Università degli studi di Padova

Dipartimento di Matematica "Tullio Levi-Civita" Corso di Laurea Magistrale in Matematica

Elements of a Bimodule with a Semilocal Endomorphism Ring

Matricola: 1178737

Contents

Introduction 1
1 The Categories \mathcal{C}, \mathcal{D} and \mathcal{E} 3
1.1 Morphism Category 3
1.2 Definition of the Category \mathcal{C} 6
1.3 Preadditivity 7
1.4 Additivity 9
2 Internal Direct Sum 11
2.1 Idempotent Endomorphisms 11
2.2 Internal Direct Sum 14
2.3 Examples 20
2.4 Isomorphic elements, isomorphic internal direct sums 23
3 Semilocal Categories 29
3.1 The Jacobson radical 29
3.2 Semilocal Rings 30
3.3 Local Morphisms 32
3.4 Some Natural Functors 37
3.5 Embedding into other categories 41
3.6 Rings of Finite Type 46
Bibliography 49

Introduction

The study of block decompositions of matrices is one of the classical themes in Linear Algebra. One of the modern approaches to study this kind of problems is considering the morphisms in the category Mod- R of right modules over a ring R.

In the paper CEDF19, Campanini, El-Deken and Facchini studied the Grothendieck category $\operatorname{Morph}(\operatorname{Mod}-R)$ of all morphisms between two right modules over a fixed ring R. In that category, the objects are R-module morphisms $\mu_{M}: M_{0} \rightarrow M_{1}$. A morphism $u: \mu_{M} \rightarrow \mu_{N}$ in the category $\operatorname{Morph}(\operatorname{Mod}-R)$ is a pair of R-module morphisms $\left(u_{0}, u_{1}\right)$ such that $u_{1} \mu_{M}=\mu_{N} u_{0}$.

In the category $\operatorname{Morph}(\operatorname{Mod}-R)$, the study of direct-sum decomposition corresponds to the study of block decompositions of matrices. Isomorphism in this category corresponds to the matrix equivalence \sim defined, for any two rectangular $m \times n$ matrices A and B, by $A \sim B$ if $B=Q^{-1} A P$ for some invertible $n \times n$ matrix P and some invertible $m \times m$ matrix Q.

For fixed right R-modules M_{0} and M_{1}, the objects $\mu_{M}: M_{0} \rightarrow M_{1}$ of the category $\operatorname{Morph}(\operatorname{Mod}-R)$ are the objects of a full subcategory of $\operatorname{Morph}(\operatorname{Mod}-R)$ whose class of objects is $\operatorname{Hom}_{R}\left(M_{0}, M_{1}\right)$. Now $\operatorname{Hom}_{R}\left(M_{0}, M_{1}\right)$ is an $\operatorname{End}_{R}\left(M_{1}\right)-\operatorname{End}_{R}\left(M_{0}\right)$ bimodule. Hence it is natural to ask which results of [CEDF19] remain true for a corresponding suitably defined category \mathcal{E} whose objects are the objects of any R - S-bimodule ${ }_{R} M_{S}$. This is what we do in this thesis.

In [CEDF19] it was shown that the behavior of morphisms whose endomorphism ring in $\operatorname{Morph}(\operatorname{Mod}-T)$ is semilocal is very similar to the behavior of modules with a semilocal endomorphism ring. For instance, direct-sum decompositions of a direct sum $\oplus_{i=1}^{n} M_{i}$, that is, block-diagonal decompositions, where each object M_{i} of $\operatorname{Morph}(\operatorname{Mod}-T)$ denotes a morphism $\mu_{M_{i}}: M_{0, i} \rightarrow M_{1, i}$ and where all the modules
$M_{j, i}$ have a local endomorphism ring $\operatorname{End}\left(M_{j, i}\right)$, depend on two invariants. This behavior is very similar to that of direct-sum decompositions of serial modules of finite Goldie dimension, which also depend on two invariants (monogeny class and epigeny class). When all the modules $M_{j, i}$ are uniserial modules, the direct-sum decompositions (block-diagonal decompositions) of a direct-sum $\oplus_{i=1}^{n} M_{i}$ depend on four invariants.

In this thesis, our original aim was to extend the results in CEDF19 to arbitrary bimodules, giving them a category structure, but this has lead us to the study of some special natural additive decompositions of elements in bimodules. In particular, we define an internal direct sum and we study its relations with the idempotent endomorphisms and with the categorical biproduct. We also characterize when two decompositions of an element are equal and when they are isomorphic instead. In the last chapter, using some natural functors, we see the condition under which this category is semilocal. Finally, we conclude with some embeddings in other categories, in particular in the category $\operatorname{Morph}(\operatorname{Mod}-R)$.

Fix two associative rings R and S with identity and a bimodule ${ }_{R} M_{S}$. Our category \mathcal{E} has the bimodule ${ }_{R} M_{S}$ as its class of objects, and, for any two objects $x, y \in_{R} M_{S}, \operatorname{Hom}_{\mathcal{E}}(x, y)=R x \cap y S$. Thus the set of all morphisms $x \rightarrow y$ in \mathcal{E} is also a subset of ${ }_{R} M_{S}$. For two morphisms $r x=y s: x \rightarrow y$ and $r^{\prime} y=z s^{\prime}: y \rightarrow z$, we have that $r^{\prime} r x=r^{\prime} y s=z s^{\prime} s$, so $r^{\prime} r x=z s^{\prime} s: x \rightarrow z$ is a morphism in \mathcal{E}.

Chapter 1

The Categories \mathcal{C}, \mathcal{D} and \mathcal{E}

1.1 Morphism Category

We begin this first chapter recalling what the morphism category is, as studied in [CEDF19.

Definition 1.1. Let R be an associative ring with identity $1 \neq 0$ and $\operatorname{Mod}-R$ the category of right R-modules. Denote by Morph(Mod- R) the category defined as follows:

1. The objects of $\operatorname{Morph}(\operatorname{Mod}-R)$ are the R-module morphisms $\mu_{M}: M_{0} \rightarrow M_{1}$ between right R-modules.
2. A morphism $u: \mu_{M} \rightarrow \mu_{N}$ in $\operatorname{Morph}(\operatorname{Mod}-R)$ is a pair of R-module morphisms $\left(u_{0}, u_{1}\right)$ such that $u_{1} \mu_{M}=\mu_{N} u_{0}$.

Recall the notion of preadditive category.
Definition 1.2. A category \mathcal{A} is a preadditive category if
(a) The set $\operatorname{Hom}_{\mathcal{A}}(A, B)$ is an abelian group for every A, B objects of \mathcal{A}.
(b) The composition $\circ: \operatorname{Hom}_{\mathcal{A}}(B, C) \times \operatorname{Hom}_{\mathcal{A}}(A, B) \rightarrow \operatorname{Hom}_{\mathcal{A}}(A, C)$ is \mathbb{Z}-bilinear, that is, for every $f, f^{\prime}: A \rightarrow B$ and every $g, g^{\prime}: B \rightarrow C$, with A, B, C objects of \mathcal{A},

$$
g \circ\left(f+f^{\prime}\right)=g \circ f+g \circ f^{\prime} \text { and }\left(g+g^{\prime}\right) \circ f=g \circ f+g^{\prime} \circ f .
$$

For semplicity we will denote each object $\mu_{M}: M_{0} \rightarrow M_{1}$ in $\operatorname{Morph}(\operatorname{Mod}-R)$ by M. For every pair M, N of objects of $\operatorname{Morph}(\operatorname{Mod}-R)$ the group

$$
\operatorname{Hom}_{\operatorname{Morph}(\operatorname{Mod}-R)}(M, N)
$$

is a subgroup of the cartesian product

$$
\operatorname{Hom}_{\operatorname{Morph}(\operatorname{Mod}-R)}\left(M_{0}, N_{0}\right) \times \operatorname{Hom}_{\operatorname{Morph}(\operatorname{Mod}-R)}\left(M_{1}, N_{1}\right)
$$

Then, for M, N objects of $\operatorname{Morph}(\operatorname{Mod}-R)$, addition on $\operatorname{Hom}_{\operatorname{Morph}(\operatorname{Mod}-R)}(M, N)$ is defined by

$$
u+v=\left(u_{0}+v_{0}, u_{1}+v_{1}\right)
$$

for every $u=\left(u_{0}, u_{1}\right), v=\left(v_{0}, v_{1}\right) \in \operatorname{Hom}_{\operatorname{Morph}(\operatorname{Mod}-R)}(M, N)$. Therefore, the category $\operatorname{Morph}(\operatorname{Mod}-R)$ is preadditive.

Definition 1.3. Let \mathcal{A} and \mathcal{B} be two categories. Let $F: \mathcal{A} \rightarrow \mathcal{B}$ be a covariant functor. For all A, A^{\prime} objects of \mathcal{A}, the functor F induces a mapping

$$
F_{A A^{\prime}}: \operatorname{Hom}_{\mathcal{A}}\left(A, A^{\prime}\right) \rightarrow \operatorname{Hom}_{\mathcal{B}}\left(F(A), F\left(A^{\prime}\right)\right),
$$

defined by $F_{A A^{\prime}}(f)=F(f)$ for every $f: A \rightarrow A^{\prime}$.
The functor F is called a faithful functor if $F_{A A^{\prime}}$ is injective for every A, A^{\prime} objects of \mathcal{A}. While it is called a full functor if $F_{A A^{\prime}}$ is surjective for every A, A^{\prime} objects of \mathcal{A}. The functor $F: \mathcal{A} \rightarrow \mathcal{B}$ is essentially surjective if for every B object of \mathcal{B} there exists A object of \mathcal{A} such that $F(A) \cong B$

Theorem 1.4. [CEDF19, Theorem 2.1] The category $\operatorname{Morph}(\operatorname{Mod}-R)$ is equivalent to the category of right modules over the triangular matrix ring $T:=\left(\begin{array}{cc}R & R \\ 0 & R\end{array}\right)$.

Thanks to the equivalence in Theorem 1.4. $\operatorname{Morph}(\operatorname{Mod}-R)$ is a Grothendieck category.

Let us briefly recall what products and coproducts in a category are and in particular what they are in the category $\operatorname{Morph}(\operatorname{Mod}-R)$.

Definition 1.5. Let \mathcal{A} be a category and let A, B be objects of \mathcal{A}. A product

$$
\left(A \prod B, \pi_{A}, \pi_{B}\right)
$$

of A and B in \mathcal{A} consists of an object $A \Pi B$ of \mathcal{A} and morphisms

$$
\pi_{A}: A \prod B \rightarrow A \quad \text { and } \quad \pi_{B}: A \prod B \rightarrow B
$$

such that for any pair of morphisms $f: P \rightarrow A, g: P \rightarrow B$ there is a unique morphism $h: P \rightarrow A \Pi B$ with $\pi_{A} \circ h=f$ and $\pi_{B} \circ h=g$.

The definition of coproduct is just the dual definition.
Definition 1.6. Let \mathcal{A} be a category and let A, B be objects of \mathcal{A}. A coproduct

$$
\left(A \coprod B, \epsilon_{A}, \epsilon_{B}\right)
$$

of A and B in \mathcal{A} consists of an object $A \amalg B$ of \mathcal{A} and morphisms

$$
\epsilon_{A}: A \rightarrow A \coprod B \quad \text { and } \quad \epsilon_{B}: B \rightarrow A \coprod B
$$

such that for any pair of morphisms $f: A \rightarrow P, g: B \rightarrow C$ there is a unique morphism $h: A \amalg B \rightarrow P$ with $h \circ \epsilon_{A}=f$ and $h \circ \epsilon_{B}=g$.

Definition 1.7. A category \mathcal{A} is an additive category if it is preadditive, has a zero object, and every two objects A and B have a product $A \Pi B$ (equivalently, a coproduct $A \amalg B$).

Following the results in CEDF19, recall what coproducts and products are in Morph (Mod- R).

Let $\left\{M_{\lambda} \mid \lambda \in \Lambda\right\}$ be a family of objects of $\operatorname{Morph}(\operatorname{Mod}-R)$, that is, M_{λ} is an object $\mu_{M_{\lambda}}: M_{0, \lambda} \rightarrow M_{1, \lambda}$ for every λ in an index set Λ. The coproduct of the family $\left\{M_{\lambda} \mid \lambda \in \Lambda\right\}$ is the object $\oplus_{\lambda \in \Lambda} M_{\lambda}$, where

$$
\mu_{\oplus_{\lambda \in \Lambda} M_{\lambda}}: \bigoplus_{\lambda \in \Lambda} M_{0, \lambda} \rightarrow \bigoplus_{\lambda \in \Lambda} M_{1, \lambda}
$$

is defined componentwise, with the canonical embedding $e_{\lambda_{0}}: M_{\lambda_{0}} \rightarrow \oplus_{\lambda \in \Lambda} M_{\lambda}$ for every $\lambda_{0} \in \Lambda$.

The product of the family $\left\{M_{\lambda} \mid \lambda \in \Lambda\right\}$ is the object $\prod_{\lambda \in \Lambda} M_{\lambda}$, where

$$
\mu_{\Pi_{\lambda \in \Lambda} M_{\lambda}}: \prod_{\lambda \in \Lambda} M_{0, \lambda} \rightarrow \prod_{\lambda \in \Lambda} M_{1, \lambda}
$$

is defined componentwise, with the canonical embedding $p_{\lambda_{0}}: M_{\lambda_{0}} \rightarrow \prod_{\lambda \in \Lambda} M_{\lambda}$ for every $\lambda_{0} \in \Lambda$.

Moreover, it is possible to define some canonical functors associated to this category. For any ring R, there are several canonical covariant additive functors

$$
\operatorname{Morph}(\operatorname{Mod}-R) \rightarrow \operatorname{Mod}-R .
$$

In particular, we recall:

1. The domain functor $D: \operatorname{Morph}(\operatorname{Mod}-R) \rightarrow \operatorname{Mod}-R$, which associates to each object M of $\operatorname{Morph}(\operatorname{Mod}-R)$ the right R-module M_{0} and to any morphism $\left(u_{0}, u_{1}\right)$ in $\operatorname{Morph}(\operatorname{Mod}-R)$ the right R-module morphism u_{0} in Mod- R.
2. The codomain functor $C: \operatorname{Morph}(\operatorname{Mod}-R) \rightarrow \operatorname{Mod}-R$, which associates to each object M of $\operatorname{Morph}(\operatorname{Mod}-R)$ the right R-module M_{1} and to any morphism $\left(u_{0}, u_{1}\right)$ in $\operatorname{Morph}(\operatorname{Mod}-R)$ the right R-module morphism u_{1} in $\operatorname{Mod}-R$.

From these two functors it possible to construct the product functor:

$$
D \times C: \operatorname{Morph}(\operatorname{Mod}-R) \rightarrow \operatorname{Mod}-R \times \operatorname{Mod}-R,
$$

which associates to every object M of $\operatorname{Morph}(\operatorname{Mod}-R)$ the pair $\left(M_{0}, M_{1}\right)$ belonging to Mod- $R \times \operatorname{Mod}-R$ and to every morphism (u_{0}, u_{1}) in Morph(Mod- R) the morphism $\left(u_{0}, u_{1}\right)$ in Mod- $R \times \operatorname{Mod}-R$.

1.2 Definition of the Category \mathcal{C}

We continue defining the category we want to study and presenting its first properties. Let R and S be rings. Let ${ }_{R} M_{S}$ be an R - S-bimodule and let \mathcal{C} be the category defined as follows:

1. $\operatorname{Ob}(\mathcal{C})={ }_{R} M_{S}$,
2. $\operatorname{Hom}_{\mathcal{C}}(x, y)=\{(r, s) \in R \times S \mid r x=y s\}$.

Define a composition between morphisms:

$$
\begin{aligned}
\circ: \operatorname{Hom}_{\mathcal{C}}(y, z) \times \operatorname{Hom}_{\mathcal{C}}(x, y) & \rightarrow \operatorname{Hom}_{\mathcal{C}}(x, z) \\
((h, k),(r, s)) & \mapsto(h r, k s) .
\end{aligned}
$$

This composition is associative because so is the product into the ring structures. The multiplicative identity of any object $x \in_{R} M_{S}$ is $\left(1_{R}, 1_{S}\right)$. Notice that $\operatorname{Hom}_{\mathcal{C}}(x, y)$ $\subseteq R \times S$.

Let $x \in{ }_{R} M_{S}$. Consider the cyclic submodules $y S$ and $R x$ of ${ }_{R} M_{S}$. Define $\left(y S:_{R} x\right):=\{r \in R \mid r x \in y S\}$ and $\left(R x:_{S} y\right):=\{s \in S \mid y s \in R x\}$. They are called the idealizer of $y S$ and $R x$ respectively. More precisely $\operatorname{Hom}_{\mathcal{C}}(x, y) \subseteq\left(y S:_{R} x\right) \times\left(R x:_{S}\right.$ $y)$. This is a subgroup of the additive group of $R \times S$. When $x=y, \operatorname{Hom}_{\mathcal{C}}(x, y)$ is a subring of $R \times S$.

1.3 Preadditivity

Define the operation of addition between two morphisms as the one induced by the ring $R \times S$. So, given $(r, s),(h, k) \in \operatorname{Hom}_{\mathcal{C}}(x, y)$, define:

$$
(r, s)+(h, k)=(r+h, s+k) .
$$

This operation is \mathbb{Z}-bilinear with respect to the composition because of the distributivity on the left-hand side and on the right-hand side between addition and multiplication in the rings R and S,

$$
\begin{aligned}
& ((h, k)+(j, t)) \circ(r, s)=(h+j, k+t) \circ(r, s)=((h+j) r,(k+t) s)= \\
= & (h r+j r, k s+t s)=(h r, k s)+(j r, t s)=((h, k) \circ(r, s))+((j, t) \circ(r, s)) .
\end{aligned}
$$

In the same way \mathbb{Z}-linearity on the left-hand side can be proved. Hence \mathcal{C} is a preadditive category.

Now let us look for initial and terminal objects in order to eventually identify the zero object, if it exists.

Definition 1.8. Let \mathcal{A} be a category. An object $A \in \operatorname{Ob}(\mathcal{A})$ is called an initial object of \mathcal{A} if for every $B \in \operatorname{Ob}(\mathcal{A})$ there exists exactly one morphism $f: A \rightarrow B$.

Our initial object should be an element $x \in{ }_{R} M_{S}$ such that for every other element $y \in{ }_{R} M_{S}$ it is possible to find a unique pair $(r, s) \in R \times S$ such that $r x=y s$. Observe that the element 0_{M} is not an initial object (there is not an unique morphism, in fact, $r \cdot 0_{M}=y s$ holds for every morphism of the form $\left(r, 0_{S}\right)$). For a similar reason every other object is not an initial object.

Let us recall the concepts of ideal in a preadditive category \mathcal{A} and factor category modulo an ideal.

Definition 1.9 (Ideal). An ideal of a preadditive category \mathcal{A} assigns to every pair A, B of objects of \mathcal{A} a subgroup $\mathcal{I}(A, B)$ of the abelian group $\operatorname{Hom}_{\mathcal{A}}(A, B)$ with the property that for every $\phi: C \rightarrow A, \psi: A \rightarrow B$ and $\omega: B \rightarrow D$ with $\psi \in \operatorname{Hom}_{\mathcal{A}}(A, B)$, one has that $\omega \psi \phi \in \mathcal{I}(C, D)$.

Definition 1.10 (Factor Category). If \mathcal{I} is an ideal of a preadditive category \mathcal{A}, the factor category $\mathcal{A} / \mathcal{I}$ has the same objects as \mathcal{A} (i.e., $\operatorname{Ob}(\mathcal{A})=\operatorname{Ob}(\mathcal{A} / \mathcal{I})$), the group of morphisms $A \rightarrow B$ in $\mathcal{A} / \mathcal{I}$ is $\operatorname{Hom}_{\mathcal{A} / \mathcal{I}}(A, B):=\operatorname{Hom}_{\mathcal{A}}(A, B) / \mathcal{I}(A, B)$, and the composition is that induced by the composition of \mathcal{A}.

Let x and y be objects in \mathcal{C} and $\operatorname{Hom}_{\mathcal{C}}(x, y)=\{(r, s) \in R \times S \mid r x=y s\}$. Define

$$
\mathcal{I}(x, y):=1 \cdot \operatorname{ann}_{R}(x) \times \operatorname{rann}_{S}(y) .
$$

This is a subgroup of $\left(y S:_{R} x\right) \times\left(R x:_{S} y\right)$ and is a two-sided ideal when $x=y$.
Given w, x, y, z objects in \mathcal{C}, let $\phi=(r, s)$ be a morphism in $\mathcal{I}(x, y), \psi=\left(r^{\prime}, s^{\prime}\right)$ be in $\operatorname{Hom}_{\mathcal{C}}(w, x)$ and $\omega=\left(r^{\prime \prime}, s^{\prime \prime}\right)$ be in $\operatorname{Hom}_{\mathcal{C}}(y, z)$. Consider the composition $\omega \circ \phi \circ \psi=$ $\left(r^{\prime \prime} r r^{\prime}, s^{\prime \prime} s s^{\prime}\right)$. We have to check that this pair is in $\mathcal{I}(w, z)$, so $r^{\prime \prime} r r^{\prime} w=r^{\prime \prime} r x s^{\prime}=$ $r^{\prime \prime} 0_{M} s^{\prime}=0_{M}$ because of the relation $r^{\prime} w=x s^{\prime}$ and the fact that $r \in l . \operatorname{ann}_{R}(x)$. The same holds for $s^{\prime \prime} s s^{\prime}$. In fact, $z s^{\prime \prime} s s^{\prime}=r^{\prime \prime} y s s^{\prime}=r^{\prime \prime} 0_{M} s^{\prime}=0_{M}$ because of the relation $r^{\prime \prime} y=z s^{\prime \prime}$ and the fact that $s \in \mathrm{r} \cdot \mathrm{ann}_{S}(y)$.

Hence the position $\mathcal{I}(x, y):=1 . \operatorname{ann}_{R}(x) \times r . \operatorname{ann}_{S}(y)$ defines an ideal in the preadditive category \mathcal{C}. So we can construct the factor category $\mathcal{C} / \mathcal{I}$. From now on set $\mathcal{D}:=\mathcal{C} / \mathcal{I}$.

Let us present our category from a different point of view. Let R and S be rings. Let ${ }_{R} M_{S}$ be an R - S-bimodule and let \mathcal{E} be the category defined as follows:

1. $\operatorname{Ob}(\mathcal{E})={ }_{R} M_{S}$,
2. $\operatorname{Hom}_{\mathcal{E}}(x, y)=R x \cap y S$.

Consider the functor $F: \mathcal{C} \rightarrow \mathcal{E}$ that associates to each object $x \in{ }_{R} M_{S}$ the element x itself and to each morphism $(r, s) \in \operatorname{Hom}_{\mathcal{C}}(x, y)$ the element $r x(=y s)$.

The kernel of this functor is the ideal \mathcal{I}. The functor F induces an isomorphism between the categories $\mathcal{D}=\mathcal{C} / \mathcal{I}$ and \mathcal{E}.

Now that we have passed from the category \mathcal{C} to the category $\mathcal{C} / \mathcal{I}$, we have that the zero object in the category $\mathcal{C} / \mathcal{I}$ exists and it is unique. The same holds for the category \mathcal{E}. In fact, in \mathcal{D} the zero object is now 0_{M} and the zero morphism is the pair $\overline{\left(0_{R}, 0_{S}\right)}$. Equivalently in \mathcal{E} the zero object is 0_{M} and the zero morphism is 0_{M} because $R 0_{M} \cap x S=\left\{0_{M}\right\}$.

Remark 1.11. It is convenient to describe the endomorphism ring of an object $x \in$ ${ }_{R} M_{S}$. In the category \mathcal{C}, we have that the endomorphism ring of x is

$$
\operatorname{End}_{\mathcal{C}}(x)=\{(r, s) \in R \times S \mid r x=x s\}
$$

with the operations induced by the ring direct product $R \times S$. In the category \mathcal{D}, the endomorphism ring of x is

$$
\operatorname{End}_{\mathcal{D}}(x)=\operatorname{End}_{\mathcal{C}}(x) /\left(1 \cdot \operatorname{ann}_{R}(x) \times \operatorname{rg}^{2} \operatorname{ann}_{S}(x)\right),
$$

with the operations induced by those of $\operatorname{End}_{\mathcal{C}}(x)$. In the category \mathcal{E}, the endomorphism ring of x is

$$
\operatorname{End}_{\mathcal{E}}(x)=R x \cap x S
$$

with the addition induced by that of ${ }_{R} M_{S}$ and the multiplication such that if $r x=x s$ and $r^{\prime} x=x s^{\prime}$, then their product is $\left(r^{\prime} x=x s^{\prime}\right)(r x=x s)=\left(r^{\prime} r x=x s^{\prime} s\right)$.

1.4 Additivity

The category \mathcal{D} we have defined is just a preadditive category. Recall that every preadditive category \mathcal{A} can be embedded into an additive category as a full subcategory. In fact, it is possible to construct the free additive category $\operatorname{Mat}(\mathcal{A})$ as it is explained in ML98, pag. 198, es. 6].

Definition 1.12. For any preadditive category \mathcal{A}, let $\operatorname{Mat}(\mathcal{A})$ be the additive category whose objects are all n-tuples $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ of objects X_{i} of \mathcal{A} for any integer $n \geq 0$, and whose morphisms from an n-tuple $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ to an m-tuple $\left(Y_{1}, Y_{2}, \ldots, Y_{m}\right)$ are all the $m \times n$ matrices $\left(\phi_{i j}\right)$ of morphisms $\phi_{i j}: X_{j} \rightarrow Y_{i}$ of \mathcal{A}

In our setting the objects of $\operatorname{Mat}(\mathcal{D})$ are of the form $\left(x_{1}, \ldots, x_{n}\right)$, where $x_{i} \in{ }_{R} M_{S}$ and $n>0$, because \mathcal{D} has a zero object. Thus $\operatorname{Mat}(\mathcal{D})=\dot{U}_{n \geq 1} M^{n}$. The morphisms are matrices of morphisms of \mathcal{D}. Let see how to construct them in a precise way and how to work with them.

If $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{m}\right) \in \operatorname{Ob}(\operatorname{Mat}(\mathcal{D}))$, then

$$
\operatorname{Hom}_{\operatorname{Mat}(\mathcal{D})}\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{m}\right)\right)=\left(\begin{array}{ccc}
\operatorname{Hom}_{\mathcal{D}}\left(x_{1}, y_{1}\right) & \ldots & \operatorname{Hom}_{\mathcal{D}}\left(x_{n}, y_{1}\right) \\
\vdots & \ddots & \vdots \\
\operatorname{Hom}_{\mathcal{D}}\left(x_{1}, y_{m}\right) & \ldots & \operatorname{Hom}_{\mathcal{D}}\left(x_{n}, y_{m}\right)
\end{array}\right)
$$

So it can be expressed in the following form: $\operatorname{Hom}_{\operatorname{Mat}(\mathcal{D})}\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{m}\right)\right)$ $=\left\{\left(\left(r_{i j}\right),\left(s_{i j}\right)\right) \in M_{m \times n}(R) \times M_{m \times n}(S) \mid r_{i j} x_{j}=y_{i} s_{i j}, \forall i=1, \ldots, m, \forall j=1, \ldots, n\right\}$, where $r_{i j} \in \operatorname{Hom}_{\mathcal{D}}\left(x_{j}, y_{i}\right)$.

Hence an element of $\operatorname{Hom}_{\operatorname{Mat}(\mathcal{D})}\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{m}\right)\right)$ is a pair $(A, B)=$ $\left(\left(r_{i j}\right),\left(s_{i j}\right)\right)$ of matrices in $M_{m \times n}(R) \times M_{m \times n}(S)$.

Chapter 2

Internal Direct Sum

2.1 Idempotent Endomorphisms

In this section let us recall some basic notions about idempotent endomorphisms in a category.

Definition 2.1 (Splitting Idempotents). Idempotents split in a category \mathcal{A} if, for every object C of \mathcal{A} and every endomorphism $e: C \rightarrow C$ in \mathcal{A} with $e^{2}=e$, there exist an object A in \mathcal{A} and two morphisms $f: A \rightarrow C$ and $g: C \rightarrow A$ such that $e=f g$ and $g f=1_{A}$

Let x be an object of \mathcal{E} and (r, s) be an idempotent in $\operatorname{End}_{\mathcal{E}}(x)$, so that $r x=x s$ and $r^{2} x=r x$. Consider the object $r x=x s$ and the morphism $f=(1, s): r x \rightarrow x$ and $g=(r, 1): x \rightarrow r x$. Then $f g=(r, s): x \rightarrow x$ and $g f=(r, s): r x \rightarrow r x$ is the identity $\left(1_{R}, 1_{S}\right)$ of $r x$ because $r(r x)=r^{2} x=r x=1 \cdot r x$. This proves that:

Proposition 2.2. Idempotents split in the category \mathcal{E}.
Recall the next result that holds in a preadditive category.
Proposition 2.3. [Fac19, Proposition 4.17] The following conditions are equivalent for a preadditive category \mathcal{A}
(a) Idempotents split in \mathcal{A}.
(b) For every object A in \mathcal{A}, every morphism $e: A \rightarrow A$ with $e^{2}=e$ has a kernel in \mathcal{A}.

Proof. Assume (a) holds. Let $e: A \rightarrow A$ be an idempotent in \mathcal{A}. Then $1_{A}-e$ is also an idempotent. By hypothesis $1_{A}-e$ splits, then there exist $f: B \rightarrow A$ and $g: A \rightarrow B$ with $f g=1_{A}-e$ and $g f=1_{B}$. Then f is a kernel of e, because $e f=\left(1_{A}-f g\right) f=f-f g f=f-f 1_{B}=0$; and if $t: D \rightarrow A$ is morphism such that et $=0$, then $f(g t)=\left(1_{A}-e\right) t=t$. It remains to prove that such a morphism is unique, in fact, if $t^{\prime}: D \rightarrow B$ is another morphism with $f t^{\prime}=t$, then $t^{\prime}=g f t^{\prime}=g t$. Thus $f: B \rightarrow A$ is a kernel of e.

Now assume (b) holds. Let $e: A \rightarrow A$ be an idempotent in \mathcal{A} and $f: B \rightarrow A$ be a kernel of the idempotent $1_{A}-e$. Then $\left(1_{A}-e\right) e=0$ so there exists a unique morphism $g: A \rightarrow B$ with $e=f g$. It remains to show that $g f=1_{B}$, then $\left(1_{A}-e\right) f=0$ implies that $f=e f=f g f$. But kernels are monomorphisms, hence $1_{B}=g f$.

Let (r, s) be an idempotent element of $\operatorname{End}_{\mathcal{E}}(x)$. Then, as in any ring, (1-r, $1-$ $s) \in \operatorname{End}_{\mathcal{E}}(x)$ is also an idempotent endomorphism of x. Moreover, $(1-r, 1-s) \in$ $\operatorname{End}_{\mathcal{E}}(x)$ splits, so that there exist $f=(1,1-s):(1-r) x \rightarrow x$ and $g=(1-r, 1): x \rightarrow$ $(1-r) x$ such that $(r, s)=f g$ and $g f=1_{x}$. According to Proposition 2.3 we have that $(1,1-s):(1-r) x \rightarrow x$ is a kernel of $(r, s): x \rightarrow x$

Recall now the following results about modules.
Definition 2.4. Let M_{R} a right R-module over a ring R. Define $\operatorname{add}\left(M_{R}\right)$ as the full subcategory of Mod- R consisting of all modules isomorphic to direct summands of direct sums M^{n} of finitely many copies of M.

Let $E:=\operatorname{End}_{R}\left(M_{R}\right)$ denote the endomorphism ring of M_{R}, for a fixed right R-module M_{R}. Then ${ }_{E} M_{R}$ is a bimodule.

Next Theorem is a fundamental result in the study of decompositions.
Theorem 2.5. [Fac19, Theorem 2.35] The functors

$$
\operatorname{Hom}_{R}(M,-): \operatorname{Mod}-R \rightarrow \operatorname{Mod}-E \quad \text { and } \quad-\otimes_{E} M: \operatorname{Mod}-E \rightarrow \operatorname{Mod}-R
$$

induce an equivalence between the full subcategory $\operatorname{add}\left(M_{R}\right)$ of $\operatorname{Mod}-R$ and the full subcategory $\operatorname{proj}-R$ of Mod- E.

It is possible to generalize the previous Definition 2.4 and Theorem 2.5 from the category Mod- R to an arbitrary preadditive category, as follows.

Definition 2.6. Let A be an object of a preadditive category \mathcal{A}. Define $\operatorname{add}(A)$ as the subclass of $\operatorname{Ob}(\mathcal{C})$ consisting of all objects $B \in \operatorname{Ob}(\mathcal{A})$ for which there exist an integer $n>0$ and morphisms $f_{1}, f_{2}, \ldots, f_{n}: A \rightarrow B$ and $g_{1}, g_{2}, \ldots, g_{n}: B \rightarrow A$ in \mathcal{A} with $\sum_{i=1}^{n} f_{i} g_{i}=1_{B}$.

We denote by $\operatorname{add}(A)$ not only the subclass of $\operatorname{Ob}(\mathcal{A})$, but also the full subcategory of \mathcal{A} whose class of objects is add (A).

Example 2.7. When $\mathcal{A}=\operatorname{Mod}-R$, then $\operatorname{add}\left(R_{R}\right)$ is the class $\operatorname{proj}-R$ of all finitely generated projective right R-modules.

Proposition 2.8. Fac19, Lemma 4.18] Let A be a non-zero object of a preadditive category \mathcal{A}. Set $E:=\operatorname{End}_{\mathcal{A}}(A)$. Consider the additive functor

$$
F:=\operatorname{Hom}_{\mathcal{A}}(A,-): \mathcal{A} \rightarrow \operatorname{Mod}-E .
$$

Then the following properties hold:
(a) The functor F induces a full and faithful functor $\operatorname{add}(A) \rightarrow \operatorname{proj}-E$.
(b) If \mathcal{A} is an additive category with splitting idempotents, then F induces an equivalence $\operatorname{add}(A) \rightarrow \operatorname{proj}-E$.

Proof. Let B be an arbitrary object of $\operatorname{add}(A)$, by definition there exist

$$
f_{1}, \ldots, f_{n}: A \rightarrow B \quad \text { and } \quad g_{1}, \ldots, g_{n}: B \rightarrow A
$$

such that $\sum_{i=1}^{n} f_{i} g_{i}=1_{B}$. Apply F to this identity and get that

$$
\sum_{i=1}^{n} F\left(f_{i}\right) F\left(g_{i}\right)=1_{F(B)},
$$

where now $F\left(f_{i}\right): F(A) \rightarrow F(B)$ and $F\left(g_{i}\right): F(B) \rightarrow F(A)$ are right E-module morphisms. Thus the module $F(B)$ turns out to be a direct summand of $F(A)^{n} \cong E_{E}^{n}$, hence a finitely generated projective right modules of Mod- E.

Let us prove that the functor F restricted to $\operatorname{add}(A)$ is a faithful functor, let B^{\prime} be an object of $\operatorname{add}(A)$ and $f: B \rightarrow B^{\prime}$ be a morphism of $\operatorname{add}(A)$ with $F(f)=0$, that is, $f h=0$ for every $h \in \operatorname{Hom}_{\mathcal{A}}(A, B)$. Since $1_{B}=\sum_{i=1}^{n} f_{i} g_{i}$, we have $f=f 1_{B}=$ $\sum_{i=1}^{n}\left(f f_{i}\right) g_{i}=0$.

In order to prove that the restriction of F is full, let B, B^{\prime} two objects in add (A) and let $\psi: \operatorname{Hom}_{\mathcal{A}}(A, B) \rightarrow \operatorname{Hom}_{\mathcal{A}}\left(A, B^{\prime}\right)$ be right E-module morphism. Define $f: B \rightarrow B^{\prime}$ by setting $f:=\sum_{i=1}^{n} \psi\left(f_{i}\right) g_{i}$. We need to show that $F(f)=\psi$, i.e., that $F(f)\left(f^{\prime}\right)=\psi\left(f^{\prime}\right)$ for every $f^{\prime} \in \operatorname{Hom}_{\mathcal{A}}(A, B)$. Now ψ is a right $\operatorname{End}_{\mathcal{A}}(A)$-module morphism, so that $F(f)\left(f^{\prime}\right)=f f^{\prime}=\sum_{i=1}^{n} \psi\left(f_{i}\right) g_{i} f^{\prime}=\psi\left(\sum_{i=1}^{n} f_{i} g_{i} f^{\prime}\right)=\psi\left(f^{\prime}\right)$.

Now let \mathcal{A} be an additive category with splitting idempotents. Let P be a finitely generated projective right E-module. Then there are morphisms $\alpha_{i}: P \rightarrow E_{E}$ and $\beta_{i}: E_{E} \rightarrow P$ with $1_{P}=\sum_{i=1}^{n} \beta_{i} \alpha_{i}$. Thus the endomorphism of E_{E}^{n} given by left multiplication by the matrix $\left(\alpha_{i} \beta_{j}\right)$ is an idempotent endomorphism with image P. Since \mathcal{A} is additive and the restriction of F to $\operatorname{add}(A)$ is full by (a), there is an endomorphism f of A^{n} in \mathcal{A} such that $F(f)=\left(\alpha_{i} \beta_{j}\right)$. Again, the fact that the restriction of F to $\operatorname{add}(A)$ is faithful implies that f must be idempotent, so that f splits. Let $g: A^{n} \rightarrow B$ and $h: B \rightarrow A^{n}$ be morphisms in \mathcal{A} with $h g=f$ and $g h=1_{B}$. Then, for the right E-module morphism $F(g): F\left(A^{n}\right) \rightarrow F(B)$ and $F(h): F(B) \rightarrow F\left(A^{n}\right)$, one gets that $F(h) F(g)=F(f)$ and $F(g) F(h)=1_{F(B)}$. Hence $F(g)$ is onto, so that $F(h)$ and $F(f)$ have the same image. Now the image of $F(f)=\left(\alpha_{i} \beta_{j}\right)$ is the projective module P, and $F(g) F(h)=1_{F(B)}$ implies that the image of $F(h)$ is isomorphic to $F(B)$. Thus $P \cong F(B)$, as desired.

2.2 Internal Direct Sum

Let us recall what a biproduct decomposition in a category is.

Definition 2.9 (Biproducts). Let A_{1}, A_{2} be objects of a preadditive category \mathcal{A}. A biproduct of A_{1} and A_{2} is a 5-tuple $\left(B, \pi_{1}, \pi_{1}, \epsilon_{1}, \epsilon_{2}\right)$, where $B \in \operatorname{Ob}(\mathcal{A})$ and $\pi_{1}: B \rightarrow A_{1}, \pi_{2}: B \rightarrow A_{2}, \epsilon_{1}: A_{1} \rightarrow B, \epsilon_{2}: A_{2} \rightarrow B$ are morphisms such that

$$
\pi_{1} \circ \epsilon_{1}=1_{A_{1}}, \quad \pi_{2} \circ \epsilon_{2}=1_{A_{2}}, \quad \epsilon_{1} \circ \pi_{1}+\epsilon_{2} \circ \pi_{2}=1_{B} .
$$

In short, we will say that B is a biproduct of A_{1} and A_{2}.

For right R-modules, there is the following nice interplay between splitting of idempotents, direct-sum decompositions and the categorical definition of biproducts.

Proposition 2.10. Let P_{S} be a right S-module. There is a one-to-one correspondence η between the set I of all idempotent elements of $\operatorname{End}\left(P_{S}\right)$ and the set

$$
D=\left\{(A, B) \mid A, B \leq P_{S}, P_{S}=A \oplus B\right\}
$$

of all the pairs (A, B) of submodules of P_{S} whose sum is direct and equal to P_{S}. If $e \in I$, the corresponding pair is $\eta(e)=\left(e\left(P_{S}\right)\right.$, kere $)$. If $(A, B) \in D$, the corresponding idempotent is the epimorphism

$$
\begin{aligned}
& p_{A}: A \oplus B \rightarrow A \\
& a+b \mapsto a
\end{aligned}
$$

with $a \in A$ and $b \in B$, called the projection of A along B.

In this section, we will show that the same interplay occurs for our bimodule ${ }_{R} M_{R}$ and our categories $\mathcal{D} \cong \mathcal{E}$.

In our setting, let x, x_{1}, x_{2} be objects in \mathcal{E}. Then x is a biproduct of x_{1} and x_{2} if and only if there exist morphisms $\left(p_{i}, q_{i}\right): x \rightarrow x_{i}$ and $\left(e_{i}, f_{i}\right): x_{i} \rightarrow x$, for $i=1,2$, such that the following conditions hold:

$$
p_{i} e_{i} x_{i}=x_{i},\left(e_{1} p_{1}+e_{2} p_{2}\right) x=x, p_{i} x=x_{i} q_{i} \text { and } e_{i} x_{i}=x f_{i}
$$

for $i=1,2$.
We now need a concept for a bimodule that is the analogue of the notion of internal direct sum in Mod- R.

Definition 2.11 (Internal direct sum). Let ${ }_{R} M_{S}$ be an R-S-bimodule and $x, x_{1}, x_{2} \in$ ${ }_{R} M_{S}$. We say that x is the internal direct sum of x_{1} and x_{2}, and we will write $x=x_{1} \oplus x_{2}$, if $x=x_{1}+x_{2}, R x=R x_{1} \oplus R x_{2}$ and $x S=x_{1} S \oplus x_{2} S$, where the last two are internal direct sums of modules.

In the next proposition we show that every internal direct-sum decomposition of $x \in{ }_{R} M_{S}$ determines a biproduct decomposition of x in \mathcal{E}

Proposition 2.12. Let ${ }_{R} M_{S}$ an R-S-bimodule, $x, x_{1}, x_{2} \in{ }_{R} M_{S}$ and assume $x=$ $x_{1} \oplus x_{2}$. Then x is the biproduct of x_{1} and x_{2} in the category \mathcal{E}.

Proof. By hypothesis, we have $x=x_{1}+x_{2}, x_{1}=r_{1} x, x_{2}=r_{2} x, R x_{1} \cap R x_{2}=0$, $x_{1}=x s_{1}, x_{2}=x s_{2}, x_{1} S \cap x_{2} S=0$.

Define the embeddings and the projections as follows: from $x_{i}=x s_{i}$ define ϵ_{i} : $x_{i} \rightarrow x$ as $\epsilon_{i}=\left(1_{R}, s_{i}\right)$ and from $x_{i}=r_{i} x$ define $\pi_{i}: x \rightarrow x_{i}$ as $\pi_{i}=\left(r_{i}, 1_{S}\right)$.

Let us check that $\left(x, \epsilon_{1}, \epsilon_{2}, \pi_{1}, \pi_{2}\right)$ is the biproduct of x_{1} and x_{2}. Start with $\pi_{i} \circ \epsilon_{i}: x_{i} \rightarrow x_{i}$. We have that $\pi_{i} \circ \epsilon_{i}=\left(r_{i}, s_{i}\right)$ and $x=x_{1}+x_{2}$, then $r_{1} x=r_{1} x_{1}+r_{1} x_{2}$, so we obtain $\left(1-r_{1}\right) x_{1}=x_{1}-r_{1} x_{1}=r_{1} x-r_{1} x_{1}=r_{1} x_{2}$; using the fact that $R x_{1} \cap R x_{2}=0$, we conclude that $x_{1}=r_{1} x_{1}$ and $r_{1} x_{2}=0$, hence $r_{1} x_{1}=x_{1}$, that is $\pi_{1} \circ \epsilon_{1}=1_{x_{1}}$. It can be done in the same way for the other.

Now take $\epsilon_{1} \circ \pi_{1}+\epsilon_{2} \circ \pi_{2}: x \rightarrow x$, we have that $\epsilon_{1} \circ \pi_{1}+\epsilon_{2} \circ \pi_{2}=\left(r_{1}, s_{1}\right)+\left(r_{2}, s_{2}\right)=$ $\left(r_{1}+r_{2}, s_{1}+s_{2}\right)$, we want to show that it is equal to the identity of x, that is $\left(r_{1}+r_{2}\right) x=x$. But $\left(r_{1}+r_{2}\right) x=\left(r_{1}+r_{2}\right)\left(x_{1}+x_{2}\right)=r_{1} x_{1}+r_{2} x_{2}$, where the last equality holds because we previously observed that $r_{2} x_{1}=0$ and $r_{1} x_{2}=0$, so we conclude that $\left(r_{1}+r_{2}\right) x=x_{1}+x_{2}=x$.

We show now that every idempotent endomorphism of \mathcal{E} determines a biproduct decomposition.

Proposition 2.13. Let $(r, s) \in \operatorname{End}_{\mathcal{E}}(x)$ be an idempotent endomorphism in \mathcal{E}. Then

$$
(x,(r, 1),(1-r, 1),(1, s),(1,1-s))
$$

is a biproduct of $r x$ and $(1-r) x$ in \mathcal{E}.
Proof. Let us check that $\pi_{1} \circ \epsilon_{1}=1_{r x}, \pi_{2} \circ \epsilon_{2}=1_{(1-r) x}$ and $\epsilon_{1} \circ \pi_{1}+\epsilon_{2} \circ \pi_{2}=1_{x}$.
Let us prove the first one. We have $(r, 1) \circ(1, s)=(r, s): r x \rightarrow r x$, with $r^{2} x=$ $r x=1 \cdot r x$ because (r, s) is an idempotent endomorphism.

For the second one we have $(1-r, 1) \circ(1,1-s)=(1-r, 1-s):(1-r) x \rightarrow(1-r) x$, that is $(1-r)^{2} x=(1-r) x=1 \cdot(1-r) x$.

About the last one we get $(1, s) \circ(r, 1)+(1,1-s) \circ(1-r, 1)=(r, s)+(1-r, 1-s)=$ $\left(1_{R}, 1_{S}\right)$. Hence it is a biproduct of $r x$ and $(1-r) x$ in \mathcal{E}.

Clearly, given any biproduct

$$
\left(B, \pi_{1}, \pi_{1}, \epsilon_{1}, \epsilon_{2}\right)
$$

of A_{1} and A_{2} in a preadditive category \mathcal{A}, from the equality $\pi_{1} \circ \epsilon_{1}=1_{A_{1}}$, we can always associate to the biproduct an idempotent endomorphism $\epsilon_{1} \circ \pi_{1}$ of B. In the particular case of our category \mathcal{E}, we have:

Proposition 2.14. Let $\left(x,\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right),\left(r_{1}, s_{1}\right),\left(r_{2}, s_{2}\right)\right)$ be a biproduct of y_{1} and y_{2} in \mathcal{E}. Then $\left(r_{i} p_{i}, s_{i} q_{i}\right): x \rightarrow x$ is an idempotent endomorphism of x in \mathcal{E} for each $i=1,2$.

Proof. Recall that $\left(p_{i}, q_{i}\right): x \rightarrow y_{i}$ are morphism such that $p_{i} x=y_{i} q_{i}$ and $\left(r_{i}, s_{i}\right)$: $y_{i} \rightarrow x$ are morphism such that $r_{i} y_{i}=x s_{i}$, with $i=1,2$. If we consider $\left(r_{i}, s_{i}\right) \circ\left(p_{i}, q_{i}\right)$: $x \rightarrow x$, then we have that $r_{i} p_{i} \cdot r_{i} p_{i} x=r_{i} \cdot p_{i} r_{i} y_{i} \cdot q_{i}=r_{i} \cdot y_{i} q_{i}=r_{i} p_{i} x$. This conclude the proof.

Therefore, starting from a biproduct x of two elements y_{1}, y_{2} in \mathcal{E}, we can associate to it an idempotent endomorphism in \mathcal{E} as in Proposition 2.14, and then we can come back to a biproduct of two different elements x_{1}, x_{2}, which is an internal sum, as in Proposition 2.13. A natural question is to determine the relation between y_{1}, y_{2} on the one hand, and x_{1}, x_{2} on the other hand. Our next step is to prove that x_{1}, x_{2} are isomorphic to y_{1}, y_{2} respectively.

Starting from the biproduct $\left(x,\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right),\left(r_{1}, s_{1}\right),\left(r_{2}, s_{2}\right)\right)$ of y_{1} and y_{2} in \mathcal{E} we pass to an idempotent endomorphism $\left(r_{i} p_{i}, s_{i} q_{i}\right): x \rightarrow x$ and from this to the biproduct $\left(x,\left(r_{1} p_{1}, 1\right),\left(1-r_{1} p_{1}, 1\right),\left(1, s_{1} q_{1}\right),\left(1,1-s_{1} q_{1}\right)\right)$ of $r_{1} p_{1} x$ and $\left(1-r_{1} p_{1}\right) x$ in \mathcal{E}. Set $x_{1}:=r_{1} p_{1} x$ and $x_{2}:=\left(1-r_{1} p_{1}\right) x$.

Proposition 2.15. In the previous construction $y_{i} \cong x_{i}$.

Proof. Let us construct two morphisms, one from y_{i} to x_{i} and one from x_{i} to y_{i} such that they are one the inverse of the other.

Let $\left(r_{1}, s_{1}\right) \circ\left(r_{1} p_{1}, 1\right)=\left(r_{1} p_{1} r_{1}, s_{1}\right): y_{1} \rightarrow x_{1}$ and $\left(p_{1}, q_{1}\right) \circ\left(1, s_{1} q_{1}\right)=\left(p_{1}, q_{1} s_{1} q_{1}\right)$: $x_{1} \rightarrow y_{1}$ be the two morphisms. Let us show that are one the inverse of the other: $\left(r_{1} p_{1} r_{1}, s_{1}\right) \circ\left(p_{1}, q_{1} s_{1} q_{1}\right): x_{1} \rightarrow x_{1}$ and we have $r_{1} p_{1} r_{1} p_{1} x_{1}=r_{1} p_{1} r_{1} p_{1} r_{1} x=r_{1} p_{1} x=x_{1} ;$ $\left(p_{1}, q_{1} s_{1} q_{1}\right) \circ\left(r_{1} p_{1} r_{1}, s_{1}\right): y_{1} \rightarrow y_{1}$ and we have $p_{1} r_{1} p_{1} r_{1} y_{1}=p_{1} r_{1} p_{1} x s_{1}=p_{1} r_{1} y_{1} q_{1} s_{1}=$ y_{1}. Then $y_{1} \cong x_{1}$. In the same way it can be done for y_{2}.

From the last Propositions we can deduce that:

Proposition 2.16. Let ${ }_{R} M_{S}$ an R-S-bimodule, $x, y_{1}, y_{2} \epsilon_{R} M_{S}$, consider the biproduct

$$
\left(x, \epsilon_{1}, \epsilon_{2}, \pi_{1}, \pi_{2}\right)
$$

of y_{1} and y_{2} in the category \mathcal{E}. Then $x=\left(\epsilon_{1} \circ \pi_{1}\right) x \oplus\left(\epsilon_{2} \circ \pi_{2}\right) x$ and, in the category $\mathcal{E},\left(\epsilon_{i} \circ \pi_{i}\right) x \cong y_{i}$.

We can observe that

$$
x_{2}=\left(1-r_{1} p_{1}\right) x=x-r_{1} p_{1} x=r_{1} p_{1} x+r_{2} p_{2} x-r_{1} p_{1} x=r_{2} p_{2} x
$$

so we conclude that

$$
\left(1-r_{1} p_{1}, 1\right)=\left(r_{2} p_{2}, 1\right): x \rightarrow x_{2} .
$$

Similarly for $\left(1,1-s_{1} q_{1}\right)=\left(1, s_{2} q_{2}\right)$.
Hence, from Proposition 2.13, Proposition 2.14 and the last observation, we can conclude the following.

Theorem 2.17. Fix an element $x \in{ }_{R} M_{S}$. Then there is a one to one correspondence between

$$
\left\{(r, s) \in \operatorname{End}_{\mathcal{E}}(x) \mid(r, s) \text { is idempotent }\right\}
$$

and

$$
\left\{\left(x,\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right),\left(r_{1}, s_{1}\right),\left(r_{2}, s_{2}\right)\right) \mid q_{1}=q_{2}=1_{S} \text { and } r_{1}=r_{2}=1_{R}\right\} .
$$

Now we want to show that there is also a one to one correspondence between the finite decompositions in \mathcal{E} of an element x and all the complete finite families of orthogonal idempotents of $\operatorname{End}_{\mathcal{D}}(x)$.

Proposition 2.18. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a complete family of orthogonal idempotent endomorphisms in \mathcal{E}, where $e_{i}=\left(r_{i}, s_{i}\right): x \rightarrow x$. Then there is an inner decomposition $x=x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n}$ of x in \mathcal{E}.

Proof. By hypothesis, we know that $r_{i} x=x s_{i}$ and $r_{i}^{2}=r_{i}$ because each $e_{i}=\left(r_{i}, s_{i}\right)$: $x \rightarrow x$ is an idempotent endomorphism. Furthermore from the completeness we get that $\sum_{i=1}^{n} r_{i}=1_{R}$ and $\sum_{i=1}^{n} s_{i}=1_{S}$ while frome orthogonality $r_{i} r_{j}=0$ and $s_{i} s_{j}=0$ for every $i, j=1, \ldots n$ such that $i \neq j$.

Define $x_{i}:=r_{i} x$. We need to check that $x=x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n}$. First observe that

$$
r_{1} x+r_{2} x+\cdots+r_{n} x=\left(\sum_{i=1}^{n} r_{i}\right) x=1_{R} \cdot x=x .
$$

Now we want that $R x=R x_{1} \oplus R x_{2} \oplus \cdots \oplus R x_{n}$ as modules, i.e.,

$$
R x=R r_{1} x \bigoplus R r_{2} x \bigoplus \cdots \bigoplus R r_{n} x .
$$

It can be trivially seen that $R r_{1} x+R r_{2} x+\cdots+R r_{n} x \subseteq R x$, for the other inclusion we have that $r x=r \cdot 1_{R} \cdot x=r\left(r_{1}+r_{2}+\cdots+r_{n}\right) x=r r_{1} x+r r_{2} x+\cdots+r r_{n} x$, hence $R x \subseteq R r_{1} x+R r_{2} x+\cdots+R r_{n} x$. It remains to check that the sum is direct. Let $y \in\left(\sum_{i \neq j} R r_{i} x\right) \cap R r_{j} x$, then there exist $h_{1}, h_{2}, \ldots, h_{n}$ such that $y=h_{1} r_{1} x+h_{2} r_{2} x+$ $\cdots+\hat{h_{j}} r_{j} x=h_{j} r_{j} x=h_{j} r_{j}^{2} x=h_{j} r_{j} r_{j} x=h_{j} r_{j} x s_{j}$, where $\hat{a}=0$ for every a, hence $h_{j} r_{j} x s_{j}=\left(h_{1} r_{1}+\cdots+\hat{h_{j}} r_{j}+\ldots h_{n} r_{n}\right) x s_{j}=\left(h_{1} r_{1}+\cdots+\hat{h_{j}} r_{j}+\ldots h_{n} r_{n}\right) r_{j} x=0$.

Proposition 2.19. Let x be an object of \mathcal{E}. If $x=x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n}$ is an inner decomposition of x in \mathcal{E}, then there exists a complete and orthogonal family $\left\{\left(r_{1}, s_{1}\right), \ldots,\left(r_{n}, s_{n}\right)\right\}$ of idempotent endmorphisms of x with $x_{i}=r_{i} x$ for every $i=1, . ., n$.

Proof. By hypothesis, from the definition of internal product in \mathcal{E} we have that

$$
x=\sum_{i=1}^{n} x_{i}, \quad R x=\bigoplus_{i=1}^{n} R x_{i} \quad \text { and } \quad x S=\bigoplus_{i=1}^{n} x_{i} S .
$$

From the direct sum decomposition of $R x$ and $x S$ for every $i=1, \ldots, n$ there exists a unique $\left(r_{i}, s_{i}\right)$ such that $x_{i}=r_{i} x=x s_{i}$. Fix as family of endomorphisms

$$
E_{n}=\left\{\left(r_{1}, s_{1}\right),\left(r_{2}, s_{2}\right), \ldots,\left(r_{n}, s_{n}\right)\right\}
$$

First let us show that each element is idempotent. Take

$$
\begin{aligned}
r_{i}^{2} x-r_{i} x & =r_{i}\left(r_{i} x\right)-r_{i} x=r_{i} x_{i}-x_{i}= \\
& =r_{i}\left(x-\sum_{k \neq i} x_{k}\right)-x_{i}= \\
& =r_{i} x-\left(\sum_{k \neq i} r_{i} x_{k}\right)-x_{i}= \\
& =-\sum_{k \neq i} r_{i} x_{k} .
\end{aligned}
$$

But we also have that $r_{i}^{2} x-r_{i} x=\left(r_{i}-1_{R}\right) x_{i}$. Then, because $\left(\sum_{j \neq i} R x_{j}\right) \cap R x_{i}=0$, we obtain $r_{i}^{2} x=r_{i} x$.
From $x=x_{1}+x_{2}+\cdots+x_{n}=r_{1} x+r_{2} x+\cdots+r_{n} x=\left(\sum_{i=1}^{n} r_{i}\right) x$ we deduce that the family is complete.
It remains to prove that the family is orthogonal. For every $i \neq j$ we have

$$
r_{i} r_{j} x=r_{i} x_{j}=r_{i}\left(x-\sum_{k \neq j} x_{k}\right)=-\sum_{k \neq i, j} r_{i} x_{k} .
$$

Similarly, $r_{i} r_{j} x=0$.
Let us conclude this section using the Definition 2.11 of internal direct sum and Proposition 2.8 in order to have an equivalence between categories.

Definition 2.20. Let ${ }_{R} M_{S}$ be an R-S-bimodule. Define $\mathcal{A}_{x}:=\left\{y \in{ }_{R} M_{S} \mid\right.$ there exists $z \epsilon_{R} M_{S}$ such that $\left.x=y \oplus z\right\}$ and define \mathcal{P}_{x} as the class of all cyclic projective right modules over the ring $\operatorname{End}_{\mathcal{D}}(x)$.

Proposition 2.21. The functor $\operatorname{Hom}_{\mathcal{D}}(x,-): \mathcal{D} \rightarrow{\operatorname{Mod}-\operatorname{End}_{\mathcal{D}}(x) \text { induces an equiv- }}$ alence between the full subcategory of \mathcal{D} with class of objects \mathcal{A}_{x} and the full subcategory of $\operatorname{Mod}^{-\operatorname{End}_{\mathcal{D}}(x)}$ with class of objects \mathcal{P}_{x}. Hence in \mathcal{D} there is a one-to-one correspondence between internal direct summands of x up to isomorphisms and projective cyclic modules over the ring $\operatorname{End}_{\mathcal{D}}(x)$.

2.3 Examples

Example 2.22. Consider the \mathbb{Z} - \mathbb{Z}-bimodule $\mathbb{Z}_{\mathbb{Z}}$, take $z \in \mathbb{Z}$. The endomorphism ring $\operatorname{End}_{\mathcal{E}}(z)=\{\overline{(a, b)} \in \mathbb{Z} \times \mathbb{Z} \mid a z=z b\}$ is equal to 0 if $z=0$ and equal to \mathbb{Z} if $z \neq 0$. Hence in this case we can conclude that the idempotents are only the trivial ones, i.e., 0 and 1 . Hence, all non-zero objects are indecomposable.

Example 2.23. Let R be a ring, with its natural R - R-bimodule structure ${ }_{R} R_{R}$. It is clear that, for any idempotent element $e \in R, 1=e \oplus(1-e)$ is an internal direct-sum decomposition of the identity 1 of R. Conversely, if $1=x_{1} \oplus x_{2}$ is an internal direct sum, then ${ }_{R} R=R x_{1} \oplus R x_{2}$, so that there exists an idempotent $e \in R$ such that $R x_{1}=R e$ and $R x_{2}=R(1-e)$. The unique way of writing 1 has a sum of an element
of $R e$ and an element of $R(1-e)$ is $1=e+(1-e)$. Therefore $x_{1}=e$ and $x_{2}=1-e$. This shows that the internal direct-sum decompositions of 1 in ${ }_{R} R_{R}$ are exactly those of the form $1=e \oplus(1-e)$ for some idempotent $e \in R$. More generally AF92, Corollary 6.20], the internal direct-sum decompositions $1=x_{1} \oplus \cdots \oplus x_{n}$ correspond exactly to the complete n-tuples of pairwise orthogonal idempotents $\left(e_{1}, \ldots, e_{n}\right)$.

Example 2.24. In FHLV95, Example 1.6] it was shown that, for every integer $n \geq 2$, there exists an artinian module A_{T} over a suitable ring T which is a direct sum of t indecomposable submodules for every $t=2,3, \ldots, n$. In the ring $R:=\operatorname{End}\left(A_{T}\right)$, there are therefore complete sets of pairwise orthogonal primitive idempotents of cardinality t for every $t=2,3, \ldots, n$. By Example 2.23, the identity of R is therefore an internal direct sum of t indecomposable elements of the bimodule ${ }_{R} R_{R}$ for every $t=2,3, \ldots, n$.

Example 2.25. If R is a commutative ring, every R-module M_{R} is an R - R-bimodule. Let x be an element of M_{R}. Then there is a one-to-one correspondence between the set $\left\{\left(S_{1}, \ldots, S_{n}\right) \mid S_{i}\right.$ is an R-submodule of $x R$ for every $i=1,2, \ldots, n$ and $x R=$ $\left.S_{1} \oplus \cdots \oplus S_{n}\right\}$ and the set $\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x=x_{1} \oplus \cdots \oplus x_{n}\right.$ is an internal decomposition of $\left.x \in{ }_{R} M_{R}\right\}$. The proof of this is similar to the proof given in Example 2.23.

Example 2.26. Let us apply what we have seen in Example 2.25 to the particular case of a vector space V_{k} over a field k, so that our bimodule ${ }_{R} M_{S}$ is now the k - k-bimodule ${ }_{k} V_{k}$. It is easy to see that in this category \mathcal{D}, the indecomposable objects are the $x \in{ }_{k} V_{k}$ with $x \neq 0$. The morphisms $x \rightarrow y$ in \mathcal{D} are the morphisms $\overline{(r, s)}: x \rightarrow y$, so that $\operatorname{Hom}_{\mathcal{D}}(x, y) \cong k$ if x and y generate the same one-dimensional vector space, and $\operatorname{Hom}_{\mathcal{D}}(x, y)=0$ otherwise. Two elements x, y of V_{k} are isomorphic if and only if they generate the same vector space (either one-dimensional or zero-dimensional).

If $\left(x_{1}, \ldots, x_{n}\right)$ is an object of $\operatorname{Mat}(\mathcal{D})$ with $x_{i} \neq 0$ for every $i=1,2, \ldots, n$, then $\operatorname{End}_{\mathcal{D}}\left(x_{1}, \ldots, x_{n}\right)$ is the ring $\mathbb{M}_{n \times n}(k)$ of $n \times n$ matrices. It is easy to see that idempotents split in $\operatorname{Mat}(\mathcal{D})$. It can be easily seen that the only indecomposable biproduct decompositions of such an $\left(x_{1}, \ldots, x_{n}\right)$ in $\operatorname{Mat}(\mathcal{D})$ is $x_{1} \amalg \cdots \amalg x_{n}$. (To see this, notice that every object $\left(y_{1}, \ldots, y_{m}\right)$ of $\operatorname{Mat}(\mathcal{D})$ has a degree, the number of its non-zero elements y_{j}. The degree of a biproduct is the sum of the degrees of
the summands. The objects of $\operatorname{Mat}(\mathcal{D})$ indecomposable as a biproduct are those of degree one.)

Example 2.27. Let us apply what we have seen in Example 2.25 to the particular case of the ring $\mathbb{R}[x, y, z] /\left(x^{2}+y^{2}+z^{2}-1\right)$. This ring has a finitely generated indecomposable projective module P_{R} such that $R_{R}^{3} \cong R_{R} \oplus P_{R}$. The bimodule ${ }_{R} M_{S}$ is always the R - R-bimodule ${ }_{R} R_{R}$. Since R is an integral domain, all nonzero elements $x \in{ }_{R} R_{R}$ have an endomorphism ring $\operatorname{End}_{\mathcal{D}}(x)$ that is a subring of R, hence has no non-trivial idempotent, so that all non-zero elements x of ${ }_{R} R_{R}$ are indecomposable. The object $\left(1_{R}, 1_{R}, 1_{R}\right)$ of $\operatorname{Mat}(\mathcal{D})$ has endomorphism ring $\operatorname{End}_{\operatorname{Mat}(\mathcal{D})}\left(1_{R}, 1_{R}, 1_{R}\right) \cong \mathbb{M}_{3 \times 3}(R)$. Because of the indecomposable decomposition $R_{R}^{3} \cong R_{R} \oplus P_{R}$, there is an idempotent endomorphism $e \in \operatorname{End}_{\operatorname{Mat}(\mathcal{D})}\left(1_{R}, 1_{R}, 1_{R}\right)$ that doesn't have a kernel in \mathcal{D}. Therefore \mathcal{D} does not have splitting idempotents, and the decomposition $R_{R}^{3} \cong R_{R} \oplus P_{R}$ in proj - $\operatorname{End}_{\mathcal{D}}\left(1_{R}\right)$ does not lift to biproduct decomposition of $\left(1_{R}, 1_{R}, 1_{R}\right)$ in $\operatorname{Mat}(\mathcal{D})$.

Example 2.28. If R is a commutative noetherian integral domain of Krull dimension 1 (for instance, a Dedekind domain), then we have uniqueness of decomposition as an internal direct-sum of any element $x \in R$ into indecomposables up to isomorphism, because if x is a torsion-free element, then $x R \cong R_{R}$ is indecomposable as an R-module because its endomorphism ring is isomorphic to R, hence is a domain, hence has no non-trivial idempotents. If x is a torsion element, then $x R$ has its endomorphism ring isomorphic to $R / \operatorname{ann}(x)$, which is an artinian commutative ring, hence is a finite direct product of local artinian rings. Hence by the Krull-SchmidtAzumaya Theorem $x R$ is a direct-sum of indecomposables up to isomorphism in a unique way.

Example 2.29. Let G be any abelian group, so that it is naturally a \mathbb{Z} - \mathbb{Z}-bimodule ${ }_{\mathbb{Z}} G_{\mathbb{Z}}$. Fix an element $x \in G$. There are three cases. If $x=0$, then the unique internal decomposition of x is the trivial decomposition $x=0$. If $x \neq 0$ and x is not a torsion element, then the unique internal decomposition is the trivial decomposition $x=x$, that is, x is internally indecomposable, because its endomorphism ring $\operatorname{End}_{\mathcal{D}}(x)$ is isomorphic to the integral domain \mathbb{Z}, hence x has no nontrivial idempotent endomorphisms. The third case is for $x \neq 0, x$ torsion. Let n be the order of the
torsion element x of G. Decompose n as a product of powers of distinct primes: $n=p_{1}^{n_{1}} \ldots p_{t}^{n_{m}}$, with the p_{i} distinct primes. Then the unique internal decomposition of x into indecomposable elements is $x=\oplus_{i=1}^{t} p_{1}^{n_{1}} \ldots \widehat{p_{i}^{n_{i}}} \ldots p_{t}^{n_{m}} x$. It corresponds to the direct sum decomposition $t(G)=\oplus_{p} t_{p}(G)$ of the torsion part $t(G)$ of G into its p-torsion parts components $t_{p}(G)$.

2.4 Isomorphic elements, isomorphic internal direct sums

The study of block decompositions of matrices is one of the classical themes in Linear Algebra. We refer to the description of matrices up to the matrix equivalence ~ defined, for any two rectangular $m \times n$ matrices A and B, by $A \sim B$ if $B=Q^{-1} A P$ for some invertible $n \times n$ matrix P and some invertible $m \times m$ matrix Q. The equivalence relation \sim on the set of $m \times n$ matrices corresponds to the isomorphism relation in the category $\operatorname{Morph}(\operatorname{Mod}-R)$. See [CEDF19]. More generally, this also applies to our category \mathcal{C} :

Proposition 2.30. Two objects x, y of \mathcal{C} are isomorphic in \mathcal{C} if and only if there exist an element $r \in R$ invertible in R and an element $s \in S$ invertible in S such that $r x=y s$.

Proof. Assume that there exist two elements $r \in R$, invertible in R, and $s \in S$, invertible in S, such that $r x=y s$. Then $(r, s): x \rightarrow y$ is a morphism in \mathcal{C}. Let r^{-1}, s^{-1} be the inverses of r, s, respectively. Multiplying the equality $r x=y s$ by r^{-1} on the left and s^{-1} on the right, we get that $r^{-1} y=x s^{-1}$. Hence $\left(r^{-1}, s^{-1}\right): y \rightarrow x$ is a morphism in \mathcal{C}, which is clearly the inverse of $(r, s): x \rightarrow y$.

In the categories \mathcal{D} and \mathcal{E} the situation is a little more complicate. In fact we have that:

Proposition 2.31. Two objects x, y of \mathcal{D} are isomorphic in \mathcal{D} (equivalently, in \mathcal{E}) if and only if there exist $r \in\left(y S:_{R} x\right)$ and $r^{\prime} \in\left(x S:_{R} y\right)$ such that $r^{\prime} r-1 \in \operatorname{l.ann}_{R}(x)$ and $r r^{\prime}-1 \in 1 \cdot \operatorname{ann}_{R}(y)$, if and only if there exist $s \in\left(R x:_{S} y\right)$ and $s^{\prime} \in\left(R y:_{S} x\right)$ such that $s s^{\prime}-1 \in \mathrm{r} \cdot \mathrm{ann}_{R}(y)$ and $s^{\prime} s-1 \in \mathrm{r} \cdot \mathrm{ann}_{R}(x)$.

In view of the usual definition of unique factorization domain in Commutative Algebra, it is natural to consider the following definition:

Definition 2.32. Two internal decompositions

$$
y_{1} \oplus \cdots \oplus y_{m}=x=x_{1} \oplus \cdots \oplus x_{n}
$$

of an element $x \in{ }_{R} M_{S}$ are equal if $n=m$ and there exists a permutation σ of $\{1,2, \ldots, n\}$ such that $x_{i}=y_{\sigma(i)}$ for every $i=1,2, \ldots, n$.

On the other hand recall that two direct-sum decompositions

$$
N_{1} \oplus \cdots \oplus N_{n}=M_{R}=M_{1} \oplus \cdots \oplus M_{m}
$$

of a right R-module M_{R} are said to be isomorphic if $n=m$ and there exists a permutation σ of $\{1,2, \ldots, n\}$ such that $M_{i} \cong N_{\sigma(i)}$ for every $i=1,2, \ldots, n$. Thus let us consider the following definition:

Definition 2.33. Two internal decompositions

$$
y_{1} \oplus \cdots \oplus y_{m}=x=x_{1} \oplus \cdots \oplus x_{n}
$$

of an element $x \in_{R} M_{S}$ are isomorphic if $n=m$ and there exists a permutation σ of $\{1,2, \ldots, n\}$ such that $x_{i} \cong y_{\sigma(i)}$ in \mathcal{D} for every $i=1,2, \ldots, n$.

Notice that, in an internal decomposition $x=x_{1} \oplus \cdots \oplus x_{n}$, one has that if $x_{i} \neq 0$, then $x_{i} \notin R x_{j} \cup x_{j} S$ for every index $j \neq i$.

Recall now the following useful result:
Lemma 2.34. ([AF92, Exercise 7.2(c)] and Coh03, p. 144]) Let R be any ring and e, f idempotent elements of R. Then:
(a) Re $=R f$ if and only if $f=e+(1-e)$ xe for some $x \in R$.
(b) Re $\cong R f$ if and only if $e R \cong f R$, if and only if there exist $x \in e R f$ and $y \in f R e$ with $x y=e$ and $y x=f$. In this case, e and f are said to be isomorphic idempotents.
(c) e is isomorphic to f and $1-e$ is isomorphic to $1-f$ if and only if there exists an invertible element $u \in R$ such that $f=u^{-1} e u$. In this case, e and f are said to be conjugate idempotents.

Remark 2.35. Furthermore conjugate idempotents are isomorphic, in fact, if $f=$ $u^{-1} e u$, take $a=e u$ and $b=u^{-1} e$, so that $a=e u=e e u=e u f \in e R f$ and $b=u^{-1} e=$ $u^{-1} e e=f u^{-1} e \in f R e$ with $a b=e$ and $b a=f$.

Hence, as far as idempotents are concerned, there are three equivalence relations on the set of all idempotent elements of a ring R that are noteworthy to our aims: being equal, being isomorphic and being conjugate.

Lemma 2.36. Let $x=x_{1} \oplus \cdots \oplus x_{n}=y_{1} \oplus \cdots \oplus y_{m}$ be two internal decompositions of an element $x \in{ }_{R} M_{S}$. Fix an index $i=1,2, \ldots, n$ and an index $j=1,2, \ldots, m$. Suppose $x_{i}=r_{i} x=x s_{i}$ and $y_{j}=r_{j}^{\prime} x=x s_{j}^{\prime}$. Then the following conditions are equivalent:
(a) $x_{i}=y_{j}$.
(b) $R x_{i}=R y_{j}$ and $\oplus_{k \neq i} R x_{k}=\oplus_{\ell \neq j} R y_{\ell}$.
(c) $R x_{i}=R y_{j}$ and $R\left(x-x_{i}\right)=R\left(x-y_{j}\right)$.
(d) $x_{i} S=y_{j} S$ and $\oplus_{k \neq i} x_{k} S=\oplus_{\ell \neq j} y_{\ell} S$.
(e) $x_{i} S=y_{j} S$ and $\left(x-x_{i}\right) S=\left(y-y_{j}\right) S$.
(f) The two idempotent endomorphisms $e_{i}:=\overline{\left(r_{i}, s_{i}\right)}$ and $e_{j}^{\prime}:=\overline{\left(r_{j}^{\prime}, s_{j}^{\prime}\right)} \in \operatorname{End}_{\mathcal{D}}(x)$ coincide.
(g) The two idempotent endomorphisms $\lambda_{r_{i}}, \lambda_{r_{j}^{\prime}} \in \operatorname{End}_{S}(x S)$ coincide.
(h) The two idempotent endomorphisms $\rho_{s_{i}}, \rho_{s_{j}^{\prime}} \in \operatorname{End}_{R}(R x)$ coincide.

Proof. First of all, let us show that $\oplus_{k \neq i} R x_{k}=R\left(x-x_{i}\right)$. The inclusion $\oplus_{k \neq i} R x_{k} \supseteq$ $R\left(x-x_{i}\right)$ is trivial, because $x=x_{1}+\cdots+x_{n}$. For the inclusion $\oplus_{k \neq i} R x_{k} \subseteq R\left(x-x_{i}\right)$, notice that, from $R\left(x-x_{i}\right) \subseteq \oplus_{k \neq i} R x_{k}$, the sum $R x_{i}+R\left(x-x_{i}\right)$ is direct. It follows that $R x \subseteq R x_{i} \oplus R\left(x-x_{i}\right) \subseteq R x_{i} \oplus\left(\oplus_{k \neq i} R x_{k}\right)=R x$. Therefore $R\left(x-x_{i}\right)=\oplus_{k \neq i} R x_{k}$, as desired. The proof for the direct summands $y_{k} S$ is similar.

$$
(\mathrm{a}) \Rightarrow(\mathrm{b}) \text { now follows trivially from the remark in the previous paragraph. }
$$

(b) \Rightarrow (a) The only way to write x as a sum of an element of $R x_{i}$ and an element of $\oplus_{k \neq i} R x_{k}$ is $x=x_{i}+\left(x-x_{i}\right)$. Similarly, the only way to write x as a sum of an element of $R y_{j}$ and an element of $\oplus_{\ell \neq j} R y_{\ell}$ is $x=y_{j}+\left(x-y_{j}\right)$. From condition (b), it follows that $x_{i}=y_{j}$.
(b) \Leftrightarrow (c) follows trivially from the remark in the first paragraph of this proof.

The proof that $(\mathrm{a}) \Leftrightarrow(\mathrm{d}) \Leftrightarrow(\mathrm{e})$ is similar.
(a) \Rightarrow (f) If $x_{i}=y_{j}$, then $r_{i} x=r_{j}^{\prime} x$, i.e., we have that the two morphisms $r_{i} x=r_{j}^{\prime} x: x \rightarrow x$ coincide in the category \mathcal{E}, so that the two morphisms

$$
e_{i}:=\overline{\left(r_{i}, s_{i}\right)}: x \rightarrow x \quad \text { and } \quad e_{j}^{\prime}:=\overline{\left(r_{j}^{\prime}, s_{j}^{\prime}\right)}: x \rightarrow x
$$

in the equivalent category \mathcal{D}, coincide.
(f) \Rightarrow (a) The fact that the endomorphisms $e_{i}:=\overline{\left(r_{i}, s_{i}\right)}$ and $e_{j}^{\prime}:=\overline{\left(r_{j}^{\prime}, s_{j}^{\prime}\right)} \epsilon$ $\operatorname{End}_{\mathcal{D}}(x)$ coincide in \mathcal{D} means that $r_{i}-r_{j}^{\prime} \in \operatorname{l.ann}(x)$, that is, $r_{i} x-r_{j}^{\prime} x=0$. It follows that $x_{i}=r_{i} x=r_{j}^{\prime} x=y_{j}$.
(f) $\Leftrightarrow(\mathrm{g})$ follows immediately from the existence of the faithful functor $F_{S}: \mathcal{D} \rightarrow$ Mod- S, which maps the endomorphisms $e_{i}:=\overline{\left(r_{i}, s_{i}\right)}$ and $e_{j}^{\prime}:=\overline{\left(r_{j}^{\prime}, s_{j}^{\prime}\right)}$ of x in \mathcal{D} to the two endomorphisms $\lambda_{r_{i}}, \lambda_{r_{j}^{\prime}}$ of $x S$, respectively.

The proof of $(\mathrm{f}) \Leftrightarrow(\mathrm{h})$ is similar.
It follows that:
Proposition 2.37. Two internal decompositions

$$
x=x_{1} \oplus \cdots \oplus x_{n} \quad \text { and } \quad x=y_{1} \oplus \cdots \oplus y_{m}
$$

of an element $x \in{ }_{R} M_{S}$ are equal if and only if $n=m$ and there exists a permutation σ of $\{1,2, \ldots, n\}$ such that any of the following equivalent conditions is satisfied:
(a) $R x_{i}=R y_{\sigma(i)}$ for every $i=1,2, \ldots, n$.
(b) $x_{i} S=y_{\sigma(i)} S$ for every $i=1,2, \ldots, n$.
(c) The corresponding complete sets of pairwise orthogonal idempotents in \mathcal{D} coincide: $\left\{e_{1}, \ldots, e_{n}\right\}=\left\{e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right\}$.
(d) The corresponding complete sets of pairwise orthogonal idempotents of $\operatorname{End}_{S}(x S)$ coincide: $\left\{\lambda_{r_{1}}, \ldots, \lambda_{r_{n}}\right\}=\left\{\lambda_{r_{1}^{\prime}}, \ldots, \lambda_{r_{n}^{\prime}}\right\}$.
(e) The corresponding complete sets of pairwise orthogonal idempotents of $\operatorname{End}_{R}(R x)$ coincide: $\left\{\rho_{s_{1}}, \ldots, \rho_{s_{n}}\right\}=\left\{\rho_{s_{1}^{\prime}}, \ldots, \rho_{s_{n}^{\prime}}\right\}$.

Here $e_{i}:=\overline{\left(r_{i}, s_{i}\right)}, e_{j}^{\prime}:=\overline{\left(r_{j}^{\prime}, s_{j}^{\prime}\right)}$, where $x_{i}=r_{i} x=x s_{i}$ and $y_{i}=r_{i}^{\prime} x=x s_{i}^{\prime}$.
Proposition 2.38. Let $x=x_{1} \oplus \cdots \oplus x_{n}=y_{1} \oplus \cdots \oplus y_{m}$ be two internal decompositions of an element $x \in{ }_{R} M_{S}$. Fix an index $i=1,2, \ldots, n$ and an index $j=1,2, \ldots, m$. Suppose $x_{i}=r_{i} x=x s_{i}$ and $y_{j}=r_{j}^{\prime} x=x s_{j}^{\prime}$. Then the following conditions are equivalent:
(a) x_{i} and y_{j} are isomorphic objects in \mathcal{D}.
(b) The two idempotent endomorphisms $e_{i}:=\overline{\left(r_{i}, s_{i}\right)}, e_{j}^{\prime}:=\overline{\left(r_{j}^{\prime}, s_{j}^{\prime}\right)}$ are isomorphic idempotents of the ring $\operatorname{End}_{\mathcal{D}}(x)$.

Proof. Set $E:=\operatorname{End}_{\mathcal{D}}(x)$. Because of the category equivalence induced by the additive functor $\operatorname{Hom}_{\mathcal{D}}(x,-): \mathcal{A}_{x} \rightarrow \mathcal{P}_{x}$, see Proposition 2.21, two objects x_{i} and y_{j} of \mathcal{A}_{x} are isomorphic in \mathcal{D} if and only if the corresponding right ideals $E e_{i}, E e_{j}^{\prime}$ are isomorphic in Mod- E, that is, if and only if e_{i}, e_{j}^{\prime} are isomorphic idempotents.

Proposition 2.39. Let $x=x_{1} \oplus \cdots \oplus x_{n}=y_{1} \oplus \cdots \oplus y_{m}$ be two internal decompositions of an element $x \in{ }_{R} M_{S}$. Suppose $x_{i}=r_{i} x=x s_{i}$ and $y_{j}=r_{j}^{\prime} x=x s_{j}^{\prime}$ for all indices i and j, so that the corresponding idempotents are $e_{i}=\overline{\left(r_{i}, s_{i}\right)}$ and $e_{j}^{\prime}=\overline{\left(r_{j}^{\prime}, s_{j}^{\prime}\right)}$. The following conditions are equivalent:
(a) The two internal decompositions of x are isomorphic.
(b) The two complete sets $\left\{e_{1}, \ldots, e_{n}\right\},\left\{e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right\}$ of pairwise orthogonal idempotents of $\operatorname{End}_{\mathcal{D}}(x)$ are conjugate, that is, $n=m$ and there exist a permutation σ of $\{1,2, \ldots, n\}$ and an invertible element α of $\operatorname{End}_{\mathcal{D}}(x)$ such that $\alpha e_{i} \alpha^{-1}=e_{\sigma(i)}^{\prime}$ for every $i=1,2, \ldots, n$.
(c) $n=m$ and there exist an automorphism $\overline{(r, s)}: x \rightarrow x$ in \mathcal{D} and a permutation σ of $\{1,2, \ldots, n\}$ such that $r x_{i}=y_{\sigma(i)}$ s for every $i=1,2, \ldots, n$.

Proof. (a) \Rightarrow (c) Suppose that (a) holds, so that $x=x_{1} \oplus \cdots \oplus x_{n}=y_{1} \oplus \cdots \oplus y_{n}$ and that there exists a permutation σ of $\{1,2, \ldots, n\}$ with $x_{i} \cong y_{\sigma(i)}$ for every $i=$ $1,2, \ldots, n$. Set $E:=\operatorname{End}_{\mathcal{D}}(x)$. Applying $\operatorname{Hom}_{\mathcal{D}}(x,-): \mathcal{D} \rightarrow \operatorname{Mod}-E$, we get two
direct-sum decompositions $E_{E}=e_{1} E \oplus e_{n} E=e_{1}^{\prime} E \oplus e_{n}^{\prime} E$ with $e_{i} E \cong e_{\sigma(i)}^{\prime} E$ for every $i=1,2, \ldots, n$. It follows that there is an automorphism α of E_{E} such that $\alpha\left(e_{i} E\right)=$ $e_{\sigma(i)}^{\prime} E$ for every $i=1,2, \ldots, n$. Automorphisms of E_{E} are left multiplication by an invertible element of E, so that there exists an invertible element $u \in E$ such that $u e_{i} E=e_{\sigma(i)}^{\prime} E$ for every i. Since we have a direct sum of right ideals, for the identity 1 of E we have that $1=e_{1}+\cdots+e_{n}$, so $1=u 1 u^{-1}=u e_{1} u^{-1}+\cdots+u e_{n} u^{-1}$. Therefore, from $u e_{i} E=e_{\sigma(i)}^{\prime} E$, we get that $u e_{n} u^{-1}=e_{\sigma(i)}^{\prime}$ for every i. Thus $u e_{n}=e_{\sigma(i)}^{\prime} u$ for every $i=1,2, \ldots, n$. Now u is of the form $\overline{(r, s)}$, and if $x_{i}=r_{i} x=x s_{i}$, then $e_{i}=\overline{\left(r_{i}, s_{i}\right)}$. Similarly for the elements y_{i}. Hence $\overline{(r, s)\left(r_{i}, s_{i}\right)}=\overline{\left(r_{\sigma(i)}^{\prime}, s_{\sigma(i)}^{\prime}\right)(r, s)}$ for every i, so that $r r_{i} x=x s_{\sigma(i)}^{\prime} s$. Hence $r x_{i}=r r_{i} x=x s_{\sigma(i)}^{\prime} s=y_{\sigma(i)} s$.
(c) \Rightarrow (b) Suppose that (c) holds. Let α be the automorphism $\overline{(r, s)}$. It suffices to show that $r x_{i}=y_{\sigma(i)} s$ implies $\alpha e_{i} \alpha^{-1}=e_{\sigma(i)}^{\prime}$. Now $\alpha e_{i} \alpha^{-1}=e_{\sigma(i)}^{\prime}$ is equivalent to $\alpha e_{i}=e_{\sigma(i)}^{\prime} \alpha$, that is, that $r r_{i} x=r_{\sigma(i)}^{\prime} r x$. But if $r x_{i}=y_{\sigma(i)} s$, then $r r_{i} x=r x_{i}=y_{\sigma(i)} s=$ $r_{\sigma(i)}^{\prime} x s=r_{\sigma(i)}^{\prime} r x$.
(b) \Rightarrow (a) Suppose that (b) holds. Let r, r^{\prime} and s, s^{\prime} be such that $\alpha=\overline{(r, s)}$ and $\alpha^{-1}=\overline{\left(r^{\prime}, s^{\prime}\right)}$. To prove (a) it suffices to show that $x_{i} \cong y_{\sigma(i)}$ for every i. To this end, it suffices to that $\overline{(r, s)}: x_{i} \rightarrow y_{\sigma(i)}$ and $\overline{\left(r^{\prime}, s^{\prime}\right)}: y_{\sigma(i)} \rightarrow x_{i}$ are well defined, mutually inverse morphisms in \mathcal{D}, that is, that $r x_{i}=y_{\sigma(j)} s, r^{\prime} y_{\sigma(i)}=x_{i} s^{\prime}, r^{\prime} r x_{i}=x_{i}$ and $r r^{\prime} y_{\sigma(i)}=y_{\sigma(i)}$.

To see that $r x_{i}=y_{\sigma(j)} s$, notice that the equality $\alpha e_{i} \alpha^{-1}=e_{\sigma(i)}^{\prime}$ in (b) is equivalent to $\alpha e_{i}=e_{\sigma(i)}^{\prime} \alpha$, that is, to the equality $r r_{i} x=r_{\sigma(i)}^{\prime} r x$. Thus $r x_{i}=r r_{i} x=r_{\sigma(i)}^{\prime} r x=$ $r_{\sigma(i)}^{\prime} x s=y_{\sigma(i)} s$. Similarly for the equality $r^{\prime} y_{\sigma(i)}=x_{i} s^{\prime}$.

To prove that $r^{\prime} r x_{i}=x_{i}$, multiply the equality $r^{\prime} r x=x$ by s_{i}, getting that $r^{\prime} r x s_{i}=x s_{i}$, that is, $r^{\prime} r x_{i}=x_{i}$. Similarly for the equality $r r^{\prime} y_{\sigma(i)}=y_{\sigma(i)}$.

Chapter 3

Semilocal Categories

3.1 The Jacobson radical

In this section we recall the basic notions and properties of the Jacobson radical of a ring.

Definition 3.1 (Radical). Let M_{R} a right R-module. The radical $\operatorname{rad}\left(M_{R}\right)$ of a module is the intersection of all maximal submodules of M_{R}.

Definition 3.2 (Jacobson radical). Let R be any ring and consider the regular right R-module R_{R}. The radical of R_{R} is called the Jacobson radical of the ring R. Thus $\mathrm{J}(\mathrm{R}):=\operatorname{rad}\left(\mathrm{R}_{\mathrm{R}}\right)$ is the intersection of all maximal right ideals of R.

Let us give some classical descriptions of the Jacobson radical.
Proposition 3.3. [Fac17, Lemma 29.1] The Jacobson radical $\mathrm{J}(R)$ of any R is the intersection of the right annihilators $\mathrm{r} \mathrm{ann}_{R}\left(S_{R}\right)$ of all simple right R-modules S_{R}.

Definition 3.4. Let M_{R} be a right R-modules and P be a submodule of M_{R}. The submodule P is superfluous in M_{R} if, for every submodule K of $M_{R}, P+K=M_{R}$ implies $L=M_{R}$.

Proposition 3.5. The Jacobson radical $\mathrm{J}(\mathrm{R})$ of a ring can also be described as:
(i) The unique largest superfluous right ideal of R.
(ii) The set of all $x \in R$ such that $1-x r$ is right invertible for every $r \in R$.
(iii) The set of all $x \in R$ such that $1-r x s$ is invertible for every $r, s \in R$.

Proposition 3.6. Let R be a semisimple artinian ring. Then the Jacobson radical of R is zero.

Proof. Let R be a semisimple artinian ring, the regular module R_{R} is semisimple, then it is a direct sum of finitely many simple right R-modules $S_{1}, S_{2}, \ldots, S_{n}$. The right modules $S_{1} \oplus \cdots \oplus \hat{S}_{i} \oplus \ldots S_{n}$ are n maximal right submodules of R_{R}, and the intersection of these n maximal right submodules is zero. Hence $\mathrm{J}(R)=0$

3.2 Semilocal Rings

In this section we will recall the main properties of semilocal rings. In Commutative Algebra, a commutative ring is semilocal if it has only finitely many maximal ideals. For arbitrary rings there is the following definition.

Definition 3.7 (Semilocal Ring). A ring R is semilocal if $R / \mathrm{J}(R)$ is a semisimple Artinian ring. Here $J(R)$ denotes the Jacobson radical of R.

The two definitions agree for commutative rings. Moreover it can be proved that:
Proposition 3.8. The following conditions are equivalent for a ring R :
(a) The ring R is semilocal.
(b) The ring $R / \mathrm{J}(R)$ is a right Artinian ring.
(b') The ring $R / \mathrm{J}(R)$ is a left Artinian ring.
(c) The ideal $\mathrm{J}(R)$ is the intersection of finitely many maximal right ideals of R.
(c') The ideal $\mathrm{J}(R)$ is the intersection of finitely many maximal left ideals of R.
Let us now recall some examples of known semilocal rings.
Examples 3.9. [Fac19, Examples 3.13] The following are semilocal rings.
(1) Every right (or left) Artinian ring is semilocal.
(2) Every local ring is semilocal.
(3) The direct product $R_{1} \times R_{2} \times \cdots \times R_{n}$ of finitely many semilocal rings R_{1}, R_{2}, \ldots, R_{n} is semilocal.
(4) If R is a semilocal ring, the ring $\mathbb{M}_{n}(R)$ of all $n \times n$ matrices over R is semilocal.
(5) A commutative ring is semilocal if and only if it has finitely many maximal ideals.

Proposition 3.10. Fac98, Exemple (5), pag. 7] Every homomorphic image of a semilocal ring is semilocal.

Proof. Let I be an ideal of a semilocal ring R. Since every simple R / I-module is a simple R-module, if $\pi: R \rightarrow R / I$ is the canonical projection, then $\pi(\mathrm{J}(R)) \subseteq \mathrm{J}(R / I)$. Hence π induces a surjective homomorphism $R / \mathrm{J}(R) \rightarrow(R / I) / \mathrm{J}(R / I)$. But every homomorphic image of a semisimple artinian ring is a semisimple artinian ring, and thus R / I is semilocal.

The property of being semilocal is a finiteness condition on the R. Furthermore recall the following result.

Proposition 3.11. Let R be a semilocal ring, then:
(a) Every finitely generated projective R-module has only finitely many direct summands up to isomorphism.
(b) The number of direct-sum decompositions of any nonzero finitely generated projective module as a sum of nonzero submodules is finite up to isomorphism.
(c) Every finitely generated projective R-module is a direct sum of finitely many indecomposable modules.
(d) Every finitely generated projective R-module is not a direct sum of infinitely many nonzero modules.

In particular, for modules, it is interesting to study the case of the modules M_{R} whose endomorphism ring $\operatorname{End}\left(M_{R}\right)$ is semilocal. In fact, having a semilocal endomorphism ring is a finiteness condition on the module M_{R}. In order to explain what it means, recall the following.

Proposition 3.12. Let M_{R} be a right R-module and let $\operatorname{End}\left(M_{R}\right)$ be a semilocal ring, then:
(a) M_{R} is a direct sum of finitely many indecomposable modules.
(b) M_{R} is not a direct sum of infinitely many nonzero submodules.
(c) If N_{R} and N_{R}^{\prime} are right R-modules, then $M_{R} \oplus N_{R} \cong M_{R} \oplus N_{R}^{\prime}$ implies $N_{R} \cong$ N_{R}^{\prime}.
(d) M_{R} has only finitely many direct summands up to isomorphism.

3.3 Local Morphisms

Recall now a very useful tool in the theory of semilocal rings, that is local morphisms. As for semilocal rings, we will recall the definition for commutative rings.
Let R and S be local commutative rings with maximal ideals I and J respectively. In Commutative Algebra, a ring morphism $\phi: R \rightarrow S$ is called a local morphism if $\phi(I) \subseteq J$. The definition for arbitrary rings is the following.

Definition 3.13. Let R and S be arbitrary associative rings with identity. A ring morphism $\phi: R \rightarrow S$ is said to be a local morphism if, for every $r \in R, \phi(r)$ invertible in S implies r invertible in R.

This definition concides with the one in commutative case, when the rings R and S are local commutative rings.

Example 3.14. Let R be a ring. The canonical projection $\pi: R \rightarrow R / \mathrm{J}(R)$ is a local morphism. More generally, if I is a two-sided ideal of R and $I \subseteq J(R)$, then the canonical projection $\pi: R \rightarrow R / I$ is a local morphism.

Lemma 3.15. [Fac19, Lemma 3.23] Let R, S and T be rings and let $\phi: R \rightarrow S$, $\psi: S \rightarrow T$ be ring morphisms. If ϕ and ψ are local morphisms, then the composite mapping $\psi \circ \phi$ is a local morphism.

The reason why local morphisms are so useful is the following characterization of semilocal rings.

Theorem 3.16. [CD93, Theorem 1] A ring R is semilocal if and only if there exists a local morphism of R into a semilocal ring.

From now on our aim is to show how local morphisms appear in our setting.
Proposition 3.17. For every $x \in{ }_{R} M_{S}$ the ring morphism $\phi: \operatorname{End}_{\mathcal{C}}(x) \hookrightarrow R \times S$, defined by $\phi(r, s)=(r, s)$, is a local morphism.

Proof. Let (r, s) be an element of $\operatorname{End}_{\mathcal{C}}(x)$ such that $\phi((r, s))=(r, s) \in R \times S$ is an invertible element, so there exists a unique pair $\left(r^{\prime}, s^{\prime}\right) \in R \times S$ such that $\left(r r^{\prime}, s s^{\prime}\right)=\left(1_{R}, 1_{S}\right)$ and $\left(r^{\prime} r, s^{\prime} s\right)=\left(1_{R}, 1_{S}\right)$. We must show that $\left(r^{\prime}, s^{\prime}\right)$ is an element of $\operatorname{End}_{\mathcal{C}}(x)$. Starting from the equation $r x=x s$, multiply on the left by r^{\prime} and on the right by s^{\prime}. We obtain $r^{\prime} r x s^{\prime}=r^{\prime} x s s^{\prime}$, so $x s^{\prime}=r^{\prime} x$.

Our next step is to describe the endomorphism ring of a cyclic module. Let us recall a description of the endomorphism ring of a cyclic right module $x S$ over an arbitrary ring S. Recall that if a right S-module N_{S} is cyclic and x is a generator of N_{S}, then $N_{S} \cong S / A$ where $A=r . \operatorname{ann}_{S}(x)$.

We are interested in $\operatorname{Hom}_{S}(S / A, S / A)=\operatorname{End}_{S}(S / A)$. Each S-module morphism $f: S / A \rightarrow S / A$ is uniquely determined by the its image on $1+A$. Let us suppose that $f(1+A)=a+A$, so $f(r+A)=f(1+A) r=a r$. Furthermore, $f(0+A)=0+A$ so if we change the representative for the zero, we have $f(i+A)=a i+A=0+A$. That is, ai $\in A$. Then $\operatorname{End}_{S}(x S)$ is isomorphic to the idealizer

$$
\begin{aligned}
\mathbb{I}\left(\operatorname{r.ann}_{S}(x)\right) & =\left\{a \in S \mid a \operatorname{r} \cdot \operatorname{ann}_{S}(x) \subseteq \operatorname{rr.ann}_{S}(x)\right\}= \\
& =\{a \in S \mid \forall t \in S(x t=0 \Rightarrow x a t=0)\}
\end{aligned}
$$

in S of $\mathrm{rann}_{S}(x)$ modulo r.ann ${ }_{S}(x)$:

$$
\operatorname{End}_{S}(x S) \cong \mathbb{I}\left(r \cdot \operatorname{ann}_{S}(x)\right) / \mathrm{r} \cdot \operatorname{ann}_{S}(x) .
$$

This isomorphism associates to any endomorphism f of $x S$ the element $a+\mathrm{r} \cdot \mathrm{ann}_{S}(x)$, where $a \in S$ is such that $f(x)=x a$.

Similarly for homomorphisms of $x S \rightarrow y S$: we have that if

$$
\begin{aligned}
H_{x, y} & =\left\{a \in S \mid a \operatorname{ar} \cdot \operatorname{ann}_{S}(x) \subseteq \operatorname{r.ann}_{S}(y)\right\}= \\
& =\{a \in S \mid \forall t \in S(x t=0 \Rightarrow y a t=0)\},
\end{aligned}
$$

then

$$
\operatorname{Hom}_{S}(x S, y S) \cong H_{x, y} / \mathrm{r} \cdot \operatorname{ann}_{S}(y) .
$$

The isomorphism associates to any morphism $f: x S \rightarrow y S$ the element $a+\mathrm{r} \cdot \mathrm{ann}_{S}(x)$, where $a \in S$ is such that $f(x)=y a$.

Furthermore, let $\phi: x S \rightarrow x S$ be an idempotent element of $\operatorname{End}_{S}(x S)$ with $\phi(x)=x a$ for some a in $\mathbb{I}(A) / A$. Notice that ϕ is well defined if and only if for every $t \in S x t=0 \Rightarrow x a t=0$. Then $\phi(x t)=x a t$ for every $t \in S$. The same holds for $1-\phi: x S \rightarrow x S$. The endomorphism $1-\phi$ corresponds to the right multiplication by $1-a$, in fact $(1-\phi)(x)=x-x a=x(1-a)$. The endomorphism ϕ is idempotent if and only if $\phi^{2}(x)=\phi(x) \Leftrightarrow \phi(x a)=\phi(x) \Leftrightarrow x a^{2}=x a \Leftrightarrow a^{2}-a \in a n n_{S}(x)$

Hence the direct sum decomposition is

$$
x S=x a S \bigoplus x(1-a) S
$$

Consider now the subring $\frac{(R x: s x)}{\operatorname{r} . a n n_{S}(x)}$ of $\frac{\mathbb{I}\left(\operatorname{r} \cdot \mathrm{ann} n_{S}(x)\right)}{\text { r.anns }(x)} \cong \operatorname{End}_{S}(x S)$. Take an element $\bar{s}=s+\mathrm{r} \cdot \mathrm{ann}_{S}(x)$ where $x s \in R x$, so that there exists $r^{\prime} \in R$ such that $x s=r^{\prime} x$. Then, for every $s^{\prime} \in S$ such that $x s^{\prime}=0$, we have $x s s^{\prime}=r^{\prime} x s^{\prime}=0$. Hence we have

$$
\frac{\left(R x:_{S} x\right)}{\mathrm{r} \cdot \operatorname{ann}_{S}(x)} \subseteq \frac{\mathbb{I}\left(\mathrm{r} \cdot \operatorname{ann}_{S}(x)\right)}{\mathrm{r} \cdot \operatorname{ann}_{S}(x)} \cong \operatorname{End}_{S}(x S) .
$$

Similarly,

$$
\frac{\left(x S:_{R} x\right)}{1 \cdot \operatorname{ann}_{R}(x)} \subseteq \frac{\mathbb{I}\left(1 \cdot \operatorname{ann}_{R}(x)\right)}{1 \cdot \operatorname{ann}_{R}(x)} \cong \operatorname{End}_{R}(R x) .
$$

Proposition 3.18. The morphism

$$
\begin{aligned}
\psi: \operatorname{End}_{\mathcal{D}}(x) & \longrightarrow \frac{\left(x S:_{R} x\right)}{l^{\prime} \cdot \operatorname{ann}_{R}(x)} \times \frac{\left(R x:_{S} x\right)}{\mathrm{r}^{2 \operatorname{ann}_{S}(x)}} \\
\overline{(r, s)} & \longrightarrow(\bar{r}, \bar{s})
\end{aligned}
$$

is an injective local homomorphism.

Proof. The mapping ψ is well defined because for every $(a, b) \in l_{\text {.ann }}^{R}(x) \times r . \mathrm{ann}_{S}(x)$, i.e., such that $a x=x b=0_{M}$ we have $r+a \in \bar{r}$ and $(r+a) x=r x$.

It is also a homomorphism, because $\psi\left(\overline{\left(r^{\prime}, s^{\prime}\right)} \circ \overline{(r, s)}\right)=\psi\left(\overline{\left(r^{\prime} r, s^{\prime} s\right)}\right)=\left(\overline{r^{\prime} r}, \overline{s^{\prime} s}\right)=$ $\left(\overline{r^{\prime}}, \overline{s^{\prime}}\right)(\bar{r}, \bar{s})=\psi\left(\overline{\left(r^{\prime}, s^{\prime}\right)}\right) \circ \psi(\overline{(r, s)})$. The homomorphism ψ is injective because $\operatorname{Ker}(\psi)=1 . \operatorname{ann}_{\mathrm{R}}(x) \times \mathrm{r} \cdot \mathrm{ann}_{\mathrm{S}}(x)$.

Moreover, ψ is a local morphism: take $\overline{(r, s)} \in \operatorname{End}_{\mathcal{D}}(x)$, suppose $\psi(\overline{(r, s)})=(\bar{r}, \bar{s})$ is invertible, then \bar{r} is invertible in $\frac{\left(x S:_{R} x\right)}{1 . a n_{R}(x)}$ and \bar{s} is invertible in $\frac{(R x: s x)}{\text { r.ann }(x)}$. Hence there exist $\tilde{r} \in R$ and $\tilde{s} \in S$ such that $\overline{\tilde{r} r}=\overline{1_{R}}$ and $\overline{\tilde{s} s}=\overline{1_{S}}$, i.e., the pair $\overline{(\tilde{r}, \tilde{s})}$ is the inverse of $\overline{(r, s)}$. Now it remains to prove that $\overline{(\tilde{r}, \tilde{s})}$ is an element of $\operatorname{End}_{\mathcal{D}}(x)$. Starting from the equation $r x=x s$, multiply on the left by \tilde{r} and on the right by \tilde{s}. We obtain $\tilde{r} r x \tilde{s}=\tilde{r} x s \tilde{s}$, so passing to the quotient we get $x \tilde{s}=\tilde{r} x$.

Consider the morphism $\alpha: \operatorname{End}_{\mathcal{D}}(x) \rightarrow \operatorname{End}_{S}(x S)$ that sends an element $\overline{(r, s)}$ of $\operatorname{End}_{\mathcal{D}}(x)$ with $r x=x s$ to $\lambda_{r}: x S \rightarrow x S$ (notice that $\lambda_{r}(x S)=r x S=x s S \subseteq x S$), and $\beta: \operatorname{End}_{\mathcal{D}}(x) \rightarrow \operatorname{End}_{R}(R x)$ that sends an element $\overline{(r, s)}$ of $\operatorname{End}_{\mathcal{D}}(x)$ with $r x=x s$ to $\rho_{s}: R x \rightarrow R x$. We have that $\rho_{s}(R x)=R x s=R r x \subseteq R x$. Both morphisms are well defined. Notice that on $\operatorname{End}_{R}(R x)$ we usually write mappings on the right, because $R x$ is a left R-module. So β is therefore a ring homomorphism, because $\beta\left(\overline{\left(r^{\prime}, s^{\prime}\right)} \circ \overline{(r, s)}\right)=\beta\left(\overline{\left(r^{\prime} r, s^{\prime} s\right)}\right)=\rho_{s^{\prime} s}=\rho_{s^{\prime}} \circ \rho_{s}=\beta\left(\overline{\left(r^{\prime}, s^{\prime}\right)}\right) \circ \beta(\overline{(r, s)})$.

Hence we can deduce the following.
Proposition 3.19. The morphism

$$
\begin{aligned}
\xi: \operatorname{End}_{\mathcal{D}}(x) & \rightarrow \operatorname{End}(R x)^{\mathrm{Op}} \times \operatorname{End}(x S) \\
\overline{(r, s)} & \longmapsto(\bar{r}, \bar{s})
\end{aligned}
$$

is an injective local homomorphism.

The proof is similar to that of Theorem 3.18.
So we obtain the following results.

Theorem 3.20. If R and S are semilocal rings, then $\operatorname{End}_{\mathcal{D}}(x)$ is also a semilocal ring.

Proof. If R and S are semilocal rings, their direct product is also semilocal and we know from Proposition 3.17 that $\operatorname{End}_{\mathcal{C}}(x) \rightarrow R \times S$ is a local morphism, then, because of Theorem 3.16. $\operatorname{End}_{\mathcal{C}}(x)$ is a semilocal ring and from Proposition 3.10 $\operatorname{End}_{\mathcal{C} / \mathcal{I}}(x)$ is semilocal.

Theorem 3.21. If $\frac{\left(x S:_{R} x\right)}{1 . a n_{R}(x)}$ and $\frac{(R x: s x)}{\text { r.anns }(x)}$ are semilocal rings, then $\operatorname{End}_{\mathcal{D}}(x)$ is also a semilocal ring.

Proof. It follows directly from Proposition 3.18 and Theorem 3.16.
Since any semilocal ring has only finitely many finitely generated indecomposable projective R-modules up to isomorphism (Fuller and Shutters, Fac19, Corollary 3.31], it follows that:

Corollary 3.22. If R and S are semilocal rings, every $x \in{ }_{R} M_{S}$ has only finitely many internal direct-sum decompositions in ${ }_{R} M_{S}$ up to isomorphism.

Definition 3.23. [Fac19, Definition 4.61] Let \mathcal{A} be a category. It is a semilocal category if it is a preadditive category with a non-zero object such that the endomorphism ring $\operatorname{End}_{\mathcal{A}}(A)$ of every non-zero object A of \mathcal{A} is a semilocal ring.

Theorem 3.24. If R and S are semilocal rings, then the categories \mathcal{C}, \mathcal{D} and \mathcal{E} are semilocal categories.

We will now give an example of a finitely generated module over a semilocal ring whose endomorphism ring is not semilocal.
Recall that a semiprimary ring is a semilocal ring whose Jacobson ideal is nilpotent.
Example 3.25. [FH06, Example 3.5]
Let K be a field with a non-onto endomorphism $\alpha: K \rightarrow K$. Let $K_{0}=\alpha(K)$. Let ${ }_{K} V$ be a vector space different from zero. View ${ }_{K} V$ as a K - K-bimodule taking the scalar product by K as left action and setting as right action $v \cdot k=\alpha(k) v$ for every $v \in V$ and every $k \in K$.
Let $R=\left(\begin{array}{cc}K & { }_{K} V_{K} \\ 0 & K\end{array}\right)$. Then $\mathrm{J}(R)=\left(\begin{array}{cc}0 & { }_{K} V_{K} \\ 0 & 0\end{array}\right), R / \mathrm{J}(R) \cong K \times K$ and $\mathrm{J}(R)^{2}=0$, so that R is semiprimary. Fix $a \in K / K_{0}$ and $0 \neq w \in V$. Consider the right ideal

$$
I=\sum_{n \geq 0}\left(\begin{array}{cc}
0 & a^{n} w \\
0 & o
\end{array}\right) R=\left(\begin{array}{cc}
0 & K_{0}[a] w \\
0 & 0
\end{array}\right)
$$

of R. Then $E:=\operatorname{End}_{R}(R / I) \cong \mathbb{I}(I) / I$, where $\mathbb{I}(I)$ is the idealizer of I in R.
Let $\left(\begin{array}{cc}k_{1} & v \\ 0 & k_{2}\end{array}\right) \in \mathbb{I}(I)$. As

$$
\left(\begin{array}{cc}
k_{1} & v \\
0 & k_{2}
\end{array}\right)\left(\begin{array}{cc}
0 & w \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & k_{1} w \\
0 & 0
\end{array}\right) \in I
$$

we deduce that $\mathbb{I}(I)=\left(\begin{array}{cc}K_{0}[a] & V \\ 0 & K\end{array}\right)$. Hence $E / \mathrm{J}(E) \cong K_{0}[a] \times K$.
If we choose K, α and a such that a is trascendental over K_{0}, then $K_{0}[a] \times K$ is not semisimple artinian. Hence, E is not semilocal.

3.4 Some Natural Functors

It is possible to generalize the notion of local morphism between rings to the notion of local functor between categories in the following way.

Definition 3.26. if \mathcal{A} and \mathcal{B} are categories, a functor $F: \mathcal{A} \rightarrow \mathcal{B}$ is local if for every morphism $f: a \rightarrow a^{\prime}$ in \mathcal{A}, if $F(f)$ is an isomorphism in \mathcal{B}, then f is an isomorphism in \mathcal{A}.

Let us introduce two functors:
(1) The covariant functor $F_{S}: \mathcal{D} \rightarrow$ Mod- S which associates to each $x \in M$ the cyclic right S-module $x S$ and to any morphism $\overline{(r, s)}: x \rightarrow y$ the left multiplication

$$
\begin{aligned}
\lambda_{r}: x S & \rightarrow y S \\
x & \mapsto r x .
\end{aligned}
$$

This functor is well defined on morphisms because if $\overline{(r, s)}: x \rightarrow y$ is a morphism in \mathcal{D} and $\overline{(r, s)}=\overline{\left(r^{\prime}, s^{\prime}\right)}$, then $r-r^{\prime} \in \operatorname{l.ann}{ }_{R}(x)$, so $\lambda_{r}=\lambda_{r^{\prime}}$.
(2) The contravariant functor $F_{R}: \mathcal{D} \rightarrow R$-Mod which associates to each $x \in M$ the cyclic left R-module $R x$ and to any morphism $\overline{(r, s)}: x \rightarrow y$ the right multiplication

$$
\begin{aligned}
\rho_{s}: R y & \rightarrow R x \\
y & \mapsto y s .
\end{aligned}
$$

This functor is well defined on morphisms because if $\overline{(r, s)}: x \rightarrow y$ is a morphism in \mathcal{D} and $\overline{(r, s)}=\overline{\left(r^{\prime}, s^{\prime}\right)}$, then $s-s^{\prime} \in \operatorname{r} . \operatorname{ann}_{S}(x)$, so $\rho_{s}=\rho_{s^{\prime}}$.

Observe that the ring homomorphisms

$$
\alpha: \operatorname{End}_{\mathcal{D}}(x) \rightarrow \operatorname{End}_{S}(x S) \quad \text { and } \quad \beta: \operatorname{End}_{\mathcal{D}}(x) \rightarrow \operatorname{End}_{R}(R x)
$$

defined before the Proposition 3.19 are respectively $\left(F_{S}\right)_{x x}$ and $\left(F_{R}\right)_{x x}$ in the notetion of Definition 1.3 .

Proposition 3.27. The functors $F_{S}: \mathcal{D} \rightarrow \operatorname{Mod}-S$ and $F_{R}: \mathcal{D} \rightarrow R$-Mod are faithful functors.

Proof. Let us begin with the functor F_{S}. Following the Definition 1.3 consider the mapping

$$
\left(F_{S}\right)_{x y}: \operatorname{Hom}_{\mathcal{D}}(x, y) \rightarrow \operatorname{Hom}_{S}(x S, y S)
$$

Let $\overline{\left(r_{1}, s_{1}\right)}: x \rightarrow y$ and $\overline{\left(r_{2}, s_{2}\right)}: x \rightarrow y$ be morphisms of $\operatorname{Hom}_{\mathcal{D}}(x, y)$, so that, $r_{1} x=y s_{1}$ and $r_{1} x=y s_{1}$. Suppose $\overline{\left(r_{1}, s_{1}\right)} \neq \overline{\left(r_{2}, s_{2}\right)}$, then we have either $\left(r_{1}-r_{2}\right) x \neq 0$ or $y\left(s_{1}-s_{2}\right) \neq 0$. In the first case we have that $r_{1} x-r_{2} x \neq 0$ then $r_{1} x \neq r_{2} x$, that is the same of $\lambda_{r_{1}}(x) \neq \lambda_{r_{2}}(x)$, thus $\lambda_{r_{1}} \neq \lambda_{r_{2}}$. In the second case we have that $y s_{1}-y s_{2} \neq 0$ then $y s_{1} \neq y s_{2}$, but from $r_{1} x=y s_{1}$ and $r_{1} x=y s_{1}$ we obtain the same conclusion.

For the functor F_{R} we can proceed in the same way as before.
Remark 3.28. The functors F_{S} and F_{R} are not full functors, e.g., let R be a ring with an element x that is right-invertible but non left-invertible and let $s \in R$ such that $x s=1$. Consider the bimodule ${ }_{R} M_{S}={ }_{R} R_{R}$. Then $\lambda_{s}: R_{R} \rightarrow R_{R}$ is a morphism between right R-modules, but in this case $x R=R_{R}$, because x is right-invertible, thus we have a morphism $\lambda_{s}: x R \rightarrow x R$ but for every $r \in R$, we have $r x \neq 1=x s$.

For the direct product ring $R \times S$, let $C_{R \times S}$ be the preadditive category with one object * with endomorphism ring $\operatorname{End}_{C_{R \times S}}(*)=R \times S$.

Proposition 3.29. The functor $F: \mathcal{D} \rightarrow C_{R \times S}$ that sends any morphism $\overline{(r, s)}: x \rightarrow y$ in \mathcal{D} to the element (r, s) of $R \times S$ is a faithful local functor.

Proof. Let $\overline{(r, s)}: x \rightarrow y$ be a morphism in \mathcal{D}, so that $r x=y s$. Suppose (r, s) invertible in $R \times S$. Let $\left(r^{\prime}, s^{\prime}\right)$ be the inverse of (r, s) in $R \times S$. Multiplying the equality $r x=y s$ by r^{\prime} on the left and s^{\prime} on the right, one gets that $r^{\prime} r x s^{\prime}=r^{\prime} y s s^{\prime}$, so $r^{\prime} y=x s^{\prime}$. Hence $\overline{\left(r^{\prime}, s^{\prime}\right)}: y \rightarrow x$ is a morphism in \mathcal{D} and is the inverse of

$$
\overline{(r, s)}: x \rightarrow y .
$$

Proposition 3.30. The covariant functor $F_{R} \times F_{S}: \mathcal{D} \rightarrow(R \text {-Mod })^{\mathrm{op}} \times \operatorname{Mod}-S$ is a local functor.

Proof. Recall that the covariant faithful additive functor

$$
F_{R} \times F_{S}: \mathcal{D} \rightarrow(R-\operatorname{Mod})^{\mathrm{op}} \times \operatorname{Mod}-S
$$

associates to any morphism $\overline{(r, s)}: x \rightarrow y$ the morphism $\left(\rho_{s}, \lambda_{r}\right):(R x, x S) \rightarrow(R y, y S)$.
In order to prove that the functor is local, fix a morphism $\overline{(r, s)}: x \rightarrow y$ and suppose that $\left(\rho_{s}, \lambda_{r}\right):(R x, x S) \rightarrow(R y: y S)$ is an isomorphism in $(R \text {-Mod })^{\mathrm{op}} \times \operatorname{Mod}-S$. Then the two module morphisms $\rho_{s}: R y \rightarrow R x$, defined by $\rho_{s}(a y)=a y s=a r x$ for every $a \in R$, and $\lambda_{r}: x S \rightarrow y S$, defined by $\lambda_{r}(x b)=r x b=y s b$ for every $b \in S$, are isomorphisms. Let $\rho^{\prime}: R x \rightarrow R y$ and $\lambda^{\prime}: y S \rightarrow x S$ be their inverse morphisms in R-Mod, S Mod-, respectively.

From the description of the morphisms between cyclic modules in Section 3.3, we get that there exists an element $r^{\prime} \in R$ such that $1 \cdot \operatorname{ann}_{R}(x) r^{\prime} \subseteq 1 . \mathrm{ann}_{R}(y)$ and $\rho^{\prime}(x)=r^{\prime} y$, and there exists an element $s^{\prime} \in S$ such that $s^{\prime} \mathrm{r} \cdot \operatorname{ann}_{S}(y) \subseteq \operatorname{rann}_{S}(x)$ and $\lambda^{\prime}(y)=x s^{\prime}$. From the four equalities

$$
\rho \rho^{\prime}=1_{R x}, \quad \rho^{\prime} \rho=1_{R y}, \quad \lambda \lambda^{\prime}=1_{x S}, \quad \lambda^{\prime} \lambda=1_{y S},
$$

we get that

$$
x=r^{\prime} r x, \quad y=r r^{\prime} y, \quad x=x s s^{\prime}, \quad y=y s^{\prime} s
$$

respectively (for instance, from $\rho \rho^{\prime}=1_{R x}$, we get that $x=\rho \rho^{\prime}(x)=\rho\left(r^{\prime} y\right)=r^{\prime} \rho(y)=$ $\left.r^{\prime} r y \mathrm{~b}\right)$. Thus $\overline{(r, s)}: x \rightarrow y$ morphism in \mathcal{D} implies $r x=y s$, so $r^{\prime} r x s^{\prime}=r^{\prime} y s s^{\prime}$, hence $x s^{\prime}=r^{\prime} y$. Hence we have a morphism $\overline{\left(r^{\prime}, s^{\prime}\right)}: y \rightarrow x$ in \mathcal{D}. It is immediate to check that this morphism is an inverse of $\overline{(r, s)}: x \rightarrow y$ in \mathcal{D}.

Definition 3.31. Let \mathcal{A} be a category, A_{1}, A_{2} and B objects of $\mathcal{A}, f_{1}: A_{1} \rightarrow B$ and $f_{2}: A_{2} \rightarrow B$ be morphisms of \mathcal{A}. A pullback of f_{1} and f_{2} in \mathcal{A} is a triple $\left(P, \alpha_{1}, \alpha_{2}\right)$, where P is an object of \mathcal{A} and $\alpha_{1}: P \rightarrow A_{1}, \alpha_{2}: P \rightarrow A_{2}$ morphisms such that $f_{1} \circ \alpha_{1}=f_{2} \circ \alpha_{2}$ and for every other triple $\left(X, \beta_{1}, \beta_{2}\right)$ with the same property, there exists an unique morphism $\gamma: X \rightarrow P$ such that $\beta_{1}=\alpha_{1} \circ \gamma$ and $\beta_{2}=\alpha_{2} \circ \gamma$.

The functors A, B also allow to describe our present setting in terms of pullbacks. Consider two elements $x, y \in{ }_{R} M_{S}$ and the free modules of rank one ${ }_{R} R$ and S_{S}. From the universal property of free modules there exist unique morphisms $\rho_{x}:{ }_{R} R \rightarrow{ }_{R} M_{S}$ and $\lambda_{x}: S_{S} \rightarrow{ }_{R} M_{S}$ such that $\rho_{x}(r)=r x$ and $\lambda_{x}(s)=x s$ for every $r \in R, s \in S$. We have the following diagram

Our claim is that the following is a pullback of abelian groups

where $p_{2}: \operatorname{Hom}_{\mathcal{C}}(x, y) \rightarrow{ }_{S} S,(r, s) \mapsto s$ and $p_{1}: \operatorname{Hom}_{\mathcal{C}}(x, y) \rightarrow R_{R},(r, s) \mapsto r$.
In fact, $\left(\lambda_{y} \circ p_{2}\right)(r, s)=y s=r x=\left(\rho_{x} \circ p_{1}\right)(r, s)$, so the first property of pullbacks is satisfied. Let X be an abelian group and let $\alpha: X \rightarrow{ }_{R} R$ and $\beta: X \rightarrow S_{S}$ morphisms such that $\rho_{x} \circ \alpha=\lambda_{y} \circ \beta$. Define $\phi: X \rightarrow \operatorname{Hom}_{\mathcal{C}}(x, y)$ such that $a \mapsto(\alpha(a), \beta(a))$. It is easy to see that $p_{1} \circ \phi=\alpha$ and $p_{2} \circ \phi=\beta$. It remains to show the uniqueness, let $\psi: X \rightarrow \operatorname{Hom}_{\mathcal{C}}(x, y), a \mapsto\left(r_{a}, s_{a}\right)$ such that $p_{1} \circ \psi=\alpha$ and $p_{2} \circ \psi=\beta$, then $s=p_{2} \circ \phi(a)=\beta(a)=p_{2} \circ \psi(a)=s_{a}$ and $r=p_{1} \circ \phi(a)=\alpha(a)=p_{a} \circ \psi(a)=r_{a}$ imply $\phi=\psi$.
Factoring out modulo the kernels, we get a pullback of abelian groups in which all morphisms are monomorphisms:

or, equivalently, the pullback

where all morphisms are abelian group embeddings.

3.5 Embedding into other categories

In this section our aim is to present some category embeddings from the category \mathcal{D} to other categories.

Proposition 3.32. Let ${ }_{R} M_{S}$ be an R-S-bimodule. Then:
(1) There is a covariant functor $H: \mathcal{D} \rightarrow \operatorname{Morph}(\operatorname{Mod}-S)$, which associates to any object x of \mathcal{D} the embedding $\varepsilon_{x}: x S \rightarrow M_{S}$. It associates to any morphism $\overline{(r, s)}: x \rightarrow y$ in \mathcal{D} the pair of morphisms $\left(\lambda_{r}, \lambda_{r}^{\prime}\right)$, where $\lambda_{r}^{\prime}: M_{S} \rightarrow M_{S}$ is left multiplication by r, and $\lambda_{r}: x S \rightarrow y S$ is the restriction of λ_{r}^{\prime}.
(2) M_{S} is R-balanced, that is, the canonical ring morphism $\lambda: R \rightarrow \operatorname{End}\left(M_{S}\right)$ is surjective, then the functor H is full.
(3) Conversely, if the functor H is full and the module M_{S} is cyclic, then M_{S} is R-balanced.

Proof. (1) For a morphism $\overline{(r, s)}: x \rightarrow y$ in \mathcal{D}, we have that $r x=y s$, so that $\lambda_{r}^{\prime}(x S)=$ $r x S=y s S \subseteq y S$ and the square

commutes. It is now easy to check that H is a covariant functor. In order to prove that it is a faithful functor, we must show that the mapping

$$
\begin{gather*}
\operatorname{Hom}_{\mathcal{D}}(x, y) \rightarrow \operatorname{Hom}_{\text {Morph }(\operatorname{Mod}-S)}\left(\varepsilon_{x}, \varepsilon_{y}\right) \\
\overline{(r, s)} \mapsto\left(\lambda_{r}, \lambda_{r}^{\prime}\right) \tag{3.1}
\end{gather*}
$$

is injective. But given $r x=y s$ and $r^{\prime} x=y s^{\prime}$ such that $\left(\lambda_{r}, \lambda_{r}^{\prime}\right)=\left(\lambda_{r^{\prime}}, \lambda_{r^{\prime}}^{\prime}\right)$, we have that $\lambda_{r}^{\prime}=\lambda_{r^{\prime}}^{\prime}$, so that $r x=r^{\prime} x$. This proves that the functor is faithful.
(2) Suppose that M_{S} is R-balanced. In order to prove that H is full, we must show that the mapping in (3.1) is surjective. Now an arbitrary element of $\operatorname{Hom}_{\operatorname{Morph}(\operatorname{Mod}-S)}\left(\varepsilon_{x}, \varepsilon_{y}\right)$ is a pair $\left(\left.f\right|_{x S}, f\right)$, where f is an endomorphism of M_{S} that induces by restriction a left R-module morphism $\left.f\right|_{x S}: x S \rightarrow y S$. Therefore the diagram

is commutative. Since M_{S} is R-balanced, there exists $r \in R$ such that $\lambda_{r}^{\prime}=f$. Now $f(x S) \subset y S$, so $r x=f(x) \in y S$. It follows that there exists an element $s \in S$ with $r x=y s$. Therefore $\overline{(r, s)}: x \rightarrow y$ is the morphism in \mathcal{D} that proves that the mapping in (3.1) is surjective.
(3) Now assume H full and M_{S} cyclic. In order to prove that the canonical mapping $\lambda: R \rightarrow \operatorname{End}\left(M_{S}\right)$ is surjective, fix an endomorphism $f: M_{S} \rightarrow M_{S}$. Let z be a generator of M_{S}. The commutative diagram

shows that the pair (f, f) is a morphism of ε_{z} into ε_{z}. Since H is full, there exists a morphism $\overline{(r, s)}: z \rightarrow z$ in \mathcal{D} such that $f=\lambda_{r}$. This proves that M_{S} is R-balanced.

From Proposition 3.32 we get that, the category \mathcal{D} is isomorphic to a subcategory of the category Morph(Mod-S).

Remark 3.33. The functor of Proposition 3.32 is faithful but not full. To see this it suffices to take any endomorphism $\varphi: M_{S} \rightarrow M_{S}$ that is not left multiplication by an element of R for the bimodule ${ }_{R} M_{S}$, and consider $\left(\varphi, \lambda_{s}\right)$.

Dually, we can state the following:
Proposition 3.34. Let ${ }_{R} M_{S}$ be an R-S-bimodule. Then:
(1) There is a contravariant functor $L: \mathcal{D} \rightarrow \operatorname{Morph}(R$-Mod), which associates to any object x of \mathcal{D} the embedding $\eta_{x}: R x \rightarrow{ }_{R} M$. It associates to any morphism $\overline{(r, s)}: x \rightarrow y$ in \mathcal{D} the pair of morphisms $\left(\rho_{s}, \rho_{s}^{\prime}\right)$, where $\rho_{s}^{\prime}: R M \rightarrow_{R} M$ is right multiplication by s, and $\rho_{s}: R y \rightarrow R x$ is the restriction of ρ_{s}^{\prime}.
(2) ${ }_{R} M$ is S-balanced, that is, the canonical ring morphism $\lambda: S \rightarrow \operatorname{End}\left({ }_{R} M\right)$ is surjective, then the functor L is full.
(3) Conversely, if the functor L is full and the module ${ }_{R} M$ is cyclic, then ${ }_{R} M$ is S-balanced.

A similar category embedding appears in relation to the Eilenberg-Watts Theorem:

Theorem 3.35. (Eilenberg Eil60, Watts Wat60]) Let R and S be rings and $F: \operatorname{Mod}-R \rightarrow \operatorname{Mod}-S$ be a right exact additive functor that preserves direct sums. Then $F\left(R_{R}\right)$ is an R-S-bimodule and the two functors, $F,-\otimes_{R} M_{S}$ are naturally isomorphic.

This correspondence between R - S-bimodules and right exact additive functors that preserve direct sums, that is, colimit-preserving functors, is an equivalence between the category R-BiMod- S of R-S-bimodules and the category

$$
\text { Func }_{\mathrm{coc}}(\operatorname{Mod}-R, \operatorname{Mod}-S)
$$

of all additive colimit-preserving functors Mod- $R \rightarrow$ Mod- S.
For every bimodule ${ }_{R} M_{S}$, let $-\otimes_{R} M_{S}$: $\operatorname{Mod}-R \rightarrow \operatorname{Mod}-S$ be the corresponding functor in the Eilenberg-Watts Theorem. For any ring T, let $U_{T}: \operatorname{Mod}-T \rightarrow \mathrm{Ab}$ denote the forgetful functor. Thus we have two functors $U_{R}: \operatorname{Mod}-R \rightarrow \mathrm{Ab}$ and $U_{S} \circ\left(-\otimes_{R} M_{S}\right):$ Mod $-R \rightarrow$ Ab. Both functors U_{R} and $U_{S} \circ\left(-\otimes_{R} M_{S}\right)$ are right exact additive functors that preserve direct sums.

Proposition 3.36. For every R-S-bimodule ${ }_{R} M_{S}$, there is a canonical mapping

$$
{ }_{R} M_{S} \rightarrow \operatorname{Nat}\left(U_{R}, U_{S} \circ\left(-\otimes_{R} M_{S}\right)\right)
$$

into the class of all natural transformations $U_{R} \rightarrow U_{S} \circ\left(-\otimes_{R} M_{S}\right)$. It associates to each element x of ${ }_{R} M_{S}$ the natural transformation $\eta_{x}: U_{R} \rightarrow U_{S} \circ\left(-\otimes_{R} M_{S}\right)$ defined, for every right R-module A_{R}, by $\eta_{x, A}: A_{R} \rightarrow A \rightarrow A \otimes_{R} M, \eta_{x, A}: a \in A_{R} \rightarrow A \mapsto a \otimes x$.

The proof is easy.
Now "morphisms" between two natural transformations are just commutative squares of natural transformations. Therefore, to give a coherent presentation, it is now convenient to determine, for any fixed left R-module ${ }_{R} M$ the natural transformations $\eta: G_{M} \rightarrow G_{M}$ of the functor

$$
G_{M}:=-\otimes_{R} M: \operatorname{Mod}-R \rightarrow \mathrm{Ab}, \quad G_{M}: A_{R} \rightarrow A \otimes_{R} M,
$$

into itself:
Proposition 3.37. For every left R-module ${ }_{R} M$, there is a one-to-one correspondence between its endomorphism ring $\operatorname{End}_{R}\left({ }_{R} M\right)$ and the class of all natural transformations $\eta: G_{M} \rightarrow G_{M}$, where $G_{M}:=-\otimes_{R} M: \operatorname{Mod}-R \rightarrow \mathrm{Ab}$.

Proof. This is an exercise which we leave to the reader. For any left R-module morphism $f:{ }_{R} M \rightarrow{ }_{R} M$, the corresponding natural transformations $\eta_{f}: G_{M} \rightarrow G_{M}$ associates to any right R-module A_{R} the abelian group morphism

$$
\eta_{f, X}:=1_{X} \otimes f: X \otimes_{R} M \rightarrow X \otimes_{R} M
$$

Conversely, if $\eta: G_{M} \rightarrow G_{M}$ is any natural transformations, then η associates to the object R_{R} of Mod- R the abelian group morphism $\eta_{R}: R \otimes_{R} M \cong M \rightarrow R \otimes_{R} M \cong M$. It is easy to check that $\eta_{R}: M \rightarrow M$ is a left R-module morphism and that $\eta=\eta_{\eta_{R}}$ (for every right R-module A_{R} and every element $a \in A$, consider the right R-module morphism $\left.\lambda_{a}: R_{R} \rightarrow A_{R}, \lambda_{a}: 1 \rightarrow a\right)$.

Corollary 3.38. For every ring R, there is a one-to-one correspondence between the ring R and the class of all natural transformations $\eta: U_{R} \rightarrow U_{R}$, where $U_{R}: \operatorname{Mod}-R \rightarrow$ Ab is the forgetful functor.

Proof. Take ${ }_{R} M:={ }_{R} R$ in the previous proposition.
Let ${ }_{R} M_{S}$ be a fixed R-S-bimodule. Let us show that the mapping ${ }_{R} M_{S} \rightarrow$ $\operatorname{Nat}\left(U_{R}, U_{S} \circ\left(-\otimes_{R} M_{S}\right)\right), x \mapsto \eta_{x}$ described in the statement of Proposition 3.36 is the object mapping of a functor $\mathcal{D} \rightarrow \operatorname{Nat}\left(U_{R}, U_{S} \circ\left(-\otimes_{R} M_{S}\right)\right)$. This functor associates to any morphism $\overline{(r, s)}: x \rightarrow y$ in \mathcal{D} the pair $\left(\rho_{r},-\otimes \rho_{s}\right)$ consisting of the natural transformation $\rho_{r}: U_{R} \rightarrow U_{R}$ (where ρ_{r} associates to the right R-module A_{R}
the group morphism $\left.\rho_{r, A}: A \rightarrow A, a \mapsto a r\right)$ and the natural transformation $-\otimes \rho_{s}:\left(U_{S} \circ\right.$ $\left.\left(-\otimes_{R} M_{S}\right)\right) \rightarrow\left(U_{S} \circ\left(-\otimes_{R} M_{S}\right)\right)$ (where $-\otimes \rho_{s}$ associates to the right R-module A_{R} the group morphism $\left.\left(-\otimes \rho_{s}\right)_{A}: A \otimes_{R} M \rightarrow A \otimes_{R} M, a \otimes m \mapsto a \otimes(m s)\right)$.

From $r x=y s$ we get that $(a r) \otimes x=(a \otimes y) s$ for every $a \in A_{R}$, so that the diagrams

of abelian groups and group morphisms commute, hence

is a commutative square of functors Mod $-R \rightarrow \mathrm{Ab}$ and natural transformations. Therefore the pair $\left(\rho_{r},-\otimes \rho_{s}\right)$ is a morphism $\eta_{y} \rightarrow \eta_{x}$ in the category $\operatorname{Nat}\left(U_{R}, U_{S} \circ\right.$ $\left(-\otimes_{R} M_{S}\right)$). It is now easy to show that:

Theorem 3.39. For every R-S-bimodule ${ }_{R} M_{S}$, there is a faithful contravariant functor

$$
\begin{aligned}
& \mathcal{D} \rightarrow \operatorname{Nat}\left(U_{R}, U_{S} \circ\left(-\otimes_{R} M_{S}\right)\right), \\
& x \mapsto \eta_{x}, \\
&(\overline{(r, s)}: x \rightarrow y) \mapsto\left(\left(\rho_{r},-\otimes \rho_{s}\right): \eta_{y} \rightarrow \eta_{x} .\right.
\end{aligned}
$$

For the covariant version of Theorem 3.39, we must state the Eilenberg-Watts Theorem 3.35 in its varian for left module: Let R and S be rings and $F: S$-Mod \rightarrow R-Mod be a right exact additive functor that preserves direct sums. Then $F\left({ }_{S} S\right)$ is an R-S-bimodule and the two functors, $F,{ }_{R} M \otimes_{S}$ - are naturally isomorphic.

The theorem corresponding to Theorem 3.39 is the following:
Theorem 3.40. For every R-S-bimodule ${ }_{R} M_{S}$, there is a faithful covariant functor

$$
\begin{aligned}
\mathcal{D} \rightarrow & \operatorname{Nat}\left(U_{S}, U_{R} \circ\left({ }_{R} M \otimes_{S}-\right)\right), \\
x & \mapsto \zeta_{x}, \\
(\overline{(r, s)}: x \rightarrow y) \mapsto & \left(\left(\lambda_{s}, \lambda_{r} \otimes-\right): \zeta_{x} \rightarrow \zeta_{y} .\right.
\end{aligned}
$$

The natural transformation $\zeta_{x}: U_{S} \rightarrow\left(U_{R} \circ\left({ }_{R} M \otimes_{S^{-}}\right)\right.$, is such that, for every left S-module ${ }_{S} B, \zeta_{x, B}: b \in B \mapsto x \otimes b \in M \otimes_{S} B$. For every left S-module ${ }_{S} B$ and every $b \epsilon_{S} B$, we have a commutative square

Hence there is a commutative square

of natural transformations between functors S-Mod $\rightarrow \mathrm{Ab}$, that is, a morphism $\left(\lambda_{s}, \lambda_{r} \otimes-\right): \zeta_{x} \rightarrow \zeta_{y}$ in the category $\operatorname{Nat}\left(U_{S}, U_{R} \circ\left({ }_{R} M \otimes_{S}-\right)\right)$.

3.6 Rings of Finite Type

Definition 3.41. Let S be an arbitrary ring and $n \geq 1$ be an integer. The ring S has type n if the ring $S / \mathrm{J}(S)$ is a direct product of n division rings, and S is a ring of finite type if it has type n for some integer $n \geq 1$.

Proposition 3.42. Let S be a ring and $n \geq 1$ an integer. The following conditions are equivalent:
(a) The ring S has type n.
(b) n is the smallest of the positive integers m for which there is a local morphism of S into a direct product of m division rings.
(c) The ring S has exactly n distinct maximal right ideals, and they are all twosided ideals in S.
(d) The ring S has exactly n distinct maximal left ideals, and they are all two-sided ideals in S.

Proposition 3.43. Let x be an object of \mathcal{D}. If $\frac{\left(x S:_{R} x\right)}{1 . a n n_{R}(x)}$ and $\frac{(R x: s x)}{\text { r.ann }(x)}$ are rings of type m and n, respectively, then $\operatorname{End}_{\mathcal{D}}(x)$ has type $\leq m+n$. Moreover, if $I_{1}, I_{2}, \ldots, I_{m}$ are the m maximal ideals of $\frac{\left(x S: R^{R} x\right)}{1 \cdot a_{n}(x)}$ and $K_{1}, K_{2}, \ldots, K_{n}$ are the n maximal ideals of $\frac{(R x: s x)}{\text { r.anns }(x)}$, then the at most $n+m$ maximal ideals of $\operatorname{End}_{\mathcal{D}}(x)$ are among the completely prime ideals $\left(I_{t} \times \frac{(R x: s x)}{\text { r.anns }(x)}\right) \cap \operatorname{End}_{\mathcal{D}}(x)$, where $t=1, \ldots, m$ and $\left(\frac{(x S: R x)}{1 . a n n_{R}(x)} \times K_{q}\right) \cap$ $\operatorname{End}_{\mathcal{D}}(x)$, where $q=1, \ldots, n$.

Proof. Let I_{t}, with $t=1,2, \ldots, m$ be the m maximal ideals of the $\operatorname{ring} \frac{\left(x S:_{R} x\right)}{1 . a n n_{R}(x)}$ of type m. Then the canonical projection

$$
\pi_{R}: \frac{\left(x S:_{R} x\right)}{1 \cdot \operatorname{ann}_{R}(x)} \longrightarrow \frac{\left(x S:_{R} x\right)}{1 \cdot \operatorname{ann}_{R}(x)} / J\left(\frac{\left(x S:_{R} x\right)}{1 \cdot \operatorname{ann}_{R}(x)}\right) \cong \prod_{t=1}^{m} \frac{\left(x S:_{R} x\right)}{1 \cdot \operatorname{ann}_{R}(x)} / I_{t}
$$

is a local morphism. Similarly for the canonical projection

$$
\pi_{S}: \frac{\left(R x:_{S} x\right)}{\mathrm{r} \cdot \operatorname{ann}_{S}(x)} \longrightarrow \frac{\left(R x:_{S} x\right)}{\mathrm{r} \cdot \operatorname{ann}_{S}(x)} / \mathrm{J}\left(\frac{\left(R x:_{S} x\right)}{\mathrm{r} \cdot \operatorname{ann}_{S}(x)}\right) \cong \prod_{q=1}^{n} \frac{\left(R x:_{S} x\right)}{\mathrm{r} \cdot \operatorname{ann}_{S}(x)} / K_{q} .
$$

Therefore, composing these projection with $\xi: \operatorname{End}_{\mathcal{D}}(x) \rightarrow \operatorname{End}(R x) \times \operatorname{End}(x S)$ and using Lemma 3.15, we obtain that

$$
\operatorname{End}_{\mathcal{D}}(x) \longrightarrow \prod_{t=1}^{m} \frac{\left(x S:_{R} x\right)}{1 \cdot \operatorname{ann}_{R}(x)} / I_{t} \times \prod_{q=1}^{n} \frac{\left(R x:_{S} x\right)}{r \cdot \operatorname{ann}_{S}(x)} / K_{q}
$$

is a canonical local morphism into the direct product of $m+n$ division rings. Hence by Proposition 3.42 the ring $\operatorname{End}_{\mathcal{D}}(x)$ is a ring of type $m+n$. Furthermore, from the proof of Proposition 3.42, one can see that the maximal ideals of $\operatorname{End}_{\mathcal{D}}(x)$ are among the kernels of the $m+n$ canonical projections, which concludes the proof.

Bibliography

[AF92] Frank W. Anderson and Kent R. Fuller. Rings and categories of modules. Springer-Verlag, 1992.
[CD93] Rosa Camps and Warren Dicks. On semilocal rings. Israel Journal of Mathematics, 81:203-211, 1993.
[CEDF19] Federico Campanini, Susan F. El-Deken, and Alberto Facchini. Homomorphisms with semilocal endomorphism rings between modules. Algebras and Representation Theory, pages 1-20, 2019. Published online on 13 Dec. 2019.
[Coh03] Paul M Cohn. Further algebra and applications. Springer-Verlag London, 2003.
[Eil60] Samuel Eilenberg. Abstract description of some basic functors. J. Indian Math. Soc, 24:231-234, 1960.
[Fac98] Alberto Facchini. Module theory: endomorphism rings and direct sum decompositions in some classes of modules, volume 167. Birkhäuser, 1998.
[Fac02] Alberto Facchini. Direct sum decompositions of modules, semilocal endomorphism rings, and krull monoids. Journal of Algebra, 256:280-307, 2002.
[Fac04] Alberto Facchini. Geometric regularity of direct-sum decompositions in some classes of modules. Fundamentalnaya i Prikladnaya Matematika, 10(3):231-244, 2004. English translation in Journal of Mathematical Sciences, 139(4):6814-6822, 2006.
[Fac12] Alberto Facchini. Direct-sum decompositions of modules with semilocal endomorphism rings. Bulletin of Mathematical Sciences, 2:225-279, 2012.
[Fac17] Alberto Facchini. Introduction to Ring and Module Theory. Libreria Progetto, 2017.
[Fac19] Alberto Facchini. Semilocal Categories and Modules with Semilocal Endomorphism Rings, volume 331 of Progress in mathematics. Birkhäuser, 2019.
[FH06] Alberto Facchini and Dolors Herbera. Local morphisms and modules with a semilocal endomorphism ring. Algebras and representation theory, 9(4):403-422, 2006.
[FHLV95] Alberto Facchini, Dolors Herbera, Lawrence S. Levy, and Peter Vámos. Krull-schmidt fails for artinian modules. Proceedings of the American Mathematical Society, 123(12):3587-3592, 1995.
[Lam91] Tsit Y. Lam. A first course in noncommutative rings, volume 131 of Graduate Texts in Mathematics. Springer-Verlag, first edition, 1991.
[ML98] Saunders Mac Lane. Categories for Working Mathematicians, volume 5 of Graduate texts in mathematics. Springer-Verlag, second edition, 1998.
[Wat60] Charles E. Watts. Intrinsic characterizations of some additive functors. Proceedings of the American Mathematical Society, 11(1):5-8, 1960.

