
Università degli studi di Padova

Dipartimento di Matematica “Tullio Levi-Civita”

Corso di Laurea Magistrale in Matematica

Elements of a Bimodule
with a Semilocal Endomorphism Ring

Relatore:

Prof. Alberto Facchini

Laureando:

Francesco Pagliuca

Matricola: 1178737

17 Aprile 2020





Contents

Introduction 1

1 The Categories C, D and E 3

1.1 Morphism Category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Definition of the Category C . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Preadditivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Additivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Internal Direct Sum 11

2.1 Idempotent Endomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Internal Direct Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Isomorphic elements, isomorphic internal direct sums . . . . . . . . . . 23

3 Semilocal Categories 29

3.1 The Jacobson radical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Semilocal Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Local Morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Some Natural Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Embedding into other categories . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Rings of Finite Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Bibliography 49

iii





Introduction

The study of block decompositions of matrices is one of the classical themes in

Linear Algebra. One of the modern approaches to study this kind of problems is

considering the morphisms in the category Mod-R of right modules over a ring R.

In the paper [CEDF19], Campanini, El-Deken and Facchini studied the Grothen-

dieck category Morph(Mod-R) of all morphisms between two right modules over a

fixed ring R. In that category, the objects are R-module morphisms µM ∶M0 →M1.

A morphism u∶µM → µN in the category Morph(Mod-R) is a pair of R-module

morphisms (u0, u1) such that u1µM = µNu0.

In the category Morph(Mod-R), the study of direct-sum decomposition cor-

responds to the study of block decompositions of matrices. Isomorphism in this

category corresponds to the matrix equivalence ∼ defined, for any two rectangular

m × n matrices A and B, by A ∼ B if B = Q−1AP for some invertible n × n matrix

P and some invertible m ×m matrix Q.

For fixed right R-modules M0 and M1, the objects µM ∶M0 →M1 of the category

Morph(Mod-R) are the objects of a full subcategory of Morph(Mod-R) whose class

of objects is HomR(M0,M1). Now HomR(M0,M1) is an EndR(M1)-EndR(M0)-
bimodule. Hence it is natural to ask which results of [CEDF19] remain true for

a corresponding suitably defined category E whose objects are the objects of any

R-S-bimodule RMS. This is what we do in this thesis.

In [CEDF19] it was shown that the behavior of morphisms whose endomorphism

ring in Morph(Mod-T ) is semilocal is very similar to the behavior of modules with

a semilocal endomorphism ring. For instance, direct-sum decompositions of a di-

rect sum ⊕n
i=1Mi, that is, block-diagonal decompositions, where each object Mi of

Morph(Mod-T ) denotes a morphism µMi
∶M0,i → M1,i and where all the modules
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Mj,i have a local endomorphism ring End(Mj,i), depend on two invariants. This

behavior is very similar to that of direct-sum decompositions of serial modules of

finite Goldie dimension, which also depend on two invariants (monogeny class and

epigeny class). When all the modules Mj,i are uniserial modules, the direct-sum

decompositions (block-diagonal decompositions) of a direct-sum ⊕n
i=1Mi depend on

four invariants.

In this thesis, our original aim was to extend the results in [CEDF19] to arbitrary

bimodules, giving them a category structure, but this has lead us to the study of

some special natural additive decompositions of elements in bimodules. In particu-

lar, we define an internal direct sum and we study its relations with the idempotent

endomorphisms and with the categorical biproduct. We also characterize when two

decompositions of an element are equal and when they are isomorphic instead. In

the last chapter, using some natural functors, we see the condition under which

this category is semilocal. Finally, we conclude with some embeddings in other

categories, in particular in the category Morph(Mod-R).
Fix two associative rings R and S with identity and a bimodule RMS. Our

category E has the bimodule RMS as its class of objects, and, for any two objects

x, y ∈ RMS, HomE(x, y) = Rx ∩ yS. Thus the set of all morphisms x→ y in E is also

a subset of RMS. For two morphisms rx = ys∶x → y and r′y = zs′∶ y → z, we have

that r′rx = r′ys = zs′s, so r′rx = zs′s∶x→ z is a morphism in E .
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Chapter 1

The Categories C, D and E

1.1 Morphism Category

We begin this first chapter recalling what the morphism category is, as studied in

[CEDF19].

Definition 1.1. Let R be an associative ring with identity 1 ≠ 0 and Mod-R the

category of right R-modules. Denote by Morph(Mod-R) the category defined as

follows:

1. The objects of Morph(Mod-R) are the R-module morphisms µM ∶ M0 → M1

between right R-modules.

2. A morphism u ∶ µM → µN in Morph(Mod-R) is a pair of R-module morphisms

(u0, u1) such that u1µM = µNu0.

Recall the notion of preadditive category.

Definition 1.2. A category A is a preadditive category if

(a) The set HomA(A,B) is an abelian group for every A,B objects of A.

(b) The composition ○ ∶ HomA(B,C) ×HomA(A,B) → HomA(A,C) is Z-bilinear,

that is, for every f, f ′ ∶ A→ B and every g, g′ ∶ B → C, with A,B,C objects of

A,

g ○ (f + f ′) = g ○ f + g ○ f ′ and (g + g′) ○ f = g ○ f + g′ ○ f.
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Chapter 1

For semplicity we will denote each object µM ∶M0 →M1 in Morph(Mod-R) by

M . For every pair M , N of objects of Morph(Mod-R) the group

HomMorph(Mod-R)(M,N)

is a subgroup of the cartesian product

HomMorph(Mod-R)(M0,N0) ×HomMorph(Mod-R)(M1,N1).

Then, for M,N objects of Morph(Mod-R), addition on HomMorph(Mod-R)(M,N) is

defined by

u + v = (u0 + v0, u1 + v1)

for every u = (u0, u1), v = (v0, v1) ∈ HomMorph(Mod-R)(M,N). Therefore, the category

Morph(Mod-R) is preadditive.

Definition 1.3. Let A and B be two categories. Let F ∶ A → B be a covariant

functor. For all A,A′ objects of A, the functor F induces a mapping

FAA′ ∶ HomA(A,A′) → HomB(F (A), F (A′)),

defined by FAA′(f) = F (f) for every f ∶ A→ A′.

The functor F is called a faithful functor if FAA′ is injective for every A,A′

objects of A. While it is called a full functor if FAA′ is surjective for every A,A′

objects of A. The functor F ∶A → B is essentially surjective if for every B object of

B there exists A object of A such that F (A) ≅ B

Theorem 1.4. [CEDF19, Theorem 2.1] The category Morph(Mod-R) is equivalent

to the category of right modules over the triangular matrix ring T ∶= (R R
0 R ).

Thanks to the equivalence in Theorem 1.4, Morph(Mod-R) is a Grothendieck

category.

Let us briefly recall what products and coproducts in a category are and in

particular what they are in the category Morph(Mod-R).

Definition 1.5. Let A be a category and let A,B be objects of A. A product

(A∏B,πA, πB)
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Chapter 1

of A and B in A consists of an object A∏B of A and morphisms

πA ∶ A∏B → A and πB ∶ A∏B → B

such that for any pair of morphisms f ∶ P → A, g ∶ P → B there is a unique morphism

h ∶ P → A∏B with πA ○ h = f and πB ○ h = g.

The definition of coproduct is just the dual definition.

Definition 1.6. Let A be a category and let A,B be objects of A. A coproduct

(A∐B, εA, εB)

of A and B in A consists of an object A∐B of A and morphisms

εA ∶ A→ A∐B and εB ∶ B → A∐B

such that for any pair of morphisms f ∶ A→ P , g ∶ B → C there is a unique morphism

h ∶ A∐B → P with h ○ εA = f and h ○ εB = g.

Definition 1.7. A category A is an additive category if it is preadditive, has a

zero object, and every two objects A and B have a product A∏B (equivalently, a

coproduct A∐B).

Following the results in [CEDF19], recall what coproducts and products are in

Morph(Mod-R).
Let {Mλ ∣ λ ∈ Λ} be a family of objects of Morph(Mod-R), that is, Mλ is an

object µMλ
∶M0,λ →M1,λ for every λ in an index set Λ. The coproduct of the family

{Mλ ∣ λ ∈ Λ} is the object ⊕λ∈ΛMλ, where

µ⊕λ∈ΛMλ
∶ ⊕
λ∈Λ

M0,λ →⊕
λ∈Λ

M1,λ

is defined componentwise, with the canonical embedding eλ0 ∶ Mλ0 → ⊕λ∈ΛMλ for

every λ0 ∈ Λ.

The product of the family {Mλ ∣ λ ∈ Λ} is the object ∏λ∈ΛMλ, where

µ∏λ∈ΛMλ
∶ ∏
λ∈Λ

M0,λ →∏
λ∈Λ

M1,λ
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Chapter 1

is defined componentwise, with the canonical embedding pλ0 ∶ Mλ0 → ∏λ∈ΛMλ for

every λ0 ∈ Λ.

Moreover, it is possible to define some canonical functors associated to this cat-

egory. For any ring R, there are several canonical covariant additive functors

Morph(Mod-R) →Mod-R.

In particular, we recall:

1. The domain functor D∶Morph(Mod-R) → Mod-R, which associates to each

object M of Morph(Mod-R) the right R-module M0 and to any morphism

(u0, u1) in Morph(Mod-R) the right R-module morphism u0 in Mod-R.

2. The codomain functor C ∶Morph(Mod-R) →Mod-R, which associates to each

object M of Morph(Mod-R) the right R-module M1 and to any morphism

(u0, u1) in Morph(Mod-R) the right R-module morphism u1 in Mod-R.

From these two functors it possible to construct the product functor:

D ×C ∶Morph(Mod-R) →Mod-R ×Mod-R,

which associates to every object M of Morph(Mod-R) the pair (M0,M1) belonging

to Mod-R×Mod-R and to every morphism (u0, u1) in Morph(Mod-R) the morphism

(u0, u1) in Mod-R ×Mod-R.

1.2 Definition of the Category C

We continue defining the category we want to study and presenting its first proper-

ties. Let R and S be rings. Let RMS be an R-S-bimodule and let C be the category

defined as follows:

1. Ob(C) = RMS,

2. HomC(x, y) = {(r, s) ∈ R × S ∣ rx = ys}.

Define a composition between morphisms:

○∶HomC(y, z) ×HomC(x, y) → HomC(x, z)

((h, k), (r, s)) ↦ (hr, ks).
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Chapter 1

This composition is associative because so is the product into the ring structures.

The multiplicative identity of any object x ∈ RMS is (1R,1S). Notice that HomC(x, y)
⊆ R × S.

Let x ∈ RMS. Consider the cyclic submodules yS and Rx of RMS. Define

(yS ∶R x) ∶= {r ∈ R ∣ rx ∈ yS} and (Rx ∶S y) ∶= {s ∈ S ∣ ys ∈ Rx}. They are called the

idealizer of yS and Rx respectively. More precisely HomC(x, y) ⊆ (yS ∶R x) × (Rx ∶S
y). This is a subgroup of the additive group of R × S. When x = y, HomC(x, y) is a

subring of R × S.

1.3 Preadditivity

Define the operation of addition between two morphisms as the one induced by the

ring R × S. So, given (r, s), (h, k) ∈ HomC(x, y), define:

(r, s) + (h, k) = (r + h, s + k).

This operation is Z-bilinear with respect to the composition because of the dis-

tributivity on the left-hand side and on the right-hand side between addition and

multiplication in the rings R and S,

((h, k) + (j, t)) ○ (r, s) = (h + j, k + t) ○ (r, s) = ((h + j)r, (k + t)s) =

= (hr + jr, ks + ts) = (hr, ks) + (jr, ts) = ((h, k) ○ (r, s)) + ((j, t) ○ (r, s)).

In the same way Z-linearity on the left-hand side can be proved. Hence C is a

preadditive category.

Now let us look for initial and terminal objects in order to eventually identify

the zero object, if it exists.

Definition 1.8. Let A be a category. An object A ∈ Ob(A) is called an initial object

of A if for every B ∈ Ob(A) there exists exactly one morphism f ∶ A→ B.

Our initial object should be an element x ∈ RMS such that for every other element

y ∈ RMS it is possible to find a unique pair (r, s) ∈ R×S such that rx = ys. Observe

that the element 0M is not an initial object (there is not an unique morphism, in

fact, r ⋅ 0M = ys holds for every morphism of the form (r,0S)). For a similar reason

every other object is not an initial object.
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Chapter 1

Let us recall the concepts of ideal in a preadditive category A and factor category

modulo an ideal.

Definition 1.9 (Ideal). An ideal of a preadditive category A assigns to every pair

A,B of objects of A a subgroup I(A,B) of the abelian group HomA(A,B) with the

property that for every φ ∶ C → A, ψ ∶ A → B and ω ∶ B → D with ψ ∈ HomA(A,B),

one has that ωψφ ∈ I(C,D).

Definition 1.10 (Factor Category). If I is an ideal of a preadditive category A,

the factor category A/I has the same objects as A (i.e., Ob(A) = Ob(A/I)), the

group of morphisms A → B in A/I is HomA/I(A,B) ∶= HomA(A,B)/I(A,B), and

the composition is that induced by the composition of A.

Let x and y be objects in C and HomC(x, y) = {(r, s) ∈ R × S ∣ rx = ys}. Define

I(x, y) ∶= l.annR(x) × r.annS(y).

This is a subgroup of (yS ∶R x) × (Rx ∶S y) and is a two-sided ideal when x = y.

Given w,x, y, z objects in C, let φ = (r, s) be a morphism in I(x, y), ψ = (r′, s′) be

in HomC(w,x) and ω = (r′′, s′′) be in HomC(y, z). Consider the composition ω○φ○ψ =
(r′′rr′, s′′ss′). We have to check that this pair is in I(w, z), so r′′rr′w = r′′rxs′ =
r′′0Ms′ = 0M because of the relation r′w = xs′ and the fact that r ∈ l.annR(x). The

same holds for s′′ss′. In fact, zs′′ss′ = r′′yss′ = r′′0Ms′ = 0M because of the relation

r′′y = zs′′ and the fact that s ∈ r.annS(y).
Hence the position I(x, y) ∶= l.annR(x)× r.annS(y) defines an ideal in the pread-

ditive category C. So we can construct the factor category C/I. From now on set

D ∶= C/I.

Let us present our category from a different point of view. Let R and S be rings.

Let RMS be an R-S-bimodule and let E be the category defined as follows:

1. Ob(E) = RMS,

2. HomE(x, y) = Rx ∩ yS.

Consider the functor F ∶ C → E that associates to each object x ∈ RMS the

element x itself and to each morphism (r, s) ∈ HomC(x, y) the element rx(= ys).
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The kernel of this functor is the ideal I. The functor F induces an isomorphism

between the categories D = C/I and E .

Now that we have passed from the category C to the category C/I, we have that

the zero object in the category C/I exists and it is unique. The same holds for the

category E . In fact, in D the zero object is now 0M and the zero morphism is the

pair (0R,0S). Equivalently in E the zero object is 0M and the zero morphism is 0M

because R0M ⋂xS = {0M}.

Remark 1.11. It is convenient to describe the endomorphism ring of an object x ∈
RMS. In the category C, we have that the endomorphism ring of x is

EndC(x) = { (r, s) ∈ R × S ∣ rx = xs}

with the operations induced by the ring direct product R × S. In the category D,

the endomorphism ring of x is

EndD(x) = EndC(x)/(l.annR(x) × r.annS(x)),

with the operations induced by those of EndC(x). In the category E , the endomor-

phism ring of x is

EndE(x) = Rx ∩ xS,

with the addition induced by that of RMS and the multiplication such that if rx = xs
and r′x = xs′, then their product is (r′x = xs′)(rx = xs) = (r′rx = xs′s).

1.4 Additivity

The category D we have defined is just a preadditive category. Recall that every

preadditive category A can be embedded into an additive category as a full subcat-

egory. In fact, it is possible to construct the free additive category Mat(A) as it is

explained in [ML98, pag. 198, es. 6].

Definition 1.12. For any preadditive category A, let Mat(A) be the additive cat-

egory whose objects are all n-tuples (X1,X2, . . . ,Xn) of objects Xi of A for any

integer n ≥ 0, and whose morphisms from an n-tuple (X1,X2, . . . ,Xn) to an m-tuple

(Y1, Y2, . . . , Ym) are all the m × n matrices (φij) of morphisms φij ∶Xj → Yi of A

9
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In our setting the objects of Mat(D) are of the form (x1, . . . , xn), where xi ∈ RMS

and n > 0, because D has a zero object. Thus Mat(D) = ⋃̇n≥1Mn. The morphisms

are matrices of morphisms of D. Let see how to construct them in a precise way

and how to work with them.

If (x1, . . . , xn), (y1, . . . , ym) ∈ Ob(Mat(D)), then

HomMat(D)((x1, . . . , xn), (y1, . . . , ym)) =
⎛
⎜⎜⎜
⎝

HomD(x1, y1) . . . HomD(xn, y1)
⋮ ⋱ ⋮

HomD(x1, ym) . . . HomD(xn, ym)

⎞
⎟⎟⎟
⎠
.

So it can be expressed in the following form: HomMat(D)((x1, . . . , xn), (y1, . . . , ym))
= {((rij), (sij)) ∈ Mm×n(R) ×Mm×n(S) ∣ rijxj = yisij, ∀i = 1, . . . ,m, ∀j = 1, . . . , n},
where rij ∈ HomD(xj, yi).

Hence an element of HomMat(D)((x1, . . . , xn), (y1, . . . , ym)) is a pair (A,B) =
((rij), (sij)) of matrices in Mm×n(R) ×Mm×n(S).

10
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Internal Direct Sum

2.1 Idempotent Endomorphisms

In this section let us recall some basic notions about idempotent endomorphisms in

a category.

Definition 2.1 (Splitting Idempotents). Idempotents split in a category A if, for

every object C of A and every endomorphism e ∶ C → C in A with e2 = e, there exist

an object A in A and two morphisms f ∶ A→ C and g ∶ C → A such that e = fg and

gf = 1A

Let x be an object of E and (r, s) be an idempotent in EndE(x), so that rx = xs
and r2x = rx. Consider the object rx = xs and the morphism f = (1, s) ∶ rx→ x and

g = (r,1) ∶ x → rx. Then fg = (r, s) ∶ x → x and gf = (r, s) ∶ rx → rx is the identity

(1R,1S) of rx because r(rx) = r2x = rx = 1 ⋅ rx. This proves that:

Proposition 2.2. Idempotents split in the category E .

Recall the next result that holds in a preadditive category.

Proposition 2.3. [Fac19, Proposition 4.17] The following conditions are equivalent

for a preadditive category A

(a) Idempotents split in A.

(b) For every object A in A, every morphism e ∶ A → A with e2 = e has a kernel

in A.

11
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Proof. Assume (a) holds. Let e ∶ A → A be an idempotent in A. Then 1A − e
is also an idempotent. By hypothesis 1A − e splits, then there exist f ∶ B → A

and g ∶ A → B with fg = 1A − e and gf = 1B. Then f is a kernel of e, because

ef = (1A − fg)f = f − fgf = f − f1B = 0; and if t ∶ D → A is morphism such that

et = 0, then f(gt) = (1A − e)t = t. It remains to prove that such a morphism is

unique, in fact, if t′ ∶ D → B is another morphism with ft′ = t, then t′ = gft′ = gt.
Thus f ∶ B → A is a kernel of e.

Now assume (b) holds. Let e ∶ A → A be an idempotent in A and f ∶ B → A

be a kernel of the idempotent 1A − e. Then (1A − e)e = 0 so there exists a unique

morphism g ∶ A→ B with e = fg. It remains to show that gf = 1B, then (1A−e)f = 0

implies that f = ef = fgf . But kernels are monomorphisms, hence 1B = gf .

Let (r, s) be an idempotent element of EndE(x). Then, as in any ring, (1− r,1−
s) ∈ EndE(x) is also an idempotent endomorphism of x. Moreover, (1 − r,1 − s) ∈
EndE(x) splits, so that there exist f = (1,1− s) ∶ (1− r)x→ x and g = (1− r,1) ∶ x→
(1 − r)x such that (r, s) = fg and gf = 1x. According to Proposition 2.3 we have

that (1,1 − s) ∶ (1 − r)x→ x is a kernel of (r, s) ∶ x→ x

Recall now the following results about modules.

Definition 2.4. Let MR a right R-module over a ring R. Define add(MR) as the

full subcategory of Mod-R consisting of all modules isomorphic to direct summands

of direct sums Mn of finitely many copies of M .

Let E ∶= EndR(MR) denote the endomorphism ring of MR, for a fixed right

R-module MR. Then EMR is a bimodule.

Next Theorem is a fundamental result in the study of decompositions.

Theorem 2.5. [Fac19, Theorem 2.35] The functors

HomR(M,−)∶Mod-R →Mod-E and − ⊗EM ∶Mod-E →Mod-R

induce an equivalence between the full subcategory add(MR) of Mod-R and the full

subcategory proj-R of Mod-E.

It is possible to generalize the previous Definition 2.4 and Theorem 2.5 from the

category Mod-R to an arbitrary preadditive category, as follows.

12



Chapter 2

Definition 2.6. Let A be an object of a preadditive category A. Define add(A) as

the subclass of Ob(C) consisting of all objects B ∈ Ob(A) for which there exist an

integer n > 0 and morphisms f1, f2, . . . , fn ∶ A → B and g1, g2, . . . , gn ∶ B → A in A
with ∑n

i=1 figi = 1B.

We denote by add(A) not only the subclass of Ob(A), but also the full subcat-

egory of A whose class of objects is add(A).

Example 2.7. When A = Mod-R, then add(RR) is the class proj-R of all finitely

generated projective right R-modules.

Proposition 2.8. [Fac19, Lemma 4.18] Let A be a non-zero object of a preadditive

category A. Set E ∶= EndA(A). Consider the additive functor

F ∶= HomA(A,−) ∶ A →Mod-E.

Then the following properties hold:

(a) The functor F induces a full and faithful functor add(A) → proj-E.

(b) If A is an additive category with splitting idempotents, then F induces an

equivalence add(A) → proj-E.

Proof. Let B be an arbitrary object of add(A), by definition there exist

f1, . . . , fn∶A→ B and g1, . . . , gn∶B → A

such that ∑n
i=1 figi = 1B. Apply F to this identity and get that

n

∑
i=1

F (fi)F (gi) = 1F (B),

where now F (fi)∶F (A) → F (B) and F (gi)∶F (B) → F (A) are right E-module mor-

phisms. Thus the module F (B) turns out to be a direct summand of F (A)n ≅ En
E,

hence a finitely generated projective right modules of Mod-E.

Let us prove that the functor F restricted to add(A) is a faithful functor, let B′

be an object of add(A) and f ∶B → B′ be a morphism of add(A) with F (f) = 0,

that is, fh = 0 for every h ∈ HomA(A,B). Since 1B = ∑n
i=1 figi, we have f = f1B =

∑n
i=1(ffi)gi = 0.

13
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In order to prove that the restriction of F is full, let B,B′ two objects in add(A)
and let ψ ∶ HomA(A,B) → HomA(A,B′) be right E-module morphism. Define

f ∶ B → B′ by setting f ∶ = ∑n
i=1ψ(fi)gi. We need to show that F (f) = ψ, i.e., that

F (f)(f ′) = ψ(f ′) for every f ′ ∈ HomA(A,B). Now ψ is a right EndA(A)-module

morphism, so that F (f)(f ′) = ff ′ = ∑n
i=1ψ(fi)gif ′ = ψ(∑n

i=1 figif
′) = ψ(f ′).

Now let A be an additive category with splitting idempotents. Let P be a

finitely generated projective right E-module. Then there are morphisms αi∶P → EE

and βi∶EE → P with 1P = ∑n
i=1 βiαi. Thus the endomorphism of En

E given by left

multiplication by the matrix (αiβj) is an idempotent endomorphism with image

P. Since A is additive and the restriction of F to add(A) is full by (a), there is

an endomorphism f of An in A such that F (f) = (αiβj). Again, the fact that

the restriction of F to add(A) is faithful implies that f must be idempotent, so

that f splits. Let g∶An → B and h∶B → An be morphisms in A with hg = f

and gh = 1B. Then, for the right E-module morphism F (g)∶F (An) → F (B) and

F (h)∶F (B) → F (An), one gets that F (h)F (g) = F (f) and F (g)F (h) = 1F (B).

Hence F (g) is onto, so that F (h) and F (f) have the same image. Now the image

of F (f) = (αiβj) is the projective module P , and F (g)F (h) = 1F (B) implies that

the image of F (h) is isomorphic to F (B). Thus P ≅ F (B), as desired.

2.2 Internal Direct Sum

Let us recall what a biproduct decomposition in a category is.

Definition 2.9 (Biproducts). Let A1,A2 be objects of a preadditive category A.

A biproduct of A1 and A2 is a 5-tuple (B,π1, π1, ε1, ε2), where B ∈ Ob(A) and

π1 ∶ B → A1, π2 ∶ B → A2, ε1 ∶ A1 → B, ε2 ∶ A2 → B are morphisms such that

π1 ○ ε1 = 1A1 , π2 ○ ε2 = 1A2 , ε1 ○ π1 + ε2 ○ π2 = 1B.

In short, we will say that B is a biproduct of A1 and A2.

For right R-modules, there is the following nice interplay between splitting of

idempotents, direct-sum decompositions and the categorical definition of biproducts.

14
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Proposition 2.10. Let PS be a right S-module. There is a one-to-one correspon-

dence η between the set I of all idempotent elements of End(PS) and the set

D = {(A,B) ∣ A,B ≤ PS, PS = A⊕B}

of all the pairs (A,B) of submodules of PS whose sum is direct and equal to PS. If

e ∈ I, the corresponding pair is η(e) = (e(PS),kere). If (A,B) ∈D, the corresponding

idempotent is the epimorphism

pA ∶ A⊕B → A

a + b↦ a

with a ∈ A and b ∈ B, called the projection of A along B.

In this section, we will show that the same interplay occurs for our bimodule

RMR and our categories D ≅ E .

In our setting, let x,x1, x2 be objects in E . Then x is a biproduct of x1 and x2

if and only if there exist morphisms (pi, qi) ∶ x → xi and (ei, fi) ∶ xi → x, for i = 1,2,

such that the following conditions hold:

pieixi = xi, (e1p1 + e2p2)x = x, pix = xiqi and eixi = xfi

for i = 1,2.

We now need a concept for a bimodule that is the analogue of the notion of

internal direct sum in Mod-R.

Definition 2.11 (Internal direct sum). Let RMS be an R-S-bimodule and x,x1, x2 ∈
RMS. We say that x is the internal direct sum of x1 and x2, and we will write

x = x1 ⊕ x2, if x = x1 + x2, Rx = Rx1⊕Rx2 and xS = x1S⊕x2S, where the last two

are internal direct sums of modules.

In the next proposition we show that every internal direct-sum decomposition of

x ∈ RMS determines a biproduct decomposition of x in E

Proposition 2.12. Let RMS an R-S-bimodule, x, x1, x2 ∈ RMS and assume x =
x1 ⊕ x2. Then x is the biproduct of x1 and x2 in the category E .

15



Chapter 2

Proof. By hypothesis, we have x = x1 + x2, x1 = r1x, x2 = r2x, Rx1⋂Rx2 = 0,

x1 = xs1, x2 = xs2, x1S⋂x2S = 0.

Define the embeddings and the projections as follows: from xi = xsi define εi ∶
xi → x as εi = (1R, si) and from xi = rix define πi ∶ x→ xi as πi = (ri,1S).

Let us check that (x, ε1, ε2, π1, π2) is the biproduct of x1 and x2. Start with

πi○εi ∶ xi → xi. We have that πi○εi = (ri, si) and x = x1+x2, then r1x = r1x1+r1x2, so

we obtain (1−r1)x1 = x1−r1x1 = r1x−r1x1 = r1x2; using the fact that Rx1⋂Rx2 = 0,

we conclude that x1 = r1x1 and r1x2 = 0, hence r1x1 = x1, that is π1 ○ ε1 = 1x1 . It can

be done in the same way for the other.

Now take ε1 ○π1 + ε2 ○π2 ∶ x→ x, we have that ε1 ○π1 + ε2 ○π2 = (r1, s1)+ (r2, s2) =
(r1 + r2, s1 + s2), we want to show that it is equal to the identity of x, that is

(r1+r2)x = x. But (r1+r2)x = (r1+r2)(x1+x2) = r1x1+r2x2, where the last equality

holds because we previously observed that r2x1 = 0 and r1x2 = 0, so we conclude

that (r1 + r2)x = x1 + x2 = x.

We show now that every idempotent endomorphism of E determines a biproduct

decomposition.

Proposition 2.13. Let (r, s) ∈ EndE(x) be an idempotent endomorphism in E .

Then

(x, (r,1), (1 − r,1), (1, s), (1,1 − s))

is a biproduct of rx and (1 − r)x in E .

Proof. Let us check that π1 ○ ε1 = 1rx, π2 ○ ε2 = 1(1−r)x and ε1 ○ π1 + ε2 ○ π2 = 1x.

Let us prove the first one. We have (r,1) ○ (1, s) = (r, s) ∶ rx → rx, with r2x =
rx = 1 ⋅ rx because (r, s) is an idempotent endomorphism.

For the second one we have (1−r,1)○(1,1−s) = (1−r,1−s) ∶ (1−r)x→ (1−r)x,

that is (1 − r)2x = (1 − r)x = 1 ⋅ (1 − r)x.

About the last one we get (1, s)○(r,1)+(1,1−s)○(1−r,1) = (r, s)+(1−r,1−s) =
(1R,1S). Hence it is a biproduct of rx and (1 − r)x in E .

Clearly, given any biproduct

(B,π1, π1, ε1, ε2)
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of A1 and A2 in a preadditive category A, from the equality π1 ○ ε1 = 1A1 , we can

always associate to the biproduct an idempotent endomorphism ε1 ○π1 of B. In the

particular case of our category E , we have:

Proposition 2.14. Let (x, (p1, q1), (p2, q2), (r1, s1), (r2, s2)) be a biproduct of y1 and

y2 in E . Then (ripi, siqi) ∶ x→ x is an idempotent endomorphism of x in E for each

i = 1,2.

Proof. Recall that (pi, qi) ∶ x → yi are morphism such that pix = yiqi and (ri, si) ∶
yi → x are morphism such that riyi = xsi, with i = 1,2. If we consider (ri, si)○(pi, qi) ∶
x → x, then we have that ripi ⋅ ripix = ri ⋅ piriyi ⋅ qi = ri ⋅ yiqi = ripix. This conclude

the proof.

Therefore, starting from a biproduct x of two elements y1, y2 in E , we can asso-

ciate to it an idempotent endomorphism in E as in Proposition 2.14, and then we

can come back to a biproduct of two different elements x1, x2, which is an internal

sum, as in Proposition 2.13. A natural question is to determine the relation between

y1, y2 on the one hand, and x1, x2 on the other hand. Our next step is to prove that

x1, x2 are isomorphic to y1, y2 respectively.

Starting from the biproduct (x, (p1, q1), (p2, q2), (r1, s1), (r2, s2)) of y1 and y2 in

E we pass to an idempotent endomorphism (ripi, siqi) ∶ x → x and from this to the

biproduct (x, (r1p1,1), (1−r1p1,1), (1, s1q1), (1,1−s1q1)) of r1p1x and (1−r1p1)x in

E . Set x1 ∶= r1p1x and x2 ∶= (1 − r1p1)x.

Proposition 2.15. In the previous construction yi ≅ xi.

Proof. Let us construct two morphisms, one from yi to xi and one from xi to yi such

that they are one the inverse of the other.

Let (r1, s1) ○ (r1p1,1) = (r1p1r1, s1) ∶ y1 → x1 and (p1, q1) ○ (1, s1q1) = (p1, q1s1q1) ∶
x1 → y1 be the two morphisms. Let us show that are one the inverse of the other:

(r1p1r1, s1)○(p1, q1s1q1) ∶ x1 → x1 and we have r1p1r1p1x1 = r1p1r1p1r1x = r1p1x = x1;

(p1, q1s1q1) ○ (r1p1r1, s1) ∶ y1 → y1 and we have p1r1p1r1y1 = p1r1p1xs1 = p1r1y1q1s1 =
y1. Then y1 ≅ x1. In the same way it can be done for y2.

From the last Propositions we can deduce that:
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Proposition 2.16. Let RMS an R-S-bimodule, x, y1, y2 ∈R MS, consider the biprod-

uct

(x, ε1, ε2, π1, π2)

of y1 and y2 in the category E . Then x = (ε1 ○ π1)x⊕ (ε2 ○ π2)x and, in the category

E , (εi ○ πi)x ≅ yi.

We can observe that

x2 = (1 − r1p1)x = x − r1p1x = r1p1x + r2p2x − r1p1x = r2p2x

so we conclude that

(1 − r1p1,1) = (r2p2,1) ∶ x→ x2.

Similarly for (1,1 − s1q1) = (1, s2q2).
Hence, from Proposition 2.13, Proposition 2.14 and the last observation, we can

conclude the following.

Theorem 2.17. Fix an element x ∈ RMS. Then there is a one to one correspondence

between

{(r, s) ∈ EndE(x) ∣ (r, s) is idempotent}

and

{(x, (p1, q1), (p2, q2), (r1, s1), (r2, s2)) ∣ q1 = q2 = 1S and r1 = r2 = 1R}.

Now we want to show that there is also a one to one correspondence between

the finite decompositions in E of an element x and all the complete finite families of

orthogonal idempotents of EndD(x).

Proposition 2.18. Let {e1, . . . , en} be a complete family of orthogonal idempotent

endomorphisms in E , where ei = (ri, si) ∶ x → x. Then there is an inner decomposi-

tion x = x1 ⊕ x2 ⊕ ⋅ ⋅ ⋅ ⊕ xn of x in E .

Proof. By hypothesis, we know that rix = xsi and r2
i = ri because each ei = (ri, si) ∶

x → x is an idempotent endomorphism. Furthermore from the completeness we get

that ∑n
i=1 ri = 1R and ∑n

i=1 si = 1S while frome orthogonality rirj = 0 and sisj = 0 for

every i, j = 1, . . . n such that i ≠ j.

18



Chapter 2

Define xi ∶= rix. We need to check that x = x1 ⊕ x2 ⊕ ⋅ ⋅ ⋅ ⊕ xn. First observe that

r1x + r2x + ⋅ ⋅ ⋅ + rnx = (
n

∑
i=1

ri)x = 1R ⋅ x = x.

Now we want that Rx = Rx1⊕Rx2⊕⋅ ⋅ ⋅⊕Rxn as modules, i.e.,

Rx = Rr1x⊕Rr2x⊕⋅ ⋅ ⋅⊕Rrnx.

It can be trivially seen that Rr1x +Rr2x + ⋅ ⋅ ⋅ +Rrnx ⊆ Rx, for the other inclusion

we have that rx = r ⋅ 1R ⋅ x = r(r1 + r2 + ⋅ ⋅ ⋅ + rn)x = rr1x + rr2x + ⋅ ⋅ ⋅ + rrnx, hence

Rx ⊆ Rr1x + Rr2x + ⋅ ⋅ ⋅ + Rrnx. It remains to check that the sum is direct. Let

y ∈ (∑i≠j Rrix) ∩Rrjx, then there exist h1, h2, . . . , hn such that y = h1r1x + h2r2x +
⋅ ⋅ ⋅ + ĥjrjx = hjrjx = hjr2

jx = hjrjrjx = hjrjxsj, where â = 0 for every a, hence

hjrjxsj = (h1r1 + ⋅ ⋅ ⋅ + ĥjrj + . . . hnrn)xsj = (h1r1 + ⋅ ⋅ ⋅ + ĥjrj + . . . hnrn)rjx = 0.

Proposition 2.19. Let x be an object of E . If x = x1 ⊕ x2 ⊕ ⋅ ⋅ ⋅ ⊕ xn is an in-

ner decomposition of x in E , then there exists a complete and orthogonal family

{(r1, s1), . . . , (rn, sn)} of idempotent endmorphisms of x with xi = rix for every

i = 1, .., n.

Proof. By hypothesis, from the definition of internal product in E we have that

x =
n

∑
i=1

xi, Rx =
n

⊕
i=1

Rxi and xS =
n

⊕
i=1

xiS.

From the direct sum decomposition of Rx and xS for every i = 1, . . . , n there exists

a unique (ri, si) such that xi = rix = xsi. Fix as family of endomorphisms

En = {(r1, s1), (r2, s2), . . . , (rn, sn)}.

First let us show that each element is idempotent. Take

r2
i x − rix = ri(rix) − rix = rixi − xi =

= ri(x −∑
k≠i
xk) − xi =

= rix − (∑
k≠i
rixk) − xi =

= −∑
k≠i
rixk.
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But we also have that r2
i x − rix = (ri − 1R)xi. Then, because (∑j≠iRxj) ∩Rxi = 0,

we obtain r2
i x = rix.

From x = x1+x2+⋅ ⋅ ⋅+xn = r1x+r2x+⋅ ⋅ ⋅+rnx = (∑n
i=1 ri)x we deduce that the family

is complete.

It remains to prove that the family is orthogonal. For every i ≠ j we have

rirjx = rixj = ri(x −∑
k≠j
xk) = − ∑

k≠i,j
rixk.

Similarly, rirjx = 0.

Let us conclude this section using the Definition 2.11 of internal direct sum and

Proposition 2.8 in order to have an equivalence between categories.

Definition 2.20. Let RMS be an R-S-bimodule. Define Ax ∶= { y ∈ RMS ∣ there

exists z ∈ RMS such that x = y⊕ z } and define Px as the class of all cyclic projective

right modules over the ring EndD(x).

Proposition 2.21. The functor HomD(x,−)∶D →Mod-EndD(x) induces an equiv-

alence between the full subcategory of D with class of objects Ax and the full subcat-

egory of Mod-EndD(x) with class of objects Px. Hence in D there is a one-to-one

correspondence between internal direct summands of x up to isomorphisms and pro-

jective cyclic modules over the ring EndD(x).

2.3 Examples

Example 2.22. Consider the Z-Z-bimodule ZZZ, take z ∈ Z. The endomorphism ring

EndE(z) = {(a, b) ∈ Z × Z ∣ az = zb} is equal to 0 if z = 0 and equal to Z if z ≠ 0.

Hence in this case we can conclude that the idempotents are only the trivial ones,

i.e., 0 and 1. Hence, all non-zero objects are indecomposable.

Example 2.23. Let R be a ring, with its natural R-R-bimodule structure RRR. It is

clear that, for any idempotent element e ∈ R, 1 = e⊕(1−e) is an internal direct-sum

decomposition of the identity 1 of R. Conversely, if 1 = x1 ⊕ x2 is an internal direct

sum, then RR = Rx1⊕Rx2, so that there exists an idempotent e ∈ R such that

Rx1 = Re and Rx2 = R(1− e). The unique way of writing 1 has a sum of an element
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of Re and an element of R(1 − e) is 1 = e + (1 − e). Therefore x1 = e and x2 = 1 − e.
This shows that the internal direct-sum decompositions of 1 in RRR are exactly

those of the form 1 = e⊕ (1 − e) for some idempotent e ∈ R. More generally [AF92,

Corollary 6.20], the internal direct-sum decompositions 1 = x1 ⊕ ⋅ ⋅ ⋅ ⊕ xn correspond

exactly to the complete n-tuples of pairwise orthogonal idempotents (e1, . . . , en).

Example 2.24. In [FHLV95, Example 1.6] it was shown that, for every integer n ≥ 2,

there exists an artinian module AT over a suitable ring T which is a direct sum of

t indecomposable submodules for every t = 2,3, . . . , n. In the ring R ∶= End(AT ),
there are therefore complete sets of pairwise orthogonal primitive idempotents of

cardinality t for every t = 2,3, . . . , n. By Example 2.23, the identity of R is therefore

an internal direct sum of t indecomposable elements of the bimodule RRR for every

t = 2,3, . . . , n.

Example 2.25. If R is a commutative ring, every R-module MR is an R-R-bimodule.

Let x be an element of MR. Then there is a one-to-one correspondence between

the set {(S1, . . . , Sn) ∣ Si is an R-submodule of xR for every i = 1,2, . . . , n and xR =
S1⊕⋅ ⋅ ⋅⊕Sn} and the set {(x1, . . . , xn) ∣ x = x1⊕⋅ ⋅ ⋅⊕xn is an internal decomposition

of x ∈ RMR }. The proof of this is similar to the proof given in Example 2.23.

Example 2.26. Let us apply what we have seen in Example 2.25 to the particular case

of a vector space Vk over a field k, so that our bimodule RMS is now the k-k-bimodule

kVk. It is easy to see that in this category D, the indecomposable objects are the

x ∈ kVk with x ≠ 0. The morphisms x → y in D are the morphisms (r, s)∶x → y,

so that HomD(x, y) ≅ k if x and y generate the same one-dimensional vector space,

and HomD(x, y) = 0 otherwise. Two elements x, y of Vk are isomorphic if and only if

they generate the same vector space (either one-dimensional or zero-dimensional).

If (x1, . . . , xn) is an object of Mat(D) with xi ≠ 0 for every i = 1,2, . . . , n, then

EndD(x1, . . . , xn) is the ring Mn×n(k) of n × n matrices. It is easy to see that

idempotents split in Mat(D). It can be easily seen that the only indecomposable

biproduct decompositions of such an (x1, . . . , xn) in Mat(D) is x1∐⋅ ⋅ ⋅∐xn. (To

see this, notice that every object (y1, . . . , ym) of Mat(D) has a degree, the number

of its non-zero elements yj. The degree of a biproduct is the sum of the degrees of
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the summands. The objects of Mat(D) indecomposable as a biproduct are those of

degree one.)

Example 2.27. Let us apply what we have seen in Example 2.25 to the particular

case of the ring R[x, y, z]/(x2 + y2 + z2 − 1). This ring has a finitely generated

indecomposable projective module PR such that R3
R ≅ RR ⊕ PR. The bimodule

RMS is always the R-R-bimodule RRR. Since R is an integral domain, all non-

zero elements x ∈ RRR have an endomorphism ring EndD(x) that is a subring of

R, hence has no non-trivial idempotent, so that all non-zero elements x of RRR

are indecomposable. The object (1R,1R,1R) of Mat(D) has endomorphism ring

EndMat(D)(1R,1R,1R) ≅ M3×3(R). Because of the indecomposable decomposition

R3
R ≅ RR⊕PR, there is an idempotent endomorphism e ∈ EndMat(D)(1R,1R,1R) that

doesn’t have a kernel in D. Therefore D does not have splitting idempotents, and

the decomposition R3
R ≅ RR ⊕ PR in proj − EndD(1R) does not lift to biproduct

decomposition of (1R,1R,1R) in Mat(D).

Example 2.28. If R is a commutative noetherian integral domain of Krull dimen-

sion 1 (for instance, a Dedekind domain), then we have uniqueness of decomposition

as an internal direct-sum of any element x ∈ R into indecomposables up to isomor-

phism, because if x is a torsion-free element, then xR ≅ RR is indecomposable as

an R-module because its endomorphism ring is isomorphic to R, hence is a domain,

hence has no non-trivial idempotents. If x is a torsion element, then xR has its en-

domorphism ring isomorphic to R/ann(x), which is an artinian commutative ring,

hence is a finite direct product of local artinian rings. Hence by the Krull-Schmidt-

Azumaya Theorem xR is a direct-sum of indecomposables up to isomorphism in a

unique way.

Example 2.29. Let G be any abelian group, so that it is naturally a Z-Z-bimodule

ZGZ. Fix an element x ∈ G. There are three cases. If x = 0, then the unique internal

decomposition of x is the trivial decomposition x = 0. If x ≠ 0 and x is not a torsion

element, then the unique internal decomposition is the trivial decomposition x = x,

that is, x is internally indecomposable, because its endomorphism ring EndD(x)
is isomorphic to the integral domain Z, hence x has no nontrivial idempotent en-

domorphisms. The third case is for x ≠ 0, x torsion. Let n be the order of the
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torsion element x of G. Decompose n as a product of powers of distinct primes:

n = pn1
1 . . . pnmt , with the pi distinct primes. Then the unique internal decomposition

of x into indecomposable elements is x = ⊕t
i=1 p

n1
1 . . . p̂nii . . . p

nm
t x. It corresponds to

the direct sum decomposition t(G) = ⊕p tp(G) of the torsion part t(G) of G into its

p-torsion parts components tp(G).

2.4 Isomorphic elements, isomorphic internal di-

rect sums

The study of block decompositions of matrices is one of the classical themes in Linear

Algebra. We refer to the description of matrices up to the matrix equivalence ∼
defined, for any two rectangular m × n matrices A and B, by A ∼ B if B = Q−1AP

for some invertible n × n matrix P and some invertible m × m matrix Q. The

equivalence relation ∼ on the set of m × n matrices corresponds to the isomorphism

relation in the category Morph(Mod-R). See [CEDF19]. More generally, this also

applies to our category C:

Proposition 2.30. Two objects x, y of C are isomorphic in C if and only if there

exist an element r ∈ R invertible in R and an element s ∈ S invertible in S such that

rx = ys.

Proof. Assume that there exist two elements r ∈ R, invertible in R, and s ∈ S,

invertible in S, such that rx = ys. Then (r, s)∶x → y is a morphism in C. Let

r−1, s−1 be the inverses of r, s, respectively. Multiplying the equality rx = ys by r−1

on the left and s−1 on the right, we get that r−1y = xs−1. Hence (r−1, s−1)∶ y → x is a

morphism in C, which is clearly the inverse of (r, s)∶x→ y.

In the categories D and E the situation is a little more complicate. In fact we

have that:

Proposition 2.31. Two objects x, y of D are isomorphic in D (equivalently, in E)

if and only if there exist r ∈ (yS ∶R x) and r′ ∈ (xS ∶R y) such that r′r− 1 ∈ l.annR(x)
and rr′−1 ∈ l.annR(y), if and only if there exist s ∈ (Rx ∶S y) and s′ ∈ (Ry ∶S x) such

that ss′ − 1 ∈ r.annR(y) and s′s − 1 ∈ r.annR(x).
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In view of the usual definition of unique factorization domain in Commutative

Algebra, it is natural to consider the following definition:

Definition 2.32. Two internal decompositions

y1 ⊕ ⋅ ⋅ ⋅ ⊕ ym = x = x1 ⊕ ⋅ ⋅ ⋅ ⊕ xn

of an element x ∈ RMS are equal if n = m and there exists a permutation σ of

{1,2, . . . , n} such that xi = yσ(i) for every i = 1,2, . . . , n.

On the other hand recall that two direct-sum decompositions

N1 ⊕ ⋅ ⋅ ⋅ ⊕Nn =MR =M1 ⊕ ⋅ ⋅ ⋅ ⊕Mm

of a right R-module MR are said to be isomorphic if n = m and there exists a

permutation σ of {1,2, . . . , n} such that Mi ≅ Nσ(i) for every i = 1,2, . . . , n. Thus let

us consider the following definition:

Definition 2.33. Two internal decompositions

y1 ⊕ ⋅ ⋅ ⋅ ⊕ ym = x = x1 ⊕ ⋅ ⋅ ⋅ ⊕ xn

of an element x ∈ RMS are isomorphic if n =m and there exists a permutation σ of

{1,2, . . . , n} such that xi ≅ yσ(i) in D for every i = 1,2, . . . , n.

Notice that, in an internal decomposition x = x1 ⊕ ⋅ ⋅ ⋅ ⊕xn, one has that if xi ≠ 0,

then xi ∉ Rxj ∪ xjS for every index j ≠ i.
Recall now the following useful result:

Lemma 2.34. ([AF92, Exercise 7.2(c)] and [Coh03, p. 144]) Let R be any ring and

e, f idempotent elements of R. Then:

(a) Re = Rf if and only if f = e + (1 − e)xe for some x ∈ R.

(b) Re ≅ Rf if and only if eR ≅ fR, if and only if there exist x ∈ eRf and y ∈ fRe
with xy = e and yx = f . In this case, e and f are said to be isomorphic

idempotents.
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(c) e is isomorphic to f and 1− e is isomorphic to 1− f if and only if there exists

an invertible element u ∈ R such that f = u−1eu. In this case, e and f are said

to be conjugate idempotents.

Remark 2.35. Furthermore conjugate idempotents are isomorphic, in fact, if f =
u−1eu, take a = eu and b = u−1e, so that a = eu = eeu = euf ∈ eRf and b = u−1e =
u−1ee = fu−1e ∈ fRe with ab = e and ba = f .

Hence, as far as idempotents are concerned, there are three equivalence relations

on the set of all idempotent elements of a ring R that are noteworthy to our aims:

being equal, being isomorphic and being conjugate.

Lemma 2.36. Let x = x1⊕⋅ ⋅ ⋅⊕xn = y1⊕⋅ ⋅ ⋅⊕ym be two internal decompositions of an

element x ∈ RMS. Fix an index i = 1,2, . . . , n and an index j = 1,2, . . . ,m. Suppose

xi = rix = xsi and yj = r′jx = xs′j. Then the following conditions are equivalent:

(a) xi = yj.

(b) Rxi = Ryj and ⊕k≠iRxk = ⊕`≠j Ry`.

(c) Rxi = Ryj and R(x − xi) = R(x − yj).

(d) xiS = yjS and ⊕k≠i xkS = ⊕`≠j y`S.

(e) xiS = yjS and (x − xi)S = (y − yj)S.

(f) The two idempotent endomorphisms ei ∶= (ri, si) and e′j ∶= (r′j, s′j) ∈ EndD(x)
coincide.

(g) The two idempotent endomorphisms λri , λr′j ∈ EndS(xS) coincide.

(h) The two idempotent endomorphisms ρsi , ρs′j ∈ EndR(Rx) coincide.

Proof. First of all, let us show that ⊕k≠iRxk = R(x − xi). The inclusion ⊕k≠iRxk ⊇
R(x−xi) is trivial, because x = x1 + ⋅ ⋅ ⋅ +xn. For the inclusion ⊕k≠iRxk ⊆ R(x−xi),
notice that, from R(x − xi) ⊆ ⊕k≠iRxk, the sum Rxi +R(x − xi) is direct. It follows

that Rx ⊆ Rxi⊕R(x−xi) ⊆ Rxi⊕(⊕k≠iRxk) = Rx. Therefore R(x−xi) = ⊕k≠iRxk,

as desired. The proof for the direct summands ykS is similar.

(a)⇒ (b) now follows trivially from the remark in the previous paragraph.
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(b)⇒ (a) The only way to write x as a sum of an element of Rxi and an element

of ⊕k≠iRxk is x = xi + (x − xi). Similarly, the only way to write x as a sum of an

element of Ryj and an element of ⊕`≠j Ry` is x = yj + (x − yj). From condition (b),

it follows that xi = yj.
(b)⇔ (c) follows trivially from the remark in the first paragraph of this proof.

The proof that (a)⇔ (d)⇔ (e) is similar.

(a) ⇒ (f) If xi = yj, then rix = r′jx, i.e., we have that the two morphisms

rix = r′jx∶x→ x coincide in the category E , so that the two morphisms

ei ∶= (ri, si)∶x→ x and e′j ∶= (r′j, s′j)∶x→ x,

in the equivalent category D, coincide.

(f) ⇒ (a) The fact that the endomorphisms ei ∶= (ri, si) and e′j ∶= (r′j, s′j) ∈
EndD(x) coincide in D means that ri − r′j ∈ l.ann(x), that is, rix− r′jx = 0. It follows

that xi = rix = r′jx = yj.
(f)⇔ (g) follows immediately from the existence of the faithful functor FS ∶ D →

Mod-S, which maps the endomorphisms ei ∶= (ri, si) and e′j ∶= (r′j, s′j) of x in D to

the two endomorphisms λri , λr′j of xS, respectively.

The proof of (f)⇔ (h) is similar.

It follows that:

Proposition 2.37. Two internal decompositions

x = x1 ⊕ ⋅ ⋅ ⋅ ⊕ xn and x = y1 ⊕ ⋅ ⋅ ⋅ ⊕ ym

of an element x ∈ RMS are equal if and only if n =m and there exists a permutation

σ of {1,2, . . . , n} such that any of the following equivalent conditions is satisfied:

(a) Rxi = Ryσ(i) for every i = 1,2, . . . , n.

(b) xiS = yσ(i)S for every i = 1,2, . . . , n.

(c) The corresponding complete sets of pairwise orthogonal idempotents in D co-

incide: {e1, . . . , en} = {e′1, . . . , e′n}.

(d) The corresponding complete sets of pairwise orthogonal idempotents of

EndS(xS) coincide: {λr1 , . . . , λrn} = {λr′1 , . . . , λr′n}.
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(e) The corresponding complete sets of pairwise orthogonal idempotents of

EndR(Rx) coincide: {ρs1 , . . . , ρsn} = {ρs′1 , . . . , ρs′n}.

Here ei ∶= (ri, si), e′j ∶= (r′j, s′j), where xi = rix = xsi and yi = r′ix = xs′i.

Proposition 2.38. Let x = x1⊕⋅ ⋅ ⋅⊕xn = y1⊕⋅ ⋅ ⋅⊕ym be two internal decompositions

of an element x ∈ RMS. Fix an index i = 1,2, . . . , n and an index j = 1,2, . . . ,m.

Suppose xi = rix = xsi and yj = r′jx = xs′j. Then the following conditions are

equivalent:

(a) xi and yj are isomorphic objects in D.

(b) The two idempotent endomorphisms ei ∶= (ri, si), e′j ∶= (r′j, s′j) are isomorphic

idempotents of the ring EndD(x).

Proof. Set E ∶= EndD(x). Because of the category equivalence induced by the

additive functor HomD(x,−)∶Ax → Px, see Proposition 2.21, two objects xi and yj

of Ax are isomorphic in D if and only if the corresponding right ideals Eei,Ee′j are

isomorphic in Mod-E, that is, if and only if ei, e′j are isomorphic idempotents.

Proposition 2.39. Let x = x1⊕⋅ ⋅ ⋅⊕xn = y1⊕⋅ ⋅ ⋅⊕ym be two internal decompositions

of an element x ∈ RMS. Suppose xi = rix = xsi and yj = r′jx = xs′j for all indices i

and j, so that the corresponding idempotents are ei = (ri, si) and e′j = (r′j, s′j). The

following conditions are equivalent:

(a) The two internal decompositions of x are isomorphic.

(b) The two complete sets {e1, . . . , en}, {e′1, . . . , e′n} of pairwise orthogonal idempo-

tents of EndD(x) are conjugate, that is, n =m and there exist a permutation σ

of {1,2, . . . , n} and an invertible element α of EndD(x) such that αeiα−1 = e′
σ(i)

for every i = 1,2, . . . , n.

(c) n = m and there exist an automorphism (r, s)∶x → x in D and a permutation

σ of {1,2, . . . , n} such that rxi = yσ(i)s for every i = 1,2, . . . , n.

Proof. (a) ⇒ (c) Suppose that (a) holds, so that x = x1 ⊕ ⋅ ⋅ ⋅ ⊕ xn = y1 ⊕ ⋅ ⋅ ⋅ ⊕ yn
and that there exists a permutation σ of {1,2, . . . , n} with xi ≅ yσ(i) for every i =
1,2, . . . , n. Set E ∶= EndD(x). Applying HomD(x,−)∶D → Mod-E, we get two
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direct-sum decompositions EE = e1E ⊕ enE = e′1E ⊕ e′nE with eiE ≅ e′
σ(i)E for every

i = 1,2, . . . , n. It follows that there is an automorphism α of EE such that α(eiE) =
e′
σ(i)E for every i = 1,2, . . . , n. Automorphisms of EE are left multiplication by an

invertible element of E, so that there exists an invertible element u ∈ E such that

ueiE = e′
σ(i)E for every i. Since we have a direct sum of right ideals, for the identity

1 of E we have that 1 = e1 + ⋅ ⋅ ⋅ + en, so 1 = u1u−1 = ue1u−1 + ⋅ ⋅ ⋅ + uenu−1. Therefore,

from ueiE = e′
σ(i)E, we get that uenu−1 = e′

σ(i) for every i. Thus uen = e′σ(i)u for every

i = 1,2, . . . , n. Now u is of the form (r, s), and if xi = rix = xsi, then ei = (ri, si).
Similarly for the elements yi. Hence (r, s)(ri, si) = (r′

σ(i), s
′
σ(i))(r, s) for every i, so

that rrix = xs′σ(i)s. Hence rxi = rrix = xs′σ(i)s = yσ(i)s.
(c)⇒ (b) Suppose that (c) holds. Let α be the automorphism (r, s). It suffices

to show that rxi = yσ(i)s implies αeiα−1 = e′
σ(i). Now αeiα−1 = e′

σ(i) is equivalent to

αei = e′σ(i)α, that is, that rrix = r′σ(i)rx. But if rxi = yσ(i)s, then rrix = rxi = yσ(i)s =
r′
σ(i)xs = r′σ(i)rx.

(b) ⇒ (a) Suppose that (b) holds. Let r, r′ and s, s′ be such that α = (r, s)
and α−1 = (r′, s′). To prove (a) it suffices to show that xi ≅ yσ(i) for every i. To

this end, it suffices to that (r, s)∶xi → yσ(i) and (r′, s′)∶ yσ(i) → xi are well defined,

mutually inverse morphisms in D, that is, that rxi = yσ(j)s, r′yσ(i) = xis′, r′rxi = xi
and rr′yσ(i) = yσ(i).

To see that rxi = yσ(j)s, notice that the equality αeiα−1 = e′
σ(i) in (b) is equivalent

to αei = e′σ(i)α, that is, to the equality rrix = r′
σ(i)rx. Thus rxi = rrix = r′

σ(i)rx =
r′
σ(i)xs = yσ(i)s. Similarly for the equality r′yσ(i) = xis′.

To prove that r′rxi = xi, multiply the equality r′rx = x by si, getting that

r′rxsi = xsi, that is, r′rxi = xi. Similarly for the equality rr′yσ(i) = yσ(i).
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Semilocal Categories

3.1 The Jacobson radical

In this section we recall the basic notions and properties of the Jacobson radical of

a ring.

Definition 3.1 (Radical). Let MR a right R-module. The radical rad(MR) of a

module is the intersection of all maximal submodules of MR.

Definition 3.2 (Jacobson radical). Let R be any ring and consider the regular right

R-module RR. The radical of RR is called the Jacobson radical of the ring R. Thus

J(R) ∶= rad(RR) is the intersection of all maximal right ideals of R.

Let us give some classical descriptions of the Jacobson radical.

Proposition 3.3. [Fac17, Lemma 29.1] The Jacobson radical J(R) of any R is the

intersection of the right annihilators r.annR(SR) of all simple right R-modules SR.

Definition 3.4. Let MR be a right R-modules and P be a submodule of MR. The

submodule P is superfluous in MR if, for every submodule K of MR, P +K = MR

implies L =MR.

Proposition 3.5. The Jacobson radical J(R) of a ring can also be described as:

(i) The unique largest superfluous right ideal of R.

(ii) The set of all x ∈ R such that 1 − xr is right invertible for every r ∈ R.
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(iii) The set of all x ∈ R such that 1 − rxs is invertible for every r, s ∈ R.

Proposition 3.6. Let R be a semisimple artinian ring. Then the Jacobson radical

of R is zero.

Proof. Let R be a semisimple artinian ring, the regular module RR is semisimple,

then it is a direct sum of finitely many simple right R-modules S1, S2, . . . , Sn. The

right modules S1⊕⋅ ⋅ ⋅⊕ Ŝi⊕ . . . Sn are n maximal right submodules of RR, and the

intersection of these n maximal right submodules is zero. Hence J(R) = 0

3.2 Semilocal Rings

In this section we will recall the main properties of semilocal rings. In Commutative

Algebra, a commutative ring is semilocal if it has only finitely many maximal ideals.

For arbitrary rings there is the following definition.

Definition 3.7 (Semilocal Ring). A ring R is semilocal if R/J(R) is a semisimple

Artinian ring. Here J(R) denotes the Jacobson radical of R.

The two definitions agree for commutative rings. Moreover it can be proved that:

Proposition 3.8. The following conditions are equivalent for a ring R:

(a) The ring R is semilocal.

(b) The ring R/J(R) is a right Artinian ring.

(b’) The ring R/J(R) is a left Artinian ring.

(c) The ideal J(R) is the intersection of finitely many maximal right ideals of R.

(c’) The ideal J(R) is the intersection of finitely many maximal left ideals of R.

Let us now recall some examples of known semilocal rings.

Examples 3.9. [Fac19, Examples 3.13] The following are semilocal rings.

(1) Every right (or left) Artinian ring is semilocal.

(2) Every local ring is semilocal.
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(3) The direct product R1×R2×⋅ ⋅ ⋅×Rn of finitely many semilocal rings R1, R2, . . . ,

Rn is semilocal.

(4) If R is a semilocal ring, the ring Mn(R) of all n×n matrices over R is semilocal.

(5) A commutative ring is semilocal if and only if it has finitely many maximal

ideals.

Proposition 3.10. [Fac98, Exemple (5), pag. 7] Every homomorphic image of a

semilocal ring is semilocal.

Proof. Let I be an ideal of a semilocal ring R. Since every simple R/I-module is a

simple R-module, if π ∶ R → R/I is the canonical projection, then π(J(R)) ⊆ J(R/I).
Hence π induces a surjective homomorphism R/J(R) → (R/I)/J(R/I). But every

homomorphic image of a semisimple artinian ring is a semisimple artinian ring, and

thus R/I is semilocal.

The property of being semilocal is a finiteness condition on the R. Furthermore

recall the following result.

Proposition 3.11. Let R be a semilocal ring, then:

(a) Every finitely generated projective R-module has only finitely many direct sum-

mands up to isomorphism.

(b) The number of direct-sum decompositions of any nonzero finitely generated

projective module as a sum of nonzero submodules is finite up to isomorphism.

(c) Every finitely generated projective R-module is a direct sum of finitely many

indecomposable modules.

(d) Every finitely generated projective R-module is not a direct sum of infinitely

many nonzero modules.

In particular, for modules, it is interesting to study the case of the modules

MR whose endomorphism ring End(MR) is semilocal. In fact, having a semilocal

endomorphism ring is a finiteness condition on the module MR. In order to explain

what it means, recall the following.
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Proposition 3.12. Let MR be a right R-module and let End(MR) be a semilocal

ring, then:

(a) MR is a direct sum of finitely many indecomposable modules.

(b) MR is not a direct sum of infinitely many nonzero submodules.

(c) If NR and N ′
R are right R-modules, then MR⊕NR ≅ MR⊕N ′

R implies NR ≅
N ′
R.

(d) MR has only finitely many direct summands up to isomorphism.

3.3 Local Morphisms

Recall now a very useful tool in the theory of semilocal rings, that is local morphisms.

As for semilocal rings, we will recall the definition for commutative rings.

Let R and S be local commutative rings with maximal ideals I and J respectively.

In Commutative Algebra, a ring morphism φ∶R → S is called a local morphism if

φ(I) ⊆ J . The definition for arbitrary rings is the following.

Definition 3.13. Let R and S be arbitrary associative rings with identity. A ring

morphism φ ∶ R → S is said to be a local morphism if, for every r ∈ R, φ(r) invertible

in S implies r invertible in R.

This definition concides with the one in commutative case, when the rings R and

S are local commutative rings.

Example 3.14. Let R be a ring. The canonical projection π ∶ R → R/J(R) is a local

morphism. More generally, if I is a two-sided ideal of R and I ⊆ J(R), then the

canonical projection π ∶ R → R/I is a local morphism.

Lemma 3.15. [Fac19, Lemma 3.23] Let R, S and T be rings and let φ ∶ R → S,

ψ ∶ S → T be ring morphisms. If φ and ψ are local morphisms, then the composite

mapping ψ ○ φ is a local morphism.

The reason why local morphisms are so useful is the following characterization

of semilocal rings.
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Theorem 3.16. [CD93, Theorem 1] A ring R is semilocal if and only if there exists

a local morphism of R into a semilocal ring.

From now on our aim is to show how local morphisms appear in our setting.

Proposition 3.17. For every x ∈ RMS the ring morphism φ ∶ EndC(x) ↪ R × S,

defined by φ(r, s) = (r, s), is a local morphism.

Proof. Let (r, s) be an element of EndC(x) such that φ((r, s)) = (r, s) ∈ R × S
is an invertible element, so there exists a unique pair (r′, s′) ∈ R × S such that

(rr′, ss′) = (1R,1S) and (r′r, s′s) = (1R,1S). We must show that (r′, s′) is an element

of EndC(x). Starting from the equation rx = xs, multiply on the left by r′ and on

the right by s′. We obtain r′rxs′ = r′xss′, so xs′ = r′x.

Our next step is to describe the endomorphism ring of a cyclic module. Let us

recall a description of the endomorphism ring of a cyclic right module xS over an

arbitrary ring S. Recall that if a right S-module NS is cyclic and x is a generator

of NS, then NS ≅ S/A where A = r.annS(x).
We are interested in HomS(S/A,S/A) = EndS(S/A). Each S-module morphism

f ∶ S/A → S/A is uniquely determined by the its image on 1 + A. Let us suppose

that f(1+A) = a+A, so f(r+A) = f(1+A)r = ar. Furthermore, f(0+A) = 0+A so

if we change the representative for the zero, we have f(i+A) = ai+A = 0+A. That

is, ai ∈ A. Then EndS(xS) is isomorphic to the idealizer

I(r.annS(x)) = {a ∈ S ∣ ar.annS(x) ⊆ r.annS(x) } =

= {a ∈ S ∣ ∀t ∈ S(xt = 0⇒ xat = 0) }

in S of r.annS(x) modulo r.annS(x):

EndS(xS) ≅ I(r.annS(x))/r.annS(x).

This isomorphism associates to any endomorphism f of xS the element a+r.annS(x),
where a ∈ S is such that f(x) = xa.

Similarly for homomorphisms of xS → yS: we have that if

Hx,y = {a ∈ S ∣ ar.annS(x) ⊆ r.annS(y) } =

= {a ∈ S ∣ ∀t ∈ S(xt = 0⇒ yat = 0) },
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then

HomS(xS, yS) ≅Hx,y/r.annS(y).

The isomorphism associates to any morphism f ∶xS → yS the element a+ r.annS(x),
where a ∈ S is such that f(x) = ya.

Furthermore, let φ ∶ xS → xS be an idempotent element of EndS(xS) with

φ(x) = xa for some a in I(A)/A. Notice that φ is well defined if and only if for

every t ∈ S xt = 0⇒ xat = 0. Then φ(xt) = xat for every t ∈ S. The same holds for

1 − φ ∶ xS → xS. The endomorphism 1 − φ corresponds to the right multiplication

by 1 − a, in fact (1 − φ)(x) = x − xa = x(1 − a). The endomorphism φ is idempotent

if and only if φ2(x) = φ(x) ⇔ φ(xa) = φ(x) ⇔ xa2 = xa⇔ a2 − a ∈ annS(x)
Hence the direct sum decomposition is

xS = xaS⊕x(1 − a)S

Consider now the subring (Rx∶Sx)
r.annS(x) of I(r.annS(x))

r.annS(x) ≅ EndS(xS). Take an element

s = s+ r.annS(x) where xs ∈ Rx, so that there exists r′ ∈ R such that xs = r′x. Then,

for every s′ ∈ S such that xs′ = 0, we have xss′ = r′xs′ = 0. Hence we have

(Rx ∶S x)
r.annS(x)

⊆ I(r.annS(x))
r.annS(x)

≅ EndS(xS).

Similarly,
(xS ∶R x)
l.annR(x)

⊆ I(l.annR(x))
l.annR(x)

≅ EndR(Rx).

Proposition 3.18. The morphism

ψ ∶ EndD(x) Ð→
(xS ∶R x)
l.annR(x)

× (Rx ∶S x)
r.annS(x)

(r, s) z→ (r, s)

is an injective local homomorphism.

Proof. The mapping ψ is well defined because for every (a, b) ∈ l.annR(x)×r.annS(x),
i.e., such that ax = xb = 0M we have r + a ∈ r and (r + a)x = rx.

It is also a homomorphism, because ψ((r′, s′)○(r, s)) = ψ((r′r, s′s)) = (r′r, s′s) =
(r′, s′)(r, s) = ψ((r′, s′)) ○ ψ((r, s)). The homomorphism ψ is injective because

Ker(ψ) = l.annR(x) × r.annS(x).
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Moreover, ψ is a local morphism: take (r, s) ∈ EndD(x), suppose ψ((r, s)) = (r, s)
is invertible, then r is invertible in (xS∶Rx)

l.annR(x) and s is invertible in (Rx∶Sx)
r.annS(x) . Hence

there exist r̃ ∈ R and s̃ ∈ S such that r̃r = 1R and s̃s = 1S, i.e., the pair (r̃, s̃) is

the inverse of (r, s). Now it remains to prove that (r̃, s̃) is an element of EndD(x).
Starting from the equation rx = xs, multiply on the left by r̃ and on the right by s̃.

We obtain r̃rxs̃ = r̃xss̃, so passing to the quotient we get xs̃ = r̃x.

Consider the morphism α ∶ EndD(x) → EndS(xS) that sends an element (r, s)
of EndD(x) with rx = xs to λr ∶ xS → xS (notice that λr(xS) = rxS = xsS ⊆ xS),

and β ∶ EndD(x) → EndR(Rx) that sends an element (r, s) of EndD(x) with rx = xs
to ρs ∶ Rx → Rx. We have that ρs(Rx) = Rxs = Rrx ⊆ Rx. Both morphisms are

well defined. Notice that on EndR(Rx) we usually write mappings on the right,

because Rx is a left R-module. So β is therefore a ring homomorphism, because

β((r′, s′) ○ (r, s)) = β((r′r, s′s)) = ρs′s = ρs′ ○ ρs = β((r′, s′)) ○ β((r, s)).
Hence we can deduce the following.

Proposition 3.19. The morphism

ξ ∶ EndD(x) → End(Rx)Op ×End(xS)

(r, s) z→ (r, s)

is an injective local homomorphism.

The proof is similar to that of Theorem 3.18.

So we obtain the following results.

Theorem 3.20. If R and S are semilocal rings, then EndD(x) is also a semilocal

ring.

Proof. If R and S are semilocal rings, their direct product is also semilocal and

we know from Proposition 3.17 that EndC(x) ↪ R × S is a local morphism, then,

because of Theorem 3.16, EndC(x) is a semilocal ring and from Proposition 3.10

EndC/I(x) is semilocal.

Theorem 3.21. If (xS∶Rx)
l.annR(x) and (Rx∶Sx)

r.annS(x) are semilocal rings, then EndD(x) is also

a semilocal ring.
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Proof. It follows directly from Proposition 3.18 and Theorem 3.16.

Since any semilocal ring has only finitely many finitely generated indecompos-

able projective R-modules up to isomorphism (Fuller and Shutters, [Fac19, Corol-

lary 3.31], it follows that:

Corollary 3.22. If R and S are semilocal rings, every x ∈ RMS has only finitely

many internal direct-sum decompositions in RMS up to isomorphism.

Definition 3.23. [Fac19, Definition 4.61] Let A be a category. It is a semilocal cate-

gory if it is a preadditive category with a non-zero object such that the endomorphism

ring EndA(A) of every non-zero object A of A is a semilocal ring.

Theorem 3.24. If R and S are semilocal rings, then the categories C,D and E are

semilocal categories.

We will now give an example of a finitely generated module over a semilocal ring

whose endomorphism ring is not semilocal.

Recall that a semiprimary ring is a semilocal ring whose Jacobson ideal is nilpotent.

Example 3.25. [FH06, Example 3.5]

Let K be a field with a non-onto endomorphism α ∶ K → K. Let K0 = α(K).
Let KV be a vector space different from zero. View KV as a K-K-bimodule taking

the scalar product by K as left action and setting as right action v ⋅ k = α(k)v for

every v ∈ V and every k ∈K.

Let R =
⎛
⎝
K KVK

0 K

⎞
⎠

. Then J(R) =
⎛
⎝

0 KVK

0 0

⎞
⎠

, R/J(R) ≅ K ×K and J(R)2 = 0, so

that R is semiprimary. Fix a ∈K/K0 and 0 ≠ w ∈ V . Consider the right ideal

I = ∑
n≥0

⎛
⎝

0 anw

0 o

⎞
⎠
R =

⎛
⎝

0 K0[a]w
0 0

⎞
⎠

of R. Then E ∶= EndR(R/I) ≅ I(I)/I, where I(I) is the idealizer of I in R.

Let
⎛
⎝
k1 v

0 k2

⎞
⎠
∈ I(I). As

⎛
⎝
k1 v

0 k2

⎞
⎠
⎛
⎝

0 w

0 0

⎞
⎠
=
⎛
⎝

0 k1w

0 0

⎞
⎠
∈ I,
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we deduce that I(I) =
⎛
⎝
K0[a] V

0 K

⎞
⎠

. Hence E/J(E) ≅K0[a] ×K.

If we choose K, α and a such that a is trascendental over K0, then K0[a]×K is not

semisimple artinian. Hence, E is not semilocal.

3.4 Some Natural Functors

It is possible to generalize the notion of local morphism between rings to the notion

of local functor between categories in the following way.

Definition 3.26. if A and B are categories, a functor F ∶A → B is local if for every

morphism f ∶a→ a′ in A, if F (f) is an isomorphism in B, then f is an isomorphism

in A.

Let us introduce two functors:

(1) The covariant functor FS ∶ D → Mod-S which associates to each x ∈ M the

cyclic right S-module xS and to any morphism (r, s) ∶ x→ y the left multipli-

cation
λr ∶ xS → yS

x↦ rx.

This functor is well defined on morphisms because if (r, s) ∶ x → y is a mor-

phism in D and (r, s) = (r′, s′), then r − r′ ∈ l.annR(x), so λr = λr′ .

(2) The contravariant functor FR ∶ D → R-Mod which associates to each x ∈ M
the cyclic left R-module Rx and to any morphism (r, s) ∶ x → y the right

multiplication

ρs ∶ Ry → Rx

y ↦ ys.

This functor is well defined on morphisms because if (r, s) ∶ x → y is a mor-

phism in D and (r, s) = (r′, s′), then s − s′ ∈ r.annS(x), so ρs = ρs′ .

Observe that the ring homomorphisms

α ∶ EndD(x) → EndS(xS) and β ∶ EndD(x) → EndR(Rx)
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defined before the Proposition 3.19 are respectively (FS)xx and (FR)xx in the note-

tion of Definition 1.3.

Proposition 3.27. The functors FS ∶ D →Mod-S and FR ∶ D → R-Mod are faithful

functors.

Proof. Let us begin with the functor FS. Following the Definition 1.3 consider the

mapping

(FS)xy ∶ HomD(x, y) → HomS(xS, yS).

Let (r1, s1) ∶ x → y and (r2, s2) ∶ x → y be morphisms of HomD(x, y), so that,

r1x = ys1 and r1x = ys1. Suppose (r1, s1) ≠ (r2, s2), then we have either (r1−r2)x ≠ 0

or y(s1 − s2) ≠ 0. In the first case we have that r1x − r2x ≠ 0 then r1x ≠ r2x, that

is the same of λr1(x) ≠ λr2(x), thus λr1 ≠ λr2 . In the second case we have that

ys1 − ys2 ≠ 0 then ys1 ≠ ys2, but from r1x = ys1 and r1x = ys1 we obtain the same

conclusion.

For the functor FR we can proceed in the same way as before.

Remark 3.28. The functors FS and FR are not full functors, e.g., let R be a ring

with an element x that is right-invertible but non left-invertible and let s ∈ R such

that xs = 1. Consider the bimodule RMS = RRR. Then λs∶ RR → RR is a morphism

between right R-modules, but in this case xR = RR, because x is right-invertible,

thus we have a morphism λs∶ xR → xR but for every r ∈ R, we have rx ≠ 1 = xs.

For the direct product ring R×S, let CR×S be the preadditive category with one

object ∗ with endomorphism ring EndCR×S(∗) = R × S.

Proposition 3.29. The functor F ∶ D → CR×S that sends any morphism (r, s)∶x→ y

in D to the element (r, s) of R × S is a faithful local functor.

Proof. Let (r, s)∶x→ y be a morphism in D, so that rx = ys. Suppose (r, s) invertible

in R×S. Let (r′, s′) be the inverse of (r, s) in R×S. Multiplying the equality rx = ys
by r′ on the left and s′ on the right, one gets that r′rxs′ = r′yss′, so r′y = xs′. Hence

(r′, s′)∶ y → x is a morphism in D and is the inverse of

(r, s)∶x→ y.
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Proposition 3.30. The covariant functor FR × FS ∶ D → (R-Mod)op × Mod-S is a

local functor.

Proof. Recall that the covariant faithful additive functor

FR × FS ∶ D → (R-Mod)op ×Mod-S

associates to any morphism (r, s)∶x→ y the morphism (ρs, λr)∶ (Rx,xS) → (Ry, yS).
In order to prove that the functor is local, fix a morphism (r, s)∶x→ y and sup-

pose that (ρs, λr)∶ (Rx,xS) → (Ry∶ yS) is an isomorphism in (R-Mod)op ×Mod-S.

Then the two module morphisms ρs∶Ry → Rx, defined by ρs(ay) = ays = arx for

every a ∈ R, and λr∶xS → yS, defined by λr(xb) = rxb = ysb for every b ∈ S, are iso-

morphisms. Let ρ′∶Rx→ Ry and λ′∶ yS → xS be their inverse morphisms in R-Mod,

SMod-, respectively.

From the description of the morphisms between cyclic modules in Section 3.3,

we get that there exists an element r′ ∈ R such that l.annR(x)r′ ⊆ l.annR(y) and

ρ′(x) = r′y, and there exists an element s′ ∈ S such that s′r.annS(y) ⊆ r.annS(x) and

λ′(y) = xs′. From the four equalities

ρρ′ = 1Rx, ρ′ρ = 1Ry, λλ′ = 1xS, λ′λ = 1yS,

we get that

x = r′rx, y = rr′y, x = xss′, y = ys′s

respectively (for instance, from ρρ′ = 1Rx, we get that x = ρρ′(x) = ρ(r′y) = r′ρ(y) =
r′ryb). Thus (r, s)∶x → y morphism in D implies rx = ys, so r′rxs′ = r′yss′, hence

xs′ = r′y. Hence we have a morphism (r′, s′)∶ y → x in D. It is immediate to check

that this morphism is an inverse of (r, s)∶x→ y in D.

Definition 3.31. Let A be a category, A1,A2 and B objects of A, f1∶A1 → B

and f2∶A2 → B be morphisms of A. A pullback of f1 and f2 in A is a triple

(P,α1, α2), where P is an object of A and α1∶P → A1, α2∶P → A2 morphisms such

that f1 ○ α1 = f2 ○ α2 and for every other triple (X,β1, β2) with the same property,

there exists an unique morphism γ∶X → P such that β1 = α1 ○ γ and β2 = α2 ○ γ.
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X

P A1

A2 B.

β1

β2

γ

α1

α2 f1

f2

The functors A,B also allow to describe our present setting in terms of pullbacks.

Consider two elements x, y ∈ RMS and the free modules of rank one RR and SS. From

the universal property of free modules there exist unique morphisms ρx∶RR → RMS

and λx∶SS → RMS such that ρx(r) = rx and λx(s) = xs for every r ∈ R, s ∈ S. We

have the following diagram

RR RMS

SS.

ρx

λy

Our claim is that the following is a pullback of abelian groups

RR RMS

HomC(x, y) SS.

ρx

p2

p1 λy

where p2∶HomC(x, y) → SS, (r, s) ↦ s and p1∶HomC(x, y) → RR, (r, s) ↦ r.

In fact, (λy ○ p2)(r, s) = ys = rx = (ρx ○ p1)(r, s), so the first property of pullbacks is

satisfied. Let X be an abelian group and let α∶X → RR and β∶X → SS morphisms

such that ρx ○ α = λy ○ β. Define φ∶X → HomC(x, y) such that a ↦ (α(a), β(a)). It

is easy to see that p1 ○ φ = α and p2 ○ φ = β. It remains to show the uniqueness,

let ψ∶X → HomC(x, y), a ↦ (ra, sa) such that p1 ○ ψ = α and p2 ○ ψ = β, then

s = p2 ○ φ(a) = β(a) = p2 ○ ψ(a) = sa and r = p1 ○ φ(a) = α(a) = pa ○ ψ(a) = ra imply

φ = ψ.

Factoring out modulo the kernels, we get a pullback of abelian groups in which all

morphisms are monomorphisms:

RR/l.annR(x) RMS

HomD(x, y) SS/r.annS(y),
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or, equivalently, the pullback

Rx RMS

HomE(x, y) yS,

where all morphisms are abelian group embeddings.

3.5 Embedding into other categories

In this section our aim is to present some category embeddings from the category

D to other categories.

Proposition 3.32. Let RMS be an R-S-bimodule. Then:

(1) There is a covariant functor H ∶ D →Morph(Mod-S), which associates to any

object x of D the embedding εx∶xS ↪ MS. It associates to any morphism

(r, s)∶x → y in D the pair of morphisms (λr, λ′r), where λ′r∶MS → MS is left

multiplication by r, and λr∶xS → yS is the restriction of λ′r.

(2) MS is R-balanced, that is, the canonical ring morphism λ∶R → End(MS) is

surjective, then the functor H is full.

(3) Conversely, if the functor H is full and the module MS is cyclic, then MS is

R-balanced.

Proof. (1) For a morphism (r, s)∶x→ y in D, we have that rx = ys, so that λ′r(xS) =
rxS = ysS ⊆ yS and the square

xS MS

yS MS

εx

λr λ′r

εy

commutes. It is now easy to check that H is a covariant functor. In order to prove

that it is a faithful functor, we must show that the mapping

HomD(x, y) → HomMorph(Mod-S)(εx, εy)
(r, s) ↦ (λr, λ′r)

(3.1)
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is injective. But given rx = ys and r′x = ys′ such that (λr, λ′r) = (λr′ , λ′r′), we have

that λ′r = λ′r′ , so that rx = r′x. This proves that the functor is faithful.

(2) Suppose that MS is R-balanced. In order to prove that H is full, we

must show that the mapping in (3.1) is surjective. Now an arbitrary element of

HomMorph(Mod-S)(εx, εy) is a pair (f ∣xS, f), where f is an endomorphism of MS that

induces by restriction a left R-module morphism f ∣xS ∶xS → yS. Therefore the dia-

gram

xS MS

yS MS

εx

f ∣xS f

εy

is commutative. Since MS is R-balanced, there exists r ∈ R such that λ′r = f . Now

f(xS) ⊂ yS, so rx = f(x) ∈ yS. It follows that there exists an element s ∈ S with

rx = ys. Therefore (r, s)∶x → y is the morphism in D that proves that the mapping

in (3.1) is surjective.

(3) Now assume H full and MS cyclic. In order to prove that the canonical

mapping λ∶R → End(MS) is surjective, fix an endomorphism f ∶MS →MS. Let z be

a generator of MS. The commutative diagram

zS MS

zS MS

εz

f f

εz

shows that the pair (f, f) is a morphism of εz into εz. Since H is full, there exists a

morphism (r, s)∶ z → z in D such that f = λr. This proves that MS is R-balanced.

From Proposition 3.32 we get that, the category D is isomorphic to a subcategory

of the category Morph(Mod-S).

Remark 3.33. The functor of Proposition 3.32 is faithful but not full. To see this it

suffices to take any endomorphism ϕ∶MS →MS that is not left multiplication by an

element of R for the bimodule RMS, and consider (ϕ,λs).

Dually, we can state the following:

Proposition 3.34. Let RMS be an R-S-bimodule. Then:
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(1) There is a contravariant functor L∶ D → Morph(R-Mod), which associates to

any object x of D the embedding ηx∶Rx↪ RM . It associates to any morphism

(r, s)∶x → y in D the pair of morphisms (ρs, ρ′s), where ρ′s∶RM →R M is right

multiplication by s, and ρs∶Ry → Rx is the restriction of ρ′s.

(2) RM is S-balanced, that is, the canonical ring morphism λ∶S → End(RM) is

surjective, then the functor L is full.

(3) Conversely, if the functor L is full and the module RM is cyclic, then RM is

S-balanced.

A similar category embedding appears in relation to the Eilenberg-Watts Theo-

rem:

Theorem 3.35. (Eilenberg [Eil60], Watts [Wat60]) Let R and S be rings and

F ∶Mod-R → Mod-S be a right exact additive functor that preserves direct sums.

Then F (RR) is an R-S-bimodule and the two functors, F,− ⊗R MS are naturally

isomorphic.

This correspondence between R-S-bimodules and right exact additive functors

that preserve direct sums, that is, colimit-preserving functors, is an equivalence

between the category R-BiMod-S of R-S–bimodules and the category

Funccoc(Mod-R,Mod-S)

of all additive colimit-preserving functors Mod-R →Mod-S.

For every bimodule RMS, let − ⊗R MS ∶Mod-R → Mod-S be the corresponding

functor in the Eilenberg-Watts Theorem. For any ring T , let UT ∶Mod-T → Ab

denote the forgetful functor. Thus we have two functors UR∶Mod-R → Ab and

US ○ (−⊗RMS)∶Mod-R → Ab. Both functors UR and US ○ (−⊗RMS) are right exact

additive functors that preserve direct sums.

Proposition 3.36. For every R-S-bimodule RMS, there is a canonical mapping

RMS → Nat(UR, US ○ (− ⊗RMS))

into the class of all natural transformations UR → US ○ (− ⊗RMS). It associates to

each element x of RMS the natural transformation ηx∶UR → US ○ (−⊗RMS) defined,

for every right R-module AR, by ηx,A∶AR → A→ A⊗RM , ηx,A∶a ∈ AR → A↦ a⊗ x.
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The proof is easy.

Now “morphisms” between two natural transformations are just commutative

squares of natural transformations. Therefore, to give a coherent presentation, it is

now convenient to determine, for any fixed left R-module RM the natural transfor-

mations η∶GM → GM of the functor

GM ∶= − ⊗RM ∶Mod-R → Ab, GM ∶AR → A⊗RM,

into itself:

Proposition 3.37. For every left R-module RM , there is a one-to-one correspon-

dence between its endomorphism ring EndR(RM) and the class of all natural trans-

formations η∶GM → GM , where GM ∶= − ⊗RM ∶Mod-R → Ab.

Proof. This is an exercise which we leave to the reader. For any left R-module

morphism f ∶RM → RM , the corresponding natural transformations ηf ∶GM → GM

associates to any right R-module AR the abelian group morphism

ηf,X ∶= 1X ⊗ f ∶X ⊗RM →X ⊗RM.

Conversely, if η∶GM → GM is any natural transformations, then η associates to the

object RR of Mod-R the abelian group morphism ηR∶R⊗RM ≅M → R⊗RM ≅M .

It is easy to check that ηR∶M → M is a left R-module morphism and that η = ηηR
(for every right R-module AR and every element a ∈ A, consider the right R-module

morphism λa∶RR → AR, λa∶1→ a).

Corollary 3.38. For every ring R, there is a one-to-one correspondence between the

ring R and the class of all natural transformations η∶UR → UR, where UR∶Mod-R →
Ab is the forgetful functor.

Proof. Take RM ∶= RR in the previous proposition.

Let RMS be a fixed R-S-bimodule. Let us show that the mapping RMS →
Nat(UR, US ○ (− ⊗R MS)), x ↦ ηx described in the statement of Proposition 3.36

is the object mapping of a functor D → Nat(UR, US ○ (− ⊗R MS)). This functor

associates to any morphism (r, s)∶x → y in D the pair (ρr,− ⊗ ρs) consisting of the

natural transformation ρr∶UR → UR (where ρr associates to the right R-module AR
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the group morphism ρr,A∶A→ A, a↦ ar) and the natural transformation −⊗ρs∶ (US○
(−⊗RMS)) → (US ○ (−⊗RMS)) (where −⊗ ρs associates to the right R-module AR

the group morphism (− ⊗ ρs)A∶A⊗RM → A⊗RM, a⊗m↦ a⊗ (ms)).
From rx = ys we get that (ar) ⊗ x = (a ⊗ y)s for every a ∈ AR, so that the

diagrams

A A⊗RM

A A⊗RM

ρr,A

ηy,A

1A⊗ρs
ηx,A

of abelian groups and group morphisms commute, hence

UR(−) US ○ (− ⊗RMS)

UR(−) US ○ (− ⊗RMS)

ηy,−

ρr −⊗ρs
ηx,−

is a commutative square of functors Mod-R → Ab and natural transformations.

Therefore the pair (ρr,− ⊗ ρs) is a morphism ηy → ηx in the category Nat(UR, US ○
(− ⊗RMS)). It is now easy to show that:

Theorem 3.39. For every R-S-bimodule RMS, there is a faithful contravariant

functor

D → Nat(UR, US ○ (− ⊗RMS)),

x↦ ηx,

((r, s)∶x→ y) ↦ ((ρr,− ⊗ ρs)∶ ηy → ηx.

For the covariant version of Theorem 3.39, we must state the Eilenberg-Watts

Theorem 3.35 in its varian for left module: Let R and S be rings and F ∶S-Mod →
R-Mod be a right exact additive functor that preserves direct sums. Then F (SS) is

an R-S-bimodule and the two functors, F,RM ⊗S − are naturally isomorphic.

The theorem corresponding to Theorem 3.39 is the following:

Theorem 3.40. For every R-S-bimodule RMS, there is a faithful covariant functor

D → Nat(US, UR ○ (RM ⊗S −)),

x↦ ζx,

((r, s)∶x→ y) ↦ ((λs, λr ⊗ −)∶ ζx → ζy.
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The natural transformation ζx∶US → (UR ○(RM ⊗S −), is such that, for every left

S-module SB, ζx,B ∶ b ∈ B ↦ x⊗ b ∈M ⊗S B. For every left S-module SB and every

b ∈ SB, we have a commutative square

b x⊗ b

sb ys⊗ b = r(x⊗ b).

ζx

λs λr

ζy

Hence there is a commutative square

US(−) US ○ (RM ⊗S −)

US(−) UR ○ (RM ⊗S −)

ζx,−

λs λr⊗−
ζy,−

of natural transformations between functors S-Mod → Ab, that is, a morphism

(λs, λr ⊗ −)∶ ζx → ζy in the category Nat(US, UR ○ (RM ⊗S −)).

3.6 Rings of Finite Type

Definition 3.41. Let S be an arbitrary ring and n ≥ 1 be an integer. The ring S

has type n if the ring S/J(S) is a direct product of n division rings, and S is a ring

of finite type if it has type n for some integer n ≥ 1.

Proposition 3.42. Let S be a ring and n ≥ 1 an integer. The following conditions

are equivalent:

(a) The ring S has type n.

(b) n is the smallest of the positive integers m for which there is a local morphism

of S into a direct product of m division rings.

(c) The ring S has exactly n distinct maximal right ideals, and they are all two-

sided ideals in S.

(d) The ring S has exactly n distinct maximal left ideals, and they are all two-sided

ideals in S.

46



Chapter 3

Proposition 3.43. Let x be an object of D. If (xS∶Rx)
l.annR(x) and (Rx∶Sx)

r.annS(x) are rings of type

m and n, respectively, then EndD(x) has type ≤ m + n. Moreover, if I1, I2, . . . , Im

are the m maximal ideals of (xS∶Rx)
l.annR(x) and K1,K2, . . . ,Kn are the n maximal ideals of

(Rx∶Sx)
r.annS(x) , then the at most n+m maximal ideals of EndD(x) are among the completely

prime ideals (It × (Rx∶Sx)
r.annS(x)) ∩ EndD(x), where t = 1, . . . ,m and ( (xS∶Rx)l.annR(x) × Kq) ∩

EndD(x), where q = 1, . . . , n.

Proof. Let It, with t = 1,2, . . . ,m be the m maximal ideals of the ring (xS∶Rx)
l.annR(x) of

type m. Then the canonical projection

πR ∶
(xS ∶R x)
l.annR(x)

Ð→ (xS ∶R x)
l.annR(x)

/J( (xS ∶R x)
l.annR(x)

) ≅
m

∏
t=1

(xS ∶R x)
l.annR(x)

/It

is a local morphism. Similarly for the canonical projection

πS ∶
(Rx ∶S x)
r.annS(x)

Ð→ (Rx ∶S x)
r.annS(x)

/J( (Rx ∶S x)
r.annS(x)

) ≅
n

∏
q=1

(Rx ∶S x)
r.annS(x)

/Kq.

Therefore, composing these projection with ξ ∶ EndD(x) → End(Rx)×End(xS) and

using Lemma 3.15, we obtain that

EndD(x) Ð→
m

∏
t=1

(xS ∶R x)
l.annR(x)

/It ×
n

∏
q=1

(Rx ∶S x)
r.annS(x)

/Kq

is a canonical local morphism into the direct product of m+n division rings. Hence

by Proposition 3.42 the ring EndD(x) is a ring of type m + n. Furthermore, from

the proof of Proposition 3.42, one can see that the maximal ideals of EndD(x) are

among the kernels of the m+n canonical projections, which concludes the proof.
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