Q9} r_O^{VGPP} A_{fb} >> 1$, allora la totale funzione di trasferimento tra ingresso differenziale e uscita differenziale, risulta essere:

$$A_{diff}^{TOT} \simeq A_{in}A_{fb} \tag{5.29}$$

Ecco che diventa particolarmente importante avere delle reti di ingresso e di feedback composte da componenti di qualità, perché concorrono direttamente a fornire le caratteristiche dell'amplificatore.

5.5 Controllo del modo comune in uscita

Nel paragrafo 3.7 sono state descritte le motivazioni per le quali è necessario limitare le escursioni di tensione di modo comune in uscita. Per fare ciò è stato implementato un circuito che ha come ingresso la tensione $v_{O_cm} = \frac{v_{OP} + v_{ON}}{2}$.

Il circuito equivalente è il seguente:

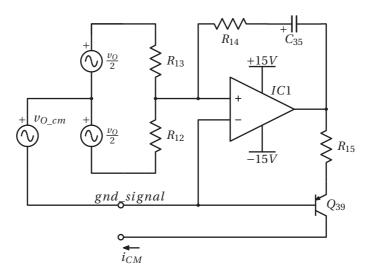


Figura 5.12: Circuito equivalente per lo studio del controllore della tensione di modo comune v_{O_cm} in uscita all'amplificatore

Se si considerano solo le componenti differenziali, (applicando la sovrapposizione degli effetti), risulta che per qualsiasi valore di v_O l'ingresso non invertente di IC1 risulta a $v_+^{IC1} = 0V$, portando quindi l'uscita a 0V, dimostrando come il circuito non sia sensibile alle componenti differenziali.

Se si considera il solo generatore equivalente relativo alla componente di modo comune, è possibile calcolare la funzione di trasferimento implementata da IC1:

$$G_{ocm}(s) = -\frac{1 + s C_{35} R_{14}}{s C_{35} (R_{12} / / R_{13})}$$
 (5.30)

Che è rappresentata dal seguente diagramma di Bode:

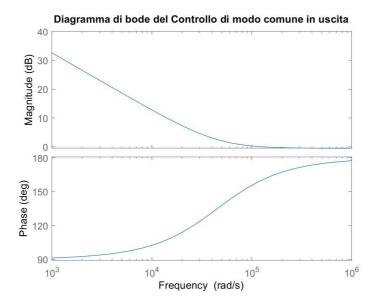


Figura 5.13: Diagramma di Bode del controllo della tensione di modo comune in uscita $G_{ocm}(s)$

Questa tensione in uscita viene poi convertita, attraverso R_{15} e Q_{39} in una corrente, che viene poi iniettata agli emettitori dei transistor che implementano i generatori di correnti usati come carico per lo stadio \mathbf{CA} .

La corrente in uscita al circuito di controllo è pari a:

$$i_{CM} = \frac{v_{OCM} G_{ocm}(s) - v_{EB}^{Q_{39}}}{R_{15}}$$
 (5.31)

Questa corrente viene poi ripartita in modo equo tra i due generatori di corrente relativi alle due uscite implementati nel **carico attivo driver** (in figura 4.5).

5.5.1 Loop di controllo di v_{O_cm}

La corrente assorbita dallo stadio CA (per ogni generatore) risulta essere:

$$i_{GPN} = \frac{V_A - v_{BE}^{Q_{13}}}{R_{53}} - \frac{i_{CM}}{2}$$
 (5.32)

Supponendo trascurabile l'impedenza equivalente dello stadio driver del Mosfet superiore, è possibile calcolare:

$$v_{GPN} = \left(i_{GPP} - i_{GPN}\right) r_O^{v_{GPN}} \tag{5.33}$$

Dove $r_O^{v_{GPN}}$ è l'impedenza equivalente vista al nodo v_{GPN} .

L'uscita dell'amplificatore di modo comune, a partire dal potenziale v_{GPN} , risulta essere:

$$v_{OCM} = v_{GPN} + v_{BE}^{Q_{29}} (5.34)$$

Dalle equazioni 5.31,5.32,5.33 e 5.34, applicando il metodo perturbativo, ovvero derivando le equazioni nel punto operativo per ricavare il guadagno nell'intorno del punto stesso, è possibile stabilire le funzioni di trasferimento di tutto l'anello di retroazione locale del controllo della tensione di modo comune all'uscita; in particolare, le funzioni di trasferimento sono:

$$A_{cm}(s) = \frac{\partial i_{cm}}{\partial v_{ocm}} = \frac{G_{ocm}(s)}{R_{15}}$$
 (5.35)

$$G_{icm}(s) = \frac{\partial i_{gpn}}{\partial i_{cm}} = -\frac{1}{2}$$
 (5.36)

$$G_{vcm}(s) = \frac{\partial v_{gpn}}{\partial i_{gpn}} = -r_O^{v_{GPN}}$$
 (5.37)

$$G_{vco}(s) = \frac{\partial v_{ocm}}{\partial v_{gpn}} = 1 (5.38)$$

E' possibile rappresentare l'anello di retroazione attraverso lo schema a blocchi:

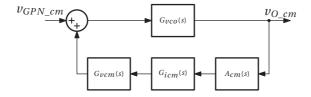


Figura 5.14: Schema a blocchi che rappresenta l'anello di retroazione locale T_{cm}^{CL} utilizzato per limitare la tensione di modo comune in uscita

Il nodo sommatore ha entrambi i segni positivi in quanto il segno – dell'anello di retroazione negativa è contenuto all'interno del blocco $A_{cm}(s)$.

Il guadagno di anello risulta essere pari a:

$$T_{cm}(s) = -A_{cm}(s) G_{icm}(s) G_{vcm}(s) G_{vco}(s) = -\frac{A_{cm}(s)}{R_{15}} \frac{1}{2} r_O^{v_{GPN}}$$
 (5.39)

La presenza del polo nell'origine (all'interno della funzione di trasferimento $A_{cm}(s)$) permette di ottenere, almeno in linea teorica, un valore $v_{O_cm} = 0$, con v_{GPN_cm} diverso da 0.

Il guadagno ad anello chiuso, supponendo $T_{cm}(s) >> 1$, risulta essere pari a:

$$T_{cm}^{CL}(s) \simeq \frac{2R_{15}}{r_O^{v_{GPN}} A_{cm}(s)}$$
 (5.40)

L'anello di retroazione non presenta problemi di instabilità, anche per via del singolo polo presente nella funzione di trasferimento totale.

Capitolo 6

Misure dinamiche

Come descritto nell'articolo [3], nella caratterizzazione degli amplificatori audio, ci sono una serie di test "canonici" i quali solitamente sono sufficienti a descrivere quantitativamente le performance di un amplificatore audio. Tali test, non sono tuttavia sufficienti a garantire in uscita un segnale che possa riprodurre un "bel suono", ma sono indicativi di una solida base di partenza.

Altre tipologie di test, più affini a caratterizzare grandezze di tipo elettrico, possono essere effettuati per approfondire il comportamento dell'amplificatore in situazioni specifiche come transitori e funzionamento al limite delle sue regioni operative.

Nei test effettuati in **Classe A**, vista la grande quantità di potenza dissipata e l'alta temperatura raggiunta dai Mosfet e dai dissipatori, le misure sono state effettuate dopo aver lasciato per 30 minuti l'amplificatore acceso, in modo da permettergli di raggiungere la stabilità termica.

87

6.1 Setup di misura

Per effettuare le misurazioni sul dispositivo, sono stati utilizzati principalmente due strumenti di misura:

- Strumento di misura per amplificatori audio, del produttore AudioPrecision, modello SYS-2722 [1].
- Oscilloscopio Tektronix modello TDS5054B, nel quale sono state utilizzate sonde di tensione e una sonda differenziale di tensione.

Se non diversamente specificato, il setup di misura è coerente con quello illustrato in figura 6.1.

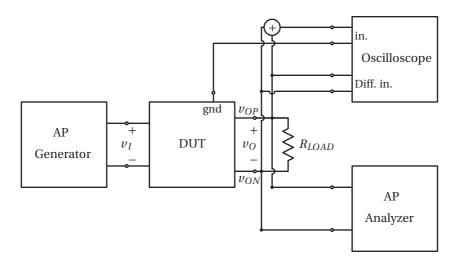


Figura 6.1: Setup di misura utilizzato per le misure dinamiche. AP generator e AP analyzer sono rispettivamente un'uscita e un ingresso dello strumento SYS-2722. Il nodo sommatore è stato implementato tramite partitore resistivo tra le due uscite, ricavando il valore di tensione di modo comune

Gli ingressi dell'oscilloscopio, servono a visualizzare durante i test le tensioni di modo comune e di modo differenziale in uscita all'amplificatore, men-

tre AP analyzer è necessario per riportare le misure in ingresso allo strumento di misura.

AP analyzer può essere impostato dallo strumento scegliendo tra due tipologie di analizzatori: Analog analyzer o Digital Analyzer, in base alla tipologia di test da effettuare. In ogni caso l'impedenza di ingresso dichiarata per l'AP analyzer è di $Z_{IN}^{AP}=100\,k\Omega$.

 R_{LOAD} può assumere 4 diversi valori: open-load, 8Ω , 6Ω e 4Ω ; nelle immagini ottenute dallo strumento AP-2722 sono riportate nella legenda le singole tracce ed in ognuna è specificato il carico utilizzato.

Le misure bilanciate sono state effettuate impostando il generatore analogico dell'AudioPrecision in modalità XLR-float, mentre le misure sbilanciate sono state effettuate impostando il generatore dell'AP in modalità BNC-ground.

Nel caso di XLR-float avremo nei due pin di uscita un andamento uguale ed opposto, come in figura 6.2, mentre nel caso BNC-ground il morsetto – viene collegato al potenziale di ground dell'AudioPrecision, e il morsetto + contiene tutto il segnale utile (traccia rossa in figura 6.3). La tensione differenziale tra i due morsetti è la medesima.

Per effettuare il cambio da classe A-AB a classe A è stato utilizzato un generatore di tensione esterno, e sono stati alimentati i relè presenti a bordo delle schede in base alla classe di funzionamento desiderata.

Se non altrimenti specificato, nelle seguenti misure è stato utilizzato un segnale di ingresso con ampiezza $v_i^{RMS} = 250 \, mVrms$, che corrisponde ad una tensione di uscita, a centro banda, di $v_O^{RMS} = 11.2 \, Vrms$. E' stato scelto questo valore in quanto permette di fare confronti tra le due diverse modalità di funzionamento, visto che permette di ottenere al più $P_O = 31 \, W$ su $R_{LOAD} = 4 \, \Omega$, potenza ottenibile sia in Classe A che in Classe A-AB.

Figura 6.2: Segnali forniti dal generatore bilanciato. In blu il segnale positivo, in verde il segnale negativo.

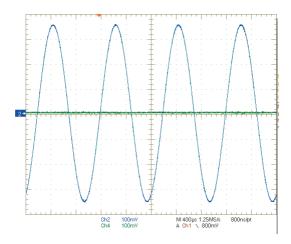


Figura 6.3: Segnali forniti dal generatore Sbilanciato. In blu il segnale positivo, in verde il segnale posto a gnd

6.2 Risposta in frequenza

Questa tipologia di misura è utile perché permette di misurare diverse quantità, tra le quali il guadagno, la banda passante e la risposta alle basse frequenze.

Per queste misurazioni è stato utilizzato l'analog analyzer dell'AP.

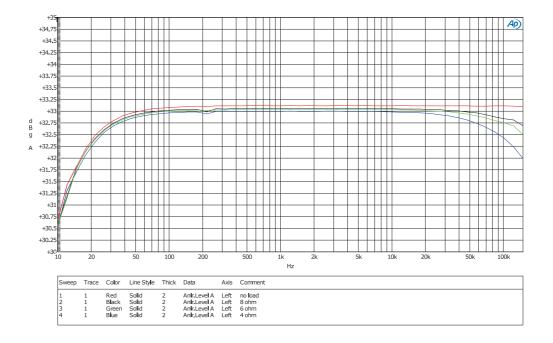


Figura 6.4: Banda passante con amplificazione impostato in classe A-AB, con ingresso bilanciato a vari valori del carico

Nella figura 6.4 è stato riportato l'andamento del guadagno in frequenza dell'amplificatore funzionante in classe A-AB con ingresso bilanciato. Non sono stati riportati gli andamenti ne in classe A-AB con ingresso sbilanciato, ne in classe A con ingresso bilanciato e sbilanciato in quanto erano perfettamente sovrapponibili a quelli riportati in figura 6.4, a parità di carico applicato.

Si può notare come il guadagno a centro banda (@1kHz) nei casi di assenza di carico e carico $R_{LOAD}=4\Omega$ sia leggermente diverso, a causa della resistenza di uscita dello stadio di potenza diversa da 0; tuttavia esso è ragionevolmente vicino a quello calcolato teoricamente, dove le differenze possono essere dovute a tolleranze o effetti secondari non presi in considerazione nella precedente analisi.

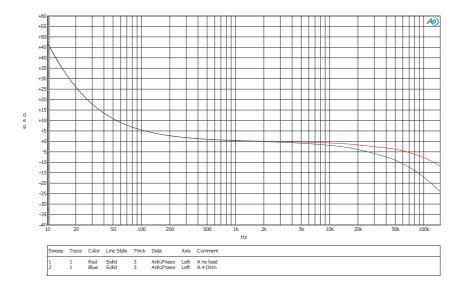


Figura 6.5: Andamento della fase tra ingresso e uscita, nei due casi limite (in assenza di carico e con $R_{LOAD} = 4\Omega$) a parità di tensione in ingresso, sia in Classe A che in Classe A-AB, con ingresso bilanciato e sbilanciato.

Un'altra informazione importante che si può estrapolare dalla figura 6.4 è il diverso comportamento al variare del carico applicato; si nota come l'andamento in assenza di carico ad alta frequenza sia piatto. Con applicato un carico resistivo invece, al diminuire del valore della resistenza applicata, diminuisce la banda dell'amplificatore. Questa limitazione in frequenza che si presenta in presenza di carico è da attribuire allo stadio finale di potenza

e/o allo stadio driver. Infatti al diminuire del valore di resistenza del carico applicato, aumenta la corrente circolante (a parità di tensione efficace applicata), e aumenta quindi la corrente richiesta per caricare/scaricare le capacità dei Mosfet di potenza (Q22 e Q27 in figura 4.6).

Per determinare la banda dell'amplificatore, è stato misurato l'andamento della fase tra ingresso e uscita dell'amplificatore a due diversi valori di carico, ovvero in assenza di carico e con carico $R_{LOAD}=4\Omega$ (in figura 6.5). Come è noto, nell'approssimazione di andamento a polo dominante, alla frequenza 1/10 di quella del polo, è presente uno sfasamento di circa $\Delta\phi\approx5.71^o$, che ci permette di stimare la banda passante a -3dB a $BW\simeq400kHz$.

Dal grafico 6.5, è possibile anche stimare la frequenza di taglio inferiore, verificando a che frequenza è presente uno sfasamento di $\Delta \phi = 45^{\circ}$. Ne risulta una frequenza di taglio inferiore a -3dB di circa $f_{LF} = 11 \, Hz$.

Solitamente in ambito audio viene fornita la banda passante a -1dB, che risulta quindi essere: (17 - 145k)Hz.

6.2.1 Calcolo della corrente di Gate

Per controllare un dispositivo Mosfet viene solitamente fatto variare il potenziale v_{GS} , e nel più delle volte viene supposta la corrente di gate trascurabile.

Tuttavia, è noto che l'impedenza vista al terminale di gate è prevalentemente capacitiva, e dipende dalle capacità parassite del dispositivo, le quali risultano essere altamente non lineari, e dipendenti dal punto operativo del Mosfet.

Come è stato fatto nel **paragrafo 3.1.2** di [4], è possibile stimare il valore delle capacità C_{gs} e C_{gd} per determinati valori della tensione v_{ds} .

In questo caso, è stato ipotizzato un carico puramente resistivo, e quindi risulta che il valore massimo della corrente di gate si ottiene per il passaggio per lo zero della tensione di uscita. Infatti, supponendo un'uscita con andamento sinusoidale, la tensione $v_{ds} \simeq \frac{V_P}{2}$ presenta il valore massimo, ed anche la derivata della corrente (e tensione) di uscita sono massime. Le capacità presentano invece il loro valore minimo.

Dai datasheet dei componenti utilizzati (IRFP140 e IRFP9140) sono stati ricavati i valori delle capacità parassite C_{gs} e C_{gd} per un valore della tensione $v_{DS} = 28V$.

I valori ottenuti sono i seguenti:

- $C_{gs} \simeq 1530pF$
- $C_{qd} \simeq 120pF$

I valori riportati sono relativi al dispositivo IRFP140, in quanto presenta le capacità di valore maggiore.

La corrente di gate può essere calcolata approssimativamente come:

$$i_{gate} = C_{gs} \frac{1}{g_m} \frac{di_D}{dt} + C_{gd} \frac{dv_O}{dt}$$

$$\tag{6.1}$$

L'unico dato mancante risulta essere il valore della trans-conduttanza del dispositivo nel punto.

Da datasheet viene fornito il valore in un determinato punto operativo, ed è possibile da tale valore, stimare la trans-conduttanza in qualsiasi altro punto operativo.

Nel passaggio per lo zero della tensione (e corrente) di uscita, i Mosfet si trovano con una corrente circolante pari alla corrente di bias, che in **Classe** \mathbf{A} - $\mathbf{A}\mathbf{B}$ risulta essere $I_{BIAS} = 260mA$.

Ne risulta un valore di trans-conduttanza approssimato per il dispositivo IRFP140 pari a :

$$g_m = g_{m0} \sqrt{\frac{I_{BIAS}}{I_{D0}}} \simeq 1.15S$$
 (6.2)

Per quanto riguarda le derivate delle quantità i_D e v_O , è necessario fare delle considerazioni:

- v_O : La tensione di uscita è riferita ad una singola uscita rispetto al potenziale gnd_signal , e quindi risulta essere pari a metà della tensione differenziale in uscita $(\frac{v_O}{2})$;
- i_D : La corrente di uscita è riferita alla totale corrente circolante sul carico, e per tenerne conto, è possibile utilizzare come valore di carico $\frac{R_{LOAD}}{2}$, dove R_{LOAD} è la totale resistenza applicata all'uscita differenziale.

La totale corrente di gate, espressa come funzione della frequenza del segnale di uscita, con un ingresso differenziale $v_i=250mVrms$, e con carico $R_{LOAD}=4\Omega$, risulta essere pari a :

$$i_{gate} = 3.91 \, 10^{-8} \, f \, A \tag{6.3}$$

dove f è la frequenza del segnale in uscita.

Ad una frequenza f=100kHz, risulta una corrente $i_{gate}\simeq 3.91mA$, la quale è comparabile con la corrente I_{GPP} (visibile in figura 4.6); non è più possibile ipotizzare costante la tensione ai capi del driver del Mosfet superiore, e l'analisi fatta sul circuito che implementa la struttura feedback error correction (fig. 5.8) non è più valida.

Va considerato, inoltre, che le misure e i conti effettuati in questo paragrafo non sono stati effettuati alla potenza massima erogabile sul carico (e quindi per valori massimi della corrente); man mano che la corrente assorbita dal carico aumenta, la banda tenderà a diminuire a causa della corrente di gate.

E' quindi necessario introdurre una modifica (proposta nel paragrafo 7.2) attraverso la quale diminuire la corrente richiesta al circuito driver.

I calcoli precedentemente effettuati sono validi anche per il mosfet inferiore di ogni mezzo ponte (per quanto riguarda l'ordine di grandezza della corrente di gate).

6.3 FFT

La FFT (Fast Fourier Transform) permette di conoscere la composizione spettrale del segnale sotto esame. Dato un segnale in ingresso noto, le misure di spettro sono state effettuate normalizzando l'ampiezza dello spettro stesso rispetto all'ampiezza della componente fondamentale (alla quale viene data ampiezza unitaria in dB); così facendo, si riesce facilmente a capire di quanto siano minori le armoniche spurie rispetto al segnale voluto.

Per effettuare le misurazioni è stato impostato il generatore di segnale alla frequenza di f=1kHz, ed è stato utilizzato il *Digital analyzer*, impostato su *FFT Spectrum Analyzer (fft)*, con una finestratura di tipo Equiripple (proprietaria di AudioPrecision), mediata su 8 acquisizioni e con una lunghezza di acquisizione di 16384 punti.

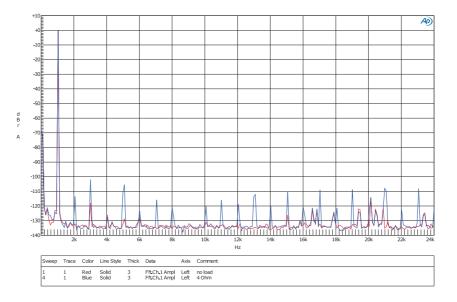


Figura 6.6: FFT normalizzata in classe A-AB con ingresso bilanciato. In rosso in assenza di carico, in blu con un carico di 4 Ohm

6.3. FFT 97

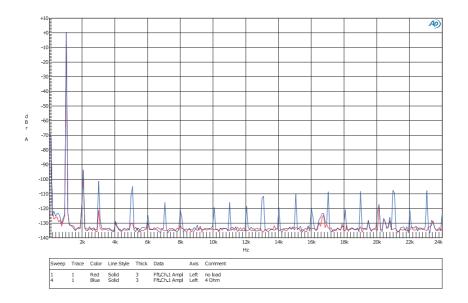


Figura 6.7: FFT normalizzata in classe A-AB con ingresso sbilanciato. In rosso in assenza di carico, in blu con un carico di 4 Ohm

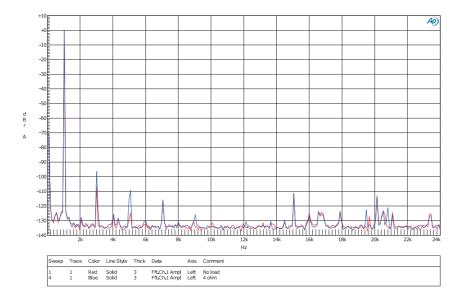


Figura 6.8: FFT normalizzata in classe A con ingresso bilanciato. In rosso in assenza di carico, in blu con un carico di 4 Ohm

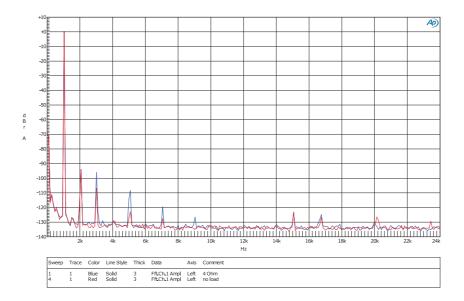


Figura 6.9: FFT normalizzata in classe A con ingresso sbilanciato. In rosso in assenza di carico, in blu con un carico di 4 Ohm

La prima cosa che si nota è la minor ampiezza delle armoniche pari con ingresso bilanciato rispetto all'ingresso sbilanciato, le quali in Classe A sono praticamente assenti, mentre in Classe A-AB hanno un'ampiezza inferiore rispetto alla terza armonica. Questo effetto è principalmente dovuto alla presenza della struttura di ingresso differenziale, che come descritto in letteratura, tende ad eliminare le armoniche di distorsione pari introdotte dallo stadio differenziale stesso. Nella configurazione ad ingresso sbilanciato tuttavia, le armoniche pari sono presenti; ciò potrebbe essere dovuto al fatto che con ingresso sbilanciato i differenziali in ingresso operano con una tensione differenziale maggiore (come descritto nel paragrafo 5.1.2). Tale tensione, a causa della non perfetta simmetria tra i transistor del differenziale, provoca una non perfetta cancellazione delle armoniche pari.

La presenza della seconda armonica è da attribuirsi allo stadio di ingresso,

6.3. FFT 99

in quanto nei due carichi collegati, presenta approssimativamente la stessa ampiezza.

Confronto con ingresso bilanciato

Nel confrontare le due modalità di funzionamento con lo stesso tipo di segnale in ingresso, si mettono a confronto i due stadi driver+uscita. Infatti, dal punto di vista circuitale, i cambiamenti più evidenti avvengono in quello stadio: la corrente di bias dei Mosfet finali è differente, come è differente il circuito driver del Mosfet inferiore.

Confrontando i grafici 6.6 e 6.8 con carico $R_{LOAD} = 4\Omega$ (tracce blu), si nota una maggior presenza di armoniche nella modalità in **Classe A-AB**, sebbene nell'altra modalità di funzionamento la terza armonica sia di ampiezza maggiore.

In Classe A-AB è presente anche una componente di seconda armonica; tutte queste differenze sono da attribuirsi allo stadio finale. Infatti è presente una forte discontinuità nel suo funzionamento: il Mosfet inferiore non conduce per tutto il periodo dello stadio finale e ciò può provocare la maggior presenza di armoniche nello spettro in tale modalità di funzionamento.

6.4 Misura di THD+N vs v_O

Un'interessante misura che fornisce informazioni aggiuntive riguardanti la distorsione introdotta dal dispositivo è il grafico THD+N vs P_O . Tuttavia, per poter confrontare le diverse curve nello stesso grafico, è stato plottato l'andamento della distorsione armonica totale rispetto alla tensione di uscita.

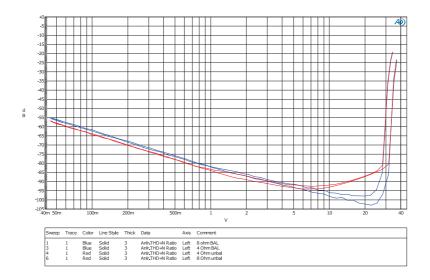


Figura 6.10: THD+N vs v_O in modalità di funzionamento in Classe A-AB, a due valori del carico, e con ingresso bilanciato (in blu) e sbilanciato(in rosso). Le curve che saturano prima (per tensioni di uscita più basse) sono le misure con carico $R_{LOAD} = 4\Omega$.

Prendendo in considerazione le figure 6.10 e 6.11, nella parte sinistra del grafico, le forme d'onda hanno una variazione di $-20\,dB$ per ogni decade di aumento della tensione in uscita; ciò avviene fino ad un limite superiore di v_O dipendentemente dal tipo di ingresso e dalla modalità di funzionamento. Fino a tale valore, la THD+N è dominata dalla componente di rumore; infatti la componente spuria di segnale rimane pressoché costante all'aumentare della

componente in uscita [6]. E' inoltre indicativo anche del fatto che il valore di THD+N sia indipendente dal carico applicato (per i valori di carico resistivo per cui è dimensionato il dispositivo).

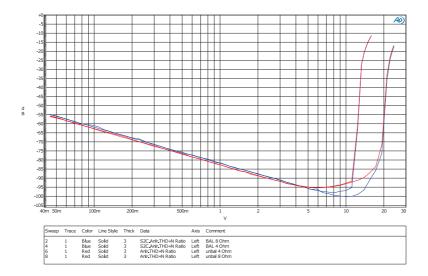


Figura 6.11: THD+N vs v_O in modalità di funzionamento in **Classe A**, a due valori del carico, e con ingresso bilanciato (in blu) e sbilanciato(in rosso). Le curve che saturano prima (per tensioni di uscita più basse) sono le misure con carico $R_{LOAD} = 4\Omega$.

Prendendo ora in considerazione la sola figura 6.11, per valori della tensione in uscita maggiori di $v_O > 5Vrms$, si nota una variazione nel comportamento del dispositivo, al variare del carico, ma sopratutto del tipo di segnale in ingresso: la THD+N inizia ad aumentare (dove il carico è minore) e comunque è maggiore con ingresso sbilanciato, confermando le ipotesi effettuate nel paragrafo 6.3

6.5 Misure di THD+N

Per stabilire la rumorosità dell'amplificatore, e al tempo stesso tener conto della distorsione introdotta dallo stesso, viene solitamente effettuata una misurazione di THD+N, che tiene conto di entrambe le componenti. Questa misura viene effettuata utilizzando l'Analog analyzer dell'AP: un filtro notch aggiustabile [1], il quale attenua fortemente l'ampiezza della fondamentale, viene fatto spostare in frequenza e viene posto alla stessa frequenza della fondamentale, tendendo ad attenuarla fortemente; la misurazione della componente residua di tensione fornisce la quantità cercata.

Nelle seguenti misure, è stato inserito un filtro passa basso alla frequenza $f=30\,kHz$, per eliminare le componenti di rumore ad alta frequenza che potrebbero essere tali da nascondere le componenti di distorsione (essendo le componenti di distorsione molto basse, almeno fino al verificarsi del clipping) [1]. La presenza di questo filtro passa basso provoca l'apparente diminuzione del valore misurato di THD+N nell'intorno della frequenza massima visibile nelle figure 6.12 e 6.13 $f_{MAX}=20$ kHz.

Verranno prese in considerazione le misure fino ad una frequenza massima di $f_{MAX}\,=\,10kHz.$

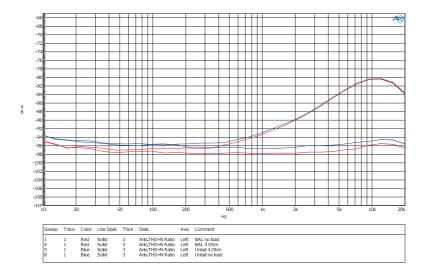


Figura 6.12: THD+N in classe A-AB con ingresso bilanciato e sbilanciato con i due tipi di carico limite (in assenza di carico e $R_{LOAD} = 4\Omega$).

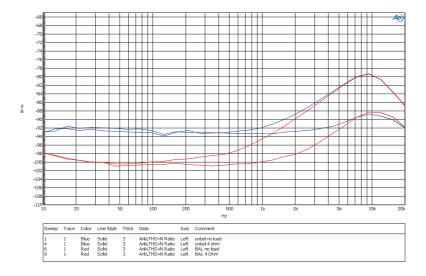


Figura 6.13: THD+N in classe A con ingresso bilanciato e sbilanciato con i due tipi di carico limite (in assenza di carico e $R_{LOAD} = 4\Omega$).

Nelle figure 6.12 e 6.13 sono rappresentati gli andamenti della THD + N nelle due modalità di funzionamento, e in ognuna delle figure sono raffigurate 4 misure, al variare del carico (no-load e $R_{LOAD} = 4\Omega$) e al variare del tipo di ingresso (bilanciato e sbilanciato).

I grafici sono ottenuti con un ingresso $v_i=250mVrms$, e dal capitolo 6.4 si è notato come con questa tensione in ingresso, la distorsione introdotta dal circuito non è più trascurabile.

In assenza di carico, le migliori prestazioni si ottengono in Classe A con ingresso bilanciato, mentre in presenza del carico le migliori prestazioni avvengono in Classe A-AB. Ciò è in linea con i risultati ottenuti dalla FFT, nella quale la numerosità di armoniche in Classe A-AB era generalmente maggiore (in assenza di carico). Tuttavia nella classe A, in presenza di ingresso sbilanciato, si ottiene un valore di THD+N maggiore rispetto all'ingresso bilanciato. Ciò è probabilmente dovuto alle componenti di seconda e terza armonica (presenti in figura 6.9), che hanno modulo maggiore rispetto alle componenti nell'altra modalità di funzionamento (figura 6.7), e provocano un valore di THD+N maggiore, essendo predominanti.

In entrambe le modalità di funzionamento, si nota come ad alta frequenza aumenti velocemente il valore di THD+N in presenza del carico, indicando ancora una volta che la causa di questo comportamento è da ricercarsi nello stadio di potenza (e quindi nella corrente di gate non trascurabile).

6.6 Misura di impedenza di uscita

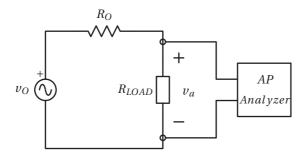


Figura 6.14: Test bench utilizzato per la misura dell'impedenza di uscita dell'amplificatore

Per stimare il valore dell'impedenza di uscita, è stato utilizzato un test bench come quello in figura 6.14.

Per poter stimare l'impedenza di uscita, è sufficiente utilizzare le misure effettuate con due diversi valori del carico, ovvero $R_{LOAD}=no\,load$ e $R_{LOAD}=8\Omega$.

Se non viene colegato il carico, idealmente nella resistenza di uscita dell'amplificatore non scorre corrente, e la tensione misurata risulta essere, in buona approssimazione $v_a \simeq v_O$.

Collegando invece un carico $R_{LOAD} = 8\Omega$, si ottiene che la totale corrente sul carico corre anche attraverso la resistenza di uscita. Il potenziale v_a risulta essere la tensione v_O scalata dal partitore resistivo formato da R_O e R_{LOAD} .

Dalle considerazioni appena effettuate, è possibile esprimere il valore di R_O come:

$$R_o = R_g = \frac{v_g - v_a}{v_a} R_{in} = 50 m\Omega$$
 (6.4)

Questa misura permette di calcolare anche uno dei parametri chiave di un amplificatore, ovvero il **Fattore di Smorzamento**. Essendo una quantità

dipendente dal carico, è possibile fare delle stime approssimative, ma nel caso di carico puramente resistivo, otteniamo per questo amplificatore, che può lavorare sia con 4, 6 e 8 Ω , il seguente intervallo:

$$80 \le DF = \frac{R_{LOAD}}{R_o} \le 160 \tag{6.5}$$

Nel caso peggiore, la resistenza di uscita dell'amplificatore è ottanta volte più piccola della resistenza di carico, rendendola nella maggior parte dei casi trascurabile.

6.7 Verifica stabilità con carico capacitivo

E' stata verificata la stabilità dell'amplificatore, in assenza di segnale di ingresso, con carico puramente capacitivo. In particolare, sono stati impiegati tre condensatori a film plastico aventi i seguenti valori di capacità:

- $C_1 = 10 \, nF$
- $\bullet \ C_2 = 100 \, nF$
- $\bullet \ C_3 = 1 uF$

Per testare la stabilità, ed evitare di incorrere in eventuali auto-oscillazioni che avrebbero potuto danneggiare irreparabilmente il dispositivo, si è iniziato connettendo all'uscita dell'amplificatore il condensatore per frazioni di secondo, in modo da non alimentare per molto tempo eventuali oscillazioni.

Con tutti e 3 i tipi di carico non ci sono stati problemi evidenti di oscillazioni, ne per quanto riguarda la componente di modo comune in uscita, ne per quanto riguarda la componente di modo differenziale.

Questo tipo di prova è utile in quanto sebbene questo tipo di amplificatore non sia progettato per funzionare con carichi puramente reattivi, i diffusori hanno un'impedenza altamente variabile, con comportamenti che a determinate frequenze possono essere altamente reattivi.

6.8 Misura di potenza massima

Per definire le caratteristiche dell'amplificatore, un dato fondamentale è rappresentato dalla potenza massima erogabile su dei carichi di valore noto (solitamente di tipo resistivo), ovvero 4Ω , 6Ω e 8Ω , che sono al giorno d'oggi divenuti lo standard per quanto riguarda l'impedenza nominale dei diffusori commerciali.

Per definire la massima potenza erogabile tuttavia, è necessario definire dei criteri che stabiliscano in che condizioni operative e qualitative si verifichi l'erogazione della potenza massima.

Solitamente, negli amplificatori audio valvolari, la potenza massima erogabile viene definita rispetto alla distorsione ottenuta in uscita; è comune trovare le definizioni di potenza massima riferite ad una distorsione all'1% o al 5%.

Tuttavia, in questo amplificatore integrato, sono state poste delle protezioni controllate dalla tensione di modo comune; nel caso in cui si verifichino spesso situazioni in cui la regolazione del modo comune viene messa sotto stresse quindi non riesca a garantire una tensione di modo comune in uscita tendente a zero, il microcontrollore provvede ad abbassare il volume del dispositivo.

E' stato deciso di utilizzare questo metro di misura per valutare la potenza massima erogabile dalle schede di amplificazione ottenendo i seguenti risultati:

• Carico da 8Ω

$$- P_A^{MAX} = 51 W \text{ (con } v_i = 0.45 V rms)$$
$$- P_{A-AB}^{MAX} = 150 W \text{ (con } v_i = 0.77 V rms)$$

• Carico da 6 Ω

$$-P_A^{MAX} = 56 W \text{ (con } v_i = 0.41 V rms)$$

 $-P_{A-AB}^{MAX} = 180 W \text{ (con } v_i = 0.73 V rms)$

 \bullet Carico da $4\,\Omega$

$$-P_A^{MAX} = 38 W \text{ (con } v_i = 0.27 V rms)$$

 $-P_{A-AB}^{MAX} = 227 W \text{ (con } v_i = 0.67 V rms)$

Risulta evidente che il dimensionamento dello stadio finale per il funzionamento in Classe A sia stato fatto per il funzionamento con carico $R_{LOAD}=6\Omega$.

Capitolo 7

Modifiche Proposte

Nei precedenti capitoli sono state illustrati lo studio e le caratteristiche dell'amplificatore sotto esame. In questo paragrafo vengono riportati dei suggerimenti di alcune possibili modifiche da effettuare sul circuito, per migliorare le prestazioni del dispositivo.

7.1 Riferimenti di tensione

Nel paragrafo 4.6, è stato illustrato come i riferimenti di tensione siano stati ottenuti tramite l'utilizzo di diodi zener in regione di breakdown. Tuttavia, questi riferimenti di tensione sono utilizzati direttamente per la definizione della corrente assorbita da vari generatori di corrente. E' quindi necessario trovare un modo di ottenere dei riferimenti più precisi, per lo meno per i riferimenti V_A e V_B . Infatti i riferimenti V_A e V_B vengono utilizzati per implementare i generatori di corrente, mentre il riferimento V_C viene utilizzato esclusivamente per implementare una configurazione cascode, ed è quindi possibile mantenere l'utilizzo del diodo zener.

Il circuito proposto è il seguente:

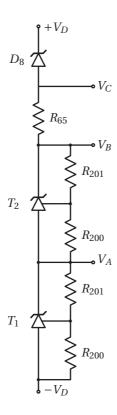


Figura 7.1: Circuito proposto per l'implementazione dei riferimenti di tensione più accurati, attraverso l'utilizzo di TL431

e sfrutta due regolatori TL431, i quali permettono di creare un riferimento di tensione ai loro capi, utilizzando delle adeguate resistenze R_{200} e R_{201} . I nomi delle resistenze sono stati ripetuti in quanto le resistenze devono avere lo stesso valore.

Vista la presenza di D_8 , la corrente attraverso la resistenza R_{65} deve rimanere pressochè la stessa, e quindi il valore della resistenza non cambia.

Da datasheet (*Texas Instruments*) la corrente minima di polarizzazione dei TL431 è $I_{pol}=1mA$; è stato deciso di imporre, con $V_D=45V$, una corrente $I_{pol}=1.5mA$.

Risulta quindi

$$(R_{200} + R_{201}) = \frac{V_B - (-V_D)}{2(I^{R_{65}} - I_{pol})} \simeq 1114\Omega$$
 (7.1)

T1 impone fra i suoi pin di riferimento una tensione di $V_{RIF} = 2.495V$; il valore della resistenza risulta essere:

$$R_{200} = \frac{V_{RIF}}{I_{pol}} = 714\Omega \tag{7.2}$$

E' possibile ricavare il valore dell'altra resistenza come:

$$R_{201=(R_{200}+R_{201})-R_{200}} \simeq 400\Omega$$
 (7.3)

Questa implementazione circuitale dei riferimenti di tensione li rende meno sensibili a variazioni dei potenziali $\pm V_D$, sebbene una certa tolleranza (dovuta alla tolleranza delle resistenze) persiste.

7.2 Corrente di gate di Q22

Come calcolato nel paragrafo 6.2.1, la corrente di gate dei Mosfet di potenza ad alta frequenza del segnale di uscita può diventare problematica, in quanto tende a non essere più trascurabile rispetto alla corrente circolante nel driver del Mosfet superiore.

E' quindi necessario inserire un ulteriore stadio intermedio, che permetta di diminuire la corrente fornita dal driver verso il gate del Mosfet.

La soluzione proposta è illustrata nella seguente figura:

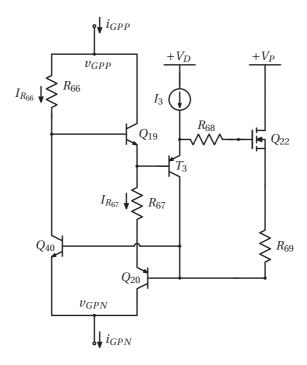


Figura 7.2: Circuito proposto per mitigare gli effetti della corrente di gate di Q_{22} sul circuito driver

Tra l'emettitore di Q_{19} e il gate di Q_{22} è stato inserito T_3 , un BJT in configurazione inseguitore di tensione, polarizzato attraverso il generatore di corrente I_3 . Il collettore di T_3 è stato collegato all'uscita di v_{OP} , per mantenere basse le escursioni di tensione tra collettore e emettitore e qundi limitare l'effetto Early. Questa soluzione tuttavia risulta problematica. Infatti, bisogna ricordare che le tensioni V_P e V_D sono isolate tra di loro, e vengono mantenute centrate da un apposito circuito, il quale fa scorrere tra le due alimentazioni una corrente ben definita (idealmente tra $-\frac{V_P}{2}$ e V_D). La corrente aggiuntiva introdotta da I_3 , porta quindi ad uno squilibrio nel circuito che controlla le alimentazioni.

Visto il funzionamento descritto in 4.6, la corrente I_3 può al più avere l'ampiezza della corrente assorbita da Q_{23} (Circa $\frac{I_{CP}}{2}$).

7.3 Circuito di centraggio delle alimentazioni

Come visto nel paragrafo 4.4, la tensione media tra $+\frac{V_P}{2}$ e $-\frac{V_P}{2}$ si trova ad un potenziale di circa V_{BE} .

Ne consegue che le uscite v_{OP} e v_{ON} hanno un'estensione diversa per le tensioni positive e negative.

In particolare, l'estensione negativa è limitata da due ulteriori fattori (oltre che il valore medio positivo dell'alimentazione di potenza):

- La resistenza di canale del Mosfet inferiore, in zona di triodo, è più di 2 volte la resistenza in zona triodo del dispositivo superiore, per motivazioni tecnologiche dei dispositivi. A parità di corrente circolante, nell'avvicinarsi della tensione di uscita ai valori di alimentazione di potenza, a parità di corrente, la caduta fra drain e source del dispositivo a canale P è più del doppio rispetto alla caduta fra drain e source del dispositivo a canale N, diminuendo quindi in maniera asimmetrica il range dinamico.
- Il ripple, essendo presente prevalentemente sull'alimentazione $-\frac{V_P}{2}$, impone una diminuzione del range dinamico per tensioni negative pari a $\frac{\Delta V_P^{PP}}{2}$.

L'insieme di questi tre fattori, induce a pensare che un allineamento diverso fra le tensioni di modo comune delle alimentazioni possa portare ad un miglioramento delle prestazioni dell'amplificatore.

Attraverso l'inserimento di un riferimento di tensione aggiuntivo (ad esempio un diodo) tra R_{23} e l'alimentazione $-\frac{V_P}{2}$ (fig. 3.9), è possibile modulare il valore medio dell'alimentazione di potenza.

Capitolo 8

Conclusioni

Questa tesi ha presentato lo studio e le misure effettuate sul prototipo di un circuito di amplificazione di potenza, in banda audio, caratterizzato dall'avere una struttura completamente bilanciata, e in grado di operare in due distinte modalità di funzionamento, ovvero in Classe A e in Classe A-AB.

Lo studio statico, in assenza di segnali in ingresso, è stato effettuato sfruttando delle ipotesi semplificative; tuttavia le misure ottenute sperimentalmente hanno rispecchiato, nella gran parte dei casi ed entro una piccola tolleranza, i valori calcolati, dimostrando la validità dell'analisi effettuata. Una problematica riscontrata riguarda la polarizzazione dei dispositivi finali nella modalità di funzionamento in **Classe A-AB**, dove la corrente di bias è risultata dipendente dalle caratteristiche dei componenti utilizzati.

Nell'analisi dinamica, con segnale in ingresso, è stato verificato il comportamento dei vari stadi di amplificazione, sia per quanto riguarda le componenti di segnale di modo comune, sia per quanto riguarda le componenti di segnale di modo differenziale. In particolare, è stato approfondito il comportamento del circuito di ingresso con un segnale sbilanciato, dimostrando come, nella sua totalità, il circuito di amplificazione si comporta come un

bilanciatore di segnale.

Per quanto riguarda la componente di modo comune del segnale di ingresso, è stato mostrato come venga fortemente attenuata; è stato inoltre stato studiato l'anello di retroazione locale che tende a limitare la tensione di modo comune in uscita.

Nel riportare le misure dinamiche effettuate, sono stati motivati i comportamenti anomali riscontrati, e sono state comparate le performance ottenute nelle due differenti modalità di funzionamento.

L'amplificatore dimostra ottime caratteristiche in entrambe le modalità di funzionamento, ma offre le migliori performance in **Classe A** con ingresso bilanciato, tipologia di segnale per il quale è stato progettato. Nella **Classe A-AB** il contenuto armonico del segnale in uscita è molto esteso: un futuro studio di questa architettura può concentrarsi sulle motivazioni di questo fenomeno, cercando delle soluzioni circuitali più efficaci di quelle attualmente implementate.

Sono stati presentati infine delle proposte e degli spunti per degli eventuali sviluppi futuri, per migliorare le caratteristiche dell'amplificatore.

Bibliografia

- [1] Bob Metzler: Audio Measurement Handbook Audio Precision
- [2] Audio Precision 2700 Series. 2700 Series User's Manual
- [3] Audio Precision The Big Six Audio Measurements https://www.ap.com/blog/the-big-six-audio-measurements/
- [4] Leopoldo Rossetto: Un progetto di Elettronica Analogica: L'amplificatore Anyload. Appunti per il corso di progettazione di Elettronica Analogica Ed. Esculapio
- [5] Leopoldo Rossetto: Lezioni di ELETTRONICA ANALOGICA. Fondamenti
 - Ed. Esculapio
- [6] Leopoldo Rossetto: Valutazione del rumore e della distorsione negli amplificatori elettronici
 - Appunti
- [7] Leopoldo Rossetto: Appunti dal corso di Elettronica analogica.

 Approfondimenti
 - Ed. Esculapio

118 BIBLIOGRAFIA

[8] Richard c. Jaeger, Travis n. Blalock: microelettronicaV edizione, Mc Graw Hill

[9] Dr. Arto Kolinummi: Audio Power Amplifiers. Towards inherently linear amplifiers

Linear Audio

- [10] MCS Electronics Bascom-AVR manual
- [11] Douglas Self: Small signal Audio Design
 Third Edition, Routledge
- [12] Gray P.R.: Analysis and Design of Analog Integrated Circuits 4th ed John Wiley & Sons Inc.
- [13] Treccani Significato 3. della parola Fedeltà

 https://www.treccani.it/vocabolario/fedelta/

A tutti coloro che mi hanno fatto incontrare i mondi della musica e dell'elettronica.

Alla musica, che trasforma un rumore in melodia, all'elettronica che nella musica trova una delle sue più emozionanti applicazioni