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Introduction

In everyday life imagination is often stroke by the concept of record: the strongest earth-
quake ever known, the fastest performance in an athletic race, the longest lasting perma-
nence at the top of a ranking. Similarly, many aspects of practical life are influenced by
these extreme events, from the hottest and coldest days in the year to the values of actions
on the finance trade market. The interest in extreme events rises when the phenomenons
show a component of casual behaviour. Most of the times the casualty just reflects our
ignorance of the causes governing the process, but in many cases, and quite remarkably,
it is possible to substitute the unknown process with a stochastic one, as long as we are
satisfied to obtain the statistical laws to have access to the average behaviours. Never-
theless, this laws provide important and rich information on the phenomenon studied:
extremes are usually sensitive to small changes in the underlying process because of their
exceptional character, so even their average number or duration keep trace of many aspect
of the physics behind them. Because of that, it is useful to study records starting from the
simplest known stochastic processes, and then enrich the model according to the features
of the natural process considered.

A short list of examples can clarify how different quantities can be thought as excep-
tional events, and so how very different problems can all be solved, or better understood,
using extreme values statistics (see [22]-[26], [28]-[30], and [31] for a recent review). Before
considering records in the proper sense, the first quantity to focus on is the maximum or
the minimum of a process - in time or in space - which is studied for example in biology:
an animal wandering in its habitat can be roughly represented by a Brownian walker [30],
for which the maximum distance travelled from the origin define its domain within the
collective space; again the actual fitness of the genotype of a certain specie has been mod-
elled as the maximum of a “fitness function” in the space of genotypes, given by all the
possible combinations of the four basis of the DNA [28]. In general, as the maximum can
only increase with time, several processes characterized by a monotonic function can be
studied with the techniques proper of the extreme values analysis. As example, we bring
the total magnetization of a ferromagnetic material under an increasing field: it is known
that in such conditions the flux of the field inside the sample increases by means of small
steps and not in a continuous way, because of the sudden magnetization of small, but
not infinitesimal, domains (Barkhausen effect). The function of the flux with respect to
the external field thus shows a behaviour similar, for example, to the one of the maximal
position of a free random walker. Without extending the analogy further, it is clear that
we can use similar tools to analyse the two problems [29].

For processes as the ones listed above, the points in which the maximum takes a new
value are the records. While the maximum statistics concerns the value of the variable
at every step, the records statistics focusses on the number of the new-values jumps, as
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vi INTRODUCTION

well as the times at which they happen or the intervals between them. It is clear that
the number of records in a stochastic process changes with the additional presence of a
deterministic drift or the deformation in time of the distribution from which the variables
are sampled: this was widely employed in the last years in climatology, both to study the
global warming in alternative to the analysis of average temperatures, or, on the contrary,
to build estimates of the temperature variability which are not sensible to mean trends
[22]-[25]. As anticipated records are very sensible to the underlying process, but to enforce
further the precision of these estimates it is often useful to use combinations of up, low
records (the maxima and minima), forward and backward ones (the ones registered for
the inverted-time sequence), opening questions about the joint statistics of these objects.

As a theory must confront with experimental data, it is non trivial to ask whether the
rounding effects and the presence of noise in measures influence the count of records of a
sample, adding a non-physical part which changes their statistics. Indeed, it is possible to
analyse these effects, analytically or through simulations [16],[17], suggesting that records
can be used also in evaluating the fraction of noise present in a measure. At the same
time the previous applications of records theory in climatology must consider this rounding
effects in analysing the data.

In this work, we propose to draw the extreme values and records statistics landscape for
two models of stochastic processes: sequences of independent and identically distributed
(i.i.d.) variables, where the correlations between variables are zero; and Markov chains,
i.e. the discrete time version of a Brownian motion, both with continuous jumps and on a
lattice, which represents an example of strongly correlated variables. We analyse first the
statistics of the maximum in the three cases mentioned, looking at the random chain case
under different external potentials, then we study the statistics of records: in particular
we want to extend the treatment to the joint behaviour of forward and backward records,
as the forward behaviour alone has already been studied. In both problems we focus also
on the universality of the results as it turns out that many conclusions are independent
from the details of the random process. For example, a chain of i.i.d. variables presents
a maximum behaviour which strongly depends on the distribution of the entries, but it
is possible to group the parental distributions in three classes of universality according
to their tails and find, for each of them, a universal scaling function which summarizes
the behaviour of the maximum, up to some specific numeric prefactors. Analogously, in
the random walk case, all the symmetric distributions are divided in two classes only,
according to their variance, which can be finite or not; then, though in an approximate
way, all the results are the same within a class. The records problem then broadens the
universality: as in their count there is no trace of the height reached by the walker, records
turns out to be universal for every distribution in the i.i.d. case (no matter its variance
or symmetry), and for every symmetric distribution in the random walk one.

The other interesting aspect of the problem, and the new contribution of this work,
is the comparison between i.i.d. and random walks themselves through the joint study of
forward and backward records. The two kinds of records are strongly correlated in both
cases, but the correlation approaches a constant in the i.i.d. case, and increase with time
for random walks. An analysis of the ages of records confirm a stronger interdependence
in the random walk case. A quite curious point arisen in this study is a parallelism
between forward-backward and upper-lower records in the i.i.d. case, where a variable
is a lower records when it is smaller than all the previous ones. This statistical equality
does not hold in the random walk case, and it has not been explained yet. In fact, in
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the independent case, almost all the computations can be done in a straightforward way,
enabling to explore new sides of the problem: the results are often exact but the price
to pay is that it is sometimes difficult to give a physical meaning to the quantities which
appear in the different passages, and in the example mentioned - the analogy between
forward-backward and upper-lower records - the computations does not provide a good
explanation for the parallelism. For random walks instead, as the correlation makes the
problem very cumbersome, it is customary to simplify it invoking the Markov property
of independence between different intervals: this, joint with the Sparre-Andersen theorem
explained in section 2.2, makes the problem even easier than the i.i.d. one and sometimes
of more immediate understanding. However, we will be often forced to give just asymptotic
results where an analytic computation fails: this analysis will be done mainly in the space
of generating functions and Laplace transforms, which are non-symmetric transforms and
reflect well the asymmetry of the problems studied.

To complete the work we propose a small analysis of a set of real data: they are
the European temperatures in the last century, as climatology is one of the field where
records are most analysed. To compare data with the simple model studied, we must
perform several simplifications, but in the end such analysis provide a further test about
the statistical dependence of the data, as we will see that the temperatures of a given day
of the year turn out to be independent. Finally we suggest correlated problems: a drift,
for example, influence the number of records, as well as a rounding process, which, again,
can be performed in several ways, changing the statistics of records. All this problems
strongly depend on the variable distribution and correlation. On the contrary, a problem
of multiple random walks depends only on the variance of the distribution: we choose to
analyse it and extend its study to find the number of backward records. The problem is
interesting by itself but it also shows how we can gather all the previous working tools
when the the number of records and the level of the variables are important at the same
time: here in fact we consider each trajectory with its probability and then apply the
analytical results of Sparre-Andersen theorem and of the maximum theory at once.
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Chapter 1

Maximum of a sequence of
random variables

Consider a set of variables {xi} which represent the relevant quantity of the physical
system studied. When the index i represents the time, it is natural to think of them as
ordered for increasing i. For a given length of the sequence, i.e. 0 < i ≤ N (overall time
t = N∆t), the maximum value is the variable xj = M so that {xj ≥ xi, ∀ i, j ∈ ]0, N ]}. If
the system can be described by a stochastic process, the variables xi are sampled from a
parent distribution p(xi) which is, in principle, different for every i. The knowledge of the
full joint distribution p({xi}) = p(x1, ..., xN ) is needed to compute the distribution of the
maximum, but its expression is hardly achievable when the variables are correlated, which
is the most general case. On the contrary, if the variables are independent and identically
distributed (i.i.d.), they are sampled from the same parent distribution and their joint
probability factorizes: p({xi}) = p(x1) · · · p(xN ). We study therefore this case first and
then extend the problem to weak correlated variables and finally to strong correlated
ones. We will see that while in the uncorrelated case the maximum behaviour shows some
universal features, correlated variables strongly depend on the specific model they follow
and it is not possible to find common laws.

1.1 I.I.D. variables

We know that for a set of N i.i.d. variables in the large N limit the Central Limit Theorem
holds, which states that the distribution of the mean value x approaches a Gaussian:

P (x,N)
N→∞−−−−→

√
N

2πσ2
e−

N
2σ2 (x−µ)2

; (1.1)

where µ and σ2 are the mean and the variance of the parent distribution p(x). The relevant
point is the universality with respect to every other particular of p(x). It is interesting to
verify if a similar universality holds also for the maximum of the process M . To study its
distribution is useful to define the cumulative probability QN (x):

QN (x) = P[M < x,N ] = P[x1, ..., xN ≤ x] =

∫ x

−∞
dx1 · · ·

∫ x

−∞
dxNP (x1, ..., xN ) . (1.2)

1



2 CHAPTER 1. MAXIMUM OF A SEQUENCE OF RANDOM VARIABLES

As in this case the probability factorizes, the cumulative function simplifies:

QN (x) =

[∫ x

−∞
dy p(y)

]N
=

[
1−

∫ ∞
x

dy p(y)

]N
. (1.3)

The second formula shows explicitly the dependence of QN (x) from the (upper) tail of
the parent distribution, which becomes more and more relevant in the large N limit, as
we expect that the maximum itself grows with the length of the sequence. We can group
almost all the distributions p(x) in three classes according to the behaviour of their tails
and it turns out that for each class a universal form of the cumulative probability emerges
in the scaling limit when both N and x are large:

QN (x)
x,N→∞−−−−−−−−−→

z=(x−aN )/bN
F

(
x− aN
bN

)
; (1.4)

where the limit is performed at fixed z. The factors aN , bN defining the scaling limit are
specific of every p(x) and bears the N dependence, but once found them, F (z) assumes
three form only (see [2] for a complete treatment, [5] for a recent review). This is known
as Gnedenko’s classical law of extremes [3].

To compute aN and bN is useful to notice that in the large N limit the expression of
the cumulative distribution can be approximated as:

QN (x)
x,N→∞−−−−−→ e−N

∫∞
x dy p(y) . (1.5)

It is peaked approximately around the value aN defined by:∫ ∞
aN

dy p(y) =
1

N
; (1.6)

indeed, if we have N variables, which take values in the domain of x according to p(x),
aN is the value of x such that only one out of them is bigger than aN (on average), so
it delimits the domain of the maximum and it is thus taken as its typical value. The
determination of bN is more involving; it is defined as:

bN =

∫∞
aN
dy (y − aN ) p(y)∫∞
aN
dy p(y)

; (1.7)

and it can be interpreted as the average distance of the maximum from aN , conditioned
by the fact that only one variable (the maximum itself) can stay over aN .

Power law tail Consider a parent distribution which goes like p(x) ∼ x−(α+1) for large
x, with α > 0. Computing (1.5) in the power law case (integral of the tail ∼ x−α) gives
immediately the scaling factors aN = 0 and bN = N1/α, and the scaling function F1(z) is:

F1(z) = e−z
−α
θ(z) . (1.8)

This is the Fréchet distribution. The probability of the rescaled variable z (z ≥ 0) is
obtained differentiating F1(z):

f1(z) =
α

zα+1
e−z

−α
θ(z) . (1.9)
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Faster than power law tail Consider a parent distribution with tails which decay faster
than any power law but with unbounded domain: p(x) ∼ e−xδ , δ > 0. Approximating the
cumulative probability as above gives:

QN (x) ∼ e−e
−( 1

δ
xδ−lnN)

; (1.10)

which is peaked in aN = (δ lnN)1/δ. The approximation xδ ∼ x (aN )δ−1 in QN (x) suggests
that the behaviour of the fluctuations is bN ∼ (lnN)1/δ−1; however the precise computa-
tion of bN must be done case by case by formula (1.7), and it generally requires to express
aN to the second order. The corresponding scaling function is:

F2(z) = e−e
−z

; (1.11)

f2(z) = e−z−e
−z

; (1.12)

for every z ∈ R. This is the Gumbel distribution. The exponential and Gaussian tails
distributions belong to this class: for the first is immediate to see that aN = lnN and
bN = 1, while for a Gaussian with variance σ we have aN = σ

√
2 lnN (at the first order)

and bN = σ√
2 lnN

.

Upper bounded support Consider eventually distributions p(x) which are zero for
x > a, a ∈ R, and with upper tail p(x)

x→a−−−→ (a− x)β−1, β > 0. The scaling limit is given
by aN = a, bN = β1/β, with scaling function:

F3(z) = e−(−z)β for z ≤ 0 ; (1.13)

f3(z) = e−z−e
−z

for z ≤ 0 ; (1.14)

while F3(z) = 1 for z > 0 (which is x > a). This is the Weibull distribution.

So far, we have detected some universal features of the maximum distribution. The
limiting distributions are obtained with a strong use of the largeN approximation; however
simulations show that the convergence is quite slow, therefore in the experimental context
is hard to see them.

Before considering strongly correlated variables, for which the joint probability does
not factorize and must be computed for each case, consider a set of weakly correlated
variables, i.e. the correlation function decays fast, for example exponentially, within a
typical length (or time) η which is much smaller than the sample size (or observed time)
N :

Ci,j = 〈xixj〉 − 〈xi〉〈xj〉 ∼ e−|i−j|/η . (1.15)

If |i − j| � η the two variables are with good approximation uncorrelated. Under the
condition N � η, we can consider the sample as built of N/η uncorrelated blocks of size
η, each of them represents a set of strongly correlated variables (C(i, j) is relevant on all
the block size). Defining the local maximum for each block yi, the global maximum of
the full sample is the biggest among the yi. As the blocks are uncorrelated, once worked
out the distribution of yi (q(yi)), the global maximum approaches one of the three scaling
functions FI(z) according to the tails of q(yi) when the number of blocks N/η increases to
infinity. Moreover, in several cases a form of the correlation as in (1.15) implies a similar
behaviour for the tails of q(yi), suggesting a Gumbel scaling for the global maximum.
At this stage, the only problem left to solve is the maximum distribution for strongly
correlated systems, task we must perform case by case.
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1.2 Random walks

There are several ways in which the variables of a sequence can be linked and correlated
together. The only model of strongly correlated system we are going to analyse is random
walks. In this case the variables {xi} represent the position in one dimension of a walker
at discrete time steps, starting from a fixed x0. The walker increases its position according
to the equation:

∆xi
∆t

= −µ dU(xi)

dxi
+ ξi; (1.16)

where U(x) is a deterministic potential, µ the mobility of the walker, and ξi is the realiza-
tion at step i of a stochastic process. We choose it with zero mean and delta correlated:

〈ξiξj〉 = 2D δ(i− j); (1.17)

where D is the diffusion constant. Therefore 2D corresponds to the variance of the dis-
tribution p(ξ) of ξ which can be, in principle, finite or not. We will see that every other
particular of p(ξ) is unimportant in the case of finite variance, while for infinite variance
(but still delta correlated process) the behaviour of the tail of the distribution is needed
to reach a result. The discrete time formalism can now be replaced by the continuous one
in the hypothesis that the time step is very small with respect to the overall time of the
sequence.

Finite variance processes: Backward Fokker-Planck approach As above, we
define the cumulative probability that the maximum stays under the level x = M (M >
0) after N time steps, starting from x0, as QN (M,x0). An equation for Q is obtained
considering a backward approach: a sequence of N + 1 steps can be split in two parts, the
first one, which leads from x0 to x1, and the remaining N . Therefore:

QN+1(M,x0) =

∫ ∞
−∞

d(x1 − x0)QN (M,x1) p(x1 − x0) ; (1.18)

where p(∆x) is the distribution of the increments. The integration is performed over all
the possible increments as, if a jump brings the walker in a forbidden region (x1 ≥ M),
QN (M,x1) is identically zero, ensuring that only the realizations survived after the first
step contributes to QN (M,x0). Equation (1.18) is solvable exactly for some particular
p(∆x), however in the limit of small time steps it tends to an approximate equation in
terms of the continuous time t which is easier to treat and depend only on the variance of
the distribution from which the ξi are sampled, if it exists.

The small time step limit means that N � 1 so that the overall length of the sequence
N∆t is much bigger that ∆t itself. The notation is updated to Q(M,x0|t), x(t) and ξ(t),
as now they are all continuous time processes. As ∆t is small, the jump between x0 and
x1 is small too and it is possible to expand the cumulative function in x1 around x0:

Q(M,x1|t) = Q(M,x0|t) +

(
−µdU(x0)

dx0
+ ξ(0)

)
∂Q(M,x0|t)

∂x0
∆t

+ ξ2(0)
∂2Q(M,x0|t)

∂x2
0

∆t2

2
+ o(∆t2). (1.19)
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We notice that the right hand side of equation (1.18) is the average over the possible first
steps, i.e. over the possible ξ(0), of (1.19). Using the properties of the stochastic process,
where δ(t) is interpreted as 1/∆t, equation (1.18) gives after some rearrangements:

∂Q

∂t
= D

∂2Q

∂x2
0

− µ dU(x)

dx

∂Q

∂x0
. (1.20)

where the argument (M,x0|t) of the function is understood. This is the backward
Fokker-Planck equation. The initial and boundary conditions are:

Q(M,x0|t = 0) = θ(M − x0); Q(M,x0 = M |t) = 0 ; Q(M,x0 → −∞|t) = 1 . (1.21)

It is immediate to see that the problem can be extended to the cumulative joint probability
of the maximum and minimum imposing that the walker must stay between −m and M ,
thus replacing the last condition with Q((M,m), x0 = −m|t) = 0. As the probability
P (M,x0|t) that the maximum stays between M and M + dM is the derivative with
respect to M of Q(M,x0|t), the backward Fokker-Planck equation holds also for it.

To transform the partial differential equation into an ordinary one, we work in the
space of the Laplace transform. We remember its definition as well as the one of its
discrete counterpart, the generating function:

L[f(t)] := f̃(s) :=

∫ ∞
0

f(t) e−stdt ; F̃ (z) :=
∞∑
N=0

FN z
N . (1.22)

Notice that the large time behaviour of f(t) corresponds to the small s one for f̃(s) as the
factor e−st strongly suppresses the integrand for large t except when s is small (roughly
1/t). Similarly, z → 1 correspond to N →∞, for which the generating function approaches
the Laplace transform itself if z = e−s. As the s → 0 limit is often simpler than in the
large t one, the transform helps to perform the asymptotic analysis, even if the result must
then be inverted.

Taking the Laplace transform of the Fokker-Planck, the time derivative of Q is solved
integrating by parts applying the initial condition, so that it becomes an ordinary differ-
ential equation of the second order:

sQ̃− 1 = D
∂2Q̃

∂x2
0

− µ dU(x0)

dx0

∂Q̃

∂x0
; (1.23)

with the argument of Q̃ being (M,x0|s). The new boundary conditions are:

Q̃(M,x0 = M |s) = 0 ; Q̃(M,x0 → −∞|s) =
1

s
. (1.24)

Equation (1.23) is solved case by case according to the deterministic potential and it is
rather simple in several cases but the inversion of the Laplace transform can be trouble-
some. However, as anticipated, the asymptotic analysis for large t is usually affordable
and sometimes the exact expressions for the transform of the average maximum or its
variance are accessible in the s space and then trivially inverted, as they bear a simple
dependence s−n which leads to tn−1/Γ(n).

In the following we present some examples in which, changing the potential, the time
dependence of the maximum varies widely.
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Simple Random Walk In the case in which the potential U(x) is zero the solution of
(1.23) gives:

Q̃(M,x0|s) =
1

s
− 1

s
e−(M−x0)

√
s/D for x0 < M ; (1.25)

which assumes an undetermined form in the small s limit. It is exactly invertible, giving
for the cumulative and the probability of the maximum:

Q(M,x0|t) = 1− erfc
(
M − x0

2
√
Dt

)
; (1.26)

P (M,x0|t) =
1√
πDt

e−
1

4Dt
(M−x0)2

. (1.27)

This leads, when x0 = 0, to 〈M(t)〉 = 2
√
Dt√
π

and 〈M2(t)〉 = 2Dt (the same as for the

position x(t) of the walker), so both the average maximum and its fluctuations go like the
square root of time.

Solving with different conditions to obtain the joint probability of the maximum M
and the minimum (−m) with x0 = 0, gives the cumulative function:

Q̃((M,m), 0|s) =
1

s
− 1

s

sinh
(√

s
D M

)
+ sinh

(√
s
D m

)
sinh

(√
s
D (M +m)

) ; (1.28)

which tends to (1.25) for m → ∞. The exact inversion exists but is quite complicated.
It points out the

√
t dependence of both M and −m. It is possible to compute exactly

the correlation between maximum and minimum which gives 〈M(−m)〉 = (1 − 2 ln 2) t,
independent from the diffusion coefficient.

Random Walk with constant drift The case in which U(x) = −ax, with a constant,
is intuitively simple as we expect that for large t the maximum increases linearly with
time if the induced drift is positive (positive a), or approaches a constant if it is negative
(negative a). Calling c = aµ, the solution of the Fokker-Planck equation in the s space is:

Q̃(M,x0|s) =
1

s
− 1

s
e−

M−x0
2D (

√
c2+4Ds− c) for x0 < M. (1.29)

When c is negative, in the small s limit the parenthesis does not vanish, and the leading
divergence is 1/s. Inverting it is trivial and gives:

Q(M,x0|t) = 1− e−(M−x0)
|c|
D ; (1.30)

P (M,x0|t) =
|c|
D
e−(M−x0)

|c|
D ; (1.31)

which is constant in time as expected: the constant maximum is the typical scale length
of the problem D/|c|. Looking for the correct dependence also in the transient period
we must solve the full problem. Moreover a full analytic treatment is required when c is
positive as Q̃ is undetermined for s going to zero.

Besides the trivial term 1/s, which inverted gives 1, the second part of expression
(1.29) is the product of 1/s and an exponential function of the shifted variable s+ c2/4D.
Using the convolution and translation theorems of the Laplace transform we have:

Q(M,x0|t) = 1−
∫ t

0
du e−

(M−x0−cu)2

4Du
M − x0

2
√
πDu3

. (1.32)
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Fixing x0 = 0 to simplify the computations, the integral is solvable exactly considering
the change of variables yi as follows:

y1,2 = ±M ± cu√
4Du

; dy1,2 = ∓M ∓ cu
4
√
Du3

. (1.33)

The fraction in the integrand can be split to obtain −dy1 + dy2, giving:

Q(M, 0|t) =
1

2

[
erfc

(
−M − ct√

4Dt

)
− eM

c
D erfc

(
M + ct√

4Dt

)]
; (1.34)

P (M, 0|t) =
1√
πDt

e−
(M−ct)2

4Dt − c

2D
eM

c
D erfc

(
M + ct√

4Dt

)
; (1.35)

〈M(t)〉 =
ct

2

(
1 + erf

(
c
√
t

2
√
D

))
+

√
Dt

π
e−

2D
c2t +

D

c
erf

(
c
√
t

2
√
D

)
. (1.36)

The probability has a Gaussian component peaked in ct normalized with
√
t, and a correc-

tion which decays to zero if the drift is positive, while approaches formula (1.31), constant
in time, if c is negative. Accordingly, the limit for t→∞ of the average maximum tends
to 〈M(t)〉 ∼ ct for positive c, while for negative c a careful computation gives D/|c| as
already found.

Potential ∝ |x| Consider a potential U(x) = −a|x| and, as above, c = aµ. It has a
discontinuity in its derivative for x = 0 and it breaks the translational invariance. When
c (a) is positive, the particle is repelled from the origin: if it starts in x0 = 0, it chooses one
of the two sides with the same probability, so in half of the cases the maximum increases
linearly with time and in the other half it approaches a constant. On the contrary, when
c (a) is negative, the particle is confined and the maximum will grow slowly, in a way not
intuitively predictable.

The Fokker-Planck equation is solved on each side, giving two functions Q̃>, Q̃< with
four constants to fix overall. We impose the continuity in x0 = 0 of Q̃ (for physical reasons)
and of its derivative, as well as the usual conditions in x0 = M (which apply on Q̃>) and
x0 → −∞ (on Q̃<). The continuity of the derivative of Q̃ with respect to x0 can be proved
integrating the Fokker-Planck itself with the potential in exam in [−ε, ε] with ε → 0. As
expected, the solutions do not show translational invariance. After the determination of
the constants, it is possible to set x0 = 0, and the cumulative function becomes:

Q̃(M, 0|s) =
1

s
− 1

s

T (s) e
M
2D

(c−T (s))

c e−
M
D
T (s) − c− T (s)

; (1.37)

where T (s) =
√
c2 + 4Ds. As it is not trivial to invert such function, we use an expansion

for small s. According to the sign of c, the leading terms are different.

Where c is positive, we expect M big in one half of the cases, so we expand accordingly,
then develop T (s) to the second order and perform the limit s → 0. The cumulative
function becomes:

Q̃(M, 0|s)
∣∣∣
c>0

s→0−−−−→
M→∞

1

s
−
√
M

c
e−

M
c
s 1

2s
√
M/c

e
+ D
c2

(√
M
c
s

)2

. (1.38)
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Equation (1.38) is not full simplified, but this form is useful in the following analysis. A
first order expansion would be insufficient as it leaves only the pole in zero, which leads
to the normalization term 1/2: we do not recover 1 because (1.38) is obtained in the big
M limit, but on average only one half of the particles escapes on the positive side. To
solve the time dependence of Q we make an ansatz on the scaling behaviour of M and
analyse the resulting cumulative function. Calling Q(M, 0|t) = 1−q(z), with z the scaling
combination, we make the hypothesis:

M ∼ c t−mc tα ; q(z)|c>0 = q

(
t−M/c

tα

)
; (1.39)

with m of order one and α to be found. Rewriting Q with this scaling form, the corre-
sponding scaling for Q̃ (obtained in the large M limit) matches (1.38) if

∫∞
−∞ dz e

−λ zq(z) =

e+ D
c2
λ2

and α = 1/2. Therefore the maximum grows linearly with time for one half of the
particules and its fluctuations grow like its square root. Indeed the simulations gives as
average maximum one half of ct with ∼

√
t fluctuations, accounting also for the particles

escaped in the negative region. A function q(z) which meets the above definition is guessed
by analogy with the linear drift:

q(z)|c>0 =
1

4
erfc

(
M − ct

2
√
DM/c

)
. (1.40)

For negative c, it is sufficient to expand T (s) at the first order:

Q̃(M, 0|s)
∣∣∣
c<0

s→0−−−→ 1

s
− 1

s

c2 e
M
D
c

c2 e
M
D
c + 2Ds

. (1.41)

The inverse Laplace transform is computed calculating the residues in the two poles; for
s = 0 the residues of the two term erase, but the second pole gives:

Q(M, 0|t)|c<0
s→0−−−→ e−e

Mc
D

+ln

(
c2

2D
t

)
; (1.42)

which is a Gumbel distribution for the variable z = M |c|
D − ln

(
c2

2D t
)

. This shows not

only that the maximum grows as the logarithm of time, but also that the fluctuations are
constant in time and of order one.

It is interesting to compare the results for this potential when c is negative, not found
in the precedent literature, with the well known ones for the Ornstein-Uhlenbeck process
in which the potential takes the form U(x) = ax2. Both trap the particle, and even if the
|x| potential is sharper at the beginning, for x bigger than one in modulus it has a weaker
effect compared to the quadratic one. As a consequence, for the latter the maximum
grows like

√
ln t, which is suppressed in comparison with the ln t growth of the other case

(consequently we guess that a potential ∝ xα gives a behaviour M ∼ (ln t)1/α). It is not
convenient to analyse the Ornstein-Uhlenbeck process with the Laplace inversion method
as the solution of the backward Fokker-Planck equation in the s space exists is hard to
invert, nor it is easy to compute the average maximum. In appendix A.1 we show briefly
the classical way of solving it, which proceeds through a forward Fokker-Planck approach
working directly on the probability P (M,x0|t) [1].
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Bessel process Consider now a Brownian motion in d-dimensions: we want to figure
out the statistics of the maximum distance from the origin, in the simple case without
external potential. If the process is:

dr

dt
= ξ(t) (1.43)

and r follows a probability P (r, t), we want to work out the behavior of |r| and its proba-
bility p(|r|, t). P (r, t) follows the d-dimensional (forward) Fokker-Planck equation:

∂P (r, t)

∂t
= D ∇2P (r, t). (1.44)

Considering that P (r, t) dr = P (r, t) rd−1 dr dθ dφ, and P (r, t) = P (r, t), independent from
the angles thanks to isotropy, it is possible to define a new object p(r, t) = P (r, t) rd−1

which is the probability of being in the region [r, r + dr], at whatever angle, up to a
renormalization of 4π. It follows:

∂p(r, t)

∂t
= D

(
∂2p(r, t)

∂r2
− ∂

∂r

(
d− 1

r
p(r, t)

))
; (1.45)

which is a (forward) Fokker-Planck equation with a potential −z dU(r)
dr = D d−1

r , meaning
that |r| follows the Langevin equation:

dr

dt
=
D(d− 1)

r
+ ξ(t) (1.46)

and Q(M, r0|t), the cumulative probability of the maximum of the process started at r0,
follows the correspondent backward Fokker-Planck:

∂Q

∂t
= D

∂2Q

∂r2
+
D(d− 1)

r

∂Q

∂r
. (1.47)

The boundary conditions in the radial case are slightly different from the linear case as r0

has positive support: as usual Q̃(M, r0 = M |t) = 0, then in r0 = 0 we impose that Q and
Q̃ do not diverge as there is no physical reason for a singularity if the motion starts in the
origin rather than in any other point (remember that Q is linked with p(r, t) = P (r, t) rd−1,
and even if P (r, t) can be divergent, p(r, t) must not). The solution is then given in terms
of the modified Bessel functions of the first kind In(x):

Q̃(M, r0|s) =
1

s
− 1

s

( r
M

)−ν Iν
(
r
√

s
D

)
Iν
(
M
√

s
D

) ; (1.48)

with ν = d−2
2 . The inverse Laplace transform can be evaluate exactly computing the

residues in zero and in the other (infinite) simple poles using the properties of the Bessel
functions. However it is more illuminating to compute directly the expression for the
average maximum in the s space. As the k-th moment of the maximum M (start-
ing at r0) can be expressed in terms of Q(M, r0|t) if one integrates by parts its defi-
nition

∫
dMMkP (M, r0|t), the correspondent Laplace transform is easily obtained from

Q̃(M, r0|s) and results:

L[〈Mk(t)〉r0 ] =
k

s
Ck,d

[
r

2−d
2

0 I d−2
2

(√
s

D
r0

)] [
D

s

] 1
2(k+ d

2
−1)

; (1.49)
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where

Ck,d =

∫ ∞
0

dx x k+ d
2
−2
(
I d−2

2
(x)
)−1

. (1.50)

Further simplifications occur starting at the origin r0 = 0. In this case, taking r0 → 0:

L[〈Mk(t)〉0] = 2
2−d

2
k Ck,d
Γ(d/2)

1

s

(
D

s

)k/2
. (1.51)

The simple power s dependence in the right hand side of (1.51) can be inverted exactly
for all t, giving:

〈Mk(t)〉0 = Ak,d (D t)k/2 ; with Ak,d =
22−d/2Ck,d

Γ(k/2) Γ(d/2)
. (1.52)

In d = 3 the explicit expression can be derived using I1/2(x) =
√

2
π x sinh(x) in Ck,3 and

then putting k = 1:

〈M(t)〉3D0 =
π3/2

2

√
D t . (1.53)

In d = 1, using I−1/2(x) =
√

2
π x cosh(x) we get instead 〈M(t)〉1D0 =

√
πDt, to be compared

with the maximum of the position itself 〈Mx(t)〉0 = 2√
π

√
Dt which bears the same time

dependence, but of course a smaller prefactor.

Exact cases In our analysis of the maximum distribution, the first step was to set
equation (1.18) for the probability QN (M,x0). The approach developed has its basis in the
expansion of Q when N is big. However, we anticipated that there are two cases in which
the equation is solvable exactly without recurring to the expansion. They are example of
simple random walk with a particular jump distribution. Even if in the large limit it is
just recovered the already derived result, it is interesting to define these situations. The
first case is the exponential jump distribution, which is solvable as it holds the relation:

f ′′(x) =
1

D
(1− δ(x)) f(x) ; f(x) =

e−|x|/
√
D

√
4D

; (1.54)

with 〈x2〉 = 2D as required and the convention that f ′′(0) = 0. Deriving two times with
respect to x0 equation (1.18) leads to:

Q′′N+1(M,x0) =
1

D
(QN+1(M,x0)−QN (M,x0)) for x0 < M. (1.55)

As we are working in a discrete time framework, we take the generating function of the
above equation. Setting the initial condition Q(M,x0|0) = θ(M − x0), the problem recast
in a differential equation in the variable x0 only:

Q̃′′(M,x0|z) =
1

D

(
(1− z)Q̃(M,x0|z)− z

)
for x0 < M ; (1.56)

with boundary conditions Q̃(M,M |z) = 0 and Q̃(M,−∞|z) = 0. As in the general case,
it is immediate to extend the problem to the joint probability of the maximum M and
the minimum −m changing the second boundary condition so that Q̃((M,m), x0|z) = 0.
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The solutions for these problems are exactly the ones found through the expansion of Q
(1.25 and 1.28) but for the fact that

√
s is replaced with

√
1− z. Clearly it is not trivial

to invert them, i.e. to find an analytical form for the coefficient of zN of their expansion
around z = 0. Thus, we perform again an asymptotic analysis: as N big corresponds to
z → 1, with the change of variable z = e−s we recover the limit s→ 0. Expanding z, it is
clear that the solution found with the previous method (the Fokker-Planck approximated
approach) is the first order expansion of the exact solution for the exponential distribution.

The second case exactly solvable is the symmetric lattice random walk, where the
particle performs jumps of fixed length (for example 1) to the left or right with equal
probability:

f(x) =
1

2
[δ(x− 1) + δ(x+ 1)] . (1.57)

The support of the positions xi is therefore the set of integers. Inserting f(x) in equation
(1.18):

QN+1(M,x0) =
1

2
[QN (M,x0 − 1) +QN (M,x0 + 1)] ∀ n ≥ 1 ; (1.58)

the initial condition in N = 0 and the boundary ones are unvaried. The generating
function of the equation above gives:

Q̃(M,x0|z)− 1 =
z

2

[
Q̃(M,x0 − 1|z) + Q̃(M,x0 + 1|z)

]
. (1.59)

where the explicit term comes from the initial condition. This equation is solved, after a
proper shift 1

1−z to eliminate the −1 term, looking for solution of the form λx0 . Applying
the boundary conditions and then setting x0 = 0 it results:

Q̃(M |z) := Q̃(M, 0|z) =
1

1− z
[
1− λM

]
; λ =

1−
√

1− z2

z
; (1.60)

and the analogous for the joint cumulative probability of the maximum and the minimum
(x0 = 0), obtained if Q̃ vanishes in M and −m, is:

Q̃((M,m)|z) =
1

1− z

[
1− λ−M + λ−m

1 + λ−M−m

]
. (1.61)

It is not surprising that equations (1.60 and 1.61) expanded at the first order (λ ∼ e−
√

2s ∼
1 −
√

2s) still give the same result as the backward Fokker-Planck method, when the
diffusion coefficient is set to 1/2. For the maximum however, it is possible to compute the
exact average value: the probability of M is given by PN (M) = QN (M + 1) − QN (M),
where x0 = 0 was omitted (we use the forward derivative as QN (M,x0) is the probability
that the walker stays below M without reaching it). Using the above formula and the
normalization of PN (M):

∞∑
N=0

〈MN 〉zN =

∞∑
M=0

M
(
Q̃(M + 1|z)− Q̃(M |z)

)
=

√
1− z +

√
1 + z

2(1− z)3/2
− 1

1− z
. (1.62)

The exact inversion is performed expanding each term in power of z, multiplying and then
summing the coefficients of the same power zN . After some calculations:

〈MN 〉 =
1

2

[
1 + (−1)N+1 Γ(N − 1

2)

2
√
π Γ(N + 1)

2F1

(
3

2
,−N, 3

2
−N,−1

)]
− 1; (1.63)
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where 2F1 is the hypergeometric function. In the large N limit, we have the expected
behaviour

√
2N/π (corresponding to 2

√
Dt/π where D = 1/2 and t→ N). We anticipate

that the same result is obtained in a different framework: for the lattice random walk, as
the walker can increase its position only of one step every time, the number of records
(i.e. how many times the maximum value is updated) corresponds to the maximum itself.
Therefore, despite the fact that the formalism of records uses slightly different objects
than QN (M,x0), the same expression will be recovered.

Non finite variance processes In the previous cases we focussed on different potentials
or particular distributions but this last ones had always a finite variance. To treat a random
process where the distribution of the variables has, for example, power law tails, we need
different tools. In particular, we can not build a Fokker-Planck equation, so the treatment
starts from ab initio consideration on the survival probability and the result is achieved
working in the space of Laplace transform and using the Pollaczek-Spitzer formula (in the
following chapter we will introduce the Sparre-Andersen theorem which is a particular case
of it). We are not going to show this procedure, and rather pass to the next topic, where
even such distinction based on the variance of the process becomes unimportant. However
we cite [7] the result for a simple random walk (no potential) with Lévy distribution of
the variables f(ξ):

f(ξ)
ξ→∞−−−→ |ξ|−1−µ ; (1.64)

〈M(t)〉 =
aµ

π
Γ

(
1− 1

µ

)
t1/µ ; (1.65)

where a is the typical microscopic length.



Chapter 2

Records: statistics of the number

In this and in the next sections we will explore an other aspect of extreme statistics:
records. As in the previous part, we consider a sequence of N discrete random variables
{xi} = {x1, ..., xN}. The variable xi is a (upper) record if xi > xj ∀ j < i, namely if
it is the only maximum of the sequence {x1, ..., xi}. According to the definition, it is
necessary to surpass and not only reach the current maximum level to be a record, so ties
(xi equal to a previous xj) are not counted as records. If the spectrum of the variables is
continuous, two of them have probability zero of being exactly equal, but in lattice models
with discrete spectrum this choice of the definition modifies, at least quantitatively, the
results. The usual convention sets the first element of the sequence as the first record;
moreover, even if we wrote it as x1, is usual to call it x0 for random walk models.

Calling forward records the ones of the original series {x1, ..., xN}, we define backward
records the ones of the reverted time series {xN , ..., x1}: in this work we want to explore
their joint statistics as it has been scarcely studied, especially in the physical field, while
the forward records alone are well understood. In absence of ties, the maximum of {xi}
is both the last forward and the last backward record: it divides the sequence in two
sub-sequences with the maximum as a common point, one hosting all the forward records
of {xi}, the second all the backward ones (see Figure 2.1). Sharing the last point induces
a correlation between them and consequently between the two kind of records.

T

m

x
i

i
N1 m

x
i

i

N0

l
1

l
2

l
3

l
4
 = l

M+

k
1

k
2

k
3
 = k

M-

Figure 2.1: Left. Sequence of N=18 i.i.d. variables, with maximum (m,T ) in m = 11. There are 4
forward records (full circles) in the subsequence {x1, ..., x11} and 3 backward ones (full triangles)
in {x18, ..., x11}. Right: the same sequence but in the R.W. framework in which the first step,
labeled zero, is put at x0 = 0 and we wrote the ages of the records (see section 2.2).

13
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Another interesting aspect of records concerns their ages, namely the number of steps
each of them keeps the role of maximum of the sequence, before being surpassed. In
particular, is it possible to understand the behaviour of the longest among the ages, and
what is its link with the maximum itself? Again, the forward case has already been
studied, but the forward-backward one is new and provides further information on the
correlation which links the variables of the series.

Indeed, as for the maximum, the statistics of the number and ages of records depends
on the behaviour of the random variables xi, in particular on their correlation. Again
we consider independent and identically distributed random variables, and random walks
as an example of strongly correlated ones. In both cases, for a big class of distributions
from which the stochastic component of the process is sampled, the details of the dis-
tribution itself turn out to be unimportant to understand the behaviour of the number
and ages of records: this is possible as the value of xi is not analysed. In particular, the
universality holds for every continuous (in its support) distribution in the i.i.d. case and
for every symmetric continuous jump probability for random walks, even if the reasons
of the universality are completely different in the two situations. As a further case of
correlated variables, it is shown the analysis of symmetric random walk on a lattice. The
discrete jump distribution does not belong to the universality class above mentioned, so
the results are different from the continuous case.

As anticipated, the number of forward records has been widely studied in the past: for
i.i.d. variables and random walks with continuous jump distribution a complete review is
provided in [5], which has been followed in organizing this work; while [6] provides further
results for the lattice random walk. Ages have been studied in [5], also, and an in-depth
analysis for the random walks is provided in [12]. The joint distribution of the number
of forward and backward records has been studied incidentally for the i.i.d. case in [8]
as it presents an analogy with the statistic of upper and lower records, for which a wider
literature exists ([10], [11]). We do not know at present studies for that joint distribution
in the random walk case.

The chapter presents the analysis of the statistics of the number of records for the
different types of variables treated. For all the situations, once defined the proper tools
to analyse records, we first apply them to find the well known forward statistics and then
explore the joint forward-backward statistics. We propose also an application to climate
analysis, one of the fields that employs widely records statistics. The ages of records will
be explored in the next chapter with the same structure as for number analysis in the
present one, while the last chapter suggests some situations (the presence of a drift, a
rounding process or noise) which affected the number of records, and proposes a brief
study of the number of global records for multiple random walks.

2.1 I.I.D. variables

I.I.D.: forward records Consider p(x) the probability distribution from which every
xi is sampled (independently one from the other). We make no particular assumption on
this distribution, but its being continuous on its support. For every site i we define a
variable σi which takes the value 1 if xi is a record, 0 otherwise. This allows to express
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the number of records in the sequence of length N as:

RN =
N∑
i=1

σi . (2.1)

The mean value of σi, through which 〈RN 〉 can be computed, is given by:

〈σi〉 =

∫ d+

d−

p(x)

[∫ x

d−

p(y)dy

]i−1

dx ; (2.2)

where d−, d+ are the extreme of the domain of x. In fact 〈σi〉 is the probability that xi is a
record, namely that all the xj with 1 ≤ j < i are under xi. Thanks to the independence of
the variables, for every fixed record level xi, it factorises in the product of the probabilities
that xj is smaller than xi, for every j. As the record level is free, we integrate the product
over xi getting (2.2). The integral is solved with a change of variable, which erases the
dependence from the distribution. As all the following results are obtained starting from
〈σi〉 (or successive momenta), it is clear that they are universal, so that the particular
distribution plays no role in the statistics of the number of records:

u =

∫ x

d−

p(y) dy ; 〈σi〉 =

∫ 1

0
ui−1 du =

1

i
. (2.3)

This formalism hold as long as the cumulative function of p(x) is continuous (thus discrete
variables are not included). The result in (2.3) points out that every position between 1
and i can host the maximum with equal probability; moreover, as expected, the σi are
uncorrelated:

〈σiσj〉
i 6=j
=

∫ d+

d−

dx p(x)

∫ d+

d−

dy p(y)

[∫ x

d−

dx′ p(x′)

]i−1 [∫ y

d−

dy′ p(y′)

]j−1

=
1

i

1

j
; (2.4)

while 〈σ2
i 〉 = 〈σi〉, as σi takes only the values 0 and 1. The mean value of the number of

records and its variance are:

〈RN 〉 =
N∑
i=1

1

i
= HN ∼ lnN + γ ; (2.5)

〈R2
N 〉 − 〈RN 〉2 =

N∑
i=1

(
1

i
− 1

i2

)
∼ lnN + γ − π2

6
; (2.6)

where HN is the harmonic number and γ the Euler constant. Both (2.5) and (2.6) go like
lnN for large N , so the fluctuations of the mean value (going like the square root of the
variance) are much smaller than the mean value itself.

To have complete information on the behaviour of RN we look at the probability
P (M |N) of having M records in N steps (probability that RN = M), defining its generat-
ing function. Thanks to the independence between the xi it can be calculated analytically:

QN (x) =

N∑
M=1

P (M |N)xM = 〈xRN 〉 =

N∏
i=1

〈xσi〉 =

N∏
i=1

(
x− 1

i
+ 1

)
. (2.7)
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In the last passage we use the fact that σi is 1 with probability 1/i, 0 otherwise. Recog-
nizing that the right hand side is:

1

N !
x(x+ 1) · · · (x+N − 1) =

∞∑
M=1

1

N !

[
N

M

]
xM ; (2.8)

the probability is P (M |N) = 1
N !

[
N
M

]
, with the expression in the bracket indicating an

unsigned Stirling number of the first kind.
As in other cases it is not simple to derive the exact expression for P , we would like to

have a method to understand at least the large N behaviour. This limit is equivalent to
consider x going to 1 for which the sum is more and more dominated by the high index
terms, so high N . In general we expect that the distribution tends to a Gaussian with the
average and variance already found, according to the central limit theorem. To prove it,
consider that for large N the sum defining the generating function can be replaced by an
integral: making the change of variable x = e−s, s → 0, the generating function defined
in (2.7) tends to a Laplace transform. Expanding to the second order in s the logarithm
of the right hand side of (2.7) and then inverting the Laplace transform we obtain, as
expected:

P (M |N) ∼ 1√
2π
(
HN −H(2)

N

) exp

− (M −HN )2

2
(
HN −H(2)

N

)
 . (2.9)

where H
(2)
N is a generalized harmonic number in power 2.

In anticipation of the forward-backward case, notice that the exact form of the gener-
ating function can be used to get the expression of 〈RN 〉 directly. In particular, using the
fact that QN (x) = 〈xRN 〉, we have:

〈RN 〉 =
d

dx
QN (x)

∣∣∣∣
x=1

. (2.10)

Instead of computing it directly, we consider its generating function with respect to N .
Defining the generating function for QN (x) as Q̃(x, z), equation (2.10) becomes:

∞∑
N=0

〈RN 〉zN =
∂

∂x

∞∑
N=0

QN (x) zN

∣∣∣∣∣
x=1

=
∂

∂x
Q̃(x, z)

∣∣∣∣
x=1

. (2.11)

Once worked out the expression for Q̃(x, z), 〈RN 〉 is the coefficient of the power zN in
the expansion of the right hand side of (2.11). To compute Q̃(x, z) we note the recursion
QN (x) = QN−1(x)

(
1 + x−1

N

)
, with Q1(x) = x and, by coherence, Q0(x) = 1. Summing

both sides of the recursion from N = 1 to infinity, we have:

Q̃(x, z)− 1 = z Q̃(x, z) + (x− 1)
∞∑
N=1

1

N
QN−1(x) zN . (2.12)

Differentiating it with respect to z we obtain a partial differential equation which is easily
integrable (the derivative of the sum in the last term becomes just Q̃(x, z)). Applying the
boundary condition Q̃(x, z = 0) = Q0(x) = 1, the solution gives:

Q̃(x, z) = (1− z)−x ; (2.13)
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and so we recover for the average number of records the result in (2.6):

∂

∂x
Q̃(x, z)|x=1 = − ln(1− z)

1− z
=
∞∑
N=0

HN z
N . (2.14)

Again in anticipation of the forward-backward case, we want to obtain the function QN (x)
in a different way: consider the absolute maximum of the sequence of i.i.d., say its level is
T and happens at the step m (as in Figure 2.1). What is the generating function of the
probability of the RN −1 records before m when (m,T ) is fixed? The points are no longer
distributed according to p(x) but to the conditioned (normalized) probability:

qT (x) =
p(x) Θ(T − x)∫ T
−∞ dx

′ p(x)
. (2.15)

They still retain their independence, so for i < m it still holds 〈σi〉 = 1
i , but for i > m

〈σi〉 = 0. The conditioned generating function is therefore QN (x)|m = Qm−1(x), with
Qa(x) as in (2.7). The unconditioned one is the sum of QN (x)|m over all m, multiplied
by the probability that the maximum stays in m (which is 1

N because the variables are
independent) and by x as now the generating function comprehends also the maximum,
which is always a record (so the factor xσm is always x):

QN (x) =

N∑
m=1

x

N

m−1∏
i=1

(
x− 1

i
+ 1

)
. (2.16)

The sum over the level of the maximum T is trivial and gives 1 as the probability is
normalized. It easy to prove the equivalence between (2.16) and (2.7) by induction or by
generating function: transforming (2.16) with respect to N and taking the derivative in
z, we have:

∂

∂ z

∞∑
N=0

QN (x) zN = x

∞∑
N=1

N∑
m=1

zN−1
m−1∏
i=1

(
x+ 1

i
+ 1

)
= (2.17)

= x
∞∑
p=0

zp
∞∑
m=1

zm−1
m−1∏
i=1

(
x+ 1

i
+ 1

)
=

x

(1− z)x+1
; (2.18)

where, in the last passage, the sum in m gives the generating function with respect to
m − 1 of Qm−1(x), found in (2.13); and the sum in p gives (1 − z)−1. This expression is
equal to the derivative in z of Q̃(x, z) in (2.13), obtained from the first definition of QN (x)
(2.7). As the generating functions of the two definition of QN (x) have the same derivative
and the same value at x = 1 (for example), the generating and the functions themselves
are identically equal.

I.I.D.: forward and backward records The original part of the present work consists
in extending the formalism to forward and backward records. Do perform this task, we
call their numbers respectively R+

N and R−N and define the variables σ+
i and σ−i in analogy

with σi. It is immediate to see that:

〈σ+
i 〉 =

1

i
; 〈σ−i 〉 =

1

N − i+ 1
; (2.19)
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as the backward quantities have the same statistics as the forward ones but on the reverted
time series. The correlations 〈σ+

i σ
+
j 〉 and 〈σ−i σ

−
j 〉 come from the forward case, so they

factorize for ever i 6= j. For the correlations between forward and backward quantities
〈σ+
i σ
−
j 〉, i.e. the probability that site i is a forward record and j a backward one, we

distinguish three cases. If i = j:

〈σ+
i σ
−
i 〉 =

∫ d+

d−

dx p(x)

[∫ x

d−

dx′ p(x′)

]i−1 [∫ x

d−

dy′ p(y′)

]N−i
=

1

N
6= 〈σ+

i 〉〈σ
−
i 〉 ; (2.20)

indeed xi is both a forward and a backward record if it is the sequence maximum, which
can be in every site with equal probability. If i > j, 〈σ+

i σ
−
j 〉 is identically zero: if xi is

a forward record, then all the previous variables are smaller and xj , j < i, cannot be a
record coming from the right (a backward one). Finally, if i < j we have not correlation
as the records levels xi and xj are different:

〈σ+
i σ
−
j 〉 =

∫ d+

d−

dyi p(yi)

∫ d+

d−

dyj p(yj)

[∫ yi

d−

dx′ p(x′)

]i−1 [∫ yj

d−

dy′ p(y′)

]N−j
= 〈σ+

i 〉〈σ
−
j 〉 .

(2.21)
As a consequence of the above relations, also R+

N and R−N are correlated, and their covari-
ance is explicitly calculated as:

〈R+
NR
−
N 〉 − 〈R

+
N 〉〈R

−
N 〉 =

N∑
i=1

 1

N
+
∑
j>i

〈σ+
i σ
−
j 〉

− N∑
i,j=1

〈σ+
i 〉〈σ

−
j 〉 =

= 1 +

N∑
i=1

∑
j>i

1

i(N − j + 1)
−

(
N∑
i=1

1

i

)2

. (2.22)

The first of the two sums is of difficult computation, but the problem is solvable using
the derivatives of the generating function of the probability, as already anticipated in the
forward case.

The generating function of the probability P (M+,M−|N) of having M+ forward
records and M− backward ones in a sequence long N can be written, in analogy with
the forward case, as:

QN (x, y) =

N∑
M+,M−=1

P (M+,M−|N)xM
+
yM− = 〈xR

+
N yR

−
N 〉 = 〈x

∑N
i=1 σ

+
i y
∑N
j=1 σ

−
j 〉 ;

(2.23)
but the correlations between the σ+

i and σ−j prevent to develop it further. Instead, we can

adapt the expression at fixed maximum in position m with height T : there are M+ − 1
forward records before the maximum, in a sequence of length m−1, and M−−1 backward
ones after it, in a N −m sequence (in Figure 2.1 this correspond to 3 forward records in
the 10 steps before the maximum and 2 backward ones in the 7 steps after it). As (m,T ) is
fixed, the two sequences are uncorrelated so the joint probability of the number of records
factorizes in a forward and a backward component, as well as QN (x, y)|m. To obtain
the generating function at free maximum we sum over m with a factor xy

N : 1/N for the
probability that the maximum stays in m, and the new degree of freedom - the maximum
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itself - contributes with xy as it is always both forward and backward record. Then:

QN (x, y) =
xy

N

N∑
m=1

Qm−1(x)QN−m(y) ; (2.24)

with Qa(u) as in (2.7). We call Q̃(x, y, z) the generating function of QN (x, y) with respect
to N and using (2.24) we can write:

∂

∂z
Q̃(x, y, z) =

∞∑
N=1

N QN (x, y) zN−1 = xy
∞∑
N=1

N∑
m=1

zN−1Qm−1(x)QN−m(y) . (2.25)

The right hand side presents a convolution structure giving xy Q̃(x, z) Q̃(y, z) where Q̃(u, z)
is meant in the forward sense (2.13). Replacing its explicit form in the differential equation
(2.25) with boundary condition Q̃(x, y, z = 0) = 1 the solution is:

Q̃(x, y, z) = 1 +
xy

1− x− y
(
1− (1− z)1−x−y) . (2.26)

To compute the correlation between the number of forward and backward records we
calculate:

∞∑
N=0

〈R+
N R

−
N 〉 z

N =
∂2

∂x ∂y
Q̃(x, y, z)

∣∣∣∣
x,y=1

=
z

1− z
+

ln2(1− z)
1− z

. (2.27)

The right hand side must be expanded in power of z to invert it. The first term is∑∞
N=1 z

N , so the coefficient is 1 (a part the formal case N = 0, for which it is 0). To
evaluate the second term, we expand each factor and, after some computations, group
them in a single sum over z. We show the passages for this case, and skip them in the
future analogous cases:

∞∑
i=0

zi ·
∞∑
j=1

zj

j
·
∞∑
k=1

zk

k
=

∞∑
N=2

[
N∑
n=2

2Hn−1

n

]
zN . (2.28)

The sum in the coefficient of zN (called sN in the next lines) is solved using the following
formula, which is the discrete counterpart of the integration by parts:

N∑
n=1

anbn = aNBN −
N−1∑
n=1

(an+1 − an)Bn; Bn :=
n∑
j=1

bn . (2.29)

Applying it, after some rearrangements we obtain a recursion for sN :

sN =

N−1∑
n=1

2Hn

n+ 1
= 2

(
(HN )2 −

N∑
n=1

1

n2
−
N−1∑
n=1

Hn

n+ 1

)
; (2.30)

which gives the solution sN = (HN )2−H(2)
N . Recalling the coefficient 1 from the first term

in (2.27) and subtracting 〈R+
N 〉〈R

−
N 〉 = H2

N , the covariance between forward and backward
records is:

〈R+
N R

−
N 〉 − 〈R

+
N 〉〈R

−
N 〉 = 1−

N∑
n=1

1

n2
= 1− π2

6
+

1

N
+O

(
1

N2

)
; (2.31)
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where we used
∑N

n=1
1
n2 ∼

∑∞
n=1

1
n2 = π2

6 , and evaluated the correction (
∑∞

n=N+1
1
n2 ) at

the first order transforming the sum into an integral as N is large.

The asymptotic form of the probability P (M+,M−|N) can be obtained expanding
(2.24) directly, but the sum over m makes the task hard. However, it is possible to recast
the generating function in a new form, which depends only on x+ y:

QN (x, y) =
xy

N

N−1∏
i=1

(
1 +

x+ y − 1

i

)
. (2.32)

The equality between (2.24) and (2.32) is proved as they have the same generating func-
tions: taking apart the xy/N coefficient, the sum over N of (2.24) gives the convolution
of two forward generating functions resulting in z (1 − z)−x−y, which is the generating
function of the product in (2.32). The physical reason for which this simplification occurs
is still unclear. Nevertheless, it allows us to perform the expansion using, as usual, x ∼ e−s
ad y ∼ e−t. Replacing the product with the exponential of a sum, it is easy to develop it
to the second order and the inverse Laplace transform is then straightly performed if we
express the object in function of s+ t and s− t. The final result can be expressed in terms
of two rescaled variables f and b, which are the normalised fluctuations of the two types
of records from their average values:

f :=
M+ −HN√

CN
; b :=

M− −HN√
CN

; (2.33)

P (f, b|N) =
1

2π

1√
1− (ΩN )2

exp

(
− (f + b)2

4 (1 + ΩN )
− (f − b)2

4 (1− ΩN )

)
; (2.34)

∼ 1

2π
exp

(
−f

2 + b2

2
+ ΩN fb

)
+O (ΩN ) ; (2.35)

with:

CN := HN −H(2)
N ; ΩN :=

1−H(2)
N

CN
∼ (lnN)−1.

The probability P (M+,M−|N) of the original variables is obtained from the above for-
mulas substituting (2.33) and multiplying by the Jacobian C−1

N . Using (2.34) to calculate

the correlation between R+
N and R−N we get back 1 −H(2)

N , which is correct for every N .
In the large N limit, we can express the connected part of the joint probability of f
and b as a universal scaling function times a scaling factor going like (lnN)−1:

C(x, y|N) := P (f, b|N)− P (f |N)P (b|N) ∼ ΩN F (f, b) ;

F (f, b) :=

(
1− π2

6

)
fb

2π
e−

f2+b2

2 . (2.36)

Once more we have the proof that the correlation between the variables becomes less and
less important but in a slow way, being influenced by the logarithm of the sequence length
and not by N itself.

An interesting quantity is the difference ∆ between the number of forward and back-
ward records (∆ = M+ −M−). By symmetry the average of ∆ is zero and the direct
computation of its variance gives 2(HN − 1). We can look at its distribution integrating
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Figure 2.2: In the first plot, from the higher line, the variance of ∆, the mean value of the number of
forward maxima, the correlation of forward maxima. For every quantity it is shown the theoretical
curve, superimposed to the one obtained by simulation of Gaussian i.i.d.. In the second plot, the
correlation between the number of forward and backward records, and the theoretical curve of
equation (2.22).

(2.34) on the sum f + b:

P (∆|N) =
1√
CN

∫ ∞
0

d(f + b) P (f, b|N)|f−b=∆/
√
CN

=

=
1√

4π(HN − 1)
e
− ∆2

4(HN−1) ; (2.37)

so the distribution is a Gaussian with the expected variance: the double of the variances
of M+ and M− which dominates at large N , as expected if they were uncorrelated, plus
a correction.

Simulations We verified the analytical results for the statistic of the number of records
simulating a sequence of i.i.d. for different jump distributions: flat in [−1/2; 1/2], Gaus-
sian, exponential. For each case we used 105 samples of length between 1 and 103 steps,
calculating for every length the average number of forward and backward records, their
variance and covariance and the variance of ∆, founding a good agreement with the theory
(Figure (2.2) shows the result for the Gaussian distribution).

Moreover, to check the scaling of the joint probability function, we simulated series
of 103, 104 and 2 · 105 steps, using 106 samples for each of them, and checked that the
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three-dimensional histograms of the connected component of the probability collapsed on
the same theoretical curve once rescaled with the logarithm of the number of steps.

I.I.D.: statistics of upper and lower records For many purposes, it is interesting
to look at the same time at the number of upper (forward) records and lower (forward)
records where xi is a lower record of the sequence {xi} if i = 1, by convention, and if
xi < xj ∀ j < i (in Figure 2.1 the steps i = 1, 2, 3 are lower records). We consider here
this problem as, in the i.i.d. variables case, it presents a strong analogy with the forward-
backward (upper) records problem, the physical reason behind it being still unclear. In a
previous work [9] it was briefly suggested a similar correspondence, but without developing
the full probability of forward and backward records. Moreover all the records were treated
with different mathematical instruments.

Defining σui , σ
l
i for each site i so that σui is 1 if i is a upper record, 0 otherwise and σli

the analogous for lower records, we have 〈σui 〉 = 〈σlj〉 = 1/i (the usual statistics if taken
singularly) and:

〈σui σlj〉 = 〈σui 〉〈σlj〉 if i 6= j ;

= 0 if i = j 6= 1 ;

= 1 if i = j = 1 . (2.38)

Indeed a site cannot be an upper and a lower record at the same time except the case i = 1,
which is both by definition. Different sites instead are uncorrelated. Applying (2.38) and
taking 〈σui σuj 〉 , 〈σliσlj〉 from the forward case, the correlation between the number of upper

and lower records in N steps (RuN and RlN respectively) is:

〈RuNRlN 〉 − 〈RuN 〉〈RlN 〉 =
N∑

i,j=1

(
〈σui σlj〉 − 〈σui 〉〈σlj〉

)
= −

N∑
i=2

〈σui 〉〈σli〉 = 1−H(2)
N ; (2.39)

the same as between the number of forward and backward records. As the only correlations
are between σui and σli, the generating function for the joint probability of having U upper
and L lower records given N is:

S(x, y|N) =
N∑

U,L=1

P (U,L|N)xUyL = 〈x
∑N
i=1 σ

u
i y
∑N
i=1 σ

l
i〉 =

N∏
i=1

〈xσ
u
i
i y

σli
i 〉 ; (2.40)

〈xσ
u
i
i y

σli
i 〉 = Pi(0, 0) + xPi(1, 0) + y Pi(0, 1) + xy Pi(1, 1) =

= 1− 2

i
+
x+ y

i
if i 6= 1;

xy ; if i = 1 ; (2.41)

where we defined the probability Pi(a, b) that σui = a and σli = b. So the generating
function of P (U,L|N) becomes:

S(x, y|N) = xy
N∏
i=2

(
1 +

x+ y − 2

i

)
. (2.42)

If we expand it to the second order for x ∼ e−s, y ∼ e−t, s, t small, as in the previous cases,
we recover the same approximate form as the one obtained from QN (x, y) (2.32) in the
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forward-backward case. To check that the two probabilities are identical at every order,
we look at the generating function of S(x, y|N) with respect to N , called S̃(x, y, z). As in
the forward case, it holds a recursion relation for every N > 1: S(x, y|N) = S(x, y|N −
1)
(

1 + x+y−2
N

)
, while S(x, y|0) = 0 and S(x, y|1) = xy. Using it:

∞∑
N=2

S(x, y|N) zN = S̃− 1−xy z = z(S̃− 1) + (x+ y− 2)
∞∑
N=2

1

N
S(x, y|N − 1) zN ; (2.43)

where the middle term is the direct computation of the sum and the right hand side uses
the recursion. The argument of S̃ is understood. Taking the derivative with respect to z
and rearranging the expression we write a differential equation in z:

(1− z) ∂S̃
∂z

= (x+ y − 1)S̃ + xy + (1− x− y) . (2.44)

Instead of solving it explicitly, we try the solution S̃(x, y, z) = Q̃(x, y, z), with Q̃ as in
(2.26). Indeed it solves (2.44), leading to the conclusion that the joint statistics of the
number of forward (upper) and backward (upper) records is the same as the joint statistics
of the number of (forward) upper and lower ones: upper backward records and lower
forward ones have a statistically identical relation with the upper forward ones
even if they are not the same object nor take necessarily the same value for a single sample.

Simulations We repeated the simulation as above (105 samples of maximum length 103

steps for flat, Gaussian and exponential distribution) computing the number of upper and
lower records, finding again good agreement with the predicted mean values, variances
and correlation between them.

2.2 Random walks with continuous jump distribution

As in many physical situations we deal with sequences of correlated variables, we want to
repeat the previous analysis for a system where the correlation among the xi is strong, and
compare the results to the ones for the independent case. The random walk represents a
good example of this sequences, and as it is used as a model for many physical systems,
it is interesting to define the statistics of the number of records in this case. The random
walk variables are defined such that:

xi = xi−1 + ξi ; (2.45)

where ξi are i.i.d. variables taken from a distribution φ(ξ). In this section, we consider
distributions φ(ξ) with a continuous cumulative function, i.e. the walker occupies positions
in the space on a continuous range, and the lattice case is not included. The starting level
x0 is set at zero for simplicity and, by convention, it counts as step number zero (and
not one as in i.i.d. variables), namely {xi} = {x0, ..., xN}. Records are defined as in the
previous case, but in the random walk problem it is useful to define also the ages of records
as the number of steps they survive before a new variable surpasses them: if xi and xj are
two successive records, then the age of xi is li = j − i (see the right plot of Figure 2.1).
The age of the last record is set by convention so that

∑RN
i=1 li = N .
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As the variables are not any more independent, objects like the σi used before depend
on the history, and so are useless as they have not a fixed average value. The quantities
we need are the survival probability that a random walk, starting in x0, stays below this
level for l time steps:

q (l) = P [xk < x0, ∀ 1 ≤ k ≤ l] ; (2.46)

and the first passage probability that the random walk crosses the starting level x0 between
the step (l − 1) and l, which comes from the survival probability:

f (l) = q (l − 1)− q (l) . (2.47)

By translational invariance q (l) does not depend on the initial point x0. For the class
of jump distributions considered (with continuous cumulative function) the generalized
Sparre-Andersen theorem provides a formula for the generating function of q (z):

q̃ (z) =
∞∑
k=0

q (k)zk = exp

[ ∞∑
k=1

zk

k
P(xk < 0)

]
. (2.48)

To explicit it, we must specify just the probability of being under the level zero according
to φ(ξ). For symmetric continuous distributions it is 1

2 , so that:

q̃ (z) = q̃(z) =
1√

1− z
; q (l) = q(l) =

1

22l

(
2l

l

)
. (2.49)

Thus, given this symmetry, the result does not depend on further details of the jump
distribution: in particular it has no consequence if the second momentum of φ(ξ) is finite
or not, and the following analysis includes Gaussian and flat statistics as well as Lévy-
Flights. Moreover we abandon the subscript minus as the probability of staying below
or above the initial level is the same. In this case, the first passage probability takes the
form:

f̃(z) =

∞∑
l=1

f(k)zl = 1− (1− z) q̃(z) = 1−
√

1− z . (2.50)

The probabilities q(l) and f(l) alone enlighten the statistics of records as long as we make
the further assumption that the intervals li in which the sequence is naturally split by
records are statistically independent thanks to the Markov chain property (except for
the constraint on their sum, which has to be N).

R.W.: forward records As usual, we investigate first the known case of forward records
to get familiar with the formalism, skipping some computation which have already been
performed elsewhere. Under the assumption that intervals are independent, the probability
of having M records with ages {~l } := {l1, .., lM} in N steps is:

P ({~l },M |N) = f(l1)f(l2) · · · f(lM−1)q(lM ) δ∑M
i=1 li,N

; (2.51)

in fact every records survives for li steps and after the maximum the walker must stay
below it for lM steps. The probability of having M records in N steps is the sum over
all ages of P ({~l },M |N). It can be obtained exactly from its generating function, using
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(2.51) and applying the delta function to distribute zN among the sums on the ages (and
get rid of N). Finally it is possible to write:

∞∑
N=M−1

P (M |N) zN = f̃(z)M−1 q̃(z); (2.52)

P (M |N) =

(
2N −M + 1

N

)
2−2N+M−1 , M ≤ N + 1 ; (2.53)

where the inversion has been performed finding the zN -coefficient as usual (see [6] for
further details). Equation (2.52) holds in general for every φ(ξ), while (2.53) uses the
Sparre-Andersen result for symmetric ones. The average number of records 〈RN 〉 and its
mean square value can be computed directly or through its generating function:

∞∑
N=0

〈RN 〉 zN =

∞∑
M=1

M f̃M−1 q̃ =
q̃

(1− f̃ )2

S.A.
=

1

(1− z)3/2
; (2.54)

∞∑
N=0

〈R2
N 〉 zN = · · · = 2 q̃ f̃

(1− f̃ )3
+

q̃

(1− f̃ )2

S.A.
=

2

(1− z)2
− 1

(1− z)3/2
; (2.55)

and the argument z for q̃ and f̃ is understood. Extracting the coefficient of the zN power
gives:

〈RN 〉 = (2N + 1)

(
2N

N

)
2−2N ∼ 2√

π

√
N +O

(
1√
N

)
; (2.56)

〈R2
N 〉 − 〈RN 〉2 = 2

(
1− 2

π

)
N +O(

√
N). (2.57)

The fluctuations of RN grow as the mean value itself, while in the i.i.d. variables case they
were much smaller. It is thus expected that the probability approaches asymptotically a
function of (M/

√
N), and indeed, using a Stirling expansion on (2.53), it appears a scaling

form:

P (M |N) ∼ 1√
N
g

(
M√
N

)
; g(x) =

1√
π
e−

x2

4 . (2.58)

Once more, we recover a Gaussian tail for the asymptotic probability, but here the natural
distribution is a half Gaussian: the mean value is correctly ∼

√
N , but the mode is zero

(see Figure 2.3).

R.W.: forward and backward records In analogy with the forward case, the analysis
moves from the joint probability of having in N steps M+ forward records with ages li
and M− backward ones with ages kj (numbered backwardwise, as in Figure 2.1). If the
maximum value is reached only once in the sequence (no ties for it), which happens with
probability one for a continuous jump distributions, we have:

P ({~l,~k},M+,M−|N) = f(l1) · · · f(lM+−1) f(k1) · · · f(kM−−1) δ∑M+−1
i=1 li+

∑M−−1
j=1 kj ,N

.

(2.59)
The probability P (M+,M−|N) is the sum of (2.59) over all the ages and its generating
function with respect to N is easily obtained applying the δ function as in the forward
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case, getting a function of M+ +M− only:

∞∑
N=0

P (M+,M−|N) zN = f̃(z)M
++M−−2 = (1−

√
1− z)M++M−−2 . (2.60)

Remember that in the independent case the analysis was performed transforming in M+

and M− but here that process would have been much more difficult; moreover we see
that this single transformation is sufficient to reach, in this case, a simple form for the
probability. From the generating function of the joint probability we can compute exactly
the generating function of 〈R+

NR
−
N 〉:

∞∑
N=0

〈R+
NR
−
N 〉 z

N =
N∑

M+=1

N∑
M−=1

M+M− f̃(z)M
++M−−2 =

=
1

(1− f̃(z))4

S.A.
=

1

(1− z)2
=

∞∑
N=1

N zN . (2.61)

Therefore, knowing 〈R+
N 〉 and 〈R−N 〉 from the forward case, the covariance results:

〈R+
NR
−
N 〉 − 〈R

+
N 〉〈R

−
N 〉 =

(
1− 4

π

)
N ; (2.62)

which is negative, as expected, and grows with N , while for i.i.d. variables it approaches
a constant.

Further information is given by the asymptotic expansion of the probability for large
N , as the exact inversion is hard to perform: expanding the right hand side of (2.60) at
the first order in z = e−s and doing its inverse Laplace transform, it results:

P (M+,M−|N) ∼ M+ +M−

2
√
πN3

e−
(M++M−)2

4N ; (2.63)

where we skip the constant terms when compared to M+, M−. As it is a function of
the sum of the number of the two records only, the correlation 〈R+

NR
−
N 〉 computed

from (2.63) takes the exact value 1. Therefore the joint probability takes a scaling form
which depends on one significant quantity only:

P (M+,M−|N) ∼ 1

N
h

(
M+ +M−√

N

)
; h(x) =

x

2
√
π
e−

x2

4 . (2.64)

In contrast with the forward case, the mode is no more zero, but the tail is again expo-
nentially dumped (even if not exactly as a Gaussian).

Simulations To check the results obtained and the scaling behaviour of the probability
we simulated sequences of random walks with flat, Gaussian and exponential jump distri-
bution: as usual, for the number of records we used 105 samples of maximum length 103

steps and calculated, for each step, the average number of forward records, backward ones
and their covariance. The results agree with the expected theory. For the full distribution
of records, we used series of 104, 105 and 106 steps, using 105 samples for each of them and
computing the distributions of the rescaled variables in the forward and forward-backward
case. The points fit the universal scaling functions found in the large N limit. We report
the plots of these two distributions for Gaussian jumps in Figure (2.3).
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Figure 2.3: In the first plot, the distribution of the rescaled variable M/
√
N in the forward case.

In the second one, the distribution of the rescaled variables of forward and backward records in
function of their sum, which appears to be the relevant quantity. For both graphics, are shown
the results of the simulations of three different lengths with Gaussian jump distribution, and the
theoretical curve.

2.3 Lattice Random Walks

An other interesting and non trivial case of random walk is the symmetric one-dimensional
lattice problem: the walker jumps of a fixed quantity to its left or right with equal prob-
ability 1/2. Setting the size of the jump at one (which is unimportant in the count of
records), the maximum of the position of the walker at every step can be stationary or
increase of 1. As an increase marks a new records, if the walker starts from zero it turns
out that the value of the maximum is also the number of records minus one (as the posi-
tion zero has a level zero but is counted as a record). In the large time limit we can solve
the problem looking for the statistics of the maximum for a random walk with continuous
jump distribution with a proper diffusion coefficient, which turns out to be 1/2; however,
it is possible to solve it exactly finding the discrete survival probability and using it in
analogy with the continuous case. Here the fact that ties are neglected in the count of
records has a strong influence: as the range of possible xi is discrete, the probability that
the walker comes back to a position already visited is finite. To be consistent, the first
passage condition is true if the walker surpasses the starting value and not merely equals
it.

We define q+(x0, l) the probability that the walker, starting at x0, stays above or at
zero up to step l. The starting point x0 is kept explicit in order to built a backward
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equation; it will be set to zero in the end. The survival probability defined as in the
continuous case is recovered as q(l) := q+(0, l) = q−(0, l), where the last is the probability
of staying below or at zero for l steps, equal to q+(0, l) by symmetry. Given a realization
of the walk of N + 1 time steps, we proceed as done in the treatment of the maximum of
a lattice random walk, and split in two parts: the first step and the remaining N steps.
Therefore we obtain an equation analogous to (1.18):

q(x0, N + 1) =

∫ ∞
−∞

d(x1 − x0) q(x1, N) f(x1 − x0) ; (2.65)

where f(x) is the jump distribution. In the symmetric lattice case the jump distribution
is:

f(x) =
1

2
[δ(x− 1) + δ(x+ 1)] . (2.66)

which gives the equation:

q(x0, N + 1) =
1

2
[q(x0 − 1, N) + q(x0 + 1, N)] ∀ N ≥ 1 ; (2.67)

q(x0, 0) = 1 if x0 ≥ 0 ; q(−1, N) = 0 ∀ N ;

where we wrote also the initial and boundary conditions. The solution is achieved following
the steps used for computing Q(M, z) (the cumulative probability of the maximum) for
the lattice random walk, but for the different boundary conditions. Applying the present
ones leads to:

q̃(z) =

√
1 + z −

√
1− z

z
√

1− z
; f̃(z) =

1

z

(
1−

√
1− z2

)
. (2.68)

Where the first passage probability is as usual f̃(z) = 1 − (1 − z) q̃(z). We invert q̃(z)
extracting the coefficient of the power zN (as usual, we expand each term and then group
them to have one sum in z), getting:

q(N) =

(
2

⌊
N − 1

2

⌋
− 1

)
Γ
(⌊

N−1
2

⌋
− 1

2

)
2
√
π Γ
(⌊

N−1
2

⌋
+ 1
) ; (2.69)

where bac define the floor function. Asymptotically, it decays like ∼
√

2/(πN). With
these tools we can analyse the statistics of records for the lattice random walk.

Lattice R.W.: forward records In the forward case there is a complete analogy
between the lattice and the continuous problem, therefore, keeping the same notation,
the probability P ({~l },M |N) has the same expression as in (2.51) and the generating
function of P (M |N) is [f̃(z)]M−1q̃(z). The average number of records is computed as
usual through the generating function, but injecting in (2.68) the lattice survival and first
passage probability:

∞∑
N=0

〈RN 〉zN =
q̃(z)

(1− f̃(z))2
=

√
1 + z +

√
1− z

2(1− z)3/2
. (2.70)

The inversion gives:

〈RN 〉 =
1

2

[
1 +

(−1)N+1 Γ
(
N − 1

2

)
2
√
π Γ(N + 1)

2 F1

(
3

2
,−N, 3

2
−N,−1

)]
; (2.71)
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where 2F1 is the hypergeometric function. As anticipated, this is exactly the same result
(up to a +1 term) obtained when looking at the maximum of a lattice random walk, but
here it is recovered through a different reasoning. In the large N limit, 〈RN 〉 ∼

√
2N/π

which is 1/
√

2 of the result of the continuous case. Indeed inverting the asymptotic
expansion at the first order in z of the probability gives:

P (M |N) ∼ 1√
N/2

g

(
M√
N/2

)
; (2.72)

with g(x) the continuous case scaling function (2.58). This asymptotic result on lattice
provides an interesting bridge between the number of records of a random walk with
continuous jump distribution and the value of the maximum in the same situation: indeed,
it suggests a physical explanation for the one to one correspondence which sets for large
N between these two objects, up to a proper rescaling based on the diffusion length (in
particular a rescaled time Dt makes the maximum statistics equal to the one of records
in a N step sequence).

Lattice R.W.: forward and backward records For the forward-backward case we
must pay attention to ties. The formula for the joint probability of M+ forward records
with ages li and M− backward ones with ages kj found in the continuous case is valid
only if the last forward record happens at the same time of the last backward one, i.e. the
maximum level is reached only once by the walker. In the continuous case the probability
of visiting again a position is infinitesimal, so this description holds; on the contrary on a
lattice ties are very frequent, and the maximum level can be reached more than once, at
different steps mi: the smallest among them (m1) determines the last forward record and
the biggest (m2) the last backward record. Calling m := m2 −m1 the gap between them,
we define g(m) the probability that the walker returns at the initial level after m steps
and stays below it in the meanwhile. The correct form of the joint probability of forward
and backward records is therefore:

P ({~l,~k},M+,M−|N) = f(l1) · · · f(lM+−1)f(k1) · · · f(kM−−1) g(m) δ∑M+

i=1 li+
∑M−
j=1 kj+m,N

.

(2.73)
To compute g(m) we notice that f(m) = g(m − 1)/2: the probability of surpassing the
initial level at step m is the probability of being in it at the previous time multiplied by
the one of doing a +1 jump which is 1/2. Taking the generating function of f(m), and
knowing that f(0) = 0:

f̃(z) =
∞∑
m=0

f(m) zm =
∞∑
m=1

f(m) zm =
∞∑
m=1

1

2
g(m− 1) zm =

z

2
g̃(z) . (2.74)

Remembering the expression of f̃(z), we see that g̃(z) = 2f̃(z)/z is a function of z2 so
it has only even power of z because the walker can return to the original level only with
an even number of steps. The generating function of P (M+,M−|N) (obtained summing
(2.73) over all the ages) is therefore:

P̃ (M+,M−|z) =
2

z
[f̃(z)]M

++M−−1 ; (2.75)
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again, it can not be inverted analytically, while there is an exact formula for the covariance
between forward and backward records. Skipping some calculations:

∞∑
N=0

〈R+
NR
−
N 〉 =

2f̃(z)

z

1

(1− f̃(z) )−4
=

1 +
√

1− z2

2(1− z)2
; (2.76)

〈R+
NR
−
N 〉 =

1

2

[
N + 1 + (−1)rN+1 (2rN − 1) (2rN + 2rN+1 + 1)

(
1/2

rN

)]
; (2.77)

where rN = bN/2c, the floor function of half N . The second part is subdominant and
in the large N limit 〈R+

NR
−
N 〉 ∼ N/2 +

√
2N/π. The leading term is one half of that

in the continuous case as forward and backward records have a
√

2 scaling factor each.
Coherently the expansion at the first order in z of the probability (2.75) and a successive
inversion gives:

P (M+,M−|N) =
2

N
h

(
M+ +M−√

N/2

)
; (2.78)

where h(x) is the scaling function of the probability of the number of forward and backward
records in the continuous case, as defined in (2.64).

Simulations We performed simulations with 105 samples of 103 steps, calculating the
relevant quantities, and found good agreement with the theory for every time step. More-
over, as in the continuous case, we simulates series of 104, 105 and 106 steps, using 105

samples for each of them and computed the statistics of the number of records, which
collapse in the curves g(x) (forward case) and h(x) (forward-backward) after the rescaling
proper of this case, similarly to Figure (2.3).

Enforcing correlation As we specified at the beginning, there are many different mod-
els of strong correlated variables. It is interesting to have an idea of how a different kind
of correlation can modify the model we found, in order to address new efforts of research
towards non trivial situations. We can try to enforce the correlation between subsequent
steps of the random walk considering for example a short range persistence: if a step is
positive, the following one has a probability slightly bigger than one half to be positive
too, and slightly smaller for a negative step. A simple simulation shows that in this case
the number of records (both forward and backward) is bigger than in the simple case, but
keeps the square root dependence on N . If instead we simulate a long range correlation,
for example enforcing the probability that step i is positive or decreasing it according
to the sign of the ith Ising variable on a 1D lattice with antiferromagnetic long range
interaction (spins tend to a long range alignment), we see that the number of forward
records approaches a linear N dependence with some fluctuations which retains the long
range character, while backward ones are decreased. Therefore a non local change such
as this breaks the universality changing the whole behaviour of records and it would be
interesting to work out the correlation length for which the switch of the N dependence
happens.

2.4 An application: climate records

In this section, we would like to give the general features of one of the most relevant
applications of statistics of records: the understanding of climate behaviour.
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The global climate is a very complex system, determined locally by thousands of de-
grees of freedom. In the last ten years the problem of global warming has raised the
issue of estimating quantitatively whether the average temperature is raising or not on
our planet. The lack of data from several zones in the world, the local fluctuations and
the short window of data available (only in the last century temperatures have been sys-
tematically recorded) prevent to rely only on the simple temperatures average to evaluate
the trend. The search of quantities sensible to trends in mean brought in the past years
to a wider study of the record temperatures, both in the sense of high and low records,
or forward and backward ones. These tools have proved themselves powerful in a wider
range of problems than the pure mean trend one.

Before proceeding with the sample analysis, we highlight briefly how records can pro-
vide information in problems concerning climate (the quantitative computations can be
found in [18]-[23]) and also what problems arise when dealing with measured data. First of
all notice that a change of the distribution of the variables with time destroys the univer-
sality which characterises the records of a sequence in a stationary framework. Therefore
the attempts to find the distribution of records in a changing environment have always
been done choosing a specific distribution for the temperatures. Very often we look at
changes on years time scale, so a suitable sample of data is the temperature at a fixed day
of the year, in different years. They are Gaussian distributed around the typical value of
the temperature in that day of the year, as emerges from several analysis (see for example
[23]). The change of the distribution in time due to the warming is small, thus it is possible
to recognise the Gaussian shape at first approximation.

It is intuitive that a constant increase in the mean of the temperatures increases
the number of forward upper records and decreases the forward lower ones, while for the
backward it holds the opposite. It can be seen that for a Gaussian distribution a mean
value growing like vi, where i is the time step and v a constant, at first order in small
v increases the record rate as 〈σi〉 = 1/i + C v

√
ln i with C constant, until saturation is

reached if v is positive (and the number of records approaches RN ∝ N), or a rate 0 if v
is negative (RN → const) [19][22]. A change in the variance of the distribution gives
instead smaller effects: if it increases as qi, q positive, the rate becomes 〈σi〉 ∝ ln i/i (and
RN ∝ (lnN)2) [18].

Another important issue comes from the finite precision with which data are recorded:
it decreases the number of records more and more with the growth of the discrete step
∆. As for a Gaussian distribution the effects of ties and linear growth in mean gives cor-
rections at the number of records which bear the same N -dependence, given ∆, for some
values of v the two contributions are comparable, and are summed or erased according to
the type of record studied (ties always decrease the number, while the trend has different
effects). This is the case of the present global warming rate when full degree rounding is
chosen.

Following the above considerations, to evaluate the mean trend a good object is the
difference between upper and lower records, rather than the comparison with a stationary
theory, as the ties effect is erased on average. In this context also backward records have
been analysed [22], but they can be more effectively employed in the study of climate
variability: looking for the annual one, the point is whether temperatures are going to
smooth their behaviour, approaching the seasonal oscillation closer and closer or it is
expected an increase of big fluctuations. It is thus required an estimate insensible to mean
shift, and possibly of easier study than the variance of the sample itself. Anderson and
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Kostinski [25] built and index α including backward records to estimate the variability,
which is both insensible to ties (as it is made by differences of records) and to first order
effects of the mean trend (as it is a sum of upper and lower corresponding quantities):
α = U+ − U− + L+ − L−, where U and L denotes upper and lower, while the apexes
are for the forward and backward direction. Indeed, by simulations, they proved that the
influence of the variance of temperature distribution is the dominant one, and employ this
object to find a diminishing temperature variability on the globe.

We want now to test the results on the statistics of forward and backward records on
a real sample of data. To compute their joint probability in an evolving framework is a
task beyond our present treatment, but we can take data and subtract the deterministic
behaviour we suspect they have, in order to recover a purely stochastic process with
stationary distribution and verify the statistics of this new sample.

2.4.1 Data processing

We choose the average daily temperature in eighteen European cities, recorded for 100
years (from 1901 to 2000). The data, recorded in tenths of degrees Celsius, are pro-
vided by the European Climate Assessment and Dataset database (ECAD) [27]. A set of
temperatures during the years shows mainly two features: every year the seasonal trend
follows approximately a sinusoid, and over a large gap of years it is possible to see the
increasing of the temperatures due to global warming and local factors. As anticipated,
the temperatures at a fixed day of the year, recorded at different years, are distributed at
first approximation as a Gaussian, and we expect them to be uncorrelated once subtracted
the global warming. Therefore, taking as samples the sequences of detrended fixed-day
temperatures in function of the year, they are supposed to show an i.i.d. behaviour. To
compare the correlation inter and intra samples is useful to shift also all the sequences of
their mean values, as explained in the following.

For a meteorological station, we define T (d, y), the temperature at a given day d and
year y. In our analysis we consider 100 years (Ny) of 365 days each (Nd), and 18 stations.
For every station first of all we compute the mean annual temperature A(y) to have a
simple estimate of the warming trend:

A(y) =
1

Nd

Nd∑
d=1

T (d, y) ; (2.79)

in Figure (2.4), is shown the behaviour of A(y) for one of the stations: it is highly os-
cillatory, but we can recognize a slow increase of the temperatures with the time. Sub-
tracting the respective average annual temperature from all the data we have the new set
z(d, y) = T (d, y) − A(y): fixing a day, every sample of z-temperatures is made of oscilla-
tions around a different value G(d) (the typical deviation of the temperature at that day
of the year from the typical average annual one). This value is:

G(d) =
1

Ny

Ny∑
y

z(d, y) . (2.80)

We finally define the quantity x(d, y) = z(d, y)−G(d), which is centred around zero both
looking at the day dependence or at the year dependence and is suitable to compare easily
the samples between them.
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Figure 2.4: Station of Milano: the mean temperature for every year (averaged over 365 days).

Correlation between the data To see if the variables in a sample are independent,
we can compute directly the correlation between them, i.e. between x(d, y) at different
years. If then their records will follow the i.i.d. statistics, it will be a further proof of their
independence. The normalized correlation is:

D(i, j) =

1
Nd

∑Nd
d=1 x(d, i)x(d, j)

〈 1
Nd

∑Nd
d=1 x(d, y)2 〉

, i > j ; (2.81)

where the brackets means an average over the years (this is already the connected compo-
nent of the correlation as the average over the days of x(d, y) is zero). The normalization
permits to have values of order one for i = j. To have an object easier to visualize, and to
reduce the noise, we consider the correlation in function of the years gap ∆y defined as:

D(∆y) =
1

Ny −∆y

Ny−∆y∑
y=1

D(y, y + ∆y) (2.82)

where we sum over the initial year as long as y + ∆y still belongs to our set of data (this
means that for large ∆y the average is made on a few data only, according to Ny −∆y).
With the chosen normalization, D(0) is identically one. The first plot in Figure (2.5)
represents D(∆y) for one of the stations (Milano, which has a recorded period of 238
years, plot entirely) and it shows no correlation as soon as ∆y 6= 0; the values for big ∆y
oscillate because of the poor statistic.

Then, is important to check the correlation between samples, which, in our case, is the
correlation between subsequent days of the years. We defined the normalized correlation
between two different days as:

C(µ, σ) =

1
Ny−1

∑Ny−1
y=1 x(µ, y)x(σ, y)

1
Ny

∑Ny
y=1 x(µ, y)2

, σ > µ ; (2.83)

as done by Redner and Petersen in [23]. With this normalization C(µ, µ) is identically
1. As σ > µ, for some µ (at the end of the year) σ can refer to the following year (the
correlation decreases fast enough we can keep σ − µ < Nd), that is why the sum end at
Ny − 1. Again, we look at the more useful object of the average annual correlation in
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Figure 2.5: Station of Milano: above, the correlation between data recorded at the same day of the
years in function of the years gap and averaged over the 365 days; below, the correlation between
data referring subsequent days in function of the days gap, averaged over the years.

function of the days gap t:

C(t) =
1

Nd

Nd∑
d=1

C(d, d+ t) . (2.84)

C(t), starting from the value 1, remains non zero until day 40. The first part of its
behaviour can be described as a power law decay C(t) ∼ t−γ , as shown in the second
plot of Figure (2.5), and it is possible to perform a fit over the first 10-20 days to find
γ. According to the station, γ varies between 0.6 and 0.9: this values are around one
half the corresponding ones found in [23], but have good agreement with other results
([26]). In particular in this last work it is found an average value of 0.7 for continental
meteorological stations, and 0.8 for island ones. Considering the different data in literature
and the variability between the stations, we look at our result as an esteem of the number
of days in which the correlation is important (around 10).

The spatial correlation between the stations is not studied here. However, in [22], which
uses the same data set here employed, it is found that the number of independent stations
in Europe is around 15, as a distance inferior to 1000 km implies strong correlations on
the data. On that basis, we repeated our calculations increasing the number of stations
used from 3 to 64, finding that results do not improve considering more than 20 stations,
according to their effective number. The final pool of chosen stations is quite well spread
in Europe and was selected on the completeness of data in the time window considered.
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2.4.2 Statistics of records

We can now analyse the sequences of x(d, y) to compute the number of records for each
day of the year. First of all we compute the average of the number and variance of records,
and of the covariance between forward and backward ones summing over all the days and
all the stations, so considering 365×18 samples.

To check if the correlation between following days influences the results, we repeat
the average summing not over all the 365 sequences for every station but skipping some
days between two subsequent ones (considering for example a gap of a week, there are 52
effective samples for each station). Gap periods between 2 and 20 days were considered,
reminding that C(t) goes to zero in about ten days. There is no significant improvement
of the results rising the gap, as the noise increases too, due to the smaller number of data.
Consequently we use the results from the 365 days average process.
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Figure 2.6: Above, the number and covariance of the forward and backward records of the detrended
data; below, the connected component of the covariance between them for detrended and un-
detrended samples. The data are computed from all the 365×18 samples. Theoretical curves are
superimposed.

We report in the first plot of Figure (2.6) the number of forward and of backward
records in function of the time, and the connected part of their variance: 〈RiN 〉, 〈RiNRiN 〉−
〈RiN 〉〈RiN 〉 with N the years passed from the beginning of the sequence. The agreement
with the theory is good; forward records show a smoother behaviour as increasing the
length N just add a step to the previous sequence, while in the backward case the start-
ing point is shifted by one step. The second plot in Figure (2.6) shows the correlation
〈R+

NR
−
N 〉 − 〈R

+
N 〉〈R

−
N 〉: the computed quantity from the sample oscillates around the cor-

rect value 1 − π2/6 + 1/N . The plot shows also the same quantity computed for the
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original samples, without subtracting the linear trend: it is clear a small shift with respect
to the detrended curve which makes the results quite incompatible with the theoretical
value predicted for i.i.d. variables. Moreover, for the un-detrended samples, the number
of forward records grows a bit faster and the one of backward records a bit slower with
respect to the detrended ones (not shown in the plot).

In conclusion, the average daily temperature in Europe in the last century, at a
fixed day of the year, follows the statistics of a set of i.i.d. variables, once detrended
from the global warming. In particular we showed that the records follow the expected
i.i.d. behaviour and the correlation between forward and backward ones approaches the
predicted constant value. Thus a simple subtraction of the annual average temperature can
describe the deterministic part of temperatures behaviour, while the stochastic component
is made of uncorrelated fluctuations.



Chapter 3

Records: statistics of the ages

In the previous section the focus was on the number of records of a given sequence long
N . The other non trivial aspect of records statistics concerns how many steps a record
survives, the so called age: the average age is simply given by the length of the sequence
divided by the average number of records, but we can ask for the statistics of the longest
age or the probability that the longest lasting record is exactly the maximum. The concept
of age was already employed to obtain the statistic of the number of records for random
walks and we recall here the definition. Given the sequence {xi}, and two successive
records xi, xj with i < j, the age of xi is ln = j − i where n is the index of the record
xi (first record of the series, second one...). As the maximum is never surpassed, we must
set a convention for its age, and this is usually done in slightly different ways according
to the model in exam. In random walks we saw it is set to lM = N −m, where m is the
step at which the maximum happens and, for a sequence long N , M = RN is the number
of (forward) records. As the first point of the sequence has by convention the index 0, i.e.
{xi} = {x0, ..., xN}, it holds

∑M
i=1 li = N . In the i.i.d. case instead lM = N −m+ 1; but

here the first step has index 1, i.e. {xi} = {x1, ..., xN}, so that the relation
∑M

i=1 li = N
is still valid. The ages of the backward records are taken naturally looking at the inverted
time sequence, starting from i = N and proceeding backward, as shown in Figure 2.1.

It must be noticed that lM has not the same physical meaning as the other li: it is
not defined by a record breaking but depends on the observed length N and, once fixed
the other ages, it is fixed as the ages sum to N . Nonetheless, for forward records, it is
useful to explore the ages statistics both including lM or excluding it (an index I will
refer to the first case and II to the second); while for forward-backward records, non
trivial quantities are obtained only without considering the forward and backward ages
of the maximum. Including them would give trivial results as, if the maximum level is
reached only once, there is the further constraint that the forward age of the maximum
is the sum of all the backward ages a part the one of the maximum (and plus one in the
i.i.d. case) and viceversa. In this chapter, we are going to study extreme object for the
forward cases I and II and the forward-backward case for i.i.d. variables and random
walks with continuous jump distribution. For the lattice random walks we ask for some
specific questions concerning the role of ties in this situation.

The statistics for the forward case is already well known [5], [12]. Remarkably, the
mathematical treatment of the problem can be easily adapted to study other intervals
problems, such as the ages of the zeros of a stochastic process ([13], [14]), which show
strong analogies with the ages of records (qualitatively and even quantitatively). No

37
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previous studies are known for the forward backward case instead.

3.1 I.I.D. variables

I.I.D.: longest ages of forward records We want to build for the i.i.d. model the
joint probability of having M records in a N -sequence, each with an age li. We denote
{~l, lM} = {l1, l2, ..., lM}, while ~l = {l1, l2, ..., lM−1}. As in the statistics of the number of
records, it is useful to define a change of variable:

uk =

∫ xk

d−

p(y)dy; (3.1)

which is the probability of staying under the level xk for one step. We will see that, as
for the numbers, the specific distribution p(x) will have no role in the statistics of ages.
A record with level xk survives l steps if the walker remains under xk so far, but as every
point - and so every step - is independent, the probability of the event factorizes giving
(uk)

l. This applies for every record of the sequence therefore the joint probability of the
ages becomes:

P I({~l, lM},M |N) =

∫ d+

d−

dyM p(yM )

[∫ yM

d−

p(x) dx

]lM−1

×
M−1∏
k=1

∫ yk+1

d−

dyk p(yk)

[∫ yk

d−

p(x) dx

]lk−1

δ∑M
k=1 lk,N

= (3.2)

=

∫ 1

0
duM (uM ) lM−1

M−1∏
k=1

∫ uk+1

0
duk (uk)

lk−1 δ∑M
i=1 li,N

= (3.3)

=
δ∑M

i=1 li,N

l1(l1 + l2) · · · (l1 + l2 + · · ·+ lM )
; (3.4)

where we integrated on the record levels, provided each of them is smaller than the suc-
cessive ones. Again the change of variables gives an expression independent from the
distribution, ensuring the universality of the results. The analogous object for the set ~l is
the sum over lM of (3.4):

P II({~l },M |N) =
Θ
(∑M−1

i=1 li − (N − 1)
)

l1 · · · (l1 + · · ·+ lM−1)N
; (3.5)

and for M = 1 is defined as P II({·}, 1|N) = 1/N which is the probability that the first
variable is the maximum.

The first interesting quantity we look at is the longest age: if the average age scales
for large N like ∼ N/ lnN , we will see that the longest one displays a behaviour linear in
N . The results are clearly different if we look for the longest age among the set {~l, lM} or
{~l }. The two possibilities will be explored, and we started from the first case (I) in which
lM is considered.

To get the distribution of lmax,N , consider the cumulative function F (l|N) = P(lmax,N ≤
l). For case I, F I is given by (3.3) summed over the number of records M up to N , and
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over all the ages up to l. Once more, the task is easier taking the generating function.
Using F I(l| 0) = 1, and the delta function to distribute zN :

∞∑
N=0

F I(l|N) zN = 1 +
∞∑

M=1

∫ 1

0
duM f(uM )

M−1∏
k=1

∫ uk+1

0
duk f(uk) ; (3.6)

f(uk) = z
l∑

m=1

(zuk)
m−1 . (3.7)

The function f(uk) is easily integrable: g(u) =
∫ u

0 f(u′) du′ =
∑l

m=1
(zu)m

m . It follows:

∞∑
N=0

F I(l|N) zN = 1 +
∞∑

M=1

(g(1))M

M !
= exp

(
l∑

k=1

zk

k

)
. (3.8)

The mean value of the longest age can be expressed as 〈lmax,N 〉I =
∑∞

l=1 (1 − F I(l|N)),
so that:

∞∑
N=0

〈lmax,N 〉IzN =
1

1− z

∞∑
l=1

[
1− exp

(
−

∞∑
k=l+1

zk

k

)]
. (3.9)

The analysis of this expression for large N is done taking the limit z = e−s → 1 where
sums can be replaced by integrals: a rescale of the variables (x = sl; y = sm) gives a s−2

dependence which means 〈lmax,N 〉I ∼ cIN ; the constant cI is given by:

cI =

∫ ∞
0

dx (1− e−
∫∞
x dy e

−y
y ) = 0.62432... (3.10)

The calculations are more complicated for case II: as the sum of the ages in ~l has
not a fixed value, the sum over N in the generating function can not be easily eliminated.
However, instead of using P II(~l,M |N), it is possible to recover 〈lmax,N 〉II developing the
formalism for the forward and backward case as in the following paragraph and integrating
it over the backward ages.

I.I.D.: longest ages of forward and backward records Given M+ forward record
and M− backward ones in a N -sequence, we define the forward and backward ages re-
spectively:

~l = {l1, ..., lM+−1} ; ~k = {k1, ..., kM−−1} . (3.11)

M+−1∑
i=1

li +
M−−1∑
j=1

kj = N − 1 (3.12)

As anticipated, the analysis focusses on these sets only, where the ages of the maximum
are not included. In the following, when speaking of both forward and backward ages,
this is the understood convention.

Consider first the probability of {~l,~k} at fixed maximum in position m: it factorizes
in the probabilities of each of the two sets in the respective sub-sequences, which are
independent. The unconditioned distribution is given summing it over m, which has
probability 1/N of hosting the maximum:

P ({~l,~k},M+,M−|N) =
1

N

N∑
m=1

P I(~l,M+ − 1|m− 1)P I(~k,M− − 1|N −m) . (3.13)
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In the right hand side we use formula (3.3) for the probability (case I) as in the single
sub-sequence also the ages lM+−1 or lM−−1 is considered. We explicit it and also introduce
a fictive variable v to get rid of the denominator N and express it as an integral. This
variable corresponds to the level of the maximum. Calling for simplicity µ+ = M+ − 1
and µ− = M− − 1:

P ({~l,~k},M+,M−|N) =

∫ 1

0
dv

∫ v

0
duµ+u

lµ+−1

µ+

µ+−1∏
i=1

∫ ui+1

0
duiu

li−1
i

×
∫ v

0
duµ−u

kµ−−1

µ−

µ−−1∏
j=1

∫ uj+1

0
duju

kj−1
j δ∑µ+

i=1 li+
∑µ−
j=1 kj ,N−1

. (3.14)

Once again it is independent from the distribution. As in the previous case, it is interesting
to calculate the longest age labs,N among the two sets {~l,~k}. First of all we compute the
cumulative function that all the forward ages are smaller than l and the backward ones
than k, summing (3.14) over li until l, ki until k and over the two numbers of records until
N . Considering the generating function, the computations are similar to what already
done in the forward case except for the last degree of freedom v:

∞∑
N=0

F (l, k|N) zN = 1 +

∫ 1

0
dv

z

(1− zv)2
e−gl(v)−gk(v); (3.15)

gp(v) =

p∑
m=1

(zv)m

m
; gp(v) =

∞∑
m=p+1

(zv)m

m
; (3.16)

the term 1 comes from N = 0 (in the forward case it was absorbed to recover the full
expression of the exponential). We must pay attention to the case µ+ = µ− = 0: it
contributes to F with z for N = 1, while for N > 1 it represent a “flat case”, which has
probability zero (in a continuous model). However it is re-expressed in terms of a v integral
and absorbed in the exponential. In the limit l, k → ∞, (3.15) gives 1

1−z which means,
correctly, F (∞,∞|N) = 1. The average of the absolute longest age (among forward and
backward ones) is the sum over l of 1− F (l, l|N); its generating function is:

∞∑
N=0

〈labs〉 zN =

∞∑
l=1

∫ 1

0
dv

z

(1− zv)2

(
1− e−2

∑∞
m=l+1

(zv)m

m

)
. (3.17)

We consider the continuous limit replacing the sums with integrals, and perform the
changes of variables x = As l; y = Asm with the definition A = 1− ln v

s (and z = e−s → 1).
Keeping the inferior extreme of integration in x at zero (as in the continuous limit l starts
from zero) gives the result 〈labs,N 〉 ∼ cabsN , with:

cabs =
1

2

∫ ∞
0

dx

(
1− e−2

∫∞
x dy e

−y
y

)
= 0.475639.... (3.18)

The general moment of the absolute longest age goes like 〈lnabs,N 〉 ∼ LnNn:

Ln =
1

(n+ 1)!

∫ ∞
0

dxxn−1

(
1− e−2

∫∞
x dy e

−y
y

)
. (3.19)
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Coming back to the forward case II, we ask for the longest age in the~l set. Its average value
is given reproducing the calculations for 〈labs,N 〉 but using F (l,∞|N), so “integrating” on
the backward ages. The result is:

〈lmax〉II ∼ cIIN =
cI
2

= 0.31216...N ; (3.20)

but there is no simple physical explanation for the relation between the two cases.
In the forward-backward case is also interesting the correlation between the longest

forward age (in the set ~l) 〈lfmax,N 〉II and the longest backward one (in ~k) 〈lbmax,N 〉II . We
adapt the formula of the discrete derivative:

〈lfmax,N l
b
max,N 〉 =

∞∑
l=1

∞∑
k=1

(1 + F (l, k|N)− F (l,∞|N)− F (∞, k|N)) ; (3.21)

with F (l, k|N) from (3.15). The analysis at large N gives 〈lfmax,N lbmax,N 〉 ∼ cfbN
2, with

cfb = cI/6 so that the covariance between the two object is negative and takes asymptot-
ically the value −cIN2/12.

I.I.D.: last age behaviour Another interesting quantity is the probability that the
last age is longer than all the previous ones (independently from the number of records).
We analyse this object for the three cases treated. Starting from the forward case I, the
probability that lM is bigger than every other age in ~l (the maximum is reached early in
the sequence) is:

QI(lM ) = P (lM > l1, ..., lM−1|N) =

N∑
lM=1

lM∑
l1=1

· · ·
lM∑

lM−1=1

∞∑
M=1

P I({~l, lM},M |N). (3.22)

As usual the large N behaviour is extract by generating function; using (3.3) in (3.22):

∞∑
N=0

QI(lM ) zN = 1 +

∫ 1

0
duM z

∞∑
lM=1

(zuM )lM−1 exp

(
lM∑
m=1

(zuM )m

m

)
; (3.23)

Passages similar to the ones that brought to (3.18), now with A = 1− lnuM
s , gives:

∞∑
N=0

QI(lM ) zN = 1 +
1

s

∫ 1

0
duM

∫ ∞
0

dx
e−x

AuM

e
−
∫∞
x dy e

−y
y

1− e−As
s→0−→ cI

s
; (3.24)

where the integral in x gives cI and the one in uM gives one when solved for e−s ∼ 1− s.
Therefore the probability that the last age is the longest in the large N limit is cI , equal
to the average longest age divided by N or, roughly speaking, to its derivative in N .
Indeed, adding a step at the end of the sequence, the probability that the longest age
increases of one (∆lmax,N=1) is exactly QI , as it happens when the last age is already
the longest. With probability (1−QI), instead, the longest age remains constant, so the
average ∆lmax,N gives QI .

To find the result without considering the last age, so the probability that lµ+ >
l1, ..., lµ+−1 (isolated maximum with respect to the previous records), we consider the
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forward-backward formalism and sum over the backward ages up to infinity. Using the
correspondent probability (3.14) the leading term is:

∞∑
N=0

QII(lµ+) zN =
1

s

∫ 1

0
dv

e−s

1− e−s v

∫ v

0
duµ+

∫ ∞
0

dx
e−x

Auµ+

e
−
∫∞
x dy e

−y
y

1− e−As
s→0−→ cI

s
;

(3.25)
and the subdominant ones from N = 0, 1 are constant or logarithmic divergences. In the
integral in v, we recognize a factor similar to the one in (3.24) and a prefactor coming
from the integration of the backward part. QII(lµ+) turns out to be equal to QI(lM ): this
can be explained considering that the variables are independent, so every age of the set
can be the longest with equal probability.

Finally in the forward-backward case we look at the probability that lµ+ is the longest

in the ~l set and kµ− the longest in ~k at the same time (records gather at the two extremes
of the sequence, but for the maximum which is in the middle). Neglecting the constant
and s−1 terms from N = 0 and N = 1, the leading one is:

∞∑
N=0

Q(lµ+ , kµ−) zN =
1

s2

∫ 1

0
dv z

∫ v

0
duµ+

∫ ∞
0

dx
e−x

Auµ+

e
−
∫∞
x dy e

−y
y

1− e−As

2

s→0−→ (cI)
2

s
;

(3.26)
The result points out that for i.i.d. variables, considering the two sequences on the left and
on the right of the maximum, the statistic of the internal order of the ages is uncorrelated,
so it is not affected by the fact they have their last point in common and must stay under
it.

Simulations We verified the analytical results for the statistic of the ages of records
simulating a sequence of i.i.d. variables with flat, Gaussian and exponential distribution.
For the average longest ages behaviour we used 104 samples of 103 steps, calculating for
every step the average forward longest age, with convention I and II; the absolute longest
age in the set {~l,~k}; the correlation between 〈lfmax,N 〉II and 〈lbmax,N 〉II . There is excellent
agreement with the theory for every step N. For the probability that the last age is the
longest we used 104 samples of 2 · 103 steps: we computed the fraction of trajectories
for which the last age was the longest, for each case we treated. They all reach the
correct constant, but with different relaxation times: the forward case including the last
age relaxes in about 200 steps, faster than the case without it (about 400 steps). Finally
the forward backward case reaches the asymptotic value around step 800. This last three
quantities are shown in Figure (3.1).

3.2 Random walks with continuous jump distribution

R.W.: longest age In the precedent section we already built the joint probability of the
ages and number of records for the random walk; for the forward and forward backward
cases they are respectively:

P I({~l, lM},M |N) = f(l1)f(l2) · · · f(lM−1) q(lM ) δ∑M
i=1 li,N

; (3.27)

P ({~l,~k},M+,M−|N) = f(l1) · · · f(lµ+) f(k1) · · · f(kµ−) δ∑µ+

i=1 li+
∑µ−
j=1 kj ,N

. (3.28)
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Figure 3.1: The probability that the last age is the longest in the forward case excluding the age
of the maximum (red), including it (green), and, below, the forward backward case (blue). For
every quantity it is shown the theoretical curve, superimposed to the one obtained by simulation
for Gaussian jump distribution.

with µ± = M±−1; P II(~l,M |N) (the forward case without the maximum age) is obtained
integrating (3.27) over lM .

We start studying the behaviour at large N of the longest age in the set {~l, lM}. As in
the i.i.d. case we calculate F I(l|N), the cumulative probability that all the ages, including
the last one, are smaller than l. It is computed summing (3.27) over all li up to l and over
the number of records M up to N + 1. Applying the delta function to solve the sum in
N , the generating function of F I(l|N) is:

∞∑
N=0

F I(l|N) zN =
∞∑

M=1

[
l∑

m=1

f(k) zm

]M−1 l∑
m=1

q(m) zm =

∑l
m=1 q(m) zm

1−
∑l

m=1 f(m) zm
. (3.29)

By definition f(j) = q(j − 1)− q(j) and q(0) = 1 so, using z = e−s, the denominator can
be written as:

q(l) e−sl + (1− e−s)
l−1∑
m=0

q(m) e−sm. (3.30)

In the small s limit the sum in (3.30) becomes an integral; after the change of variable
y = sm (s small) the persistence q(y/s) can be approximated as 1/

√
πy/s (large y/s).

The integral gives therefore erf
√
sl/
√
s. The same result holds for the numerator in

(3.29). We know that 〈lmax,N 〉I =
∑∞

l=1(1 − F I(l|N)), and applying the above results
with 1− e−s ∼ s, its generating function is:

∞∑
N=0

〈lmax,N 〉I zN =
∞∑
l=1

[
1

s
− erf

√
sl

√
s q(l)e−sl + s erf

√
sl

]
y=sl
=

1

s2

∫ ∞
0

dy
1

1 +
√
π y ey erf

√
y

=
1

s2
0.6265... ; (3.31)

where again the asymptotic behaviour of q(x) was used. Therefore 〈lmax,N 〉I ∼ bIN , with
bI = 0.6265... which is a little bigger than the correspondent result cI = 0.6243... for the
i.i.d. variables.

The average of the absolute longest age of the set {~l,~k} is 〈labs,N 〉 =
∑∞

l=1(1−F (l, l|N))
with F (l, k|N) the cumulative probability that all the forward ages are smaller than l and
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the backward ones than k. It is obtained from (3.28) summing li up to l, ki up to k, and
µ+, µ− up to N. The generating function is:

∞∑
N=0

F (l, k|N) zN =
∞∑

µ+,µ−=0

[
l∑

m=1

f(m) zm

]µ+ [
k∑

n=1

f(n) zn

]µ−
=

=
1(

1−
∑l

m=1 f(m) zm
)(

1−
∑k

n=1 f(n) zn
) . (3.32)

Passages similar to the ones done before lead for the absolute longest age to:

∞∑
N=0

〈labs,N 〉 zN =
1

s2

∫ ∞
0

dy

[
1− π y e2y

(1 +
√
π y ey erf

√
y)2

]
=

1

s2
0.4035... ; (3.33)

and again we confront this coefficient babs = 0.4035 with cabs = 0.4756... for the i.i.d. case.
In this case the coefficient is smaller.

Finally, the average longest forward age excluding the one of the maximum is obtained
from 〈lmax,N 〉II =

∑∞
l=1(1 − F (l,∞|N)). The limit k → ∞ in (3.32) gives a factor

(1− f̃(z))−1 ∼ 1/
√
s, and the result is:

∞∑
N=0

〈lmax,N 〉II zN =
1

s2

∫ ∞
0

dy

[
1−

√
π y ey

1 +
√
π y ey erf

√
y

]
=

1

s2
0.2417... ; (3.34)

which has no a simple relation with bI , while the correspondent cII in the i.i.d. case was
simply cI/2. This suggest that in the random walk case records are close one to the other
until the maximum, as a consequence of the persistence of the walk itself.

R.W.: last age behaviour As for i.i.d. variables, the other object we look at is the
probability that the last forward age is the longest, defining it with the two conventions,
and the joint probability that lµ+ is the longest in ~l and kµ− the longest in ~k.

In forward case I, the probability QI(lM ) that lM is bigger than all the others is
computed from (3.27) summing over all possible M and lM , and summing the other ages
up to lM . We have:

∞∑
N=0

QI(lM ) zN =

∞∑
lM=1

q(lM ) zlM

1−
∑lM

m=1 f(m) zm
. (3.35)

Doing the same passages as before in the denominator, the expression becomes:

∞∑
N=0

QI(lM ) zN =
1

s

∫ ∞
0

dy
1

1 +
√
π y ey erf

√
y

=
1

s
bI . (3.36)

As explained in the i.i.d. case, QI(lM ) is just the derivative of 〈lmax,N 〉I . The analogous

calculation for the last age in the set ~l (excluding the age of the maximum) uses the forward
backward probability (3.28): QII(lµ+) comes from its sum over µ+, µ− up to N , lµ+ and
all ki up to infinity, while the other l are summed up to lµ+ . Moreover we set a convention
for the case in which the maximum appears in the first position (step 0): we choose to
consider it among the ones to be counted in QII(lµ+), as in this way the probability is
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normalized. Retaining it or not gives a difference detectable in the simulations: indeed,
we are going to see that QII(lR+) goes to zero with N , so we calculate not only the zero
order of its expression (unaffected by the marginal situation) but also the first correction,
which is of the same order of the term given by the particular case said. Before computing
it, we underline the difference between random walk and i.i.d. variables: in the first, as
xi is given by xi−1 + ξi, usually the walker does not change its position of a big quantity
in one jump and we expect that a record is followed soon by another one. Roughly, this
is why the maximum follows the previous record after few steps, so that the age between
them has little probability of being the longest, while in the i.i.d. case the probability
was the same for each age thanks to the independence of variables. The expression for
QII(lµ+) is:

∞∑
N=0

QII(lµ+) zN =
1

1− f̃(z)

1 +

∞∑
lµ+=1

f(lµ+) zlµ+

1−
∑lµ+

m=1 f(m) zm

 . (3.37)

As said, we want to perform a more precise analysis than before. The denominator of
the non trivial term in the parenthesis, which we call S(z), tends to q(lµ+) when z → 1.
Indeed, as f(l) = q(l − 1)− q(l):

1−
lµ+∑
m=1

f(m) zm = 1− f̃(z) +
∞∑

m=lµ++1

f(m) zm =
√

1− z + q(lµ+) zlµ+ ; (3.38)

but replacing it with q(lµ+) the sum has an exact expression:

J(z) =
∞∑
i=1

f(i)

q(i)
zi =

∞∑
i=1

zi

2i− 1
=

1

2

√
z ln

[
(1 +

√
z)2

1− z

]
∼ ln 2− 1

2
ln(1− z) . (3.39)

The correction S(z)− J(z) can now be computed in an approximate way substituting the
sum with integrals in the limit z → 1. Considering q(x) ∼ 1/

√
πx , f(x) ∼ 1/(2x

√
πx)

and computing the denominator in S(z) through (3.30):

S(z)− J(z) =

∫ ∞
0

dy
e−y

2y

[
ey

1 +
√
π y ey erf

√
y
− 1

]
=

1

2
(γ − lnπ) . (3.40)

The last two equations together injected in (3.37) gives the generating function of the
probability, the inverse of which decays non trivially with N :

∞∑
N=0

QII(lµ+) zN =
1

2
√
s

(2 + γ − lnπ + 2 ln 2− ln s); (3.41)

QII(lµ+) =
lnN + a0

2
√
πN

; a0 = 2(1 + γ + 2 ln 2)− lnπ ∼ 4.78229... . (3.42)

The forward backward case can be inferred from the previous one: in (3.37) the term
(1− f̃)−1 comes from the integration over all the backward ages; considering instead their
sum up to kµ− it gives another 1 + S(z) factor, so we have:

∞∑
N=0

Q(lµ+ , kµ−) zN = 1 + 2S(z) + S2(z) ; (3.43)
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Figure 3.2: The probability that the last age is the longest, in the forward case excluding the age
of the maximum and in the forward backward one. For every quantity it is shown the theoretical
curve, superimposed to the one obtained by simulation for Gaussian jump distribution.

where 1 comes from N = 0 and 2S(z) from the cases µ+ = 0 or µ− = 0. This last term is
not negligible in our analysis until the first correction. Knowing the expression for S(z),
we can invert (3.43):

Q(lµ+ , kµ−) =
lnN + a1

2N
; a1 = 3γ − lnπ + 2 ln 2 + 2 ∼ 3.97321... . (3.44)

It goes to zero more rapidly than the forward case, but less fast than its square: for i.i.d.
variables Q(lµ+ , kµ−) = (QII(lµ+))2, but here this relation does not hold as the variables

are strongly correlated and so are the sets ~l and ~k and the internal order of the ages.

Simulations We simulated 105 samples of 103 steps each and calculated for every step
the longest age in the three cases considered, using flat, Gaussian and exponential jump
distributions. The simulations agree with the analytical results. For the probability that
the last age is the longest, we used the same number of samples and 2000 steps, computing
the fraction of trajectories for which the last age was the longest. We found good agreement
with the theory, in particular for QII(lµ+) and Q(lµ+ , kµ−) the first order corrections are
clearly detectable. Figure (3.2) shows a focus on these last two probabilities.

3.3 Lattice Random Walks

It was already pointed out how the lattice random walk approaches the behaviour of a
continuous one with diffusion coefficient 1/2 in the large time limit, and how the statistics
of the number of records takes the same form as in the continuous case up to a prefactor√

2 for each degree of freedom. Rather than ask the same previous questions about the
longest age, it is interesting to analyse better the possibility that a tie occurs, looking at
the probability that the maximum level is reached more than once and, if it is the case, the
probability that the age of the gap m which divide the “first” and the “last” maximum is
longer than all the records ages, object which is not known in literature. Remember that
the probability of having M+ and M− records with the respective sets of ages {~l,~k}, not
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counting the age of the maximum, is (2.73):

P ({~l,~k},M+,M−|N) = f(l1) · · · f(lM+−1)f(k1) · · · f(kM−−1) g(m) δ∑M+

i=1 li+
∑M−
j=1 kj+m,N

.

(3.45)
If the maximum is reached only once, it means m = 0. The probability of having more
than one maximum is obtained summing (3.45) over all the ages and number of records,
and over all m except 0. The generating function of P (m = 0) then becomes:

∞∑
N=0

P (m = 0) =

∞∑
M+=1

∞∑
M+=1

∞∑
m=1

g(m) zm

 ∞∑
p=1

f(p) zp

M++M−−2

=

=
g̃(z)− 1

(1− f̃(z))2
=

1

1− z
− 1

(1− f̃(z))2
. (3.46)

In the first passage the factor zN has been divided between the sums to recover the
expression of f̃(z) as usual, then we used the fact that g(0) = 1 and that the probability
is normalized (the generating function of 1 is (1− z)−1). Remember that f(0) = 0 so the
sum over p gives f̃(z) even if it does not start from 0. The inversion gives the probability
in terms of gamma functions, as usual for the discrete case, but in the large N limit it
reaches the constant 1/2: in half of the case the maximum in unique. However, as we are
going to see, the fraction of cases in which two maxima happens very distant is small: the
probability that m is longer than all the ages of the records (both forward and backward)
is given by the sum of (3.45) over all the ages up to m and over all m, M+, M−. It gives:

∞∑
N=0

P (m > l1, ..., lM+−1, k1, ..., kM− |N) =

∞∑
m=0

g(m) zm

(1−
∑m

p=1 f(p) zp)2
. (3.47)

For an asymptotic analysis is sufficient to consider the large l expansion of the first passage
probability (2.68): f(l) ∼

√
2/(πl), which has the

√
2 factor of difference with respect to

the continuous case. The function g(m) is different from zero only for m even. Writing
m = 2r, in the large r limit:

g(2r) = 2 f(2r + 1) ∼ 2
d

dr

(√
2

π2r

)
∼ 1√

πr3
; (3.48)

so rearranging the denominator as usual (but with the correct
√

2 factors) it holds (z =
e−s, y = 2rs):

∞∑
N=0

P (m > · · · |N)
s→0−−−→

√
π

2s

∫ ∞
0

dy
e−y
√
y

1

(e−y +
√
πyerf

√
y)2

=

√
2

s
; (3.49)

which means P (m > · · · |N) →
√

2
πN for N → ∞. Therefore for large N the probability

that the maximum is reached in very distant steps is weak: if it was the contrary, the
forward and backward records would have been less and less correlated, while we saw in
the previous section that the correlation between their number approaches a constant as
in the continuous case.
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Chapter 4

Multiple random walks

Besides the ones already treated, there are many aspects of the statistics of records that
we can explore. As this work focus on the joint statistics of forward and backward records,
it is interesting to look at situations in which the relation between the two kinds of records
is not trivial. The presence of a drift for example, changes the correlation between forward
and backward records, which approaches one when the drift becomes infinite, but a positive
drift has on forward records the same effect as a negative one on backward ones, thanks
to symmetry. The statistics of the forward records alone in presence of a drift has already
been studied: it is not a trivial problem as the universality breaks and there are different
behaviours according to the variance of the jump distribution and the sign of the drift but
asymptotic analytical results are available both for i.i.d. variables [19] and random walks
[20],[21]. The first order effect is a linear increase (or decrease) of records with time, but
the development of these result for the joint statistics of forward and backward records
is difficult as they are based on the asymptotic expansion of the probability that a site
is a record for N big: if a site i is big, the corresponding backward index N − i + 1 is
small, invalidating the expansion in this case. As anticipated, the universality is broken
also when considering a rounding effect: if every variable is rounded to a value multiple
of a fixed step ∆x, some ties occurs and some records can be suppressed as they exceed
the previous record value of an amount less than a full step. It is shown ([16]-[17]) that
in this case the number of records is suppressed in different ways according to the class
of universality of the distribution (bounded support, power law tails or faster than power
law) as it is important how the percentiles of the distribution are arranged.

The fact that for the examples above only the large time behaviour of the probability
of being a record can be worked out makes difficult to find the correct expression for the
correlation between forward and backward records and, as it provides no great information
(in both situations records becomes uncorrelated as shown from simulations), we decide
to focus on another problem.

Contrary to the previous cases, the symmetry between forward and backward records
is broken in a non specular way when considering a number P of Brownian walkers starting
from 0, with trajectories xαi , where i stands for the discrete time step and α is the label
of the walker, 1 ≤ α ≤ P . We will call the overall length of the studied sequence with a
small n. The records of a single walk respect the usual statistics but now we are interested
in global records, which we define as follow. Consider, at a fixed time i, the maximum
position of all the random walkers:

xmaxi = max[x1
i , x

2
i , ..., x

P
i ]; (4.1)

49
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0 n

x

Figure 4.1: A realization of three random walks, all starting in zero and spreading in the space.
Forward records are marked by full circles, backward ones by empty squares.

then a global record happens if xmaxi is bigger than all the previous maximum positions
(xmaxi > xmaxj , ∀ 0 ≤ j < i). In other words we build the sequence of the maximal
position among the walkers at every time and count the records in this sequence. We
notice that the maximal positions at different time steps can come from different walkers
as shown in Figure (4.1), which presents a realization for three walkers. Moreover, as
this is a probabilistic process, we expect that the walkers spread in the space, causing an
increased number of forward records as long as P grows. On the contrary, looking at the
inverse sequence, all the paths converge toward zero, so we expect the number of backward
records to decrease with P . In [15], it is studied the P dependence of the number of global
forward records at time n, which we call R+

n,P . It is shown that the universality is broken,
according to the variance of the jump distribution, i.e. whether it is finite or not: indeed
in the case of Lévy distributions, records are dominated by the occasional big jumps and
this mechanism is not much influenced by the presence of many walkers while in the finite
variance case the more the walkers are, the more the positions spread in space.

Following [15], the best approach to this problem is an ab-initio one, where we use the
propagator of the random walk process and the persistence (survival) probability. The
propagator G(x, x0,m) (the Green function of the single random walk) is the probability
that a walker reaches the infinitesimal interval [x, x + dx] after m time steps, starting
at x0 at time 0. In this situation we need it as we must compare the levels reached by
the walkers, while in the single walk case the level was unimportant. As previously, the
persistence qm(x) is the probability of staying under the level x, starting from 0, in the
time interval from 0 to m. If x is zero, we know from the Sparre-Andersen theorem that
qm(0) ∼ 1/

√
πm for large m, whatever the jump distribution is. For a generic x instead

we must specify whether the jump distribution has finite variance or not, as the objects
differs in the two cases. The propagator differs as well. Before specifying them in the two
cases, however, we can write a general formula for the number of global backward records
using these two quantities:

〈R−n,P 〉 =
n∑

m=1

r−n,P (m) ; (4.2)

r−n,P (m) = P qn−m(0)

∫ ∞
−∞

dxG(x, 0,m)

[∫ +∞

0
dtG(x− t, 0,m) qn−m(t)

]P−1

.(4.3)
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The rate r−n,P (m) is the probability that at time step m there is a backward record. This
happens if a walker which has reached a level x in m starting from zero (without any
constraint), remains under it for all the following time steps until n, and the other walkers
stay below x as well. We integrate over the maximum position x and over the positions
x− t of the other walkers at time m (which must be however below x). The factor P arises
from the fact that every walker can assume the maximum position with equal probability.
We must use this “forward approach” keeping trace of the evolution of the walkers from
the first step as there is the constraint that they all start in zero. It is useful to compare
this expression with the analogous one for the number of forward records, worked out in
[15]:

r+
n,P (m) = P

∫ ∞
0

dxG+(x, 0,m)[qm(x)]P−1; (4.4)

where G+(x, 0,m) is the probability of reaching x in m step for the first time (starting
from zero), and qm(x) as before. We now report the result on the asymptotic behaviours
of the relevant quantities (persistence probability and propagator) without deriving them,
and focus on the computation of the backward records rate.

Finite variance jump distribution We consider first the case where the jump dis-
tribution f(x) has a finite variance σ2, which means its Fourier transform for small k
can be written as f̃(k) ≈ 1 − σ2k2/2. In the continuous time approximation, possible
in the large time limit, the propagator follows a diffusion equation with initial condition
G(x, x0, 0) = δ(x−x0) and diffusion coefficient 2D = σ2, so its behaviour is easily worked
out:

G(x, x0,m)
m→∞−−−−→ 1√

2πmσ2
e−

(x−x0)2

2mσ2 . (4.5)

Renaming the scaling argument z := x/
√

2mσ2 , in [15] is shown that the persistence
probability and the constrained propagator G+(x, 0,m) behave for large x and large m
but fixed z like:

qm(x)
x,m→∞−−−−−→
z fixed

erf

(
x√

2mσ2

)
; (4.6)

G+(x, 0,m)
x,m→∞−−−−−→
z fixed

z√
2σ2m

d

dz
erf(z)

∣∣∣∣
z= x√

2mσ2

. (4.7)

For large m (and so x) it is immediate to replace these asymptotic behaviours in (4.4)
and, through the scaling change of variable, we obtain in the large n limit:

〈R+
n,P 〉 =

∫ n

0
dm

1√
m

∫ ∞
0

dz z
d

dz
[erf(z)]P . (4.8)

The first integral gives 2
√
n and the second can be interpreted as the average value of the

maximum of P independent and identically distributed variables with parental distribution
p(z) = 1

π e
−z2

, which is
√

lnP for large P (see 1.1). Thus:

〈R+
n,P 〉√
n

P→∞−−−−→
n→∞

2
√

lnP ; (4.9)

the result shows the typical square root dependence on the time and a slower growth
with the number of the walkers. Note also that it is independent from the value of the
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variance σ2. The corrections to the first order are strong (a term in − ln(lnP )

2
√

lnP
followed by

O[(lnP )−1/2], see [15]) with the third order still clearly detectable for simulations of 1000
samples (as the ones we performed).

In the backward case, we expect an analogous square root time dependence; moreover
we assume that the behaviour is dominated by large m but such that n−m is still large.
On that basis, we can replace (4.5) and (4.6) in (4.3) and rescale the variables as follow:

x′ =
x√

2mσ2
; t′ =

t√
2mσ2

; m = y n (0 ≤ y ≤ 1). (4.10)

With these changes the average number of backward records becomes:

〈R−n,P 〉√
n

= P

∫ 1

0
dy

1√
π(1− y)

∫ ∞
−∞

dx′
e−x

′2

√
π
GP (x) ; (4.11)

GP (x) := [F (x)]P−1 :=

[∫ ∞
0

dt′
e−(x′−t′)2

√
π

erf

(
t′
√

y

1− y

)]P−1

. (4.12)

We want now to study this multiple integral when P is large. In this limit GP (x) ap-
proaches a step function: the change from zero to one happens around a value x∗, in
which GP (x) has a flex point (G′′P (x∗) = 0 and G′P (x) has a maximum). If one computes
the derivatives of GP (x), it holds:

G′′P (x∗) = F ′′(x∗) [F (x∗)] + (P − 2) [F ′(x∗)]2 ∼ F ′′(x∗) [F (x∗)] + P [F ′(x∗)]2 = 0 (4.13)

where the last equality uses the fact that P is big. As in x∗ it holds F (x∗) ∼ 1 − α
P ∼ 1

for a certain α, the equation can be approximated as:

[F ′(x∗)]2

F ′′(x∗)
= − 1

P
. (4.14)

After computing the first derivative in x of F (x), it is possible to solve the integral in t′

by parts, which leads to the following expressions:

F ′(x) =

√
y

π
e−y x

2
[
1 + erf

(
x
√

1− y
)]

; (4.15)

F ′′(x) =

√
y

π
2e−y x

2

[
−xy

(
1 + erf

(
x
√

1− y
))

+

√
1− y
π

e−(1−y)x2

]
. (4.16)

As we guess that the main dependence comes from e−y (x∗)2 ∼ 1/P , which means x∗ ∼√
lnP/y, in the second derivative we can neglect the first term. Therefore (4.14) becomes:

e−y x
∗2

=
2y x∗

P

√
π

y

1

1 + erf
(
x∗
√

1− y
) . (4.17)

Back to (4.11), as GP (x) approaches a step function, we can approximate the integral in
x′ as follows:

P

∫ ∞
−∞

dx′
e−x

′2

√
π
GP (x) ∼ P

∫ ∞
x∗

dx′
e−x

′2

√
π
∼ P√

π x∗
e−x

∗2
; (4.18)
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where the last equality holds for x∗ → ∞ and it is easily proven computing the limit of
the ratio of the two expression by Hopital theorem. Using the expression of e−x

∗2
just

found, (4.18) becomes:

1√
π

(
x∗e− lnP

) 1−y
y

[
2
√
πy

1 + erf
(
x∗
√

1− y
)] 1

y

. (4.19)

This term must be included in the y integral in (4.11). It is immediate to see that the main
y dependence comes from 1 − y. Therefore we approximate y ∼ 1 whenever it appears
alone, and x∗ ∼

√
lnP ; moreover x∗ is subleading with respect to e− lnP , so:

〈R−n,P 〉√
n

=

∫ 1

0
dy

1√
π(1− y)

e− lnP (1−y)

√
π

 2
√
π

1 + erf
(√

lnP (1− y)
)
 ; (4.20)

a change of variable u = lnP (1− y) gives the final result:

〈R−n,P 〉√
n

=
2√
lnP

(ln(1 + erf(
√

lnP )) ∼ 2 ln 2√
lnP

. (4.21)

Also in this case there are corrections to the first order, going like ln(lnP )/ lnP but, as they
decade with the number of walkers, they are less important than in the forward situation.
In conclusion, as the walkers spread in space, on average the number of forward records
increases with the number of the walkers and the number of backward ones decreases, but
always a “slow” way, with a logarithmic dependences from P .

Jump distribution with divergent variance The second class of jump distributions
is the one where is not defined a variance:

∫ +∞
−∞ dxx2f(x) → ∞. The Lévy-Flights

distribution for example shows power law tails, i.e. for x → ∞ the jump probability
behaves like f(x) ∼ |x|−µ−1, with 0 < µ < 2, therefore σ2 = 〈x2〉 goes to infinity. As
we can not build a diffusion equation, in this case the propagator (the Green function)
is obtained solving a recursion relation similar to (1.18) going in the Fourier space: the
transform of the distribution is f̃(x) ≈ 1 − |ak|µ, where a is a microscopic length. The
well known result is:

G(x, x0,m)
m→∞−−−−→ 1

am1/µ
Φµ

(
(x− x0)

am1/µ

)
; (4.22)

where Φµ(z) is the Lévy stable function of index µ, defined through its Fourier transform:

Φµ(z) =

∫ ∞
−∞

dk

2π
e−|k|

µ−ikz . (4.23)

For large z, it behaves like |z|−µ−1. Clearly, for these distributions the correct scaling argu-
ment is z := x/(am1/µ). The behaviour of the persistence probability and the constrained
propagator for large x and m but fixed z is [15]:

qm(x)
x,m→∞−−−−−→
z fixed

1− Bµ

(x a−1m−1/µ)µ
; (4.24)

G+(x, 0,m)
x,m→∞−−−−−→
z fixed

2µBµ√
π z1+µ

. (4.25)
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The coefficients Bµ are different for distributions with definite mean value or unbounded
one:

Bµ =
aµ

π Γ(1− µ)

∫ ∞
0

du
uµ

1 + u2
, 0 < µ < 1 ; (4.26)

Bµ =
2aµ

π Γ(2− µ)

∫ ∞
0

du
uµ

(1 + u2)2
, 1 < µ < 2 .

Replacing these behaviours in (4.4) and rescaling the variables, we obtain for the number
of forward records in the large n limit an expression similar to the one for finite σ2:

〈R+
n,P 〉 =

∫ n

0
dm

1√
m

∫ ∞
0

dz
Aµ
µBµ

d

dz

[
1− Bµ

zµ

]P
. (4.27)

The integral in z is immediate to solve, as
Aµ
µBµ

= 2√
π

, so that:

〈R+
n,P 〉√
n

P→∞−−−−→
n→∞

4√
π
. (4.28)

independent from the number of walkers and from the index µ. The simulations shows
that for different Lévy coefficients this value is indeed reached but with different relaxation
times: in a few steps for µ ∼ 1, many more for µ→ 2.

For the backward case, it is harder than for finite σ2 distributions to work out the
exact asymptotic dependence as we have an explicit form for the Lévy functions Φµ(z)
only for some µ, while in the majority of the cases we just know the large z behaviour.
Moreover, even when the propagator is known (for µ = 1, for example, Φ1(z) becomes a
Cauchy distribution up to some constant), the previous approach does not hold, as the
persistence probability is not integrable in zero, and we need a more accurate analysis to
work out the correct coefficients. As the task is beyond the present treatment, we prefer
to perform just a rough scaling analysis to look for the P dependence of the number of
backward records and then we will try to understand from the simulations whether the
unknown coefficient depend on µ or not.

Rescaling the variables in the proper way and introducing y as above, the number of
backward records becomes:

x′ =
x

am1/µ
; t′ =

t

am1/µ
; m = y n (0 ≤ y ≤ 1) ; (4.29)

〈R−n,P 〉√
n

= P

∫ 1

0
dy

1√
π(1− y)

∫ ∞
−∞

dx′Φµ(x′)

×
[∫ ∞

0
dt′Φµ(x′ − t′)

(
1− y

1− y
Bµ
t′µ

)]P−1

. (4.30)

We suppose then that even with power low tails jump distributions the function GP (x′)
becomes a step function in the large P limit and that F (x′) (the function in the square
brackets) can be approximated as 1−α/P around the point x′ = x∗ where GP (x′) switches
from 0 to 1, with α = α(y, µ) an unknown function. As the integrand in t′ reaches its

maximum around t′ ∼ x′, we approximate F (x′) ∼ 1− y
1−y

Bµ
x′µ considering Φµ(0) of order

one. Thus F (x∗) must satisfy:

F (x∗) ∼ 1− y

1− y
Bµ
x∗µ

= 1− α(y, µ)

P
; (4.31)
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which gives x∗ ∼ β(y, µ)P
1
µ where β(y, µ) absorbs all the dependences from the coefficient

µ and the variable y. The important information is the P dependence: indeed, if we
perform the integral on x′ treating GP (x′) as a step function it becomes:∫ ∞

−∞
dx′Φµ(x′)GP (x′) ∼

∫ ∞
x∗

dx′Φµ(x′) ∼ − γ(y, µ)x−µ
∣∣∞
x∗
∼ γ(y, µ) ; (4.32)

with γ(y, µ) an unknown function. The P dependence has disappeared. Simulations
show that the coefficient is indeed universal for many µ (Figure (4.2)). In particular a
rough estimation gives the number 0.71, smaller than 4/π ∼ 1.3 found in the forward
case. In conclusion, for power law tail jump distributions, the number of forward and
backward records is respectively raised and diminished with respect to the single walk
case, as expected. However asymptotically, their are both independent from the number
of walkers, thus the asymmetry concerns only the numerical prefactors. This is attributed
to the fact that in this situations records are not governed by small jumps, linked to the
gradual spread of the walkers, but by the occasional big jumps (as a consequence of having
“fat” tails in the jump distribution).
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Figure 4.2: Above, the forward records, rescaled by the square root of the length of the sequence,
in function of the number of walkers; below, the backward ones. For Gaussian random walk is
shown the theoretical behaviour to the first and to the second order for forward records, only the
first for backward ones. For Lévy walks we show the behaviour for different indexes µ.

Simulations We performed simulations for multiple random walks with a number of
walkers from 1 to 1000 and computed the number of forward and backward records for



56 CHAPTER 4. MULTIPLE RANDOM WALKS

a fixed time length of 1000 steps in the finite σ2 case (where we used Gaussian jump
distribution), and 500 steps length for power law jump distribution. In this last case, we
performed simulations for Lévy indexes µ = 1, 1.5, 1.8 and 1.95 to check their influence.
As anticipated in the respective sections, the results agree with the theory, but for finite σ2

the corrections are important, and for the Lévy case the coefficient µ affects strongly the
transient regime (as well as the particular form of the jump distribution, indeed we found
different transient times with respect to the ones found for the forward case in [15]). In
Figure (4.2) we show the plot of the number of forward and of backward records, rescaled
with the square root of the sequence length, for Gaussian jump distribution and Lévy
distributions for different indexes, together with the analytic results where available.



Chapter 5

Conclusions

In this work we wanted to sketch the state of art of some extreme value problems and
provide some new results. In particular we analysed the maximum and the records of
a given sequence, exploring the meaning and statistics of backward records in situations
where the forward behaviour was already well understood. We treated sequences of identi-
cally and independent distributed random variables and, as a possible example of strongly
correlated variables, random walks variables.

The first important aspect to retain is the universality which emerges in the differ-
ent situations: we saw that for the independent variables the problem of the maximum
of the sequence leads to distinguish three universality classes in which we can group a
large number of distributions according to the behaviour of their tails, the only relevant
information in this context. When we shift to the records problem, the universality for
these variables becomes even wider, as for every distribution with continuous cumulative
function the same results hold.

For random walks instead, when looking at the maximum, we must distinguish distri-
butions with finite second moment or not. The existence of a second moment allows to
write a backward Fokker-Planck equation, which can be easily adapted to the presence
of an arbitrary external potential. We did not treat the maximum for a Lévy-Flights
distribution of the stochastic increments but it is clear that, as σ2 does not exist, an-
other approach must be followed and different results are obtained as cited at the end of
chapter 1. In particular, the important parameter is not the broadness of the distribu-
tion (difficult to define) but how its tails go to zero. Also for random walks we recover a
wider universality in the records problem where every symmetric distribution with con-
tinuous cumulative function leads to the same statistics (the symmetry is an additional
requirement with respect to the independent case). This universality has complete differ-
ent causes from the ones of the i.i.d. case and derives from the Sparre-Andersen theorem.
Discrete distributions are not included in the class, but we can compute explicitly the
results if the jump function is simple enough. Note that some records problems present a
new break of the universality when the level of the record becomes important, as the level
itself was important in the maximum problem: we saw an example in the multiple walks
situation, where it arises a difference according to the boundedness of the second moment
of the distribution.

Without citing again the specific results for each section, we remember the new results
of this work: we found an approximated universal scaling form for the joint probability
of forward and backward records and computed exactly their correlation both in the i.i.d.
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case and for random walks. We explored extreme values ages concerning the two types
of records jointly and used the forward-backward formalism to find the longest age in
specifical situations (i.e. in the set of ages without considering the one of the maximum),
task already performed with different tools in the random walk case, but not known in
literature for the i.i.d. one. Similarly we worked out the probability for a certain age to
be the longest, giving the results for a wider number of cases with respect to the ones
already known. Finally, we worked out the behaviour of backward records for a multiple
random walk.

A part from the universality, there are other key points to highlight in relation to
what we found: first of all the statistical equivalence between backward upper records
and forward lower ones in relation to forward upper ones for independent variables, which
has not been explained yet. This relation does not hold for random walks. Then, for
random walks, the connection between maximum value and number of records, which is
pointed out from the ±1 jump distribution case. This last one gives the same record
statistics as for the continuous distributions a part a scaling prefactor and, at the same
time, the problem can be seen asymptotically as a maximum problem for a random walk
with diffusion coefficient 1/2, linking the two objects. Finally, it is interesting to see how
ages of records provide information about the independence (or dependence) of successive
records through some extreme values objects as the longest age.

The only example we treated, the daily temperatures in several European cities in the
last century, confirms that temperatures recorded at a fixed day of the year are distributed
around an average value which increases with time, but the annual mean value temperature
is sufficient to describe this warming trend, so that the detrended data are independently
distributed around the average value. The independence can be proven in a straighter way
simply computing their correlation, which is zero on average. Therefore, the simple model
of independent and identically distributed random variables is not only a “toy model” but
can be employed in climate analysis, where combinations of records provide estimates for
different relevant (and more complicated) quantities.

Many problems are still open: besides those here treated through an asymptotic or
incomplete analysis which can maybe be afforded analytically using different methods,
it would be interesting to extend the study of joint forward backward statistic to biased
random walks or independent variables taken from changing distribution (so not any more
identically distributed). Again, it would be useful to see the effects of rounding on the
correlation between the two types of records, keeping in mind that a rounding process
breaks the universality: can we recognize some general features in the forward-backward
correlation? Are there any oscillatory transient behaviours (as some simulations suggest)?

In this sense, the statistics of extreme values is always rich and non trivial, suggesting
that the pursuit of the studies in this field can provide new understanding of stochastic
processes, new links between different approaches and physical problems, and valid tools
to analyse real every-day life problems.



Appendix A

Appendices

A.1 Ornstein-Uhlenbeck process

Here we show the main passages to compute the probability of the maximum for the
Ornstein-Uhlenbeck process [1]. As anticipated, this solution proceeds through a forward
Fokker-Planck approach.

Consider the potential U(x) = ax2 with a positive. Renaming c = 2aµ, the equation
for the increments and its formal solution in the continuous time limit are:

∆xi
∆t

= −c xi + ηi
∆t→0−−−−→ dx

dt
= −c x(t) + η(t) ; (A.1)

x(t) = x0e
−ct +

∫ t

0
ds e−c(t−s)η(s) . (A.2)

The correlation between the positions at different times is easily computed remembering
that η(t) has zero mean and is delta correlated:

C(t1, t2) = 〈x(t1)x(t2)〉 =
D

c

[
e−c|t1−t2| − e−c(t1+t2)

]
. (A.3)

Therefore in the case of positive c the correlation decays exponentially with time difference
when t1, t2 are both bigger than 1/c. It means that looking at times bigger than this
“coarse graining” scale, the system is weakly correlated, and, as explained in the end of
section 1.1 the problem becomes an i.i.d. variables maximum problem. In particular we
expect a Gumbel distribution, as the decay of the correlation is exponential.

Consider the conditioned probability P (x|t)|z that the particle, starting at x0 = 0 for
simplicity, arrives in x at time t while staying below the level z. It follows the forward
Fokker-Planck equation as the corresponding unconditioned probability, but in the domain
x < z:

∂P

∂t
= D

∂2P

∂x2
+ c

∂P

∂x
; (A.4)

with the conditions P (x|0)|z = δ(x) and, for every time t, P (x→ −∞|t)|z = 0; P (z|t)|z =
0. To solve it, we can expand the probability in eigenfunctions with eigenvalues λ to be
set with the boundary conditions. Setting for simplicity D = 1/2:

P (x|t)|z =
∑
λ

aλe
−λt−cx2/2Dλ/c(−

√
2c x) ; (A.5)

59



60 APPENDIX A. APPENDICES

where Dp(y) is the parabolic cylinder function which satisfy the second order ordinary
differential equation: D′′p(y) = (p + 1/2 − z2/4)Dp(y). Keeping a generic diffusion coeffi-
cient gives an additional term in D′p(y) in the equation, for which the solutions are much
more complicated but with no more information on the physical aspects of the problem.
To choose the correct eigenvalues in the solution (A.5) we must apply the boundary con-
dition in z, which implies Dλ/c(z) = 0. The solution is found in the large z limit, which
corresponds to large time t. In this situation the smallest eigenvalue λ0 dominates the
solution, and it is found through an asymptotic analysis of the cylindric functions:

λ0(z)
z→∞−−−→ 2√

π
c 3/2z e−c z

2
. (A.6)

Thus, as the cumulative probability for the maximum M decays as the probability itself,
for large t and z we have (with the notation used in the previous sections):

Q(M, 0|t) ∼ e−λ0(M)t ∼ e
−c z2+ln

(
2 c 3/2 z t√

π

)
(A.7)

→ F2

(
√

4c ln t

(
M −

√
ln t

c

))
; (A.8)

where the shift (the coefficient aN of section 1.1) is immediate to obtain, telling that the
maximum goes like the square root of the logarithm of the time, so its growth is much
suppressed; the width of the fluctuations instead must be computed more carefully using
formula (1.7) and it decreases as ∼ 1/

√
ln t.
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