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Abstract

This thesis analyses the design problems behind the realization of an integrated oscil-

lator directly powered by a switching voltage regulator. Additionally, the possibility

of using the oscillator itself to provide the switching frequency for the converter is

explored. The building blocks constituting the circuit are analysed focusing on the

different design challenges of each component, on how they interact with each other

and if it is possible to obtain a fully integrated design. Some possible design solutions

are then provided at the end of the thesis including simulation results for the presented

circuits.
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Introduction

In order to maximize the utilization of chip area and lower power consumption, the

concept of System-on-Chip (SoC) has been introduced. The basic idea behind SoC is

to integrate all the electronic components into a single chip. However, as different

on-chip components require different voltages to operate, the role of voltage regulation

becomes more important than ever in Very Large Scale Integration (VLSI). By tailoring

the level of the supply voltage for the speciőc needs of each component we are in fact

able to signiőcantly diminish power dissipation in the system.

Although Voltage Regulators (VR) were traditionally realized as off-chip devices the

requirements of nowadays complex integrated circuits, require the use of on-chip VR

to be able to quickly adjust voltage during the operation of the circuit. Two different

types of VR are mostly encountered in the recent literature: Switching VR and linear VR.

Switching VR offer the highest efficiency, while linear VR are free from any switching

noise, possesses ripple rejection capacity, low voltage noise, fast response time and

smaller area overhead, but their efficiency is lower compared to that of switching VR.

In this work we focus on the power management of a particular Radio Frequency (RF)

building block: the Local Oscillator (LO). We note however that most of the compo-

nents present in a RF system are supply-sensitive blocks and the LO is no exception.

This means that the LO may show an unwanted behaviour if there are disturbances in

the power supply. Generally speaking, a cascade of switching and linear regulators is

commonly used to drive an oscillator. In this scheme, showed in Figure 1, the switch-

ing VR initially converts the supply voltage in an efficient way and then, in order to

guarantee the best performance for the LO, linear VR are often used, in the form of a

low-noise Low-Dropout Regulator (LDO), to generate a "clean" supply for the oscillator.
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Switching
Regulator

VDD

LDO

Oscillator

Figure 1: Power supply scheme for a conventional oscillator

Low noise LDOs however come at the cost of an additional quiescent current, which im-

pacts the system power efficiency signiőcantly. To improve the efficiency of the circuit

one idea is to try and remove the low-noise LDO and to power the LO directly with a

switching voltage regulator.[1, 12]

In this thesis we are therefore going to analyse the problem of realizing an oscilla-

tor directly powered by a switching voltage regulator. The switching regulator has

to be designed in a way that doesn’t interfere with the performance of the oscillator.

Moreover, to save chip area, the regulator may use as its clock signal the output of the

oscillator divided by an appropriate frequency divider. The equivalent block scheme

of this circuit is shown in Figure 2. The őnal aim of this thesis is to understand if it is

possible to realize such a circuit and whether or not it is possible to integrate all of its

components. The oscillator topology that is going to be used in this thesis is that of a

Class-D oscillator, which requires low supply voltage values in order to perform at its

best. A Switched-Capacitor DC-DC converter is therefore employed to step down the

supply voltage and directly power the oscillator.

Switching
Regulator

VDD

Oscillator

1/N

f0

fsw

Figure 2: Power supply scheme for the oscillator in our thesis
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The thesis is organized as follows. In chapter one the working principles of an RF

oscillator and the design challenges that it involves are presented. In chapter two the

Class-D oscillator is analysed in order to understand why this particular topology is

so attractive. In chapter three a deep review of the design of Switched-Capacitor (SC)

converters is carried out with speciőc considerations stemming from our particular

design case. In chapter four a design prototype, őrst employing an off-chip capacitor

for őltering the supply disturbances, is designed and its simulated performance is

presented. Finally in the same chapter a second prototype is developed, this time using

an on-chip capacitor, and the results that have been obtained are showed as well.
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CHAPTER 1
LC Harmonic Oscillators Theory

In this chapter an introductory summary of the working principles of LC harmonic

oscillators is made. We start from theoretical notes on how oscillation is achieved, őrst

from a feedback theory standpoint and then in a more qualitative way. We proceed by

analysing the building blocks that are necessary to realize an oscillator. Additionally,

design problems such as phase noise and frequency pushing are analysed in this chapter

in order to get a better insight on how oscillator design works.

1.1 Feedback Theory Analysis

An oscillator is an autonomous system capable of continuously generating a periodic

output signal at a frequency of oscillation ω0. Oscillators in electronics are divided

into 2 types: harmonic oscillators, which produce a sinusoidal (or mostly sinusoidal)

output signal, and relaxation oscillators which produce a non-sinusoidal input. For

RF applications, relaxation oscillators are rarely used in high-performance transceivers

because they generate signals of inadequate spectral purity[8], that is why in this work

we are going to focus only on harmonic oscillators.

Oscillators in order to function must have a self-sustaining mechanism that allows its

own noise to grow and eventually become a periodic signal[13]. This behaviour can

be studied by means of feedback theory by representing the oscillator as in Figure 1.1,

where Vin = 0 being the oscillator an autonomous system. Note however that Vin could

also be viewed as the noise of the oscillator itself.

5



Amplifier H (s)

Feedback
Network β (s)

Vin ϵ

Vfb

+

−

Vout

Figure 1.1: General model of a feedback system

For simplicity we can represent the transfer function of the system in Figure 1.1 as:

Y (s)

X (s)
=

H (t)

1 + β (s) H (s)
=

K

(s − p1) (s − p2)
(1.1)

Then since the oscillator is an autonomous system and Vin = 0 we have that the natural

response of the system is:

vout (t) = a1e
p1t + a1e

p2t (1.2)

where a1 and a2 are the initial condition of the system. In order to observe oscillation

at the frequency ω0, the system must have in its root locus conjugate imaginary poles

positioned at p1,2 = σ ± jω0, with σ ⩾ 0. If these conditions are realized the natural

response of the system, assuming a1 = a∗
2, can be rewritten as:

vout (t) = 2♣a1♣eσtcos (ω0t + a1) (1.3)

The time evolution of vout (t) has been plotted in Figure 1.2 and we can clearly see how

the amplitude of oscillation exponentially increases, while oscillating at ω0. Note how-

ever that in real circuits, due to various non-linear effects, the amplitude of oscillation

eventually reaches a steady state value and ceases to increase.

Alternatively, the requirements for a system to oscillate at ω0, can also be formulated

mathematically in the form of the "Barkhausen Criteria". Assuming that in Figure 1.1

the feedback network is such that β (s) = 1, then the Barkhausen Criteria are as follows:

♣H (jω0) ♣ = 1 (1.4)

H (jω0) = 180◦ (1.5)

6



t

Figure 1.2: Response of an unstable system oscillating at ω0

When referring to Figure 1.1, the conditions described by Equation 1.4 and Equation 1.5

mean that any noise signal Vn at ω0 present on Vin will generate a signal Vfb = −Vn which

will the add up with Vin = Vn, causing ϵ to increase and creating a positive feedback

loop that eventually will build into an oscillation at ω0.

1.2 Negative Resistance Method

Another more intuitive way to understand the behaviour of a harmonic oscillator comes

from modelling it as a combination of a lossy resonator (a circuit having resonant be-

haviour) and an active circuit that cancels the loss. Resonators can be realized by using

quarter-wave pieces of transmission line or even quartz crystals, but the most common

way to realize a resonator is by the means of a RLC tank, which is the implementation

used by the oscillators presented in this work. To better understand this concept, an

equivalent model of an ideal lossless LC tank is őrst shown in Figure 1.3.

I0δ (t) L C

+

−

Vout

(a) Equivalent circuit scheme

t

Vout

(b) Plot of Vout

Figure 1.3: Lossless LC tank

If we apply a current impulse, I0δ (t), to the lossless tank of Figure 1.3 the impulse is

entirely absorbed by C, generating a voltage of I0/C. The charge on C then begins

to ŕow through L, and the output voltage falls. When Vout reaches zero, C carries no

energy, but L has a current equal to LdVout

dt
, which charges C in the opposite direction,

7



driving Vout toward its negative peak. This periodic exchange of energy between C and

L continues indeőnitely, with an amplitude given by the strength of the initial impulse.

Considering now the model of a real lossy RLC tank, shown in Figure 1.4, we have

that such a circuit behaves similarly, except that the resistance Rp consumes some of

the capacitor energy in every cycle, causing an exponential decay in the amplitude.

I0δ (t) L C Rp

+

−

Vout

(a) Equivalent circuit scheme

t

Vout

(b) Plot of decaying Vout

Figure 1.4: Lossy RLC tank

As anticipated, by combining a lossy RLC tank with an active element that realizes a

"negative resistance" −R we are capable of restoring the loss caused by Rp and have

the circuit continuously oscillate as in Figure 1.3b. The equivalent model of a harmonic

oscillator realized in this way is shown in Figure 1.5.

I0 L C Rp −R

+

−

Vout

Figure 1.5: Harmonic RLC oscillator

By writing the transfer function of the system from the input current I0 to the output

voltage Vout, which corresponds to the impedance of the equivalent circuit, we get the

following expression:

Z0 =
Vout

I0

=

(︄

1

sL
+ sC +

1

Rp

− 1

R

⎜−1

=
sLRpR

s2LCRpR + sL (R − Rp) + RRp

(1.6)

If we impose in Equation 1.6 the condition R ⩾ Rp we have that the transfer function

becomes that of an unstable system having conjugate imaginary poles placed at p1,2 =

σ±jω0 with σ ⩾ 0. This means that the equivalent circuit of Figure 1.5 correctly realizes

a harmonic oscillator of oscillating frequency ω0 = 1/
√

LC.
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1.3 The Cross-Coupled Pair

Now that we have understood the basic principles behind the behaviour of LC har-

monic oscillators, we are going to brieŕy touch on how to realize the active circuit that

allow us to implement a negative resistance. The most popular solution to implement

a negative resistance is by the means of the so called "cross-coupled pair" which is

depicted in Figure 1.6.

id

M1

id

M2

+ −vd

Ibias

(a) Cross-coupled pair with current tail generator

id

M1

id

M2

+ −vd

(b) Cross-coupled pair with no current tail generator

Figure 1.6: Cross-coupled pair

This topology owes its name to the particular way in which the two mosfets M1 and

M2 are connected. Note that the current source Ibias, shown in Figure 1.6a, is inserted

to correctly bias the pair. Cross-coupled oscillators realized in this way take the name

of "tail-biased oscillators". However, as we will see later, there exist other oscillator

topologies, such as Class-D oscillators, which don’t make use of this biasing current

and have the cross-coupled pair realized as in Figure 1.6b.

We focus now on the equivalent small signal scheme of the cross-coupled pair of

Figure 1.6a which is shown in Figure 1.7.

M1 M2+

−
V2 gm2V2

+

−
V1gm1V1

− +

Vx Ix

Figure 1.7: Equivalent small signal scheme of a cross-coupled pair
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We want to prove that by looking inside the terminals of the crossed-coupled pair we

see a negative resistance. Note that in order to simplify the calculations we assume

that the small-signal resistance r0 can be neglected (r0 ≫ 1/gm) and we don’t take into

account the parasitic capacitances of the transistors. We have that:

Ix = −gm1V1 = −gm2V2 (1.7)

and since Vx = V1 − V2 we can write:

Vx

Ix

= −
(︄

1

gm1

+
1

gm2

⎜

(1.8)

which, by imposing gm = gm1 = gm2 can be reduced to:

Vx

Ix

= − 2

gm

(1.9)

which clearly shows that the resistance of the crossed-coupled pair is negative.

1.4 Class-B Oscillators

We now have all the elements to understand the working principles behind the be-

haviour of LC harmonic oscillators. If we combine the cross-coupled pair of Figure 1.6a

with a RLC resonator, such as the one in Figure 1.4, we end up with the very popular

topology of a Class-B oscillator, which is depicted in Figure 1.8:

L

2

C

L

2

VDD

M1 M2

VLO−
VLO+

Ibias

Figure 1.8: Class-B oscillator
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If the negative resistance, provided by the cross-coupled pair as in Equation 1.9, is

sufficient to cancel the loss due to the resistance of the tank we have that oscillation in

the Class-B oscillator starts up. The oscillation frequency for a Class-B oscillator is of:

f0 =
ω0

2π
=

1

2π

√︄

1

LC
(1.10)

The amplitude of oscillation V̂ LO of the differential signal between nodes VLO+
and

VLO−
called VLO (t) increases as in Figure 1.2 and eventually reaches a steady state

value instead of continuously growing. This is because as V̂ LO increases the switches

of the cross-coupled pair start to operate in hard switching. As a result M1 and M2

continuously alternate between an OFF state, where they are not conducting, and an

ON state, where they work in the triode region, causing a decrease in gm that leads V̂ LO

to stop growing and reach steady state. An intrinsic consequence of hard switching is

that when, for example, M1 is in the ON state, M2 is in the OFF state and vice versa.

This aids our analysis aimed at understanding what is the steady state value of V̂ LO.

By considering only one of the transistors of the pair during a period of oscillation it’s

easy to see that the current IM absorbed by the transistor is square-wave like. Therefore,

since we know the Fourier expansion for a square wave, we have that:

IM =
Ibias

2
+

∞
∑︂

n=1,3,5,...

2Ibias

nπ
sin (2πf0 · n · t) (1.11)

Note how by summing IM1 and IM2 we get back the current Ibias.

We now take a look at the equivalent AC model of the oscillator shown in Figure 1.9.

L

2

L

2
2C 2C

RT

2

RT

2

VDD

VLO > 0VLO < 0

Ibias

Figure 1.9: Equivalent circuit of a Class-B oscillator
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We have that the tank has been divided into 2 separate portions where RT is the

equivalent parallel resistance of the inductor parasitic resistance and it’s equal to:

RT ≃ Q2
L ∗ RL ≃ QLω0LT (1.12)

The impedance of one of the portions of the tank at the resonance frequency is:

ZT (ω0) = 2C//
L

2
//

RT

2
=

RT

2
(1.13)

while for other frequencies multiple of ω0 we have that ZT (ω) ≃ 0.

From Equation 1.11 we can then calculate the current in the tank for ω0:

I1 =
2

π
Ibias (1.14)

Putting all equations together, the voltage on nodes VLO+
and VLO−

is given by:

VLO+
(t) = VDD +

RT

2
I1sin (ω0t) = VDD +

2

π
Ibias

RT

2
sin (ω0t) (1.15)

VLO−
(t) = VDD − RT

2
I1sin (ω0t) = VDD − 2

π
Ibias

RT

2
sin (ω0t) (1.16)

Therefore we have a formula for the oscillation amplitude of the Class-D oscillator:

V̂ LO =
2

π
RTIbias (1.17)

1.4.1 Voltage and Current Limited Regime

As a result of Equation 1.17 the oscillation amplitude of the Class-B oscillator V̂ LO

depends on the value of Ibias. This means that if we are interested in increasing V̂ LO we

can do so by raising the value of Ibias at the obvious cost of more power consumption.

However there comes a point in the operation of the Class-B oscillator where V̂ LO

saturates to V̂ LO = VDD − VS, with VS the voltage on the source terminal of the switches,

and no longer increases as Ibias does. The only way to increase V̂ LO then is by raising

VDD. The oscillator therefore based on the values of Ibias and VDD moves between two

different regimes. In the "current limited regime" V̂ LO is proportional to Ibias as we have

come to expect. On the other hand, in the "voltage limited regime" V̂ LO is proportional

to VDD and increasing Ibias has no effect on V̂ LO. This behaviour is shown in Figure 1.10.

12



Ibias

V̂ LO,max

Figure 1.10: V̂ LO as a function of Ibias

Note that, as we have anticipated, Class-D oscillators don’t include a tail generator in

their cross-coupled pair that limits the absorbed current to a value Ibias. Therefore we

can expect the Class-D oscillator to operate in the "voltage limited regime" and have

their oscillation amplitude depend only on VDD.

1.5 Phase Noise

An ideal oscillator, as explained in Section 1.1, is capable of continuously generating a

periodic output signal at a frequency of oscillation ω0. This signal, in the ideal case, can

be written as x (t) = cos (ω0t) and is such that its zero crossing occurs at exact integer

multiples of T = 2π/ω0. In reality however the noise of the oscillator randomly perturbs

the zero crossing. To model this behaviour we rewrite x (t) as:

x (t) = cos (ω0t + ϕn (t)) (1.18)

where the term ϕn (t) is a small random phase quantity that deviates the zero crossing

from the integer multiples of T and it’s what we call Phase Noise (PN). An example of

this effect in the time domain, although greatly exaggerated, is shown in Figure 1.11.

cos (ω0t)
cos (ω0t + ϕn (t))

Figure 1.11: Output waveforms for an ideal and a noisy oscillator
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The perturbations of the zero crossing of the waveform, given by phase noise, have

another effect that can be appreciated by looking at the waveform in the frequency do-

main. We know that frequency can be expressed as f0 = 1/T. However by considering

a noisy oscillator the value of T is no longer őxed, as now T randomly ŕuctuates due

to ϕn. This leads the frequency of the waveform to ŕuctuate as well. By looking at

the spectrum of the output waveform of a noisy oscillator, instead of observing a pure

impulse centered at f0, as we would expect from a sinusoidal source, we will see that

the spectrum has "broadened". The difference between these spectra is illustrated in

Figure 1.12.

f0 f

(a) Ideal output spectra

f0 f

(b) Noisy output spectra

Figure 1.12: Comparison between ideal and noisy spectra of an oscillator

This behaviour can be formulated mathematically by rewriting the time-domain ex-

pression in the following way:

x (t) = Acos (ω0 · t + ϕn (t)) (1.19)

≃ Acos (ω0 · t) − Asin (ω0t) sin (ϕn (t)) (1.20)

≃ Acos (ω0 · t) − Aϕn (t) sin (ω0t) (1.21)

Then since X (ω) := F [x (t)] and Φn (ω) := F [ϕn (t)], by applying some simple signals

theory for ω > 0 we get the following spectrum:

X (ω) =
A

2
· (δ (ω + ω0) + Φn (ω + ω0)) (1.22)

We have that Equation 1.22, as expected, shows that the spectrum of x (t) is composed

of an impulse centered in ω0 and of the spectrum of ϕn (t) translated to the center

frequency ω0. The composition of Φn (ω) is going to be analysed later, but for now it’s

important to note that Φn (ω) decreases as we move away from ω0.
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f0 f

1Hz

∆ω

Carrier power

Figure 1.13: Speciőcation of phase noise

Phase noise is thus measured with respect to a certain "frequency offset" ∆ω from the

carrier. Referencing Figure 1.13, we have that PN is deőned by őrst considering a 1Hz

bandwidth of the noise spectrum at an offset ∆ω from the carrier, then measuring

the power in this bandwidth and őnally normalizing the result to the "carrier power"

which can be viewed as the peak of the spectrum. The unit used to measure PN is called

dBc/Hz which stands for "dB with respect to the carrier" reŕecting on this procedure.

1.5.1 Phase Noise in Oscillators - LTI Approach

Let’s consider the equivalent RLC model of a harmonic oscillator under Linear Time

Invariant (LTI) conditions, as the one depicted in Figure 1.4. We model the noise current

in the tank as a white thermal source SiRT
(f) given by the tank resistance RT, with

mean squared spectral density of:

SiRT
(f) =

i2
n

∆f
=

4kBT

RT

(1.23)

with kB the Boltzmann constant and T the temperature. In order to carry out our

analysis, we assume that the negative resistance −R, perfectly compensates, at steady

state, the losses given by the tank resistance RT, but not its noise as seen in Figure 1.14

SiRT
(f) L C

+

−

Vout

Figure 1.14: Equivalent circuit of a noisy harmonic RLC oscillator
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For ∆ω ≪ ω0 the impedance of the LC tank of Figure 1.14 may be approximated as:

Z (ωo + ∆ω) ≃ −j · ωoL

2
∆ω

ω0

(1.24)

which can be rewritten, by considering L = RT/ (ω0Q) where Q is the quality factor of

the unloaded tank, as follows:

♣Z (ωo + ∆ω) ♣ ≃ ω0RT

2Q∆ω

(1.25)

In this way we emphasize the dependence of ♣Z (ωo + ∆ω) ♣ from Q and RT as opposed

to L. Next, we calculate the spectral density of the mean square noise voltage:

Svn
(f) =

v2
n

∆f
= ♣Z♣2 · i2

n

∆f
= 4kBTRT

(︄

ω0

2Q∆ω

⎜2

(1.26)

We note that Svn
(f) ∝−1 ∆ω2 due to the őltering action of the tank. This 1/f2 behaviour

simply reŕects the fact that the voltage frequency response of an RLC tank rolls off as

1/f to either side of the center frequency and power is proportional to the square of

voltage. Moreover we notice that by increasing Q the value of Svn
(f) decreases while

keeping all the other parameters constant, underlining the importance of employing a

good resonator to realize an oscillator.

To proceed with our analysis we have to consider that Svn
(f) introduces both am-

plitude noise and PN, however we have seen that the amplitude of oscillation V̂ LO has a

self-limiting effect and eventually reaches a steady state value. This leads us to consider

that only half of Svn
(f) contributes to PN. Referencing the previous notation we there-

fore have that Φn (f) = Svn
(f) /2. We can then derive the expression of PN as seen in

Section 1.5. By normalizing Svn
(f) /2 to the mean square carrier voltage PLO = V̂

2

LO/2

and report the ratio in decibels, obtaining the normalized single-sideband noise spectral

density, which is what we call PN and is expressed in dBc/Hz:

L (∆ω) =10log10

⋃︁

⨄︁

4kBTRT

2
· 1

PLO

·
(︄

ω0

2Q∆ω

⎜2
⋂︁

⋀︁ = 10log10

⋃︁

⨄︁

4kBTRT

V̂
2

LO

·
(︄

ω0

2Q∆ω

⎜2
⋂︁

⋀︁

=10log10

⋃︁

⨄︁

kBT

V̂
2

LO

· RT

Q2

(︃

ω0

∆ω

)︃2
⋂︁

⋀︁ (1.27)
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From this expression we immediately notice how PN improves as both PLO and Q

increase. This result is consistent with what we expect, increasing PLO improves PN be-

cause the thermal noise is őxed, while increasing Q improves PN quadratically because

the tank’s impedance falls off as 1/ (Q∆ω).

However due to the many simplifying assumptions that we have made in order to

obtain Equation 1.27, the accuracy of the formula that we have found, unsurprisingly,

shows some discrepancies when compared with a real oscillator spectra.

First, while in real spectra there exist a region where the spectral density is proportional

to 1/ (∆ω)2 the magnitudes are typically quite a bit larger than predicted. This is be-

cause there are additional noise sources besides the tank’s losses, such as the transistors

that realize the cross coupled pair, which contribute to PN. Moreover a real measured

spectra eventually stops decreasing as it ŕattens out hitting what it’s called a "noise

ŕoor". Finally there is almost always a 1/ (∆ω)3 region for small values of ∆ω. This

region is given by another noise source, that we have neglected until now, called "ŕicker

noise". Contrary to thermal noise which has its PSD constant over the entire frequency

range, the PSD of ŕicker noise is such that Si,flicker ∝−1 ω. Therefore since noise gets

"multiplied" by a factor 1/f2 when becoming phase noise, ŕicker noise originates a 1/f3

region in the phase noise.

In order to take into account these effects we have to modify Equation 1.27 obtain-

ing what is generally referred to as "Leeson’s equation":

L (∆ω) = 10log10

⋃︁

⨄︁

2FkBT

PLO

∏︂

⨄︂

⋃︂

1 +

(︄

ω0

2Q∆ω

⎜2
⎫

⋀︂

⋂︂

∮︂

1 +
∆ω1/f3

♣∆ω♣

⨀︁

⋂︁

⋀︁ (1.28)

The modiőcation of Equation 1.27 made by Leeson, consist in the addition of a factor

F to account for the increased noise in the 1/ (∆ω)2 region, an addictive factor of 1

(inside the braces) to model the noise ŕoor and őnally a multiplicative factor (inside

the second set of braces) to provide a 1/ (∆ω)3 behaviour at small offset frequencies.

In Figure 1.15a we plot the PN given by Equation 1.28 and compare it with the model

given by Equation 1.27, while in Figure 1.15b the phase noise of a simulated Class-B

oscillator is shown, as an example, to better understand the phase noise behaviour in

the 1/f3 region.
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∆ω1/f3
ω0

2Q
log (∆ω)

L (∆ω) Equation 1.27

Leeson′s equation

(a) Comparison of Leeson’s equation with simpliőed
model

(b) Phase noise of a simulated Class-B oscillator

Figure 1.15: Phase noise behaviour of a real oscillator

We note however how the parameter F is an empirical őtting parameter and the same

could be said for 1/ (∆ω)3 meaning that they must be obtained from measurements,

diminishing the predictive power of Equation 1.28. The model also predicts that the

frequency at which the 1/f2 and 1/f3 regions in the phase noise meet, called the

"1/f3 corner frequency", is the same at which the thermal and ŕicker noise PSD are

equal, which is respectively called the "1/f corner frequency" This behaviour however

is generally hardly observed in practical measurements. The frequency at which the

noise ŕoor should start is also not always well predicted by the model. In order to solve

these issues a new model has to been developed and it’s going to be explained in the

next subsection.

1.5.2 Phase Noise in Oscillators - LTV Approach

To improve upon the evident limits of the Leeson model, Hajmiri and Lee [8] formulated

a new theory regarding phase noise by modelling the oscillator as a Linear Time

Variant (LTV) system. In order to show that an oscillator is indeed a time variant system

we take, as an example, the same ideal LC tank of Figure 1.3a, which has been oscillating

with a constant amplitude just like Figure 1.3b for an indeőnite amount of time, given

the lack of a resistance RT that consumes the energy of the tank. If we apply an impulse

at different time instants, we are able to see that the system reacts differently based on

when the impulse was applied.
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τ t

Vout

∆V

(a) Impulse doesn’t perturb zero crossing

τ t

Vout

(b) Impulse perturbs the zero crossing

Figure 1.16: Impulse response of a LC tank

With respect to the waveform shown in Figure 1.16a, we consider the case where the

time instant, in which the impulse is injected into the oscillator, coincides with a volt-

age maximum of the oscillator output waveform. This leads to a temporary increase in

the oscillation amplitude by an amount ∆V , but because the response to the impulse

superimposes exactly in phase with the pre-existing oscillation the timing of the zero

crossing does not change. In contrast an impulse injected at some other time as shown

in Figure 1.16b generally effects the timing of the zero crossing. Since, as already

discussed, we can consider the timing of the zero crossing as a measure of phase, we

clearly see that the effect of the impulse changes based on when the injection occurs

in time. The principle of time-invariance for oscillators therefore fails to hold and we

have to treat them as LTV systems.

The impulse response of the oscillator, going forward, has to be formulated in its

LTV form, which is given by:

hϕ (t, τ) =
Γ (ω0τ)

qmax

u (t − τ) (1.29)

where u (t) is the unit step function. The function Γ (x) is normalized by qmax which

corresponds to the maximum charge displacement in the capacitors. Γ (x) is called the

Impulse Sensitivity Function (ISF), which is a dimensionless, frequency and amplitude

independent function periodic in 2π. The ISF encodes information about the sensitivity

of the oscillator to an impulse injected at phase ω0t. An example of the ISF for a LC

harmonic oscillator is shown in Figure 1.17 where we can appreciate how Γ (x) = 0 for

the time instants where Vout is at its maximum, meaning that no phase perturbation

can be applied to the system, which is consistent with the example of Figure 1.16.
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t

Vout = cos (ω0 · t)

(a) LC oscillator output waveform

t

Γ (x) = −sin (ω0 · t)

(b) LC oscillator ISF

Figure 1.17: Comparison between ISF and output waveform of an oscillator

While its most practical to determine the ISF through simulation, there are also analytical

methods that apply in certain scenarios. In any case once the ISF has been determined,

we can compute the excess phase due to an arbitrary noise signal, through use of the

superposition integral, as follows:

ϕ (t) =
∫︂ ∞

−∞
hϕ (t, τ) i (τ) dτ =

1

qmax

∫︂ t

−∞
Γ (ω0τ) i (τ) dτ (1.30)

where ϕ is the phase noise term seen in Equation 1.18. We can rewrite Equation 1.30,

by rewriting the ISF as its Fourier series:

Γ (ω0τ) =
c0

2
+

∞
∑︂

n=1

cncos (nω0τ + θn) (1.31)

where the cn coefficients are real and θn is the phase of the n-th harmonic of the ISF.

Note however that we assume the noise components as uncorrelated so their relative

phase θn in irrelevant. Putting Equation 1.30 and Equation 1.31 together we get:

ϕ (t) =
1

qmaz

⎟

c0

2

∫︂ t

−∞
i (τ) dτ +

∞
∑︂

n=1

cn

∫︂ t

−∞
i (τ) cos (nω0τ) dτ

⟨︂

(1.32)

The physical meaning of Equation 1.32 can be understood by considering to inject in

the system a sinusoidal current whose frequency is near an integer multiple m of the

oscillation frequency, being:

i (t) = Imcos [(mω0 + ∆ω) t] (1.33)

Assuming ∆ω ≪ ω0, we can then plug Equation 1.33 into Equation 1.32 and obtain

Equation 1.35.
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ϕ (t) =
1

qmaz

⋃︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

c0

2

∫︂ t

−∞
Imcos [(mω0 + ∆ω) τ ] dτ

+
∞
∑︂

n=1

cn

∫︂ t

−∞
Imcos [(mω0 + ∆ω) τ ] cos (nω0τ) dτ

⋂︁

⎥

⎥

⎥

⎥

⋀︁

(1.34)

ϕ (t) =
1

qmaz

⋃︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

c0

2

∫︂ t

−∞
Imcos [(mω0 + ∆ω) τ ] dτ

+
∞
∑︂

n=1

cn

2

∫︂ t

−∞
Imcos [((n − m) ω0 + ∆ω) τ ] dτ

+
∞
∑︂

n=1

cn

2

∫︂ t

−∞
Imcos [((n + m) ω0 + ∆ω) τ ] dτ

⋂︁

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⋀︁

(1.35)

The only term of Equation 1.35 that provides a non negligible contribution is the one

associate with n = m, therefore we can get the approximation:

ϕ (t) ≃ Imcmsin (∆ωt)

2qmax∆ω
(1.36)

In a more general case however the spectrum of the noise is not given by a single

sinusoidal tone, but it’s a continuous spectra. Therefore what happens in reality is that

ϕ (t) is given by the summation of all the noise contributions located at distance ∆ω

from the multiples of the oscillation frequency ω0. Note that the 1/f noise near DC gets

upconverted, with relative weight given by the coefficient c0, into 1/f3 noise, while white

noise near the higher carrier multiples, weighted by the coefficients ck ̸=0, undergoes

downconversion turning into 1/f2 noise. This process is shown in Figure 1.18 where the

weighted noise contributions shown in Figure 1.18a all sum up following Equation 1.36

into ϕ (t) which is shown in Figure 1.18b. Finally the summation of the various noise

contributions all "fold" into noise near the carrier itself, following Equation 1.22.

0 ω0 2ω0 3ω0
ω

i2
n

∆f

∆ω ∆ω ∆ω
·c1 ·c2 ·c3·c0

(a) Noise contributions to phase noise

0

Sϕ

(b) Summation of
noise contributions

Figure 1.18: Noise folding principle
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Following these reasonings, in order to calculate the phase noise we start by considering

that the value of ϕ (t), that we have calculated in Equation 1.36, translates following

the mechanism of Equation 1.21 into two tones of the output spectrum of the oscillator

symmetrically disposed from the carrier at distance ∆ω having power:

PSBC(∆ω) ≃ 10log

⎟

Ikck

4qmax∆ω

⟨︂2

(1.37)

Extending this formula for the case of a white source noise we get:

PSBC(∆ω) ≃ 10log

⎟

1

4q2
max∆ω2

· i2
n

∆f
·

∞
∑︂

k=0

c2
k

⟨︂

(1.38)

which can used to derive the general expression of phase noise in the 1/f2 region:

L(∆ω) ≃ 10log

⎟

1

2q2
max∆ω2

· i2
n

∆f
· Γ2

rms

⟨︂

(1.39)

where Parseval’s Theorem has been used to rewrite
∑︁∞

k=0 c2
k = 2Γ2

rms.

Finally by considering the ISF of a LC oscillator being Γ (x) = −sin (x), that qmax =

CTV̂ LO with CT = QT/ (ω0RT) and using Equation 1.23 we get:

L(∆ω) ≃ 10log

⎟

1

2q2
max∆ω2

· i2
n

∆f
· Γ2

rms

⟨︂

(1.40)

= 10log

⋃︁

⨄︁

1

2C2
TV̂

2

LO∆ω2
· 4kBT

RT

· 1

2

⋂︁

⋀︁ (1.41)

= 10log

⋃︁

⨄︁

1

2V̂
2

LO∆ω2
· ω2

0R2
T

Q2
T

· 4kBT

RT

· 1

2

⋂︁

⋀︁ (1.42)

= 10log

⋃︁

⨄︁

kBT

V̂
2

LO

· RT

Q2
T

(︃

ω0

∆ω

)︃2
⋂︁

⋀︁ (1.43)

which gives us back Equation 1.27. Moreover the "1/f3 corner frequency" can be

estimated using:

∆ω1/f3 = ω1/f · c2
0

4Γ2
rms

= ω1/f ·
(︄

Γdc

Γrms

⎜2

(1.44)

where the term ω1/f is the "1/f corner frequency". While in this thesis we are not

interested in operation near the 1/f3 corner frequency this once again proves the power

of the LTV phase noise model.
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1.5.3 The Figure of Merit

Looking at the formula for phase noise derived in Equation 1.43 we notice how:

L (∆ω) ∝
(︃

ω0

∆ω

)︃2

(1.45)

Moreover we have that:

L (∆ω) ∝−1 V̂
2

LO ∝ I2
bias (1.46)

when we assume operation in the current limited regime. In order to compare differ-

ent oscillator topologies, working at different oscillation frequencies and absorbing a

different amount of power the Figure of Merit (FoM) is used and its deőned as:

FOM = L (∆ω) − 20log10

(︃

ω0

∆ω

)︃

+ 10log10

(︃

PDC

1mW

)︃

dBc/Hz (1.47)

where PDC is the DC power consumption of the oscillator.

1.5.4 Effects of Phase Noise

We wish now to investigate what effects PN has on the correct operation of electronic

circuits that include a noisy oscillator.

Phase Noise in Receivers

One effect of low phase noise can be observed in a receiver, where its equivalent scheme

is shown in Figure 1.19.

RX ANTENNA

LNA MIXER

ωIF = ωin − ωLO

LO

ωLO

ωin

Figure 1.19: Receiver scheme
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In the ideal case the signal produced by the LO is an impulse at ωLO which when

convolved through the mixer with the desired channel at ωin yields an Intermediate

Frequency (IF) signal at ωIF = ωin − ωLO as shown in Figure 1.20.

ωIF ωLO ωin f
//

Figure 1.20: Downconversion with an ideal LO

However if a noisy LO is used and the desired signal is accompanied by a large inter-

ferer at ωint. The convolution of the desired signal and the interferer with the noisy

LO spectrum results in a broadened downconverted interferer which overwhelms the

desired IF signal corrupting it, as shown in Figure 1.21. This phenomenon is called

"reciprocal mixing".

ωIF ωLO ωin ωint f
//

Figure 1.21: Downconversion with a noisy LO

Phase Noise in Digital Modulation

There is however another more important effect that involves telecommunications sys-

tems employing digital modulations such as Phase Shift Keying (PSK), which in order

to be understood requires a brief theoretical introduction regarding the problem of

transmitting information and being able to correctly receive it.

Without loss of generality then we consider the problem of the transmission of a single

isolated pulse associated to a symbol a0.
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With reference to the system scheme shown in Figure 1.22 the transmission system

aims to transfer the value of a0 to the receiver through the channel.

Digital
Modulator

+ Digital
Demodulator

sa0
(t) r (t)

w (t)

a0 â0

Figure 1.22: System model for digital transmission of an isolated pulse

In particular the digital modulator, deőned by a given set of M real-valued waveforms

sn(t), n = 1, ..., M , selects the waveform to transmit in accordance with the value of

a0. This means that if the selected symbol value is a0 = n, then the transmitted signal

is sa0 (t) = sn (t). The selected signal sn (t) is then transmitted through the channel,

which for simplicity is assumed to have an ideal impulse response. Assuming that

the waveform with index n is transmitted, which represents the symbol a0 = n, the

received, or observed, signal is given by:

r (t) = sn (t) + w (t) (1.48)

where w (t) models the noise introduced by the channel.

The receiver now, based on r (t), must decide which among the M hypothesis

Hn : r (t) = sn (t) + w (t) , n = 1, 2, ..., M (1.49)

is the most likely, and correspondingly must select the detected value â0.

In order to proceed, it is convenient to represent the signals using vector notation.

The received signal r (t) is therefore associated to a vector r of dimension I . Symbol

detection is made by subdividing the space RI into M non overlapping regions Rn each

one associated to one of the possible outcomes of a0. The hypothesis Hm (and so â0 = n)

is chosen if the received vector belongs to Rm, that is:

if r ∈ Rm then choose Hm and â0 = m (1.50)

This decision rule is realized by a block called "detector" which is part of the digital

demodulator.
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It is clear that the presence of a noise component w (t) could lead to errors in detection

if the noise is so high that it moves a symbol a0 = n associated to the region Rn to

another region Rk with k ̸= n.

An example of a decision region for a Quadrature Amplitude Modulation (QAM) with

M = 4 and M = 16 is shown in Figure 1.23. As can be appreciated, the detection of

the symbol region in the M = 4 case can be implemented by checking the sign of the

coordinates of r, while for the M = 16 case extra information regarding the modulus

of the received vector is needed.

ℜ

ℑ

00

1110

01

(a) 4-QAM Constellation

ℜ

ℑ
0111 0011 1011 1111

0110 0010 1010 1110

0100 0000 1000 1100

0101 0001 1001 1101

(b) 16-QAM Constellation

Figure 1.23: Examples of QAM constellations

We can now focus our attention on the PSK modulation in order to understand how

also PN can lead to errors in symbol detection. We have that in PSK a generic signal

waveform is given by:

sn (t) = htx (t) cos (2πf0 + φn) (1.51)

φn =
π

M
(2n − 1) + φ0 n = 1, 2, ..., M (1.52)

where htx (t) is a real-valued őnite-energy baseband pulse. This means that signals

are obtained by choosing M possible values of the phase of a sinusoidal signal with

frequency f0 modulated by htx.

An alternative way to write sn (t) is given by:

sn (t) = cos (φn) htx (t)cos (2πf0) − sin (φn) htx (t)sin (2πf0) (1.53)
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It can be easily proved that sn (t) can be written as the linear combination of the

following two vectors:

ϕ1 (t) = +

√︄

2

Eh

htx (t)cos (2πf0) (1.54)

ϕ2 (t) = −
√︄

2

Eh

htx (t)sin (2πf0) (1.55)

which, with Eh the energy of htx (t), constitute an orthonormal basis for I = 2.

The vector coordinates of sn (t) are őnally given by:

sn =

√︄

2

Eh

[cos (φn) , sin (φn)] (1.56)

To obtain the vector coordinates in Equation 1.56 an oscillator provides a reference

sinusoidal signal x (t) of frequency f0 plus a cosinusoidal signal realized by phase

shifting by 90◦ the original signal x (t). In this way we are capable of realizing the basis

of Equation 1.54 and Equation 1.55 and obtain sn. However due to the oscillator PN,

the coordinates of sn are going to be affected by the noise.

Figure 1.24a show the decision region for a PSK modulation with M = 4 where PN is

present, causing a "drift" of the received symbols along the constellation circumference.

Therefore as PN increases, it’s easy to see how it can lead to errors in detection by

pushing the received symbols in the wrong region. This problem becomes even bigger

if we increase the value of M , in order to be able to transmit more data, as shown in

Figure 1.24b. This is the reason why over the years speciőcation on PN have become

more stringent to accommodate for modulations employing higher values of M . [2]

ℜ

ℑ

0001

11 10

(a) Constellation of a noisy 4-PSK

ℜ

ℑ

0000

0001
001100100111

0101

0110

0100

0000

0001
0011 0010 0111

0101

0110

0100

(b) Constellation of a 16-PSK

Figure 1.24: Examples of PSK constellations
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1.6 Frequency Pushing

Thus far we have assumed, for simplicity, the value of the supply voltage to be constant.

In practical implementations however the power supply will contain noise and, in some

cases, even sinusoidal contributions at certain frequencies. The oscillating frequency

of the oscillator is generally dependent from the value of the power supply, meaning

that small changes in the value of VDD will modulate the value of ω0 changing it too.

This behaviour is called "frequency pushing" and it can be quantiőed by the "supply

pushing factor" KV, which is speciőc for each different type of oscillator. KV is normally

measured in Hz/V, meaning that a variation of ∆V on the power supply corresponds

to a variation of the output frequency of ∆ω = 2πKV · ∆V .

Sinusoidal ripple, present in the power supply, gets translated to spurious tones in

the output spectrum of the oscillator, due to supply pushing. In order to prove this, we

consider that the frequency modulation given by a ripple ∆Vm = Vmcos (ωmt) will be:

∆ω = 2πKV · Vmcos(ωmt) (1.57)

Then since phase is the integral of the angular frequency we get;

ϕ (t) =ϕ (0) +
∫︂ t

0
ω (τ) dτ (1.58)

ϕ (t) =
2πKV

ωm

Vmsin (ωmt) (1.59)

where we have assumed ϕ (0) = 0.

By plugging Equation 1.59 into the usual Equation 1.21 we obtain the formula:

x (t) ≃ Acos (ω0t) − Asin (ω0t)
(︃

2πKV

ωm

)︃

Vmsin (ωmt) (1.60)

By computing the Fourier transform of the second term for ω > 0 we get:

Xn (ω) =
A

4

(︃

2πKV

ωm

)︃

Vm [δ (ω0 + ωm) + δ (ω0 − ωm)] (1.61)

Which shows how as a result of frequency pushing two spurs at frequencies ω0 ± ωm

make an appearance in the output spectrum of the oscillator. These spurs have to kept

under a certain level with respect to the carrier to avoid reciprocal mixing.
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A spectrum example is shown in Figure 1.25:

f0 − fm f0 f0 + fm f

Figure 1.25: Output spectrum of an oscillator with ripple on the power supply

The power of the spurs represented in dBc is given as:

Sspur = 10log10

(︃

2πKVVm

2ωm

)︃2

dBc (1.62)

Given the desired spur level the maximum ripple tolerated by the oscillator can be

calculated by:

Vm <
2ωm

2πKV

10(Sspur/20) (1.63)

which is going to be one of the most critical speciőcations in the design of the SC con-

verter of Chapter 3. We note in fact that KV for Class-D oscillator can be as high as

600MHz/V [4].

As a result of frequency pushing, noise present in the supply voltage gets also picked

up by the oscillator, and randomly modulates the oscillation frequency, through the

same mechanism explained before. This leads to the conversion of noise in the power

supply into phase noise. We can quantify how much supply noise gets converted into

phase noise by looking at the following formula:

Lsupply (∆ω) = 10log10

(︄

(2πKV)2

∆ω2
V 2

n,supply (∆ω)

⎜

(1.64)

where V 2
n,supply is the power spectral density of the supply noise. To preserve the inherit

phase noise of the oscillator we have to satisfy the condition:

Lsupply (∆ω) ≪ L (∆ω) (1.65)
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This leads to:

V 2
n,supply <

10
−F OM

10

103PDC

(︃

ωosc

2πKV

)︃2

(1.66)

which tells us the maximum value that the supply noise can assume, before deterio-

rating the phase noise of the oscillator. Note that even though Equation 1.66 seems to

suggest that by increasing the frequency of the oscillation ω0 the oscillator is able to

tolerate more supply noise, we have to consider that Kv is also weakly dependent from

frequency. This effect is due to how the capacitance of the tank is realized. CTOT is

generally composed of a őxed capacitor Cfix, a variable capacitor Ctune needed to tune

the oscillation frequency, as we will see in Section 2.2, and the parasitic capacitances

Cpar of the switches. The expression for CTOT is therefore the following:

CTOT = Cfix + Ctune + Cpar (1.67)

The effective value Cpar however can be modulated by the supply voltage, contributing

to KV. In order to increase ω0, following Equation 1.10, we have to decrease Ctune. This

in turn makes Cpar, in proportion, a bigger component of CTOT leading to an increase

in KV. As a result the ratio ω0/ (2πKV) remains almost constant across the operating

frequency range.
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CHAPTER 2
Class-D Oscillators

In this chapter an analysis of the Class-D oscillator and its advantages over other

oscillator topologies is presented. An analysis on the time-variant nature of the Class-

D tank is made, in order to outline how critical design parameters such as oscillation

frequency, current consumption and even phase noise are inŕuenced by the nature of

the Class-D tank. This analysis is naturally instrumental in order to understand how

to approach the design of Class-D VCOs which is also touched upon in this chapter.

2.1 Topology Overview

L

C

VDD

M1 M2

VLO+
VLO−

Figure 2.1: Class-D oscillator scheme

By removing the tail generator from a Class-B oscillator we push, as anticipated, the

oscillator in its voltage limited region obtaining the topology of a Class-D oscillator,

shown in Figure 2.1.

31



Additionally it has to be noted that to guarantee good Class-D operation, switches M1

and M2 have to be sized so that their equivalent resistance is negligible with respect to

the tank equivalent resistance.

One of Class-D main characteristics is that it oscillates at an amplitude of V̂ LO,ClassD ≃
3VDD. This makes the Class-D oscillator incredibly attractive for operation at low VDD

since it is able to guarantee an excellent level of phase noise even when the supply

voltage is limited. We have in fact seen in Equation 1.43 how the phase noise is de-

pendent on the oscillation amplitude V̂ LO and compared to a Class-B Oscillator that,

as we have seen in in Section 1.4.1, reaches a maximum value of V̂ LO,ClassB = VDD − VS,

it’s easy to see why the Class-D topology excels for very low power supply applications.

On the other hand, even though the Class-D oscillator is capable of producing less

phase noise than a Class-B Oscillator, for the same power consumption, this comes at

the cost of a higher power supply pushing which can be as high as 600MHz/V and

needs to be kept in high consideration during the design process.

The key difference between Class-D and Class-B oscillators, besides the tail generator,

is that the Class-D LC tank displays a time-variant nature, meaning that the properties

of the tank change during the oscillation period. Not only that, but the behaviour of

the Class-D oscillator changes based on the nature of the tank capacitance: ŕoating

or single-ended. In reality, since the tank can’t be purely ŕoating or single-ended, the

behaviour of the oscillator is going to be conőned between two different working ex-

tremes. In the following sections we are going to show the expressions of the behaviour

of a Class-D oscillator, based on these particular properties, as showed in [4].

2.1.1 Oscillation Frequency

As anticipated, due to the time-variant nature of the tank, the Class-D oscillator changes

its properties based on the nature of the capacitance present in the tank. The afore-

mentioned property extends even to its oscillation frequency which has the peculiarity

of varying between two extremes ω0,float for a completely ŕoating tank capacitance and

ω0,se for a completely single-ended tank capacitance. This is in sharp contrast with the

őxed ω0 value of Class-B oscillators, as seen in Equation 1.10.
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In order to derive expressions for ω0,se and ω0,float it is necessary to study how the current

ŕowing into the inductor La = Lb = L/2 evolves during an oscillation period. We take,

as a reference, the equivalent scheme of the Class-D oscillator shown in Figure 2.2 for

the case where the oscillator is loaded with a ŕoating capacitor and the one showed in

Figure 2.3 for when in turn a single-ended capacitor is used.

RLa

La

RC

2C
RC

2C

RLb

Lb

VDD

+ −Vout

M2M1

(a) Operation during T1

RLa

La

RC

2C
RC

2C

RLb

Lb

VDD

+ −Vout

M2M1

(b) Operation during T2

Figure 2.2: Equivalent scheme of a Class-D oscillator with ŕoating capacitance

RLa

La

RC

2C
RC

2C

RLb

Lb

VDD

+ −Vout

M2M1

(a) Operation during T1

RLa

La

RC

2C
RC

2C

RLb

Lb

VDD

+ −Vout

M2M1

(b) Operation during T2

Figure 2.3: Equivalent scheme of a Class-D oscillator with single-ended capacitance

The operation of the oscillator during an oscillation period Tosc is divided into 2 phases.

During T1 (i.e. for 0 < t < Tosc/2), M1 shorts La to ground and iLa
(t) results from the

exponential charge of La. During T2 (i.e. for Tosc/2 < t < Tosc), on the other hand, M1 is

off and La resonates with the equivalent tank capacitance Ceq.
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In this last case iLa
(t) is a sinusoidal current wave with oscillation frequency ωtank of:

ωtank =

√︄

1

LaCeq

(2.1)

where Ceq = C in the case of Figure 2.2 and Ceq = 2C in the case of Figure 2.3.

The same behaviour can be observed by looking at the operation of transistor M2 and

the inductor current iLb
(t) since their operation is complementary with respect to M1

and iLa
(t). In Figure 2.4 the time evolution of iLa

and iLb
is plotted showing this aspect

and highlighting the period Ttank of ωtank.

(a) Behaviour of current iLa
(t) (b) Behaviour of current iLb

(t)

Figure 2.4: Currents on the inductors La and Lb

Note from Figure 2.4 how the oscillation period of Ttank is smaller than T2 so we have

to take this into account by writing:

T2 = Tϕ1 +
Ttank

2
+ Tϕ2 (2.2)

During T1 the expression of iLa (t) is:

iLa,T1
(t) = i1 +

VDD

RLa

(︂

1 − e−(RLa /La)t
)︂

(2.3)

where i1 = iLa
(0) = iLa

(Tosc) and RLa
= RLb

= RL/2 is the series resistance of La.

The derivative of iLa,T1
(t) is:

i̇La,T1
(t) =

VDD

La

e−(RLa /La)t (2.4)
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We can then proceed by calculating the values of iLa,T1
(t) and i̇La,T1

(t) at the transition

time t = Tosc/2 between T1 and T2:

iLa,T1

(︃

Tosc

2

)︃

= i1 +
VDD

RLa

(︂

1 − eπ/QLa

)︂

= i0 (2.5)

i̇La,T1

(︃

Tosc

2

)︃

=
VDD

RLa

e−π/QLa = i′
0 (2.6)

where QLa
= ωoscLa/RLa

, with ωosc = 2π/Tosc

Assuming the tank losses to be negligible we can rewrite i0 as:

i0 = i1 +
VDD

La

Tosc

2
(2.7)

and the same applies for i′
0:

i′
0 =

VDD

La

(2.8)

Moreover, since there are no losses, the current on the inductor La at time t = 0 and

t = Tosc/2 is the same in modulus, therefore:

−iLa (0) = iLa (Tosc/2) (2.9)

Combing Equation 2.9 and Equation 2.7 we get:

−i1 = i0 = i1 +
VDD

La

Tosc

2
(2.10)

which allow us to immediately write:

i0 =
1

2

(︃

VDD

La

Tosc

2

)︃

=
πVDD

2Laωosc

(2.11)

During T2 we treat, as already mentioned, iLa
(t) as a portion of sinusoid of angular

frequency ωtank. This sinewave is however damped by the combined losses of La and

Ceq. Knowing the values of iLa
(t) and of i̇La

(t) at t = Tosc/2, due to the continuity of

the current, the expression of iLa,T1
(t) during T2 can be written as:

iLa,T2
(t) =

∮︂(︄

i′
0

ωtank

+
i0

2Qtank

⎜

sin (ωtankt′) + i0cos (ωtankt′)

⨀︁

e−((RLa +RCeq)/(2La))t′

(2.12)

where t′ = t − Tosc/2.
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Furthermore by substituting Qtank = ωtankLa/
(︂

RLa
+ RCeq

)︂

we get:

iLa,T2
(t) = Ipkcos (ωtankt′ − ϕ0) e−((RLa +RCeq)/(2La))t′

(2.13)

Ipk =

⌜

⃓

⃓

⎷

(︄

i′
0

ωtank

+
i0

2Qtank

⎜2

+ i2
0 ≃

⌜

⃓

⃓

⎷

(︄

i′
0

ωtank

⎜2

+ i2
0 (2.14)

ϕ0 = arctan

(︄

i′
0

i0ωtank

+
1

2Qtank

⎜

≃
(︄

i′
0

i0ωtank

⎜

(2.15)

The term ϕ0 can be further rewritten as:

ϕ0 = arctan
(︃

2

π

ωosc

ωtank

)︃

≃ 2

π

ωosc

ωtank

=
2

π

Ttank

Tosc

(2.16)

By noticing that due to the symmetry of iLa
(t) we have that Tϕ1 = Tϕ2 = Tϕ.

Tϕ is given by:

Tϕ =
ϕ0

2π
Ttank (2.17)

We have now all the elements to derive the oscillation frequency as follows:

T2 =
Tosc

2
(2.18)

=
Ttank

2
+ 2Tϕ (2.19)

=
Ttank

2
+ 2

ϕ0

2π
Ttank (2.20)

=
Ttank

2
+

2

π2

T 2
tank

Tosc

(2.21)

which results in

Tosc = αTtank =⇒ ωosc =
ωtank

α
=

1

α

√︄

1

LaCeq

(2.22)

with

α =
1

2
+

√︄

1

4
+

4

π2
≃ 1.3 (2.23)

Since Ceq changes if the tank capacitance is ŕoating or single-ended ωtank changes as

well and we have two separate oscillation frequencies.
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The formulas for the oscillation frequency of a Class-D oscillator are therefore given by:

ω0,float =

√
2

α

√︄

1

LC
(2.24)

ω0,se =
1

α

√︄

1

LC
(2.25)

We immediately notice how operating the oscillator with a ŕoating capacitance allows

for higher oscillation frequency than a Class-B oscillator, for the same values of L and

C. On the other hand, operation with a completely single-ended capacitance leads to a

frequency of oscillation lower than Class-B.

2.1.2 Voltage Waveforms

The expression for the voltage waveform for the Class-D oscillator can be obtained by

integrating Equation 2.12. Keeping the assumption that losses in the tank are negligible,

we obtain:

VLO+
(t) = VDD +

∏︁

∐︂VDD

√︄

α2π2

4
+ 1

∫︁

ˆ︁ sin (ωtankt′ − ϕ) (2.26)

with peak amplitude:

Vpeak = VDD

∏︁

∐︂1 +

√︄

α2π2

4
+ 1

∫︁

ˆ︁ ≃ 3.27VDD (2.27)

Note however that due to losses in the tank the actual peak oscillation amplitude is, as

anticipated, Vpeak ≃ 3VDD. We show in Figure 2.5 the behaviour of output voltage of

the oscillator corresponding to the drain voltage of transistors M1 and M2.

Figure 2.5: Output voltage waveforms for a Class-D oscillator
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2.1.3 Current Consumption

The current consumption equations can be also obtained from Equation 2.12 [4]. The

equations, that again depend on the nature of the tank capacitance, are the following:

IDC,float = (7.1 − 2.0κ)
(RC + RL) VDD

ω2
0,floatL

2
(2.28)

IDC,se = (3.6 + 1.6κ)
(RC + RL) VDD

ω2
0,seL

2
(2.29)

with κ = RL/ (RL + RC).

We note how the values of IDC,se and IDC,float depend separately by the loss caused by

the inductor parasitic resistance RL and by the capacitance parasitic resistance RC. We

have therefore four corners of current consumption, dependently on whether the tank

capacitance is ŕoating or single-ended, and whether losses are capacitive or inductive.

In practical implementations however losses in the tank are generally largely given

by the inductor resistance, meaning that κ ≃ 1. By inspecting Equation 2.29 and Equa-

tion 2.28 this means that, in order to reduce current consumption, it is advisable to

operate the oscillator with a ŕoating tank capacitance whenever possible.

2.1.4 Phase Noise of a Class-D Oscillator

The phase noise performance of the Class-D oscillator is, unsurprisingly, very strongly

dependent on whether the tank capacitance is dominated by a ŕoating capacitance or by

a single-ended capacitance. Moreover similarly to what we have seen in Equation 2.29

and Equation 2.28 the values RL and RC contribute with different weights to the phase

noise. We report below the 1/f 2 phase noise expression for a ŕoating tank and for a

single-ended tank, which have been derived in [4] following the LTV theory of [8].

Lfloat(∆ω) = 10log10

⎟

ω2
0,float

∆ω2

kBT

V 2
DD

(0.104RL + 0.141RC) (1 + nMOS)

⟨︂

(2.30)

Lse(∆ω) = 10log10

⎟

ω2
0,se

∆ω2

kBT

V 2
DD

(︃

0.104RL +
0.141

2
RC

)︃

(1 + nMOS)

⟨︂

(2.31)

where nMOS is the noise generated by both switches together normalized by the tank

noise. We notice how, since the Class-D oscillator works in the voltage limited regime,

PN is directly dependent from VDD.
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By inspecting Equation 2.30 and Equation 2.31 we can conclude that, similarly to the

case of current consumption, it is highly advantageous to operate the Class-D oscillator

with a ŕoating tank capacitance and tank losses dominated by the tank inductance,

if the best phase-noise performance is to be retained. We note that a reasonable con-

tribute to phase noise for each switch is 20-25%, meaning that the noise produced by

the switches can add up to almost 50% of the total phase noise of the oscillator (nMOS=1).

Additionally, as reported in [4], employing wider switches result in lower phase noise

if the tank capacitance is ŕoating, while on the other hand the phase noise may even

increase if the tank capacitance is single-ended. Moreover, for a given level of 1/f noise,

the upconverted 1/f 3 phase noise decreases when the switch on-resistance decreases.

As a result in order to guarantee a good phase noise performance the switches M1 and

M2 must be made as big as reasonably possible. This is in accordance with what has

been anticipated, regarding how the sizing of the switches is crucial to guarantee good

Class-D operation. Naturally, since real transistors include parasitic capacitance, there

is a limit on how large the switches can be made.

We have in fact that:

ωtank =

√︄

1

L (C + Cpar)
(2.32)

where Cpar groups up all the parasitic capacitance contributions, showing how they

can compromise the maximum switching frequency of the oscillator if C ≃ Cpar.

The sizing of the transistors therefore has to be made without compromising the ability

of the oscillator to reach the target oscillation frequency ω0.

2.2 Class-D VCO

In practical implementations, oscillators do not operate at a őxed frequency, but they

are built in a way that allows them to change their oscillation frequency dynamically.

The regulation of the oscillation frequency is usually achieved by means of a capacitor

bank connected to the differential nodes of the oscillator. The bank contains a parallel

combination of switchable capacitors that can be added or subtracted to the total tank

capacitance to respectively decrease or increase ω0.
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Although the capacitances of the bank may be chosen to appear single-ended when

active, a better choice in the case of Class-D oscillators, is to have them ŕoat. We have in

fact seen how by loading the oscillator with a ŕoating capacitance we are able to obtain

a better value of phase noise, oscillation frequency and lower the power consumption.

In Figure 2.6 an implementation of a ŕoating 3bit capacitor bank is showed.

4C

4W

bit2

4C

2C

2W

bit1

2C

C

W

bit0

C

VLO−
VLO+

Figure 2.6: 3bit ŕoating capacitor bank

where following the scheme of Figure 2.6 the mosfets have to be sized so that their

equivalent resistance Ron doesn’t degrade the quality factor of the tank. Their width is

therefore scaled as the capacitors increase.

One additional note is that, while the capacitor bank allows us to rapidly increase

the size of the tank capacitor, the resolution through which we can change ω0 is discrete

as such is the nature of the capacitance added by the bank. An additional voltage

controlled capacitor has therefore to be added to the bank in order to continuously

őne tune the frequency of the oscillator, by means of a tuning voltage Vtune, as show in

Figure 2.7

VLO+

Vtune

VLO−

Figure 2.7: Circuit for őne tuning of the oscillation frequency
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Since both the discrete and continuous tunings are made using voltage, an oscillator

realized in this way is generally called a VCO. These oscillators are commonly compared

based on their PN performance, power consumption and tuning range, which is deőned

as follows:

TR =
ω0,max − ω0,min

ω0,max + ω0,min

2

(2.33)

where ω0,max is the maximum oscillation frequency achievable by the VCO and ω0,min

the minimum. Additionally it is common practice to show the tuning range of the

VCO by plotting the value of the oscillation frequency f0 as a function of Vtune and of

the combinations of the capacitor bank. An example is shown in Figure 2.8 were f0 is

plotted as a function of Vtune for two adjacent bank combinations.

Figure 2.8: Example of tuning range behaviour for a VCO

Note from Figure 2.8 that, to guarantee a continuous tuning, the 2 adjacent curves

must slightly overlap so that the VCO correctly covers all its tuning range. One őnal

note, following the previous considerations, is that the Class-D VCO works under quite

different conditions across its tuning range. When the capacitor bank is fully switched

in the oscillator sees what is basically a completely ŕoating capacitance. On the other

hand, when the bank is switched out the tank capacitance is dominated by the parasitic

capacitances of the switches which are single-ended. This behaviour has to be kept in

consideration during the design process as it affects the performance of the VCO based

on its current capacitor bank combination and in turn on its oscillation frequency f0.
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CHAPTER 3
Switched Capacitor Converters

In this chapter, an analysis of the SC converter is presented. First the working principle

of this particular topology is explained. The model of the converter is then derived,

focusing on the modelling of the output impedance. A loss model is presented in order

to deőne which combination of parameters of the design space maximizes the efficiency.

A control technique, chosen in order to őt our desired application, is presented and

analysed. Finally, the main auxiliary circuits that are necessary for the correct behaviour

of the circuit are illustrated.

3.1 Theoretical Analysis and Derivation of an Ideal Model

In this section the working principle of the SC converter is illustrated, and its ideal

model is derived. The topology of a 1/2 SC converter is showed in Figure 3.1.

VIN

ϕ1 Ron ϕ2 Ron

ϕ2 Ron ϕ1 Ron

Cfly Cout

VOUT

Figure 3.1: Simpliőed schematic of a 1/2 SC converter

The converter is composed of a ŕying capacitor Cfly and 4 switches having equivalent

resistance Ron, where ϕ1,2 are two clock signals complementary to each other with 50%

duty cycle and switching frequency fsw.
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During phase ϕ1, Cfly connects between the input voltage VIN and the output voltage

VOUT and, during phase ϕ2, Cfly connects between VOUT and ground as shown in Fig-

ure 3.2 [9].

VIN

ϕ1

qin

Ron
ϕ2 Ron

ϕ2 Ron ϕ1 Ron

Cfly

qCfly

Cout

qCout

qout

2
VOUT

(a) Schematic during ϕ1

VIN

ϕ1 Ron ϕ2 Ron

ϕ2 Ron
ϕ1 Ron

Cfly

qCfly

Cout

qCout

qout

2
VOUT

(b) Schematic during ϕ2

Figure 3.2: Change of the SC converter topology based on ϕ1,2

The capacitor Cfly therefore acts as a "bucket" absorbing charge during ϕ1 and releasing

it during ϕ2 towards the output node VOUT. The őltering capacitor Cout, on the other

hand, is needed to store the charge drawn through Cfly from the power supply VIN.

It is easy to show that this topology indeed realizes a step down converter with con-

version ratio CR equal to 1/2. Assuming that VOUT is kept constant, due to charge

conservation we have that when a transition between phases ϕ1,2 occurs the following

equation must be true:

(VIN − VOUT) · Cfly = VOUT · Cfly (3.1)

which can easily be rewritten to show that indeed:

CR =
VOUT

VIN

=
1

2
(3.2)

However, it has to be noted that these calculations were made by neglecting the őnite

resistance Ron of the switches and the inŕuence of the charge/discharge time of capaci-

tor Cfly. In reality the equation VOUT = CR · VIN has to be viewed as the maximum ideal

limit to the value of VOUT, hence VMAX = CR · VIN, while the real value of VOUT is going

to be smaller than VMAX due to the losses that are present in the real circuit. These losses

can be modelled by the means of a resistance ROUT put in series to the ideal voltage

source VMAX. The SC converter can therefore be modelled as an ideal transformer, as

seen in Figure 3.3.
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VIN

IIN = CR · IOUT −
+ VMAX = CR · VIN

ROUT

VOUT

Figure 3.3: Ideal transformer model

As a result, the value of the output voltage can be expressed as:

VOUT =
VIN

2
− ROUT · IOUT (3.3)

It has to be noted that, for the same value of ROUT, as the load current IOUT increases, the

value of VOUT decreases. Meaning that only for very light loads we have VOUT ≃ VMAX.

3.1.1 Modelling of the Output Resistance

The value of ROUT in a SC converter however is not őxed, but it’s frequency dependent

meaning that it depends on the switching frequency fsw of the converter and has two

limits referred to as the Slow Switching Limit (SSL) and the Fast Switching Limit (FSL).

These limits are related to the time constants of the capacitive networks in the system.

In SSL, fsw is low compared to these time constants. This means that the capacitors

voltages tend to settle to their őnal values and current ŕow is limited by the capacitance.

Therefore, from the perspective of the load, the converter appears capacitive. On the

other hand, in FSL, fsw is high with respect to the time constants. The capacitors are

therefore unable to charge to their őnal value and the on-resistances of the switches is

responsible for limiting the current ŕow. From the perspective of the load the converter

this time appears resistive. An example of this behaviour is illustrated in Figure 3.4.

Figure 3.4: Frequency behaviour of resistance ROUT
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As we can see from Figure 3.4 the behaviour of ROUT has, as already mentioned, two

extremes given by the SSL and the FSL with a zone in the middle where the fsw is com-

parable to the time-constants of the circuit meaning that ROUT is both "resistive and

capacitive".

The behaviour of ROUT that is shown in Figure 3.4 is derived from a model of the

output resistance which is the following:

ROUT =
√︂

R2
SSL + R2

FSL (3.4)

This model proves to be accurate if we assume that Cout is huge compared to Cfly [18].

The resistances RSSL and RFSL which model respectively the SSL impedance and the FSL

impedance of the converter can be calculated using the following generalized formulas,

which are applicable for many different families of switched capacitor converters.

RSSL =
∑︂

i∈caps

a2
c,i

Ci · fsw

(3.5)

RFSL =
∑︂

i∈switches

a2
r,i · 2Ron,i (3.6)

where Ron,i and Ci represent respectively the value of equivalent resistance of the i-th

transistor and of capacitance of the i-th capacitor. The variables ac,i and ar,i on the

other hand are called charge multiplier vectors. ac,i in particular is the capacitor charge

multiplier vector and it represents the charge that ŕows in and out of each capacitor in

each switching state. Similarly, ar,i is called a transistor charge multiplier vector and it

represent the charges ŕowing through each switch.

The derivation of these vectors generally is not trivial for complex converters but given

the simplicity of our 1/2 SC converter the results are in this case easily derived. In

order to do so we have to understand how charge moves during the operation of the SC

converter.

As shown in [10], referencing Figure 3.2 we őrst notice that since the converter op-

erates at 50% duty cycle, then the current drawn by the load, namely qout/2, is going

to be equal in both phases. We can then proceed by writing the KCL equations of the

circuit in Figure 3.2 for the states corresponding to ϕ1 and ϕ2.
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In the őrst state we have:

qCfly
= qin,ϕ1

= qCout
+

qout

2
(3.7)

while in the second state we have:

qCfly
+ qCout

=
qout

2
, qin,ϕ2

= 0 (3.8)

Summing Equation 3.7 and Equation 3.8 together we get:

qCfly
=

qout

2
, qC,out = 0 (3.9)

The charge vectors for the capacitors can therefore be derived as:

ac,ϕ1
=
[︂

qCout,ϕ1
qout,ϕ1

qCfly,ϕ1
qin,ϕ1

]︂

/qout = [0.5 0 0.5 0.5] (3.10)

ac,ϕ2
=
[︂

qCout,ϕ2
qout,ϕ2

qCfly,ϕ2
qin,ϕ2

]︂

/qout = [0.5 0 − 0.5 0] (3.11)

For the switches, on the other hand, we have that when a switch is OFF its charge is

zero, while when its ON it has the same charge of capacitor Cfly, i.e. qCfly
. Therefore the

charge vector for the switches is:

ar,ϕ1
= [qSW 1,ϕ1

qSW 2,ϕ1
qSW 3,ϕ1

qSW 4,ϕ1
] /qout = [0.5 0 0.5 0] (3.12)

ar,ϕ2
= [qSW 1,ϕ2

qSW 2,ϕ2
qSW 3,ϕ2

qSW 4,ϕ2
] /qout = [0 0.5 0 0.5] (3.13)

By putting the values that we have obtained, for the charge vectors, inside of Equa-

tion 3.5 and Equation 3.6 we őnally get:

RSSL =
1

4Cflyfsw

(3.14)

RFSL = 2Ron (3.15)

With these equations őnally derived we immediately notice how, for the same target

RSSL, it is possible to reduce the dimension of capacitor Cfly simply by increasing the

value of the switching frequency fsw. Naturally, as we will see during the analysis of

the SC converter efficiency, by increasing fsw we will have also an increase in dissipated

power, so a trade off has to be made on the sizing of Cfly.
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3.1.2 Output Voltage Ripple

Up until now we have simpliőed our analysis by considering that VOUT is kept constant

and that Cout ≫ Cfly. In reality we have that Vout shows some ripple given by the

operation of the converter. At the very start of each phase we have that Cout either

charges together with Cfly, as in ϕ1, or is charged by the charge stored by Cfly which

happens in ϕ2. This charging process makes the voltage at the terminals of Cout increase.

At the same time however the load absorbs a current IOUT that, in őrst approximation,

we can assume as constant which discharges the capacitor Cout making VOUT decrease.

The charging/discharging of Cout originates a ripple on the node Vout.

Before making any consideration on how to estimate this ripple it has to be noted that

the "shape" of the ripple itself changes based on how much the SSL resistance RSSL

prevails on the FSL one RFSL. This is in turn related to the time constants of the SC

converter itself. We have that the equivalent resistance of the switches Ron and the

capacitor Cfly form a RC network that charges and discharges during a time Tsw/2. The

time constant of the network for a speciőc phase ϕ1,2 can be calculated as τ ≃ 2RonCfly.

If τ ≪ Tsw/2 we have that at the start of each phase ϕ1,2 the charge transfer towards

Cout can be modelled as an impulse raising instantly the value of Vout which then slowly

decreases linearly as IOUT "consumes" the charge stored in Cout. In this case we have

that the ripple has a sawtooth-behaviour as illustrated in Figure 3.5a. On the other hand

if τ ≃ Tsw/2 the initial charge of Cout can no longer be approximated by an impulse

and the ripple will have a more distinct exponential shape at the start of a phase ϕ1,2 as

showed in Figure 3.5b.

(a) Ripple with "impulse" charging (b) Ripple with őnite charging

Figure 3.5: Ripple behaviour
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To quantify the amplitude of ∆Vripple one way is to consider that Cfly at the end of ϕ1 is

charged to (Vin − Vout) while it’s shorted to Cout during ϕ2. The value of Vout as a result,

during a transition ϕ1 → ϕ2, becomes (Vout + ∆Vripple). We can therefore calculate

∆Vripple as: [7]

CoutVout + Cfly (Vin − Vout) = (Cout + Cfly) (Vout + ∆Vripple) (3.16)

=⇒ ∆Vripple =
Cfly

Cfly + Cout

(Vin − 2Vout) ≃ Cfly

Cout

(Vin − 2Vout) (3.17)

It has to be noted however that this formula works under the hypothesis that the charge

transfer can be considered as an impulse, so it works well to estimate the ripple of

Figure 3.5a, while it has to be considered as an upper-bound for the case in Figure 3.5b.

Nevertheless from Equation 3.17 we get an important result as we notice that the ripple

is proportional to the ratio of Cfly/Cout and we can immediately see how by imposing

Cout ≫ Cfly it is possible to directly reduce the ripple. This result is not completely sur-

prising since for capacitors we have that ∆VC = q/C and since the charge q, transferred

to the capacitor during a switching cycle is őxed it’s natural that by increasing C the

variation of voltage at the extremes of the capacitor ∆VC is reduced.

Another way of estimating ∆Vripple, by making use of the "impulse" charging approxi-

mation, is considering the section of the ripple after the effect of the charge "impulse"

where Vout starts to decrease linearly. We have that Vout decreases with a slope given

by IOUT/ (Cfly + Cout) [17] which can either be deduced by inspecting the circuit or by

computing the term directly by means of state space equations. Therefore knowing

that a phase ϕ1,2 lasts for a time Tsw/2 we have:

∆Vripple =
Tsw

2

IOUT

(Cfly + out)
=

IOUT

2fsw (Cfly + Cout)
(3.18)

For this formula the same reasonings, regarding the quality of the approximation, apply

as in Equation 3.17. Moreover simulations results show that this method of estimating

ripple leads to bigger errors compared to Equation 3.17 if τ ≃ Tsw/2. The result however

clearly shows us how ∆Vripple is also tied to the switching frequency fsw and the load

current IOUT.
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3.1.3 Symmetric Charge-Discharge Topology

The analysis that we have carried out of the SC converter structure up to this moment

has neglected the effect that the parasitic capacitances, of its various components, have

on its behaviour. We are now going to analyse how these capacitances, especially the

ones related to capacitor Cfly, impact ∆Vripple as seen in [16]. Real capacitors often

include a top and bottom plate parasitic capacitance as shown in Figure 3.6.

CCtop Cbottom

Figure 3.6: Top and bottom plate capacitance in a capacitor

This non ideality manifests itself by making the ripple of the converter asymmetric

with respect to phases ϕ1 and ϕ2. The effect can be appreciated in Figure 3.7 where

an appropriate comparison is made between a converter without parasitic capacitances

and one with 2% top and bottom plate parasitic capacitances.

(a) Ideal converter (b) 2% top/bottom plate capacitance

Figure 3.7: Comparison of voltage ripple between converters

As shown in Figure 3.7b, the effect of the bottom plate capacitance modulates the

voltage ripple. In order to understand why this happens we look at Figure 3.8:

VIN

ϕ1 Ron
ϕ2 Ron

ϕ2 Ron
ϕ1 Ron

Cfly Cout

VOUT

(a) Asymmetric SC converter scheme

VIN A B
A

B

Cfly

VOUT

Cout

(b) Capacitor scheme
during ϕ1

Cfly

VOUT

Cout
A

B

A

B

(c) Capacitor scheme
during ϕ2

Figure 3.8: Asymmetric converter topology
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From Figure 3.8b we see that during ϕ1 Cfly is charged with its bottom-plate (terminal B)

connected to Cout. During ϕ2 as shown in Figure 3.8c, on the other hand, the top-plate

(terminal A) of Cfly is connected to Cout. We also have that during ϕ2 Cout and Cfly are

connected in parallel making the equivalent output capacitance bigger and decreasing

∆Vripple. This problem can be solved by recurring to the converter topology of Figure 3.9.

VIN

ϕ1 Ron
ϕ2 Ron

ϕ2 Ron
ϕ1 Ron

Cfly Cout

VOUT

VIN

ϕ2 Ron
ϕ1 Ron

ϕ1 Ron
ϕ2 Ron

Cfly

(a) Symmetric SC converter scheme

VIN

Cfly

A B

Cfly

VOUT

Cout
A

B

A

B

(b) Capacitor scheme during ϕ1 and ϕ2

Figure 3.9: Symmetric converter topology

By operating the converter as a combination of two converters "modules" working in

opposition of phase as seen in Figure 3.9a we have that the capacitor scheme is the same

in both phases as shown in Figure 3.9b, meaning that the asymmetric voltage ripple is

eliminated. This solution can also be used to reduce the overall ripple of the converter

[9] but to a smaller degree that what we will see in Section 3.1.4. Finally employing

an asymmetric converter ever so slightly eases its design as now the output resistance

ROUT is given by the parallel of two smaller modules. This makes the value of ROUT

less subject to deviations of the components values or slight sizing errors, as the effect

of the parallel evens out these differences, resulting in a more consistent value of ROUT.
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3.1.4 Phase Interleaving

We want now to analyse a technique that allows us to drastically decrease the ripple

of our converter. The idea is very similar to the one shown in Section 3.1.3 since its

realized by taking N different SC converter modules and operating them in parallel,

but this time a phase shift, equal to Tsw/2N , is applied to the phases of each module i

with respect to the module i − 1. This technique takes the name of "Phase Interleaving"

and in order to understand how it works we őrst take a look at Figure 3.10 where the

operation of a N = 2 phases interleaved converter is depicted.

VDD

ϕ1,2

VOUT

Cout

VDD

ϕ3,4

(a) Symmetric SC modules interleaved
with N = 2

(b) Interleaved phases

Figure 3.10: Phase utilization and topology of a phase interleaved converter

We see from Figure 3.10a that in this interleaving scheme two symmetric converters are

made to work in parallel with each other. The phases used to drive the modules are

showed in Figure 3.10b where we can appreciate how ϕ1 is in opposition of phase with

respect to ϕ2, and the same goes for ϕ3 and ϕ4. It’s also quite clear how the pair ϕ3,4 has

been obtained by phase shifting ϕ1,2 by Tsw/4. Finally in Figure 3.11 it’s showed how

phase interleaving effectively reduces the ripple of the converter.

(a) Symmetric non-interleaved converters Vout (b) Vout after Interleaving of the symmetric
converters

Figure 3.11: Comparison of voltage ripple between converters

52



In Figure 3.11b we show the output voltage Vout of the two symmetric converters work-

ing separately, while in Figure 3.11a we show Vout when the converters work in parallel

with interleaved phases. We can easily notice how ∆Vripple has decreased by a factor of

N ≃ 2 in the interleaved case.

This is due to the fact that now charge is taken from the input and delivered to the

output in smaller amounts, thanks to phase interleaving. In fact with the previous

structure charge was delivered in larger amounts at a single time instant increasing

∆Vripple. Therefore thanks to phase interleaving we can reduce by a factor of N the

value of ∆Vripple, with respect to non-interleaved SC converters.

3.2 Derivation of Efficiency Limits

We are now interested in realizing a mathematical model of the SC converter, in order

to understand how to correctly size its components. More speciőcally, we want to see

how its efficiency varies based on the combination of the design variables such as the

switching frequency fsw, dimension of ŕying capacitor Cfly and sizing of the switches

WSW,i. We proceed therefore by creating a loss model of the converter in order to

understand how to maximize its efficiency.

We start by considering the losses due to the őnite resistance of the converter ROUT

which are called conduction losses and are given as follows:

Pconduction = I2
out · ROUT/N/ksym (3.19)

where ROUT is considered as the equivalent output resistance of a single asymmetric

converter module. The factor ksym takes into account if the converter is symmetric or not

and it’s equal to 2 or 1 respectively, while the term N accounts for phase interleaving.

We notice how in order to reduce Pconduction it is necessary to reduce ROUT, which in

turn implies that the terms RSSL ∝−1 (Cflyfsw) and RFSL ∝ Ron must decrease as seen

in Equation 3.14 and Equation 3.15. Note that since Ron,i ∝−1 WSW,i, as we will see

in Section 3.2.1, the last condition is equivalent to increasing the size of the switches

WSW,i.
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We now direct our analysis to the subject of switching losses. These losses are given

by the parasitic gate capacitance Cgg of the transistors, used to realize the switches.

The capacitance Cgg in fact is charged and discharged every switching cycle dissipating

power. The formula for these losses is:

Pswitching = Cgg,TOT · V 2
IN · fsw · N · ksym (3.20)

where Cgg,TOT groups together the parasitic capacitance Cgg,i of each of the four switches

that realize a converter module. Note that Cgg,i ∝ WSW,i, but since we have seen that

Ron,i ∝−1 WSW,i we immediately notice that there is a trade off between reducing RFSL

and Pswitching, while scaling the value of WSW,i. A similar trade off is made when trying

to limit the value of Cfly used by increasing fsw in RSSL as it also means an increase in

Pswitching.

Another loss present in the converter is given by the losses due to top and bottom plate

parasitic capacitances that, as anticipated, are present in the capacitor Cfly. These losses

share a very similar formulation to the switching losses, as seen below:

Ptop/bottom plate = Cfly · V 2
out

2
· fsw · ktop/bottom (3.21)

where Cfly refers to the total ŕying capacitance used in the converter, including all

modules present due to symmetric design or phase interleaving, while ktop/bottom on

the other hand is the percentage of parasitic top and bottom plate capacitance with

respect to Cfly. The 1/2 factor takes into account that, while referencing Figure 3.8 only

the bottom capacitance (terminal B) contributes to losses as its charged at Vout during ϕ1

and then discharged during ϕ2 towards ground. To get a feeling on the importance of

this loss we note that the product (Cfly ·ktop/bottom) often times is comparable to Cgg,TOT.

Finally the last loss present in the circuit is given by the parasitic resistance of the ŕying

capacitor RESR. This loss component is often negligible, nevertheless we have decided

to include it in the model. Its formula is given by:

PESR = I2
OUT · RESR/N/ksym (3.22)

Now that we know all the power that is lost inside the converter, before calculating the

efficiency, we have to calculate the amount of power delivered to the load.

54



This power is given by Pout which is expressed as:

Pout ≃
(︄

Vout,min +
∆Vripple

2

⎜(︄

Iout,min +
∆I

2

⎜

≃ VOUT · IOUT (3.23)

where we have assumed negligible the effect of the output voltage ripple ∆Vripple and of

the output current ripple ∆I . Note also that the value of VOUT has to be calculated, fol-

lowing Equation 3.3, by correctly considering the value of ROUT based on the structure

of the converter and the values N and ksym. The expression of the output resistance

therefore becomes:

ROUTTOT
= ROUT/N/ksym (3.24)

where, as anticipated, ROUT now represents the resistance associated to a single con-

verter module. By combining all the previous equations we can calculate the converter

theoretical efficiency, which is given by:

η =
Pout

Pout + Plosses

=
Pout

Pout + Pconduction + Pswitching + Ptop/bottom + PESR

(3.25)

we have that η is dependent on the design variables: fsw, Cfly and WSW,i so in order to

arrive to a őnal design we have to impose some constraints on these design variables.

We can simplify our analysis by őrst considering instead of, 4 separate variables WSW,i,

controlling the size of the switches, the value of RFSL. In this way we can focus on

selecting an appropriate value of RSSL while sizing the mosfets later following a pro-

cedure which will be explained in Section 3.2.1. We then impose the constrain that the

time-constant of the converter during either phases ϕ1,2 must be such that: 4τ = Tsw/2

[9]. This choice will be better explained in Section 3.2.2 and it’s easy to show that it’s

equivalent to imposing that 2RSSL = RFSL.

4τ =
Tsw

2
(3.26)

4 (2RonCfly) =
1

2fsw

(3.27)

2 (2Ron) =
1

4Cflyfsw

(3.28)

2RFSL = RSSL (3.29)
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Following the constrain imposed by Equation 3.29 we have that by selecting a value

of Cfly and fsw we are also imposing the value of RFSL, while WSW,i as anticipated can

be derived by RSSL. We therefore now have all the elements to plot the value of η as a

function of only Cfly and fsw. This will allow us to understand how to size Cfly when

aiming to obtain a speciőc efficiency, for a given IOUT. A plot of η (Cfly, fsw), for an ideal

load current of IOUT = 12.4mA, is showed in Figure 3.12.
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Figure 3.12: η (Cfly, fsw) using technology values

After having selected Cfly we can then relax the constrain imposed by Equation 3.29 and

plot η as a function this time of fsw and RFSL to őnd a design point for our converter.

A plot of η (fsw, RFSL), where Cfly = 500pF is showed in Figure 3.13. In both cases we

have assumed N = 1 and ksym = 2. Note that the value of RFSL found refers to a single

converter module.
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Figure 3.13: η (RFSL, fsw) using technology values
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3.2.1 Sizing of the Mosfets

Given a certain value of RFSL, that we want to obtain, we have that the SC converter is

going to be realized by employing mosfets as in Figure 3.14, where switches SW1,2 have

been implemented as p-mosfets, while switches SW1,2 as n-mosfets.

VIN SW1

Cfly

SW2 SW4

SW3

Cout

VOUT

ϕ1 ϕ2

ϕ2 ϕ1

Figure 3.14: SC converter scheme with real mosfet switches

This means that phases ϕ1,2 have to be modiőed and can no longer be considered

complementary, since p-mosfets work for negative values of VGS, while n-mosfets for

positive values of VGS. Moreover the phases that will drive the mosfets will need to

include a "dead-time" in the transition between phases ϕ1,2 to avoid the condition where

all switches are turned on at the same time, due to the őnite turn-on time of the mosfets.

This problem is further explained in Section 3.4.1.

In any case, now that we know which type of mosfet we are using to realize each

switch, we look at the formula for the equivalent resistance of a mosfet working in the

triode region, (under the long-channel approximation) which is as follows:

Ron =
1

(µmCox) (W/L) (VGS − VTH)
(3.30)

As anticipated, we have that Ron ∝−1 W , but we also notice that Ron ∝−1 (VGS − VTH) ≃
VGS. This last relation is important since as seen in Figure 3.14 when ϕ1 = 0V , we

have that SW1 and SW4 are ON as intended, but while VGS1 = −VIN we have that

VGS4 ≃ −VOUT ≃ −VIN/2. The same applies for switches SW2 and SW3 where VGS2 = VIN

and VGS3 ≃ VOUT ≃ VIN/2. Another issue that we have to consider is that µm changes if

the mosfet is type-n or type-p. This ultimately means that for a set value of W each of

the four switches will have different values of Ron.
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We therefore have to size each mosfet individually, őnding the values of WSW,i that

realize the needed value of RFSL for both phases ϕ1,2, while minimizing the total value

of Cgg,TOT =
∑︁4

i=1 Cgg,i in order to contain the switching losses.

This problem can be formulated mathematically for a single phase ϕi as:

RFSL =
Ron,VGS=0.4V

WVGS=0.4V

+
Ron,VGS=0.8V

WVGS=0.8V

(3.31)

min (Cgg,VGS=0.4V · WVGS=0.4V + Cgg,VGS=0.8V · WVGS=0.8V) (3.32)

where the values of Ron,VGS=0.8V, Ron,VGS=0.4V, Cgg,VGS=0.8V and Cgg,VGS=0.4V are nor-

malized with respect to a őxed value of WREF and can be estimated with the aid of

simulation tools for both type-n and type-p mosfets. Moreover the values of WVGS=0.4V

and WVGS=0.8V have to be seen as a scaling factor for WREF. Therefore, for example, for

a given WVGS=0.4V the real mosfet width is given by W = WVGS=0.4V · WREF.

We can then rewrite Equation 3.31 as:

WVGS=0.4V =
Ron,VGS=0.4V · WVGS=0.8V

RFSL · WVGS=0.8V − RonVGS=0.8V

(3.33)

Plugging Equation 3.33 into Equation 3.32 we are left with a minimization problem

with only one variable WVGS=0.4V, which can easily be resolved by using derivatives

and gives our őnal result:

WVGS=0.8V =

Ron,VGS=0.8V +

√︄

Cgg,VGS=0.4V

Cgg,VGS=0.8V

· Ron,VGS=0.8V · Ron,VGS=0.4V

RFSL

(3.34)

WVGS=0.4V =

Ron,VGS=0.4V +

√︄

Cgg,VGS=0.8V

Cgg,VGS=0.4V

· Ron,VGS=0.8V · Ron,VGS=0.4V

RFSL

(3.35)

Following this procedure we are able to optimally size the switches for a given target

value of RFSL.
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3.2.2 Partial Charging

We have seen how, in order to size the converter, the constrain 4τ = Tsw/2 has been

imposed. This choice has been taken in virtue of an effect called "partial charging".

As seen in Figure 3.5 by varying the number n of allowed time constants for a semi

period of the circuit (n · τ = Tsw/2) the behaviour of the output voltage ripple of the

converter changes. This is equivalent to varying the ratio between RSSL and RFLS as

seen in Equation 3.29.

From a design standpoint we want to keep the value of RFSL comparable to RSSL

in order to avoid oversizing the mosfets, leading to an unnecessary increase in the

switching losses. Partial charging however limits how big we can make the value of

RFSL in relation to RSSL. If we don’t allow enough time for the RC network to fully

charge, we will in fact see an increase in the value of ROUT by a factor of 1/γ.

We have that γ is generally given by:

γ =
1 − e

−1

2ReqCflyfsw

1 + e

−1

2ReqCflyfsw

(3.36)

where Req = 2Ron + RESR. Under the condition of Equation 3.29 we have that Equa-

tion 3.36 gives γ ≃ 1, proving it to be a good compromise in the design of the con-

verter[9]. In practical cases however we have that γ ≃ 1 if fsw < 1/ (RonCfly) [5] and

simulation data proves that even the condition 2τ = Tsw/2 doesn’t see a meaningful

deterioration of the value of ROUT.

The effect of partial charging can be explained by considering that if the ŕying capacitor

Cfly isn’t fully charged, the converter effectively sees a smaller capacitor than the one

that is actually present in the circuit. This causes an increase in RSSL and in turn of

ROUT as explained above. At the same time however, since partial charging reduces

the effective value of Cfly we have that the ratio Cout/Cfly does too, leading to a decrease

of ∆Vripple. Partial charging therefore is beneőcial in terms of decreasing the amount

of ripple of the converter, however we can’t allow ROUT to increase too much as it will

signiőcantly impact the performance of the converter. This means that we have to pay

close attention to the effect of γ during the sizing phase of the converter.
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3.3 Output Voltage Control

Up to now we have considered the output current IOUT required by the load as con-

stant. In reality the current load can be considered, more generally, as a combination

of a DC value IOUT and an AC one iout (t) giving Iout = IOUT (t) + iout (t). In our case

the effect of iout (t) can be seen as negligible. As the VCO changes its output frequency,

during its operation, it leads however to a change in the value of IOUT. This causes

the value of VOUT to change during the operation of the circuit. If IOUT changes too

much it may deteriorate the performance of the circuit, so a control technique has to be

included in the converter. As we will see not all the control techniques are suitable for

our application.

A popular control technique for switched capacitor converters is Pulse-frequency Mod-

ulation (PFM) where the output voltage is regulated by changing the switching fre-

quency of the converter as the current changes, which can be implemented as showed

in Figure 3.15 [9, 15].

−

+VREF

VOUT VC

fclk
Phase

Generator
ϕ1

ϕ2

(a) Single bound hysteretic control block diagram

VREF

VOUT

(b) Voltage waveforms

Figure 3.15: Voltage control using PFM technique

In this technique we őrst compare the value of VOUT with a reference value VREF that we

want the converter to track. When VREF −VOUT > 0 we have that the comparator output

VC goes high, enabling the AND port and letting the clock signal go to the converter.

The ŕying capacitors are therefore able to bring charge to the output raising VOUT over

the reference. Once this happens and VREF − VOUT < 0 the clock signal is stopped and

VOUT slowly decreases as it gets consumed by IOUT and then the cycle continues.

This technique has however a huge downside as it makes the output spectrum of the

converter become of random nature since the switching frequency varies continuously

without settling during the operation of the converter. This of course is a huge prob-

lem in RF systems, as seen in Section 1.6, therefore any kind of frequency modulation

technique has to be avoided for our purposes.
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A popular, őxed frequency, control technique is called Switch Width Modulation (SWM)

where the width of the mosfets, and therefore their equivalent resistance Ron, is mod-

ulated allowing us to regulate ROUT and VOUT. In order to perform SWM we substitute

every mosfet switch with a mosfet array realized by the parallel of b mosfets, where the

size of each mosfet is binary weighted as shown in Figure 3.16.

4W

ϕ1

2W

ϕ1

W

ϕ1

Figure 3.16: SWM principle

In this example we have an array of b = 3 mosfets, in parallel, of sizes W , 2W and 4W .

By turning ON or OFF the mosfets of the array, having different widths, we can achieve

up to 2b −1 equivalent resistance combinations, ranging from Ron to Ron/
(︂

2b − 1
)︂

. This

proves how by properly selecting the value of b we are able to őnely regulate VOUT.

Note however that in the case where RSSL ≃ RFSL we aren’t able to fully modulate

the value of ROUT as it’s held back by RSSL. Nevertheless we have that with this im-

plementation we are able to efficiently scale the switching losses when IOUT changes.

The width of the mosfets (and therefore the switching losses) are increased only when

IOUT increases, in order to keep VOUT inside a certain range. On the other hand, for

low loads we can use combinations with smaller widths reducing the switching losses.

This however doesn’t allow us to scale the top and bottom plate losses as we aren’t

changing the value of Cfly during operation and the ŕying capacitor remains the same

for all values of IOUT. Another problem lies in how the time constants of the converter

τ change during operation as a result of the modulation of the switch width, leading

to a deterioration of the behaviour of the ripple across different loads. SWM therefore

seems like a promising technique for our application, but with some caveats that need

to be solved if we want to preserve the efficiency of the circuit across a wider range of

values of IOUT.
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3.3.1 Digital Capacitance Modulation

The technique that we are going to use to control the output voltage of the converter,

is therefore an evolution of SWM and its called Digital Capacitance Modulation (DCM)

[12]. In DCM as it could be guessed by our previous discussion, we also modulate the

size of the capacitor Cfly, together with the switch width of the mosfets. This allows us

to scale both the switching and top/bottom plate losses, while ensuring that the time

constant of the circuit τ stays the same during operation. Of course DCM comes at the

cost of a greater design complexity than solutions like PFM or SWM.

The switch and capacitance modulation of DCM is realized by making b converters

modules, having their components scaled following binary weights, work in parallel.

The combination of modules used are expressed by the vector c = [c0c1...cb] where the

coefficients ci are either equal to 1 if the i-th module partecipates to the charge/discharge

process or 0 if it doesn’t. For instance for b = 4 the vector c = [1111] corresponds to

a converter using all of its modules, while for c = [0001] it employs only its smallest

module, corresponding to the least signiőcant bit. A converter example for b = 4 is

shown in Figure 3.17.

VIN WB

CB

WB WB

WB
VOUT

ϕ1 ϕ2

ϕ2 ϕ1

VIN 4WB

4CB

4WB 4WB

4WB
VOUT

ϕ1 ϕ2

ϕ2 ϕ1

VIN 8WB

8CB

8WB 8WB

8WB
VOUT

ϕ1 ϕ2

ϕ2 ϕ1

VIN 2WB

2CB

2WB 2WB

2WB
VOUT

ϕ1 ϕ2

ϕ2 ϕ1Module b = 0 Module b = 1

Module b = 3Module b = 2

Figure 3.17: DCM converter scheme for b = 4
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Note that each module is obtained by scaling up the smallest module having CB =

Cfly/(2b − 1) and WB = W/(2b − 1) by using powers of 2. The formula for the output

resistance of the converter therefore becomes:

ROUTDCM
=

ROUT

2b − 1

b
∑︂

n=0

ci · 2n (3.37)

where ROUT represents the output resistance of the converter before applying DCM.

Equation 3.37 clearly shows how the output resistance of the converter can be scaled

using this technique. The equivalent scheme of a converter employing DCM is shown

in Figure 3.18.

Control
Logic

Switch
Matrix

VREF − ∆V

−

+

VDCDCFB

VREF + ∆V

−

+

VDCDCFB

b0,1,2,3

ϕ1 ϕ2

Cout

VDCDC

R1

R2

VDCDCFB

GO UP

GO DOWN

Figure 3.18: Equivalent scheme of a converter employing DCM

We see from Figure 3.18 how the output voltage of the SC converter is compared to two

thresholds to understand if the number of active modules has to be adjusted. If the

output voltage is inside the limits, then the structure of the converter stays the same. On

the other hand, if one of the thresholds is crossed, the number of modules participating

to charge/discharge is modiőed. The modules of the converter are progressively turn

on or off following a digital counter. If the upper threshold is crossed the counter

will begin counting down decreasing the number of modules used. In this case the

converter may employ only the module associated to the least signiőcant bit for very

light loads. As suggested in [12] an additional logic may be included in this last case

to allow PFM to regulate the converter if needed, since this condition usually means

that the circuit is partially turned off and we can ignore the spurs produced by the

PFM. On the other hand, if the lower threshold is crossed the counter will count up,

increasing the number of modules. Note that in presence of high loads the converter,

even employing all of its modules, might not be able to control the voltage inside of the

boundaries.
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3.4 Additional Circuits

In this section we are going to brieŕy analyse some additional circuits that are funda-

mental for the correct behaviour of the converter.

3.4.1 Non Overlapping Clock Generator

Due to the őnite turn-on time of real mosfets phases ϕ1 and ϕ2 cannot be switched

at the same time. Doing so will in fact create a time interval ∆t, for which all of the

switches of the converter are ON, creating a low resistance path from VDD to Vout. This

creates a surge of current called "Shoot-Through", which deteriorates the operation of

our converter and can also lead to damage to the components. In order to avoid this

problem, phases are generated by using a Non-Overlapping Clock (NOC) generator,

which inserts a "dead-time" between the phases where all the switches of the circuit are

OFF. The schematic of the circuit is showed in Figure 3.19 while the generated phases

are showed in Figure 3.20.

ϕ

ϕN1

ϕN2

ϕP2

ϕP1

Figure 3.19: Circuit scheme of a NOC generator

(a) Phases generated by the NOC

viewed separately
(b) Phases generated by the NOC

grouped in pairs

Figure 3.20: Phases generated by a NOC circuit
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The reported NOC circuit can be fed with a periodic waveform at frequency fsw and it

will generate 2 pair of phases, ϕ1/2 and ϕ′
1/2 where each pair of phases is in opposition of

phase with the other. This makes the circuit useful for generating the driving signal for

a symmetric converter. Note however that the phases ϕ1/2 and ϕ′
1/2 cannot be directly

fed to the gate of the mosfets, but a chain of inverters has to be used to drive the big

gate capacitance of the switches.

By acting on the delay of the inverter chain of the NOC generator we are capable of

adjusting the dead time of the phases, which can be observed in Figure 3.20. Note that

while dead time has to be chosen in a way that avoids "Shoot-Through" it must not be

excessively longer than needed. Leaving all the switches turned OFF, means in fact

that the converter is not working as it should and this too can have an impact on the

operation of the converter if the dead time starts to be comparable with the period of

fsw. This is also one of the reasons, besides the presence of switching losses, which

makes power switching operation at high frequency such a difficult task as it becomes

increasingly difficult to keep the dead time negligible with respect to the phases period.

3.4.2 Start-Up Circuit

In order to make the initial transient of the converter faster, most SC converters employ

a start-up circuit that creates a temporary bypass path between VDD and the output

node of the converter [9]. In our case this operation is more crucial than ever. Since

we want to use the output signal of the oscillator to generate the switching signal for

our converter, we have than the initial transient of the circuit becomes quite tricky. The

oscillator in fact needs a supply voltage to oscillate, but that same supply voltage in

order to be delivered by the SC converter requires the oscillator to be working. This is

because without the signal fsw the converter can’t transfer charge to its output terminal.

In order to solve this dilemma a start-circuit has to be realized.

The circuit, as anticipated, creates a bypass path between VDD and the output node

of the converter VDCDC until it reaches a certain value VREF set to be lower than the

steady state value of the output voltage. This allows the oscillator to start oscillating,

feeding fsw to the SC converter which can then start to transfer charge to its output node

and bringing the circuit to steady state. The start-up circuit is showed in Figure 3.21.
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VLO
P1

VDD

R C

VLOON

(a) Detection of VLO

VLOON

VDCDC
−

+
VREF

VDD

VDCDC

(b) Start-Up logic and bypass of the converter

Figure 3.21: Start-Up circuit scheme

As can be observed in Figure 3.21a the start-up circuit contains a block that resembles

a peak detector. The output voltage VLO of the oscillator is in fact used to drive a

mosfet P1 that charges an RC network, with a bigger time constant than the period of

the oscillating frequency f0. If the VCO is oscillating the value of VLOON
will therefore

quickly set to a steady state value of ≃ VDD, if we assume the voltage drop on P1 to be

negligible. VLOON
can then be used as a logic value in the circuit showed in Figure 3.21b.

The logic of the start-up circuit therefore will enable the bypass path only if the VCO is

not oscillating and the value of the voltage VDCDC is below a certain threshold, that in

our case has been őxed to VREF = 300mV.
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CHAPTER 4
Circuit Design and Simulation

In this chapter some possible design solutions for a DC/DC powered Class-D VCO are

presented. The design has been made with the aid of the simulation tools, provided by

the software Cadence ®Virtuoso ®. The technology node used is that of 22nm FDSOI.

The power supply voltage is of VDD = 0.8V. The VCO therefore is going to be powered

by a 2 : 1 SC converter, providing a maximum voltage of VMAX = 0.4V.

4.1 Design of a Class-D VCO

We start from the design of the VCO, in order to understand what its current consump-

tion IDC will be. This will allow us to later size the SC converter accordingly. We note

that in this őrst phase, it’s important to limit the value of IDC as much as possible, to

retain a good level of efficiency later in our design.

Note that in order to be able to compare, more effectively, the performance of our

SC powered Class-D VCO with other designs, we are going to realize a VCO with similar

speciőcations to the ones used in [3]. Our VCO therefore will have a frequency range

between 2.5GHz and 3.3GHz, corresponding to a tuning range of 27.5%, and will em-

ploy a 6 bit capacitor bank.

For sizing the inductor, which is going to be used by the Class-D oscillator, we look at

the formulas for current consumption of Equation 2.28 and Equation 2.29. We notice

how IDC ∝−1 L and IDC ∝−1 f0. This means that, for a őxed value of L, the mini-

mum current consumption of the VCO happens when its working near its maximum

oscillation frequency 3.3GHz. On the other hand, the maximum current consumption
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happens when it is operating close to its minimum oscillation frequency 2.5GHz. More-

over by increasing the size of L, if its quality factor QL doesn’t vary too much across

the VCO range, we are able to reduce the value of IDC, across all the frequency range.

We therefore purposely select a big value for the inductor of L = 1.1nH, which is one

of the biggest allowed by the technology.

Next, we move on to the sizing of transistors M1 and M2, which, as anticipated, have to

made as big as possible. We note that, due to the Class-D high oscillation amplitude of

≃ 3VDD, the maximum voltage on the terminals of the switches is of ≃ 1.2V. This means

that to avoid damage to the components, the transistor length cannot be the minimum

length allowed by the technology L = 18nm, but instead have to be of L = 70nm. The

switches are implemented using super low VTH devices. The total width of each device

is of W = 1.44mm, with a W/L ratio of ≃ 20570.

Finally we report the values used for the capacitor bank. A small ŕoating capaci-

tor of Cfloat,fixed ≃ 189fF is employed in parallel to the bank. Cfloat,fixed guarantees a small

amount of ŕoating capacitance even at the highest oscillation frequency, where the

capacitor bank is disconnected from the circuit. The bank on the other hand employs a

total switchable ŕoating capacitance of ≃ 2.28pF. More speciőcally the switchable ŕoat-

ing capacitance, of the least signiőcant bit, is of Cbit0 = 37.5fF. The following capacitors

are therefore scaled correspondingly, following a progression of powers of 2, however

the bigger capacitors are slightly smaller than needed, to take into account the effect of

the parasitic capacitance introduced by the switches. We have therefore:Cbit1 = 75fF,

Cbit2 = 150fF, Cbit3 = 296fF, Cbit4 = 582fF, Cbit5 = 1.138pF. A small varactor is used to

provide continuous capacitance tuning, between the values provided by the switchable

capacitor bank. The size of each switch on the other hand doesn’t follow a progression

of powers of 2 for the bigger switches. This is to try to limit the effect of the parasitic

capacitance of the switches. The reasoning behind this is that when capacitance is

switched in, the oscillation frequency decreases leading to an increase in the quality

factor of the capacitor bank. This allows us to contain the width of the switches, but

in a way that doesn’t affect the quality factor of the capacitor array. The following pro-

gression for the switches is therefore used: Wbit0 = 49µm, Wbit1 = 2Wbit0, Wbit2 = 4Wbit0,

Wbit3 = 7Wbit0, Wbit4 = 11Wbit0, Wbit5 = 16Wbit0.
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4.1.1 Simulation of the VCO

The operation of the VCO is simulated at its frequency extremes őrst with a supply

voltage of Vsupply = 0.4 corresponding to the maximum supply voltage that the SC

converter can deliver. A second simulation is made with Vsupply = 0.35 corresponding

to a more realistic value of Vsupply due to the őnite output resistance of the SC converter.

The results are summarized and compared to [3] in Table 4.1, while the plots of phase

noise for ∆ω = 100kHz − 100MHz are reported in Figure 4.1 for Vsupply = 0.4 and in

Figure 4.2 for Vsupply = 0.35.

(a) PN of the VCO with f0 = 2.5GHz
at ∆ω = 5MHz

(b) PN of the VCO with f0 = 3.3GHz
at ∆ω = 5MHz

Figure 4.1: PN of the VCO at its oscillation frequency extremes for Vsupply= 400mV

(a) PN of the VCO with f0 = 2.5GHz
at ∆ω = 5MHz

(b) PN of the VCO with f0 = 3.3GHz
at ∆ω = 5MHz

Figure 4.2: PN of the VCO at its oscillation frequency extremes for Vsupply= 350mV
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L (∆ω) IDC FoM

∆ω = 5MHz f0 = 2.5GHz Vsupply = 0.4V −144.5dBc/Hz 14.4mA 190.9

∆ω = 5MHz f0 = 3.3GHz Vsupply = 0.4V −142.5dBc/Hz 8.4mA 193.6

∆ω = 5MHz f0 = 2.5GHz Vsupply = 0.35V −143.1dBc/Hz 12.4mA 190.7

∆ω = 5MHz f0 = 3.3GHz Vsupply = 0.35V −141.3dBc/Hz 7.2mA 193.6

∆ω = 5MHz f0 = 2.5GHz Vsupply = 0.4V [3] −144dBc/Hz X 189/190

∆ω = 5MHz f0 = 3.3GHz Vsupply = 0.4V [3] −140.5dBc/Hz X 189/190

Table 4.1: Simulation results for PN and IDC with ideal power supply

The spectrum of the VCO at f0 = 2.5GHz and f0 = 3.3GHz for Vsupply = 0.35V is reported

in Figure 4.3. We notice how the even harmonics are less attenuated in Figure 4.3b,

which might be due to some errors either in the simulation or in the VCO design. In

any case the main results of this work aren’t undermined by this issue.

(a) Spectrum for f0 = 2.5GHz (b) Spectrum for f0 = 3.3GHz

Figure 4.3: Output spectrum of the VCO for ideal power supply

The tuning range is tested for every bank combination and plotted in Figure 4.4 where

it has been divided based on the 2 most signiőcant bits of the bank. In Figure 4.5, on

the other hand, the whole tuning range has been plotted together. We note that as

we switch in more capacitance to reduce the VCO oscillation frequency, we are making

the tank capacitor approach more and more the behaviour of a ŕoating capacitance,

as intended to preserve PN. However since a ŕoating capacitance allows for higher

oscillation frequency this conŕicting behaviour results in a deterioration of the tuning

range for the VCO. This can be observed in Figure 4.5 where the curves related to the

highest value of the capacitance bank, 11XXXX, are closer to each other and cover a

smaller frequency range compared to the curves of 00XXXX.
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(a) Tuning range of the VCO for
bank combinations: 00XXXX

(b) Tuning range of the VCO for
bank combinations: 01XXXX

(c) Tuning range of the VCO for
bank combinations: 10XXXX

(d) Tuning range of the VCO for
bank combinations: 11XXXX

Figure 4.4: Tuning range of the VCO

Figure 4.5: Tuning range of the VCO - All curves together
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4.2 Design of the SC Converter

We now want to design a symmetric SC converter that is going to power our Class-D

VCO. In order to do so we have to remember that the switching signal, needed to drive

the SC converter, is going to be obtained by dividing the output of the VCO by a suitable

number of frequency dividers. This means that fsw = f0/2N , with N the number of

dividers used. For our case N = 4 is a good trade off as it allows us to sufficiently scale

Cfly, while preserving the efficiency. Considering the case when the VCO is at its lower

oscillation frequency extreme, for f0 = 2.5GHz, the switching frequency would then

be fsw ≃ 156MHz with N = 4. On the other hand for the upper frequency extreme,

f0 = 3.3GHz, the switching frequency would be fsw ≃ 206MHz with N = 4.

Using the loss model developed in Chapter 3, and assuming to allow 4 time constants

τ , for the design of a symmetric converter, we get the plots reported in Figure 4.6. Note

that in Figure 4.6a we have assumed the case where the VCO operates at f0 = 2.5GHz

providing a load current of IDC = 12.4mA, while for Figure 4.6b we have assumed that

it operates at f0 = 3.3GHz with a load current of IDC = 7.2mA.
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(a) f0 = 2.5GHz, IDC = 12.4mA
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(b) f0 = 3.3GHz, IDC = 7.2mA

Figure 4.6: Efficiency as a function of fsw and Cfly őxing 4 time constants τ

We select the value of Cfly = 500pF, which represent the total ŕying capacitance used by

the converter. Since the converter is going to be symmetric, each module will use 250pF

of ŕying capacitance. This choice of Cfly has been made since it allows for a maximum

efficiency of approximately 80% for fsw ≃ 156MHz, as seen in Figure 4.6a. Note that

for the same value of Cfly in Figure 4.6b the efficiency is degraded if the VCO works
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near its upper frequency extreme, fsw ≃ 206MHz, with a load current IDC = 7.2mA.

This is because for lighter loads the power delivered to the load POUT decreases with

IDC. Furthermore, since Pswitching dominates the efficiency of the converter and is in-

dependent from the load current, if Pout decreases the ratio between Pswitching and Pout

becomes larger causing the efficiency of the converter to decrease. However looking at

Figure 4.6b we see how for Cfly = 250pF efficiency is again near 80% for fsw ≃ 206MHz.

This demonstrates the importance that DCM will later have on the efficiency of the

converter, as it will allow to dynamically scale Pswitching as the load changes.

Next, we can plot the efficiency, as a functions of RFSL and fsw, together with a function

that tells us the number of time constants allowed by the RC network of the converter.

Looking at Figure 4.7 we can try to understand what is a good design point for our

converter. (Note that RFSL refers to the target value of one single module.)
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Figure 4.7: Efficiency as a function of fsw and RFSL

By allowing four time constants τ for fsw ≃ 156MHz we obtain RFSL ≃ 3.2. Note that this

means that the converter will allow τ ≃ 3 for fsw ≃ 206MHz. We can therefore proceed

to size the mosfets and verify our design following the procedure of Section 3.2.1. Note

that, contrary to the case of the VCO, the maximum voltage applied on the switches of

the SC converter is VDD = 0.8V . We can therefore use the minimum length allowed by

the technology of L = 18nm.
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The mosfet widths obtained, for a module of a symmetric converter, are reported in

Table 4.2

VGS = 0.8 VGS = 0.4

NMOS 218µm 365µm

PMOS 263µm 504µm

Table 4.2: Mosfet Sizing

4.2.1 Simulation of the SC Converter

The SC converter is simulated, to verify its efficiency, using a large output capacitance

Cout = 10nF. We őrst consider the case of a converter working with fsw = 156MHz and

ideal current load of IDC = 12.4mA. A plot of the initial transient of the SC converter

is őrst shown in Figure 4.8a, together with the steady state waveform of the output

voltage of the converter VDCDC for one period Tsw in Figure 4.8b.

(a) Initial transient of the SC converter (b) Steady state output voltage waveform of the
SC converter

Figure 4.8: Simulation of the SC converter with Cout = 10nF, fsw = 156MHz and ideal load
current IDC = 12.4mA

The average value of VDCDC, which can be obtained from Figure 4.8b, is of 357.7mV.

This is in line with what we expect from the theory. The symmetric converter is in fact

realised by 2 modules each one with RFSL = 3.2Ω and RSSL = 6.4Ω, following Equa-

tion 3.29. The resistance of the parallel of the converters is therefore of ROUT ≃ 3.58Ω.

By following Equation 3.3 we get a matching theoretical value of VDCDCTH
= 0.356V.

The ripple of VDCDC on the other hand is ∆Vripple = 1.5mV, while Equation 3.17 gives

∆VrippleTH1
≃ 3.9mV and Equation 3.18 leads to ∆VrippleTH2

= 2.1mV. This further proves
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that, since the converter is operating allowing only 4 time constants, the impulse charg-

ing approximation is no longer valid and the previously derived equations have to be

considered as upper bounds.

The simulations results regarding the converter efficiency are listed in Table 4.3. Simu-

lation has been carried out for values corresponding to the extremes of operation of the

VCO showing a great correlation with the results predicted by our theoretical model.

In particular the efficiency of the converter drops, as shown in Figure 4.6b, when the

VCO oscillates at 3.3GHz, corresponding to operation of the converter for fsw = 206MHz

and IDC = 7.2mA. Note that if the load current is raised to IDC = 12.4mA the efficiency

of the converter increases since the ratio Pout/Pswitching does too.

ηSIM ηTH

fsw = 156MHz IDC = 12.4mA. 80.2% 80.6%.

fsw = 206MHz IDC = 12.4mA. 79.4% 79.8%

fsw = 206MHz IDC = 7.2mA. 75.35% 75.7%

Table 4.3: Efficiency Simulation

4.3 Simulation of the SC Powered Class-D VCO

We can therefore proceed to simulate the SC powered Class-D VCO, using the VCO and

the SC converter that we have previously designed, with a value of Cout = 10nF. A

block diagram of the simulated circuit is shown in Figure 4.9.

Symmetric
SC converter

ClassD
VCO

Start Up
Circuit

VDD

Cout

R1

R2

VDCDCFB

VDCDC

+

−
VLO

VLO+

VLO−

VDCDCFB
VLO

1/N

NOC

VLO

f0

fsw

ϕ1/2,ϕ
′
1/2

Figure 4.9: Block diagram of the SC powered Class-D VCO
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As seen in Figure 4.9 the output of the SC converter is directly connected to the Class-D

VCO, meaning that the voltage at the center tap of the Class-D inductor is the output

voltage of the SC converter VDCDC. Additionally the output voltage of the oscillator VLO

is used to feed a frequency divider, with divide ratio N = 16, that then feeds the NOC

generator providing the phases for the converter. Finally the startup circuit is connected

to VDCDC, taking as an input VLO, to check if the VCO is oscillating, and a scaled version

of VDCDC to verify its current value and eventually help to charge Cout.

In Figure 4.10 we report the transient simulation of the output of the SC VDCDC converter

and of VLO, the differential output of the VCO. We see from Figure 4.10a how the startup

circuit swiftly brings VDCDC to the reference voltage of VREF = 0.3V. At this point,

since the threshold voltage has been reached, the bypass path between VDD and VDCDC

is opened. However, the VCO hasn’t started oscillating yet and can’t feed fsw to the

converter. The value of VDCDC therefore starts to decrease as Cout discharges. This leads

VDCDC to cross again VREF = 0.3V leading the bypass path to be closed once more. The

charging and discharging of Cout leads to an unbalance at the nodes of the VCO, which

causes the VCO to oscillate, as seen in Figure 4.10b.

(a) Initial Start-Up transient for VDCDC (b) Initial Start-Up transient for VDCDC and VLO

Figure 4.10: Transient simulation of VDCDC and VLO

Once the VCO starts oscillating, the SC converter begins to receive the phases from the

NOC circuit and charge starts to be transferred from the supply to the node VDCDC charg-

ing as a result Cout, until steady state is reached. The steady state voltage waveforms,

of VDCDC and VLO, for a period of fsw ≃ 156MHz, are reported in Figure 4.11.
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(a) Ripple of VDCDC (b) VDCDC compared to VLO

Figure 4.11: VDCDC and VLO in a period for f0 = 2.5GHz

The simulated value of VDCDC in Figure 4.11 has an average value of VDCDC ≃ 0.3573V

with a ripple of ∆Vripple = 1.8mV. These results are in line with previous simulations

reported in Figure 4.8. Note however how the ripple seen in Figure 4.11 now shows

a high frequency ripple component which is due to the current consumption of the

VCO. The current feeding the VCO has in fact two components: one at DC, which is

the one that we have considered so far, and one at AC at the frequencies m · 2f0 with

m = 1, 2, 3, ... The AC behaviour of the current can be observed in Figure 4.12.

(a) Current consumption of the VCO for fsw =
2.5GHz

(b) Current consumption of the VCO for fsw =
3.3GHz

Figure 4.12: Current consumption of the VCO for different f0

Continuing with our simulation the output spectrum of the VCO and SC converter

are showed in Figure 4.13. Note from Figure 4.11a and Figure 4.13 that the ripple

introduced on the supply voltage of the VCO, by the SC converter, is at a frequency of

2fsw. Looking at the spectrum of VDCDC we therefore clearly see a peak at DC, a series
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of peaks at multiples of 2fsw and then a series of peaks for the multiples of 2f0, due

to the current consumption of the oscillator. A seen in Section 1.6 the ripple of VDCDC

generates frequency tones at the terms fm,n = m · f0 ± n · fsw, with m, n = 1, 2, 3, ...

This effect can be appreciated by looking at Figure 4.14 where this behaviour is clearly

present, compared to the ideal spectrum of Figure 4.3.

(a) Spectrum of VDCDC for f0 = 2.5GHz (b) Spectrum of VDCDC for f0 = 3.3GHz

Figure 4.13: Spectrum of VDCDC

(a) Spectrum of VLO for f0 = 2.5GHz (b) Spectrum of VLO for f0 = 3.3GHz

Figure 4.14: Spectrum of VLO

We note that that the spur levels that we have obtained are coherent with what we

expect. If we assume Vm = 1mV and KV ≃ 600MHz/V we obtain for fm = 312MHz a

spur level of −60.3dBc where the real simulated value is of −59.9dBc for f0 = 2.5GHz.

Moreover we can notice how the spurs of Figure 4.14b are attenuated as an effect of the

higher frequency of operation of the VCO which raises fsw reducing the ripple of the SC

converter and the power of the spurs.
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We can now proceed with the simulation of the phase noise of the SC powered Class-D

VCO, which we plot in Figure 4.15. The results are consistent with what we have found

in previous simulations where the VCO was powered by an ideal supply voltage. This

proves that the SC converter doesn’t deteriorate the performance of the VCO. Referring

to the maximum noise allowed by Equation 1.66, simulation conőrms that the noise

produced by the SC converter is in fact well below that threshold, even assuming a high

supply pushing of 600MHz/V.

Figure 4.15: PN of the SC powered Class-D VCO for fsw = 2.5GHz and fsw = 3.3GHz

Finally in Figure 4.16 we compare the behaviour of VDCDC for f0 = 2.5GHz and f0 =

3.3GHz. As we can clearly see since for f0 = 3.3GHz the load current IDC decreases,

VDCDC increases compared to the case with f0 = 2.5GHz. As we have already discussed

however this, contrary to our intuition, doesn’t aid the efficiency of the circuit so

a technique like DCM has to be employed, to regulate VDCDC while also improving

efficiency.

Figure 4.16: Comparison of VDCDC for different f0 of the VCO
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Digital Capacitance Modulation

We therefore show brieŕy how DCM can be used to regulate the output voltage through

some transient simulations. Supposing that we want to control the voltage inside of the

interval 350mV − 360mV, we implement DCM with b = 4 by dividing our converter in

4 binary weighted modules. We can verify if the number of modules used is sufficient

by plotting the value of VDCDC, as a function of IDC and fsw based on the combinations

of modules used. To do this we use the data obtained from the previous simulations

of the VCO. Since we know the power consumption of the VCO at its extremes we use

a linear approximation to predict its behaviour for all its frequency range. Then by

combining Equation 3.37 and Equation 3.3 we obtain the plot of Figure 4.17,

Figure 4.17: Model of VDCDC based on the operating point of the VCO

It’s important to note that, in order for DCM to work for every value of current load IDC

there must be a corresponding curve in Figure 4.17 inside of the bounds in order for

the converter to be able to reach a steady state condition.

Simulations are made for a SC converter powering the VCO operating at f0 = 3.3GHz.

The resulting initial transient of the SC converter is shown in Figure 4.18b, while the dig-

ital signals controlling which modules contribute to the charge/discharge process are

shown in Figure 4.18a . Note that the signal M0, controls the module corresponding to

the least signiőcant bit, while M3 controls the most signiőcant bit. We see how initially

the output voltage crosses the upper threshold, this causes the number of modules to

consequently be decreased, by the control logic, until the voltage returns inside the

boundaries. The value of VDCDC őnally then reaches steady-state. This same process

happens during operation of the VCO for a load change.
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(a) Signals controlling which modules con-
tribute to conduction

(b) Transient of VDCDC using DCM

Figure 4.18: Regulation of the output voltage with DCM

Note that the steady state value of VDCDC is coherent with what predicted by the model,

of Figure 4.17. The voltage waveform VDCDC of a SC converter employing DCM with

module combination 0111, for an ideal current load, is plotted below:

Figure 4.19: VDCDC in a period Tsw for a simulated converter employing DCM

Finally we note how DCM can be used to regulate the output voltage of the SC converter,

while aiding efficiency. The combination 1111 in fact, represents the design point of the

converter in Table 4.2, so by employing different combinations we are effectively using

a converter with mosfets that have a smaller W . This allows us to scale the switching

losses as the load changes, for a őxed target steady state value of VDCDC. For the case

showed above, when the converter operates with the conőguration 0111, the simulated

efficiency, for an ideal load, is of η ≃ 78% which shows a slight improvement compared

to the values obtained in Table 4.3.
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4.3.1 Considerations on the use of External Capacitors

The simulations results that we have showed, up until now, were made with an output

capacitor Cout = 10nF which cannot be integrated in this technology, contrary to Cfly,

due to the excessive area consumption necessary to physically realize it. The highest

capacitance density achievable is in fact of 7.76fF/µm2, meaning that Cout = 10nF will

lead to an area occupation of ≃ 1.29mm2, which is too expensive to be realised when

compared to an off-chip solution. The ŕying capacitor, on the other hand, for a value

Cfly = 500pF occupies 0.0644mm2 which doesn’t pose the same problems and can be

integrated. The capacitor Cout therefore has to be realized as an external component,

allowing us to use higher values of capacitance compared to an on-chip solution. The

őnal chip design however will be bulkier as a result of the use of off-chip components.

Note that in our design thanks to the use of a high switching frequency, we were

able to reduce the size of capacitor Cfly and Cout compared to designs with a lower

switching frequency. This can be seen by looking at Equation 3.14 where increasing

the value of fsw allows us to obtain the same value of RSSL for smaller values of Cfly.

Nevertheless since Cout is realized as an off-chip component it can easily be made far

bigger than Cout = 10nF, with negligible additional cost and allowing us to decrease the

power of the spurs in the circuit. We can therefore perform another simulation of the

circuit employing this time an output capacitor of Cout = 100nF. The results for PN are

the same so we show only the spectrum of the output signal of the VCO in Figure 4.20.

(a) (b)

Figure 4.20: Spectrum of VLO for f0 = 2.5GHz with Cout = 100nF
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Having increased the value of Cout, by an order of magnitude the ripple has to decrease

by an order of magnitude too, following Equation 3.17. Therefore as shown in Fig-

ure 4.20 the power of spurious tones decreases of 20dB, becoming comparable to the

even spurs of the oscillator, with the largest spur having a power of −78dBc. Note that

we could also be using an even bigger capacitor than Cout = 100nF and further reduce

the spurs, but a trade off has to ultimately be made as bigger values of capacitance tend

to make the dynamic response of the converter slower in the case of quick load changes.

As a comparison for the previous results, in [6] a SC powered Class-D VCO is realised,

achieving a spur of −66dBc at f = 6MHz which is the switching frequency of the con-

verter and of the reference signal of the PLL. In [11] for a similar circuit, the spur of the

converter is at f = 500kHz with −73.7dBc. Finally in [14] a SC powered LC oscillator

has its ripple induced spurs below −65dBc without using external components.

4.3.2 Simulation with Phase Interleaving

We now want to show how by applying phase interleaving we are able to reduce the

size of the output capacitor Cout to a point where it can be integrated with the other

components. In fact, since phase interleaving allows us to reduce the amount of ripple,

we can take advantage of it to scale down the value of Cout while keeping őxed ∆Vripple.

We proceed by applying phase interleaving to our symmetric converter with N = 4 by

realising our converter as a parallel combination of 4 converters were each one is phase

shifted with respect to the next by a quantity Tsw/8, as show in Figure 4.21.

Symmetric
SC converterNOC

ϕ1/2,ϕ
′
1/2

Symmetric
SC converterNOC

ϕ3/4,ϕ
′
3/4

Symmetric
SC converterNOC

ϕ5/6,ϕ
′
5/6

Symmetric
SC converterNOC

ϕ7/8,ϕ
′
7/8

ϕ (t)

ϕ (t − Tsw/8)

ϕ (t − Tsw/4)

ϕ (t − 3Tsw/8)

Cout

VDCDC

Figure 4.21: Block diagram of the interleaved converter with N = 4
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Note that normally, for N = 4, phase interleaving allows us to reduce the voltage ripple

by a factor of 4, however in our case we will obtain a reduction of 16. This is because,

since we want to keep the same value of ROUT, we have to scale each symmetric con-

verter by a factor of 4. Considering that we have őxed a total ŕying capacitance of

Cfly = 500pF, each module will then use a total of 125pF and its switches will be 4 times

smaller, leading to a 4 time increase in the Ron of each switch. Each symmetric module

will have therefore 4 times the value of ROUT of the converter sized in Table 4.2. The

parallel combination of the 4 converters however compensates for this scaling and will

give us back the original value of ROUT. However since the voltage ripple depends on

the ratio Cfly/Cout, and Cfly has been scaled down by a factor of 4, this means that for

the same value of Cout the ripple is also decreased by 4. In light of this results, we can

scale the output capacitance of Cout, by a factor of 16 while keeping the same ripple

value. The new value of the őltering capacitor is therefore Cout = 625pF, which can

be integrated. Simulation of the behaviour of the voltage ripple for an non-interleaved

converter with Cout = 10nF and a interleaved converter with Cout = 625pF, working at

fsw ≃ 156MHz with an ideal load IDC = 12.4mA, is shown in Figure 4.22.

Figure 4.22: Comparison of VDCDC between interleaved and non-interleaved designs

We can clearly see how, as anticipated, the ripple of the converter remains basically the

same. A small negligible drift in the average value of VDCDC is also observed, probably

due to non-linearity effects of the components. Furthermore the waveform of the inter-

leaved converter suffers from small "jumps" due to small timing errors in the generation

of the phases that make the waveform slightly go up and down during Tsw. Finally we

also notice how the frequency of the ripple has been multiplied by N = 4. Following

this observation we can expect the largest spur of the VCO to be positioned at a distance

of 8fsw = 1.248GHz from the carrier.
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We proceed to simulate the circuit for the case where the VCO is working at f0 = 2.5GHz,

which is the more challenging working extreme from what pertains to the ripple ampli-

tude, following Equation 3.18, since in this scenario the converter works with the lowest

switching frequency fsw ≃ 156MHz and the highest ideal current load IDC = 12.4mA.

The voltage waveforms in a period Tsw for both the SC converter and the VCO, are there-

fore shown in Figure 4.23

(a) Ripple of VDCDC (b) VLO compared to VDCDC

Figure 4.23: VDCDC and VLO in a period for f0 = 2.5GHz with Cout = 625pF and N = 4

Their spectrum is then showed in Figure 4.24 where as expected the main ripple com-

ponent of the spectrum of VDCDC is at f0 = 1.248GHz which translates to the 2 largest

spurs in the spectrum of the VCO, being at −57dBc and −58.2dBc, while the third biggest

spur at ∆f = 156MHz is of −70.5dBc.

(a) Spectrum of VDCDC (b) Spectrum of VLO

Figure 4.24: Spectrum of VLO and VDCDC for f0 = 2.5GHz with Cout = 625pF and N = 4
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A zoomed version of Figure 4.24b is plotted in Figure 4.25 for extra reference.

Figure 4.25: Spectrum of VLO zoomed around the carrier

Finally the PN of the VCO is plotted in Figure 4.26, showing no deterioration from the

operation with the interleaved converter.

Figure 4.26: PN for f0 = 2.5GHz with Cout = 625pF and N = 4

Note that another possible design point can be found by employing phase interleaving

and an external capacitor Cout in order to reduce even further the level of the spurs.
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Conclusions

In this thesis the design challenges behind the realization of a Class-D oscillator directly

powered by a switching regulator have been analysed. A possible design solution

has been provided by powering a 2.5GHz − 3.3GHz Class-D VCO with a SC converter

achieving a maximum efficiency of 80%. Additionally, the switching regulator takes

advantage of the output signal of the VCO to generate its switching frequency through a

frequency divider. The switching frequency of the converter therefore varies between

156MHz and 206MHz. Simulation results show that the phase noise of the VCO is

preserved even when powered by the switching regulator. The very high frequency

pushing of the Class-D topology however requires the use of an external capacitor in

order to signiőcantly reduce the spurs present in the output spectrum of the VCO. For

a value of the output capacitor of Cout = 100nF the highest simulated spur level is of

−78dBc. An additional design employing phase interleaving on the switching regulator

has also been analysed to improve the ripple of the converter. The output capacitor,

in this way, has been reduced to Cout = 625pF, which is suitable for integration. The

largest simulated spur in this case is positioned at 1.248GHz from the carrier with a

level of −57dBc, while the spurs inside this frequency range remain below −70.5dBc.
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Run, rabbit, run

Dig that hole, forget the Sun

And when at last the work is done

Don’t sit down, it’s time to dig another one

Ð Pink Floyd
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