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Abstract

La generazione e la propagazione del suono all’interno di una turbomacchina sono oggetto
di studio per migliorare e convalidare le previsioni sulla risposta forzata della struttura
calcolate dai solutori CFD.
Tramite simulazioni sperimentali condotte alla RWTH Aachen University è stato infatti
trovato che l’acustica incide sulla risposta forzata della struttura e che differenti distribu-
zioni radiali di pressione possono cambiare l’eccitazione delle pale.
In questo elaborato viene presentato un metodo che permette di svolgere un’ottimizza-
zione di una griglia di sensori per misurazioni acustiche all’interno di un compressore
assiale multi-stadio e che studia l’influenza data da errori di misura. Il metodo si basa
su un’analisi modale radiale (dall’inglese Radial Mode Analysis), che permette di trovare
l’ampiezza e la fase dei cosiddetti modi acustici, partendo da misurazioni sperimentali
della pressione acustica all’interno del condotto. L’ottimizzazione deve essere compiuta
osservando per quali parametri della griglia la qualità dell’analisi modale radiale risulta
buona.
Dal processo implementato e dai risultati ottenuti si trova che l’ottimizzazione deve esse-
re svolta studiando singolaremente ciascun modo acustico perchè i parametri ottimizzati
riguardanti la griglia cambiano a seconda dei modi acustici considerati.
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1. Introduction

The main purpose of this work concerns the optimization of a sensors grid for acoustic
measurements in a turbomachine.
During simulations and tests carried out at the test rigs located at RWTH Aachen Univer-
sity, it came out that acoustics has an impact on structure’s forced response. Particularly,
it has been found that different radial pressure distributions can change the excitation of
the blades. Hence, a detailed knowledge on the generation and propagation of sound into
the duct and its effects needs to validate and compare the forced response predictions
done by a CFD solver.
In contrast to acoustics in a free field, the solution of the acoustic wave equation in ducts
is given by the superposition of acoustic spinning modes, which determine a singular and
periodic pressure pattern. In order to know which of these modes occur in the duct and
which amplitude each mode has, a Radial Mode Analysis (RMA) has to be implemented.
Particularly, this analysis has in input experimental measurements of the acoustic pres-
sure along the duct. Because the analysis quality depends on the arrangement of the
measuring array, an optimization of the grid parameters is needed in order to decrease
errors in the solution and, hence, to improve the prediction on forced response. Particu-
larly, this analysis provides better validation data than the data resulting from only an
Azimuthal Mode Analysis (AMA).
The turbomachine to which this work refers is a multi-stage axial compressor and the
section in which the analysis is carried out is the inlet.

1.1. Set-up of the work

The present work starts with Chapter 2 illustrating briefly the theoretical principles about
the generation and propagation of acoustic modes in a turbomachine. Also the analytical
methods that can be implemented in order to decompose the acoustic pressure field into
these modes are reported and explained.
In Chapter 3 an overview on the development of this area of studies through the years is
presented, showing only some of the main works carried out in the past decades.
The implemented process of the analysis is explained in Chapter 4. The purpose of this
process is to find an optimization of the measuring grid for which the accuracy of mode
decomposition is maximized whereas the propagation of measuring inaccuracies due to
the noise is minimized. The encountered issues during the set-up of this process are dis-
cussed.
In Chapter 5 the results coming from the analysis are displayed and a discussion com-
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1. Introduction

paring different cases and modes is carried out. Looking on these results, the parameters
concerning the arrangement of the measuring grid are optimized.
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2. Theoretical background

The pressure field in a duct or in ducted sections of compressors, turbines or ducted fans
that are located before and after the blading sections, can present various shapes due to
the multitude of sources that generate it. In 1962 Tyler and Sofrin published a study on
axial flow compressor noise and demonstrated that the radiation of sound from the end
of the duct depends mostly on the generation and propagation of spinning modes, which
are rotating pressure patterns that present a singular and periodic shape [12][2][5].
Mathematically the pressure field can be obtained by the superposition of these modes
whose shape present m periods in the circumferential direction and n nodes (the points
in which the value of the function becomes zero) in the radial direction for every axial
plane in the duct. Hence, it is said that the mode has an azimuthal mode order m and a
radial mode order n [5].

2.1. Sources of sound

The mechanisms that generate acoustic modes in an axial compressor are several. Some
of these sources are listed below:

1. rotor-alone mechanism,

2. rotor-stator interaction,

3. propagation of wakes and scattering,

4. flow separation.

Particularly, the phenomenon of scattering can be induced, for example, by a noticeably
reflection of the propagating modes that can be scattered in other mode orders [9]. For
a first study the resulting modes from wakes and flow separation will be neglected. Also
the scattered modes are not taken into account but they can be analysed in the same way
of the other modes.
The rotor-alone mechanism generates azimuthal mode orders m equal to integer multiples
of the blades’ number B [5]. To better understand this mechanism, a single rotor of an ax-
ial compressor is considered following the example in [12]. The spacing between the blades
along the circumference is equal to 2π/B radians. Hence, the pressure contours associated

5



2. Theoretical background

to a single blade should also repeat with this interval. Due to these considerations, the
pressure distribution has to meet always two requirements [12]:

1. for a fixed coordinate system it spins with the angular velocity of the rotor ω = 2πN ,
where N is the rotor shaft speed in cycle per second [cps];

2. it repeats in the period 2π/B defining the fundamental harmonic h = 1. Considering
also the other harmonics (h = 2, 3, 4, ...) the repetition will be done with always
smaller periods.

The sources of rotor-stator interaction noise are instead the following [12]:

1. Separation of wakes propagating from stators made by downstream rotor blades;

2. Impact of wakes generated from rotor’s rotating blades on downstream stators;

3. Interference due to reflecting objects on the rotating periodic pressure field.

To explain the mechanisms that generates acoustic modes in this case of interaction, it
can be considered a sequence of rotor blades rotating near a single stator vane as done
in [12]. Near this vane it will be sensed a pressure fluctuation every time that a blade
passes by. Alternatively, taking the position of a rotating blade a change in pressure will
be sensed every time it approaches the vane. This fluctuation repeats every time that the
blade completes a revolution and depends on the dimensions, position and aerodynamic
influence of the vane [12].
In a fixed coordinate system near a vane this phenomenon is duplicated every time any
other rotor blade passes by and thus takes place at blade passing frequency for every
stator vane near the rotor [12].
This fluctuation is not sensed only near the vane, but it propagates along the duct [12].
Tyler and Sofrin verified that in a compressor stage with B rotor blades and V equally
spaced stator vanes acoustic modes are created at harmonics of the Blade Passing Fre-
quency (BPF) fBPF [9]:

hfBPF = hBfR (2.1)

where h is the Blade Passing Frequency harmonic (1, 2, 3, ...) and fR is the rotor turn
frequency.
They demonstrated also that the m modes generated by interaction phenomena are given
by the following expression [12][9]:

m = hB − kV, (2.2)

where k can be equal to ±(1, 2, 3, ...). Otherwise, if k = 0 the corresponding m modes are
that resulting from the rotor-alone mechanism.
For a particular harmonic h, the pressure field generated by rotor-stator interaction is
composed of an infinite number of spinning modes, which have a value of m that comes
from Eq.(2.2) as the index k assumes the value of all positive and negative integers [12].
Positive m numbers rotate in the same direction of the rotor whereas negative m in the
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2.1. Sources of sound

opposite. The spin rate of each m mode depends on its order as follows [5]:

Ωm = hBω

m
(2.3)

where Ωm is the mode speed and ω is the rotor shaft speed.
The existence of the patterns given by the Eq.(2.2) can be demonstrated considering a
compressor stage with few blades and vanes, as reported in [12]. The next figure illustrates
in a schematic way the case of a rotor with number of blades B = 8 interacting with a
stator with number of vanes V = 6.

Figure 2.1.: Demonstration of rotor-stator interaction patterns. Taken from [12]

From Eq.(2.2) it can be derived that in this case, for example, the azimuthal mode order
m = 8 − 6 = 2 occurs and from Eq.(2.3) that it is rotating at Ωm = 8/2 = 4 times the
shaft speed ω. The rotor blades are represented by eight bars, one of which is marked with
a large dot in order to follow the rotor position along its rotation. The six stator vanes are
represented as short radial segments in the annulus around the rotor. In the first diagram,
the marked blade coincides with the position of a stator vane and the same happens on
the opposite side. The coincidences are highlighted by exterior arrows and the positive
portions of the 2-lobe pattern are individuated by the black areas. The successive pictures
show intermediate positions of the rotor during its rotation and all the coincidences that
occur. Finally, in the last diagram, the rotor has made 1/4 of a turn whereas in this time
interval the 2-lobe pattern has completed one whole revolution. It is therefore verified
that the pattern is rotating at a rate of 4 times the rotor speed [12].

7



2. Theoretical background

2.2. Propagation of sound in cylindrical ducts

In order to measure and control the noise produced, for example, by ducted fans, com-
pressors and turbines but also to improve the structure’s forced response prediction, it is
important to understand the mechanisms of generation, propagation and interaction of
acoustic modes in these ducts [2].
The propagation of the modes in the duct can be analysed considering the solution of the
homogeneous wave equation. The boundary conditions at duct walls are needed in order
to find this solution [5].
The following assumptions are made in order to derive the theoretical model, as done in
the work of Tapken and Enghardt [10]:

• the medium is incompressible and the flow isentropic;

• the temperature and density are stationary in space and time whereas the temper-
ature gradients are negligible;

• the boundary layer influences marginally the flow field for low axial Mach numbers,
so the axial component of flow field does not depend on the radius;

• the duct section is constant along the axial direction;

• both axial and azimuthal mean flow profiles do not vary in axial direction and are
also stationary in time;

• the radial flow component is neglected and the flow speed vector can be written as
U = (Ux, 0, UΦ(r))t.

Particularly, the flow field can be described by two Mach numbers, the axial Mx = Ux/c
and the circumferential MΦ = UΦ(r)/c = Ωr/c, which are both assumed to be well below
one [10].
The equations on which the theoretical model is based are the continuity equation and
the Euler equations, written using the cylindrical coordinates (x, r, Φ) [10].
From these equations, after some manipulations it can be derived the following general
differential wave equation for the complex sound pressure p that describes the propagation
of sound in ducts [10]:

1
c2

(
D

Dt

)2
p−∆p = 0 (2.4)

where ∆ is the Laplacian operator. The material derivative D/Dt is defined as

D

Dt
= ∂

∂t
+ U · ∇ = ∂

∂t
+ Ux

∂

∂x
+ Ωs

∂

∂Φ
(2.5)

where ∇ is the Nabla operator in cylindrical coordinates.
For one frequency, the solution of Eq.(2.4) can be represented in the form of consecutive
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2.2. Propagation of sound in cylindrical ducts

series, resulting in a linear superposition of modes [10][9]:

p(x, r, Φ) =
∞∑

m=−∞

∞∑
n=0

(A+
mn · eik

+
mnx + A−mn · eik

−
mnx) · fmn(r) · eimΦ (2.6)

where A+
mn and A−mn are the complex amplitudes of the mode with azimuthal order m and

radial order n for sound propagation in (+) and against (-) flow direction respectively.
If the acoustic boundary condition of hard walls is taken into account, the modes build
an orthogonal eigensystem [10].

Radial distribution In Eq.(2.6) the term fmn(r) is called modal shape factor and defines
how the shape of the mode varies along the radial direction. Its value is given by [10]:

fmn(r) = 1√
Fmn

(
Jm

(
σmn

r

R

)
+QmnYm

(
σmn

r

R

))
(2.7)

where Jm and Ym are defined as the Bessel functions of first and second kind and order
equal to the azimuthal mode order m. These functions are associated with σmn and Qmn,
that are the radial eigenvalues resulting from the boundary conditions of cylindrical hard
walls [10].
An example of how the modal shape factor varies along the radius is depicted in the next
figures where two low azimuthal mode orders (m = 2 and m = 8) and two high ones
(m = 178 and m = 196) with the same radial mode order n are compared:

Figure 2.2.: Variation of the fmn for different azimuthal mode order m and radial mode
order n = 0

9



2. Theoretical background

Figure 2.3.: Variation of the fmn for different azimuthal mode order m and radial mode
order n = 2

The eigenvalues σmn and Qmn depend on the hub-to-tip ratio η, defined as follows:

η = Ri

R
(2.8)

where Ri is the inner duct radius and R the outer one.
The eigenvalues are determined from the equations that defines hard-walled acoustic
boundary conditions. This means that the radial component of velocity of sound particle
and the radial component of pressure gradient at the wall have to be zero, a condition
necessary to insure the physical requirement of no airflow through the wall [9]:

r = Ri : J ′m(ησmn) +QmnY
′
m(ησmn) = 0 (2.9)

r = R : J ′m(σmn) +QmnY
′
m(σmn) = 0. (2.10)

Returning to Eq.(2.7), Fmn serves as a normalization factor and is defined through the
integral [10]:

Fmn = 1
R2

∫ R

Ri
f̂ 2
mn(r)r dr (2.11)

=


1
2 [1− η2] m = n = 0

1
2

[(
1− m2

σ2
mn

)
f̂ 2
mn(R)−

(
η2 − m2

σ2
mn

)
f̂ 2
mn(ηR)

]
otherwise

(2.12)
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2.2. Propagation of sound in cylindrical ducts

with
f̂mn(r) = Jm(σmn

r

R
) +QmnYm(σmn

r

R
). (2.13)

The orthogonal mode eigensystem becomes through this normalization an orthonormal
one.

Axial mode propagation Returning to Eq.(2.6), k±mn are the axial wave numbers asso-
ciated to the mode with azimuthal mode order m and radial mode order n. Their value
depends on the mode eigenvalue σmn and the wave number for free field propagation k as
follows [10]:

k±mn = k

1−M2
x

(−Mx ± αmn) (2.14)

where

αmn =

√√√√1− (1−M2
x) σ2

mn

(kR)2 . (2.15)

Considering the case in which the flow swirl does not occur, so that MΦ = 0, the wave
number in free-field condition k is defined as follows:

k = ω

c
(2.16)

where ω is the angular frequency of the rotor. Otherwise, if a swirling flow is imposed,
the wave number in free-field condition k is modified as follows [10][9]:

k̂ = k − mΩs

c
(2.17)

where Ωs is the angular velocity of the component of the flow swirl. This modified wave
number k̂ has to be replaced instead of k in Eq.(2.14) and Eq.(2.15).
Depending on whether the axial wave number is real or complex, the propagation of the
mode varies in one of two different ways along the x-axis, which ways can be derived from
Eq.(2.6) considering the exponential term eik

±
mnx:

• If k±mn is real, the mode propagates as a wave with constant amplitude in the form
of a spiral along the duct until the end, radiating and producing far-field noise [12].

• If k±mn has also an imaginary part, the modal amplitude decays exponentially as the
axial distance from the source increases. This decay usually occurs in a very small
distance and the mode can reach the end of the duct with negligible amplitude. [12].

In the first case, the mode propagates as a wave pattern rotating in a spiral way in
the annulus like a helix [12]. In the developed view shown below, the pressure field is
represented as a parallel wave propagating in a direction inclined to the x-axis of an
angle θ which depends on the value of the circumferential Mach number MΦ at which
the pattern sweeps the annulus external wall and that is different for every single mode
[12].
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2. Theoretical background

Figure 2.4.: Developed view to show the angle of propagation θ

Fig.(2.5) shows an example, taken from [9], of normalised acoustic pressure contours of
the propagating modes with azimuthal mode order m = 6 and radial mode order from
n = 0 to n = 2 in (+) and against (-) flow direction in a channel without hub shells.

(6,0,+) (6,1,+) (6,2,+)

(6,0,-) (6,1,-) (6,2,-)

Figure 2.5.: Normalised acoustic pressure contours. Taken from [9]

From this plot it can be noticed that the propagation angle θ is different for every case.
This consideration can be extended for every combination of azimuthal mode order m
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2.2. Propagation of sound in cylindrical ducts

and radial mode order n.
The angle θ between the wave’s normal and the channel axis, can be computed by the
dispersion relation, that describes the effect of dispersion in a medium on the properties
of a wave travelling within that medium [9]. It comes from that the angle is related to
the axial wave number, which is different for every (m,n)-mode, as it can be seen from
Eq.(2.14).
In the case of k±mn having also an imaginary part, the amplitude of the associated pressure
decays exponentially along the x-axis according to the factor eik±

mnx.
In order to have a reference measure on how fast the intensity of pressure can decrease
with the distance, an example is reported, which considers two not propagating modes
compared to a propagating one. The data used for making these plots are that of the
successive analysis. Particularly, Fig.(2.6) shows the trend of the amplitude of the complex
pressure associated to the mode whereas Fig.(2.7) in the next page only its real part.

Figure 2.6.: Exponential decay of the amplitude of pressure created by the mode of
azimuthal order -48 and 72 and radial order 0 compared to the undiminished
amplitude of a propagating mode with m=-8 and n=0

In order to better understand the mechanism these plots are made considering a same
modal amplitude for every mode and also a same phase. The modal shape factor has not
been considered and also these plots refer to only one azimuthal position in the duct and
one direction (+).
From these plots, it is clear that, for the non-propagating modes, the amplitudes of the
pressure fluctuations decay only in a few centimetres and the decay rate is more high as
the imaginary component of k±mn increases, as happens in the case of the higher azimuthal
mode order m = 72. The same consideration can be done for higher radial mode orders
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2. Theoretical background

Figure 2.7.: Exponential decay of real component pressure created by the mode of az-
imuthal order -48 and 72 and radial order 0 compared to the propagation
of mode with m=-8 and n=0

n of the same azimuthal mode order m.
Instead, like expected, the pressure due to the propagating mode m = −8 has a constant
amplitude along the x-axis and propagates like a wave.
For a regular propagation of the mode the factor αmn has to be real and this occurs when
[9]:

k0R ≥
√

(1−M2
x)σmn =: (kR)mn (2.18)

where (kR)mn is called the cut-on frequency of the mode (m,n).

2.3. Solving the azimuthal and radial mode
decomposition

Experimentally, the pressure field propagating along the duct is acquired using a measur-
ing sensor array. The measured values are then adapted to a theoretical model describing
this field [3].
Practically, the measuring grid often consists of one or more sensors circumferentially and
radially traversed across the duct cross section for a minimum of two axial planes along
the duct. In this way, the decomposition of the pressure field into azimuthal and radial
mode orders can be implemented [4].
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2.3. Solving the azimuthal and radial mode decomposition

However, on the inlet section of a turbomachine, it is convenient to avoid the presence of
probes immersed in the flow because the wakes generating from them would change the
inlet flow conditions and also its acoustic characteristics [4]. An alternative arrangement
of the sensor array has been developed in order to make measurements also in the inlet
side and this arrangement consists of a series of sensors azimuthally mounted flush with
the duct wall and equally spaced in the axial direction [6].
To separate the modes means to implement an azimuthal and a radial mode decomposi-
tion. An experimental technique is needed in order to calculate the amplitudes of all the
modes, propagating or not, that occur in the duct [2].
Considering the series of Eq.(2.6) limited, this expression can be formulated as a system
of linear equations and written in the following compact form [1][9]:

p = Wa (2.19)

where p is the complex acoustic pressure vector, a the mode amplitude vector and W a
matrix that contains all the other terms in Eq.(2.6). Particularly, each entry refers to a
specific mode and sensor position.
The vector of complex pressure p can be described by [9]:

p = (p(x1, r1, Φ1), p(x1, r1, Φ2), ..., p(xNx , rNr , ΦNΦ))t (2.20)

where Nx ·Nr ·NΦ is the total number of measuring points considered.
The vector of the amplitudes of modes with azimuthal mode order m and radial mode
order n is defined as [9]:

a = (A0,0, A0,1, ..., AM,N)t (2.21)

where the subscripts refer to the order of modes as follows choosing the same notation
used in [9]:

• azimuthal mode order: 0, 1, ...,M ∼ min(m),min(m) + 1, ...,max(m);

• radial mode order: 0, 1, ..., N ∼ (0,+), (0,−), ..., (max(n),−).

Hence, the dimension of vector a corresponds to the number of modes considered in (+)
and against (-) the flow direction.
The matrix W is built up as follows [9]:

W =



Ψ0,0(x1, r1)ei0Φ1 Ψ0,1(x1, r1)ei0Φ1 ... ΨM,N(x1, r1)eiMΦ1

Ψ0,0(x1, r1)ei0Φ2 Ψ0,1(x1, r1)ei0Φ2 ... ΨM,N(x1, r1)eiMΦ2

. . .

. . .

. . .

Ψ0,0(xNx , rNr)ei0ΦNΦ Ψ0,1(xNx , rNr)ei0ΦNΦ ... ΨM,N(xNx , rNr)eiMΦNΦ


. (2.22)

The axial and radial eigenfunctions are contained in [9]:

Ψm,n(xj, rk) = eik
±
mnxfmn(rk). (2.23)
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2. Theoretical background

The pseudo-inverse of matrix W can be used to solve the matrix equation in order to
determine the parameters of interest, the radial mode amplitudes a [9]:

a = [WTW]−1WTp = W+p. (2.24)

The matrix W+ is called the pseudo-inverse of matrix W.
There are different methods in order to solve the matrix system, but only two of them
are used in the analysis and hence explained in subsections (2.3.2) and (2.3.3).

2.3.1. Partition of the system into an azimuthal and a radial mode
analysis

Another way in order to solve Eq.(2.19) is to split the system, and hence the matrix, into
two parts, one referred to only the azimuthal mode analysis and the other to the radial
analysis of one single azimuthal mode order.
Later in this study, it will be implemented a radial mode analysis supposing that an
azimuthal mode analysis is already completed. Eq.(2.6) can be written like [10]:

p(x, r, Φ) =
∞∑

m=−∞
Am(x, r) · eimΦ (2.25)

with
Am(x, r) =

∞∑
n=0

(A+
mn · eik

+
mnx + A−mn · eik

−
mnx) · fmn(r). (2.26)

The terms Am = Am(x, r) are called azimuthal mode amplitudes and their values can be
calculated thanks to a discrete Fourier transformation (DFT) in the azimuthal direction
[10]:

Am(x0, r0) = 1
NΦ

NΦ−1∑
l=0

p(x0, r0, Φl) · e−imΦl . (2.27)

In order to complete the DFT it is necessary to measure the complex acoustic pressure
values in the azimuthal direction with NΦ equally spaced sensors at a constant axial
and radial position (x0 and r0) [10]. Given a number of sensors NΦ, there is an highest
azimuthal mode order mmax, for which its amplitude can be determined univocally [10].
The value of mmax is given by the Nyquist theorem [10]:

1
2

2π
mmax

> ∆Φ = 2π
NΦ

⇒ mmax <
NΦ

2 . (2.28)

Hence, the spacing between the azimuthal sensors has to be lower than half of the wave-
length 2π/mmax in order to find the amplitude of mmax without uncertainty [10].
For each azimuthal mode order m Eq.(2.26) can be written in the matrix form [10]:

Am = Wm · a (2.29)

where Am is the vector of the measured azimuthal mode amplitudes of orderm, a the vec-
tor of radial mode amplitudes and Wm the matrix with all the other factors in Eq.(2.26).
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2.3. Solving the azimuthal and radial mode decomposition

Particularly, each entry refers to a specific radial mode and sensor position. These quan-
tities will be more in detail explained in Appendix A.
The same methods used for the entire system can be implemented in order to find the
radial mode amplitudes a. Two of these methods are explained in the next two subsec-
tions.

2.3.2. Singular Value Decomposition

A way to calculate the pseudo-inverse of matrix W is the method of the Singular Value
Decomposition (SVD). This method has the advantage that even if the matrix W is close
to be singular an acceptable solution can be determined [9].
With the help of the SVD method the matrix W can be divided in [9]:

W = U[diag(ζj)]VT. (2.30)

The singular values ζj build up the principal diagonal of the square matrix [diag(ζj)]. The
matrices U and VT are in this case orthonormal. The solution vector results from [9]:

a = V[diag(1/ζj)]UTp. (2.31)

Particularly, the resulting vector of the mode amplitudes minimizes the functional [9]:

J = ‖e‖2 = ‖Wa − p‖2. (2.32)

The residuum ‖e‖2 includes the systematic and stochastic inaccuracies of the analysis [9].
The stability of the solution depends on the spectrum of the singular values. When one
or more of the these are zero the matrix is singular and there is no solution [9].
As a relative evaluation measure for the stability of this numeric method the ratio of the
highest singular value to the lowest, called condition number is used [9]:

κ = ζmax
ζmin

. (2.33)

A matrix is ill-conditioned when the condition number is so high that 1/κ approaches the
zero.
The solvability and stability of matrix equation as well as the vulnerability of the system
against noise is closely related to the condition number of the square matrix WTW [9].
This assumption will be more clarified in the next chapter, considering Eq.(4.4).
Particularly, the singular values ζj, and hence the condition number, depend on various
parameters: the number of modes, the frequency, the hub-to-tip ratio, the flow field and
the chosen sensor arrangement [9]. This leads to the consideration that an optimization
of the sensor array in order to keep the condition number relatively low is necessary to
complete successfully the modal decomposition.

2.3.3. Orthogonal Matching Pursuit

The solution vector of the mode amplitudes a is called sparse when the entries of the
vector are principally zero and, hence, when only few dominant modes occur in the duct.
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2. Theoretical background

In this case an approach in order to solve underdetermined systems of linear equations
can be Compressed Sensing [1]. This method is based on the minimization of the l1-norm
of the mode amplitude vector a, like follows [1]:

a = argmin‖a‖1. (2.34)

This expression has to satisfy the following relation [1]:

‖p−Wa‖2 < ε (2.35)

where ε is the assumed noise energy.
A solution for the minimization problem can be found using the class of Greedy Algo-
rithms, which find the best sparse approximation of the solution vector a through multiple
iterations [1].
Particularly, in the analysis the Orthogonal Matching Pursuit algorithm (OMP) will be
used. This method tries to find the dominant modes with the help of a convergence or
stop criterion [1]. After a certain number of iterations the highest amplitudes of modes
are contained in the mode amplitude vector a [1]. A particular characteristic of OMP is
that at each iteration a mode is determined and its contribution is deconvolved from the
acoustic complex pressure vector p [1].
Compressed Sensing offers the possibility to reduce the number of sensors in a circumfer-
ential array thanks to its performance of solving undetermined systems of linear equations
[1].
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3. State of the art

The study of acoustics in turbomachinery has been developing since the second half of the
20th century, when the problem of aircraft take-off exhaust noise becomes a concern in
the airports areas. In 1962 Tyler and Sofrin provided a large contribution in this theme,
publishing a paper on axial flow compressor noise [12]. Particularly, their work focuses
on the discover of acoustic modes, which define the pressure field, and their generation,
transmission along the duct and the consecutive radiation from the outlet. A prediction of
which modes can be generated from the rotor-stator interaction is presented and demon-
strated.
Ten years later Bolleter and Crocker introduced a method that determined the modal
spectra of the first nine modes thanks to some measurements of pressure spectrum in the
duct [2]. In the same year Moore studied the tones generated by an isolated rotor due to
the interaction with flow distortions [7].
In 1987 Joppa published a paper in which a practical method for the pressure mea-
surements is described and successfully tested [6]. This method consists of an array of
microphones equally spaced along the circumference of the duct and mounted flush with
the walls. Particularly, this work improved the linings design.
After almost ten years Heidelberg and Hall presented a new method for inlet acous-
tic mode measurements consisting of a continuously rotating microphone system. Other
modes different from that expected from Tyler and Sofrin have been detected due to some
disturbances [5].
In 2001 Rademaker, Sijtsma and Tester found a method in order to reduce the number
of required azimuthal sensors [8]. This methods consists of the use and optimization of a
randomly spaced array instead of an equally spaced one.
Some years later Enghardt, Tapken, Kornow and Kennepohl published a paper in which
an alternative sound field model is derived considering a realistic radial flow profile instead
of a uniform one usually used in the previous analytical models [3]. Then Tapken and
Enghardt presented a study on the optimization of the measuring grid for a radial mode
analysis [10]. In order to do this they focused on the quality of the analysis and on the
factors that influences it. Four different measuring arrangements have been considered
and compared.
In 2016 Behn, Kisler and Tapken presented a new approach for the azimuthal mode anal-
ysis based on Compressed Sensing [1]. This method is compared to the usual approaches.
Also two ways of optimization of the circumferential array are introduced, which ways
can decrease the number of required sensors only if the number of dominant modes is
limited.
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4. Process chain and optimization

The purpose of this study is to implement a mode decomposition in order to separate
the radial amplitudes of the modes that occur in the channel starting from some discrete
measurements of pressure in the duct. Because the stability of the analysis depends
on the arrangement of the measuring grid, that can be designed directly by the user, a
parameter study is done in order to optimize the grid parameters. Also the propagation
of perturbations on the measured pressure into the system solution is studied during this
optimization, based on the process in [10]. Fig.(4.1) illustrates the steps of the entire
process:

�� ��

���������
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���	����

��

Figure 4.1.: Schematic illustration of the implemented process

This set-up is principally based on the work done by Tapken and Enghardt in [10] and
the steps are here explained:

• the first step of synthesis consists of the calculation of the complex pressure vector
p0 starting from a supposed vector of radial mode amplitudes a0. The entries of
p0 contain the pressure values calculated through Eq.(2.6) for every measurement
positions (xj, rk, Φl) with j = 1, ..., Nx, k = 1, ..., Nr and l = 1, ..., NΦ;

• a noise perturbation p̃ is added to every element of vector p0. Particularly, this
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4. Process chain and optimization

operation is done for a number of i iteration in order to better evaluate the system
stability;

• in the last step of the analysis the solution of the system, the radial mode amplitudes
vector a[i], is calculated using Eq.(2.24) for every ith iteration. Particularly, the
analysis ends successfully if the values of vector a[i] are close to that in the starting
vector a0.

After Navg iterations, the analysis quality can be evaluated using the relative error δa
[9]:

δA = ‖ã‖/‖a
0‖

‖p̃‖/‖p0‖
(4.1)

where:

‖p̃‖ = 1
Navg

Navg−1∑
i=0

√√√√√Nx−1∑
j=0

Nr−1∑
k=0

NΦ−1∑
l=0
|p(xj, rk, Φl)[i]− p0(xj, rk, Φl)|2 (4.2)

and

‖ã‖ = 1
Navg

Navg−1∑
i=0

√√√√ M∑
m=0

N∑
n=0
|A±mn[i]− A±0

mn|2. (4.3)

The relative error allows a more accurate evaluation of the analysis errors than the con-
dition number, which only defines an upper limit on the possible error and satisfies the
following relation [9][10]:

‖ã‖
‖a‖
≤ κ
‖p̃‖
‖p‖

. (4.4)

It can be derived that δA ≤ κ. From this expression it is seen that the condition number
defines a maximum value of the instability of the equation system due to perturbations
[10]. For example, if the condition number is equal to one, the relative amplitude variations
in the solution are less or at most equal to the relative pressure perturbations [10]. Hence,
introducing a pressure error equal to 5% the maximum radial amplitude error will be also
equal to 5% [10].
An optimization of the measuring grid, which influences directly the accuracy of the
results, like explained in subsection (2.3.2), is carried out looking for which number of
sensors and distance between them these two quantities are minimized. This will be done
in two separate analysis: the first considers the entire system in Eq.(2.19), so searches
for an optimization for both azimuthal and axial positions, whereas the second uses the
reduced system in Eq.(2.29), for which only an optimization for the axial array is needed
since it is supposed that the azimuthal one is already completed.
The model has been entirely implemented using the software Matlab®.

4.1. Analytical superposition of acoustic modes

In this section the part of synthesis and, hence, the steps of programming a model for
the analytical superposition of modes in a tube with different azimuthal and radial modal
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4.1. Analytical superposition of acoustic modes

orders at a constant radius along the channel axis is reported.
At the end the code will provide the value of the acoustic pressure due to this superposition
in the considered measuring points located along the duct.
The calculation of this complex pressure refers to Eq.(2.6), that is the starting point of
this analysis.
This first part of the process is summarised in the next illustration:

Input

parameters

Eigenvalues

σmn , Qmn

Axial wave

number kmn

Radial shape

factor fmn (r)

Measuring locations (xj,rk,ϕl)

Pressure 

p(xj,rk,ϕl)

Radial amplitudes

Amn

Figure 4.2.: Pressure calculation (step of synthesis)

The supposed input parameters are:

• how many and also which azimuthal and radial mode orders occur in the channel.
In this general case the considered azimuthal mode order varies from -100 to 100
meanwhile the radial mode order from 0 to 10;

• the magnitudes of the complex amplitudes A+
mn and A−mn for every mode of azimuthal

order m and radial order n for sound propagation in and against flow direction
respectively. From the previous experimental measurements and CFD simulations,
it can be derived that the vector of these amplitudes is sparse, that means most of
the values are zero or close to it;

• all the flow field characteristics like the axial Mach number at the tip radius Mx

and the gas’ temperature and composition (T and γ);

• the geometric and operative characteristics of the compressor like the hub and tip
radius Ri and R, that together define the ratio η, the number of rotor blades B and
that of stator vanes V and also the angular speed of the rotor ω.
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4. Process chain and optimization

The initial axial plane referred to the coordinate x = 0 is located close to the Inlet
Guide Vanes and the measuring array extends from this point toward the inlet. All
the characteristics of the compressor mentioned before are referred to a 2.5-stage axial
compressor test rig located at the Institute of Jet Propulsion and Turbomachinery at
RWTH Aachen University [11]. The next figure represents the sectional view of this
compressor with simplified blade geometry and the line in red highlights the approximate
location of the reference plane x = 0. The table below gives the number of blades and
vanes for every component of the compressor.

Figure 4.3.: Sectional view of the examined axial compressor. Taken from [11]

Row IGV R1 S1 R2 S2
Number of blades per row 40 32 52 38 70

Table 4.1.: Number of blades of the compressor components. Taken from [11]

A measuring array will be reproduced in the implementation of the code in order to
simulate a real experimental set-up using the cylindrical coordinates (x, r, Φ).

4.1.1. Calculation of radial eigenvalues σmn and Qmn

The first step in order to start this analysis is to calculate the eigenvalues σmn and Qmn

for every mode of azimuthal order m and radial order n. These eigenvalues will be after
used to calculate the modal shape factors fmn and the axial wave numbers k±mn using
respectively Eq.(2.7) and Eq.(2.14).
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4.1. Analytical superposition of acoustic modes

Like explained in subsection (2.2), these values come from satisfying the boundary con-
ditions, which set the constraint of hard-walled acoustic duct. Mathematically two dif-
ferential equations, Eq.(2.9) and (2.10), have to be solved. These equations contain the
derivatives of the Bessel functions of first order Jm and of second order Ym, which functions
can be represented for different azimuthal mode orders like in the following figure:

Figure 4.4.: Bessel functions Jm and Ym of the azimuthal orders from 0 to 4. Taken
from [9]

Particularly, the calculation of the eigenvalues in Matlab® has been made following two
different paths that leads to the solution with a difference only in the computing time.
The first and immediate method is to simply solve the differential equations Eq.(2.9) and
(2.10) with the numeric solver named ”vpasolve”. Particularly, this command needs as
input:

• the system of equations to be solved;

• the variables to solve the system of equations for, the eigenvalues σmn and Qmn;

• an initial guess close to the value of the solution.

The second method implies some manipulation of the differential equations that define
the boundary condition, but its computing time is far less than the precedent one. From
Eq.(2.9) and (2.10) the following relations can be derived (for the derivation see Appendix
B). For m = 0:

J1(ησmn)Y1(σmn)− J1(σmn)Y1(ησmn) = 0, (4.5)

Qmn = −J1(σmn)
Y1(σmn) (4.6)
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4. Process chain and optimization

and for m > 0:
(Jm−1(ησmn)− Jm+1(ησmn))(Ym−1(σmn)− Ym+1(σmn))
− (Jm−1(σmn)− Jm+1(σmn))(Ym−1(ησmn)− Ym+1(ησmn)) = 0,

(4.7)

Qmn = Jm+1(σmn)− Jm−1(σmn)
Ym−1(σmn)− Ym+1(σmn) (4.8)

For m < 0 the same equations are valid but the absolute value of m has to be considered.
In order to find the values of σmn and Qmn the numeric solver vpasolve is used like in the
first method.
An arose issue for both methods is to find the initial guess which varies for every solution.
The problem can be visualized plotting the function y(x) corresponding to:

y(x) =(Jm−1(ηx)− Jm+1(ηx))(Ym−1(x)− Ym+1(x))
− (Jm−1(x)− Jm+1(x))(Ym−1(ηx)− Ym+1(ηx))

(4.9)

that is exactly the left side of Eq.(4.7). The independent variable corresponds properly
to x = σmn.
In the next figure the trends of function y(x) for a low azimuthal order (m = 2) and a
higher one (m = 198) are compared. In the first figure the entire image is plotted in order
to see the difference of the magnitude order between the y(x) of the two modes whereas
below two zooms are done in order to better separate them and show the real trend of
the curves compared to the first figure in which the fluctuations are not evident:

Figure 4.5.: Plot of the function y(x) for the azimuthal mode order m = 2 and m = 198
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4.1. Analytical superposition of acoustic modes

Solving the system of equations corresponds to find the zeros of this function. The se-
quence of zeros corresponds to the ascending sequence of radial modal orders n for each
different azimuthal mode order m. So, the first zero is linked to n = 0, the second to
n = 1, and so on. It can be so derived that for every azimuthal mode order m there is an
infinite number of solutions of Eq.(2.9) and (2.10) and each solution corresponds to only
one value of the radial mode order n. This means that for every combination of m, n and
η there is only one specific corresponding value of σmn and Qmn.
These plots, made also for other values of azimuthal orders m, can be used to verify the
finding of the right solution by the solver and also the accuracy of the method comparing
the different solutions of σmn with the corresponding x-value in the plots.
The problem of finding the initial guess for every (m,n) combination can be understood
looking at the trend of the function y(x) in Fig.(4.5), which trend changes significantly as
the azimuthal order m increases. For low values of m the points for which the function
gets across this axis are more or less equally spaced and the gradient in the initial section
is not very high. Otherwise, increasing m the amplitude gets higher and the function has
an high gradient in the initial section. Hence, the "zeros points" are closer and this high
gradient requires much more accuracy to find and check the values of x for which the
function gets across this axis.
Comparing more plots and tables with yet obtained values it can be assumed that the σ
with radial mode order n = 0 has always a value near to the absolute value of the con-
sidered m, so the initial guess is set to this value increased by 1 for every m. Concerning
the Q, its initial guess is set to 0 for all the cases. The system is then resolved.
For the other ascending radial mode orders it has been found that adding 5 to the just
previously calculated value of σm(n−1) is a good choice for almost cases in order to find
an initial guess for which the right σmn is calculated. The finding of the correct σmn is
checked using plots as Fig.(4.5) for some combination of m and n. However, the right
solution σmn is not always found at the first try but can consist of other three possibilities,
summarised in the next figure with the subsequent steps to do:
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Figure 4.6.: Possibilities of solutions for σmn and subsequent steps
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In the first case the solution is correct so also the initial guess value is, meanwhile in the
other cases not. Particularly, in the second case the resulting value is equal to the previous
solution. A check of this possibility is implemented in the process and, if it happens, the
initial guess is increased by 2. This value has been found by trials and checking manually
in order to find a value could fit for almost the cases. Instead, in the third case the starting
value is too high and because of that the solver skips the solution of the considered radial
mode order n. This is checked in the process seeing if the solution is too high in relation
with the previous solution σm(n−1). Hence, the initial guess is decreased by 2, that has
always been found by trials. Finally, in the last possibility of empty object the initial
guess is far from every solution. Hence, the starting value is increased by 2 and in the
successive calculation the solution will corresponds to one of the previous possibility. The
values to add or remove are found through several attempts in order to find the ones
which could fit for every combination of m and n.
The check made in order to find if the solution is that corresponding to the considered
radial mode order n and not the one corresponding to the previous or the next radial mode
order has been verified manually not only using the illustrated plots but also changing
the initial parameters and comparing the results to a given series of tested and verified
values by Tyler and Sofrin.
Particularly, it has been checked that the final form of these methods gives the solution
with an accuracy of minimum 10−4 to a maximum of 10−16 for some hub-to-tip ratio
η ≥ 0.5. This value of minimum accuracy is due to the fact that the published verified
values from Tyler and Sofrin have this accuracy and that the manual check has not
been carried out for all the considered combination of m and n for reasons of time (the
calculated values are M(= 201)×N(= 11) = 2211).

4.1.2. Calculation of pressure distribution

In the previous subsection the calculation of the eigenvalues and the consecutive arose
problems are illustrated and explained. Considering Fig.(4.2), it can be seen that these
values are needed to find the modal shape factors given by Eq.(2.7) and the axial wave
numbers k±mn given by Eq.(2.14) (if there is flow swirl, the free-field wave number is
calculated using Eq.(2.17)).
The final step is the calculation of the pressure following Eq.(2.6).
Concerning the arrangement of the measuring grid, the input parameters that can be
chosen and varied by the user are:

1. the number of axial, radial and azimuthal measuring points, that means Nx, Nr and
NΦ;

2. the distance between the axial measuring points and between the radial ones.

The characteristics of the implemented set-up are illustrated in the next figure:
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Axial measuring

planes

Equally spaced:

∆� �
|�� � ��|

�	

Radial locations Only in the outer radius R

Azimuthal points

Equally distributed

Randomly distributed

a) Uniform array b) Non-uniform array

Parameter Range of use in the present work

Figure 4.7.: Set-up of the measuring array. Images taken from [10] and [1]

First, the axial planes at which a circumferential array of sensors is located are assumed
always equally spaced, like done in [9]; only the axial distance between them and the
number can vary for every case. An equal spacing between the sensors is always done in
practice because it has been found that is the best solution in order to search an opti-
mized axial sensor separation. Referring to the figure, if x1 is the starting point of the
first axial plane, x2 the x-coordinate of the last plane and Nx the number of axial planes,
the spacing between them is equal to ∆x = |x2 − x1|/Nx.
In the analysis, it is supposed that the starting plane has always coordinate x1 = 0 and
it is considered coincident with the reference plane highlighted in Fig.(4.3), which is near
the Inlet Guide Vanes, so the axial planes are located in the negative direction of axis x
going therefore from the IGV to the inlet.
Regarding the radial positions, like explained in section (2.3), sensors immersed in the
flow would cause the change of the inlet flow conditions of the compressor and of its
acoustic characteristic. Because of this, the probes are located only at the outer radius.
Hence, in this case the number of radial measuring points Nr is always one.
Concerning the azimuthal measuring points, they can be equally or randomly circum-
ferentially spaced according to needs. It is convenient that for every axial plane the
arrangement of the azimuthal measuring points remains the same.
Finally, the calculation of pressure due to the superposition can be implemented using all
these calculated input parameter and following Eq.(2.6).
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4. Process chain and optimization

4.2. Mode decomposition

In this section the set-up of an evaluation routine for the partition of azimuthal and radial
modes by means of discrete circumferential measuring locations in different axial planes
is reported at first. All this process consists of finding the solution vector of the radial
mode amplitudes from Eq.(2.19) and looking for an optimization of the measuring grid
which minimizes the values of the relative error δA and the condition number κ, whose
expression are given respectively by Eq.(4.1) and Eq.(2.33).
Also the set-up made in order to solve the reduced system defined in Eq.(2.29), that comes
after the split-up of the system into two separate analysis, the azimuthal and the radial,
is illustrated. Particularly, in this second case only a radial mode analysis is implemented
supposing that an azimuthal one is already completed. In this case the optimization
concerns only the number of axial planes and the distance between them.
The implemented steps considering the whole system are illustrated below:

��

�� ����
��

�	


��������	
�

�	
 ��

�������� ������

�

������

��� �

Figure 4.8.: Mode decomposition

All the procedure is based on the matrix equation (2.19). In order to find the vector of
the mode amplitudes a from the vector of the measured complex pressure p, Eq.(2.19)
can be inverted using the pseudo-inverse of matrix W according to Eq.(2.24).
In order to solve this matrix equation, the implemented method first builds up the matrix
W as described in Eq.(2.22). Particularly, every column is referred to one combination of
azimuthal mode order m, radial mode order n and direction (+ or -), whereas every row
is referred to one measuring position. After the building of matrix W, the two methods
described in subsections (2.3.2) and (2.3.3) are used in order to solve Eq.(2.19).
A particular attention regarding the minimum number of sensors necessary to solve the
equation system has to be considered now.
The minimum number of the azimuthal measuring points NΦ of an equally spaced array is
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4.2. Mode decomposition

determined through the maximum value of the azimuthal mode order m using Eq.(2.28).
Always from Nyquist theorem, it can be demonstrated that the number of the radial
positions and the number of the axial planes have to satisfy the following relationship
[9]:

NxNr ≥ 2max(Nn(m)) (4.10)

where Nn(m) is the number of the radial mode order for that specific azimuthal mode
order m. The factor 2 is needed for the determination of the radial modes in and also
against the flow direction. Hence, the matrix system (2.19) is in practice in most of the
cases overdetermined, that is the number of measuring position is higher than the number
of the unknowns (the radial amplitudes of modes). Like it will be more in details shown
in Ch.(5), a number of sensors really higher than the minimum leads to an analysis more
stable and accurate.
The second method used in order to solve this azimuthal and radial mode decomposition is
the Orthogonal Matching Pursuit algorithm. The idea behind this algorithm is explained
in subsection (2.3.3). The input arguments of this algorithm are:

• matrix W;

• the vector of measurements p;

• the number of amplitudes that have to be detected.

Instead, the output arguments consist of the detected amplitudes vector a. The results
coming from both the SVD and OMP methods are evaluated and compared.

4.2.1. Parameter study

Like explained in subsection (2.3.2), the condition number and so the accuracy of the
results depends on various parameters, but the easier and also the only for the user to
change without modifying the flow conditions is the sensor arrangement. Because of this,
an optimization regarding these following parameters has to be done in order to find
accurately the complex modal amplitudes A±mn:

• the number of axial measuring planes;

• the distance between these axial planes;

• the number of azimuthal measuring points for every axial plane.

It is possible to find these values implementing a parameter study in which the following
parameters vary:
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Figure 4.9.: Parameter study

The parameters are described below:

• n are the radial mode orders taken into account in the analysis and at every iteration
a new one is added until the reaching of n = (1 : 5);

• Nx is the number of axial planes increased by 2 at every iteration;

• ∆x is the distance between the axial measuring planes. The value of ∆xmax comes
from a consideration that will be done below;

• NΦ is the number of azimuthal sensors for every axial plane and they are increased
by 40 at every iteration.

The analysis is done for every single combination of these values in order to find the
optimal parameters. Particularly, every time that all the values of a quantity have been
considered, the next value of the precedent parameter is taken into account and the
analysis is repeated. The considered azimuthal mode orders m consist of all the values
contained in the interval [−100, 100], but, like mentioned at the beginning of section
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4.2. Mode decomposition

(4.1), from previous measurements it has been found that most of the modes have an
amplitude close to zero. Particularly the azimuthal mode orders m that have a not
negligible amplitude correspond to that resulting from Eq.(2.2), that is m = hB− kV , in
which the parameters assume the following values:

• h = 1 (first harmonic);

• B = 32, the number of blades of the first rotor as given in Table (4.1);

• k varies in order to stay in the interval [-100,100];

• V = (40, 52) corresponding respectively to the number of vanes of the IGV and of
the first stator as given in Table (4.1).

4.2.2. Discussion of the arose issues during this radial mode analysis

In a first try, the pressure error p̃ is not added to the system. However, even without
error, some issues come out from this first analysis. The principal issue is due to the
exponential form eik

±
mnx in Eq.(2.6) and the imaginary component of k±mn of the not prop-

agating modes, which component increases as the azimuthal mode order and the radial
mode order increase. Particularly, the problem is that after a certain small distance the
entries of matrix W reach really high values toward the infinity and so compromising the
stability of the system. This influences the complex pressure, that results in not physically
reasonable values.
A way in order to avoid this reaching of infinity is to limit the axial expansion of the
measuring array to a certain value xmax, for which corresponds the distance between the
axial planes ∆xmax in Fig.(4.9). Over xmax, the exponential term reaches the infinity
value and so the analysis cannot be completed. However, even with this conditions, most
of the solution are not correct because the condition number is still very high.
Also the big size of the matrix can be a problem for the stability of the method. In
addition, because of the equal values of the parameters k±mn and fmn for the azimuthal
mode order +m and −m the columns corresponding to this values will be also similar
and this influences badly the stability of the matrix.
Particularly, for most combinations of parameters, the SVD method provides amplitudes
of the non propagating modes which are 4-5 orders of magnitude higher than the am-
plitudes at the input. Because of this reason, the alternative method of OMP has been
used in order to find another way of solution better than the SVD, but in this case, some
particular modes, like for example (m,n) = (32, 0), are not found for most of the analysis.
Only for some combinations of the grid parameters the solution is found accurately. How-
ever, choosing for example a number of axial planes, the distance between them for which
the correct solution is found changes according to the number of azimuthal sensors. Con-
sidering another number of axial planes, the values of distances change again always
according to the number of azimuthal position. In addition, increasing the number of
modes taken into account and so the size of the matrix W, these good combinations of
grid parameters changes again. Because there is the practical need to see if a grid with
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4. Process chain and optimization

some particular values of parameters experimentally can be set up, an optimization of all
the parameters requires an accurate mathematical inquiry and a long period of time to
find if there exist some general ranges in which operate practically.
In order to clarify the issues and simplify the problem, the optimization can be split up
in two parts, the one concerning the axial planes and the one concerning the azimuthal
measuring points. Supposing that an azimuthal mode analysis has already carried out,
a degree of freedom, NΦ, is removed from the system. Hence, the optimization looks if
there is a range of distances between the axial planes that can be good for a large range
of number of axial planes and also of number of modes.

4.2.3. Split of the system into an azimuthal and a radial mode
analysis

Because of the issues illustrated in the previous subsection, the work focuses now only on
the radial mode analysis, and hence, only in the optimization of the axial sensor array.
The azimuthal mode analysis is supposed to be completed, so the azimuthal measuring
positions are already optimized. However, because errors due to measurements inaccura-
cies and noise still occur, a perturbation on the azimuthal mode amplitudes is still added
and its propagation into the system still studied, like in the previous analysis.
Particularly, instead of the complex pressure the azimuthal complex amplitudes Am are
computed according to Eq.(2.26). The general scheme in Fig.(4.1) is modified as follows:
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Figure 4.10.: Schematic illustration of the process for the radial mode analysis

All the quantities in the figure refers to only one azimuthal mode order, like the subscript
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4.2. Mode decomposition

m suggests.
Particularly, this time the analysis has been carried out for two frequencies, the funda-
mental and for the second harmonic. Also, the considered values of the azimuthal mode
order m are those expected for sure from the mechanism of the first rotor alone and
from the interaction of the first rotor with the IGV and with the first stator according
to Eq.(2.2). The values of the parameters used in this equation are already listed in
subsection (4.2.1), with the difference that also h = 2 is considered for the frequency cor-
responding to the second harmonic. From these expected modes only the ones included
in the interval [−100, 100] has been considered. Particularly the azimuthal mode orders
obtained are:

1. m = (−88,−72,−48,−20,−8, 32, 72, 84) for the first harmonic;

2. m = (−96,−92,−56,−40,−16, 12, 24, 64) for the second harmonic.

For every single mode order m, the process illustrated in figure (4.10) has been imple-
mented.
In order to make an analysis independent from the specific values of the amplitudes, the
ones of the vector a are set all equal to 1000 Pa with a random phase.
Another consideration about the not propagating modes is done pointing out that, like it
can be seen in Fig.(2.6), they decay really fast in some centimetres. Hence, when they are
to be reflected at the inlet coming from the IGV they will have a negligible amplitude.
Assuming no scattering, also the amplitudes of the reflected modes and its associated
pressure can be reasonably neglected.
This assumption assures to have lower condition numbers and so more stability in the
system. Indeed, it is exactly with their combination of exponential, axial wave number
and sign eikx that the entries of matrix W, and hence the pressure, increase exponentially
very fast according to the distance from the point of view of the IGV. The reached values
are physically too high, in contrast with the consideration done before of the negligible
amplitude. An example of the values that the reflected pressure can reach mathematically
without the assumption done before is reported in Fig.(4.11), in which the trend of the
pressure amplitude of not propagating reflected modes (direction +) is plotted for the
azimuthal mode order m = −48 and m = 72 and the radial mode order n = 0.
From the position of the IGV, the pressure increases exponentially and the rate of the
increment is higher as the azimuthal and radial mode number increase. This values are
physically not reasonable because a not propagating mode hardly arrives at the inlet with
that values of amplitude and then is reflected.
In a first analysis also the reflected propagating modes are neglected in order to com-
pare the results with a second analysis in which only the reflected not propagating are
neglected.
Concerning the methods in order to solve the system, the OMP algorithm is no longer be
used because the vector of amplitudes is not sparse in this case.
The set-up of the parameters for the analysis and optimization is illustrated in Fig.(4.12).
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4. Process chain and optimization

Figure 4.11.: Plot of the decay of the reflecting modes of azimuthal mode orderm = −48
(in the left) and m = 72 (in the right) and radial mode order n = 0
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Figure 4.12.: Parameter study

Comparing this figure with the parameter study in Fig.(4.9) the number of azimuthal
measuring points has been properly removed. Considering the axial planes, their number
vary from the minimum value Nn obtained from Eq.(4.10) to a maximum number, making
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4.2. Mode decomposition

the system overdetermined.
Particularly, one single analysis is repeated i = 20 times, in order to calculate the relative
error δA. The expression of this error is properly modified from Eq(4.1) as follows [9]:

δA = ‖ã‖/‖a0‖
‖Ãm‖/‖A0

m‖
(4.11)

where:

‖Ãm‖ = 1
Navg

Navg−1∑
i=0

√√√√√Nx−1∑
j=0
|Am(xj)[i]− A0

m(xj)|2 (4.12)

and

‖ã‖ = 1
Navg

Navg−1∑
i=0

√√√√ N∑
n=0
|A±mn[i]− A±0

mn|2. (4.13)

Every time also the maximum error in amplitude and phase has been calculated and at
the end the maximum of all these values is considered into account. The entire process has
been carried out for three different types of perturbations Ãm. Considering the expression
of the initial azimuthal mode amplitude A0

m = a0
me

iΦ0
m , the three different types have these

expressions:

1) Error in amplitude ��� = �����	

�

2) Error in phase ��� = ��
� ��	


3) Error in amplitude

and phase
��� = �����	
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Figure 4.13.: Variations of the perturbations added to the system

For each type, the error has been introduced gradually and is different for every measuring
position, like a noise effect. For example, for the first try in the case of only perturbation

37



4. Process chain and optimization

in amplitude, the amplitude of this perturbation is included in the interval [−10, 10]Pa
whereas in the second in the interval [−20, 20]Pa and so on, adding 10 Pa until the interval
is [−100, 100]Pa.
Also an initial try where the perturbation is zero (ideal case) has been made for all the
analysis, leading to a correct determination of all the amplitudes.
The results from all these analysis are displayed and discussed in the next chapter.
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In this chapter the results of the analysis, the process of which is explained in Ch.(4),
are visualized and discussed. The base case for which the discussion of the results starts
is referred to the design point, the first harmonic and only propagating modes. In this
base case all the reflected modes are neglected and only an error in the amplitudes of the
azimuthal mode amplitudes is added to the system. Starting from this base case, some
of the mentioned parameters are changed and taken into account in order to study their
influence on the analysis.
Particularly, in order to have an index of the analysis quality three quantities are stud-
ied:

• the condition number κ of matrix W given by Eq.(2.33);

• the relative error δA calculated through Eq.(4.11);

• the maximum absolute error in amplitude and phase calculated from the elements
A±mn in the vector of radial amplitudes a.

The values of these quantities resulting from the analysis are elaborated in order to visu-
alize some plots in which the optimization of the measuring grid is based. The optimized
values of number of axial planes, Nx, and the distance between them, ∆x, are to find
visualizing where the quantities mentioned before are as low as possible.
The plots of δA and κ are made depending on the number of axial planes Nx and on
the distance ∆x between two of them. Choosing a number of axial planes, the maximum
error in amplitude or phase of the radial mode amplitudes is depicted depending on the
maximum error Ãm added to the system and on the distance between two axial planes.
Different cases in which some assumptions and conditions of the analysis vary are com-
pared. Particularly, the results coming from the cases in Fig.(5.1) which the mentioned
parameters vary can be discussed.
From now on all the considered azimuthal mode orders m are that listed in subsection
(4.2.3) coming from Eq.(2.2).
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5.1) Only the first 2 radial modes Adding radial modes

5.2) Propagating mode Not propagating mode

5.3) First harmonic Second harmonic

5.4) Error only in amplitude Error only in phase Error in amplitude and phase

5.5) Without reflected modes With the propagating reflected modes

Figure 5.1.: Different comparisons of the results

5.1. Effects of adding radial mode orders into account

First it will be illustrate the results for m = −8, which for the considered operative
conditions is propagating with all the radial mode orders from n = 0 to n = 4. The mode
occur at first harmonic and for now, only an amplitude perturbation in the azimuthal
mode amplitudes Am is considered, as shown in the first case of Fig.(4.13). The reflected
modes coming from the inlet are for now neglected. This case corresponds to the base
case illustrated at the beginning of this chapter.
Particularly, the evolution of the relative error δA and the condition number κ when
radial modes are added into the analysis is discussed at first. The maximum perturbation
on the azimuthal mode amplitudes for which these plots are made is 10 Pa. However,
it has been checked that increasing the maximum error has a very small influence on δA
because it is a relative measure. Also, increasing the perturbation on Am has no influence
of the condition number κ because it is independent from the errors and it defines only
a measure of the condition of the matrix. In all the plots in dark red are displayed the
results that are equal or greater than the last value of the colorbar. The values of y-axis
change according to the number of radial modes taken into account because the analysis
starts from the minimum number of axial planes Nn given by Eq.(4.10).
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5.1. Effects of adding radial mode orders into account

Figure 5.2.: Comparison of δA and κ for m = −8 and n = (0, 1) (in the left) and
n = (0, 1, 2) (in the right)

Figure 5.3.: Comparison of δA and κ for m = −8 and n = (0, 1, 2, 3) (in the left) and
n = (0, 1, 2, 3, 4) (in the right)
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From Fig.(5.2) and (5.3) it can be seen that for the first three cases the values of δA and
κ decrease as the number of axial planes and the distance increase, implying a better
condition and stability for the matrix W and the entire analysis. Increasing the number
of planes, the distance between them can be decreased. Particularly, adding gradually a
radial mode order into account the minimum value of distance for which the values of δA
and κ stay low for a specific number of axial planes increases. A reason for this trend
could be that the axial wave number kmn decreases as the radial mode order n increases
and this influences the wavelength of the mode which becomes higher, requiring so an
higher spacing between the axial sensors in order to be detected with accuracy.
Considering also the radial mode order n = 4, the ranges of distances between the planes
in which the two values stay low are not only the small ones but vary depending on
the number of axial planes. Particularly, the increase of number of planes helps the
enlargement of these ranges of distance. For Nx >> Nn almost all the distances can be
chosen for an optimization except for the very small ones (∆x < 10 mm).
For every case it is demonstrated that δA ≤ κ, like stated at the beginning of Ch.(4).
The same considerations can be done also for the other propagating m modes, with the
difference that, in a checked range, increasing the number of m but always considering
the propagating ones, the values of δA and κ are respectively lower for most of the
combinations of Nx and ∆x.

2

6

Figure 5.4.: Comparison of maximum errors in the amplitudes of Amn for m = −8 and
n = (0, 1) increasing Nx
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9

13

Figure 5.5.: Comparison of maximum errors in the amplitudes of Amn for m = −8 and
n = (0, 1, 2, 3, 4) increasing Nx

In Fig.(5.4) and (5.5) the maximum error in the amplitudes of the radial amplitudes chosen
from all the repeated simulations of the same analysis is plotted. This error depends on
the maximum perturbation in amplitude added to the system and on different distances
between the axial planes. Particularly, in Fig.(5.4) there is the case of the first two radial
modes, whereas in Fig.(5.5) the case of all the considered radial modes. Two plots of the
maximum errors are made, which are referred to a different number of axial planes Nx in
order to evaluate the positive effect of increasing them like noticed in δA and κ.
Taken the horizontal line in the plot of δA corresponding to the considered number of axial
planes it can be noticed that the ranges in which δA and κ become higher corresponds to
the ranges in which the perturbation on the azimuthal amplitudes influences negatively
the solution of the radial amplitudes, like expected from the definition of δA. Also,
increasing the perturbation amplitude the error in the output becomes worse.
It can be also noticed that adding axial planes, so having an overestimated system not only
increases the stability of the matrix but also limits the propagation of inaccuracies into
the system. For some combinations of number of planes and distances δA becomes minor
than 1 and even if the perturbation of the azimuthal mode amplitudes is, for example,
100 Pa, the error in the radial mode amplitude is lower. Instead, in the case of small
distances it can be seen that a perturbation of only few Pascal can induce an error of 100
Pa or more in the amplitude of the solution Amn.
The same considerations can be made evaluating the error in the phase (instead of the
amplitude) of the solution Amn and also extended to the other propagating m modes, like
in the case of δA and κ. An example considering the error in the phase of the solution
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Amn due to the perturbation in the amplitude of the azimuthal mode amplitude Am is
depicted in Fig.(5.6).

2

6

Figure 5.6.: Comparison of maximum errors in the phases of Amn for m = −8 and
n = (0, 1) increasing Nx

5.2. Effects of non propagating modes

The analysis passes now to the azimuthal mode order m = 32, for which only the radial
mode order n = 0 propagates whereas the others do not. The condition number and the
relative error are compared at first respectively considering the first two and three radial
mode orders.
It can be noticed that for the case with n = (0, 1) the trend of δA and κ is similar to that
of azimuthal mode order m = −8. Considering the change in scale, the values of these
quantities are even smaller, and hence better, respect to those of m = −8 for the same
number of axial planes and distance between them. The influence of the not propagating
mode on the results is really small in this case because the mode decreases from its initial
amplitude to the 0.01% of this initial value slowly along the x-axis, particularly in δx = 9
cm. However, from the plot of κ applying a change in scale it can be noticed that its
value is higher with a small amount of sensors and small distances, like in case of m = −8,
but also with more sensors and higher distances. This can be explained considering the
presence of the exponential term eik

−
mnx of the not propagating mode in the entries of
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Figure 5.7.: Evolution of δA and κ for m = 32 adding radial modes into account

matrix W, whose build up is shown in Eq.(2.22). Particularly, this term will be lower
as the distance increases and so also the lowest eigenvalue ζmin will decrease, causing an
increase of the condition number κ.
Adding a radial mode into the analysis changes significantly the results, but the consid-
erations made for the condition number κ are similar to the ones just explained. The not
propagating mode with radial mode order n = 2 decreases faster from its initial amplitude
to the 0.01% of it than the previous one with n = 1, particularly in δx = 6 cm, because
the absolute value of the imaginary component of k−mn is higher and so the exponential
term eik

−
mnx will decrease faster causing a higher condition number κ. This implies that

increasing the distance between the axial measuring planes is not a good choice because
it is more difficult to detect correctly the not propagating mode. Adding axial planes, the
distance between them should be reduced in order to decrease the total distance between
the first and the last plane and so avoid high condition numbers κ. All these consider-
ations are also needed in order to explain the failure of optimization done with the full
system in Eq.(2.19), explained more in details in subsection 4.2.1.
In Fig.(5.8) and (5.9) the plots above in the right side refer to the maximum error in am-
plitude of solution Amn depending on the maximum perturbation in the amplitude of Am
whereas below in the right side the plots refer to the maximum error in phase of solution
Amn. The comparison is made increasing the number of axial planes and considering the
case with the first three radial mode orders.
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3

Figure 5.8.: Comparison of maximum errors of amplitude and phase for m = 32 and
n = (0, 1, 2) for Nx = 3

7

peak

Figure 5.9.: Comparison of maximum errors of amplitude and phase for m = 32 and
n = (0, 1, 2) for Nx = 7
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From the plots it can be noticed that an increase of Nx causes the decrease of the max-
imum error and alongside a shift to the left of the peak in which the propagation of the
perturbation is lower. This trend is in line with those of δA and κ, whose values decrease
as Nx increases and the distance decreases, like explained before.
Adding other radial modes to the analysis makes worse the search of optimization ranges
of Nx and ∆x in which the partition of the radial modes could be accurate because the
condition numbers κ become really high due to the increasing of the absolute value of the
imaginary part of kmn in the exponential term in the entries of matrix W as the radial
mode n increases.
Now the azimuthal mode order m = −48, which is not propagating for all the radial
mode orders, is taken into account. The results and the considerations are similar to the
previous case of m = 32 but with some differences due to the faster decay of the not prop-
agating modes. Particularly, the mode with n = 0 decreases from its initial amplitude to
the 0.01% of it in δx = 5 cm whereas the mode with n = 1 in δx = 4 cm. The plots for
δA and κ are reported below only for the first two radial mode orders and compared with
the one of mode m = 32 for the first three radial mode orders in the right side. From

Figure 5.10.: Plots of δA and κ for m = −48 compared to those of m = 32

the comparison it can be noticed that the distances between the axial measuring planes
should be even more decreased in order to minimize the values of the condition number
and the relative error. Hence, the ranges in which the user can operate are increasingly
smaller. In the plot below in the left side of Fig.(5.10) the condition number has similar
values for every Nx depending on the distance. An explanation of this trend has been
found observing the evolution of the matrix of eigenvalues diag[ζj] from Eq.(2.30) and it
has been noticed that, in this case of only two radial mode orders, the two eigenvalues
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first varies both and then, after a certain distance between the axial planes, equal for all
the number of planes Nx, only the second becomes lower due always to the exponential
term eik

−
mnx for the radial mode order n = 1, that decreases faster than the one referred

to the radial mode order n = 0.
If other radial mode orders are added to the system, an optimization is quite impossible
to do because the good ranges are disappearing and the partition of the modes is suc-
cessful only for a perturbation amplitude really close to zero and so requires a very strict
measurement accuracy, otherwise the propagation of errors is very large and the system
unstable. This can be noticed in Fig.(5.11) considering the evolution of Fig.(5.10) adding
another radial mode order into account.

Figure 5.11.: Evolution of δA and κ for m = −48 adding a radial mode order into
account

Considering other not propagating modes with a higher azimuthal mode order m, the
values of δA and κ will be also higher (reaching an order of magnitude of 1015 or more)
because of the increasing of the absolute value of the imaginary part of k−mn.

5.3. Effects of frequency

The results of the analysis done considering the second harmonic are now discussed and
compared with those obtained considering the first harmonic. Always an input perturba-
tion only in amplitude is added into the azimuthal mode amplitudes like in the first case
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5.3. Effects of frequency

in Fig.(4.13). The reflected modes are also neglected.
The azimuthal mode orders that occur in this case vary from the previous case according
to Eq.(2.2). Particularly, because of the increased frequency the number of propagating
modes are more than before. This consideration can be derived from Eq.(2.14) of the
axial wave number, noticing that the term under the square root increases as the product
(kR), and hence the frequency, increases and so kmn consists of only a real part for an
higher amount of modes rather than before with a lower frequency. This consideration is
seen below:

decreases

increases

Increasing only the frequency the axial wave

number is real for more combinations of m and n 
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Figure 5.12.: Effect of increasing frequency on the axial wave number

The first azimuthal mode order considered is m = 12, for which all the considered radial
mode orders are propagating. In the next figures the relative error δA and the condition
number κ are plotted in the same manner of the previous plots and compared to that of
the propagating mode m = −8 for the first harmonic in the right side.
Comparing m = −8 and m = 12 it can be noticed that the trends of δA and κ are similar
for the first case in which two radial mode orders are considered whereas in the second
case with all the considered radial modes are a bit different. Particularly in the case with
m = 12 and n = 0 : 4, the bad-chosen positions (in red) come from an "expansion" of
the case with m = 12 and n = 0 : 1, implying that more sensors and higher distances
are better for an optimization and there are not alternate ranges of distance in which the
values become higher or lower like in the case of m = −8. It can be supposed that maybe
these alternate ranges occur at distances higher than ∆x = 100 mm, the last value of the
analysis.
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5. Final results and conclusions

Figure 5.13.: Comparison of δA and κ for m = 12 and n = (0, 1)

Figure 5.14.: Comparison of δA and κ for m = 12 and n = (0, 1, 2, 3, 4)
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5.3. Effects of frequency

Also in this case of the second harmonic, the plots of the maximum errors reflect the trend
of the relative error and the condition number for every number of axial planes. Increasing
this number and also the distance between the measuring planes the propagation of the
perturbations influences less the analysis and the results of solution Amn.
The alternate ranges mentioned before however occur for higher azimuthal mode orders,
like for example m = −56, for which δA, κ and the maximum errors in amplitude and
phase of the solution are plotted below:

13

Figure 5.15.: Plot of δA, κ and the maximum errors in amplitude of Amn for m = −56

In this case, in which all the radial mode orders are taken into account, only the last
n = 4 is not propagating but, like n = 1 for m = 32 it does not influence so much the
trend of δA and κ because it decreases very slow.
Finally for this case of the second harmonic, the results of the azimuthal mode order
m = 64, which has the radial mode orders n = (0, 1) propagating whereas the others n =
(2, 3, 4) not, are reported. For the first three modes the results are similar to those of all the
other considered propagating azimuthal mode order m, but present some characteristics
slightly different. Adding radial modes into the analysis, the trends of the relative error
and the condition number approach to those of the azimuthal mode order m = 32.
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5. Final results and conclusions

Figure 5.16.: Comparison of δA and κ for m = 64 an n = (0, 1, 2)

Figure 5.17.: Comparison of δA and κ for m = 64 an n = (0, 1, 2, 3) with m = 32 and
n = (0, 1, 2)
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5.4. Comparing effects of perturbations in amplitude and perturbations in phase

From Fig.(5.16) it can be noticed that for the first case with only the first three radial mode
orders, the ranges in which δA and κ increase are located not only for small distances but
principally around the distance ∆x = 75 mm. However, comparing these plots with the
ones in Fig.(5.15) and Fig.(5.13) and (5.14), the values of δA and κ are correspondingly
lower for the same number of axial planes and distance. Adding the radial mode order
n = 3 into the analysis, it can be seen in Fig.(5.17) that the plots have the same trend of
that for the azimuthal mode order m = 32 and radial mode orders n = (0, 1, 2) plotted
in the right side. Considering the plot of κ, the presence of the not propagating modes
reduces for every number of axial planes the distance between them at which the solution
can be detected quite correctly because the associated pressure decays really fast and the
decreasing exponential term eikmnx causes the increase of the condition number κ and
makes the system unstable. Also the propagation of inaccuracies is amplified.
The completely not propagating azimuthal mode orders, for example m = −92 and m =
−96, present the same characteristics of the not propagating ones in the case of the first
harmonic, like m = −48. The considerations are the same made before. Particularly, the
mode amplitude decays from its initial value to the 0.01% of this value occur at least in
δx = 3 cm for the first two radial mode orders.

5.4. Comparing effects of perturbations in amplitude and
perturbations in phase

The comparison of how the different types of errors influence the results is now made.
Particularly, it has been checked that the plots of the relative error δA are similar from
those reported above varying the type of error whereas the plots of κ do not change.
However, it can be noticed by the following plots that a perturbation in phase, for example
of 1°, added to the azimuthal mode amplitudes like in the second case of Fig.(4.13) has
more influence than a perturbation in amplitude of 10 Pa. The accuracy in the measure of
phase should so be more strict than that of amplitude. An example of this consideration
can be found in Fig.(5.18) where in the left side for a number of axial planes the maximum
error in the radial amplitudes chosen from all the repeated simulations of the same analysis
is plotted. This maximum error depends on the maximum perturbation in phase added
to the azimuthal mode amplitudes and on different distances between the axial planes.
From the comparison with the plots on the right side, in which only a perturbation in
amplitude for the same modes is considered, it can be noticed that the maximum errors
in the amplitude of the radial mode amplitudes Amn are worse adding a perturbation
in phase from 1° to 10° on Am rather than adding a perturbation in amplitude from 10
to 100 Pa always on Am. Like in all the previous cases, increasing the number of axial
planes Nx is a solution to decrease the propagation of inaccuracies, like suggested from
the two plots in the left side of Fig.(5.18), in which the only variable that is changing is
Nx, particularly increasing from the plot above to the plot below.
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5. Final results and conclusions

Figure 5.18.: Comparison of maximum errors for m = −8 with only a perturbation in
phase on Am

Figure 5.19.: Comparison of maximum errors in the amplitudes of the radial amplitudes
for m = 32
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5.5. Effects of reflected propagating modes

Figure 5.20.: Comparison of maximum errors in the phases of the radial amplitudes for
m = 32

Another example is reported in Fig.(5.19) and Fig.(5.20) considering the azimuthal mode
order m = 32, plotting the maximum errors in amplitude and phase of the solution Amn
for a different number of axial planes Nx and comparing them to the cases of only an
amplitude perturbation. The change in scale has been done in order to see clearly in
what range of distances the propagation of inaccuracies were minimized.
Also in this case, an increase of number of axial planes induces the decrease of the max-
imum error and the peak in which the propagation of the perturbation is lower shifts to
the left, where the distances between the axial planes are smaller.
Finally, adding a perturbation in both amplitude and phase in the azimuthal mode am-
plitudes, like the third case in Fig.(4.13), generates similar results as before, amplifying
the maximum errors because even the perturbations are higher.

5.5. Effects of reflected propagating modes

As the last comparison, also the reflected propagating modes are taken into account. The
case of azimuthal mode order m = −8 and the first two radial mode orders n = (0, 1)
which are both propagating is shown. The plots of the relative error and the condition
number have a different trend from the one of the case without the reflected modes,
plotted in the right side of Fig.(5.21).
Like it can be seen from the left side of Fig.(5.21), the optimization of the measuring array
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considering also the reflected modes is more difficult to implement because the ranges in
which δA and κ become higher increases compared to the previous case. Particularly,
for a small number of sensors the ranges of distance in which δA and κ are minimized
alternates along the x-axis. For example, the optimization for the minimum number of
measuring planes Nx = Nn = 4 can be done in the ranges of distances ∆x = 22− 30 mm,
∆x = 38− 48 mm, ∆x = 56− 64 mm, ∆x = 72− 82 mm and ∆x = 88− 100 mm. For
Nx >> Nn all the distances between the axial planes can be taken into account for an
optimization.
An explanation for this trend could be the expansion of matrix W, which size is in this
case doubled because the number of considered modes and also the required minimum
number of axial planes in order to detect the modes amplitudes are doubled. This seems
to bring to a worse condition of the matrix.

with reflected modes without reflected modes

Figure 5.21.: Plot of δA and κ for m = 8 considering the reflected propagating modes

The same considerations can be made taking into account a propagating mode in the case
of the second harmonic, like the azimuthal mode order m = 12 with radial mode orders
n = (0, 1). In this case, the optimization is even harder to do compared to the previous
case of m = −8 because the ranges in which δA and κ become higher are duplicated, as
highlighted in Fig.(5.22).
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5.5. Effects of reflected propagating modes

Figure 5.22.: Plot of δA and κ for m = 12 considering the reflected propagating modes

with reflected modes without reflected modes

Figure 5.23.: Plot of δA and κ for m = 64 and n = (0, 1, 2) considering the reflected
propagating modes
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with reflected modes without reflected modes

Figure 5.24.: Plot of δA and κ for m = 64 and n = (0, 1, 2, 3) considering the reflected
propagating modes

In the last Fig.(5.23) and (5.24), the results for the azimuthal mode order m = 64, for
which the radial mode orders n = (0, 1) propagate whereas the others n = (2, 3, 4) do not,
is reported. In the case with n from 0 to 3, the not propagating mode influences badly the
trend of the relative error and the condition number as in the case where the reflecting
modes are not present, plotted in the right side. The same considerations done in section
5.2 regarding the presence of the decreasing exponential term eik

−
mnx and its consequences

can be used to explained this trend, for which high distances between the axial planes are
not to choose for an optimization.

5.6. Conclusions

From all the presented results the following conclusions can be drawn:

• increasing the number of radial mode orders n taken into account the trends of κ and
δA get worse for every azimuthal mode orderm. Particularly for propagating modes,
if increasing distances between the axial planes is a good choice for all the number of
axial planes when considering the first two or three or also four radial mode orders,
this is not more true adding other radial propagating modes into account and the
distances for which the values of δA and κ stay low changes alternately according
to the number of axial planes;
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• the not propagating modes have requirements for the optimization that are opposite
in order to detect correctly the radial amplitudes. They influences negatively the
condition of matrix W due to the exponential term eik

−
mnx and the imaginary part

of k−mn which absolute value increases as the azimuthal mode order m and the radial
mode order n increase. This induces a faster decreasing of the pressure amplitude
associated to the mode along the duct. Hence, for the optimization, increasing the
distance between the axial planes is to avoid and adding axial planes the distance
has to be further reduce in order to decrease the total distance between the first
and the last measuring plane. A distance that could fit in order to detect both
propagating and non propagating has to be found;

• considering the second harmonic and hence the frequency, the number of propagat-
ing modes increases so the analysis can be carried out successfully for more modes.
The differences between the effects of the propagation or not propagation of the
modes are the same as in the case of the first harmonic;

• an error in phase, for example, of 1° on the azimuthal mode amplitudes Am propa-
gates more intensively on the system than an error in amplitude of 10 Pa, causing
an higher error on the radial mode amplitudes Amn. Therefore, the measurements
on the phase of the azimuthal mode amplitudes should be more strict than the ones
on the amplitudes in order to limit the propagation of inaccuracies;

• considering also the reflected propagating modes into account, the ranges for op-
timization become smaller and the distances for which δA and κ stay low changes
according to the number of axial planes. Considering the first two radial mode
orders, only for Nx >> Nn, almost all the distances are good.

From all these considerations and figures it is important to notice that an optimization
in order to detect all the considered modes presents many difficulties. Every mode has
a different range of distances that permits the right detection and partition of the radial
modes, so an optimization valid for all the modes is hard to implement and requires
accuracy and time. However, it is seen that having a number of planes really higher than
the required minimum and small distances in order to not extend the array too much is
generally the best choice for the optimization of a measuring grid that tries to decompose
all the modes. Particularly, looking on all the results, it can be recommended that a
distance of ∆x = 10 mm between the axial planes could be an initial value for further
improvements on the optimization. This distance is associated to a good analysis quality
for almost all the considered number of axial planes and the expected modes.
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6. Summary

The purpose of this work was to carry out a radial mode analysis in order to investigate
the sound field of a multi-stage axial compressor test rig, starting from acoustic pressure
measurements. Because the quality of the analysis is influenced by the arrangement of the
measuring grid, an optimization about the number of sensors and the distance between
them is required in order to decompose experimentally the field with accuracy.
A theoretical model based on a solution of the wave equation considering some assump-
tions on the flow characteristics is used.
The first encountered issue was to calculate the eigenvalues σmn and Qmn of the radial
distribution for every mode of azimuthal order m and radial order n. The problem was
that the analytical solver needs an initial guess near of the solution in order to find it, but
this guess changes for every combination of (m,n). The initial guess is found adding a
constant to the previously solution σm(n−1). Then a check is made looking if the solution
is correct or not. If not, the initial guess is varied by other constants and the resulting
new solution is checked again. With this method all the eigenvalues of the considered
combinations of m and n have been found.
The pressure is then calculated along the duct as a superposition of some dominant acous-
tic modes, previously determined experimentally. The measuring grid consists of sensors
mounted flush with the duct wall. Arrangements of equally and also randomly spaced
sensors in the azimuthal direction have been tried.
From these values of pressure a radial mode analysis in order to separate the mode am-
plitudes is implemented. Also a perturbation on the pressure values has been added into
the system and its propagation has been investigated in order to evaluate the accuracy
with which the pressure has to be measured.
The principal issue coming from these analysis originated from the fast decay of the not
propagating modes. These have an imaginary component of axial wave number that, due
the exponential term eik

±
mnx that defines the axial pressure distribution, causes an insta-

bility of system even higher as m, n and the distance x increase. Also the big size of the
matrix and the presence of similar columns for −m and m could influences negatively the
condition of the matrix. A mode decomposition and an optimization was really hard to
do in reasonable time.
Another way to make a radial mode analysis is to split the total system into two parts,
one referring to the azimuthal mode analysis and one to the properly radial one. Particu-
larly, this has to be made for every azimuthal mode order m that results from a supposed
already completed azimuthal mode analysis. This implies that an optimization of the
measuring grid only in the axial direction has to be carried out.
Some reasonable assumptions has been made in order to simplify the analysis:

• only the modes predicted from Tyler and Sofrin by Eq.(2.2) and coming from the
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rotor-alone mechanism and the interaction of the first rotor with the IGV and with
the first stator are considered;

• the radial mode amplitudes have for every mode the same amplitude but random
phase;

• first all the reflected modes and then only the not propagating ones coming from
the inlet are neglected.

Particularly, this last assumption can be explained considering that the not propagating
modes decrease really fast from the IGV to the inlet so, when they are to be reflected
their amplitude and the associated pressure can be neglected.
In order to assess the analysis quality the condition number of the system matrix and
the relative error of radial mode amplitudes coming from multiple iterations are studied.
Particularly, the accuracy of the results is higher as the values of κ and δA are lower.
Also the maximum errors in amplitude and phase of the solutions are studied according
to a perturbation added gradually to the system.
The optimization of the measuring grid has to be done exactly looking for which combi-
nation of number of axial planes and distance between them the values of the condition
number and the relative error are kept low. From an analysis of the results, it comes out
that every (m,n)-mode has a different range of combinations in which the analysis quality
can be considered good.
Particularly, considering completely propagating modes, it is seen that increasing the
number of axial planes and the distance between them is the best choice to implement
in order to maximize the accuracy and minimize the propagation of noise errors through
the system. Adding more radial mode orders into account, the number of axial planes for
which this consideration remains true has to be really higher than the required minimum
number of axial planes, determined from the Nyquist theorem.
Instead, when some radial mode orders of the considered azimuthal order m are not prop-
agating high distances between the sensors are to avoid because of the fast decreasing
along the duct, that produce high condition number due to the extremely small value
assumed by eikmnx. This value decreases as the distance increases and as the absolute
value of the imaginary component of kmn increases when the azimuthal mode order m
and the radial mode order n increase. Particularly, the radial amplitudes coming from
the analysis are really higher than the original ones.
Another conclusion obtained from the analysis of the results is that the measurements
on the phase of the azimuthal mode amplitudes require more accuracy than the measure-
ments on the amplitude because a perturbation in phase propagates more negatively on
the results than a perturbation in amplitude.
Carrying out an analysis without perturbations, the radial mode amplitudes are well de-
tected for all the modes.
Looking for the next steps, an optimization in order to find some values of the parameters
grid that can be used for an experimental radial mode analysis can be carried out. This
optimization will look into the good ranges found in this study of the grid parameters
for which the accuracy of the solution is better. Every single expected mode m has to
be studied separately. However, in a first look on the results a distance of ∆x = 10 mm
could be a starting point for an optimization in order to find correctly most of the radial
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amplitudes of the selected modes. Also the geometrical characteristics of the compressor
have to be taken into account in order to study the possibility of building up a measuring
array with this distance. Because the ducted section at the inlet before the IGV is not so
long, maybe the analysis could be done at the outlet.
In addition, an analysis taking into account more azimuthal mode orders m and radial
mode orders n can be implemented. Also a way in order to study the effect of the reflected
non propagating mode can be searched.
This analysis does not give directly the impact on force response but it is needed in a
second step for improving and validating the predictions done by a CFD solver.
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A. Description of the split system into
an azimuthal and a radial mode
analysis

The steps contained in this Appendix are made following [9]. As described in subsection
(2.3.1), supposing that an azimuthal mode analysis has been already carried out, for every
m mode the following system can be solved in order to find the radial mode amplitudes:

Am = Wm · a. (A.1)

where Am is the vector of the measured azimuthal mode amplitudes of orderm, a the vec-
tor of radial mode amplitudes and Wm the matrix with all the other factors in Eq.(2.26).
The vector of the amplitudes of modes with azimuthal mode order m and radial mode
order n is defined as [9]:

a = (Am,0, Am,1, ..., Am,N)t (A.2)
where the subscripts refer to the order of modes as follows:

• azimuthal mode order m;

• radial mode order: 0, 1, ..., N ∼ (0,+), (0,−), ..., (max(n),−).

Hence, the dimension of vector a corresponds to the number of modes considered in (+)
and against (-) the flow direction. The vector of the measured azimuthal mode amplitudes
of order m is defined as follows [9]:

Am = (Am(x1, r1, ), Am(x1, r2), ..., Am(xNx , rNr))t (A.3)

where its dimension is (NxNr × 1). The matrix Wm is built up as follows [9]:

Wm =



Ψm,0(x1, r1) Ψm,1(x1, r1) ... Ψm,N(x1, r1)
Ψm,0(x1, r1) Ψm,1(x1, r1) ... Ψm,N(x1, r1)

. . .

. . .

. . .

Ψm,0(xNx , rNr) Ψm,1(xNx , rNr) ... Ψm,N(xNx , rNr)


. (A.4)

Its dimension is, hence, (NxNr × 2Nn(m)). The axial and radial eigenfunctions are con-
tained in [9]:

Ψm,n(xj, rk) = eik
±
mnxfmn(rk). (A.5)
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A. Description of the split system into an azimuthal and a radial mode analysis

Between the vector of complex pressure p in Eq.(2.19) and the vector of the azimuthal
mode amplitudes Am the following relation is valid [9]:

p =
M∑
m=0

Vm ·Am (A.6)

where the matrix Vm is built up like follows:

Vm =



eimΦ1 0 ... 0
eimΦ2 0 ... .

. . ... .

. . ... .

. . ... .

eimΦNΦ 0 ... .

0 eimΦ1 ... .

. . ... .

. . ... .

. . ... .

. eimΦNΦ ... .

. 0 ... eimΦ1

. . ... .

. . ... .

. . ... .

0 0 ... eimΦNΦ



. (A.7)

Hence, combining Eq.(A.1) with Eq.(A.6) it follows that [9]:

p =
M∑
m=0

Vm ·Wm · a. (A.8)
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B. Calculation of the eigenvalues

The steps contained in this Appendix are made following [9]. The calculation of the
eigenvalues is based on the resolution of the differential equations that define the hard-
walled acoustic boundary conditions, as explained in subsection (4.1.1). The equations
are here reported:

r = Ri : J ′m(ησmn) +QmnY
′
m(ησmn) = 0 (B.1)

r = R : J ′m(σmn) +QmnY
′
m(σmn) = 0. (B.2)

After some manipulation the following relations can be derived [9]:

J ′m(ησmn)Y ′m(σmn)− J ′m(σmn)Y ′m(ησmn) = 0, (B.3)

Qmn = −J
′
m(σmn)
Y ′m(σmn) . (B.4)

Using the following identities the eigenvalues can be computed directly from the Bessel
functions [9]:

2J ′m(x) = Jm−1(x)− Jm+1(x), (B.5)
J ′0(x) = −J1(x), (B.6)

2Y ′m(x) = Ym−1(x)− Ym+1(x), (B.7)
Y ′0(x) = −Y1(x). (B.8)

It then follows for m = 0:

J1(ησmn)Y1(σmn)− J1(σmn)Y1(ησmn) = 0, (B.9)

Qmn = −J1(σmn)
Y1(σmn) (B.10)

and for m > 0:

(Jm−1(ησmn)− Jm+1(ησmn))(Ym−1(σmn)− Ym+1(σmn))
− (Jm−1(σmn)− Jm+1(σmn))(Ym−1(ησmn)− Ym+1(ησmn)) = 0,

(B.11)

Qmn = Jm+1(σmn)− Jm−1(σmn)
Ym−1(σmn)− Ym+1(σmn) (B.12)

like reported in subsection (4.1.1).
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