
University of Padua
Department of Physics and Astronomy “Galileo Galilei”

Master Thesis in Physics of Data

Physics-Informed Machine Learning for
High-Fidelity Synthetic Data Generation

Master Candidate Internal Supervisor

Daniele Ninni Prof. Marco Zanetti
Student ID 2044721 University of Padua

External Supervisor

Luca Gilli, Ph.D.
Clearbox AI

Academic Year
2022/2023

Ai miei genitori, a mia sorella e a tutta la mia famiglia
non posso che dirvi, con tutto il mio cuore,

grazie per sempre.

Abstract

Interest in synthetic data has grown rapidly in recent years. Synthetic data is
artificially generated data with the same statistical properties as real-world data.
This growth of interest can be attributed, on the one hand, to the increasing
demand for large amounts of data to train AI/ML models and, on the other hand,
to the recent development of effective methods for generating high-quality synthetic
data. For example, generative AI models have demonstrated excellent capabilities
in synthesizing complex datasets.

Unfortunately, many of the processes of interest are rare events or edge cases.
Therefore, the amount of real data that can be used to train generative models
is often insufficient, hence limiting their applicability. Furthermore, in the case of
processes involving dynamical systems, generative models often fail to capture the
underlying laws governing the dynamics, thus resulting in low-fidelity synthetic
data. A possible strategy to overcome these limitations is to generate synthetic
data using a physics-informed approach, that is, incorporating the knowledge of
the governing physical laws into the generative model.

This thesis explores a possible approach for generating high-fidelity synthetic
data using physics-informed ML. Specifically, the approach investigated in this
work uses the SINDy Autoencoder network introduced by Champion et al. as a
synthetic data generator. This approach is benchmarked with a commercial tool
developed by Clearbox AI, a synthetic data provider. The generative models under
study are tested on two datasets generated by nonlinear dynamical systems: a
simulation dataset with dynamics defined by the Lorenz system and a real dataset
acquired on a full-scale F-16 aircraft.

The results of the study show that the explored approach is a rather promising
solution for generating high-fidelity synthetic data. However, the training proce-
dure is significantly complicated by the presence of multiple competing loss terms.
Moreover, the effectiveness of the approach appears to be strongly dependent on
the dataset in use and on the complexity of the corresponding dynamical system.

v

Contents

Abstract v

List of Figures xi

List of Tables xiii

List of Code Snippets xv

List of Acronyms xvii

1 Synthetic Data 1
1.1 Definition . 1

1.1.1 Synthesis from real data . 2
1.1.2 Synthesis without real data 2

1.2 Benefits . 3
1.2.1 More efficient access to data 3
1.2.2 Better analytics . 4
1.2.3 Imbalanced data . 4

1.3 Utility evaluation . 5
1.3.1 Distinguishability . 5

1.4 Generative AI for synthesizing data 6
1.4.1 VAE . 6
1.4.2 GAN . 7
1.4.3 Limitations . 7

2 Physics-Informed ML 9
2.1 How to embed physics in ML . 9

2.1.1 Observational bias . 10
2.1.2 Inductive bias . 10

vii

CONTENTS

2.1.3 Learning bias . 11
2.2 Limitations . 11

2.2.1 Training algorithms and architectures 11
2.2.2 Data generation and benchmarks 12

3 SINDy: Data-driven discovery of governing equations 13
3.1 Mathematical formulation . 13
3.2 Sequentially thresholded least squares 15
3.3 Limitations . 16

4 SINDy Autoencoder 17
4.1 Architecture . 17
4.2 Loss function . 20
4.3 Activation functions . 21
4.4 Training . 22

4.4.1 Initialization . 22
4.4.2 Sequential thresholding . 22
4.4.3 Fine-tuning . 23

4.5 Choice of hyperparameters . 23
4.6 Limitations . 25
4.7 SINDyAE as a synthetic data generator 25

5 Implementation 27
5.1 Class initialization . 27

5.1.1 Encoder and decoder . 29
5.1.2 Feature library . 29
5.1.3 SINDy model . 30

5.2 Network parameter initialization . 31
5.3 Forward pass . 31

5.3.1 Input reconstruction . 31
5.3.2 Feature calculation . 32
5.3.3 Latent derivative estimation 32
5.3.4 Loss calculation . 32

5.4 Training loop . 34
5.5 Validation loop . 34
5.6 Sequential thresholding . 35
5.7 Optimizer and learning rate scheduler 36

viii

CONTENTS

5.8 Early stopping . 36
5.9 Fitting . 36
5.10 Training history . 38
5.11 SINDy coefficients . 38
5.12 Synthetic data generation . 38
5.13 Model compilation . 40

6 Models 41
6.1 Model M1: Generative SINDyAE 41
6.2 Model M2: VAE by Clearbox AI 41

7 Datasets 43
7.1 Lorenz system . 43

7.1.1 Description . 43
7.1.2 Simulation . 44

7.2 F-16 aircraft . 48
7.2.1 Description . 48
7.2.2 Preprocessing . 50

8 Results 53
8.1 Introduction . 53

8.1.1 Model training history and SINDy coefficients 53
8.1.2 Synthetic data generation 53
8.1.3 Classification of real and synthetic time-series 54
8.1.4 Distance between real and synthetic time-series 55

8.2 Lorenz system . 56
8.2.1 Model M1 . 56
8.2.2 Model M2 . 70
8.2.3 Discussion . 71

8.3 F-16 aircraft . 72
8.3.1 Model M1 . 72
8.3.2 Model M2 . 86
8.3.3 Discussion . 88

9 Conclusion 91

Bibliography 93

ix

List of Figures

4.1 Architecture of the SINDyAE. 18

7.1 Complete structure of the F-16 aircraft. 48
7.2 F-16 instrumentation. (a) Dummy payload mounted at the right

wing tip; (b) shaker attached underneath the right wing; (c) back
connection of the right-wing-to-payload mounting interface. 48

8.1 [Lorenz M1v1] Model training history and SINDy coefficients. . . . 57
8.2 [Lorenz M1v2] Model training history and SINDy coefficients. . . . 58
8.3 [Lorenz M1v3] Model training history and SINDy coefficients. . . . 59
8.4 [Lorenz M1v4] Model training history and SINDy coefficients. . . . 60
8.5 [Lorenz M1v5] Model training history and SINDy coefficients. . . . 61
8.6 [Lorenz M1v6] Model training history and SINDy coefficients. . . . 62
8.7 [Lorenz M1] Training loss of the InceptionTimeClassifier models. 63
8.8 [Lorenz M1v1] Pairwise distance matrices between the original O

and synthetic S trajectories. 64
8.9 [Lorenz M1v2] Pairwise distance matrices between the original O

and synthetic S trajectories. 65
8.10 [Lorenz M1v3] Pairwise distance matrices between the original O

and synthetic S trajectories. 66
8.11 [Lorenz M1v4] Pairwise distance matrices between the original O

and synthetic S trajectories. 67
8.12 [Lorenz M1v5] Pairwise distance matrices between the original O

and synthetic S trajectories. 68
8.13 [Lorenz M1v6] Pairwise distance matrices between the original O

and synthetic S trajectories. 69
8.14 [F-16 M1v1] Model training history and SINDy coefficients. 73
8.15 [F-16 M1v2] Model training history and SINDy coefficients. 74

xi

LIST OF FIGURES

8.16 [F-16 M1v3] Model training history and SINDy coefficients. 75
8.17 [F-16 M1v4] Model training history and SINDy coefficients. 76
8.18 [F-16 M1v5] Model training history and SINDy coefficients. 77
8.19 [F-16 M1v6] Model training history and SINDy coefficients. 78
8.20 [F-16 M1] Training loss of the InceptionTimeClassifier models. 79
8.21 [F-16 M1v1] Pairwise distance matrices between the original tra-

jectories O and the synthetic trajectories S. 80
8.22 [F-16 M1v2] Pairwise distance matrices between the original tra-

jectories O and the synthetic trajectories S. 81
8.23 [F-16 M1v3] Pairwise distance matrices between the original tra-

jectories O and the synthetic trajectories S. 82
8.24 [F-16 M1v4] Pairwise distance matrices between the original tra-

jectories O and the synthetic trajectories S. 83
8.25 [F-16 M1v5] Pairwise distance matrices between the original tra-

jectories O and the synthetic trajectories S. 84
8.26 [F-16 M1v6] Pairwise distance matrices between the original tra-

jectories O and the synthetic trajectories S. 85
8.27 [F-16 M2] Training loss of the InceptionTimeClassifier model. . 86
8.28 [F-16 M2] Pairwise distance matrices between the original O and

synthetic S trajectories. 87

xii

List of Tables

5.1 Methods in which the PyTorch code for the SINDyAE is organized. 28
5.2 Initialization arguments of the SINDyAutoencoder class. 28

7.1 Lorenz dataset. 44
7.2 F-16 dataset. 51

8.1 [Lorenz M1] Training details. 56
8.2 [Lorenz M1] Accuracy of the InceptionTimeClassifier models. . 56
8.3 [F-16 M1] Training details. 72
8.4 [F-16 M1] Accuracy of the InceptionTimeClassifier models. . . 72

xiii

List of Code Snippets

5.1 Python libraries used to implement the SINDyAE. 27
5.2 Encoder and decoder networks. 29
5.3 Feature library. 30
5.4 SINDy model. 30
5.5 Network parameter initialization. 31
5.6 Input reconstruction. 31
5.7 Feature calculation. 32
5.8 Latent derivative estimation. 32
5.9 Loss calculation. 33
5.10 Training loop. 34
5.11 Validation loop. 34
5.12 Sequential thresholding. 35
5.13 Optimizer and learning rate scheduler. 36
5.14 Early stopping. 36
5.15 Fitting. 37
5.16 Training history. 38
5.17 SINDy coefficients. 38
5.18 Synthetic data generation. 39
5.19 Model compilation. 40

7.1 Libraries used by the functions that generate the Lorenz dataset. . . 44
7.2 lorenz function. 45
7.3 lorenz_df function. 46
7.4 lorenz_df_high function. 47
7.5 Libraries used to preprocess and concatenate the F-16 datasets. . . 50
7.6 Computation of n_samples and t. 50
7.7 Preprocessing and concatenation of the F-16 datasets. 51

xv

List of Acronyms

AE Autoencoder

AI Artificial Intelligence

CNN Convolutional Neural Network

DL Deep Learning

ELU Exponential Linear Unit

GAN Generative Adversarial Network

GDPR General Data Protection Regulation

LASSO Least Absolute Shrinkage and Selection Operator

LSQ Least Squares

ML Machine Learning

MMD Maximum Mean Discrepancy

NN Neural Network

PCA Principal Component Analysis

PIML Physics-Informed Machine Learning

ReLU Rectified Linear Unit

SINDy Sparse Identification of Nonlinear Dynamics

SINDyAE SINDy Autoencoder

STLSQ Sequentially Thresholded Least Squares

VAE Variational Autoencoder

xvii

1
Synthetic Data

Interest in synthetic data has grown rapidly in recent years. This growth can be
attributed to two simultaneous trends. The first is the demand for large amounts of
data to train Artificial Intelligence (AI) and Machine Learning (ML) models. The
second is the recent development of effective methods for generating high-quality
synthetic data. Both trends have led to the realization that synthetic data can solve
various challenging problems quite effectively, especially in the AI/ML context.
Specifically, some of these problems would be too costly or dangerous to address
using more traditional methods (e.g., training autonomous driving models), or they
would simply be intractable. As a result, more and more companies are adopting
various data synthesis solutions to accelerate their business.

1.1 Definition

As stated by El Emam et al. in [25], synthetic data is not real data, but fake
data that has the same statistical properties as real data. This means that if you
are working with a synthetic dataset, you should get results similar to what you
would get with real data. The degree to which a synthetic dataset is an accurate
proxy for real data is a measure of utility. The process of generating synthetic data
is referred to as synthesis. There are several types of data that can be synthesized.
For example, they can be:

• structured data (e.g., a relational database);

• unstructured data (e.g., text, audio, video, images).

1

1.1. DEFINITION

From the point of view of the synthesis process, there are three types of synthetic
data. In particular, they can be:

1. generated from real data;

2. not generated from real data;

3. a hybrid of the previous two.

They are presented in the following subsections.

1.1.1 Synthesis from real data

The first type of synthetic data is generated from real data. Specifically, some
real datasets are used to build a model that captures their distributions and struc-
ture, i.e. the multivariate relationships and interactions in the data. Once the
model is built, synthetic data is sampled or generated from that model. If the
model is a good representation of the real data, then the synthetic data will have
statistical properties similar to those of the real data.

1.1.2 Synthesis without real data

The second type of synthetic data is not generated from real data. It is created
using existing models or background knowledge.

Existing models can be either statistical models of a process (developed through
a data collection mechanism) or simulations of a process. Agent-based models are
a popular example of techniques capable of synthesizing data by simulating the
actions and interactions of multiple autonomous agents in an attempt to reproduce
and predict the process of interest.

Background knowledge can be, for example, knowledge of the behavior of a
system or knowledge of the statistical distributions underlying a process. In such
a case, it is relatively straightforward to build a model and sample from background
knowledge to generate synthetic data. If the knowledge of the process is accurate,
then the synthetic data will behave consistently with the real data. Of course,
the use of background knowledge works only when the phenomenon of interest is
thoroughly understood.

2

CHAPTER 1. SYNTHETIC DATA

1.2 Benefits

In this section, the following benefits of data synthesis are discussed:

• providing more efficient access to data;

• enabling better analytics;

• improving imbalanced data.

1.2.1 More efficient access to data

Data access is critical to AI/ML projects. Specifically, data is needed to train
and validate models. More broadly, data is also needed for testing and evaluating
AI/ML technologies potentially developed by others.

Typically, data is collected for a particular purpose with the consent of the
individual (e.g., for participating in a clinical research study). If you want to use
that same data for a different purpose, such as to build a model to predict what
kind of person is likely to participate in a clinical trial, then that is considered a
secondary purpose.

Access to data for secondary purposes is becoming problematic. At the same
time, the public is increasingly concerned about how its data is used and shared,
and privacy laws are becoming stricter.

Contemporary privacy regulations, such as the General Data Protection Regu-
lation (GDPR) in Europe, require a legal basis to use personal data for a secondary
purpose. An example of such a legal basis would be additional consent or autho-
rization from individuals before their data can be used. However, in many cases,
this is impractical and can introduce bias into the data because consenters and
non-consenters differ on important characteristics [14].

Given the difficulty of accessing data, open source or public datasets are some-
times used. These can certainly be a good starting point, but they lack diversity
and are often not well matched to the problems that the models are intended to
solve. Furthermore, open data may lack sufficient heterogeneity for robust training
of models. For example, open data may not capture rare cases well enough.

Data synthesis can generate, rather efficiently and at scale, realistic data to
work with. Synthetic data would not be considered identifiable personal data.
Therefore, privacy regulations would not apply, and no additional consent would
be required to use such synthetic data for secondary purposes.

3

1.2. BENEFITS

1.2.2 Better analytics

A use case where synthesis can be applied is when real data does not exist – for
example, if the process to be modeled is completely new, and creating or collecting
a real dataset from scratch would be cost-prohibitive or impractical. Synthesized
data can also cover edge or rare cases that are difficult, impractical, or unethical
to collect in the real world.

Sometimes real data exists but is not labeled. Labeling a large amount of
samples for supervised learning tasks can be time-consuming, and manual labeling
is error-prone. Again, synthetic labeled data can be generated to accelerate model
development. The synthesis process can ensure high accuracy in the labeling.

Synthetic data can be used to validate assumptions and demonstrate the kind of
results that can be obtained with the models of interest. In other words, synthetic
data can be used in an exploratory way. If this exploratory step leads to interesting
and useful results, then it makes sense to go through the more complex process of
getting the real data to build the final versions of the models.

Another scenario in which synthetic data can be valuable is when it is used
to train an initial model before the real data is accessible. Once the real data
is obtained, then the trained model can be used as a starting point for training
with the real data. This can significantly speed up the convergence of the real
data model (hence, reducing compute time) and can potentially result in a more
accurate model. This is an example of using synthetic data for transfer learning.

The benefits of synthetic data can be dramatic. It can make impossible projects
doable, significantly accelerate AI/ML initiatives, or result in a material improve-
ment in the outcomes of AI/ML projects.

1.2.3 Imbalanced data

In many real-world ML scenarios, datasets are often imbalanced, which means
that the distribution of classes or labels is significantly skewed, with one or more
classes being underrepresented. Synthetic data generation techniques can be lever-
aged to create artificial samples for the minority classes. By generating synthetic
instances that closely resemble the underrepresented classes, the resulting aug-
mented dataset achieves a more balanced distribution, thereby mitigating the im-
pact of class imbalance on model performance.

4

CHAPTER 1. SYNTHETIC DATA

1.3 Utility evaluation

In this section, the following three possible approaches to assess the utility of
synthetic data are presented:

• workload-aware evaluations;

• generic data utility metrics;

• subjective assessments of data utility.

Workload-aware metrics look at specific feasible analyses that would be per-
formed on the data and compare the results from real and synthetic data. Such
analyses can vary from simple descriptive statistics to more complex multivariate
models. Typically, an analysis planned on real data is replicated on synthetic data.

Generic assessments would consider, for example, the distance between original
and synthetic data. These often do not reflect the very specific analysis that will be
performed on the data, but rather provide broadly useful utility indicators when
future analysis plans are unknown. To interpret generic metrics, they need to be
bounded (e.g., from 0 to 1), and there should be some accepted yardsticks for
deciding whether a value is high enough or too low.

A subjective evaluation would require a large enough number of domain experts
who would look at a random mix of real and synthetic records and then attempt to
classify each as real or synthetic. If a record looks realistic enough, then it would
be classified as real; if it has unexpected patterns or relationships, then it may be
classified as synthetic. For example, for a health dataset, clinicians may be asked
to perform the subjective classification. The accuracy of that classification would
then be evaluated.

1.3.1 Distinguishability

Distinguishability is an approach to compare real and synthetic data in a mul-
tivariate way. It consists in finding out whether it is possible to build a model
that can distinguish between real and synthetic records. Thus, a binary label is
assigned to each record, i.e. a 1 if it is real and a 0 if it is synthetic (or vice versa).
Then, a classification model is built to discriminate between real and synthetic
data. This model is used to predict whether a record is real or synthetic.

This classifier can output a probability for each prediction. If the probability is
closer to 1, then it is predicting that the record is real. If the probability is closer
to 0, then it is predicting that the record is synthetic.

5

1.4. GENERATIVE AI FOR SYNTHESIZING DATA

If the two datasets are exactly the same, then there will be no distinguishability
between them. This happens when the synthetic data generator is overfitted, and
thus effectively re-creates the original data. In such a case, the probability of each
prediction will be 0.5, i.e., the classifier will not be able to distinguish between real
and synthetic data. Similarly, if the label of real versus synthetic is assigned to the
records completely at random, then the classifier will not be able to distinguish
between them. Again, the probability of each prediction will be 0.5.

If the two datasets are completely different, then the classifier will be able to
distinguish between them. High distinguishability corresponds to low data utility.
In such a case, the probability of each prediction will be either 0 or 1.

In reality, synthetic datasets will fall somewhere in between. They should be
at neither of these two extremes. Synthetic data that is difficult to distinguish
from real data is considered to have relatively high utility.

It is importannt to consider multiple utility metrics in order to get a broader
appreciation of the utility of the synthetic dataset. Each method of assessing
utility covers a different dimension of utility that is complementary to the others.

1.4 Generative AI for synthesizing data

Generative AI models have demonstrated excellent capabilities in synthesizing
complex datasets. There are two main types of Neural Network (NN) architec-
tures that are used to generate synthetic data. Both can work well, and in some
cases they have been combined. Both approaches have demonstrated quite high
synthesis utility on complex datasets and are a very active area of research.

1.4.1 VAE

The first architecture is the Variational Autoencoder (VAE). It is an unsu-
pervised method for learning a meaningful representation of a multi-dimensional
dataset. Its NN components are the same as a traditional Autoencoder (AE), i.e.
the encoder and the decoder. First, the encoder compresses the dataset into a
more compact representation with fewer dimensions, which is often a multivariate
Gaussian distribution. Then, the decoder takes that compressed representation
and reconstructs the original input data. The VAE is trained by optimizing the
similarity between the decoded data and the input data. In this context, a VAE
works similarly to Principal Component Analysis (PCA), except that it can cap-

6

CHAPTER 1. SYNTHETIC DATA

ture nonlinear relationships in the data. The main difference compared to tradi-
tional AEs is that the training process includes a regularization term that pushes
the latent representations to be distributed according to a desired distribution,
thus leading to a more meaningful latent space.

1.4.2 GAN

The second architecture is the Generative Adversarial Network (GAN). A
GAN is made up of two components: a generator and a discriminator. The gener-
ator network takes as input random data, often sampled from a normal or uniform
distribution, and generates synthetic data. The discriminator network takes as in-
put both real and synthetic data and discriminates them, outputting a probability
for each prediction. The output of that discrimination is then fed back to train
the generator. A good synthetic model is created when the discriminator cannot
distinguish between real and synthetic data. This adversarial training procedure
is quite effective in improving the quality of the data created by the generator.
However, it has been shown that this approach could lead to training instability
and mode collapse, i.e., the generator could end up generating only a limited set
of output types instead of exploring the entire distribution of training data.

1.4.3 Limitations

Synthetic data produced by generative AI models is characterized by some
limitations, such as:

• rare events and edge cases;

• processes involving dynamical systems.

First, many of the processes of interest are rare events or edge cases. As a
result, the amount of real data that can be provided to the generative model is
often insufficient for it to learn to accurately reproduce the process itself.

Second, in the case of processes involving dynamical systems, the generative
model often fails to capture the underlying laws governing the dynamics, thus
resulting in low-fidelity synthetic data.

A possible strategy to overcome these limitations is to generate synthetic data
using a physics-informed approach. This corresponds to incorporating the knowl-
edge of the physical laws governing the dynamics of the system of interest into the
generative model. Such physics-informed approaches are covered in Chapter 2.

7

2
Physics-Informed ML

In several real-world and scientific problems, systems that generate data are
governed by physical laws. As stated by Hao et al. in [32], the seamless integration
of (noisy) data and mathematical physics models can guide the ML model towards
physically plausible solutions, improving accuracy and efficiency even in partially
understood and high-dimensional contexts. Physics-Informed Machine Learning
(PIML) is a learning paradigm aimed at building a model that leverages empirical
data and physical knowledge to improve performance on a set of tasks that involve a
physical mechanism. Kernel-based or NN-based regression methods offer effective,
simple and meshless implementations. Moreover, it is possible to design specialized
NN architectures that automatically satisfy some of the physical constraints for
better accuracy, faster training and improved generalization.

2.1 How to embed physics in ML

As stated by Karniadakis et al. in [28], no predictive models can be built with-
out assumptions and, consequently, no generalization performance can be expected
from ML models without appropriate biases. Specific to PIML, there are currently
three pathways that can be followed separately or in tandem to accelerate train-
ing and improve generalization of ML models by embedding physics into them.
In detail, making a learning algorithm physics-informed amounts to introducing
appropriate observational, inductive or learning biases that can steer the learning
process towards physically consistent solutions. These biases are not mutually
exclusive and can be combined to yield a very broad class of hybrid approaches.

9

2.1. HOW TO EMBED PHYSICS IN ML

2.1.1 Observational bias

Observational data is arguably the foundation of the recent success of ML. It is
also the conceptually simplest way to introduce bias into ML. In the case of phys-
ical systems, thanks to the rapid development of sensor networks, it is possible to
exploit a wealth of observations and monitor the evolution of complex phenomena
across several spatial and temporal scales. Such observational data should reflect
the underlying physical laws governing their generation and, in principle, can be
used as a weak mechanism for embedding these laws into an ML model during its
training phase. However, especially for over-parameterized Deep Learning (DL)
models, a large amount of data is typically needed to reinforce these biases and
generate predictions that respect certain symmetries and conservation laws. In this
case, an immediate difficulty relates to the cost of data acquisition, which for many
applications in the physical and engineering sciences could be prohibitively high,
as observational data may be generated via expensive experiments or large-scale
computational models.

2.1.2 Inductive bias

Another school of thought pertains to efforts focused on designing specialized
NN architectures that implicitly embed any prior knowledge and inductive biases
associated with a given predictive task. In other words, prior assumptions can
be incorporated by tailored interventions to an ML model architecture, such that
the predictions sought are guaranteed to implicitly satisfy a set of given physi-
cal laws, typically expressed in the form of certain mathematical constraints. It
could be argued that this is the most principled way of making a learning algo-
rithm physics-informed, since it allows the underlying physical constraints to be
strictly satisfied. Despite their remarkable effectiveness, such approaches are cur-
rently limited to tasks characterized by relatively simple and well-defined physics or
symmetry groups (e.g. translations, permutations, reflections, rotations) that are
known a priori, and often require craftsmanship and elaborate implementations.
Furthermore, their extension to more complex tasks is challenging, as the under-
lying invariances or conservation laws that characterize many physical systems are
often poorly understood or hard to implicitly encode into an NN architecture.

10

CHAPTER 2. PHYSICS-INFORMED ML

2.1.3 Learning bias

Yet another school of thought approaches the problem of endowing an NN
with prior knowledge from a different perspective. Instead of designing a special-
ized architecture that implicitly enforces this knowledge, it is possible to impose
such constraints in a soft manner by appropriately choosing loss functions, con-
straints and inference algorithms that can modulate the training phase of an ML
model to explicitly favor convergence towards solutions that adhere to the under-
lying physics. This approach can be viewed as a specific use case of multi-task
learning, in which a learning algorithm is simultaneously constrained to fit the
observed data, and to yield predictions that approximately satisfy a given set of
physical constraints. Such soft penalty constraints constitute a very flexible way
of introducing a broad class of physics-based biases into ML models.

2.2 Limitations

Despite the recent success of PIML across a range of applications, it is worth
pointing out some of its current limitations.

2.2.1 Training algorithms and architectures

PIML models often involve training large-scale NNs with complicated loss func-
tions, which generally consist of multiple terms and thus are highly non-convex
optimization problems [5]. The terms in the loss function may compete with each
other during training. Consequently, the training process may not be robust and
sufficiently stable, and therefore convergence to the global minimum cannot be
guaranteed [19]. To solve this issue, more robust NN architectures and training
algorithms should be developed for diverse applications. Moreover, the design of
effective NN architectures is currently done empirically by users, which could be
very time-consuming. However, emerging meta-learning techniques can be used
to automate this search. Furthermore, training and optimization of DL models is
expensive, so it is crucial to speed up learning, for example through transfer learn-
ing. In addition, scalable and parallel training algorithms should be developed to
take advantage of hardware such as GPUs and TPUs, using both data-parallel and
model-parallel paradigms.

11

2.2. LIMITATIONS

2.2.2 Data generation and benchmarks

In the ML community dealing with imaging, speech and natural language pro-
cessing problems, the use of standard benchmarks is very common in order to
assess algorithm improvement, reproducibility of results, and expected computa-
tional cost. For example, the UCI Machine Learning Repository is a collection of
databases and data generators that are often used to compare the relative per-
formance of new algorithms. Currently, the repository also includes experimental
datasets related to the physical sciences. These datasets are useful and intended
for data-driven modeling in ML, but in principle they can also be used for bench-
marking PIML methods, assuming that proper parameterized physical models can
be explicitly included in the databases. However, in many different physics-related
applications, full-field data is required. Such data often cannot be obtained ex-
perimentally and tax computational resources heavily in terms of both time and
memory. Therefore, careful consideration should be given to how to make these
data publicly available, how to curate such valuable data, and how to include the
physical models and all parameters required for the generation of these databases.
In addition, it will take a concerted effort to design meaningful benchmarks that
test accuracy and speedup of the new proposed PIML algorithms, which is a non-
trivial task. Indeed, even for other established ML applications, there are still new
developments on refining existing benchmarks and metrics, especially if software
and hardware considerations are also relevant in such evaluations. In physical
systems, these difficulties are exacerbated by the fact that the aim is to predict
dynamics, and it will be complicated, for example, to determine how to capture
or identify bifurcations in dynamical systems and chaotic states.

12

https://archive.ics.uci.edu/

3
SINDy: Data-driven discovery of
governing equations

Extracting governing equations from (noisy) measurement data is a central
challenge in many diverse areas of science. The Sparse Identification of Nonlinear
Dynamics (SINDy) algorithm is a regression technique, proposed by Brunton et
al. in [16], which addresses the dynamical system discovery problem. Specifically,
it aims to extract parsimonious dynamics from time-series data. It relies on the
assumption that the governing equations are sparse in a high-dimensional nonlinear
function space, i.e. there are only a few relevant terms that define the dynamics.
This assumption holds for several physical systems in an appropriate basis. The
algorithm performs sparse regression to determine the fewest terms required to
accurately represent the data. The resulting sparse model identification inherently
balances complexity with accuracy, thus avoiding overfitting the model to the data.

3.1 Mathematical formulation

Consider a dynamical system of the form:

d

dt
x(t) = f(x(t)), (3.1)

where:

• x(t) ∈ Rn: state of the system at time t;

• f(x(t)): dynamic constraints defining the equations of motion of the system.

13

3.1. MATHEMATICAL FORMULATION

The key assumption is that the function f consists of only a few terms and
is therefore sparse in the space of possible functions. In practice, the algorithm
aims to determine this function f from data. To this end, a time history of the
state x(t) and its time derivative ẋ(t) must be collected. In particular, ẋ(t) can
be either measured directly or approximated numerically from x(t). The data are
sampled at several times t1, t2, . . . , tm and arranged into two matrices:

X =

xT (t1)

xT (t2)
...

xT (tm)

 =

x1(t1) x2(t1) · · · xn(t1)

x1(t2) x2(t2) · · · xn(t2)
...

x1(tm) x2(tm) · · · xn(tm)

 , (3.2)

Ẋ =

ẋT (t1)

ẋT (t2)
...

ẋT (tm)

 =

ẋ1(t1) ẋ2(t1) · · · ẋn(t1)

ẋ1(t2) ẋ2(t2) · · · ẋn(t2)
...

ẋ1(tm) ẋ2(tm) · · · ẋn(tm)

 . (3.3)

Next, an extensive library Θ(X) is constructed. It consists of p candidate
nonlinear functions of the columns of X:

Θ(X) =
[
Θ1(X) Θ2(X) · · · Θp(X)

]
∈ Rm×p, (3.4)

where m ≫ p, that is, the number of data samples is larger than the number of
candidate functions. Each column of Θ(X) represents a candidate function for
the right-hand side of Eq. 3.1. The choice of nonlinear functions typically reflects
some knowledge about the system of interest. In practice, it may be helpful to test
many different function bases and use the sparsity and accuracy of the resulting
model as a diagnostic tool to determine the correct basis in which to represent the
dynamics of the system.

By leveraging the assumption that only a few of these nonlinearities are active
in each row of f , it makes sense to set up a sparse regression problem to determine
the sparse vectors of coefficients Ξ that determine which nonlinearities are active:

Ξ =
[
Ξ1 Ξ2 · · · Ξn

]
∈ Rp×n, (3.5)

Ẋ = Θ(X)Ξ. (3.6)

14

CHAPTER 3. SINDY: DATA-DRIVEN DISCOVERY OF GOVERNING EQUATIONS

Each column Ξk of Ξ is a sparse vector of coefficients determining which terms are
active in the right-hand side for the k-th row equation ẋk = fk(x) in Eq. 3.1. Once
Ξ is determined, a model of each row of Eq. 3.1 can be constructed as follows:

ẋk = fk(x) = Θ(xT)Ξk. (3.7)

Note that Θ(xT) is a vector of symbolic functions of elements of x whereas Θ(X)

is a data matrix. Therefore:

ẋ = f(x) = ΞT (Θ(xT))T . (3.8)

Each column of Eq. 3.6 requires a distinct optimization to find the sparse vector
of coefficients Ξk for the k-th row equation.

Realistically, X is contaminated with noise and is often the only data avail-
able, so Ẋ must be approximated numerically by differentiation. Thus, Eq. 3.6
does not hold exactly. Sparsity-promoting regression is used to solve for Ξ that
result in parsimonious models, ensuring that each Ξk is sparse and therefore only
a few columns of Θ(X) are selected. An appealing aspect of this model discovery
formulation is that it results in an overdetermined linear system for which many
regularized solution techniques exist. For example, the Least Absolute Shrinkage
and Selection Operator (LASSO) [6] is an L1-regularized regression that promotes
sparsity and works well with this type of data. However, it may be computa-
tionally expensive for very large datasets. The standard SINDy approach uses the
Sequentially Thresholded Least Squares (STLSQ) algorithm to find the coefficients
Ξ, which is a proxy for L0 optimization and has convergence guarantees [22].

3.2 Sequentially thresholded least squares

The STLSQ algorithm starts with a Least Squares (LSQ) solution for Ξ and
then thresholds all coefficients that are smaller than a given cutoff value λ. Once
the indices of the remaining nonzero coefficients are identified, another least squares
solution for Ξ onto the remaining indices is obtained. These new coefficients are
again thresholded using λ. The procedure is repeated until the nonzero coefficients
converge. This algorithm is computationally efficient and rapidly converges to a
sparse solution in a small number of iterations. The algorithm also benefits from
simplicity, with a single parameter λ required to determine the degree of sparsity
in Ξ. The STLSQ algorithm is reported in Algorithm 1.

15

3.3. LIMITATIONS

Algorithm 1 Sequentially Thresholded Least Squares (STLSQ)
Require: λ ≥ 0
Ξ← LSQ(Θ, Ẋ) {initial guess: least squares}
repeat
Ξold ← Ξ
small_idxs← (|Ξ| < λ) {find small coefficients}
Ξ[small_idxs]← 0 {threshold small coefficients}
for k ∈ {1, 2, . . . , n− 1, n} do

big_idxs← not(small_idxs[:, k])
Ξ[big_idxs, k]← LSQ(Θ[:, big_idxs], Ẋ[:, k])

end for
until Ξ = Ξold
return Ξ

3.3 Limitations

The performance of the SINDy algorithm depends not only on the quality of
the data but also on the choice of the measurement coordinates and the sparsifying
function basis. In other words, the right coordinates and function basis are needed
to yield sparse dynamics. However, it may be difficult to know them a priori, and
the best choice is not always clear. Basic knowledge of the underlying physics may
provide a reasonable choice. In fact, the sparsity and accuracy of the proposed
sparse identified model may provide valuable diagnostic information about the
correct measurement coordinates and basis in which to represent the dynamics.
Actually, there is still a need for experts to find and exploit the symmetries of the
system. Furthermore, the original SINDy method could be complemented by ML
algorithms to extract useful features. A possible development in this direction is
discussed in Chapter 4.

16

4
SINDy Autoencoder

The SINDy algorithm is able to identify both the structure and the param-
eters of a nonlinear dynamical system from data. The resulting models have
the fewest terms necessary to describe the dynamics, balancing model complexity
with descriptive ability, and thus promoting interpretability and generalizability.
However, this algorithm fundamentally relies on an effective coordinate system in
which the dynamics has a simple representation. In this regard, the SINDy Au-
toencoder (SINDyAE) is a data-driven method, proposed by Champion et al. in
[23], for the simultaneous discovery of interpretable, sparse dynamical models and
coordinates that enable these simple representations. Specifically, this approach
combines a SINDy model and a deep AE network to perform a joint optimization
aimed at discovering intrinsic coordinates that have an associated parsimonious
nonlinear dynamical model. The resulting modeling framework leverages, on the
one hand, the parsimony and interpretability of SINDy and, on the other hand,
the universal approximation capabilities of deep NNs [4] to produce interpretable
and generalizable models capable of extrapolation and forecasting. The SINDyAE
addresses a major limitation of other model discovery approaches, which is that
the proper choice of measurement coordinates is often unknown.

4.1 Architecture

The architecture of the SINDyAE is shown in Fig. 4.1.

17

4.1. ARCHITECTURE

Figure 4.1: Architecture of the SINDyAE.

Consider again a dynamical system of the form 3.1. While this dynamical model
may be dense in terms of functions of the original measurement coordinates x, the
SINDyAE seeks a set of reduced coordinates:

z(t) = φ(x(t)) ∈ Rd, (4.1)

18

CHAPTER 4. SINDY AUTOENCODER

where d≪ n and with an associated dynamical model:

d

dt
z(t) = g(z(t)), (4.2)

that provides a parsimonious description of the dynamics, that is, g contains only
a few active terms. Along with the dynamical model, the method provides co-
ordinate transforms that map the measurements to intrinsic coordinates via an
encoder φ:

z = φ(x), (4.3)

and back via a decoder ψ:

x̂ = ψ(z) ≈ x. (4.4)

The coordinate transformation is achieved using an AE network architecture.
Specifically, both the encoder and the decoder are fully connected feedforward NNs.
Rather than performing a task such as prediction or classification, the network is
trained to output an approximate reconstruction of its input, and the restrictions
placed on the network architecture (e.g., the type, number, and size of the hidden
layers) determine the properties of the intrinsic coordinates [18]. AEs are known
to produce nonlinear generalizations of PCA [3]. A common choice is that the
dimensionality of the intrinsic coordinates z, determined by the number of units
in the corresponding hidden layer, is much lower than that of the input data x.
In this case, the AE learns a nonlinear embedding into a reduced latent space. In
particular, the SINDyAE takes measurement data x(t) ∈ Rn from a dynamical
system as input and learns intrinsic coordinates z(t) ∈ Rd, where d≪ n is chosen
as a hyperparameter prior to training the network.

While AEs can be trained in isolation to discover useful coordinate transfor-
mations and dimensionality reductions, there is no guarantee that the intrinsic
coordinates learned will have associated sparse dynamical models. On the con-
trary, the SINDyAE is required to learn coordinates associated with parsimonious
dynamics by simultaneously learning a SINDy model for the dynamics of the in-
trinsic coordinates z. This regularization is achieved by constructing a library
Θ(z) of candidate basis functions (e.g., polynomials):

Θ(z) =
[
Θ1(z) Θ2(z) · · · Θp(z)

]
, (4.5)

19

4.2. LOSS FUNCTION

and learning a sparse set of coefficients Ξ:

Ξ =
[
Ξ1 Ξ2 · · · Ξd

]
, (4.6)

that defines the following dynamical system:

d

dt
z(t) = g(z(t)) = Θ(z(t))Ξ. (4.7)

While the library must be specified prior to training, the coefficients Ξ are learned
with the NN parameters as part of the training procedure. Assuming derivatives
ẋ(t) of the original states are available or can be computed, the derivative of the
encoder variables can be calculated as:

ż(t) = ∇xφ(x(t))ẋ(t). (4.8)

4.2 Loss function

The loss function used to train the SINDyAE is a weighted sum of the following
four terms:

• AE reconstruction Lrec;

• SINDy prediction on the input variables Ldx/dt;

• SINDy prediction on the latent variables Ldz/dt;

• SINDy coefficient regularization Lreg.

First, Lrec ensures that the AE can accurately reconstruct the input data from
the intrinsic coordinates.

Then, Ldx/dt and Ldz/dt ensure that the discovered SINDy model captures the
dynamics of the system. On the one hand, Ldx/dt ensures that the model can
predict the time derivatives of the original variables. On the other hand, Ldz/dt

ensures that the model can predict the time derivatives of the latent variables.
Finally, Lreg is an L1 regularization term that promotes sparsity of the SINDy

coefficients Ξ and therefore encourages a parsimonious model for the dynamics.
For a dataset with m input samples, each loss is explicitly defined as follows:

20

CHAPTER 4. SINDY AUTOENCODER

Lrec =
1

m

m∑
i=1

∥xi − ψ(φ(xi))∥22,

Ldx/dt =
1

m

m∑
i=1

∥∥ẋi − (∇zψ(φ(xi)))(Θ(φ(xi)
T)Ξ)

∥∥2

2
,

Ldz/dt =
1

m

m∑
i=1

∥∥∇xφ(xi)ẋi −Θ(φ(xi)
T)Ξ

∥∥2

2
,

Lreg = ∥Ξ∥1.

(4.9)

The total loss function Ltot is the following:

Ltot = Lrec + λ1Ldx/dt + λ2Ldz/dt + λ3Lreg, (4.10)

where the hyperparameters λ1, λ2, λ3 determine the relative weighting of the vari-
ous loss terms.

4.3 Activation functions

Nonlinear activation functions are applied at all layers of the SINDyAE, except
for the last layer of the encoder and the last layer of the decoder. The authors of
[23] use the Sigmoid activation function:

f(x) =
1

1 + e−x
. (4.11)

They state that other activation functions, such as Rectified Linear Unit (ReLU):

f(x) = max(0, x), (4.12)

and Exponential Linear Unit (ELU):

f(x) =

x if x > 0

a(ex − 1), a ≥ 0 otherwise
, (4.13)

may also be used and appear to achieve similar results.

21

4.4. TRAINING

4.4 Training

4.4.1 Initialization

Each instance of training has a different random initialization of the network
weights. The weight matrices are initialized using the Xavier initialization: the
entries are sampled from a random uniform distribution over [−

√
6/a,

√
6/a],

where a is the dimension of the input plus the dimension of the output [10]. The
bias vectors are initialized to 0 and the SINDy coefficients Ξ are initialized to 1.

4.4.2 Sequential thresholding

In addition to the L1 regularization, to obtain parsimonious dynamical models
(i.e., models with only a few active terms), a sequential thresholding procedure
is used during training. It promotes L0 sparsity on the coefficients in Ξ, which
represent the dynamics on the latent variables z. This technique is inspired by
Algorithm 1 used for SINDy, which combines LSQ fitting with sequential thresh-
olding to obtain a sparse model. In practice, a threshold that determines the
minimum magnitude of the coefficients in Ξ is specified. Then, at fixed intervals
throughout the training, all coefficients with a magnitude below the threshold are
set to 0, effectively removing these terms from the SINDy model. This is achieved
using a mask Υ, consisting of 1s and 0s, that determines which terms remain in
the SINDy model. Thus, the true SINDy terms in the loss function are as follows:

Ldx/dt =
1

m

m∑
i=1

∥∥ẋi − (∇zψ(φ(xi)))(Θ(φ(xi)
T)(Υ ◦Ξ))

∥∥2

2
,

Ldz/dt =
1

m

m∑
i=1

∥∥∇xφ(xi)ẋi −Θ(φ(xi)
T)(Υ ◦Ξ)

∥∥2

2
,

(4.14)

where Υ is passed in separately and not updated by the optimization algorithm.
Once a term has been thresholded out during training, it is permanently removed
from the SINDy model. Then, training resumes using only the remaining terms.
Therefore, the number of active terms in the SINDy model can only be decreased as
training continues. The L1 regularization on Ξ encourages the model coefficients to
decrease in magnitude, which combined with the sequential thresholding produces
a parsimonious dynamical model.

22

CHAPTER 4. SINDY AUTOENCODER

4.4.3 Fine-tuning

While the L1 regularization penalty on Ξ promotes sparsity in the resulting
SINDy model, it also encourages nonzero terms to have smaller magnitudes. This
results in a trade-off between accurately reconstructing the dynamics of the sys-
tem and reducing the magnitude of the SINDy coefficients, where the trade-off is
determined by the relative magnitudes of the loss weight penalties λ1, λ2 and the
regularization penalty λ3. The specified training procedure therefore typically re-
sults in models with coefficients that are slightly smaller in magnitude than those
which would best reproduce the dynamics. To account for this, an additional co-
efficient refinement period is added to the training procedure. To perform this
refinement, the sparsity pattern in the dynamics is locked in by fixing the coeffi-
cient mask Υ. Then, the SINDyAE is fine-tuned for a certain number of epochs
without the L1 regularization on Ξ. This ensures that the best coefficients are
found for the resulting SINDy model and also allows the training procedure to re-
fine the encoder and decoder parameters. This procedure is analogous to running
a debiased regression following the use of LASSO to select model terms [15].

4.5 Choice of hyperparameters

The training procedure described in the previous section requires the choice of
the following hyperparameters:

• number of intrinsic coordinates d;

• loss weight penalties λ1, λ2, λ3;

• function library Θ;

• SINDy coefficient threshold.

These choices greatly impact the success of the training procedure. In this
regard, the authors of [23] outline the following guidelines.

The most important choice is the number of intrinsic coordinates d, as this af-
fects the interpretation of the reduced space and the associated dynamical model.
To choose d, the authors suggest first training a standard AE without the asso-
ciated SINDy model to determine the minimum number of coordinates needed to
reproduce the input data. As simpler models (i.e. lower d) are typically easier
to interpret, the smallest d possible should be used to start. Once this minimum
is found, the full SINDyAE can be trained. It is possible that more coordinates

23

4.5. CHOICE OF HYPERPARAMETERS

may be needed to capture the dynamics, in which case the method may accurately
reproduce the input but fail to find a good model for the dynamics. In this case, d
could be increased from the minimum until a suitable dynamical model is found.
Choosing d that is greater than necessary may still result in a valid model for the
dynamics. However, obtaining a sparse model may be more difficult.

The choice of loss weight penalties λ1, λ2, λ3 also has a significant impact
on the success of the training procedure. The first parameter λ1 determines the
importance of the SINDy prediction in the original input space. The authors
suggest to choose λ1 to be slightly less than the ratio

∑m
i=1 ∥xi∥22/

∑m
i=1 ∥ẋi∥22.

This slightly prioritizes the reconstruction of x over the prediction of ẋ in the
training. This is important to ensure that the AE weights are being trained to
reproduce x and that it is the SINDy model that gives an accurate prediction of
ẋ. Regarding the second parameter λ2, the authors choose it to be one or two
orders of magnitude less than λ1. If λ2 is too large, it encourages shrinking of
the magnitude of ż to minimize Ldz/dt; however, having λ2 nonzero encourages
a good prediction by the SINDy model in the ż space. The third parameter λ3
determines the strength of the regularization of the SINDy model coefficients Ξ

and thus affects the sparsity of the resulting models. If λ3 is too large, the model
will be too simple and achieve poor prediction. If it is too small, the models will
be non-sparse and prone to overfitting. This loss weight requires the most tuning
and should typically be chosen last by trying a range of values and assessing the
level of sparsity in the resulting model.

In addition to the hyperparameters used in the NN training, the SINDyAE
requires the choice of a library of functions Θ for the SINDy model. In general,
the best library functions to use may be unknown, and choosing the wrong library
functions can obscure the simplest model. A recommended practice is to start
with polynomial models, as many common physical models contain polynomials
representing dominant balance terms or are a coordinate transformation away from
a normal form characterized by a few polynomial nonlinearities. Polynomials can
also represent Taylor series approximations for a broad class of smooth functions.
For some systems, the choice of library functions could be informed by application-
specific knowledge. Alternatively, one might attempt to learn the library functions,
for example, using another NN layer. However, this approach would generally
hamper the interpretability and generalizability of the resulting dynamical model.
Other approaches, such as kernel-based methods, also have the potential to enable
more flexible library representations [13].

24

CHAPTER 4. SINDY AUTOENCODER

4.6 Limitations

A limitation of the SINDyAE is the requirement for clean measurement data
that is approximately noise-free. Fitting a continuous-time dynamical system with
SINDy requires reasonable estimates of the derivatives, which may be difficult to
obtain from noisy data. Approaches for estimating derivatives from noisy data,
such as the total variation regularized derivative, can prove useful in providing
derivative estimates [11]. Moreover, there are NN architectures explicitly con-
structed to separate signals from noise [24], which can be used as a preprocessing
step. Alternatively, the SINDyAE can be used to fit a discrete-time dynamical
system, in which case derivative estimates are not required. It is also possible to
use the integral formulation of SINDy to abate noise sensitivity [21].

4.7 SINDyAE as a synthetic data generator

A major problem with DL approaches is that models are typically neither
interpretable nor generalizable. Specifically, NNs trained solely for prediction may
fail to generalize to classes of behaviors not seen in the training set. Instead,
the SINDyAE is an approach for using NNs to obtain classically interpretable
models through the discovery of low-dimensional dynamical systems, which can
often have physical interpretations. Although the AE network still has the same
limited interpretability and generalizability as other NNs, the dynamical model
has the potential to generalize to other parameter regimes of the dynamics.

Such generalization potential of the SINDyAE leads to the main idea behind
this thesis work, which is to exploit the SINDyAE as a synthetic data generator.
Specifically, the idea is to leverage the sparse dynamical model learned by the
SINDyAE in the latent coordinates to generate high-fidelity synthetic data in
the original measurement coordinates. The synthesis process should take place
according to the following steps:

1. select a sample x0 in the original measurement space as the initial condition;

2. map x0 to the latent space via the encoder φ of the SINDyAE to get z0;

3. starting from z0, simulate the latent dynamical model learned by the SINDyAE
forward in time to generate Zs, i.e. synthetic data in the latent space;

4. map Zs back to the original measurement space via the decoder ψ of the
SINDyAE to get Xs, i.e. synthetic data in the original measurement space.

The SINDyAE implementation developed for this thesis is discussed in Chapter 5.

25

5
Implementation

The original implementation of the SINDyAE in TensorFlow is available at
the GitHub repository SindyAutoencoders. In this thesis work, the SINDyAE
is implemented from scratch in PyTorch 2.0. In detail, the PyTorch Lightning
framework is adopted. PyTorch Lightning is an open source Python library that
provides a high-level interface for PyTorch. Specifically, it is a lightweight, high-
performance framework that organizes PyTorch code to make DL experiments
easier to read and reproduce. Moreover, it is designed to create scalable models
that can easily run on distributed hardware while keeping them hardware-agnostic.
The Python libraries used to implement the SINDyAE are reported in Code 5.1.

from tqdm import tqdm, trange
import numpy as np
import pandas as pd
import pysindy as ps
import torch
import lightning.pytorch as pl

Code 5.1: Python libraries used to implement the SINDyAE.

The SINDyAE is implemented as a class named SINDyAutoencoder which
inherits from the pl.LightningModule class. Thanks to the LightningModule, it
is possible to organize the PyTorch code into the methods reported in Table 5.1.
Each of these methods is discussed exhaustively in the following sections.

5.1 Class initialization

The initialization arguments of SINDyAutoencoder are reported in Table 5.2.

27

https://github.com/kpchamp/SindyAutoencoders/
https://lightning.ai/pytorch-lightning/

5.1. CLASS INITIALIZATION

name description
__init__ class initialization

init_params network parameter initialization
forward forward pass

training_step training loop
validation_step validation loop

on_train_epoch_end, on_train_end sequential thresholding
configure_optimizers optimizer and learning rate scheduler
configure_callbacks early stopping

fit fitting
show_history training history
sindy_coeffs SINDy coefficients
simulate synthetic data generation

Table 5.1: Methods in which the PyTorch code for the SINDyAE is organized.

argument type description

experiment_name string or None name of the experiment
scaler_name string or None name of the data scaler

seed int or None PyTorch Lightning seed
dim_input int dimension of measurement space
dim_latent int dimension of latent space

layer_widths_encoder list[int] widths of the encoder layers
layer_widths_decoder list[int] widths of the decoder layers

activation torch.nn.␣() activation function
loss_weight dict{string : float} loss weight penalties

max_epochs_main int # epochs for main training
max_epochs_refinement int # epochs for refinement training

optimizer torch.optim.␣ training optimizer
lr float learning rate

lr_patience int learning rate patience
es_patience int early stopping patience
threshold float sequential thresholding – threshold

threshold_freq int sequential thresholding – frequency
poly_order int maximal degree of the polynomial features
include_bias bool whether to include the bias feature
include_sin bool whether to include sine features
include_cos bool whether to include cosine features

n_frequencies int # trigonometric frequencies to include
init_weight torch.nn.init.␣ weight initializer
init_bias torch.nn.init.␣ bias initializer
init_sindy torch.nn.init.␣ SINDy coefficient initializer

Table 5.2: Initialization arguments of the SINDyAutoencoder class.

28

CHAPTER 5. IMPLEMENTATION

5.1.1 Encoder and decoder

Both encoder and decoder are implemented as torch.nn.Sequential contain-
ers. First, the input torch.nn.Linear layer is added to the container. Then,
the subsequent layers are added to it by calling the append method of the con-
tainer. The activation function is applied to all layers except the last one. Finally,
the network parameters are initialized by calling the init_params method of the
SINDyAutoencoder class. This implementation supports the use of an arbitrary
number of layers. It is reported in Code 5.2.

encoder
self.encoder = torch.nn.Sequential(torch.nn.Linear(in_features=dim_input,
out_features=layer_widths_encoder[0], bias=True), activation)↪→

for i in range(len(layer_widths_encoder)-1):
self.encoder.append(torch.nn.Linear(in_features=layer_widths_encoder[i],
out_features=layer_widths_encoder[i+1], bias=True))↪→

self.encoder.append(activation)
self.encoder.append(torch.nn.Linear(in_features=layer_widths_encoder[-1], out_features=dim_latent,
bias=True))↪→

self.encoder.apply(self.init_params)

decoder
self.decoder = torch.nn.Sequential(torch.nn.Linear(in_features=dim_latent,
out_features=layer_widths_decoder[0], bias=True), activation)↪→

for i in range(len(layer_widths_decoder)-1):
self.decoder.append(torch.nn.Linear(in_features=layer_widths_decoder[i],
out_features=layer_widths_decoder[i+1], bias=True))↪→

self.decoder.append(activation)
self.decoder.append(torch.nn.Linear(in_features=layer_widths_decoder[-1], out_features=dim_input,
bias=True))↪→

self.decoder.apply(self.init_params)

Code 5.2: Encoder and decoder networks.

5.1.2 Feature library

Thanks to the PySINDy library, it is potentially straightforward to instantiate
the feature library. In fact, it includes the following submodules:

• ps.feature_library.PolynomialLibrary (polynomial features);

• ps.feature_library.FourierLibrary (trigonometric features);

• ps.feature_library.GeneralizedLibrary (to unify multiple libraries).
However, PySINDy does not support PyTorch tensors: it automatically converts
them to NumPy arrays before computing the features. Such conversions signif-
icantly slow down the computations involved in training the SINDyAE. This

29

https://pysindy.readthedocs.io/

5.1. CLASS INITIALIZATION

slowdown is even more evident in the case of GPU training, since each PyTorch
tensor must be moved to CPU before it can be converted into a NumPy array.

To overcome this limitation, the following workaround is adopted. Specifically,
the PySINDy submodules above are used for the sole purpose of obtaining the
expression of all the possible features that can be calculated according to both the
dimension of the latent space and the related arguments of Table 5.2. In practice,
the get_feature_names method of the GeneralizedLibrary is called to obtain a
list of strings, each representing the expression of a specific feature to be calculated.
Then, for each string, each function is mapped into the corresponding PyTorch
function through an ad hoc dictionary. Finally, these functions are evaluated in
the forward pass using the Python built-in function eval. The implementation of
the feature library is reported in Code 5.3.

feature_library = [ps.feature_library.PolynomialLibrary(degree=poly_order,
include_bias=include_bias)]↪→

if n_frequencies > 0:
feature_library.append(ps.feature_library.FourierLibrary(n_frequencies=n_frequencies,
include_sin=include_sin, include_cos=include_cos))↪→

self.pysindy_library = ps.feature_library.GeneralizedLibrary(feature_library)
feature_library =
ps.feature_library.GeneralizedLibrary(feature_library).fit(np.random.random(size=(1,dim_latent)))↪→

self.input_features = [f'z{i+1}' for i in range(dim_latent)]
self.output_features = feature_library.get_feature_names(input_features=self.input_features)
feature_library = feature_library.get_feature_names(input_features=self.input_features)
features_dict = {'^':'**', ' ':'*', 'sin':'torch.sin', 'cos':'torch.cos'}
for i in range(dim_latent):

features_dict[f'z{i+1}'] = f'z[:,{i}]'
for i in range(len(feature_library)):

for key, value in features_dict.items():
if key in feature_library[i]:

feature_library[i] = feature_library[i].replace(key, value)
self.feature_library = feature_library

Code 5.3: Feature library.

5.1.3 SINDy model

The SINDy model is implemented as a torch.nn.Linear layer whose weights
are the SINDy coefficients Ξ. They are initialized through the argument init_sindy
of Table 5.2. The implementation of the SINDy model is reported in Code 5.4.

self.sindy = torch.nn.Linear(in_features=len(self.output_features), out_features=dim_latent,
bias=False)↪→

self.init_sindy(self.sindy.weight)

Code 5.4: SINDy model.

30

CHAPTER 5. IMPLEMENTATION

5.2 Network parameter initialization

Network parameters are initialized by calling the init_params method. It
uses the arguments init_weight and init_bias of Table 5.2 to initialize the
weights and biases, respectively. In detail, the apply method of the specific Py-
Torch module is called to apply init_params recursively to each submodule. The
implementation of the network parameter initialization is reported in Code 5.5.

def init_params(self, module):

if isinstance(module, torch.nn.Linear):
self.init_weight(module.weight)

if (module.bias is not None) and (self.init_bias is not None):
self.init_bias(module.bias)

Code 5.5: Network parameter initialization.

5.3 Forward pass

5.3.1 Input reconstruction

Each batch data of size m consists of a torch.utils.data.TensorDataset,
that is, a PyTorch Dataset wrapping the following tensors:

• trajectory (size: m× 1);

• t (size: m× 1);

• x (size: m× n);

• x_dot (size: m× n);

where n is the dimension of the measurement space. First, x is passed through the
encoder to get the tensor z of size m × d, where d is the dimension of the latent
space. Then, z is passed through the decoder to get the tensor x_hat of size m×n.
The implementation of the input reconstruction is reported in Code 5.6.

trajectory, t, x, x_dot = data
x.requires_grad = True

z = self.encoder(x)
x_hat = self.decoder(z)

Code 5.6: Input reconstruction.

31

5.3. FORWARD PASS

5.3.2 Feature calculation

The feature matrix Theta_z is initialized as a torch.zeros tensor of size m×p
where p is the size of the feature library. Then, each feature in the feature library
is calculated using the Python function eval and assigned to the i-th column of
Theta_z. The implementation of the feature calculation is reported in Code 5.7.

Theta_z = torch.zeros(size=(len(x),len(self.feature_library)), dtype=torch.float,
device=self.device)↪→

for i, feature in enumerate(self.feature_library):
Theta_z[:,i] = eval(feature)

Code 5.7: Feature calculation.

5.3.3 Latent derivative estimation

The time derivative of the tensor z is estimated from the SINDy model by pass-
ing the feature matrix Theta_z to the SINDy layer. Thus, the SINDy coefficients
Xi coincide with the weights of the SINDy layer. The complexity of the SINDy
model, i.e. the number of nonzero coefficients, is logged throughout the training.
The implementation of the latent derivative estimation is reported in Code 5.8.

z_dot = self.sindy(Theta_z)
Xi = self.sindy.weight

log complexity of SINDy model
self.log('complexity', Xi.count_nonzero(), on_step=False, on_epoch=True, prog_bar=True)

Code 5.8: Latent derivative estimation.

5.3.4 Loss calculation

The SINDy losses loss_x_dot and loss_z_dot and the reconstruction loss
loss_rec are calculated using the torch.nn.MSELoss function for each record in
the batch and then averaged over the whole batch.

The SINDy losses, for optimization reasons, are calculated only if their loss
weight penalties are positive. Moreover, they require the computation of the Jaco-
bians ∇xz and ∇zx̂. However, it is difficult to compute these quantities efficiently
using torch.autograd, i.e. PyTorch’s automatic differentiation engine. This dif-
ficulty arises because autograd computes vector-Jacobian products. Therefore,
to compute the full Jacobian, it would be computed row-by-row using a different

32

CHAPTER 5. IMPLEMENTATION

unit vector each time. Instead, it is possible to leverage torch.vmap to get rid of
the for-loop and vectorize the computation. Indeed, vmap pushes the outer loop
down into the primitive operations of the functions in order to obtain better per-
formance. PyTorch 2.0 provides two APIs to compute vmap-powered Jacobians:
torch.func.jacrev and torch.func.jacfwd. They can be substituted for each
other, but have different performance characteristics. In this regard, the PyTorch
documentation provides a general rule of thumb. In detail, assuming that the
Jacobian is to be computed for a Rd → Rn function, then: it is recommended to
use jacfwd if n > d, otherwise it is recommended to use jacrev.

Actually, the SINDy losses require the computation of the Jacobian of a batch
of outputs with respect to a batch of inputs. That is, given a batch of inputs of
shape m × n and a Rn → Rd function, a Jacobian of shape m × d × n should be
computed. Once again, the easiest way to do this is to use vmap.

The regularization loss loss_reg is calculated only if its loss weight penalty
is positive and the SINDyAE is not in the refinement training phase. This loss is
calculated using the torch.abs function (to take the absolute value of the SINDy
coefficients) followed by the torch.mean function (to take their mean value).

Each loss is multiplied by its loss weight penalty before the forward pass is
completed. The implementation of the loss calculation is reported in Code 5.9.

reconstruction loss
loss_rec = torch.nn.MSELoss(reduction='sum')(x, x_hat) / len(x)
loss_rec = self.loss_weight['reconstruction'] * loss_rec

SINDy loss in x_dot
loss_x_dot = 0
if self.loss_weight['x_dot'] > 0:

decoder_jacobian = torch.vmap(torch.func.jacfwd(self.decoder))(z)
loss_x_dot = torch.nn.MSELoss(reduction='sum')(x_dot,
torch.vmap(torch.matmul)(decoder_jacobian, z_dot)) / len(x)↪→

loss_x_dot = self.loss_weight['x_dot'] * loss_x_dot

SINDy loss in z_dot
loss_z_dot = 0
if self.loss_weight['z_dot'] > 0:

encoder_jacobian = torch.vmap(torch.func.jacrev(self.encoder))(x)
loss_z_dot =
torch.nn.MSELoss(reduction='sum')(torch.vmap(torch.matmul)(encoder_jacobian, x_dot), z_dot) /
len(x)

↪→
↪→

loss_z_dot = self.loss_weight['z_dot'] * loss_z_dot

regularization loss
loss_reg = 0
if (self.loss_weight['regularization'] > 0) and (self.training_phase == 'main'):

loss_reg = torch.mean(torch.abs(Xi))
loss_reg = self.loss_weight['regularization'] * loss_reg

Code 5.9: Loss calculation.

33

5.4. TRAINING LOOP

5.4 Training loop

The training_step method is called automatically for each training batch.
Specifically, the forward pass is performed and the total training loss is calculated.
Each of the training losses is logged and then averaged at the epoch level. The
implementation of the training loop is reported in Code 5.10.

def training_step(self, batch, batch_idx):

loss_rec, loss_x_dot, loss_z_dot, loss_reg = self.forward(batch)
loss_total = loss_rec + loss_x_dot + loss_z_dot + loss_reg

self.log('train_loss_rec', loss_rec, on_step=False, on_epoch=True, prog_bar=False)
self.log('train_loss_x_dot', loss_x_dot, on_step=False, on_epoch=True, prog_bar=False)
self.log('train_loss_z_dot', loss_z_dot, on_step=False, on_epoch=True, prog_bar=False)
self.log('train_loss_reg', loss_reg, on_step=False, on_epoch=True, prog_bar=False)
self.log('train_loss_total', loss_total, on_step=False, on_epoch=True, prog_bar=True)

return loss_total

Code 5.10: Training loop.

5.5 Validation loop

The validation_step method is called automatically for each validation batch.
Specifically, the forward pass is performed and the total validation loss is calcu-
lated. Each of the validation losses is logged and then averaged at the epoch level.
The implementation of the validation loop is reported in Code 5.11.

def validation_step(self, batch, batch_idx):

loss_rec, loss_x_dot, loss_z_dot, loss_reg = self.forward(batch)
loss_total = loss_rec + loss_x_dot + loss_z_dot + loss_reg

self.log('valid_loss_rec', loss_rec, on_step=False, on_epoch=True, prog_bar=False)
self.log('valid_loss_x_dot', loss_x_dot, on_step=False, on_epoch=True, prog_bar=False)
self.log('valid_loss_z_dot', loss_z_dot, on_step=False, on_epoch=True, prog_bar=False)
self.log('valid_loss_reg', loss_reg, on_step=False, on_epoch=True, prog_bar=False)
self.log('valid_loss_total', loss_total, on_step=False, on_epoch=True, prog_bar=True)

return loss_total

Code 5.11: Validation loop.

34

CHAPTER 5. IMPLEMENTATION

5.6 Sequential thresholding

The SINDyAE sequential thresholding procedure is implemented as a pruning
technique by applying the torch.nn.utils.prune.custom_from_mask method to
the SINDy layer. This method prunes the tensor corresponding to a user-defined
parameter of a specific PyTorch module by applying a pre-computed mask. In this
case, the connections to be pruned are those with a weight below the initialization
argument threshold, in the parameter named weight of the self.sindy layer. In
practice, the implementation of the sequential thresholding consists of two parts.

The first part is embedded in the on_train_epoch_end method, called auto-
matically at the end of each training epoch. In particular, if the SINDyAE is in
the main training phase and the current epoch is a multiple of the thresholding
frequency, pruning is performed. First, a mask named mask1 is created. It keeps
all and only the SINDy coefficients above threshold. However, if only mask1 is
used, it could happen that all the coefficients of an equation of the SINDy model
are set to zero. This would lead to the impossibility of estimating the time deriva-
tive of the corresponding latent variable. Therefore, another mask named mask2
is created. It keeps all the coefficients which would be zeroed by mask1 and which
would be the last ones left for a specific latent variable. Then, these two masks
are put in logic OR and the resulting one, named mask, is used for pruning.

The second part is embedded in the on_train_end method, called automati-
cally at the end of the whole training procedure. In particular, to make the pruning
permanent, the torch.nn.utils.prune.remove method is used. Note that this
does not undo the pruning, as if it never happened. It simply makes it permanent.
The implementation of the sequential thresholding is reported in Code 5.12.

def on_train_epoch_end(self):
if (self.training_phase == 'main') and (self.current_epoch % self.threshold_freq == 0) and
(self.current_epoch > 0):↪→

coeffs = self.sindy.weight.T
mask1 = (torch.abs(coeffs) > self.threshold)
mask2 = torch.logical_and((torch.abs(coeffs) > 0), (torch.count_nonzero(mask1, dim=0) ==
0))↪→

mask = torch.logical_or(mask1, mask2).T
torch.nn.utils.prune.custom_from_mask(module=self.sindy, name='weight', mask=mask)

def on_train_end(self):
if self.training_phase == 'refinement':

torch.nn.utils.prune.remove(module=self.sindy, name='weight')

Code 5.12: Sequential thresholding.

35

5.7. OPTIMIZER AND LEARNING RATE SCHEDULER

5.7 Optimizer and learning rate scheduler

The configure_optimizers method is called automatically to set the initial-
ization argument optimizer as the optimization algorithm, with learning rate
equal to the initialization argument lr. The ReduceLROnPlateau scheduler (mon-
itoring the total validation loss and with patience equal to the initialization argu-
ment lr_patience) is also enabled, but only for refinement training. The imple-
mentation of the optimizer and learning rate scheduler is reported in Code 5.13.

def configure_optimizers(self):
optimizer = self.optimizer(self.parameters(), lr=self.lr)
patience = self.lr_patience if self.training_phase == 'refinement' else self.max_epochs_main
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer=optimizer, patience=patience,
mode='min', verbose=True)↪→

return {'optimizer': optimizer, 'lr_scheduler': scheduler, 'monitor': 'valid_loss_total'}

Code 5.13: Optimizer and learning rate scheduler.

5.8 Early stopping

The configure_callbacks method is called automatically to activate the
EarlyStopping callback with patience equal to the initialization argument named
es_patience. This callback monitors the SINDy model complexity during the
main training phase, while the total validation loss during the refinement training
phase. The implementation of the early stopping is reported in Code 5.14.

def configure_callbacks(self):
monitor = 'complexity' if self.training_phase == 'main' else 'valid_loss_total'
early_stopping = pl.callbacks.early_stopping.EarlyStopping(monitor=monitor,
patience=self.es_patience, mode='min')↪→

return [early_stopping]

Code 5.14: Early stopping.

5.9 Fitting

The fit method is called by the user to start training the SINDyAE. This
method creates the following two instances of pl.Trainer:

• trainer_main for the main training phase;

• trainer_refinement for the refinement training phase.

36

CHAPTER 5. IMPLEMENTATION

The pl.Trainer handles all loop details automatically. Some examples include:

• automatically enabling/disabling gradients;

• running the training and validation dataloaders;

• calling the callbacks at the appropriate times;

• putting batches and computations on the correct devices.

First, the main training phase is performed by calling the fit method of
trainer_main and its training history is saved to the attribute self.history_main
as a NumPy array. Then, the refinement training phase is performed by calling
the fit method of trainer_refinement and its training history is saved to the
attribute self.history_refinement as a NumPy array. Eventually, the function
torch.save is called to save the trained SINDyAutoencoder class to a .pt file.
The implementation of the fitting is reported in Code 5.15.

def fit(self, train_dataloader, valid_dataloader=None, pt_name=None):

main trainer
trainer_main = pl.Trainer(

accelerator='auto', devices='auto', strategy='auto',
deterministic=True, enable_checkpointing=False,
max_epochs=self.max_epochs_main,
logger=pl.loggers.CSVLogger(save_dir='logs',
name=self.experiment_name),↪→

callbacks=[ProgressBar(refresh_rate=len(train_dataloader)//3)])

refinement trainer
trainer_refinement = pl.Trainer(

accelerator='auto', devices='auto', strategy='auto',
deterministic=True, enable_checkpointing=False,
max_epochs=self.max_epochs_refinement,
logger=pl.loggers.CSVLogger(save_dir='logs',
name=self.experiment_name),↪→

callbacks=[ProgressBar(refresh_rate=len(train_dataloader)//3)])

main training
trainer_main.fit(model=self, train_dataloaders=train_dataloader,
val_dataloaders=valid_dataloader)↪→

self.history_main = pd.read_csv(self.logger.log_dir +
'/metrics.csv').drop(columns='step').groupby(['epoch'], as_index=False).max().to_numpy()↪→

refinement training
self.training_phase = 'refinement'
trainer_refinement.fit(model=self, train_dataloaders=train_dataloader,
val_dataloaders=valid_dataloader)↪→

self.history_refinement = pd.read_csv(self.logger.log_dir +
'/metrics.csv').drop(columns='step').groupby(['epoch'], as_index=False).max().to_numpy()↪→

self.logged_metrics = list(trainer_main.logged_metrics.keys())

if pt_name is not None:
torch.save(self, pt_name)

Code 5.15: Fitting.

37

5.10. TRAINING HISTORY

5.10 Training history

The show_history method is called by the user to get the full training history
as a Pandas DataFrame. This DataFrame is created by vertically stacking the
attributes self.history_main and self.history_refinement. The implemen-
tation of the training history is reported in Code 5.16.

def show_history(self):
df = pd.DataFrame(np.vstack((self.history_main, self.history_refinement)),
columns=['epoch']+self.logged_metrics)↪→

df['epoch'] = df.index
return df

Code 5.16: Training history.

5.11 SINDy coefficients

The sindy_coeffs method is called by the user to get the SINDy coefficients
as a NumPy array. The corresponding implementation is reported in Code 5.17.

def sindy_coeffs(self):
return self.sindy.weight.detach().cpu().numpy().T

Code 5.17: SINDy coefficients.

5.12 Synthetic data generation

The simulate method is called by the user to generate synthetic data by
simulating the SINDy model learned by the SINDyAE forward in time. The user
must pass the following arguments to the simulate method:

• x0: initial conditions from which to start the simulations;

• n_samples: number of samples to generate for each initial condition;

• t_domain: time domain in which to run the simulations.

First, a ps.SINDy module named simulator is instantiated for the sole purpose
of exploiting its method simulate to solve the system of differential equations
defined by the SINDy coefficients. Specifically, after setting it with the appropriate
feature library and dimension of the latent space, the SINDy coefficients learned
by the SINDyAE are loaded into it.

38

CHAPTER 5. IMPLEMENTATION

Second, the initial conditions x0 are mapped to the latent space via the encoder
network of the SINDyAE to get z0.

Then, the i-th row of z0 is used as an initial condition to be passed to the
simulate method of simulator, which generates z, i.e. the i-th trajectory of syn-
thetic points in the latent space. Afterwards, z is mapped back to the measurement
space via the decoder network of the SINDyAE to get x, i.e. the i-th trajectory
of synthetic points in the measurement space. Finally, x, its time domain and its
trajectory identifier are loaded into the NumPy array data.

After completion of all simulations, data is used to create the final synthetic
dataset in the form of the pandas DataFrame df. Eventually, df is saved to a .pkl
file. The implementation of the synthetic data generation is reported in Code 5.18.

def simulate(self, x0, n_samples, t_domain, pkl_name=None):

n_init = len(x0)

df_columns = ['trajectory', 't'] + [f'x{i+1}' for i in range(self.dim_input)]
t = np.linspace(start=t_domain[0], stop=t_domain[1], num=n_samples)
data = np.zeros((n_init*n_samples, len(df_columns)))

simulator = ps.SINDy(optimizer=ps.optimizers.STLSQ(threshold=0),
feature_library=self.pysindy_library)↪→

simulator.fit(x=np.random.random((3,len(self.input_features))), t=np.linspace(0,1,3))
simulator.optimizer.coef_ = self.sindy.weight.detach().cpu().numpy()
simulator.optimizer.ind_ = (self.sindy.weight.detach().cpu().numpy() != 0)

z0 = self.encoder(torch.as_tensor(x0, dtype=torch.float,
device=self.device)).detach().cpu().numpy()↪→

for i in trange(n_init):

trajectory = np.full(n_samples, i+1)

z = simulator.simulate(x0=z0[i], t=t)
x = self.decoder(torch.as_tensor(z, dtype=torch.float,
device=self.device)).detach().cpu().numpy()↪→

data[i*n_samples:(i+1)*n_samples] = np.column_stack((trajectory, t, x))

df = pd.DataFrame(data, columns=df_columns)
df['trajectory'] = df['trajectory'].astype('int')

if pkl_name is not None:
print(f'\nSaving to "{pkl_name}"...', end=' ')
df.to_pickle(pkl_name)
print('DONE!')

return df

Code 5.18: Synthetic data generation.

39

5.13. MODEL COMPILATION

5.13 Model compilation

PyTorch 2.0 includes the torch.compile method which makes PyTorch code
run faster by JIT-compiling it into optimized kernels, all while requiring minimal
code changes. This speedup mainly comes from reducing Python overhead and
GPU read/writes, and thus the observed speedup may vary depending on factors
such as model architecture and batch size. For example, if the model architecture
is simple and the amount of data is large, then the bottleneck would be GPU
compute and the observed speedup may be less significant. The speedup results
may also depend on the chosen mode argument that specifies what the compiler
should be optimizing while compiling. It can be specified as one of the following:

• default: tries to compile the model efficiently without taking too long or
using extra memory;

• reduce-overhead: reduces the framework overhead by a lot more, but costs
a small amount of extra memory;

• max-autotune: compiles the model for a long time, trying to return the
fastest code it can generate.

In general, different modes may need to be experimented with to maximize speedup.
The primary advantage of torch.compile over other existing PyTorch com-

piler solutions (e.g. TorchScript or FX Tracing) lies in its ability to handle ar-
bitrary Python code with minimal changes to existing code. For example, arbi-
trary Python functions can be optimized simply by passing the callable to the
torch.compile method.

PyTorch Lightning 2.0, which is compatible with PyTorch 2.0, supports model
compilation out of the box. Again, a simple call to the torch.compile method is
required to compile the LightningModule. This automatically compiles the model
along with its training and validation steps.

The SINDyAE is compiled using the max-autotune mode to try to maximize
performance. The code for the model compilation is reported in Code 5.19.

model = SINDyAutoencoder(...)
model = torch.compile(model, mode='max-autotune')

Code 5.19: Model compilation.

40

6
Models

In this chapter, the models explored in this thesis work are presented. Note
that the model referred to as M2 was implemented by the development team of
Clearbox AI, which is the synthetic data company where the curricular internship
was carried out.

6.1 Model M1: Generative SINDyAE

The model referred to as M1 consists of the SINDyAE proposed by Champion
et al. in [23], enriched with the synthetic data generation feature. It is implemented
as shown in Chapter 5.

6.2 Model M2: VAE by Clearbox AI

The model referred to as M2, i.e. the Clearbox AI Enterprise Solution, is a
commercial software developed to synthesize relational databases. The develop-
ment team of Clearbox AI started working in 2022 on extending the applicability
of its solution to time-series problems as well. At the time of the internship,
the solution supports the generation of multivariate time-series with few known
limitations, particularly regarding the number of variables.

The generation method behind the solution is the following. Given a dataset
containing the multivariate time-series, the following steps are performed in order
to generate synthetic data:

41

https://www.clearbox.ai/

6.2. MODEL M2: VAE BY CLEARBOX AI

1. Data preparation: the time-series is decomposed into a set of wavelet
coefficients using a Discrete Wavelet Transform. This first step includes a
search for optimal wavelet family and truncation order.

2. Generative model training: the transformed dataset is used to train a
VAE, specifically a Maximum Mean Discrepancy (MMD) VAE. This step
includes a grid search to determine the optimal set of hyperparameters such
as learning rate, number of epochs and batch size.

3. Data generation and analysis: the VAE is used to generate a synthetic
clone of the original dataset. This cloned dataset is analyzed to determine
the quality of the generated output against a set of metrics.

4. Data reconstruction: the synthetic clone, in the form of wavelet coef-
ficients, is reconstructed to the original multivariate form using a wavelet
reconstruction process.

The solution can be used, in its current form, for multivariate time-series with
a limited number of variables. The choice of datasets to be used in this thesis
work is driven by the need to test the solution on more complex data, possibly
highlighting potential areas for improvement to better guide future development
efforts. The selected datasets are presented in Chapter 7.

42

7
Datasets

The models explored in this thesis work are tested on two datasets generated
by nonlinear dynamical systems. They are presented in this chapter.

7.1 Lorenz system

7.1.1 Description

The Lorenz system is a system of three ordinary differential equations de-
veloped by Edward Lorenz as a simplified mathematical model for atmospheric
convection. It is notable for having chaotic solutions for certain parameter val-
ues and initial conditions. In particular, the Lorenz attractor is a set of chaotic
solutions of the Lorenz system. The Lorenz equations are the following:

z1̇ = σ(z2 − z1)

z2̇ = z1(ρ− z3)− z2
z3̇ = z1z2 − βz3

(7.1)

They relate the properties of a two-dimensional fluid layer uniformly warmed from
below and cooled from above. In particular, they describe the rate of change of
three quantities with respect to time: z1 is proportional to the rate of convection,
z2 to the horizontal temperature variation, and z3 to the vertical temperature
variation. The constants σ, ρ, β are system parameters proportional to the Prandtl
number, Rayleigh number, and certain physical dimensions of the layer itself.

43

7.1. LORENZ SYSTEM

As proposed by the authors of [23], one way to create a high-dimensional
dataset with dynamics defined by the Lorenz system is to choose six spatial modes
u1, . . . ,u6 ∈ R128 and take:

x(t) = u1z1(t) + u2z2(t) + u3z3(t) + u4z1(t)
3 + u5z2(t)

3 + u6z3(t)
3, (7.2)

where the dynamics of z is specified by the Lorenz equations with standard pa-
rameter values, i.e. those used by Lorenz himself:

σ = 10, ρ = 28, β = 8/3. (7.3)

The spatial modes u1, . . . , u6 are chosen to be the first six Legendre polynomials
defined at 128 grid points on the 1D spatial domain [−1, 1]. To generate the
dataset, the system is simulated from multiple initial conditions. For each initial
condition, the system is integrated forward in time from t = 0 to t = 5 with a
spacing of ∆t = 0.02. Thus, 250 samples are obtained for each trajectory. Initial
conditions are randomly sampled from a uniform distribution over z1 ∈ [−36, 36],
z2 ∈ [−48, 48], z3 ∈ [−16, 66]. This results in the dataset reported in Table 7.1.

set # initial conditions # total samples
training 2048 512000

validation 20 5000
test 100 25000

Table 7.1: Lorenz dataset.

7.1.2 Simulation

The dataset concerning the Lorenz system is generated using the following
user-defined Python functions: lorenz, lorenz_df, and lorenz_df_high. The
libraries used to implement these functions are reported in Code 7.1.

from tqdm import trange
import numpy as np
import pandas as pd
from scipy.integrate import solve_ivp
from scipy.special import legendre
from sklearn.preprocessing import MaxAbsScaler, MinMaxScaler, StandardScaler
from pysindy.differentiation import FiniteDifference

Code 7.1: Libraries used by the functions that generate the Lorenz dataset.

44

CHAPTER 7. DATASETS

First, the lorenz function determines the differential equations of the Lorenz
system. Its implementation is reported in Code 7.2.

def lorenz(t, Z, beta=8/3, rho=28, sigma=10):

z1, z2, z3 = Z
z1_dot = sigma*(z2 - z1)
z2_dot = z1*(rho - z3) - z2
z3_dot = z1*z2 - beta*z3

return z1_dot, z2_dot, z3_dot

Code 7.2: lorenz function.

Second, the lorenz_df function creates the three-dimensional Lorenz dataset
according to the following steps:

1. the np.random.uniform function generates n_init initial conditions ran-
domly sampled from a uniform distribution over Z0_domain;

2. for each initial condition:

(a) the solve_ivp function numerically integrates the Lorenz system and
returns the values of the solution at time points t;

(b) the time derivatives of the solution values are either computed ex-
actly using the lorenz function or numerically estimated using the
FiniteDifference function;

(c) the solution values and their derivatives, together with the time points
and the trajectory identifier, are stored in the NumPy array data;

3. data is used to create the pandas DataFrame df;

4. df is scaled either using one of scikit-learn’s scalers or dividing all its entries
by 40 as done by the authors of [23];

5. df is saved to a .pkl file.

For this thesis work, the time derivatives are computed exactly and df is scaled
using scikit-learn’s MaxAbsScaler function. The implementation of the lorenz_df
function is reported in Code 7.3.

Third, the lorenz_df_high function takes the three-dimensional Lorenz dataset
as input to create the corresponding high-dimensional dataset df_high according
to Eq. 7.2. Then, standard normal noise of strength equal to noise_strength is
added to df_high. Lastly, df_high is saved to a .pkl file. For this thesis work,
a value of noise_strength equal to 10−6 is used. The implementation of the
lorenz_df_high function is reported in Code 7.4.

45

https://scikit-learn.org/

7.1. LORENZ SYSTEM

def lorenz_df(n_init=2048, n_samples=250, t_domain=(0,5), Z0=None, Z0_domain={'z1':(-36,36),
'z2':(-48,48), 'z3':(-16,66)}, beta=8/3, rho=28, sigma=10, exact_derivatives=True,
scaler_name='maxabs', pkl_name=None):

↪→
↪→

df_columns = ['trajectory', 't', 'z1', 'z2', 'z3', 'dz1', 'dz2', 'dz3']
t = np.linspace(start=t_domain[0], stop=t_domain[1], num=n_samples)
data = np.zeros((n_init*n_samples, len(df_columns)))

if Z0 is None:
Z0 = np.random.uniform(low=[Z0_domain[f'z{i}'][0] for i in range(1,4)],
high=[Z0_domain[f'z{i}'][1] for i in range(1,4)], size=(n_init,3))↪→

for i in trange(n_init):

trajectory = np.full(n_samples, i+1)
z1, z2, z3 = solve_ivp(fun=lorenz, t_span=t_domain, y0=Z0[i], method='LSODA', t_eval=t,
args=(beta, rho, sigma), rtol=1e-12, atol=1e-12).y↪→

if exact_derivatives:
dz1, dz2, dz3 = lorenz(t, (z1, z2, z3))

else:
dz1, dz2, dz3 = [FiniteDifference()._differentiate(zi, t) for zi in (z1, z2, z3)]

data[i*n_samples:(i+1)*n_samples] = np.column_stack((trajectory, t, z1, z2, z3, dz1, dz2,
dz3))↪→

df = pd.DataFrame(data, columns=df_columns)
df['trajectory'] = df['trajectory'].astype('int')

if scaler_name is not None:

if scaler_name == 'maxabs':
scaler = MaxAbsScaler()
df.iloc[:,2:5] = scaler.fit_transform(df.iloc[:,2:5].to_numpy())
df.iloc[:,5:] = scaler.transform(df.iloc[:,5:].to_numpy())

elif scaler_name == 'minmax':
scaler = MinMaxScaler()
df.iloc[:,2:5] = scaler.fit_transform(df.iloc[:,2:5].to_numpy())
scaler.min_ = np.zeros_like(scaler.min_)
df.iloc[:,5:] = scaler.transform(df.iloc[:,5:].to_numpy())

elif scaler_name == 'standard':
scaler = StandardScaler()
df.iloc[:,2:5] = scaler.fit_transform(df.iloc[:,2:5].to_numpy())
scaler.with_mean = False
df.iloc[:,5:] = scaler.transform(df.iloc[:,5:].to_numpy())

elif scaler_name == 'paper':
df.iloc[:,2:] /= 40

else:
print(f'\nScaler "{scaler_name}" not supported!')

if pkl_name is not None:
print(f'\nSaving to "{pkl_name}"...', end=' ')
df.to_pickle(pkl_name)
print('DONE!')

return df

Code 7.3: lorenz_df function.

46

CHAPTER 7. DATASETS

def lorenz_df_high(df, modes_n=6, modes_dim=128, modes_domain=(-1,1), nonlinear=True,
noise_strength=1e-6, pkl_name=None):↪→

df_high = df.copy(deep=True)

modes = [legendre(i)(np.linspace(modes_domain[0], modes_domain[1], modes_dim)) for i in
range(modes_n)]↪→

for i in range(modes_n):
df_high[f'u{i+1}'] = len(df_high)*[modes[i]]

X
df_high['X'] = 0
print('X | linear features')
for i in trange(1, 4):

df_high['X'] += df_high[f'u{i}']*df_high[f'z{i}']
if nonlinear:

print('\nX | nonlinear features')
for i in trange(1, 4):

df_high['X'] += df_high[f'u{i+3}']*(df_high[f'z{i}']**3)

dX
df_high['dX'] = 0
print('\ndX | linear features')
for i in trange(1, 4):

df_high['dX'] += df_high[f'u{i}']*df_high[f'dz{i}']
if nonlinear:

print('\ndX | nonlinear features')
for i in trange(1, 4):

df_high['dX'] += 3*df_high[f'u{i+3}']*(df_high[f'z{i}']**2)*df_high[f'dz{i}']

trajectory = df_high['trajectory'].tolist()
t = df_high['t'].tolist()

df_high = pd.DataFrame(
np.concatenate((df_high['X'].tolist(), df_high['dX'].tolist()), axis=1),
columns=[f'x{i+1}' for i in range(modes_dim)]+[f'dx{i+1}' for i in
range(modes_dim)]↪→

)

if noise_strength > 0:
df_high += noise_strength*np.random.standard_normal(df_high.shape)

df_high.insert(0, 't', t)
df_high.insert(0, 'trajectory', trajectory)

if pkl_name is not None:
print(f'\nSaving to "{pkl_name}"...', end=' ')
df_high.to_pickle(pkl_name)
print('DONE!')

return df_high

Code 7.4: lorenz_df_high function.

47

7.2. F-16 AIRCRAFT

7.2 F-16 aircraft

7.2.1 Description

The experimental data [27] were acquired on a full-scale F-16 aircraft (see Fig.
7.1) on the occasion of the Siemens LMS Ground Vibration Testing Master Class,
held in September 2014 at the Saffraanberg military basis, Sint-Truiden, Belgium.

Figure 7.1: Complete structure of the F-16 aircraft.

During the test campaign, two dummy payloads were mounted at the wing
tips to simulate the mass and inertia properties of real devices typically equipping
an F-16 in flight (see Fig. 7.2a). The aircraft structure was equipped with 145
acceleration sensors. A shaker was attached underneath the right wing to apply
input signals (see Fig. 7.2b). The dominant source of nonlinearity in the struc-
tural dynamics was expected to originate from the mounting interfaces of the two
payloads. These interfaces consist of T-shaped connecting elements on the payload
side, slid through a rail attached to the wing side (see Fig. 7.2c). A preliminary in-
vestigation showed that the back connection of the right-wing-to-payload interface
was the predominant source of nonlinear distortions in the aircraft dynamics.

(a) (b) (c)

Figure 7.2: F-16 instrumentation. (a) Dummy payload mounted at the right wing
tip; (b) shaker attached underneath the right wing; (c) back connection of the
right-wing-to-payload mounting interface.

48

CHAPTER 7. DATASETS

Measurements were acquired at a sampling frequency of 400 Hz. Two distinct
input signals are made available:

1. voltage measured at the output of the signal generator amplifier, acting as
a reference input;

2. actual force provided by the shaker and measured by a impedance head at
the excitation location.

Three acceleration signals are provided as output quantities. They were measured:

1. at the excitation location;

2. on the right wing next to the nonlinear interface of interest;

3. on the payload next to the nonlinear interface of interest.

The outputs are listed in this order in the data matrices.
For this thesis work, the datasets concerning sine-sweep excitations with a lin-

ear, negative rate of 0.05 Hz/s (sweep down) are used, i.e. those corresponding to
the data files named F16Data_SineSw_Level#.csv. The covered input frequency
range is 15 to 2 Hz. Seven different levels of excitation are provided as benchmark
data. The lowest level at 4.8 N input amplitude can be considered as a linear
dataset. Three higher excitation levels are given to serve as estimation data in
nonlinear regimes of vibration, i.e. datasets # 3, 5 and 7 corresponding to 28.8 N ,
67.0 N and 95.6 N , respectively. Datasets # 2, 4 and 6 corresponding to 19.2 N ,
57.6 N and 86.0 N , respectively, are originally intended to be used for testing the
models estimated using datasets # 3, 5 and 7, respectively.

The F-16 benchmark is associated with three major nonlinear system identifi-
cation challenges. First, the order of the system is reasonably high. In the 2 to 15
Hz band, the F-16 has about 10 resonance modes:

• few modes < 5 Hz corresponding to rigid-body motions of the structure;

• flexible mode ≈ 5.2 Hz corresponding to wing bending deformations;

• wing torsion mode ≈ 7.3 Hz involving the strongest nonlinear distortions.

Second, the mounting interface of interest is expected to feature nonlinearities in
stiffness and damping, due to clearance and friction, respectively. Third, clearance
and friction may lead to hard nonlinearities, and hence may not be appropriately
modeled using smooth basis functions.

49

7.2. F-16 AIRCRAFT

7.2.2 Preprocessing

All datasets corresponding to data files named F16Data_SineSw_Level#.csv
are preprocessed and then concatenated to obtain a single dataset. The libraries
used to perform these operations are reported in Code 7.5.

import os
import numpy as np
import pandas as pd
from sklearn.preprocessing import MaxAbsScaler
from pysindy.differentiation import SmoothedFiniteDifference

Code 7.5: Libraries used to preprocess and concatenate the F-16 datasets.

First, the bottom rows of these datasets are all zeros and correspond to the
phase in which the F-16 aircraft is no longer excited by the shaker. These rows are
clearly superfluous and should therefore be discarded. To this end, the number
of top rows n_samples corresponding to the 15 to 2 Hz input frequency range
is computed according to the sampling frequency sampling_freq and the sweep
rate sweep_rate. Then, n_samples and sampling_freq are used to compute the
time points t. The code for computing n_samples and t is reported in Code 7.6.

sampling_freq = 400 # Hz
sweep_rate = -0.05 # Hz/s
input_freq_range = (15,2) # Hz

dt = 1/sampling_freq
n_samples = int(sampling_freq*(input_freq_range[1]-input_freq_range[0])/sweep_rate)
t_domain = (0, (n_samples-1)*dt)
t = np.linspace(t_domain[0], t_domain[1], num=n_samples)

Code 7.6: Computation of n_samples and t.

Second, each of these datasets is read and then preprocessed according to the
following steps:

1. the i-th dataset is read as a pandas DataFrame df_i;

2. only the first n_samples rows of df_i are retained;

3. the time derivatives of the columns of df_i are numerically estimated using
the SmoothedFiniteDifference function, i.e. FiniteDifference preceded
by a smoother (default: Savitzky-Golay filter [1]) to mitigate noise effects;

4. df_i is split by rows into multiple DataFrames df_ij of length len_trajectory
equal to 250;

5. df_ij is appended to the list df.

50

CHAPTER 7. DATASETS

After this loop, the list df is shuffled by calling the np.random.shuffle function
and then it is transformed into a single DataFrame.

Third, the DataFrame df is scaled using scikit-learn’s MaxAbsScaler function.
Eventually, df is saved to a .pkl file. The code for preprocessing and concatenating
the F-16 datasets is reported in Code 7.7.

csv_names = [csv_name for csv_name in os.listdir('data_f16') if 'F16Data_SineSw' in csv_name]
len_trajectory = 250
df = []

for csv_name in csv_names:

df_i = pd.read_csv(f'data_f16/{csv_name}')
df_i = df_i[['Force', 'Voltage', 'Acceleration1', 'Acceleration2', 'Acceleration3']]
df_i = df_i.iloc[:n_samples,:]

df_i.columns = [f'x{i+1}' for i in range(len(df_i.columns))]

df_i['d'+df_i.columns] = SmoothedFiniteDifference()._differentiate(x=df_i.to_numpy(), t=t)

df_i.insert(0, 't', t)

for j in range(0, len(df_i), len_trajectory):
df_ij = df_i.iloc[j:j+len_trajectory,:]
df.append(df_ij)

np.random.shuffle(df)
for i in range(len(df)):

df[i].insert(0, 'trajectory', i+1)

df = pd.concat(df, ignore_index=True)

scaler = MaxAbsScaler()

columns_X = df.columns[df.columns.str.startswith('x')]
columns_dX = df.columns[df.columns.str.startswith('dx')]

scaler.fit(df[columns_X].to_numpy())

df[columns_X] = scaler.transform(df[columns_X].to_numpy())
df[columns_dX] = scaler.transform(df[columns_dX].to_numpy())

df.to_pickle('data/f16_original.pkl')

Code 7.7: Preprocessing and concatenation of the F-16 datasets.

This results in the dataset reported in Table 7.2.

set # initial conditions # total samples
training 2792 698000

validation 20 5000
test 100 25000

Table 7.2: F-16 dataset.

51

8
Results

8.1 Introduction

This section describes the procedures implemented to assess the performance
and analyze the results of the models presented in Chapter 6.

8.1.1 Model training history and SINDy coefficients

In the case of the M1 model, the training history is reported. Specifically, the
trend over the epochs of the following quantities is shown:

• training losses;

• validation losses;

• total losses;

• complexity of the SINDy model.

Moreover, a heatmap of the coefficients learned by the SINDy model is shown.

8.1.2 Synthetic data generation

Each trained model is used to generate a number of synthetic trajectories equal
to the number of test trajectories, that is, 100. This choice avoids class imbalance
for the time-series classification problem presented in the next subsection. Fur-
thermore, each synthetic trajectory has a length equal to the length of the original
trajectories, that is, 250.

53

8.1. INTRODUCTION

In the case of the M1 model, the synthetic initial conditions are randomly
sampled from the multivariate normal distribution inferred from the initial test
conditions. Then, starting from each synthetic initial condition, the latent dy-
namical model learned by the SINDyAE is simulated forward in time from t = t∗

to t = t∗ + ∆t, where ∆t is the time duration of the original trajectories and t∗

depends on the dataset in use. Specifically:

• in the case of the Lorenz dataset, t∗ is the initial time point of the original
trajectories, i.e. t∗ = 0;

• in the case of the F-16 dataset, t∗ is a time point uniformly sampled from
the time domain of the test set.

8.1.3 Classification of real and synthetic time-series

A time-series DL classifier is trained to discriminate between original and syn-
thetic trajectories. As stated in [31], InceptionTime [26] is currently one of the best
DL models for time-series classification. It is an ensemble of deep Convolutional
Neural Network (CNN) models, inspired by the Inception-v4 [20] architecture.
Therefore, it is chosen for the purposes of this thesis work. Specifically, the
InceptionTimeClassifier model included in the sktime library is used.

First, the datasets for training and testing the InceptionTimeClassifier
model are obtained according to the following steps:

1. the original test dataset is transformed into a 3D NumPy array original_X
of shape [# trajectories, # dimensions, trajectory length];

2. the synthetic dataset is transformed into a 3D NumPy array synthetic_X
of shape [# trajectories, # dimensions, trajectory length];

3. original_X is paired with a 1D NumPy array original_y of binary labels
all equal to 0;

4. synthetic_X is paired with a 1D NumPy array synthetic_y of binary labels
all equal to 1;

5. original_X and synthetic_X are vertically stacked to get X;

6. original_y and synthetic_y are concatenated to get y;

7. X and y are split into random train and test subsets X_train, X_test,
y_train, and y_test (test size: 30% of the length of X).

Then, the InceptionTimeClassifier model is trained on X_train and y_train
using the following settings:

54

https://www.sktime.net/

CHAPTER 8. RESULTS

• batch size: length of X, i.e. 200;

• number of epochs: 103;

• learning rate: 10−3;

• loss: categorical cross-entropy;

• optimizer: Adam;

• scheduler: ReduceLROnPlateau (patience: 50, monitor: loss, threshold: 10−4);

• callbacks: early stopping (patience: 100, monitor: loss, threshold: 10−4).

Consequently, the trend over the epochs of the training loss is shown.
Finally, the accuracy of the trained InceptionTimeClassifier model is tested

on X_test and y_test. The accuracy, i.e. the fraction of correct predictions, is
computed using the accuracy_score function included in the scikit-learn library.

8.1.4 Distance between real and synthetic time-series

The pairwise_distance function included in the sktime library is used to
compute the 2D pairwise distance matrix between the original and synthetic tra-
jectories, which is then represented as a heatmap. The pairwise_distance func-
tion natively supports the following distance metrics for 3D arrays like original_X
and synthetic_X:

• euclidean;

• squared;

• dynamic time warping (DTW) [2];

• derivative dynamic time warping (DDTW) [7];

• weighted dynamic time warping (WDTW) [12];

• weighted derivative dynamic time warping (WDDTW) [12];

• longest common subsequence (LCSS) [34];

• Edit distance for real sequences (EDR) [9];

• Edit distance with real penalty (ERP) [8].

Such heatmaps are qualitatively interpreted as a measurement of the novelty in-
troduced by the synthetic trajectories compared to the original trajectories.

55

8.2. LORENZ SYSTEM

8.2 Lorenz system

8.2.1 Model M1

The training details of the experiments conducted with the M1 model on
the Lorenz dataset are reported in Table 8.1. The model training histories and
SINDy coefficients are reported in Figs. 8.1 to 8.6. Regarding the training of the
InceptionTimeClassifier models, the trends over the epochs of the training loss
are reported in Fig. 8.7. The accuracy achieved by the InceptionTimeClassifier
models in discriminating between original and synthetic trajectories is reported in
Table 8.2. The heatmaps of the pairwise distance matrices between the original
and synthetic trajectories are reported in Figs. 8.8 to 8.13.

experiment version v1 v2 v3 v4 v5 v6
seed 5 3 9 3 7 10
input dimension 128 128 128 128 128 128
latent dimension 3 3 3 3 3 3
encoder layer widths 64,32 64,32 64,32 64,32 64,32 64,32,16,8
decoder layer widths 32,64 32,64 32,64 32,64 32,64 8,16,32,64
batch size 8000 8000 8000 8000 8000 8000
activation function Sigmoid Sigmoid ReLU ReLU ReLU ReLU
SINDy loss in ẋ – weight 10−4 10−4 10−4 10−4 10−4 10−4

SINDy loss in ż – weight 0 10−6 0 10−6 10−5 10−6

regularization loss – weight 10−5 10−4 10−4 10−4 10−3 10−3

main training – epochs 104 104 104 104 104 104

refinement training – epochs 103 103 103 103 103 103

optimizer Adam Adam Adam Adam Adam Adam
learning rate 10−3 10−4 10−3 10−4 10−4 10−4

learning rate patience 104 1000 500 1000 1000 1000
early stopping patience 104 3000 1500 3000 3000 3000
thresholding – threshold 0.1 0.1 0.1 0.1 0.1 0.1
thresholding – frequency 500 500 500 500 500 500
polynomial features – degree 3 3 3 3 3 3
include bias feature yes yes yes yes yes yes
include sine features no no no no no no
include cosine features no no no no no no
trigonometric frequencies 0 0 0 0 0 0

Table 8.1: [Lorenz M1] Training details.

experiment version v1 v2 v3 v4 v5 v6
training accuracy (%) 100 100 96.43 97.86 76.43 71.43
test accuracy (%) 38.33 98.33 78.33 91.67 73.33 73.33

Table 8.2: [Lorenz M1] Accuracy of the InceptionTimeClassifier models.

56

CHAPTER 8. RESULTS

0 2000 4000 6000 8000 10000

epoch

10−5

10−4

10−3

10−2

10−1

100

101

lo
ss

train - total

train - reconstruction

train - regularization

train - SINDy in ẋ

train - SINDy in ż

(a) Training losses.
0 2000 4000 6000 8000 10000

epoch

10−5

10−4

10−3

10−2

10−1

100

101

lo
ss

valid - total

valid - reconstruction

valid - regularization

valid - SINDy in ẋ

valid - SINDy in ż

(b) Validation losses.

0 2000 4000 6000 8000 10000

epoch

10−5

10−4

10−3

10−2

10−1

100

101

lo
ss

train - total

valid - total

(c) Total losses.
0 2000 4000 6000 8000 10000

epoch

40

45

50

55

60

co
m

p
le

x
it

y

(d) Complexity of the SINDy model.

1 z 1 z 2 z 3 z
2 1

z 1
z 2

z 1
z 3 z

2 2

z 2
z 3 z

2 3 z
3 1

z
2 1
z 2

z
2 1
z 3

z 1
z

2 2

z 1
z 2
z 3

z 1
z

2 3 z
3 2

z
2 2
z 3

z 2
z

2 3 z
3 3

ż 1
ż 2

ż 3

−10 −5 0 5 10 15

(e) Coefficients discovered by the SINDy model.

Figure 8.1: [Lorenz M1v1] Model training history and SINDy coefficients.

57

8.2. LORENZ SYSTEM

0 2000 4000 6000 8000 10000

epoch

10−6

10−4

10−2

100

lo
ss

train - total

train - reconstruction

train - regularization

train - SINDy in ẋ

train - SINDy in ż

(a) Training losses.
0 2000 4000 6000 8000 10000

epoch

10−6

10−4

10−2

100

lo
ss

valid - total

valid - reconstruction

valid - regularization

valid - SINDy in ẋ

valid - SINDy in ż

(b) Validation losses.

0 2000 4000 6000 8000 10000

epoch

10−4

10−3

10−2

10−1

100

101

lo
ss

train - total

valid - total

(c) Total losses.
0 2000 4000 6000 8000 10000

epoch

40

45

50

55

60

co
m

p
le

x
it

y

(d) Complexity of the SINDy model.

1 z 1 z 2 z 3 z
2 1

z 1
z 2

z 1
z 3 z

2 2

z 2
z 3 z

2 3 z
3 1

z
2 1
z 2

z
2 1
z 3

z 1
z

2 2

z 1
z 2
z 3

z 1
z

2 3 z
3 2

z
2 2
z 3

z 2
z

2 3 z
3 3

ż 1
ż 2

ż 3

−20 −15 −10 −5 0 5 10 15 20

(e) Coefficients discovered by the SINDy model.

Figure 8.2: [Lorenz M1v2] Model training history and SINDy coefficients.

58

CHAPTER 8. RESULTS

0 1000 2000 3000 4000 5000

epoch

10−5

10−4

10−3

10−2

10−1

100

lo
ss

train - total

train - reconstruction

train - regularization

train - SINDy in ẋ

train - SINDy in ż

(a) Training losses.
0 1000 2000 3000 4000 5000

epoch

10−5

10−4

10−3

10−2

10−1

100

lo
ss

valid - total

valid - reconstruction

valid - regularization

valid - SINDy in ẋ

valid - SINDy in ż

(b) Validation losses.

0 1000 2000 3000 4000 5000

epoch

10−4

10−3

10−2

10−1

100

lo
ss

train - total

valid - total

(c) Total losses.
0 1000 2000 3000 4000 5000

epoch

10

20

30

40

50

60

co
m

p
le

x
it

y

(d) Complexity of the SINDy model.

1 z 1 z 2 z 3 z
2 1

z 1
z 2

z 1
z 3 z

2 2

z 2
z 3 z

2 3 z
3 1

z
2 1
z 2

z
2 1
z 3

z 1
z

2 2

z 1
z 2
z 3

z 1
z

2 3 z
3 2

z
2 2
z 3

z 2
z

2 3 z
3 3

ż 1
ż 2

ż 3

−25 −20 −15 −10 −5 0 5 10

(e) Coefficients discovered by the SINDy model.

Figure 8.3: [Lorenz M1v3] Model training history and SINDy coefficients.

59

8.2. LORENZ SYSTEM

0 2000 4000 6000 8000 10000

epoch

10−6

10−4

10−2

100

lo
ss

train - total

train - reconstruction

train - regularization

train - SINDy in ẋ

train - SINDy in ż

(a) Training losses.
0 2000 4000 6000 8000 10000

epoch

10−6

10−4

10−2

100

lo
ss

valid - total

valid - reconstruction

valid - regularization

valid - SINDy in ẋ

valid - SINDy in ż

(b) Validation losses.

0 2000 4000 6000 8000 10000

epoch

10−3

10−2

10−1

100

101

lo
ss

train - total

valid - total

(c) Total losses.
0 2000 4000 6000 8000 10000

epoch

35

40

45

50

55

60

co
m

p
le

x
it

y

(d) Complexity of the SINDy model.

1 z 1 z 2 z 3 z
2 1

z 1
z 2

z 1
z 3 z

2 2

z 2
z 3 z

2 3 z
3 1

z
2 1
z 2

z
2 1
z 3

z 1
z

2 2

z 1
z 2
z 3

z 1
z

2 3 z
3 2

z
2 2
z 3

z 2
z

2 3 z
3 3

ż 1
ż 2

ż 3

−5.0 −2.5 0.0 2.5 5.0 7.5 10.0 12.5

(e) Coefficients discovered by the SINDy model.

Figure 8.4: [Lorenz M1v4] Model training history and SINDy coefficients.

60

CHAPTER 8. RESULTS

0 2000 4000 6000 8000 10000

epoch

10−4

10−3

10−2

10−1

100

101

lo
ss

train - total

train - reconstruction

train - regularization

train - SINDy in ẋ

train - SINDy in ż

(a) Training losses.
0 2000 4000 6000 8000 10000

epoch

10−4

10−3

10−2

10−1

100

101

lo
ss

valid - total

valid - reconstruction

valid - regularization

valid - SINDy in ẋ

valid - SINDy in ż

(b) Validation losses.

0 2000 4000 6000 8000 10000

epoch

10−3

10−2

10−1

100

101

lo
ss

train - total

valid - total

(c) Total losses.
0 2000 4000 6000 8000 10000

epoch

20

30

40

50

60

co
m

p
le

x
it

y

(d) Complexity of the SINDy model.

1 z 1 z 2 z 3 z
2 1

z 1
z 2

z 1
z 3 z

2 2

z 2
z 3 z

2 3 z
3 1

z
2 1
z 2

z
2 1
z 3

z 1
z

2 2

z 1
z 2
z 3

z 1
z

2 3 z
3 2

z
2 2
z 3

z 2
z

2 3 z
3 3

ż 1
ż 2

ż 3

0 2 4 6 8 10 12

(e) Coefficients discovered by the SINDy model.

Figure 8.5: [Lorenz M1v5] Model training history and SINDy coefficients.

61

8.2. LORENZ SYSTEM

0 2000 4000 6000 8000 10000

epoch

10−6

10−5

10−4

10−3

10−2

10−1

100

101

lo
ss

train - total

train - reconstruction

train - regularization

train - SINDy in ẋ

train - SINDy in ż

(a) Training losses.
0 2000 4000 6000 8000 10000

epoch

10−6

10−5

10−4

10−3

10−2

10−1

100

101

lo
ss

valid - total

valid - reconstruction

valid - regularization

valid - SINDy in ẋ

valid - SINDy in ż

(b) Validation losses.

0 2000 4000 6000 8000 10000

epoch

10−3

10−2

10−1

100

101

lo
ss

train - total

valid - total

(c) Total losses.
0 2000 4000 6000 8000 10000

epoch

25

30

35

40

45

50

55

60

co
m

p
le

x
it

y

(d) Complexity of the SINDy model.

1 z 1 z 2 z 3 z
2 1

z 1
z 2

z 1
z 3 z

2 2

z 2
z 3 z

2 3 z
3 1

z
2 1
z 2

z
2 1
z 3

z 1
z

2 2

z 1
z 2
z 3

z 1
z

2 3 z
3 2

z
2 2
z 3

z 2
z

2 3 z
3 3

ż 1
ż 2

ż 3

−3 −2 −1 0 1 2 3

(e) Coefficients discovered by the SINDy model.

Figure 8.6: [Lorenz M1v6] Model training history and SINDy coefficients.

62

CHAPTER 8. RESULTS

0 100 200 300 400 500 600

epoch

0.0

0.2

0.4

0.6

0.8

1.0

tr
a
in

in
g

lo
ss

(a) Experiment version v1.
0 100 200 300 400

epoch

0.0

0.2

0.4

0.6

0.8

1.0

tr
a
in

in
g

lo
ss

(b) Experiment version v2.

0 100 200 300 400

epoch

0.0

0.2

0.4

0.6

0.8

1.0

tr
ai

n
in

g
lo

ss

(c) Experiment version v3.
0 100 200 300 400 500

epoch

0.0

0.2

0.4

0.6

0.8

1.0

tr
ai

n
in

g
lo

ss

(d) Experiment version v4.

0 50 100 150 200 250

epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

tr
ai

n
in

g
lo

ss

(e) Experiment version v5.
0 50 100 150 200 250 300 350

epoch

0.0

0.2

0.4

0.6

0.8

1.0

tr
ai

n
in

g
lo

ss

(f) Experiment version v6.

Figure 8.7: [Lorenz M1] Training loss of the InceptionTimeClassifier models.

63

8.2. LORENZ SYSTEM

Figure 8.8: [Lorenz M1v1] Pairwise distance matrices between the original O and
synthetic S trajectories.

64

CHAPTER 8. RESULTS

Figure 8.9: [Lorenz M1v2] Pairwise distance matrices between the original O and
synthetic S trajectories.

65

8.2. LORENZ SYSTEM

Figure 8.10: [Lorenz M1v3] Pairwise distance matrices between the original O
and synthetic S trajectories.

66

CHAPTER 8. RESULTS

Figure 8.11: [Lorenz M1v4] Pairwise distance matrices between the original O
and synthetic S trajectories.

67

8.2. LORENZ SYSTEM

Figure 8.12: [Lorenz M1v5] Pairwise distance matrices between the original O
and synthetic S trajectories.

68

CHAPTER 8. RESULTS

Figure 8.13: [Lorenz M1v6] Pairwise distance matrices between the original O
and synthetic S trajectories.

69

8.2. LORENZ SYSTEM

8.2.2 Model M2

Unfortunately, due to the high-cardinality nature of the problem and the lim-
ited number of training points available, the training process for the M2 model on
the Lorenz dataset does not lead to the expected results. Specifically, this model
fails to reach convergence during training, thus resulting in an output containing
infinity values most likely due to exploding gradients. The lack of additional train-
ing points likely hinders the model’s ability to learn the underlying patterns and
variations in the Lorenz dataset, leading to suboptimal results. Therefore, it is
currently not possible to properly generate synthetic data with the M2 model for
the Lorenz dataset.

70

CHAPTER 8. RESULTS

8.2.3 Discussion

The training histories show that the trend of the various losses is rather stable
except for v1, v3 and v5. As for v1 and v3, the trend of the reconstruction loss
is particularly unstable. This is most likely due to the fact that these two models
are trained using a higher learning rate than the one used for the other models.
As for v5, the trends of all the losses except the regularization one show several
spikes. This could be due to the greater weight given to the SINDy loss in ż, which
therefore competes excessively with the other losses.

Regarding the SINDy coefficients, v3 and v5 discover rather sparse latent
dynamics, in particular determined by fewer than 15 terms. This could be due not
only to the greater weight given to the regularization loss compared to that of v1,
but also to the following:

• higher learning rate of v3 compared to those of v2 and v4;

• shallower architecture of v5 than that of v6.

Regarding the training of the InceptionTimeClassifier models, the trend
of the training loss for v5 is particularly stable, and the actual learning occurs
within 50 epochs. Instead, the trends of the training loss for all the other models
are more unstable, and the actual learning occurs within 200 epochs.

Regarding the accuracy achieved by the InceptionTimeClassifier models,
v1 is probably overfitted as it achieves perfect accuracy on the training set but very
low accuracy, worse than that of random guessing, on the test set. Furthermore, v2
and v4 probably generate synthetic data that are too different from the real ones
(therefore of low utility), since both the training and test accuracy are particularly
high. v3, v5 and v6 are clearly the models that generate the highest utility
synthetic data, since the test accuracy is approximately equal to 75% and does
not deviate too much from the corresponding training accuracy.

With respect to the pairwise distance matrices between the original and syn-
thetic trajectories, v5 appears to introduce the highest novelty in the synthetic
data. In fact, focusing on the EDR metric, a rather significant difference can be
noticed between, on the one hand, the distances between the synthetic records and
themselves and, on the other hand, the distances between the synthetic records
and the original records.

Ultimately, it is reasonable to believe that v5 leads to the best results. In
fact, it learns a particularly sparse latent dynamical model and is able to generate
synthetic data with the highest utility and novelty.

71

8.3. F-16 AIRCRAFT

8.3 F-16 aircraft

8.3.1 Model M1

The training details of the experiments conducted with the M1 model on the
F-16 dataset are reported in Table 8.3. The model training histories and SINDy
coefficients are reported in Figs. 8.14 to 8.19. Regarding the training of the
InceptionTimeClassifier models, the trends over the epochs of the training loss
are reported in Fig. 8.20. The accuracy achieved by the InceptionTimeClassifier
models in discriminating between original and synthetic trajectories is reported in
Table 8.4. The heatmaps of the pairwise distance matrices between the original
and synthetic trajectories are reported in Figs. 8.21 to 8.26.

experiment version v1 v2 v3 v4 v5 v6
seed 1 5 7 8 9 15
input dimension 5 5 5 5 5 5
latent dimension 3 3 3 3 3 3
encoder layer widths 4 5,4,3 5,4,3 5,5,4,4,3,3 5,5,5,4,4,4,3,3,3 5,5,4,4,3,3
decoder layer widths 4 3,4,5 3,4,5 3,3,4,4,5,5 3,3,3,4,4,4,5,5,5 3,3,4,4,5,5
batch size 8000 8000 8000 8000 8000 27920
activation function ReLU ELU ReLU Sigmoid Sigmoid ELU
SINDy loss in ẋ – weight 10−4 10−6 10−5 10−5 10−5 10−6

SINDy loss in ż – weight 10−6 10−7 10−6 0 10−6 10−7

regularization loss – weight 10−4 10−3 10−4 10−3 10−2 10−3

main training – epochs 104 104 104 104 104 104

refinement training – epochs 103 103 103 103 103 103

optimizer Adam Adam Adam Adam Adam Adam
learning rate 10−4 10−4 10−4 10−3 10−4 10−4

learning rate patience 1000 1000 500 1000 1000 1000
early stopping patience 3000 3000 1500 3000 3000 3000
thresholding – threshold 0.1 0.1 0.1 0.1 0.1 0.1
thresholding – frequency 500 500 500 500 500 500
polynomial features – degree 4 4 5 4 4 4
include bias feature yes yes yes yes yes yes
include sine features yes yes yes yes yes yes
include cosine features yes yes no yes yes yes
trigonometric frequencies 1 1 1 1 1 1

Table 8.3: [F-16 M1] Training details.

experiment version v1 v2 v3 v4 v5 v6
training accuracy (%) 100 96.43 100 99.29 91.43 100
test accuracy (%) 98.33 98.33 100 100 88.33 98.33

Table 8.4: [F-16 M1] Accuracy of the InceptionTimeClassifier models.

72

CHAPTER 8. RESULTS

0 2000 4000 6000 8000 10000

epoch

10−5

10−4

10−3

10−2

10−1

100

lo
ss

Training losses

train - total

train - reconstruction

train - regularization

train - SINDy in ẋ

train - SINDy in ż

(a) Training losses.
0 2000 4000 6000 8000 10000

epoch

10−5

10−4

10−3

10−2

10−1

lo
ss

Validation losses

valid - total

valid - reconstruction

valid - regularization

valid - SINDy in ẋ

valid - SINDy in ż

(b) Validation losses.

0 2000 4000 6000 8000 10000

epoch

10−1

2× 10−1

3× 10−1

4× 10−1

6× 10−1

lo
ss

Total losses

train - total

valid - total

(c) Total losses.
0 2000 4000 6000 8000 10000

epoch

70

80

90

100

110

120

co
m

p
le

x
it

y

Complexity of SINDy model

(d) Complexity of the SINDy model.

1 z 1 z 2 z 3 z
2 1

z 1
z 2

z 1
z 3 z

2 2

z 2
z 3 z

2 3 z
3 1

z
2 1
z 2

z
2 1
z 3

z 1
z

2 2

z 1
z 2
z 3

z 1
z

2 3 z
3 2

z
2 2
z 3

z 2
z

2 3 z
3 3 z
4 1

z
3 1
z 2

z
3 1
z 3

z
2 1
z

2 2

z
2 1
z 2
z 3

z
2 1
z

2 3

z 1
z

3 2

z 1
z

2 2
z 3

z 1
z 2
z

2 3

z 1
z

3 3 z
4 2

z
3 2
z 3

z
2 2
z

2 3

z 2
z

3 3 z
4 3

si
n

(1
z 1

)
co
s(

1
z 1

)
si
n

(1
z 2

)
co
s(

1
z 2

)
si
n

(1
z 3

)
co
s(

1
z 3

)

ż 1
ż 2

ż 3

0 2 4 6

(e) Coefficients discovered by the SINDy model.

Figure 8.14: [F-16 M1v1] Model training history and SINDy coefficients.

73

8.3. F-16 AIRCRAFT

0 1000 2000 3000 4000

epoch

10−5

10−4

10−3

10−2

10−1

lo
ss

Training losses

train - total

train - reconstruction

train - regularization

train - SINDy in ẋ

train - SINDy in ż

(a) Training losses.
0 1000 2000 3000 4000

epoch

10−5

10−4

10−3

10−2

10−1

lo
ss

Validation losses

valid - total

valid - reconstruction

valid - regularization

valid - SINDy in ẋ

valid - SINDy in ż

(b) Validation losses.

0 1000 2000 3000 4000

epoch

10−2

10−1

lo
ss

Total losses

train - total

valid - total

(c) Total losses.
0 1000 2000 3000 4000

epoch

50

60

70

80

90

100

110

120

co
m

p
le

x
it

y

Complexity of SINDy model

(d) Complexity of the SINDy model.

1 z 1 z 2 z 3 z
2 1

z 1
z 2

z 1
z 3 z

2 2

z 2
z 3 z

2 3 z
3 1

z
2 1
z 2

z
2 1
z 3

z 1
z

2 2

z 1
z 2
z 3

z 1
z

2 3 z
3 2

z
2 2
z 3

z 2
z

2 3 z
3 3 z
4 1

z
3 1
z 2

z
3 1
z 3

z
2 1
z

2 2

z
2 1
z 2
z 3

z
2 1
z

2 3

z 1
z

3 2

z 1
z

2 2
z 3

z 1
z 2
z

2 3

z 1
z

3 3 z
4 2

z
3 2
z 3

z
2 2
z

2 3

z 2
z

3 3 z
4 3

si
n

(1
z 1

)
co
s(

1
z 1

)
si
n

(1
z 2

)
co
s(

1
z 2

)
si
n

(1
z 3

)
co
s(

1
z 3

)

ż 1
ż 2

ż 3

−4 −3 −2 −1 0 1 2

(e) Coefficients discovered by the SINDy model.

Figure 8.15: [F-16 M1v2] Model training history and SINDy coefficients.

74

CHAPTER 8. RESULTS

0 500 1000 1500 2000 2500 3000 3500

epoch

10−6

10−5

10−4

10−3

10−2

10−1

lo
ss

Training losses

train - total

train - reconstruction

train - regularization

train - SINDy in ẋ

train - SINDy in ż

(a) Training losses.
0 500 1000 1500 2000 2500 3000 3500

epoch

10−6

10−5

10−4

10−3

10−2

10−1

lo
ss

Validation losses

valid - total

valid - reconstruction

valid - regularization

valid - SINDy in ẋ

valid - SINDy in ż

(b) Validation losses.

0 500 1000 1500 2000 2500 3000 3500

epoch

10−1

lo
ss

Total losses

train - total

valid - total

(c) Total losses.
0 500 1000 1500 2000 2500 3000 3500

epoch

0

25

50

75

100

125

150

175

co
m

p
le

x
it

y

Complexity of SINDy model

(d) Complexity of the SINDy model.

1 z 1 z 2 z 3 z
2 1

z 1
z 2

z 1
z 3 z

2 2
z 2
z 3 z

2 3 z
3 1

z
2 1
z 2

z
2 1
z 3

z 1
z

2 2
z 1
z 2
z 3

z 1
z

2 3 z
3 2

z
2 2
z 3

z 2
z

2 3 z
3 3 z
4 1

z
3 1
z 2

z
3 1
z 3

z
2 1
z

2 2
z

2 1
z 2
z 3

z
2 1
z

2 3
z 1
z

3 2
z 1
z

2 2
z 3

z 1
z 2
z

2 3
z 1
z

3 3 z
4 2

z
3 2
z 3

z
2 2
z

2 3
z 2
z

3 3 z
4 3 z
5 1

z
4 1
z 2

z
4 1
z 3

z
3 1
z

2 2
z

3 1
z 2
z 3

z
3 1
z

2 3
z

2 1
z

3 2
z

2 1
z

2 2
z 3

z
2 1
z 2
z

2 3
z

2 1
z

3 3
z 1
z

4 2
z 1
z

3 2
z 3

z 1
z

2 2
z

2 3
z 1
z 2
z

3 3
z 1
z

4 3 z
5 2

z
4 2
z 3

z
3 2
z

2 3
z

2 2
z

3 3
z 2
z

4 3 z
5 3

si
n

(1
z 1

)
si
n

(1
z 2

)
si
n

(1
z 3

)

ż1
ż2
ż3

0.0 0.2 0.4 0.6 0.8

(e) Coefficients discovered by the SINDy model.

Figure 8.16: [F-16 M1v3] Model training history and SINDy coefficients.

75

8.3. F-16 AIRCRAFT

0 500 1000 1500 2000 2500 3000 3500 4000

epoch

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

lo
ss

Training losses

train - total

train - reconstruction

train - regularization

train - SINDy in ẋ

train - SINDy in ż

(a) Training losses.
0 500 1000 1500 2000 2500 3000 3500 4000

epoch

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

lo
ss

Validation losses

valid - total

valid - reconstruction

valid - regularization

valid - SINDy in ẋ

valid - SINDy in ż

(b) Validation losses.

0 500 1000 1500 2000 2500 3000 3500 4000

epoch

10−1

lo
ss

Total losses

train - total

valid - total

(c) Total losses.
0 500 1000 1500 2000 2500 3000 3500 4000

epoch

118

120

122

124

126

128

co
m

p
le

x
it

y

Complexity of SINDy model

(d) Complexity of the SINDy model.

1 z 1 z 2 z 3 z
2 1

z 1
z 2

z 1
z 3 z

2 2

z 2
z 3 z

2 3 z
3 1

z
2 1
z 2

z
2 1
z 3

z 1
z

2 2

z 1
z 2
z 3

z 1
z

2 3 z
3 2

z
2 2
z 3

z 2
z

2 3 z
3 3 z
4 1

z
3 1
z 2

z
3 1
z 3

z
2 1
z

2 2

z
2 1
z 2
z 3

z
2 1
z

2 3

z 1
z

3 2

z 1
z

2 2
z 3

z 1
z 2
z

2 3

z 1
z

3 3 z
4 2

z
3 2
z 3

z
2 2
z

2 3

z 2
z

3 3 z
4 3

si
n

(1
z 1

)
co
s(

1
z 1

)
si
n

(1
z 2

)
co
s(

1
z 2

)
si
n

(1
z 3

)
co
s(

1
z 3

)

ż 1
ż 2

ż 3

−0.2 −0.1 0.0 0.1 0.2

(e) Coefficients discovered by the SINDy model.

Figure 8.17: [F-16 M1v4] Model training history and SINDy coefficients.

76

CHAPTER 8. RESULTS

0 500 1000 1500 2000 2500 3000 3500 4000

epoch

10−15

10−12

10−9

10−6

10−3

100

lo
ss

Training losses

train - total

train - reconstruction

train - regularization

train - SINDy in ẋ

train - SINDy in ż

(a) Training losses.
0 500 1000 1500 2000 2500 3000 3500 4000

epoch

10−15

10−12

10−9

10−6

10−3

100

lo
ss

Validation losses

valid - total

valid - reconstruction

valid - regularization

valid - SINDy in ẋ

valid - SINDy in ż

(b) Validation losses.

0 500 1000 1500 2000 2500 3000 3500 4000

epoch

100

4× 10−1

6× 10−1

2× 100

lo
ss

Total losses

train - total

valid - total

(c) Total losses.
0 500 1000 1500 2000 2500 3000 3500 4000

epoch

118

120

122

124

126

128

co
m

p
le

x
it

y

Complexity of SINDy model

(d) Complexity of the SINDy model.

1 z 1 z 2 z 3 z
2 1

z 1
z 2

z 1
z 3 z

2 2

z 2
z 3 z

2 3 z
3 1

z
2 1
z 2

z
2 1
z 3

z 1
z

2 2

z 1
z 2
z 3

z 1
z

2 3 z
3 2

z
2 2
z 3

z 2
z

2 3 z
3 3 z
4 1

z
3 1
z 2

z
3 1
z 3

z
2 1
z

2 2

z
2 1
z 2
z 3

z
2 1
z

2 3

z 1
z

3 2

z 1
z

2 2
z 3

z 1
z 2
z

2 3

z 1
z

3 3 z
4 2

z
3 2
z 3

z
2 2
z

2 3

z 2
z

3 3 z
4 3

si
n

(1
z 1

)
co
s(

1
z 1

)
si
n

(1
z 2

)
co
s(

1
z 2

)
si
n

(1
z 3

)
co
s(

1
z 3

)

ż 1
ż 2

ż 3

−4 −2 0 2 4
×10−5

(e) Coefficients discovered by the SINDy model.

Figure 8.18: [F-16 M1v5] Model training history and SINDy coefficients.

77

8.3. F-16 AIRCRAFT

0 500 1000 1500 2000 2500 3000 3500 4000

epoch

10−7

10−5

10−3

10−1

lo
ss

Training losses

train - total

train - reconstruction

train - regularization

train - SINDy in ẋ

train - SINDy in ż

(a) Training losses.
0 500 1000 1500 2000 2500 3000 3500 4000

epoch

10−7

10−5

10−3

10−1

lo
ss

Validation losses

valid - total

valid - reconstruction

valid - regularization

valid - SINDy in ẋ

valid - SINDy in ż

(b) Validation losses.

0 500 1000 1500 2000 2500 3000 3500 4000

epoch

10−2

10−1

lo
ss

Total losses

train - total

valid - total

(c) Total losses.
0 500 1000 1500 2000 2500 3000 3500 4000

epoch

118

120

122

124

126

128

co
m

p
le

x
it

y

Complexity of SINDy model

(d) Complexity of the SINDy model.

1 z 1 z 2 z 3 z
2 1

z 1
z 2

z 1
z 3 z

2 2

z 2
z 3 z

2 3 z
3 1

z
2 1
z 2

z
2 1
z 3

z 1
z

2 2

z 1
z 2
z 3

z 1
z

2 3 z
3 2

z
2 2
z 3

z 2
z

2 3 z
3 3 z
4 1

z
3 1
z 2

z
3 1
z 3

z
2 1
z

2 2

z
2 1
z 2
z 3

z
2 1
z

2 3

z 1
z

3 2

z 1
z

2 2
z 3

z 1
z 2
z

2 3

z 1
z

3 3 z
4 2

z
3 2
z 3

z
2 2
z

2 3

z 2
z

3 3 z
4 3

si
n

(1
z 1

)
co
s(

1
z 1

)
si
n

(1
z 2

)
co
s(

1
z 2

)
si
n

(1
z 3

)
co
s(

1
z 3

)

ż 1
ż 2

ż 3

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

(e) Coefficients discovered by the SINDy model.

Figure 8.19: [F-16 M1v6] Model training history and SINDy coefficients.

78

CHAPTER 8. RESULTS

0 50 100 150 200

epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

tr
a
in

in
g

lo
ss

(a) Experiment version v1.
0 50 100 150 200

epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

tr
a
in

in
g

lo
ss

(b) Experiment version v2.

0 25 50 75 100 125 150 175

epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

tr
a
in

in
g

lo
ss

(c) Experiment version v3.
0 50 100 150 200 250

epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

tr
a
in

in
g

lo
ss

(d) Experiment version v4.

0 20 40 60 80 100 120 140

epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

tr
ai

n
in

g
lo

ss

(e) Experiment version v5.
0 20 40 60 80 100 120 140

epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

tr
ai

n
in

g
lo

ss

(f) Experiment version v6.

Figure 8.20: [F-16 M1] Training loss of the InceptionTimeClassifier models.

79

8.3. F-16 AIRCRAFT

Figure 8.21: [F-16 M1v1] Pairwise distance matrices between the original trajec-
tories O and the synthetic trajectories S.

80

CHAPTER 8. RESULTS

Figure 8.22: [F-16 M1v2] Pairwise distance matrices between the original trajec-
tories O and the synthetic trajectories S.

81

8.3. F-16 AIRCRAFT

Figure 8.23: [F-16 M1v3] Pairwise distance matrices between the original trajec-
tories O and the synthetic trajectories S.

82

CHAPTER 8. RESULTS

Figure 8.24: [F-16 M1v4] Pairwise distance matrices between the original trajec-
tories O and the synthetic trajectories S.

83

8.3. F-16 AIRCRAFT

Figure 8.25: [F-16 M1v5] Pairwise distance matrices between the original trajec-
tories O and the synthetic trajectories S.

84

CHAPTER 8. RESULTS

Figure 8.26: [F-16 M1v6] Pairwise distance matrices between the original trajec-
tories O and the synthetic trajectories S.

85

8.3. F-16 AIRCRAFT

8.3.2 Model M2

Regarding the training of the InceptionTimeClassifier model, the trend over
the epochs of the training loss is reported in Fig. 8.27. The accuracy achieved
by the InceptionTimeClassifier model in discriminating between original and
synthetic trajectories is the following:

• training accuracy: 96.43%;

• test accuracy: 71.67%.

The heatmaps of the pairwise distance matrices between the original and synthetic
trajectories are reported in Fig. 8.28.

0 100 200 300 400 500 600

epoch

0.0

0.2

0.4

0.6

0.8

1.0

tr
a
in

in
g

lo
ss

Figure 8.27: [F-16 M2] Training loss of the InceptionTimeClassifier model.

86

CHAPTER 8. RESULTS

Figure 8.28: [F-16 M2] Pairwise distance matrices between the original O and
synthetic S trajectories.

87

8.3. F-16 AIRCRAFT

8.3.3 Discussion

The training histories show that the trend of the various losses is rather stable
except for the validation SINDy loss in ż of v5. This could be due to the fact
that this model has both the deepest architecture and the most weight given to
the regularization loss. Furthermore, excluding v1, the various SINDy losses in ẋ

are practically constant throughout the training. This could be due to the greater
weight given to the SINDy loss in ẋ of v1 compared to that of all the other models.
Moreover, the various losses stabilize within 1000 epochs in the case of v2 and v6,
while 6000 epochs in the case of v1. Instead, these losses stabilize within very few
epochs in the case of v4 and v5, while they continue to vary until the very end of
the training in the case of v3.

Regarding the SINDy coefficients, v3 discovers rather sparse latent dynamics,
in particular determined by fewer than 10 terms. Instead, v1 and v2 discover
rather complex dynamics, determined by a number of terms between 40 and 70.
This difference could be due to the fact that cosine features are excluded in the
case of v3. Furthermore, v4, v5 and v6 discover very complex dynamics, for
which all the terms of the feature library are active. This may be due to their
deeper architecture than all the other models.

Regarding the training of the InceptionTimeClassifier models, the trend of
the training loss for M2 is particularly unstable, and the actual learning occurs
within 400 epochs. Instead, the trends of the training loss for all the other models
are more stable, and the actual learning occurs within 50 epochs.

Regarding the accuracy achieved by the InceptionTimeClassifier models,
all experiments except v5 and M2 generate synthetic data that are too different
from the real ones (therefore of low utility), since both the training and test ac-
curacy are particularly high. Instead, v5 generates synthetic data of somewhat
better utility, since the test accuracy is approximately equal to 88% and does not
deviate too much from the corresponding training accuracy. M2 is clearly the
model that generates the highest utility synthetic data, since the test accuracy is
approximately equal to 72% and does not deviate too much from the corresponding
training accuracy.

With respect to the pairwise distance matrices between the original and syn-
thetic trajectories, all models except v5 and M2 generate synthetic trajectories
too far from the original ones. In fact, focusing on the DDTW and WDDTW
metrics, the synthetic trajectories are all almost the same distance from the spe-

88

CHAPTER 8. RESULTS

cific original trajectory and the synthetic trajectories are very close to each other.
Moreover, focusing on the EDR metric, a rather significant difference can be no-
ticed between, on the one hand, the distances between the synthetic records and
themselves and, on the other hand, the distances between the synthetic records
and the original records. Although similar conclusions could also be drawn for
v5, the higher utility of the synthetic data generated by it should be taken into
account. In other words, these conclusions could be interpreted as the result of
some novelty introduced by v5 in the synthetic data. In fact, focusing on the EDR
metric, the most evident difference can be noticed between, on the one hand, the
distances between the synthetic records and themselves and, on the other hand,
the distances between the synthetic records and the original records. Finally, in
the case of M2 no significant pattern can be noticed in the various distance ma-
trices. Therefore, although M2 appears to generate the synthetic data with the
highest utility, it seems to introduce little novelty into it.

Ultimately, it is reasonable to believe that v5 and M2 lead to the best results.
On the one hand, v5 learns a very complex and non-sparse dynamical latent model,
but is able to generate synthetic data with quite decent utility and novelty. On
the other hand, M2 is able to generate the synthetic data with the highest utility
but without introducing any significant novelty into it.

89

9
Conclusion

The approach explored in this thesis work proves to be a rather promising
solution for generating high-fidelity synthetic data. The latent dynamical model
learned by the SINDyAE turns out to be particularly convenient for generating
low-dimensional synthetic data to be mapped back into the original measurement
space. Thanks to its flexibility, the approach is applicable to multivariate time-
series of potentially arbitrary dimension.

However, the SINDyAE training procedure is significantly complicated by the
presence of multiple competing loss terms. This complication is characteristic
of multi-task learning approaches and requires a considerable effort in terms of
hyperparameter tuning to achieve valuable results.

Moreover, the results of this work show that the effectiveness of the approach
is strongly dependent on the dataset in use and on the complexity of the corre-
sponding dynamical system. On the one hand, the Lorenz dataset is produced by
a simulation weakly affected by artificial noise and represents a relatively simple
and analytically definable nonlinear dynamical system. On the other hand, the
F-16 dataset consists of real-world measurements affected by non-negligible noise
and represents a concrete and extremely complex nonlinear dynamical system,
therefore infeasible to be modeled analytically.

Furthermore, the continuous improvement in the performance of time-series
classifiers such as InceptionTime makes it increasingly easy to discriminate between
real and synthetic data. To better define an optimal trade-off between utility and
novelty, it could be useful to perform the same kind of utility analysis on a set
of time-series classifiers characterized by increasing complexity. In general, it will

91

probably be necessary to resort to increasingly complex generative models and
with a much deeper architecture than those explored in this work.

In any future work with this approach, it will certainly be necessary to focus
further on hyperparameter tuning to understand which combinations lead to the
best results. In addition, more specific and elaborate strategies will need to be
employed to limit the effects of noise in the case of real-world data.

A possible future development could be directed towards the introduction of
a further loss term in the model training process. Specifically, this loss would be
justified by the data synthesis aspect of the approach. In practice, it would measure
the discrepancy between the latent representation of each input data point and the
corresponding data point simulated by the SINDy model in the latent space. This
simulation would use the previous latent input data point as the initial condition.
Such a development could improve the ability to capture the underlying dynamics
in the latent space and consequently lead to higher-fidelity synthetic data.

Another possible interesting development could consist in implementing specific
support for parameterized systems and exploiting the corresponding parameters
to control the synthetic data generation process, thus further investigating the
approach discussed in [17].

92

Bibliography

[1] Abraham. Savitzky and M. J. E. Golay. “Smoothing and Differentiation of
Data by Simplified Least Squares Procedures.” In: Analytical Chemistry 36.8
(July 1964), pp. 1627–1639. doi: 10.1021/ac60214a047.

[2] H. Sakoe and S. Chiba. “Dynamic programming algorithm optimization for
spoken word recognition”. In: IEEE Transactions on Acoustics, Speech, and
Signal Processing 26.1 (Feb. 1978), pp. 43–49. doi: 10.1109/tassp.1978.
1163055.

[3] Pierre Baldi and Kurt Hornik. “Neural networks and principal component
analysis: Learning from examples without local minima”. In: Neural Net-
works 2.1 (Jan. 1989), pp. 53–58. doi: 10.1016/0893-6080(89)90014-2.

[4] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedfor-
ward networks are universal approximators”. In: Neural Networks 2.5 (Jan.
1989), pp. 359–366. doi: 10.1016/0893-6080(89)90020-8.

[5] Avrim L. Blum and Ronald L. Rivest. “Training a 3-node neural network
is NP-complete”. In: Neural Networks 5.1 (Jan. 1992), pp. 117–127. doi:
10.1016/s0893-6080(05)80010-3.

[6] Robert Tibshirani. “Regression Shrinkage and Selection Via the Lasso”. In:
Journal of the Royal Statistical Society: Series B (Methodological) 58.1 (Jan.
1996), pp. 267–288. doi: 10.1111/j.2517-6161.1996.tb02080.x.

[7] Eamonn J. Keogh and Michael J. Pazzani. “Derivative Dynamic Time Warp-
ing”. In: Proceedings of the 2001 SIAM International Conference on Data
Mining. Society for Industrial and Applied Mathematics, Apr. 2001. doi:
10.1137/1.9781611972719.1.

[8] Lei Chen and Raymond Ng. “On The Marriage of Lp-norms and Edit Dis-
tance”. In: Proceedings 2004 VLDB Conference. Elsevier, 2004, pp. 792–803.
doi: 10.1016/b978-012088469-8.50070-x.

93

https://doi.org/10.1021/ac60214a047
https://doi.org/10.1109/tassp.1978.1163055
https://doi.org/10.1109/tassp.1978.1163055
https://doi.org/10.1016/0893-6080(89)90014-2
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/s0893-6080(05)80010-3
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1137/1.9781611972719.1
https://doi.org/10.1016/b978-012088469-8.50070-x

BIBLIOGRAPHY

[9] Lei Chen, M. Tamer Özsu, and Vincent Oria. “Robust and fast similarity
search for moving object trajectories”. In: Proceedings of the 2005 ACM SIG-
MOD international conference on Management of data. ACM, June 2005.
doi: 10.1145/1066157.1066213.

[10] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training
deep feedforward neural networks”. In: International Conference on Artificial
Intelligence and Statistics. 2010.

[11] Rick Chartrand. “Numerical Differentiation of Noisy, Nonsmooth Data”. In:
ISRN Applied Mathematics 2011 (May 2011), pp. 1–11. doi: 10.5402/2011/
164564.

[12] Young-Seon Jeong, Myong K. Jeong, and Olufemi A. Omitaomu. “Weighted
dynamic time warping for time series classification”. In: Pattern Recognition
44.9 (Sept. 2011), pp. 2231–2240. doi: 10.1016/j.patcog.2010.09.022.

[13] Hien Van Nguyen et al. “Kernel dictionary learning”. In: 2012 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, Mar. 2012. doi: 10.1109/icassp.2012.6288305.

[14] Khaled El Emam et al. “A Review of Evidence on Consent Bias in Research”.
In: The American Journal of Bioethics 13.4 (Apr. 2013), pp. 42–44. doi:
10.1080/15265161.2013.767958.

[15] Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learn-
ing with sparsity. en. Chapman & Hall/CRC Monographs on Statistics and
Applied Probability. New York, NY: Productivity Press, May 2015.

[16] Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. “Discovering
governing equations from data by sparse identification of nonlinear dynam-
ical systems”. In: Proceedings of the National Academy of Sciences 113.15
(Mar. 2016), pp. 3932–3937. doi: 10.1073/pnas.1517384113.

[17] Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. “Sparse Identifi-
cation of Nonlinear Dynamics with Control (SINDYc)”. In: IFAC-PapersOnLine
49.18 (2016), pp. 710–715. doi: 10.1016/j.ifacol.2016.10.249.

[18] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. url: https://www.deeplearningbook.org.

[19] Jason D. Lee et al. Gradient Descent Converges to Minimizers. 2016. doi:
10.48550/ARXIV.1602.04915.

94

https://doi.org/10.1145/1066157.1066213
https://doi.org/10.5402/2011/164564
https://doi.org/10.5402/2011/164564
https://doi.org/10.1016/j.patcog.2010.09.022
https://doi.org/10.1109/icassp.2012.6288305
https://doi.org/10.1080/15265161.2013.767958
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1016/j.ifacol.2016.10.249
https://www.deeplearningbook.org
https://doi.org/10.48550/ARXIV.1602.04915

BIBLIOGRAPHY

[20] Christian Szegedy et al. Inception-v4, Inception-ResNet and the Impact of
Residual Connections on Learning. 2016. doi: 10 . 48550 / ARXIV . 1602 .
07261.

[21] Hayden Schaeffer and Scott G. McCalla. “Sparse model selection via integral
terms”. In: Physical Review E 96.2 (Aug. 2017). doi: 10.1103/physreve.
96.023302.

[22] Linan Zhang and Hayden Schaeffer. On the Convergence of the SINDy Al-
gorithm. 2018. doi: 10.48550/ARXIV.1805.06445.

[23] Kathleen Champion et al. “Data-driven discovery of coordinates and govern-
ing equations”. In: Proceedings of the National Academy of Sciences 116.45
(Oct. 2019), pp. 22445–22451. doi: 10.1073/pnas.1906995116.

[24] Samuel H. Rudy, J. Nathan Kutz, and Steven L. Brunton. “Deep learning of
dynamics and signal-noise decomposition with time-stepping constraints”.
In: Journal of Computational Physics 396 (Nov. 2019), pp. 483–506. doi:
10.1016/j.jcp.2019.06.056.

[25] Khaled El Emam, Lucy Mosquera, and Richard Hoptroff. Practical synthetic
data generation. Sebastopol, CA: O’Reilly Media, June 2020.

[26] Hassan Ismail Fawaz et al. “InceptionTime: Finding AlexNet for time series
classification”. In: Data Mining and Knowledge Discovery 34.6 (Sept. 2020),
pp. 1936–1962. doi: 10.1007/s10618-020-00710-y.

[27] Jean-Philippe Noël and Maarten Schoukens. F-16 Aircraft Benchmark Based
on Ground Vibration Test Data. 2020. doi: 10.4121/12954911.

[28] George Em Karniadakis et al. “Physics-informed machine learning”. In: Na-
ture Reviews Physics 3.6 (May 2021), pp. 422–440. doi: 10.1038/s42254-
021-00314-5.

[29] Joseph Bakarji et al. Discovering Governing Equations from Partial Mea-
surements with Deep Delay Autoencoders. 2022. doi: 10 . 48550 / ARXIV .
2201.05136.

[30] Salvatore Cuomo et al. “Scientific Machine Learning Through Physics-Informed
Neural Networks: Where we are and What’s Next”. In: Journal of Scientific
Computing 92.3 (July 2022). doi: 10.1007/s10915-022-01939-z.

95

https://doi.org/10.48550/ARXIV.1602.07261
https://doi.org/10.48550/ARXIV.1602.07261
https://doi.org/10.1103/physreve.96.023302
https://doi.org/10.1103/physreve.96.023302
https://doi.org/10.48550/ARXIV.1805.06445
https://doi.org/10.1073/pnas.1906995116
https://doi.org/10.1016/j.jcp.2019.06.056
https://doi.org/10.1007/s10618-020-00710-y
https://doi.org/10.4121/12954911
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.48550/ARXIV.2201.05136
https://doi.org/10.48550/ARXIV.2201.05136
https://doi.org/10.1007/s10915-022-01939-z

BIBLIOGRAPHY

[31] Johann Faouzi. “Time Series Classification: A review of Algorithms and Im-
plementations”. In: Machine Learning (Emerging Trends and Applications).
Ed. by Ketan Kotecha. Proud Pen, 2022. url: https : / / inria . hal .
science/hal-03558165.

[32] Zhongkai Hao et al. Physics-Informed Machine Learning: A Survey on Prob-
lems, Methods and Applications. 2022. doi: 10.48550/ARXIV.2211.08064.

[33] Weiheng Zhong and Hadi Meidani. “PI-VAE: Physics-Informed Variational
Auto-Encoder for stochastic differential equations”. In: Computer Methods
in Applied Mechanics and Engineering 403 (Jan. 2023), p. 115664. doi: 10.
1016/j.cma.2022.115664.

[34] M. Vlachos, G. Kollios, and D. Gunopulos. “Discovering similar multidimen-
sional trajectories”. In: Proceedings 18th International Conference on Data
Engineering. IEEE Comput. Soc. doi: 10.1109/icde.2002.994784.

96

https://inria.hal.science/hal-03558165
https://inria.hal.science/hal-03558165
https://doi.org/10.48550/ARXIV.2211.08064
https://doi.org/10.1016/j.cma.2022.115664
https://doi.org/10.1016/j.cma.2022.115664
https://doi.org/10.1109/icde.2002.994784

	Abstract
	List of Figures
	List of Tables
	List of Code Snippets
	List of Acronyms
	Synthetic Data
	Definition
	Synthesis from real data
	Synthesis without real data

	Benefits
	More efficient access to data
	Better analytics
	Imbalanced data

	Utility evaluation
	Distinguishability

	Generative AI for synthesizing data
	VAE
	GAN
	Limitations

	Physics-Informed ML
	How to embed physics in ML
	Observational bias
	Inductive bias
	Learning bias

	Limitations
	Training algorithms and architectures
	Data generation and benchmarks

	SINDy: Data-driven discovery of governing equations
	Mathematical formulation
	Sequentially thresholded least squares
	Limitations

	SINDy Autoencoder
	Architecture
	Loss function
	Activation functions
	Training
	Initialization
	Sequential thresholding
	Fine-tuning

	Choice of hyperparameters
	Limitations
	SINDyAE as a synthetic data generator

	Implementation
	Class initialization
	Encoder and decoder
	Feature library
	SINDy model

	Network parameter initialization
	Forward pass
	Input reconstruction
	Feature calculation
	Latent derivative estimation
	Loss calculation

	Training loop
	Validation loop
	Sequential thresholding
	Optimizer and learning rate scheduler
	Early stopping
	Fitting
	Training history
	SINDy coefficients
	Synthetic data generation
	Model compilation

	Models
	Model M1: Generative SINDyAE
	Model M2: VAE by Clearbox AI

	Datasets
	Lorenz system
	Description
	Simulation

	F-16 aircraft
	Description
	Preprocessing

	Results
	Introduction
	Model training history and SINDy coefficients
	Synthetic data generation
	Classification of real and synthetic time-series
	Distance between real and synthetic time-series

	Lorenz system
	Model M1
	Model M2
	Discussion

	F-16 aircraft
	Model M1
	Model M2
	Discussion

	Conclusion
	Bibliography

