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Introduction

Fifty years have passed since the publication in 1973 of the seminal article
‘The Pricing of Options and Corporate Liabilities’ by Fischer Black and My-
ron Scholes, where the authors presented the Black&Scholes Option Pricing
model, bringing a new quantitative approach to pricing options. The out-
standing increase in derivatives investing during the 1980’s and 1990’s can
be in part attributed to new sofisticated quantitative techniques for pric-
ing and hedging financial derivatives that followed the Black&Scholes model.
The theoretical importance of this model, which is based on the assumption
that the underlying follows the dynamic of a geometric Brownian motion, is
that it yields an equivalence between the problems of no arbitrage and delta
hedging, and the problem of solving a parabolic partial differential equation.
More precisely, it can be shown that the Black&Scholes model is complete
and arbitrage free, this meaning that (almost) every European derivative1 is
replicable in a unique way, and that the unique replicating strategy is defined
by the solution of a parabolic PDE. Moreover, in the case of European Put
and Call options, it brings an explicit solution for that PDE. Despite these
profound characteristics, the Black&Scholes model lies upon some unrealistic
assumptions, and one of these, i.e. the fact that the volatility is considered
to be constant, is the starting point of this thesis. By allowing non-constant
volatility σ = (σt)t≥0 in pricing models we are introducing various levels of
complexity. This leads to a first distinction between local volatility models,
where the volatility is assumed to be a deterministic function of the time and
of the price of the underlying, and more advanced models where the volatil-
ity itself is a stochastic process, called stochastic volatility (SV) models. In
the recent literature there has been an increasing interest towards these SV
models, because they are able to better represent many stylized facts about
volatility (i.e. empirical observations from the time series of the price of the

1We call European derivative a derivative whose payoff function depends only on the
value of the underlying at the expiration of the contract. We used the adverb ‘almost’
because some technical assumption (although not very restrictive in the practice) on the
payoff function must be required.
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underlying asset) and also the so-called implied volatility surface. We will
recognize, however, that assuming the (classical) Brownian motion to be the
driving stochastic process poses some limitations to the capability of mod-
eling a number of properties of both historical and implied volatility. This
will lead us to adopt a different driving stochastic process, called ‘fractional
Brownian motion’. After investigating some of its properties, we focus on
a class of stochastic volatility models recently developed, called ‘rough SV
models’, whose name derives from the irregularity of the sample paths of
the volatility process they generate. The study of these models started with
the influential article ‘Volatility is Rough’ by Gatheral, Jaisson and Rosen-
baum in 2014, to which we dedicate particular attention, and is currently
undergoing great developement. This led to a number of new ‘rough’ models
proposed in the literature. One of these is the ‘rough Heston model’, based
on the well-known classical stochastic volatility model proposed in 1993 by
Heston, that we will analyze in detail. Finally, in the last Chapter, we will
test the two models just mentioned from the point of view of Option Pric-
ing, discussing their simulation, and a recently developed approach based on
Fourier series expansion, called COS methos. Python and Matlab codes for
the implementation will be used in parallel with the theoretical results.



Chapter 1

Overview of Volatility modeling

In financial markets, volatility, usually denoted by σ, is a measure of the
amount of fluctuation in asset prices and so it is often understood or per-
ceived as a measure of riskiness of the asset or uncertainty about its future
value. Since there are various ways one can quantify this risk, a comprehen-
sive and precise study of this quantity is needed. For this reason there are
various definitions of volatility, based on the framework and on the purpose
of the model.
In this chapter we introduce the notion of volatility. We give at first the
definition in the context of the Black and Scholes model, we show the vari-
ous ways to estimate it based on empirical observations and explain why this
model fails to reproduce observed volatility. We then introduce the impor-
tant concept of implied volatility based on risk-neutral data and the related
volatility surface and we give a hint towards the various ways one can model
volatility to better understand both its random behaviour and the observed
volatility surface. Finally, we give a detailed description of the celebrated
Heston model, and show possible alternative models.
We fix once for all a filtered probability space (Ω, F,P, (Ft)t≥0) satisfying the
usual conditions 1.

1.1 Actual volatility

We consider the volatility actual when it is given as an input into the model.
It is the most fundamental notion of volatility, and for this reason it is also
simply called volatility.
We start by the simplest circumstance, assuming that the underlying stock
price process follows the dynamics of the Black and Scholes model under the

1(Ω, F,P) is complete and (Ft)t≥0 is complete and right-continuous.

9



10 CHAPTER 1. OVERVIEW OF VOLATILITY MODELING

physical measure P:
dSt = µStdt+ σStdBt, (1.1)

where µ ∈ R is the average rate or return, σ ∈ R>0 is the (actual) volatility
and B = (Bt)t≥0 is a real Brownian motion on (Ω, F,P, (Ft)t≥0). We give
various motivation that explain the role of the volatility σ in Equation (1.1):

1. In order to explain the role of σ as a measure of the amount of fluc-
tuation in the stock price, we consider the solution of (1.1), known
as geometric Brownian motion. Assuming St ≥ 0 for each t ≥ 0, by
applying the Itô formula to (log(St))t≥0 we have that

St = S0e
σBt+

(

µ−σ2

2

)

t, (1.2)

which tells us that, the larger σ, the larger the fluctuations (generated
by the stochastic term σBt) of St.

2. To clarify the role of σ as a measure of riskiness of the asset, we can
at first consider its contribution in the variance function, traditionally
considered as a measure of stock’s riskiness. Recall that, since Brown-
ian motion is a Gaussian process, we have that:

E[St] = S0e

(

µ−σ2

2

)

t
E[eσBt ] = S0e

(

µ−σ2

2

)

te
1

2
σ2t = S0e

µt. (1.3)

On the other hand, we have

E[S2
t ] = S2

0e

(

µ−σ2

2

)

2t
E[e2σBt ] = S2

0e

(

µ−σ2

2

)

2t
E[e

1

2
4σ2t] = S2

0e
2µt+σ2t.

(1.4)
Hence,

Var[St] = S2
0e

2µt
(

eσ
2t − 1

)

. (1.5)

Therefore, higher values of σ generate higher values of Var[St].

3. To assess the role of σ in uncertainty over future stock value, we proceed
heuristically and consider a discretized version of Equation (1.1) with
time lag ∆t. If ∆t is small enough, recalling the purely formal equality
dW 2

t = dt we can consider the following as a good approximation of
the stock’s rate of return between t and t+∆t:

St+∆t − St

St

≈ µ∆t+ σε
√
∆t, (1.6)

where ε ∼ N (0, 1), which shows that σ
√
∆t is approximately equal to

the standard variation of the stock’s rate of return. Note that equation
(1.6) holds only approximately for ∆t small.



1.2. HISTORICAL VOLATILITY 11

4. Another more precise way to show the role of σ is to consider the stock’s
logarithmic returns between time 0 and t. Applying Ito’s lemma to
(1.1), we have that

log(St)− log(S0) =
(

µ− σ2

2

)

t+ σBt ∼ N
((

µ− σ2

2

)

t, σ2t
)

, (1.7)

and so σt := σ
√
t is the standard deviation of the logarithmic returns

which explains why we can interpret volatility as an indicator of the
uncertainty on future stock values.

It is common practice to consider one year as the unit of time and so σ =
σ1 = σannually is the standard deviation of the logarithmic returns over 1
year. Another common assumption is that the number of trading days in
one year is P=252. Thus, σ = σ1/252

√
252 = σdaily

√
252.

1.2 Historical volatility

We now change point of view and focus on how to derive volatility from
empirical observations of the underlying asset S. More precisely, we want to
estimate volatility based upon the time series of the logarithm returns of the
price of S. A special feature of volatility is that it is not directly observable.
In fact, the information that is given to us observing financial markets are
bid prices (the maximum price that a buyer is willing to pay for a share of
stock or other asset), ask prices (the minimum price that a seller is willing to
take for the same security) and trading volumes. A common assumption is to
consider the market price as the mid price between the bid price and the ask
price. Therefore, to get to know the volatility we must rely on this available
data. An estimator of volatility based upon the time series of the underlying
over some period in the past is called Historical or Realized Volatility.

Close-to-Close

There are many estimators of volatility, each with their benefits and draw-
backs. The simplest one is the so called Close-to-Close estimator (some
authors call it Historical Volatility tout-court). Let’s suppose we observe the
stock price process S at equidistant discrete points t0, t1, ..., tn representing
the closing times of n+ 1 consecutive trading sessions.
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Stk is the closing price2 at the closing time tk of k-th trading session,
for k = 0, 1, ..., n. We thus observe the closing prices St0 , ..., Stn . Let ∆t =
ti − ti−1.

Figure 1.1: Close-to-Close Historical Volatility for S&P500 with n=10
(above) and n=100 (below). Since all returns are equally weighted, while they
are in the estimate of volatility, any large return will stay in the estimate of
volatility until the 10 (or 100) days have passed. This gives rise to a plateau-
ing of volatility, clearly visible for n=100, and is totally spurious. It has been
calculated using the software developed by https://portfolioslab.com/.

In order to estimate σ we use Equation (1.7) from which it’s clear that the

2Notice that the closing price of a trading session does not necessarily coincide with
the opening price of the next trading session. This is due to various activities occurring
during the time of the day when stock market remains closed, one of them being After-
Hours Trading.
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log-increments

ρi = log(Sti)− log(Sti−1
), i = 1, ..., n

are independent (since so are the increments of B) and normally distributed
with Var[ρi] = σ2∆t. An unbiased estimator for Var[ρi] is the corrected
sample variance3

V ∗ =
1

n− 1

n
∑

i=1

(ρi − ρ)2,

where ρ =
1

n

n
∑

i=1

ρi is the sample mean. Therefore the Close-to-Close esti-

mator for σ is defined as

σCC =

√

√

√

√

1

∆t · (n− 1)

n
∑

i=1

(ρi − ρ)2.

Figure 1.1 above picture shows an important feature of the (Historical)
volatility: it is not constant. This contradiction with the unvarying σ that
appears in the B-S model is the motivation for more complex models dis-
cussed next.

Parkinson

Close-to-Close historical volatility is calculated using only stock’s closing
prices, and in many cases it is not precise enough. Stock prices could jump
considerably during a trading session, and return to the opening value at the
end. That means that a big amount of price information is not taken into
account.
Parkinson’s Historical Volatility estimator, formulated in 1980 by Parkinson
in [Par80], uses the stock’s high and low price of the trading session. That is
useful as Close-to-Close prices could show little difference between opening
and closing price, while large price movements could have happened during
the session. It is defined as:

σParkinson =

√

√

√

√

1

4n log(2)

n
∑

i=1

log
(hi
li

)2

,

3This means that E[V ∗] = Var[ρi].
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where hi and li are the high and low price on i-th session respectively.
However, it is common to observe jumps in the stock’s opening and closing
price as markets are most active during the opening and closing of a trading
session and these jumps are not captured by Parkinson volatility estimator
(unless they coincide with the high or low price measured) and thus it tends
to underestimate the volatility.

Garman-Klass

Garman-Klass’s Historical Volatility, proposed by Garman and Klass in 1980
in [GK80], improves Parkinson’s by incorporating all commonly available
prices of the current trading session: opening (oi), high (hi), low (li) and
closing (ci) prices (OHLC).

σGK =

√

√

√

√

1

2n

n
∑

i=1

log
(hi
li

)2

− 2 log(2)− 1

n
log

(ci
oi

)2

.

Despite being more effective than both the Close-to-Close and the Parkin-
son estimators, this method is not robust for opening jumps in price and
trend movements. For this reason, more efficient method for assessing his-
torical volatility that takes into account price trends have been subsequently
developed, like the one proposed by Rogers and Satchell

Rogers-Satchell

The three estimators we have seen so far, are not efficient for estimating
volatility when the asset price is trending, i.e. when the average rate of
return is particularly high. Rogers and Satchell proposed in 1994 [RSY94]
a volatility estimator that is particularly tailored for this circumstance and
that, like Garman-Klass, takes into account all of the prices that characterize
a trading session (OHLC). As a result, it provides generally a more precise
estimation of volatility (i.e. the variance of the estimator is decreased), par-
ticularly when the underlying is trending strongly.

σRS =

√

√

√

√

1

n

n
∑

i=1

(

log
(ht
ct

)

log
(ht
ot

)

+ log
( lt
ct

)

log
( lt
ot

))

The main disadvantage of this estimator is that it does not take into account
price movements between trading sessions. It means that it tends to underes-
timate volatility, since price jumps periodically occur in the market precisely
at the moments between sessions.
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Yang-Zhang

A more comprehensive estimator that also considers the gaps between ses-
sions was developed, based on the Rogers-Satchell, by Yang and Zhang in
2000. It handles, like the Rogers-Satchell estimator, both opening jumps and
trending prices but ,unlike the former, it is a minimum-variance and unbiased
estimator.
We avoid the formula, which is a little intricate. It can be found in [YZ00].

1.3 Implied volatility

Recall that the Black and Scholes model is complete and there exist a unique
risk-neutral measure Q, under which the price of a European Call option at
time t = 0 with expiration date T is defined by:

CBS(σ, S0, K, T, r) = S0Φ(d1)−Ke−rTΦ(d2), (1.8)

where Φ is the standard normal cumulative distribution function,

d1 =
1

σ
√
T

[

log
(S0

K

)

+
(

r +
σ2

2

)

T
]

, d2 = d1 − σ
√
T .

Actually, the price can also be expressed in the form

CBS(σ, S0, K, T, r) = S0C
⋆
BS(σ, k, T, r), (1.9)

where k = log
(S0

K

)

, and C⋆
BS is a function whose expression can be easily

deduced from formula (1.8). The number m =
S0

K
is called ”moneyness”

of the option and we say that the Call option is ”in the money” if m > 1,
since we are in a position of potential profit; otherwise we say it is ”out of
the money”. We recall that ν = ∂σCBS is called ”Vega” and measures the
sensitivity of the Call option with respect to the volatility. We have

ν = ∂σCBS = g
′

(d1)∂σd1 +Ke−rTΦ
′

(d1 − σ
√
T )

√
T

= Ke−rTΦ
′

(d1 − σ
√
T )

√
T

= St

√
TΦ

′

(d1) > 0

(1.10)

where we used the fact that

g(d) := StΦ(d)−Ke−rTΦ(d− σ
√
T ) is such that g

′

(d1) = 0 (1.11)
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and that
StΦ

′

(d1) = Ke−rTΦ
′

(d1 − σ
√
T ) (1.12)

Equation (1.10) shows that the Vega is always strictly positive. Intuitively
this is due to the fact that an option is a contract giving a right, but not
an obligation, therefore one takes advantage of the greater riskiness of the
underlying asset. It follows that the price of a Call option4 is a strictly in-
creasing function of the volatility and CBS is an invertible function of the
volatility. Thus, having fixed all other parameters, there exist a unique value
σ̂impl of the volatility that, plugged into (1.8), produces an observed option
price. We call this value ”implied volatility”.
Having fixed the parameters S0 and r, let us suppose that, for each value
(k, T ), we observe in the real market the prices Cm(k, T ) of european Call
options. Then we can define, as explained above, the ”implied volatility
function” (k, T ) 7→ σ̂impl(k, T ) whose graph is called ”implied volatility sur-
face”. Every section, with T fixed, of the implied volatility surface is usually
called ”smile”. Generally we can say that market quotation tends to give
more value (greater implied volatility) to the extreme cases ”in” or ”out of
the money”. This reflects the fact that some situations in the market are
perceived as more risky.

Figure 1.2: Implied Volatility surface of the SPX index on 17/06/2020, see
[Yos20].

Clearly, since S0 is fixed and thanks to relation (1.9) we can also consider

4The payoff function of a Call Option is given by f(x) := [x − K]+, where K is the
strike price.
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σ̂impl as a function of (K,T ). In this case every section, for T fixed, of the
implied volatility surface is called ”skew” because we tipically observe an ap-
preciable slant to that curve, with higher implied volatility for lower strikes.

In a study by Szakmary et al. of 2003 [Sza+03], using data from 35 fu-
tures options from 8 separate exchanges, the authors conclude that implied
volatility outperforms historical volatility as a predictor of the subsequently
observed volatility in the underlying futures prices over the remaining life of
the option.
However, given one smile for a fixed expiration, little can be said about the
process generating it. An important feature of the volatility surface, more
sensitive to the choice of volatility dynamics between models, is the term
structure of at-the-money (ATM) volatility skew, defined at time to expira-
tion T as

ψ(T ) =
∣

∣

∣

∂

∂k
σ̂impl(k, T )

∣

∣

∣

k=0
.

Empirically, as shown in figure below, we tipically observe that ψ(T ) is pro-
portional to T−α for some 0 < α < 1/2.

Figure 1.3: The blue dots are the estimates of the SPX ATM volatility skew
as of 17/06/2020, see [Yos20]. Approximation of the ATM skew is done
using a numerical symmetric derivative; the orange curve is the power-law
ψ(τ) = 0.4τ−0.4.

Clearly, if there exist a unique correct Black and Scholes model and if people
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priced option correctly according to formula (1.8) then the implied volatility
function should be constant. However, a stylized fact, derived from years of
observations of financial markets, suggest that these assumptions are unreal-
istic, and so we expect the surface to be curved, as in Figure 1.2.. Therefore,
as Riccardo Rebonato famously stated, implied volatility is ”the wrong num-
ber to put in the wrong formula to get the right price”(Rebonato, 1999).
This motivates the need to go beyond a Black-Scholes world.

1.4 Beyond Black-Scholes

What we have seen so far from Section 1.2 and 1.3 about Historical and
Implied volatility is that Black and Scholes assumption about volatility being
constant is wrong, because it leads to systematic differences between market
prices and Black-Scholes prices. In order to improve this model it is necessary
to introduce different volatility models. Generally speaking, the models with
non-constant volatility can be divided in two groups:

• Volatility is endogenous, i.e. it is described by a deterministic function
that depends on the same risk factors of the underlying asset. In this
case, the completeness of the market is generally preserved. Local and
path-dependent volatility models belong to this category the. We will
focus only on local models.

• Volatility is exogenous, i.e. , it is described by a process that is driven
by some additional risk factors (e.g. Brownian motions or even more
complicated ones like the fractional stochastic processes). In this case
the corresponding market model is generally incomplete since we have
more risk factors than risky assets (remember that volatility is not
considered to be directly observable or tradeable in the market). These
are called stochastic volatility models and they are the main topic of
this thesis.

In what follows, we suppose (Ft)t≥0 to be a Brownian filtration, that is
Ft = σ{(Bs)s≤t}, t ≥ 0, is the sigma-algebra generated by (Bs)s≤t, where B
is a Brownian motion on the probability space (Ω, F,P).

1.4.1 Local volatility

In a local volatility model the dynamics of the underlying asset under the
physical measure P is given by:

dSt = µ(St, t)Stdt+ σ(St, t)StdBt (1.13)
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where µ : R2
>0 → R and σ : R2

>0 → R>0 are deterministic functions.
We fix a maturity T and we focus on the interval [0, T ].
We use M2

loc[0, T ] to indicate the vector space of progressively measurable

processes X = (Xt)t∈[0,T ] on (Ω, F,P, (FB
t )t∈[0,T ]) such that

∫ T

0
X2

T (ω)dt <∞
for almost every ω ∈ Ω.
Since we have the same number of risk factors and risky asset, the model is
complete and there exist a unique risk-neutral measure Q, under which we
have:

dSt = rtStdt+ σ(St, t)StdB
Q
t (1.14)

where BQ is the Brownian motion on (Ω, F,Q, (FB
t )t∈[0,T ]) defined by dBQ

t =
dBt + λtdt, where λt ∈ M2

loc[0, T ], called market price of risk, is defined by

dZt = −ZtλtdBt, Z0 = 1 (1.15)

with Zt :=
dQ

dP

∣

∣

∣

FB
t

= EP
[dQ

dP

∣

∣

∣
FB

t

]

, t ∈ [0, T ].

Since we are only interested in volatility, we assume for simplicity rt = r ∈
R>0 constant.
We now want to extend the concept of implied volatility from the black and
Scholes world to the local volatility model. Again, having fidex S0 and r, we
look for a deterministic function σ(K,T ) such that, plugged as a coefficient
into the SDE (1.14) (with σ(St, t) = σ(K,T )|(K=St,T=t)), the model provides
exactly the observed market prices Cm of European Call options. More
formally, given a function Cm(K,T ) with sufficient regularity conditions that
will be discussed specified later, we look for a function σ : R2

>0 → R>0 such
that

Cm(K,T ) = B0E
Q[B−1

T (ST −K)+] (1.16)

where BT = erT .
Starting from Breeden and Litzenberger [BL78], Dupire [Dup93] solved the
problem in 1993, at least theoretically, assuming that Cm(K,T ) : R2

>0 → R>0

is of class C2,1. He proved that under this condition there exist a unique
function σ(K,T ) of class C2,1 that solves Equation (1.16). This function is
given by

σ(K,T ) =

√

√

√

√

2
(

∂
∂T
Cm(K,T ) + rK ∂

∂K
Cm(K,T )

)

K2 ∂2

∂K2Cm(K,T )
(1.17)

Therefore, defining σ(St, t) = σ(K,T )|(K=St,T=t), we have that, under the as-
sumptions on Cm above, there exists a unique local volatility model defined
by the SDE (1.13) that is able to reproduce market prices of European Call
options.
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Unfortunately, formula (1.17) cannot be used in practice since the market
prices are known only at a finite number of strikes and maturities. Further-
more, we only used European Call options to define the function σ, and thus
our model could fail to represent the market prices of non-Vanilla contingent
claims. This explains why there have been serious concerns about the effec-
tiveness and the validity of the model (1.13) and why, when used, they have
been unable to predict future movements of volatilities, leading to unrealistic
future dynamics of the volatility surface.

1.4.2 Stochastic volatility

Tipically, a stochastic volatility (SV) model under the physical measure P

takes the form
dSt = µ(St, t)Stdt+ σtStdB

1
t (1.18)

dσt = α(σt, t)dt+ β(σt, t)dB
2
t (1.19)

where Bt = (B1
t , B

2
t ) is a 2-dimensional correlated brownian motion, that is:

Bt = ABt, A =

(

1 0

ρ
√

1− ρ2

)

with Bt a standard 2-dimensional Brownian motion5 and ρ ∈]− 1, 1[.
Again, we fix a maturity T and we focus on the interval [0, T ].

We recall that, given a market model with d risk factors (the correlated
Brownian motions) and N ≤ d risky assets, a market price of risk is a d-
dimensional stochastic process λ ∈ M2

loc[0, T ] such that:

(i) λit =
µi
t−rt
σi
t
, i = 1, ..., N

(ii) the solution Z of the SDE

dZt = −ZtĀ
−1λtdBt, Z0 = 1 (1.20)

is a P-martingale. Here Ā :=

(

1 ρ
ρ 1

)

.

It can be shown using Girsanov theorem that there exists a one-to-one cor-
respondence between risk-neutral measures Q and market prices of risk λ.
Given a market price of risk λ, the associated risk-neutral measure Q is given

5This means that B is a 2-dimensional a.s. continuous Gaussian process with zero
mean and Cov(B1

s , B
2
t ) = δij min{s, t}, with δij the delta of Kronecker.
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by
dQ

dP
= ZT .

Under suitable conditions (see Karatzas-Shreve, chapter 5) on the real de-
terministic functions µ, α, β, for fixed initial conditions the theory of SDEs
guarantees that a unique solution to the system (1.18)-(1.19) exists. More-
over there exists a (non unique) 2-dimensional market price of risk process

λt = (λ1t , λ
2
t ), λ1t =

µ(St, t)− r

σt
,

with associated risk-neautral measure Q. Then we have the following risk-
neutral dynamics under Q:

dSt = rStdt+ σtStdB
1,Q
t (1.21)

dσt = α̂(σt, t)dt+ β(σt, t)dB
2,Q
t , (1.22)

where α̂(σt, t) = α(σt, t)−λtβ(σt, t) and Bi,Q
t is defined by dBi,Q

t = dBi
t+λtdt.

It is also possible to derive, under the hypothesis of the Feynman-Kac Theo-
rem, the partial differential equation satisfied by the value function of a Eu-
ropean contingent claim of the form F (ST , σT ), where F is the deterministic
payoff function. The risk-neutral price under Q is equal to HQ

t = f(t, St, σt),
with

f(t, s, σ) = EQ[e−r(T−t)F (St,s,σ
T , σt,s,σ

T )],

where (St,s,σ
T , σt,s,σ

T ) is the solution at time T of the system (1.21)-(1.22) with
initial values (s, σ) at time t. Then, f is solution of the Cauchy problem:

{

∂f
∂t

+ Lλf − rf = 0 on [0, T [×R2
>0

f(T, s, σ) = F (s, σ) on R2
>0

where

Lλ =
1

2
σ2s2

∂2f

∂s2
+ ρsσβ

∂2f

∂s∂σ
+

1

2
β2∂

2f

∂σ2
+ rs

∂f

∂s
+ α̂

∂f

∂σ
(1.23)

We emphasize that the dependence on λ of the differential operator (1.23)
(given by the presence of λ in the term α̂) reflects the fact that we have
different pricing PDEs for different risk-neutral measures.

Stochastic volatility models are useful because they model volatility trough
time in a relistic way. In fact, since options with different strikes and ma-
turities have different Black-Scholes implied volatilities, the Black&Scholes
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model does not give a realistic representation of the dynamic of asset prices.
On the other hand, in SV models, the volatility itself is modeled as a contin-
uous Brownian semi-martingale and, as we will see in chapter 3, this is con-
sistent with the observed dynamic of asset prices. However, while stochastic
volatility dynamics are more realistic than local volatility dynamics, gener-
ated option prices are not consistent with observed European Call option
prices and lead to volatility surfaces whose shapes can differ substantially
from that of the empirically observed volatility surfaces. Hence, SV models
are usually unable to capture the smile (or skew) of the implied volatility
surface, and neither are able to fit the term structure of ATM skew ψ(T ).
Adding jumps to these models (e.g. Merton or Bates model) can help to
better fit the volatility surface, but we will not deepen this topic.

1.4.3 Heston model

It is a stylized fact that, at least in equity markets, although the level and ori-
entation of the volatility surface changes over time, the general overall shape
of the volatility surface does not change, at least to a first approximation.
This suggests that it is desirable to model volatility as a time-homogenous
process, that is, a process whose parameters α and β in Equation (1.19) are
independent of asset price and time. The model that we now present exhibits
this feature.
In the classical Heston stochastic voaltility model formulated by Heston in
1993 [Hes93], the underlying asset and the volatility σt =

√
νt have the fol-

lowing dynamics under the physical measure P :

dSt = µStdt+
√
νtStdB

1
t (1.24)

dνt = k(ν̂ − νt)dt+ η
√
νtdB

2
t (1.25)

where µ ∈ R and k, ν̂, η ∈ R>0 are constant parameters, and B = (B1, B2)
is a 2-dimensional correlated Brownian motion.
In analogy to what we have seen in Section 1.1 for the Black-Scholes model,
considering a discretized version of (4.37) as a good approximation, here
the process ν can be interpreted (up to the term dt) as the instantaneous
variance of the asset’s rate of return, and with a small term abuse is often
called the variance of the asset. The interest rate r is supposed to be constant.
Equation (4.38) was previously suggested by Cox, Ingersoll, Ross (1985) as a
model for the short interest rate (the CIR model), and its solution is called
”mean-reverting square root process”.

Remark 1.1. For k > 0, the drift is positive if νt < ν̂ and it is negative if
νt > ν̂, and so the process is ”pushed” towards the value ν̂ that can be inter-
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preted as a long-term mean of the variance. The other parameters represent:
the drift term µ is the mean rate of return of the asset, k the speed of mean
reversion and η the volatility of the variance.

What about existence and uniqueness for the solutions of (4.37)-(4.38)?
For what concerns the asset, by Itô’s formula we have that the explicit solu-
tion of (4.37) is

St = S0exp
(

∫ t

0

√
νsdB

1
s +

∫ t

0

(

µ− νs
2
ds
)

)

For the variance process, we have the following remarkable result (see Ikeda-
Watanabe [IS89], p. 168):

Theorem 1.1. For any ν0 ≥ 0, there exists a unique non-negative strong
solution to (4.38) starting from ν0.

Since, in general, the solution ν can reach the origin, we denote by τ the
stopping time defined by

τ = inf{t ≥ 0|νt = 0},

with τ(ω) = ∞ if νt(ω) > 0 for all t ≥ 0.
We have the so-called Feller condition (see Proposition 6.2.3 in [LL07] ):

Proposition 1.1. For ν0 ≥ 0 we have that:

• if η2 ≤ 2kν̂, then τ = ∞ P-a.s.

• if η2 > 2kν̂ ≥ 0, then τ <∞ P-a.s.

In order to define a market price of risk, we need to be sure that
√
νt >

0. To this end we exploit Proposition above and assume η2 ≤ 2kν̂. As
already mentioned in the previous Section 1.4.2, a market price of risk is a
2-dimensional process λt = (λ1t , λ

2
t ) with

λ1t =
µ− r√
νt
.

Since in general λ2 is not uniquely determined, λ is not unique and so we do
not have a uniquely associated risk-neutral measure. However, there exists
a natural choice for λ2 that simplifies computations and that gives rise to a
well defined market price of risk. If we define

λ2t =
aνt + b√

νt
(1.26)
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with a, b ∈ R, under the risk-neutral measure Q associated to λ we have:

dSt = rStdt+
√
νtStdB

1,Q
t

dνt = k̃(ν̃ − νt)dt+ η
√
νtdB

2,Q
t ,

where

k̃ = k + aη, ν̃ =
kν̂ − bη

k̃
,

and therefore ν is a mean-reverting square root procees also under Q. We see
that the dynamics of the instantaneous variance ν has exactly the same form
(up to different constants) under P and Q, which explains why the Heston
model is usually specified directly under a risk-neutral world. The choice of
parameters a, b in Equation (1.26) is obtained by calibrating the model to
the available market data.

The risk-neutral price of a derivative F (ST , νT ) is equal to H
Q
t = f(t, St, νt),

where f = f(t, s, ν) is solution to the Cauchy problem:

{

∂f
∂t

+ Lλf − rf = 0 on [0, T [×R2
>0

f(T, s, ν) = F (s, ν) on R2
>0

(1.27)

where now

Lλ =
1

2
νs2

∂2f

∂s2
+ ρsνη

∂2f

∂s∂ν
+

1

2
η2ν

∂2f

∂ν2
+ rs

∂f

∂s
+ k̃(ν̃ − ν)

∂f

∂ν
(1.28)

To solve numerically the PDE (1.27) one can rely on general numerical meth-
ods, like e.g. finite difference methods. However, since the log-characteristic
function of S

EQ
[

eiξlogST
]

can be computed explicitly, analytical approximations of the price of Euro-
pean options are available by Fourier techniques: this will be discussed in
Chapter 4, where we will present two different approaches. These formulas
are generally preferable to standard numerical techniques because of their
precision and computational efficiency in the valuation of European options,
which becomes critical when calibrating the model to known option prices.

In conclusion, the existence of a fast and easily implemented quasi-closed
form soluton for European options is one of the main advantages of the Hes-
ton model over other (potentially more realistic) stochastic volatility models
and the reason for its great popularity.
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Finally, recall that, since it is a stochastic volatility model, the Heston model
does not fit the observed implied volatility surface. To fill this gap and gener-
ate consistent volatility surface, more advanced stochastic volatility models
based on jumps (e.g. Merton model, Bates model) or on fractional Brownian
motion have been proposed. In the next Chapter 2 we will discuss the latter
in detail.
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Chapter 2

Fractional Brownian motion
and long memory

In this chapter we review the main properties of the fractional Brownian
motion and discuss its role in volatility modelling. We introduce some math-
ematical and statistical concepts, like self-similarity, long-range dependence
and regularity of paths, that will help us to build more advanced volatility
models in the next Chapter 3. Finally, based on these properties, we will
study the fractional Ornstein-Uhlenbeck process.

2.1 Fractional Brownian motion

Fractional Brownian motion (fBm) was first introduced in 1940 within a
Hilbert space framework by Kolmogorov in [Kol40], where it was called
”Wiener Helix”. The name fractional Brownian motion is due to Mandelbrot
and Van Ness, who in 1968 provided in [MV68] a stochastic integral repre-
sentation of this process in terms of a standard Brownian motion. As we will
see, the fBm is of interest in many applications in various fields, including
financial mathematics, because of its capability of modelling short-range and
long-range dependent phenomena.

Definition 2.1. A fractional Brownian motion (fBm) with Hurst paramter
H ∈ (0, 1) is a centered Gaussian process (BH

t )t≥0 with covariance function

E[BH
t B

H
s ] =

1

2

(

t2H + s2H − |t− s|2H
)

. (2.1)

27
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It follows directly from (2.1) that BH
0 = 0 a.s.

For H = 1/2, the covariance function is E[BH
t B

H
s ] = t∧s and thus we obtain

a standard Brownian motion. This justifies the name: BH is a generalization
of Brownian motion obtained by allowing the Hurst parameter to differ from
1/2. Later on we will uncover the meaning of the Hurst parameter.
We recall that the distribution of a Gaussian process is uniquely determined
by its mean and covariance functions. Therefore, for each value of H ∈ (0, 1),
the distribution of BH is uniquely determined by Definiton 2.1. Nevertheless,
this definition does not guarantee the existence of a fBm. To show that a fBm
actually exists, it would be sufficient to check that the covariance function
(2.1) is symmetric and positive semi-definite1. We will show the existence
in Section 2.1.6, giving an explicit integral representation with respect to a
standard Brownian motion which satisfies the properties of Definition 2.1.

2.1.1 Basic properties

Self-similarity and stationarity of increments

We summarize the basic properties of the fBm in the following proposition,
whose proof can be found in Appendix.

Proposition 2.1. Let BH be a fBm with Hurst parameter H ∈ (0, 1).Then:

(1)[Self-similarity] (αHBH
t )t≥0

law
= (BH

αt)t≥0, for every α > 0.

(2)[Stationarity of increments] (BH
t+h−BH

h )t≥0
law
= (BH

t )t≥0, for all h > 0.

(3)[Time inversion] (t2HBH
1/t)t>0

law
= (BH

t )t>0.

Conversly, any continuous Gaussian process BH = (BH
t )t≥0 with BH

0 = 0,
V ar(BH

1 ) = 1 and such that (1) and (2) hold, is a fractional Brownian motion
of Hurst parameter H.

Remark:
(1): roughly speaking, self-similarity means that the patterns of a time-scaled
sample path in any time interval have a similar shape to those of the original
process, when properly space-rescaled.
(2): actually, more can be said about the increments than simply stationarity.
In fact since the fBm is Gaussian, its increments are normally distributed:
for all s, t such that 0 ≤ s < t,

BH
t − BH

s ∼ N
(

0, (t− s)2H
)

. (2.2)

1Given I ∈ R, a function K : I × I → R is positive semi-definite if for any n ∈ N,
t1, ...tn ∈ I and u ∈ Rn,

∑n
i,j=1K(ti, tj)uiuj ≥ 0.
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Correlation between two increments

It follows immediatly from Definition 2.1 that, for r < u ≤ s < t,

E[(BH
t −BH

s )(BH
u −BH

r )] =
1

2

(

|s−u|2H+|t−r|2H−|t−u|2H−|s−r|2H
)

. (2.3)

For H ̸= 1/2 and r < u < s < t, we have the following integral represen-
tation of (2.3):

E[(BH
t − BH

s )(BH
u − BH

r )] = H(2H − 1)

∫ u

r

(

∫ t

s

(x− y)2H−2dx
)

dy. (2.4)

It follows from (2.2) and (2.4) that the fBm has negatively correlated incre-
ments if H < 1/2 (we say that the fBm is ”antipersistent”), and positively
correlated increments if H > 1/2 (we say that the fBm is ”persistent”). It
is also easy to see that the correlation increases with H. Intuitively, when
H < 1/2 this means that if the last increment has been negative, the next
one is more likely to be positive (and vice-versa), while when H > 1/2 the
signs of the increments tend to be preserved. In the first case, the process
can be used to model random systems with intermittent time series data,
while in the second case the process presents an aggregation behavior and
this property can be used to describe cluster phenomena (systems with mem-
ory).
These properties are closely linked to long-range dependence, a crucial fea-
ture of fBm that we are going to discuss.

2.1.2 Long-range dependence

Definition 2.2. A stationary discrete-time stochastic process (Xn)n∈N ex-
hibits long-range dependence (or long memory) if the autocovariance func-
tion ρ(n) := Cov(Xk, Xk+n) satisfies

2

lim
n→∞

ρ(n)

cn−α
= 1, (2.5)

for some constants c ∈ R and α ∈ (0, 1).
In this case the correlation between Xk and Xk+n decays slowly as n → ∞
and

∞
∑

n=1

∣

∣ρ(n)
∣

∣ = ∞ (2.6)

2Notice that, since X is stationary, Cov(Xk, Xk+n) does not depend on k.
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In contrast, processes with summable covariance functions are said to ex-
hibit short-range dependence or short memory. Given a fBm BH , let us define
the increment process with time lag 1 by Xn = BH

n −BH
n−1. From Proposition

2.1 (2), we have that (Xn)n∈N is stationary and the autocovariance function

ρH(n) = Cov(Xk, Xk+n) =
1

2

[

(n+ 1)2H + (n− 1)2H − 2n2H
]

satisfies

lim
n→∞

ρH(n)

H(2H − 1)n−(2−2H)
= 1. (2.7)

Summarizing, we obtain:

• For H ∈ (1/2, 1),
∑∞

n=1 ρH(n) = ∞ and the increment process exhibits
long-range dependence.

• For H ∈ (0, 1/2),
∑∞

n=1

∣

∣ρH(n)
∣

∣ < ∞ and the increment process ex-
hibits short-range dependence.

Alternative definitions of long-range dependence (or long memory) can be
found in the literature, all of them capturing the same essential feature: a
slowly decaying autocorrelation function3. One of the most well established
definitions uses the notion of slowly varying function.

Definition 2.3. A function L : (0,+∞) → (0,+∞) is called slowly varying
at infinity if, for all a > 0:

lim
x→∞

L(ax)

L(x)
= 1 (2.8)

Examples of slowly varying functions at infinity are logarithms, iterated
logarithms and functions that converge to positive constants. Polynomials
and the positive functions 2+sin x, e−x, ex are not slowly varying at infinity.

Definition 2.4. A stationary process (Xt)t≥0 exhibits long-range dependence
(or long memory) if the autocovariance function ρ(t) := Cov(Xh, Xh+t) sat-
isfies:

ρ(t) = t−βL(t), t ≥ 0, (2.9)

where L is a slowly varying function at infinity and β ∈ (0, 1).

3For a stationary process (Xn)n∈N with finite variance, the autocorrelation function is

Corr(Xk, Xk+n) = Cov(Xk,Xk+n)
σkσk+n

= ρ(n)
σ2
k

, where σk is the standard deviation of Xk, and

thus exhibits long-term properties analogous to those of the autocovariance function ρ(n).
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For Xt = BH
t − BH

t−1, the two definitions are equivalent. In fact, re-
calling Equation (2.7), also valid in the continuous case, and taking L(t) =
tβρH(t), β = 2− 2H ∈ (0, 1), we have that, for H ∈ (1/2, 1), L converges to
a positive constant, and thus it is slowly varying at infinity. Hence, we re-
trieve the long range-dependence property for H ∈ (1/2, 1), and short-range
dependence for for H ∈ (0, 1/2).

2.1.3 Regularity of paths

Hölder continuity

There are several ways to establish the continuity of fBm. All of them are
based on the formula

E[(BH
t − BH

s )2] = |t− s|2H ,

which follows from Equation (2.2). The regularity of fBm is dictated by its
Hurst parameter H: the larger H is, the smoother fBm becomes, as stated in
the next proposition, which follows immediately from Kolmogorov-Chentsov
continuity theorem.

Proposition 2.2. The fractional Brownian motion BH has a continuous
modification. Moreover, for any γ ∈ (0, H), this modification is γ-Hölder
continuous on each finite interval.

Assumption: To avoid speaking about a continuous modification each
time, in the rest of this thesis we will assume the continuity of fBm itself.

Finally, we mention that, by using well-known facts about Gaussian pro-
cesses, it is possible to show that the exact modulus of continuity of fBm is
ω(δ) = δH |logδ|1/2 (see e.g. [Lif95], p.103). Consequently, it is only Holder
continuous of order up to H, but not H-Holder continuous. Figure 2.1 illus-
trates the dependence of fBm on H. We can see that he sample paths of fBm
exhibit higher regularity for greater values of Hurst parameter, in accordance
with Proposition 2.2.

Path differentiability

Despite being γ-Holder continuous for γ ∈ (0, H), the fBm BH has almost
surely nowhere differentiable sample paths. This follows from the law of
iterated logarithm for fBm, which generalizes the well known theorem for
classical Brownian motion (see [LS01]):
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Theorem 2.1. If (BH
t )t≥0 is a fBm with Hurst parameter H ∈ (0, 1), then,

for all t0 ≥ 0, almost surely

lim sup
t↓0

BH
t0+t − BH

t0

tH |2 log log t|1/2 = 1, lim inf
t↓0

BH
t0+t − BH

t0

tH |2 log log t|1/2 = −1. (2.10)

It follows immediately that

lim sup
t↓0

∣

∣

∣

BH
t0+t − BH

t0

t

∣

∣

∣
= ∞ P− a.s.

and therefore, for each t0 ≥ 0, P-almost surely the function t 7→ BH
t is not

differentiable in t = t0. Actually, this result can be improved by showing
that, P-almost surely, the function t 7→ BH

t is not differentiable in any t ≥ 0.

Figure 2.1: Samples of fractional Brownian motion for H = 0.2, H = 0.5 and
H = 0.8. Taken from [Nou12].

2.1.4 Markov and Semimartingale property

Fractional Brownian motion with Hurst parameter H ̸= 1/2 has properties
that deviate significantly from standard Brownian motion, semimartingales
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and others processes classically used in probability theory. In fact, in order
to gain interesting modelling properties, like short-range or long-range de-
pendence, we must ‘sacrifice’ some good properties of both Brownian motion
and semimartingales, and this is the reason why fBm is often quite difficult
to handle.

Markov property

We recall the definition of Markov process.

Definition 2.5. Let X be a real-valued stochastic process. X is called Markov
process if it satisfies, for all Borel set A ⊂ R and all real numbers t > s > 0,

P(Xt ∈ A|Xu, u ≤ s) = P(Xt ∈ A|Xs). (2.11)

For a fBm we have the following result (see [Huy03] for a proof):

Theorem 2.2. Let BH be a fractional Brownian motion of Hurst parameter
H ∈ (0, 1), H ̸= 1/2. Then BH is not a Markov process.

The proof of this result, as presented in [Huy03], is based on a property of
the covariance function of a centered Gaussian Markov process, call it (Xt)t≥0.
For such a process, the author proves that the autocovariance function is
given by:

R(t, s) =
R(t, s)R(t0, t0)

R(s, s)
, t > s > t0 ≥ 0. (2.12)

From here, the proof of Theorem 2.2 is rather straightforward, (see [Huy03]
for the details).

Semimartingale property

Now we study the asymptotic behavior of the p-variation of the fBm. As a
byproduct, we will see that fBm is never a semimartingale except, of course,
when it is the standard Brownian motion.
Recall that a real-valued process is called a semimartingale if it can be de-
composed as the sum of a local martingale and a càdlàg adapted process of
locally bounded variation. We start with a general preliminary result, which
may be viewed as a law of large numbers for fBm (see [Nou12], p.19 for a
proof).
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Theorem 2.3. Let BH be a fractional Brownian motion of Hurst parameter
H ∈ (0, 1). Let G ∼ N (0, 1) and let f : R → R a measurable function such
that E[f 2(G)] <∞. Then, as n→ ∞,

1

n

n
∑

k=1

f(BH
k − BH

k−1)
L2

→ E[f(G)]

With a direct application of Theorem 2.3 with f(x) = |x|p, we deduce
the following result about the p-variation of fBm.

Corollary 2.1. Let BH be a fractional Brownian motion of Hurst parameter
H ∈ (0, 1), and let p ∈ [1,∞[. Then, as n→ ∞, one has

n
∑

k=1

|BH
k/n − BH

(k−1)/n|p
L2

−→







0 if p > 1/H
E[|G|P ] if p = 1/H, with G ∼ N (0, 1)
+∞ if p < 1/H

We are now ready for the main result (see, e.g., [Rog97] for the proof).

Theorem 2.4. Let BH be a fractional Brownian motion of Hurst index H ∈
(0, 1), H ̸= 1/2. Then BH is not a semimartingale.

2.1.5 Integration with respect to fBm

Theorem 2.4 explains why integrating with respect to fBm is a non-trivial
problem. In fact semimartingales form the largest class of ”good integrators”
for which a well defined notion of stochastic integral exists. Moreover, for a
stochastic process, being a semimartingale is the weakest condition to require
in order to apply Itô’s lemma and consequently all the properties from of Itô’s
calculus. Nevertheless, it is still possible to develop a stochastic calculus with
a fractional Brownian motion as integrator.
There are essentially two different approaches:

(i) Pathwise approach;

(ii) Malliavin calculus.

We focus in this thesis on the first approach. We refer to Nualart [Nua02] for
a complete treatment of Malliavin calculus, and to Biagini et al. [Bia+08]
for its applications to fBm and to finance in general.
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Pathwise approach

As a consequence of Corollary 2.1 we have that, for every H ∈ (0, 1), BH is
not of bounded variation. This makes Riemann-Stieltjes pathwise integration
problematic, since one of the usually required assumptions for the integrator
function in the Riemann-Stieltjes integral is having bounded variation. For-
tunately, there exists another way to define the integral pathwise.
If (ut)t∈[0,T ] is a stochastic process with γ-Holder continuous trajectories,

where γ > 1 −H, then the (Young-)integral
∫ T

0
utdB

H
t exists pathwise (i.e.

for every fixed ω ∈ Ω, the (Young-)integral
∫ T

0
ut(ω)dB

H
t (ω) exists). The

Young integral is an extension of Riemann-Stieltjes integral, in the sense that
if both integrals are well defined for given integrand and integrator functions,
then they coincide. This follows from the next theorem, based on [You36],
which can be proved using the Hahn-Banach theorem.
For any α ∈ [0, 1], we denote by Λα the set of α-Holder continuous functions,
that is, the set of functions f : [0, T ] → R satisfying

|f |α := sup
0≤s<t≤T

|f(t)− f(s)|
(t− s)α

<∞.

We equip Λα with the norm ||f ||α := |f |α+|f |∞, where |f |∞ = supt∈[0,T ] |f(t)|.

Theorem 2.5. Let f ∈ Λα with α ∈ (0, 1), and let β ∈ (0, 1) be such that
α + β > 1. The linear operator Tf : C1 ⊂ Λβ → Λβ defined by Tf (g) =
∫ ·

0
f(u)g′(u)du is continuous with respect to the norm || · ||β. By density, it

extends in a unique way to an operator T̄f : Λβ → Λβ.

As a consequence, we are now able to define a so-called Young integral
(see [Nua02]).

Definition 2.6. Let f ∈ Λα and g ∈ Λβ with α, β ∈ (0, 1), α + β > 1. The
Young integral is (well-)defined as

∫ ·

0
f(u)dg(u) := T̄f (g).

From Proposition 2.2 we know that BH is γ-Hölder continuous for any
γ ∈ (0, H). Thus, taking α > 1 − γ, β = γ, f = (ut)t∈[0,T ] an α-Hölder
continuous process and g = BH , we have the well-defined pathwise integral
∫ T

0
utdB

H
t (we omit the dipendence on ω ∈ Ω). The applicability of this

method leads to a first distinction:

• For H > 1/2, the method above is particularly useful, because it in-
cludes processes of the form ut = F (BH

t ), where F is a continuously
differentiable function. In fact in this case ut has the same Holder index
as BH

t , and we can take α = β = γ > 1/2.
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• In the case H < 1/2 things are not so simple. A powerful approach

known as rough path theory may be used to give sense to
∫ T

0
utdB

H
t , at

least when H is not too small. However, we do not need to develop a
systematic theory of integration with respect to fBm when H ∈ (0, 1/2)
because the integrands we will encounter will be constants and there-
fore, thanks to Theorem 2.5 and Definiton 2.6, we have that the integral
∫ T

0
cdBH

t is well defined for every H ∈ (0, 1) (here c is a constant, hence
α-Holder continuous for every α ∈ (0, 1)).

2.1.6 Stochastic integral representations

In this section we show that the fractional Brownian motion can be repre-
sented as a stochastic integral with respect to Brownian motion in (at least)
two different ways. We will make use of the two-sided classical Brownian
motion B = (Bt)t∈R defined as

Bt =

{

B1
t if t ≥ 0

B2
−t if t < 0

,

where B1 and B2 are independent (one-sided) classical Brownian motions.

Mandelbrot-van Ness

The first representation of fBm was given by Mandelbrot and Van Ness in
[MV68], and is also called moving average representation. It can also be used
as a proof of the existence of fBm.

Proposition 2.3. Let H ∈ (0, 1), H ̸= 1/2, set

cH =

√

1

2H
+

∫ ∞

0

(

(1 + u)H−1/2 − uH−1/2
)2
du <∞,

and let B = (Bt)t∈R be a two-sided classical Brownian motion. Then the
process BH = (BH

t )t≥0 defined as

BH
t =

1

cH

(

∫ 0

−∞

(

(t− u)H−1/2 − (−u)H−1/2
)

dBu +

∫ t

0

(

t− u)H−1/2dBu

is a fractional Brownian motion of Hurst parameter H.

Notice that the Mandelbrot-van Ness representation uses the entire his-
tory of the Brownian motion (Bs)s∈[0,t], which has an impact on the memory
of the process. This reflects the memory property of fBm, as we have seen
in Section 2.1.2.
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fBm as a Volterra process

Our second representation allows us to write fBm in the form of a so-called
Volterra process, that is, in the form BH

t =
∫ t

0
KH(t, s)dBs, where B =

(Bt)t≥0 is a classical Brownian motion andKH is an explicit square integrable
kernel, whose expression is a bit convoluted. The advantage is that the kernel
in this representation has compact support. We give the expression only
for H ∈ (0, 1/2), since we will only analyze this case in the next chapter.
However, an analogous formula is valid for H ∈ (1/2, 1) (see [Nou12], p. 16).

Proposition 2.4. Let H ∈ (0, 1/2) and, for t > s > 0, set

KH(t, s) = dH

[(t(t− s)

s

)H−1/2

−(H−1/2)s1/2−H

∫ t

s

uH−3/2(u−s)H−1/2du
]

,

where

dH =

√

2H

(1− 2H)
∫ 1

0
(1− x)−2HxH−1/2dx

.

Let B = (Bt)t≥0 be a classical Brownian motion, and define BH = (BH
t )t≥0

by

BH
t =

∫ t

0

KH(t, s)dBs.

Then BH is a fractional Brownian motion of Hurst parameter H.

The above explicit representation is also extensively used when perform-
ing numerical simulations of fBm, given the fact that, generally speaking, it
is the representation to use when solving some fractional differential equa-
tions (see Section 4.3.3 for a brief explanation), i.e. differential equations
involving fractional derivatives, like the fractional Riccati equation.

2.2 Fractional Ornstein-Uhlenbeck processes

We now present a generalization of the classical Ornstein-Uhlenbeck process,
the so-called fractional Ornstein-Uhlenbeck process (fOU), which will be fun-
damental in the next Chapter 3 on fractional stochastic volatility models.
We recall that the classical Ornstein-Uhlenbeck process with parameter λ > 0
and σ > 0 starting at x ∈ R, is the unique strong solution (see, e.g. [Pas11]
p. 327) of the Langevin equation

{

dXt = −λXtdt+ σdBt t ≥ 0
X0 = x

, (2.13)
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where B is a classical Brownian motion. It is given by

Xx
t = e−λt

(

x+ σ

∫ t

0

eλudBu

)

t ≥ 0. (2.14)

This model is popular in interest rate modelling, where it is used in the
Vasicek model.
Actually, Langevin equation can be defined in a more generale setting, where
the noise term σdBt is replaced by a general Gaussian noise term dNt and
the constant x ∈ R is replaced by a random variable ξ ∈ L0(Ω)4. Thus, it
becomes

{

Xt = ξ − λ
∫ t

0
Xsds+Nt t ≥ 0

X0 = ξ
(2.15)

Notice that, since the above Equation (2.15) only involves an integral with
respect to ds and not a stochastic integral, it can be solved path-wise for
much more general noise processes (Nt)t≥0 than Brownian motion. This
leads us to the question whether for H ∈ (0, 1), H ̸= 1/2 and for fixed initial
conditions, the Langevin equation with fractional Brownian noise (σBH

t )t≥0

has a solution, if it is unique and eventually what are its main features. In
this case we would call the solution a fractional Ornstein-Uhlenbeck process
with Hurst parameter H.

Existence and uniqueness

Cheridito et al. have shown in [CKM03] that, for each H ∈ (0, 1) and
ξ ∈ L0(Ω),

XH,ξ
t := e−λt

(

ξ + σ

∫ t

0

eλudBH
u

)

, t ≥ 0,

is the unique P-almost surely continuous process that solves Langevin equa-
tion (2.15) with fractional Brownian noise (σBH

t )t≥0. Notice that, since e
λu is

Lipschitz-continuous (1-Hölder continuous), thanks to the results in Section
2.1.5, we can conclude that

∫ t

0
eλudBH

u is well-defined for every H ∈ (0, 1).
Analogously to the classical Brownian motion, the two-sided fractional Brow-
nian motion (BH

t )t∈R ∈ L0(Ω) is defined as

BH
t =

{

BH,1
t if t ≥ 0

BH,2
−t if t < 0

,

where BH,1 and BH,2 are independent (one-sided) fractional Brownian mo-
tions.

4L0(Ω) is the space of measurable functions on (Ω, F,P).
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With initial condition ξ = σ
∫ 0

−∞
eλudBH

u , we find the following solution of
Langevin equation:

XH
t := σ

∫ t

−∞

e−λ(t−u)dBH
u .

It is easy to show that (XH
t )t∈R is a Gaussian process, and it follows immedi-

ately from the stationarity of the increments of fractional Brownian motion
that it is stationary. Furthermore, for every ξ ∈ L0(Ω), almost surely

XH
t −XH,ξ

t = e−λt(XH
0 − ξ)

t→∞−→ 0,

which implies that every stationary and almost surely continuous process
that solves (2.15) has the same distribution as (XH

t )t≥0.
We call (XH,ξ

t )t≥0 a fractional Ornstein-Uhlenbeck process with initial condi-
tion ξ and (XH

t )t∈R a stationary fractional Ornstein-Uhlenbeck process.

Autocovariance function and long-range dependence

Cheridito et al. show in [CKM03] that for H ∈ (0, 1), H ̸= 1/2 and t > 0,
the decay of the autocovariance function of XH is very similar to that of the
autocovariance function of the increment process of BH with time lag t.
In fact, it can be derived from (2.1) that, for fixed N ∈ N, h > 0, as s→ ∞

Cov(BH
h+t−BH

h , B
H
h+s+t−BH

h+s) =
N
∑

n=1

t2n

(2n)!

(

2n−1
∏

k=0

(2H−k)
)

s2H−2n+O(s2H−2N−2).

On the other hand, for fixed N ∈ N, h > 0, as s→ ∞

Cov(Y H
h , Y H

h+s) =
1

2
σ2

N
∑

n=1

λ−2n
(

2n−1
∏

k=0

(2H − k)
)

s2H−2n +O(s2H−2N−2).

In particular, using the results in section 2.1.2 on long-range dependence,
for H ∈ (1/2, 1), Y H tends to exhibit long-range dependence and persis-
tence (positively correlated consecutive increments) as s → ∞, while for
H ∈ (0, 1/2), XH looses long-range dependence and the process becomes
antipersistent (negatively correlated consecutive increments) as s→ ∞. The
enhanced negative correlation with smaller H gives a relatively rougher paths
with a more irregular behavior.
Therefore, at least asympotically, even for a fOU process, trajectories tend
to be more regular for higher Hurst parameters.



40CHAPTER 2. FRACTIONAL BROWNIANMOTION AND LONGMEMORY



Chapter 3

Volatility models with
fractional Brownian motion

In this chapter, we introduce some more advanced stochastic volatility mod-
els based on fractional Brownian motion. We present at first the FSV model,
based on the fBm with Hurst parameter H ∈ (1/2, 1), the first fractional
volatility model to appear in the literature. Then, we turn to more recent
models that assume the Hurst parameter to be less than 1/2. Because of the
irregularity of their sample paths, these models are called ‘rough’. For each
of the models we will investigate, it is important to have in mind some basic
properties that the model needs to satisfy in order to be considered accept-
able. Some of these properties are derived from empirical observations, and
therefore it seems logical to begin our study from these.

We work in a filtered probability space (Ω, F,P, (Ft)t≥0) satisfying the usual
conditions1. We assume (Ft)t≥0 to be a Brownian filtration, that is Ft =
σ{(Bs)s≤t}, t ≥ 0, is the sigma-algebra generated by (Bs)s≤t, where B is a
Brownian motion on the probability space (Ω, F,P).

3.1 Stylized facts about volatility

Stylized facts are observations that have been made in so many contexts that
they are widely understood to be empirical truths. Due to their generality,
they are often qualitative and, although essentially true, may have inaccura-
cies in the details. In developed countries, we observe from the data analysis
of financial time series (such as daily stock returns) a number of stylized facts
about the volatility of financial asset prices. The purpose of this section is

1(Ω, F,P) is complete and (Ft)t≥0 is complete and right-continuous.

41
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to analyze qualitatively the various stylized facts that have been shown to
affect the volatility (here in the sense of Historical Volatility) of stock prices.
During the presentation, we will revise some concepts already encountered
in Chapter 1 and Chapter 2, to make the review more systematic.
First, we establish the notation. Let St be the stock price at time t and
rt = log(St)− log(St−1) the logarithmic return over the period t−1 to t. The
mean and variance are defined as usual as

µt = E[rt], σ2
t = E[(rt −mt)

2]. (3.1)

We can also define the conditional mean and conditional variance as:

mt = Et−1

[

rt] (3.2)

ht = Et−1

[(

rt −mt)
2
]

(3.3)

where Et−1[U ] := E[U |Ft−1] is the conditional expectation of the random
variable U given the information set at time t−1. Intuitively, the conditional
variance tells us ‘how much variance is left’ if, given the information at time
t− 1, we use mt to ‘predict’ rt.
Higher moments of the process (rt)t≥0 are often used in volatility models.
The skewness and kurtosis are defined by

ξt =
E[(rt − µt)

3]

σ3
, ζt =

E[(rt − µt)
4]

σ4
. (3.4)

Skewness is a measure of asymmetry in a probability distribution. It can
be negative, zero, positive or undefined. Since the normal distribution is
symmetric, the skewness is zero. An example of positive skewness is the log-
normal model, which has a right skewed distribution.
Kurtosis measures the ‘thickness’ of the tail of a distribution; a distribution
is fat-tailed if it has a higher kurtosis than that of the normal distribution,
which is 3. Therefore, a distribution with a higher kurtosis than 3 is consid-
ered fat-tailed. Consequently, rare events, measured in the tail, have a higher
probability to occur in a fat-tailed distribution than in a normal distribution.

(a) Clustering

There is substantial evidence that volatility is not constant (see, e.g., [Fam65],
[Off73], [TW92]); the idea is that as trading activity fluctuates, so does
volatility. In particular, any casual observation of financial time series re-
veals bunching of high and low volatility episodes. This results from the
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fact that large changes in the price of an asset are often followed by other
large changes, and small changes are often followed by small changes (see
[Man63] and [Con01]). This feature is known as clustering or intermittency,
and results from the fact that volatility is autocorrelated, in the sense that
the autocorrelation function decays slowly. This establishes a strong rela-
tionship between volatility clustering and long memory of volatility.

(b) Persistence

Intuitively, volatility persistence measures the strength of the volatility feed-
back effect. High persistence means that volatility shocks will be felt further
in the future, albeit to a lesser extent. Generally speaking, volatility is highly
persistent. This behaviour has been reported by numerous studies, such as
[Bai96] and [Sch89]. To make a precise definition of volatility persistence, let
the conditional variance of returns k periods in the future, also called forecast
variance, be defined as

ht+k|t = Et

[(

rt+k −mt+k

)2]
. (3.5)

Volatility is said to be persistent if information about today’s returns (which,
just to simplify conceptually, we can consider to be the whole information
in today’s information set, that is, Ft coincides with the sigma-algebra gen-
erated by rt) has a large effect on the forecast variance many periods in
the future. More precisely, taking partial derivative, we define the forward
variance2:

θt+k|t =
∂ht+k|t

∂r2t
. (3.6)

The higher θt+k|t, the more persistent the volatility is.
Another traditional method to quantify persistence is to consider the correla-
tions bewteen two increments of the volatility process. If they are positively
correlated, then we have persistence, otherwise, in the case of negative cor-
relation, we say that the process is antipersistent. From this last ‘definition’,
we see that persistence in intimately connected with clustering and long
memory, in that all these three properties can be measured by analyzing the
decay of the autocorrelation function.

2By taking the derivative with respect to r2t instead of rt, we obtain a dimensionless
number, as squared returns and conditional variance are in the same unit
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(c) Long vs short memory

Changes in volatility typically have a long-lasting impact on its subsequent
evolution. We say that volatility has a long memory (or long-range depen-
dence, LRD for brevity). This was one of the conclusions of the influential
analyses of Ding et al. [DGE93] and Andersen et al. [And+03]. Mathemat-
ically, as we have seen in Chapter 2, this means that the volatility process
(σt)t≥0 has a slowly decaying autocorrelation function (ACF). An important
issue, still debated, is the relationship between the persistence and the LRD
property of the volatility process. The authors above argue that the phe-
nomenon behind their empirical findings of a high persistence is the long
memory property, suggesting that the latter is a necessary condition for the
former. We will develop this idea in the following section thanks to the FSV
model of Comte and Renault, which enjoys this LRD property. However, we
will also show in the RFSV model of Gatheral et al., that we can also explain
the empirical evidence of voletility persistence with models that do not ex-
hibit long memory, in the sense that their autocorrelation function does not
decay as a power-law (see Definition 2.3, Chapter 2). Indeed, as the famous
mathematician Rama Cont [Con07] writes : ”The econometric debate on the
short range or long range nature of dependence in volatility still goes on (and
may probably never be resolved)”.

(d) Mean reversion

Mean reversion in volatility is generally interpreted as meaning that there is a
normal level of volatility to which the volatility process will eventually return.
In other words, the volatility process (σt)t≥0 is ‘pushed’ towards a value σ̄ ≥ 0
that can be interpreted as a long-term mean or equilibrium. Stock prices are
generally viewed as consistent with mean reversion of volatility (see, e.g.
[FPS99]), which implies that current information has no effect on the long-
run forecast. More precisely, this implies that3

θt+k|t
p−−−→

k→∞
0, for all t. (3.7)

(e) Fat tails

It is well established that the (unconditional) distribution of asset returns has
fat tails (see, e.g., [Man63], [Fam65]). Fat tails mean a higher probability of
large losses (and gains) than the normal distribution would suggest. Typical

3The convergence is in probability.
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kurtosis estimates range from 4 to 50 indicating very extreme non-normality
(also known as ‘leptokurtic distribution’). Therefore, probability of observ-
ing an extreme event (either a downturn or a takeoff) is larger than what is
hypothesized by normally distributed data generating processes.

(f) Leverage effect

A phenomenon coined by Black in 1976 ([Bla76]) as the leverage effect (also
known as the ‘asymmetric volatility phenomenon’) suggests that stock price
returns are negatively correlated with volatility. Moreover, this relation is
asymmetric: when returns are negative, volatility increases rapidly; but,
when returns are positive, volatility decreases to a much lesser extent. There
are two competing theories that aim at explaining the occurrence of such
a phenomenon (see [BW00] for a detailed discussion of these two theories).
The first one, known as the financial leverage hypothesis, says that when a
stock declines, its debt-to-equity ratio increases, making the company riskier
and thus leading to a higher volatility of returns. The second theory, the
volatility feedback hypothesis ([CH92]), avers that volatility may trigger a
risk premium effect. News of increasing volatility reduces the demand for a
stock because of risk aversion, leading to a decline in stock value.

3.2 Fractional stochastic volatility model

We now present the fractional stochastic volatility (FSV) model introduced
by Comte and Renault in [CR98], based on the Hull-White SV model. These
will form the prerequisites to investigate more advanced models introduced in
the next section, where we will exploit the modelling power of the fractional
Brownian motion in order to fix some shortcomings related to the volatility
surface fitting.

3.2.1 Hull-White SV model

In the stochastic volatility model proposed by Hull and White in [HW87]
in 1987, the underlying asset St and the instantaneous variance νt = σ2

t are
assumed to obey the following SDEs under the physical measure P:

dSt = µ(St, t)Stdt+
√
νtStdB

1
t (3.8)

dνt = α(νt, t)νtdt+ β(νt, t)νtdB
2
t (3.9)
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where µ, α, β are real deterministic functions defined on R2
>0 and Bt =

(B1
t , B

2
t ) is, as usual, a 2-dimensional correlated Brownian motion.

Following the notation of Section 1.4.2, under the (non-unique) risk-neutral
measure Q the dynamics becomes:

dSt = rStdt+
√
νtStdB

1,Q
t (3.10)

dνt = α̂(νt, t)νtdt+ β(νt, t)νtdB
2,Q
t . (3.11)

By the Itô formula, the solution of (3.10) is

St = S0exp
(

∫ t

0

√
νsdB

1
s +

∫ t

0

(

r − νs
2
ds
)

)

(3.12)

Hull and White prove the following lemma (see [HW87]):

Lemma 3.1. Assume the stock price (St)t≥0 and its instantaneous variance
(νt)t≥0 follow the dynamics (3.10) − (3.11), where α̂ and β are independent
of St, and (B1,Q

t )t≥0 and (B2,Q
t )t≥0 are independent. Let σ̄2

t,T be the mean
variance over the time interval [t, T ] defined by

σ̄2
t,T =

1

T − t

∫ T

t

ν(s)ds. (3.13)

Then, under Q, the conditional distribution of log(ST/St) given σ̄
2
t,T is

N
((

r − σ̄2
t,T

2

)

(T − t), σ̄2
t,T (T − t)

)

. (3.14)

The European Call option at time t of underlying stock (St)t≥0 with strike
price K and expiration T takes the form

C
(

t, St, K, T ) = EQ
[

e−r(T−t)(ST −K)+
∣

∣Ft

]

. (3.15)

Using the tower property of conditional expectation, i.e. E
[

X|G
]

= E
[

E[X|G̃]
∣

∣G
]

a.s., for G ⊂ G̃, we obtain

C
(

t, St, K, T ) = EQ
[

EQ
[

e−r(T−t)(ST−K)+
∣

∣Ft∨σ{σs, s ∈ [t, T ]}
]

∣

∣

∣
Ft

]

(3.16)

The inner expectation is the value of the Call option with expiration T given
the knowledge of all the information before time t and of how volatility will
move during the interval [t, T ] (but not the knowledge of how the stock will
move during that interval).
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Recalling from Section 1.1.1 the distribution of the log-returns in the Black-
Scholes model, it is clear from (3.14) that, under the assumptions of Lemma
3.1, the conditional distribution of log(ST/St) given σ̄2

t,T in the Hull-White
model equals the distribution of log(ST/St) in a Black-Scholes model with
constant volatility σ = σ̄t,T . Hull and White show that the inner conditional
expectation in (3.16) is the price of the Black-Scholes Call option

CBS(t, σ̄t,T , St, K, T ) = StΦ(d1)−Ke−r(T−t)Φ(d2), (3.17)

where Φ is the standard normal CDF and

1

σ̄t,T
√
T − t

[

log
(St

K

)

+
(

r+
σ̄2
t,T

2

)

(T−t)
]

, d2 = d1−σ̄t,T
√
T − t. (3.18)

Therefore, the option price formula in the Hull-White model is deduced as
follows:

C(t, St, K, T ) = EQ
[

CBS

(

t, σ̄t,T , St, K, T
)
∣

∣Ft

]

. (3.19)

To conclude, the price at time t of a European Call option of expiration T in
the Hull-White model is the conditional expectation of the B-S option pricing
formula where the constant volatility is replaced by σ̄t,T . We observe that, at
time t, σ̄t,T is the root-mean-square time average of the instantaneous volatil-
ity over the remaining period [t, T ], and the Call option price is the average
of the B-S Call option prices over all possible volatility paths. In other words,
the square of the implied B-S volatility σimp

t,T appears to be a forecast of the
average of temporal aggregation of σ̄2

t,T , where the instantaneous volatility is
viewed as a flow variable.

It is now well known that, when the assumptions of Lemma 3.1 are sat-
isfied, this model is able to reproduce some stylized facts regarding implied
volatilities. For example, a symmetric smile is well explained by this stochas-
tic volatility model. According to Renault and Touzi [RN96], assuming that
the two driving Brownian motions are uncorrelated, provided σ̄t,T is an L2

random variable, the implied volatility curve4 I(K) for fixed t, St, T , is a
smile, that is, it is locally convex around the minimum Kmin = Ste

r(T−t),
which is the forward price of the stock.

Moreover, a striking empirical evidence that emerges from numerous stud-
ies (see, e.g. [HW87] and [RN96]) is the decreasing amplitude of the smile
as a function of time to maturity. For short maturities the smile is very

4From now on, when we will talk about implied volatility referring to a model other
than the Black-Scholes one, we will understand that the Call option price for that model
is an invertible function of the stock price (or in some cases of the strike price), with all
the other parameters fixed. In this setting, the implied volatility is defined, as in the
Black-Scholes case, by inverting the Call option function.
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pronounced, but it almost completely disappears for longer maturities.
However, the decrease of the smile amplitude typically observed when time
to maturity increases, appears to be much slower than implied by the Hull-
White model. This evidence is clearly related to the volatility persistence,
and shows that the volatility as modeled in the Hull-White model is not
persistent enough to conform to empirical evidence, a direct consequence of
the fact that the autocorrelation function of volatility decays too fast. Thus,
the model exhibits short memory. These shortcomings motivate the need to
extend such model.

3.2.2 FSV model

In a pioneering paper, Comte and Renault [CR98] proposed to model the
logarithm of the volatility using a stationary fractional Ornstein-Uhlenbeck
process. This was the first fractional volatility model in the literature, and
it was then named fractional stochastic volatility (FSV) model. The main
goal was to extend the Hull and White SV model in order to capture the
well-documented evidence of persistence, long memory and mean-reversion
of volatility in the time series of logarithmic returns. For this reason, the fBm
BH

t is chosen with 1/2 < H < 1. Indeed, recall from Section 1.2 of Chapter 2
that the stationary fOU exhibits LRD and persistence for H ∈ (1/2, 1), while
loses LRD and becomes antipersistent for H ∈ (0, 1/2). The dynamics under
the physical measure P of the risky asset (St)t≥0 and of the log-volatility
(log(σt))t≥0 is described by the following SDE:

dSt = µ(t, St)Stdt+ σtStdBt (3.20)

d log(σt) = λ(η − log(σt))dt+ νdBH
t (3.21)

where η ∈ R, λ and ν are positive parameters and µ : [0, T ] × R → R is a
deterministic function. Furthermore, Comte and Renault consider a Hull and
White framework where BH

t and Bt are independent. For notation purpose,
we will denote from now on the process (log(σt))t≥0 by (Xt)t≥0. Therefore,
Equation (3.21) becomes:

dXt = λ(η −Xt)dt+ νdBH
t (3.22)

A solution to (3.22) is mean-reverting. In fact, for λ ≥ 0, the drift is positive
if Xt < η, while it is negative if Xt > η. Thus, η can be interpreted as the
long-term mean value of log-volatility and λ as the speed of mean reversion.
Equation (3.22) is in a slightly more general form than the one we introduced
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in Chapter 2, in that the constant λη has been added to the drift term. It can
be shown that the theory developed in Chapter 2 is immediately adapted to
this new setting, without changing the probabilistic properties of the process.
The stationary solution (XH

t )t≥0 of (3.22), called fractional Ornstein-Uhlenbeck
process, is given by:

XH
t = η + ν

∫ t

−∞

e−λ(t−u)dBH
u (3.23)

or equivalently

σt = exp
(

η + ν

∫ t

−∞

e−λ(t−u)dBH
u

)

(3.24)

Note that, as (XH
t )t≥0 is stationary, (σt)t≥0 is stationary as well. Comte

and Renault [CR98] show that the volatility process itself (and not only its
logarithm) entails the long memory property. More precisely, they show that

ρ(t) = Cov[σh, σh+t] ∼ O(t2α−1), for t→ ∞ (3.25)

where α = H − 1/2, in accordance with Definition 2.4.

The FSV model of Comte and Renault is able to fix some of the limitations
of the Hull-White model by incorporating mean-reversion, high persistence
and long memory. Also, thanks to a higher persistence, the decrease in the
smile amplitude of the implied volatility surface appears to be slower than
implied from the Hull-White model, which is another good point in favor of
the FSV. However, this is not sufficient to provide a good fit of the volatility
surface (especially for short expirations). Particularly, this model generates
a term structure of at-the-money (ATM) volatility skew5 that is increasing
with τ (at least for small values of τ), which is inconsistent with the observed
stylized fact that the ATM skew is well approximated by power-law functions
of τ proportional to τ−α, for 0 < α < 1/2.
This suggests that we adopt a different model.

5ψ(τ) =
∣

∣

∣

∂

∂k
σ̂impl(k, τ)

∣

∣

∣

k=0
.
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3.3 RFSV model

In this section we turn to the Rough Fractional Stochastic Volatility (RFSV)
model introduced by Gatheral, Jaisson and Rosenbaum [GJR14] in 2014 for
the log-volatility process. The RFSV model is a variant of the FSV model of
Comte and Renault, where the Hurst parameterH of the fractional Brownian
motion is now H ∈ (0, 1/2). The consequent increased irregularity of the
trajectories of the sample paths explains the name ’Rough FSV’ given to the
model. The SDE of the model is the same as in the FSV model, with the
log-volatility under the physical measure P satisfying

d log(σt) = λ(η − log(σt))dt+ νdBH
t (3.26)

We now present the main reasons, based on both historical and risk-neutral
data, that justify the use of a fBm with H ∈ (0, 1/2). The graphs of this
section are taken from [GJR14], and refer to the S&P500 from January 2000
to April 2013. We end the section by comparing the FSV and RFSV models
with respect to risk-neutral data.

3.3.1 Historical data

Gatheral et al. derive the RFSV model starting with the observation that
both the increments of log-volatility and the fBm satisfy two important prop-
erties:

• Scaling property;

• Gaussian distribution,

for which they provide empirical evidence. Moreover, when estimating the
Hurst parameter they find low values of H(≈ 0.1).

To begin, let us suppose we observe the volatility process (σt)t≥0 at
equidistant discrete points 0 = t0, t1, ..., tN = T , and let ∆ = ti − ti−1 be
the time step. We thus observe the values σ0, σ∆, ..., σN∆. For q > 0, define

m(q,∆) =
1

N

N
∑

k=1

∣

∣ log(σk∆)− log(σ(k−1)∆)
∣

∣

q
. (3.27)

Assuming that the increments of the log-volatility process are stationary and
that the law of large numbers can be applied with N → ∞ (e.g. supposing
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that the increments of the log-volatility are i.i.d.), m(q,∆) is an unbiased
and consistent estimator of

E[| log(σ∆)− log(σ0)|q] (3.28)

and thus m(q,∆) can be seen as the empirical counterpart of (3.28).
Gatheral et al. find empirically (see Figure 3.1), for each given q > 0, a linear
relation between log(m(q,∆)) and log(∆):

log(m(q,∆)) = log(Kq) + ζq log(∆) (3.29)

where Kq is a constant and ζq is the slope of the line associated to q.

Figure 3.1: log(m(q,∆)) as a function of q Figure 3.2: ζq as a function of q

Under the assumptions above (stationarity and LLN), m(q,∆) is (approxi-
mately) equal to E[| log(σ∆)−log(σ0)|q]. We have then the following property
for the expectation, called scaling property :

E[| log(σ∆)− log(σ0)|q] = Kq∆
ζq . (3.30)

Moreover, when plotting ζq against q, they find again a linear relation:
ζq = cq, with c a constant (see Figure 3.2). Now, if we recall Proposition 1.1
of Chapter 2, thanks to the self-similarity and stationarity of increments of
fBm, we have that

E
[

|BH
t − BH

s |q
]

= E
[

|BH
t−s|q

]

= |t− s|qHE
[

|BH
1 |q

]

. (3.31)
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(a) ∆ = 1 (b) ∆ = 125

Figure 3.3: Histograms for different time lags ∆ of the increments of log-
volatility log(σt+∆) − log(σt) of the S&P500; normal fit in red; normal fit
rescaled by ∆H in blue.

For t− s = ∆, we see that the processes (log(σt))t≥0 and (BH
t )t≥0 enjoy the

same scaling property with c = H and Kq = E
[

|BH
1 |q

]

.

In a study by Andersen et al. [AB97], the authors report the well-
established stylized fact that the distribution of increments of log-volatility
process (log(σt+∆)− log(σt))t≥0 is very close to a Gaussian distribution. The
Gaussianity of log-increments is confirmed with great accuracy by Gatheral
et al. for different values of lag ∆ (1, 5, 25 and 125 days) (see Figure 3.3
for two values of ∆). However, the fit is not perfect, as the distributions of
the increments of log-volatility exhibit slightly thicker tails than the normal
distribution, another well-known stylized fact.

From the Gaussianity of log-volatility increments, combined with the scal-
ing property, it seems logical to let the process (log(σt))t≥0 be a fBm. When
estimating the Hurst parameter H (by evaluating the slope of the linear
regression of ζq against q), Gatheral et al. find consistently low values, be-
tween 0.06 and 0.20. These findings have been confirmed by Bennedsen et
al. [BLP21] in 2016 with a study on 2,000 US equities.



3.3. RFSV MODEL 53

3.3.2 Model specification

If we let (log(σt))t≥0 be a fBm, we find in a first step the simple model:

log(σt+∆)− log(σt) = ν(BH
t+∆ − BH

t ), (3.32)

where ν ∈ R>0 is a positive constant. However, in this model the volatil-
ity process is not stationary, and this may render mathematical tractability
and modeling rather difficult. Therefore, we are lead to impose stationarity
by modeling the log-volatility as a stationary fractional Ornstein-Uhlenbeck
process, with H ∈ (0, 1/2):

d log(σt) = λ(η − log(σt))dt+ νdBH
t , (3.33)

where η ∈ R is the long-term mean and λ ∈ R≥0 is the velocity of mean
reversion. Hence, as in the FSV model, the stationary solution (XH

t )t≥0 =
(log(σt))t≥0 of (3.33) is

XH
t = η + ν

∫ t

−∞

e−λ(t−u)dBH
u , (3.34)

or equivalently

σt = exp
(

η + ν

∫ t

−∞

e−λ(t−u)dBH
u

)

. (3.35)

The volatility process is now stationary. However, remember that the two
motivations that lead us to model (log(σt))t≥0 as a fBm were that both
processes have Gaussian increments and exhibit the same scaling property.
We need to verify that these two properties are still valid (at least to a first
approximation) when we model (log(σt))t≥0 as a fOU. In other words, we
want (XH

t )t≥0 to ‘behave’ as a fBm. Actually, this is exactly what happens
(at time scales smaller than T), if we assume λ << 1/T . More precisely,
Gatheral et al. show that as λ→ 0:

E
[

sup
t∈[0,T ]

|XH
t −XH

0 − νBH
t |

]

→ 0 (3.36)

and
E
[

|XH
t −XH

0 |q
]

→ νqKq∆
qH . (3.37)

When λ is small, the first limit suggests that we can proceed as if the log-
volatility were a fBm, while the second limit implies that (XH

t )t≥0 approx-
imately reproduces the scaling property of the fBm. Notice that a small λ
implies a slow speed of mean reversion. As we will see, this is in line with
a slower decay than traditional SV models of both the ACF and the ATM
skew.
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3.3.3 Autocorrelation function

We now analyze the autocorrelation function (ACF) of the volatility process,
and we will reach a somewhat surprising conclusion about the RFSV model.
We aim at proving that, when λ is small:

E[σt+∆σt] = E[eX
H
t +XH

t+∆ ] ≈ e2E[X
H
t ]+2Var[XH

t ]e−ν2 ∆2H

2 . (3.38)

We start by showing that the ACF of the log-volatility process (XH
t )t≥0 has

the following form, when λ→ 0:

Cov[XH
t , X

H
t+∆] = Var[XH

t ]− 1

2
ν2∆2H + o(1). (3.39)

By the stationarity of (XH
t )t≥0 follows that

E[(XH
t −XH

t+∆)
2] = E[(XH

t )2] + E[(XH
t+∆)

2]− 2E[XH
t X

H
t+∆]

= Var[XH
t ] + Var[XH

t+∆]− 2Cov[XH
t , X

H
t+∆]

= 2Var[XH
t ]− 2Cov[XH

t , X
H
t+∆]

(3.40)

and that, for λ→ 0

E[(XH
t −XH

t+∆)
2] → ν2K2∆

2H (3.41)

with K2 a constant, which follows directly from (3.37).
Now, since (XH

t )t≥0 is a Gaussian process, we have that:

E[σtσt+∆] = E[eX
H
t +XH

t+∆ ] = eE[X
H
t ]+E[XH

t+∆
]+Var[XH

t ]/2+Var[XH
t+∆

]/2+Cov[XH
t ,XH

t+∆
].

(3.42)
Replacing (3.39) in the last expression, we find (3.38).
It follows that, in the RFSV model, log(E[σtσt+∆]) is (approximately) linear
in ∆2H . This property is very well satisfied on data, as shown by Figure
3.4, where the logarithm of the empirical counterpart of E[σt+∆σt] (i.e. the
sample mean estimator) is plotted against ∆2H , with H = 0.14.

A consequence of Equation (3.38) is that the autocovariance function
(and thus the ACF too) of the volatility process decays exponentially, op-
posing the widely believed stylized fact of a power-law decay. In particular,
an exponential decay implies that the volatility process does not exhibit long
memory. This is confirmed empirically by Gatheral et al., who show that the
log-log plot of the autocovariance function ρ(∆) = Cov(Xt, Xt+∆) does not
yield a straight line (see Figure 3.5).
Now, if volatility has short memory, how can we explain the effect of per-
sistence of the observed volatility time series? Gatheral et al. argue that
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Figure 3.4: Empirical counterpart
of log(E[σtσt+∆]) against ∆

2H

Figure 3.5: Empirical counterpart
of log(Cov[σt, σt+∆]) against log(∆)

the general consensus around the long memory of volatility stems from the
fact that classical estimation procedures often either misinterpret spurious
long memory or make rather strict modeling assumptions. To show this,
by applying standard financial econometric procedures (e.g. those employed
by Andersen et al. [And+03]), for estimating long memory to the RFSV
model, they indeed identify long memory, which is clearly incompatible with
the structure of the ACF. Moreover, many authors consider persistence and
long memory to be the same, and thus they often draw conclusions about
long memory based on evidence about persistence. The RFSV model is a
clear example that the two concepts are distinct, and the phenomenon of
persistence can occur even in models with short memory.

3.3.4 Risk-neutral data

The modeling power of the RFSV reveals not only in its consistency with
empirical observations, but also in its capacity to reproduce faithfully and
with a remarkable accuracy the shape of the volatility surface. We already
stressed in Chapter 2 that traditional stochastic volatility models generally
fail to generate an ATM volatility skew consistent with the observed one.
This is true for some fractional volatility models as well, like the FSV of
Comte and Renault, as said in the previous section. On the other hand,
SV models with rough volatility (i.e. models driven by fBm with Hurst
parameter less than 1/2) provide a good fit of the volatility surface. This
was one of the conclusions of the analysis of Fukasawa [Fuk11], who shows
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that a stochastic volatility model where the volatility process is driven by
a fractional Brownian motion with Hurst parameter H generates a term
structure of ATM volatility skew of the form ψ(τ) ∼ τH−1/2, at least for τ
small. The analysis of Fukasawa implies that, since the ATM skew tipically
observed is proportional to τ−α with α ∈ (0, 1/2), SV models with rough
volatility (like the RFSV) are consistent with the observed term structure
(see Figure 3.6), while for models with H ∈ (1/2, 1) (like the FSV), the ATM
skew is increasing in time to expiration τ , which is completely inconsistent
with the observed skew. As a consequence, in order for a fractional SV
model to generate a volatility surface with a reasonable shape, we need to
have H ∈ (0, 1/2).

Figure 3.6: The black dots are non-parametric estimates of the S&P500
ATM volatility skew as of June 20, 2013; the red curve is the power-law fit
ψ(τ) ∼ 0.3τ−0.4.

3.4 The Rough Heston model

The analyses of Fukasawa [Fuk11] discussed above show that rough volatil-
ity models are generally successfull in reproducing the volatility surface. On
the other hand, the Heston stochastic volatility model (see Section 1.4.3 of
Chapter 1) is able to reproduce several important stylized facts of historical
data, including mean reversion, the leverage effect (see [BLT06]) and fat tails
([DBJ03]). Moreover, the existence of a fast and easily implemented closed
form characteristic function of the log-stock price (as we will see in the next
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chapter) allows for fast-pricing of European options.
In this section, we present an extension of the classical Heston model pro-
posed by Euch and Rosenbaum [ER16] in 2016 that incorporates rough
volatility, offering the best of the characteristics from both rough volatil-
ity and the classical Heston model.

Forward variance curve

First, recall from Section 1.4.3 that, under the risk-neutral measure Q, the
Heston model is given by6:

dSt = rStdt+
√
νtStdB

1,Q
t (3.43)

dνt = λ(η − νt)dt+ ν
√
νtdB

2,Q
t (3.44)

where νt = σ2
t is the instantaneous variance at time t. We define the forward

variance curve (also called variance swap curve) as ξt(u) = EQ[νu|Ft], with
u ≥ t. Integrating (3.44) on [t, u], we obtain:

νu = νt +

∫ u

t

λ(η − νs)ds+

∫ u

t

ν
√
νsdB

2,Q
s . (3.45)

For future purpose, we express the Heston model in forward variance curve
form. This is obtained by taking the conditional expectation from both sides
of equation (3.45) (see [DF06] pg. 66):

dξt(u) = λ(η − ξt(u))du (3.46)

whose explicit solution is

ξt(u) = (νt − η)e−λ(u−t) + η. (3.47)

Taking the differential form of (3.47) and using (3.44), we find:

dξt(u) =
(

λ(η − νt)dt+ ν
√
νtdB

2,Q
t

)

e−λ(u−t) + νtλe
−λ(u−t)dt− ηλe−λ(u−t)dt

(3.48)
which gives

dξt(u) = νe−λ(u−t)√νtdB2,Q
t . (3.49)

6We adapt the notation to match those used in the RFSV model.
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Roughening Heston

El Euch, Gatheral and Rosenbaum [EGR19] introduce roughness in the
volatility proces using the Mandelbrot-Van Ness representation of the fBm.
We clearly see from Proposition 1.3 and Proposition 1.4 in Chapter 2 that
the kernel (u− s)H−1/2 plays a central role in the representation of the fBm,
for H ∈ (0, 1/2). Indeed, such kernel determines the roughness of the sam-
ple paths of the fBm. More precisely, given a Brownian motion (Bt)t≥0, the

process
( ∫ t

0
(u − s)H−1/2dBs

)

t≥0
known as Volterra fBm, has almost surely

γ-Hölder continuous sample paths, for any γ ∈ (0, H). Hence, in order to get
a rough behaviour of the volatility in the Heston model, El Euch, Gatheral
and Rosenbaum extend the Heston model by modeling the instantaneous
variance using the kernel (u− s)H−1/2:

νu = θt(u)−
λ

Γ(H + 1/2)

∫ u

t

νs(u−s)H−1/2ds+
ν

Γ(H + 1/2)

∫ u

t

√
νs(u−s)H−1/2dB2,Q

t

(3.50)
where θt(u) is a Ft-measurable random variable that makes the model time
consistent and plays the role of a time-varying mean-reversion value, and Γ
denotes the Gamma function. It can be shown that, in the limit H → 1/2,
we retrieve the classical Heston model, and that, for any γ ∈ (0, H), the
sample paths of (νu)u≥0 are almost surely γ-Hölder continuous.
El Euch and Rosenbaum [ER17] observe that we can simplify (3.50) if we
consider the forward variance curve introduced above and set λ = 0. In fact,
they show that, if we assume that the function u→ ξt(u) admits a fractionl
derivative7 of order α ∈ (0, 1), then the mean-reversion function θt(.) can be
chosen by taking

λθt(u) = Dα(E[ξt(u)]− νt)(u) + λE[ξt(u)]. (3.51)

This means that, for any λ > 0, provided the existence of a fractional deriva-
tive, we can choose the function θt(.) so that the model is consistent with
the forward variance curve.
Considering the model in the asymptotic setting λ → 0 is particularly con-
venient. The first reason is that, as explained in the RFSV model, a small
value of λ implies a slow speed of mean reversion, and this helps to better fit
the volatility surface. In fact, in the classical Heston model, as in other clas-
sical SV models (see, e. g., Hull-White), the decrease of the smile amplitude
is too fast. Therefore, taking λ small (or even 0) allows for a slower decay

7The definitions from Fractional Calculus are provided in the next section; for the
moment we can accept the fact that in most ‘practical’ situations, the condition (3.51) is
satisfied.
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and thus makes the model more adapt in reproducing the volatility surface.
Moreover, taking λ = 0 gives us a mathematically simpler a more tractable
model. In fact, assuming λ = 0 and taking the conditional expectation from
both sides of (3.50) we have that the stochastic integral vanishes and thus
ξt(u) = EQ[νu|Ft] = θt(u). Therefore we obtain:

νu = ξt(u) +
ν

Γ(H + 1/2)

∫ u

t

√
νs(u− s)H−1/2dB2,Q

s (3.52)

and, for h > 0,

νu = ξt+h(u) +
ν

Γ(H + 1/2)

∫ u

t+h

√
νs(u− s)H−1/2dB2,Q

s . (3.53)

Subtracting the two equations we obtain

ξt+h(u)− ξt(u) =
ν

Γ(H + 1/2)

∫ t+h

t

√
νs(u− s)H−1/2dB2,Q

s . (3.54)

Taking the limit h→ 0 gives

dξt(u) =
ν

Γ(H + 1/2)

√
νt(u− t)H−1/2dB2,Q

t . (3.55)

The link with the classical Heston model in forward variance form (3.49) can

be made by setting λ = 0 and multiplying by the kernel (u−t)H−1/2

Γ(H+1/2)
.



60CHAPTER 3. VOLATILITYMODELSWITH FRACTIONAL BROWNIANMOTION



Chapter 4

Option Pricing methods under
Stochastic Volatility

The final part of this thesis concerns the numerical methods needed for im-
plementing some of the models described in the preceding chapters. We will
confine ourwelves to option pricing, for which many efficient techniques ex-
ist. In this context, there are methods that give exact solutions or semi-exact
solutions, but unfortunately this is only possible in a limited amount of ‘for-
tunate’ cases. In the other cases, numerical techniques are necessary in order
to approximate the solution. Organizing these techniques, roughly speaking,
leads to a first distinction between a ‘stochastic’ approach, based on Monte
Carlo techniques, and a ‘deterministic’ approach, based on solving Partial
(Integro) Differential Equations or on Numerical Integration. For the first
approach, we will present methods for the numerical solution of stochastic
differential equations; for the second approach we will only analyze Numeri-
cal Integration techniques based on Fourier methods. We will also implement
on the computer some algorithms for the simulation of the Heston stochastic
volatility model, and show the pros and cons of each approach.

4.1 Monte Carlo simulation

The Monte Carlo method is a simple technique of numerical approximation
of the expected value of a random variable. It is based on the strong law of
large numbers: if (Xn)n∈N is a sequence of integrable i.i.d random variables,
then

lim
n→∞

1

n

n
∑

k=1

Xk = E[X1], a.s. (4.1)

61
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Consequently, the first step to approximate the mean value of a random
variable whose distribution is known, consists of generating M independent
realizations of that random variable. This poses the problem of how to ‘arti-
ficially’ create randomness. Fortunately, at least for the most well-known dis-
tributions (and in particular for the Normal distribution), ‘pseudo-random’
number generators exist, i.e. algorithms that output a sequence of num-
bers that can be used as a replacement for an independent and identically
distributed sequence of ‘true random numbers’. We will not discuss these
interesting algorithms. Once M i.i.d. realizations of the random variable are
generated, using the law of large numbers and the central limit theorem we
can calculate confidence intervals for the mean value of the random variable.
In the context of financial mathematics it is used in many circumstances,
particularly for the computation of the Greeks and the pricing of deriva-
tives. Regarding this last issue, Monte Carlo method is particularly use-
ful because, when pricing options, we want to calculate an expression like
VT = e−rTE[F (ST )] under an appropriate probability measure (the risk-
neutral measure). More precisely, Monte Carlo method can be used to ap-
proximate the value of an option as follows:

1. Partition the time interval [0, T ] with a stepsize δ = T/N for some
integer N , and define the time points ti = iδ, i = 0, ..., N .

2. For each i = 0, ..., N (the time steps) and j = 0, ...,M (the j-th real-
ization of the value of the underlying asset), generate asset values Si,j.
Here the realization of the value of the asset is made according to its
distribution under the risk-neutral measure.

3. For each j = 0, ...,M , compute the payoff value Hj of the option.
Notice that, in the case of a path dependent derivative, the value of
the option that we can calculate is Hj = H(T ;S0,j, ..., SN,j), which
could be different from the true value of the option, and thus may
be considered as an approximation (the approximation becomes more
accurate for grater values of N).

4. Compute the Monte Carlo estimate

EQ[H(T, S)|Ft0 ] ≈
1

M

M
∑

j=1

Hj. (4.2)

5. Approximate the value of the option at time t0 by

V (t0, S) ≈ e−r(T−t0)
1

M

M
∑

j=1

Hj. (4.3)
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6. Use probability theory, (typically the law of large numbers and the
central limit theorem are sufficient), to find estimates and confidence
region for the convergence of the approximation (4.2).

Point 2. is often problematic. In fact, usually, the distribution of the
underlying asset (i.e. the distribution of the solution of the SDE of the model)
is not known explicitly. In this case, in order to obtain some realizations of
the underlying asset we will use discretized versions of the SDE, and we will
therefore build a numerical scheme. In this way, the discretization error of
the SDE must be added to the errors given by the approximations above.
In the next section we present two of these numerical schemes, the Euler-
Maruyama method and the Milstein method.

4.2 Simulating Stochastic Differential Equa-

tions

In this section we discuss the approximate numerical solution of stochastic
differential equations. A solution X of the SDE will satisfy an equation of
the form LX = 0, with L an operator. In this context, a numerical scheme
can be thought as a collection of indexed operators Lδ acting on stochastic
processes, where δ indicates the time step discretization. As δ approaches 0
we want that the operator Lδ ‘generates’ approximating solutions Xδ ‘con-
verging’ to X (we will give precise definitions of ‘convergence’). There are a
number of properties the scheme should satisfy, in order to generate a good
approximation to the original SDE:

• regularity of the solutionX, derived from hypotheses on the coefficients;

• consistency of the scheme, i.e. the fact that, in an appropriate norm,

Lδ δ→0−−→ L.

• stability of the scheme, i.e. the fact that, for two solutions Xδ, Y δ

of LδZ = 0, we require that maxt∈[0,T ] ||Xδ
t − Y δ

t || ≤ F (X0, Y0, δ, T ),
with F an appropriate function and ||.|| an appropriate norm. In other
words, we want that ‘if two solutions start close to each other, they
remain close to each other’ and that ‘small changes in the initial con-
ditions have little effects on the evolution of the solution’;

We will present the Euler-Maruyama scheme, some improvements to it, the
Milstein method, and we will discuss the notions of weak and strong conver-
gence. In option pricing it is tipically only weak convergence that is required.
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4.2.1 The Euler-Maruyama scheme

We begin with the simplest, most widely used method for SDEs, and illustrate
its basic convergence properties.
In this Section T > 0 and K > 0 are fixed constants.
Suppose we have an SDE of the form

dXt = µ(t,Xt)dt+ σ(t,Xt)dBt (4.4)

where µ : [0, T ]× R → R and σ : [0, T ]× R → R verify the assumption

|µ(t, x)− µ(s, y)|2 + |σ(t, x)− σ(t, y)|2 ≤ K(|t− s|+ |x− y|2) (4.5)

for x, y ∈ R and t, s ∈ [0, T ]. By definition, the exact solution of (4.4) satisfies

Xt = X0 +

∫ t

0

µ(s,Xs)ds+

∫ t

0

σ(s,Xs)dBs t ∈ [0, T ]. (4.6)

If we define the operator

Lt := Xt −X0 −
∫ t

0

µ(s,Xs)ds−
∫ t

0

σ(s,Xs)dBs t ∈ [0, T ], (4.7)

then Assumption (4.5) ensures (see [Pas11], Section 9.1) the existence of a
strong solution X = (Xt)t∈[0,T ] of LtX = 0, t ∈ [0, T ], such that

||X||T :=

√

E

[

sup
t∈[0,T ]

X2
t

]

<∞. (4.8)

It can be shown (see [Pas11], Section 9.1) that, if we define M as the vector
space of continuous Ft-adapted processes (Xt)t∈[0,T ] such that ||X||T < ∞,
then (M, ||.||T ) is a semi-normed complete space.
Following the standard discretization approach used for deterministic ODEs,
we define a stepsize δ = T/N for some integerN , and compute approximation
solutions at times ti = iδ, i = 0, ..., N . For Z ∈ M, we define the discretized
operator Lδ

t as

Lδ
tZ := Zt − Z0 −

∫ t

0

N−1
∑

n=0

µ(tn, Ztn)✶[tn,tn+1[(s)ds

−
∫ t

0

N−1
∑

n=0

σ(tn, Ztn)✶[tn,tn+1[(s)dBs, t ∈ [0, T ].

(4.9)



4.2. SIMULATING STOCHASTIC DIFFERENTIAL EQUATIONS 65

Then, given an initial datum X0 ∈ R, the approximating process Xδ, defined
as the stochastic process in M which solves Lδ

tX
δ = 0, for t ∈ [0, T ], with

initial condition Xδ
0 = X0, satisfies

Xδ
tn+1

= Xδ
tn + µ(tn, X

δ
tn)δ + σ(tn, X

δ
tn)

(

Btn+1
− Btn

)

, (4.10)

called Euler-Maruyama (E-M) scheme. Comparing (4.6) and (4.10), we see
that, given a realization ω, over [tn, tn+1[ the EM method is using the a left-
end point Riemann-Stieltjes sum to approximate the two integrals. Thanks
to the fact that Xδ is an adapted process, this ensures that the stochastic
integral in (4.9) is consistent with the definition of Itô integral.

Simulation of the Euler-Maruyama scheme is easily performed by noting
that the term Btn+1

−Btn ∼ N (0, δ). The discretized SDEs (4.10) can there-
fore be simulated by producing N independent normally distributed random
variables Zi ∼ N (0, 1), i = 0, ..., N − 1, and calculating the approximating
solution Xδ by means of

Xδ
tn+1

= Xδ
tn + µ(tn, X

δ
tn)δ + σ(tn, X

δ
tn)

√
δZn. (4.11)

We now quickly show that the Euler-Maruyama method satisfies the prop-
erties, highlighted at the beginning of the chapter, of regularity, consistency
and stability. The proofs can be found in [Pas11].

Proposition 4.1 (Regularity). The solution X of LtX = 0 is such that, for
each t, t′ with 0 ≤ t < t′ ≤ T ,

E

[

sup
s∈[t,t′]

|Xs −Xt|2
]

≤ K1(t
′ − t), (4.12)

where K1 is a constant that depends only on T,E[X2
0 ] and K. 1

This implies in particular (just take s = t′ in (4.12)) that the function
t → Xt from ([0, T ], |.|) onto the space L2(Ω, F,P) with the L2 norm is 1

2
-

Hölder continuous.

The consistency of the discretized operator Lδ derives from the following
proposition:

Proposition 4.2 (Consistency). Let Y ∈ M and for each t, t′ with 0 ≤ t <
t′ ≤ T

E

[

sup
s∈[t,t′]

|Ys − Yt|2
]

≤ K2(t
′ − t). (4.13)

1Recall that T and K are fixed from the beginning of the Section.
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Then

||LY − LδY ||T ≤ Cδ1/2, (4.14)

where the constant C depends only on K,K2 and T.

In the language of funtional analysis, the proposition above implies in
particular that, as δ → 0, the operator Lδ converges to L in the strong op-
erator topology (here the operators take values in the space of processes Y
satisfying the assumptions of Proposition 4.2).

Finally, the property of stability derives from the following proposition,
also known as Maximum Principle:

Proposition 4.3 (Stability). There exists a constant C0, depending only on
K and T such that, for every pair of processes Y, Z ∈ M, we have

||Y − Z||2T ≤ C0

(

E[|Y0 − Z0|2] + ||LδY − LδZ||2T
)

. (4.15)

This kind of result guarantees the ‘stability’ of the numerical scheme, in
the sense that, for two solutions Y δ, Zδ of LδY = 0, (4.15) becomes

E

[

sup
t∈[0,T ]

|Yt − Zt|2
]

≤ C0E[|Y0 − Z0|2], (4.16)

and this gives an estimate of the sensitivity of the solution with respect to
some perturbation of the initial datum.

4.2.2 Weak convergence

There are two approaches for measuring the error in a discretized scheme,
namely the weak error and the strong error.
Given a measurable function f , the weak error

eweak
δ := sup

n∈{0,...,N}

∣

∣E[f(Xδ
tn)]− E[(f(Xtn)]

∣

∣ (4.17)

measures how well the method can approximate the mean of f(Xt) (in the
discretized points). It is typical to restric the test function f to be a member
of a class of functions C such as polynomials of degree at most l.
We say that the method converges weakly if, for any function f in this class,

eweak
δ → 0, as δ → 0. (4.18)
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Furthermore, we say that the method has a weak order of convergence p if,
for any f in the class, there exists a constant k and a stepsize δ∗ (both
depending on f), such that2

eweak
δ ≤ kδp, for all 0 < δ < δ∗. (4.19)

Other definitions of weak order of convergence p can be found in the
literature, most of them being less restrictive. One of them requires that the
error is calculated only at the final time, that is:

∣

∣E[f(Xδ
tN
)]− E[f(XtN )]

∣

∣ = O(δp) (4.20)

There exist several different conditions for the Euler-Maruyama scheme
one can require in order to guarantee the weak convergence of order 1, in the
sense of (4.20). For example, Theorem 14.5.2 of Kloeden and Platen [KP92]
assumes that the functions µ and σ and the test functions be four times
continuously differentiable with various polynomially bounded derivatives3.
More generally, they prove that the Euler-Maruyama scheme has weak order
of convergence β in the sense of (4.20), provided we assume µ and σ and the
test functions, to be 2β + 2 times differentiable with polynomially bounded
derivatives.

4.2.3 Strong convergence

Whereas weak convergence measures the ‘error of the means’, strong conver-
gence measures the ‘mean of the errors’. The strong error

estrongδ = sup
n=0,...,N

E[|Xδ
tn −Xtn |] (4.21)

is found by taking the expectation of this error at each discretization time
point. We say that the method converges strongly if

estrongδ → 0, as δ → 0, (4.22)

and that the method has strong order of convergence p if there exists a
constant k and δ∗ such that4

estrongδ ≤ kδp, for all 0 < δ ≤ δ∗ (4.23)

2More precisely, we take p to be the largest value for which this holds.
3A function f : Rd → R is polynomially bounded if |f(x)| ≤ k(1 + ||x||q), for some

constants k and q and for all x ∈ Rd.
4More precisely, we take p to be the largest value for which this holds.
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Strong convergence typically requires less restrisctive hypotheses than
the weak convergence in order to be guaranteed, even if for some methods
the weak order is higher than the strong order. For example, the Euler-
Maruyama scheme converges strongly under much simpler assumptions than
the weak order, but with a strong order of 1/2. To see this, we use the three
propositions in the previous section. In fact, by the maximum principle,
Proposition 4.3, we have that5

||X −Xδ||2T ≤ C0||LδX − LδXδ||2T = C0 ≤ Cδ (4.24)

where the last inequality follows from the properties of consistency and reg-
ularity results above. This proves the following result:

Theorem 4.1 (Strong convergence of Euler-Maruyama). Assuming X,Xδ ∈
M, there exists a constant C depending only on K,T and E[X2

0 ], such that

||X −Xδ||T ≤ Cδ
1

2 . (4.25)

For applications in option pricing, weak error criteria are most relevant
because we want to ensure that prices (which are expectation under the risk-
neutral measure) computed from Xδ are close to prices computed from X,
and so weak error is more appropriate. It is nevertheless useful to be aware of
strong error criteria to appreciate the merits of some discretization methods
over others.

4.2.4 The Milstein scheme

The Milstein scheme improves the Euler-Maruyama discretization by adding
a second diffusion term. The idea is that the approximation

∫ t

0

N−1
∑

n=0

σ(tn, Xtn)✶[tn,tn+1[(s)dBs ≈
∫ t

0

σ(s,Xs)dBs (4.26)

is the main source of error for the Euler-Maruyama scheme. To improve it,
we estimate the error by using Itô’s formula for σ(s,Xs).
We start by the so-called stochastic Taylor expansion.

5In order for the first equality in (4.24) to be satisfied we need to extend the process
Xδ to the whole interval [0, T ] in a way such that the hypotheses of Proposition (4.3) are
satisfied. Such an extension exists (see Chapter 10.2 of Kloeden Platen [KP92]).
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Stochastic Taylor expansion

Starting from the Itô’s formula for a scalar valued function U(t,Xt) of the
solutionX = (Xt)t∈[0,T ] of the SDE (4.4), we have the integral representation:

U(t,Xt) = U(t0, Xt0) +

∫ t

t0

M0U(s,Xs)ds+

∫ t

t0

M1U(s,Xs)dBs, (4.27)

where the differential operators M0 and M1 are defined by

M0 =
∂

∂t
+ µ

∂

∂x
+

1

2
σ2 ∂

2

∂x2
, M1 = σ

∂

∂x
. (4.28)

Let us now apply the above formula to the integrand functions U(t, x) =
µ(t, x) and U(t, x) = σ(t, x). We obtain

Xt =Xt0

+

∫ t

t0

[

µ(t0, Xt0) +

∫ s

t0

M0µ(u,Xu)du+

∫ s

t0

M1µ(u,Xu)dBu

]

ds

+

∫ t

t0

[

σ(t0, Xt0) +

∫ s

t0

M0σ(u,Xu)du+

∫ s

t0

M1σ(u,Xu)dBu

]

dBs

= Xt0 + µ(t0, Xt0)

∫ t

t0

ds+ σ(t0, Xt0)

∫ t

t0

dBs +R1(t, t0),

(4.29)

with the remainder

R1(t, t0) =

∫ t

t0

∫ s

t0

M0µ(u,Xu)duds+

∫ t

t0

∫ s

t0

M1µ(u,Xu)dBuds

+

∫ t

t0

∫ s

t0

M0σ(u,Xu)dudBs

+

∫ t

t0

∫ s

t0

M1σ(u,Xu)dBudBs.

(4.30)

If we replace t0 by tn and t by tn+1, and discard the remainder, then we
retrieve the Euler-Maruyama method. Higher-order stochastic Taylor expan-
sions are obtained by successively applying the Itô formula to the integrand
functions in the remainder R1. Unlike the deterministic case (where σ ≡ 0),
there are now a number of different alternatives depending on which term
we choose to expand. Now, recalling the euristic ‘equality’ ′′dB2 = dt′′, it
may seem logical to expand the integrand M1σ in the fourth double integral
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of the remainder R1 in (4.30), which is the one whose infinitesimal is of the
lowest order. By doing this, we obtain the stochastic Taylor expansion

Xt =Xt0 + µ(t0, Xt0)

∫ t

t0

ds+ σ(t0, Xt0)

∫ t

t0

dBs

+M1σ(t0, Xt0)

∫ t

t0

∫ s

t0

dBudBs +R2(t, t0)

(4.31)

with the remainder

R2(t, t0) =

∫ t

t0

∫ s

t0

M0µ(u,Xu)duds+

∫ t

t0

∫ s

t0

M1µ(u,Xu)dBuds

+

∫ t

t0

∫ s

t0

M0σ(u,Xu)dudBs

+

∫ t

t0

∫ s

t0

∫ u

t0

M0M1σ(v,Xv)dvdBudBs

+

∫ t

t0

∫ s

t0

∫ u

t0

M1M1σ(v,Xv)dBvdBudBs.

(4.32)

Then, replacing t0 by tn and t by tn+1, and discarding the remainder R2,
we have the approximating solution

Xδ
n+1 =X

δ
n + δµ(tn, X

δ
tn) + σ(tn, X

δ
tn)(Btn+1

− Btn)

+M1σ(tn, X
δ
tn)

∫ tn+1

tn

∫ s

tn

dBudBs.
(4.33)

Since, by Itô’s formula, the double integral can be evaluated as

∫ tn+1

tn

∫ s

tn

dBudBs =
1

2

(

(Btn+1
− Bt)

2 − δ
)

, (4.34)

we finally obtain the Milstein scheme

Xδ
n+1 =X

δ
n + δµ(tn, X

δ
tn) + σ(tn, X

δ
tn)(Btn+1

− Btn)

+ σ(tn, X
δ
tn)

1

2

(

(Btn+1
− Bt)

2 − δ
) ∂

∂x
σ(tn, X

δ
tn).

(4.35)

Since (Btn+1
−Btn)

2 ∼ δZ2, with Z ∼ N (0, 1), the discretized SDEs (4.35)
can be simulated by producing N independent normally distributed random
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variables Zi ∼ N (0, 1), i = 0, ..., N − 1, and calculating the approximating
solution Xδ by means of

Xδ
tn+1

= Xδ
tn+µ(tn, X

δ
tn)δ+σ(tn, X

δ
tn)

√
δZn+σ(tn, Xtn)

δ(Z2
n − 1)

2

∂

∂x
σ(tn, Xtn).

(4.36)
Under appropriate assumptions on µ and σ, (see, e.g. Theorem 10.3.5 and

Theorem 10.6.3 of Kloeden and Platen ([KP92]), the Milstein scheme has a
strong order of convergence 1 and weak order 1. Therefore, in this case, the
Milstein method is an improvement of the Euler-Maruyama scheme in the
sense that it gives a higher order of convergence than the Euler-Maruyama
method in the strong sense. However, on the other hand, it gives no improve-
ment in the weak sense and requires the knowledge of the first derivative of
the volatility function, and this increases considerably the computational
complexity. For this reason, although the Milstein scheme is definetely man-
ageable in the one-dimensional case, its extension to multi-dimensional SDEs
problems (e.g. more than one risk factors with correlated brownian motions)
is far from being trivial.

4.2.5 Applications to the Heston model

We adapt now the discretization schemes above to the Heston model. We will
see that, in some circumstances, this may lead to undesired and unrealistic
path realizations because while the Heston model, under the Feller property,
has been proved to be non-negative (see Section 1.4.3 os Chapter 1), an
Euler-Maruyama discretization does not guarantee the non-negativity. This
will lead us to construct a more advanced scheme, presented at the end of
this section, known as the Quadratic Exponential scheme.

Difficulties with standard discretization schemes

Recall the Heston model

dSt = µStdt+
√
νtStdB

1
t (4.37)

dνt = k(ν̂ − νt)dt+ η
√
νtdB

2
t (4.38)

with B1
t , B

2
t correlated Brownian motions. Although here we have a system

of SDEs, since the equation for νt is uncoupled, we can at first compute
an approximation for the process νt and then using it to approximate St.
Therefore, we can think in terms of two scalar SDEs.
The Euler-Maruyama scheme for the instantaneous variance νt becomes

νδtn+1
= νδtn + δk(ν̂ − νδtn) +

√
δZnη

√

νδtn . (4.39)
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Recall from Proposition 1.1 of Section 1.4.3 that, almost surely, the in-
stantaneous variance process (νt)t≥0 cannot reach zero, provided the Feller
condition η2 ≤ 2kν̂ is satisfied. On the other hand, if this condition does not
hold, then, almost surely, the process reaches the origin at a finite time. If
this happens the process is immediately reflected, so that the process cannot
become negative. However, the non-negativity conditions becomes problem-
atic when the Euler-Maruyama discretization is employed.
In Figure 4.1 we simulated sample paths using the Euler-Maruyama scheme
in order to compare a situation where the Feller condition η2 ≤ 2kν̂ is satis-
fied (η = 0.1), with one where it is not satisfied (η = 0.3). We can see that
the PDF of the discretized instantaneous variance process is very high in a
neighborhood of zero. This causes the variance to become negative with high
probability, and is clearly undesirable.

(a) η = 0.1 (b) η = 0.3

Figure 4.1: Simulation of 10 paths of the variance process νt, using the
Euler-Maruyama scheme with 500 time steps with the following parameters:
ν0 = 0.075, k = 0.5, ν̂ = 0.075, T = 10. The sample paths are in blue.
The black curves represent the probability density function of νti , at five
different times ti.
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Probability of negative realization

Assuming νδtn > 0, we can calculate the probability that the next realization
νδtn+1

becomes negative:

P(νδtn+1
|νδtn) = P[νδtn + δk(ν̂ − νδtn) +

√
δZnη

√

νδtn < 0|νtnδ > 0]

= P[
√
δZnη

√

νδtn < −νδtn − δk(ν̂ − νδtn)|νtnδ > 0]

= P

[

Zn < −ν
δ
tn + δk(ν̂ − νδtn)√

δZnη
√

νδtn

∣

∣

∣
νtnδ > 0

]

> 0,

(4.40)

where the last inequality comes from the fact that, since Zn ∼ N (0, 1), its
PDF does not have compact support.

Following the computations in (4.40), Figure 4.2 shows that, even when
the Feller condition is satisfied, the Euler-Maruyama discretization can give
rise to negative values, especially for low numbers of steps.

Figure 4.2: P(νδtn+1
|νδtn) as a function of νδtn , for 9 different number of time

steps. The parameters are T = 1, k = 0.5, ν̂ = 0.075, η = 0.25 and the Feller
condition is satisfied.

A similar problem occurs when we use the Milstein scheme. To overcome
this difficulty new approaches have been developed in the literature.
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Quadratic Exponential Discretization Scheme

An alternative discretization scheme has been proposed by Andersen in 2006
[And07], the so-called Quadratic Exponential (QE) scheme. The QE scheme
has the advantage that it determines νt accurately while using more informa-
tion of the probability density function than the above-mentioned schemes.
Basically, the approximation for νt is derived in the following way.
First

νδtn+1
= an(bn + Zn)

2, (4.41)

with Zi, i = 0, ..., N−1 i.i.d. standard Gaussian random variables, and an, bn
defined by:

an =
mn

1 + b2n
, b2n = 2ψ−1

n − 1 +
√

2ψ−1
n

√

2ψ−1
n − 1, ψn =

s2n
m2

n

(4.42)

where sn and mn are functions of the time step δ and of νtn (we avoid their
expression, see [And07]). This scheme works well for large values of νt, but
not for small values. Then the author finds an optimal threshold value νc
and defines νtn+1

as in (4.41) if νtn+1
> νc; otherwise he takes νtn+1

such that
P(νtn+1

∈ [x, x + dx]) ≈ (pδ(0) + β(1− p)e−βx), for x ≥ 0, where δ(0) is the
Dirac delta function and p and β are constant.

4.3 Fourier methods for Option Pricing

At a financial institution, one can distinguish a number of tasks that must
be performed in order to price financial derivative products. First of all,
depending on the specific need, a model has to be chosen. This means that a
system of SDEs that model the dynamic of the underlying asset (and variables
related to it, like volatility and interest rates) has to be determined. Once a
model is selected, its parameters have to be determined. There are mainly
two techniques used for determining the parameters:

• Parameter estimation, which is based on historical (real-world) data.
Here the parameters are established from the observation of the time
series of past values, such as asset prices or historical volatility.

• Calibration, which is based on the observation of the current-world mar-
ket risk-neutral data. Here the model parameters are computed from
market prices of financial derivatives and from the observed implied
volatility surface. This is often more accurate, as implied volatilities
are generally more reflexive of the characteristics of each participant
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(e.g. risk appetite, market sentiment, known and unknown events...)
than time series, and therefore there is typically a lower uncertainty in
risk-neutral projections. Moreover, the information is more available
and accurate in the risk-neutral world.

What is done in the calibration procedure is to ‘guess’ the parameters by
chosing those ones that, when used together with the current European Call
option prices, generate implied volatilities that best approximate the shape
of the quoted implied volatility surface. For this reason, it is important to
value European options quickly and accurately. The class of Fourier-based
methods that we will present offers highly efficient pricing techniques for
pricing European options.
The two main classes of Fourier Methods are based either on an implementa-
tion of the Fast Fourir Transform (FFT) (see [CM01]) or on a Fourier series
expansion. Regarding the latter approach, we will present a method based
on an expansion in cosine series, known as COS method, and will implement
it in the framework of the Heston model.

4.3.1 COS method

Let f ∈ L1(R) be a 2π-periodic function, with its Fourier series given by

Sf (x) =
a0
2

+
∞
∑

k=1

(ak cos(kx) + bk sin(kx)), x ∈ R, (4.43)

where the coefficients are defined by

ak =
1

π

∫ π

−π

f(t) cos(kt)dt, k ≥ 0, (4.44)

bk =
1

π

∫ π

−π

f(t) sin(kt)dt, k ≥ 1. (4.45)

We also recall the Fourier inversion formula for a function f such that
f, f̂ ∈ L1(R), where f̂(u) =

∫

R
eiuxf(x)dx is the Fourier transform of f :

f(x) =
1

2π

∫

R

e−ixuf̂(u)du (4.46)

For a random variable X with probability density funciton fX , since the
characteristic function ΦX is the Fourier transform of fX , we have that:

fX(x) =
1

2π

∫

R

e−ixuΦX(u)du (4.47)
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In what follows we will assume that the Fourier series of f converges
pointwise and its sum is f . There are several conditions that guarantee this
assumption. For example, an important classical result about the pointwise
convergence of fourier series, known as Dirichlet-Jordan Theorem, states that
for a periodic function f of bounded variation, as n→ ∞, at each point x of
the domain, the Fourier series converges to

lim
ϵ→0

f(x+ ϵ) + f(x− ϵ)

2
. (4.48)

In particular, if f is continuous at x, then the Fourier series calculated in x
converges to f(x).
We also assume that f̂ ∈ L1(R) is known explicitly.

By setting bk = 0 for each k ≥ 1 in (4.43) we obtain the so-called Fourier
cosine expansion. In particular, for even functions the Fourier expansion
coincides with the Fourier cosine expansion. Clearly, the choice of domain R

and 2π-periodicity for f is not restrictive. In fact, if f : [a, b[→ R, then we
can consider the simple change of variable θ := π x−a

b−a
, define the function

g(θ) = f
(b− a

π
θ + a

)

, θ ∈ [0, π[, (4.49)

and extend by parity g to [−π, π[. Now we have a function defined on [−π, π[
and thus we extend by 2π-periodicity to the whole real line. In this way, by
expanding g in Fourier series6 and going back to the original variable x, we
obtain

f(x) =
a0
2

+
∞
∑

k=1

ak cos
(

kπ
x− a

b− a

)

, (4.50)

where7

ak =
2

b− a

∫ b

a

f(t) cos
(

kπ
t− a

b− a

)

dt

=
2

b− a

∫ b

a

f(t)ℜ
(

eikπ
t−a
b−a

)

dt

=
2

b− a
ℜ
(

e−ikπ a
b−a

∫ b

a

f(t)eikπ
t

b−adt
)

.

(4.51)

6That g ∈ L1(R) follows from the fact that f ∈ L1(R).
7ℜ(ξ) is the real part of ξ ∈ C.
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Now, if the interval [a, b[ is sufficiently large, we can approximate f̂(u) =
∫

R
eiuxf(x)dx ≈

∫ b

a
eiuxf(x)dx. Substituting into (4.51) we obtain the ap-

proximation

f(x) ≈ A0

2
+

∞
∑

k=1

Ak cos
(

kπ
x− a

b− a

)

, x ∈ [a, b], (4.52)

with

Ak =
2

b− a
ℜ
(

e−ikπ a
b−a f̂

( kπ

b− a

))

(4.53)

The Cosine Serie Expansion (COS) method, used to determine the price
of an option, is based on the cosine Fourier series expansion presented above.
It was developed by Fang and Oosterlee [FO08].
The point of departure for deriving the COS formula for pricing European
options is the risk-neutral valuation formula. Given the price St of the under-
lying asset, set Xt := log(St)

8 and let y → fX(t, x;T, y) denote the transition
probability density of XT , i.e. the conditional probability density function of
XT , given the value of X at time t, Xt = x. Also, let u → ΦX(t, x;T, u) be
the associated characteristic function9. If we let F denote the payoff function
of a European option, then the price of the payoff at time t0 of the option
with expiration T , under the risk-neutral measure Q, is given by

H(t0, x) = e−r(T−t0)EQ[F (eXT )|Ft0 ]|Xt0=x = e−r(T−t0)

∫

R

F (ey)fX(t0, x; y, T )dy

(4.54)
where the constant rate r is assumed constant, for semplicity. To simplify

notation, we keep t0, x, T fixed and use the shortcuts fX(y) := fX(t0, x;T, y)
and ΦX(u) := fX(t0, x;T, u).

The formula (4.54) above is often not very useful because fX(y) is usually
not known explicitly. On the other hand, the expression of the characteristic
function of XT is often available, and from now on we suppose to know
it. Recalling that the characteristic function is the Fourier transform of the
probability density funciton, the computations above suggest that we apply
the Fourier cosine series expansion to fX(y). First of all we need to truncate
the integration range to a finite interval. Therefore we choose an integration
interval [a, b[ such that the truncated integral approximates very well the
infinite counterpart. At this point we expand fX(y), following the procedure

8Considering the logarithm of the asset will simplify some calculations
9ΦX(t, x;T, u) = E[eiuXT |Xt = x].
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explained above, and we plug the expression obtained into (4.54) to obtain:

H(t0, x) ≈ e−r(T−t0)

∫ b

a

F (ey)fX(y)dy

= e−r(T−t0)
Ā0

2

∫ b

a

F (ey)dy

+ e−r(T−t0)

∞
∑

k=1

Āk

∫ b

a

F (ey) cos
(

kπ
y − a

b− a

)

dy

(4.55)

where

Āk =
2

b− a
ℜ
(

e−ikπ a
b−aΦX

( kπ

b− a

))

. (4.56)

Finally, if we define

B̄k :=
2

b− a

∫ b

a

F (ey) cos
(

kπ
y − a

b− a

)

dy, k ≥ 0, (4.57)

we obtain

H(t0, x) ≈
b− a

2
e−r(T−t0)

(Ā0B̄0

2
+

∞
∑

k=1

ĀkB̄k

)

. (4.58)

Notice that B̄k are the coefficients of the Fourier cosine series expansion of
the payoff function F . Thus we have transformed an integral of the product
of two functions, FX(y) and F (ey), into a series of the products of their
Fourier cosine coefficients.
Due to the rapid decaying of the coefficients ĀkB̄k, we can truncate the series
summation and get a last approximation, known as COS formula:

H(t0, x) ≈
b− a

2
e−r(T−t0)

(Ā0B̄0

2
+

N
∑

k=1

ĀkB̄k

)

. (4.59)
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4.3.2 Application to the Heston model

The goal of this section is to implement on a computer the COS method to
price European options and the Greeks in the Heston model, which under
the risk-neutral measure Q take the form

dSt = rStdt+
√
νtStdB

1
t (4.60)

dνt = k(ν̂ − νt)dt+ η
√
νtdB

2
t (4.61)

with the two Brownian motions being ρ-correlated (see Section 1.4.2 of Chap-
ter 1).

In order to use the expression (4.59) for European option, we need to
calculate the coefficients Āk, B̄k.

For Ak, we need an explicit representation for the characteristic function
of XT = log(ST ) of the Heston model. In the original paper by Heston
[Hes93], the characteristic function is given by :

ϕH(t0, νt0 ;T, u) = exp
(

iurτ +
νt0
η2

( 1− e−D1τ

1− ge−D1τ

)

(k − iρηu−D1)
)

·

· exp
[kν̂

η2

(

τ(k − iρηu−D1)− 2 log
(1− ge−D1τ

1− g

))]

,

(4.62)

where τ = T − t0 and

D1 =
√

(

(k − iρηu)2 + (u2 + iu)η2
)

, g =
k − iρηu−D1

k − iρηu+D1

. (4.63)

In the above formula appear the functions log and
√

that take com-
plex values, and they are multivalued functions. Therefore a branch must be
chosen, i.e. we must select, among the infinite possibilities, one interval of
length 2π to which the argument of the complex numbers must belong to.
Different choice of the branch determine different values for the characteris-
tic function. [LK10] have proven that, using the above representation, the
‘correct’ (i.e. does not produce discontinuities in the representation) branch
to be chosen is the principal branch for the logarithm.

We now turn to the calculation of coefficients B̄k. We focus on the Call
option, and thanks to the Put-Call parity formula this is not restrictive.
We will use the method proposed by Le floch [Le 20], who observed that for
short maturities the original COS method was not suitable to approximate
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far in-the-money call prices because the cosine coefficients B̄k were computed
relatively to the strike K, but the truncation of the integration interval was
made according to the forward price. To overcome this problem we will use
X(T ) = log ST

K
.

Then the payoff becomes F (K(ey − 1)) = [K(ey − 1)]+.

• For a < b < 0 we obviously obtain B̄call
k = 0.

• By basic computations, for a < 0 < b we have

B̄call
k =

2

b− a

∫ b

0

K(ey − 1) cos
(

kπ
y − a

b− a

)

dy

=
2

b− a
K(ξk(0, b)− ζk(0, b)),

(4.64)

• Finally, for 0 < a < b we get

B̄call
k =

2

b− a
K(ξk(a, b)− ζk(a, b)), (4.65)

where we used the following functions:

ξk(c, d) :=
1

1 +
(

kπ
b−a

)2

[

cos
(

kπ
d− a

b− a

)

ed − cos
(

kπ
c− a

b− a

)

ec

+
kπ

b− a
sin

(

kπ
d− a

b− a

)

ed − kπ

b− a
sin

(

kπ
c− a

b− a

)

ec
]

(4.66)

and

ζk(c, d) :=

{

b−a
kπ

[

sin
(

kπ d−a
b−a

)

− sin
(

kπ c−a
b−a

)]

, k ̸= 0

d− c, k = 0

We will use a simple integration range, i.e.

[a, b[= [−L
√

T − t0, L
√

T − t0[. (4.67)

The parameters for our computations are t0 = 0, T = 1, L = 10, k =
1.56, η = 0.58, ν̂ = 0.04, ρ = −0.58, ν0 = 0.018 r = 0, S0 =
100, K = 100, and the result is shown in Figure 4.3.
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Figure 4.3: Price of European Call option in the Heston model by the COS
method.

The series expansion for the Greeks ∆ and Γ can be derived similarly.
With S ≡ St0 and x ≡ Xt0 we have:

∆ =
∂V

∂S
=
∂V

∂x

∂x

∂s
=

1

S

∂V

∂x
, Γ =

∂2V

∂S2
=

1

S2

(

− ∂V

∂x
+
∂2V

∂x2

)

. (4.68)

It then follows that:

∆ ≈ 1

S
e−r(T−t0)

[b− a

2
· Ā0B̄0

2
+

N
∑

k=1

ℜ
{

e−ikπ x−a
b−aΦX

( kπ

b− a

)

· ikπ

b− a

}

· B̄k

]

,

(4.69)
and

Γ ≈ 1

S2
e−r(T−t0)

[b− a

2
·Ā0B̄0

2
+

N
∑

k=1

ℜ
{

e−ikπ x−a
b−aΦX

( kπ

b− a

)

·
(( ikπ

b− a

)2

− ikπ

b− a

)}

·B̄k

]

.

(4.70)
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(a) Delta (b) Gamma

Figure 4.4: Delta and Gamma in the Heston model by the COS method.

4.3.3 Application to the Rough Heston model

The COS method is also useful to price European options in the Rough He-
ston model. In fact, various expressions for the characteristic function of
the Rough Heston model have been recently developed in the literature. We
follow the one presented in 2019 from Gatheral and Keller-Ressel [GK18].
Recall from Section 3.4.3 that, supposing λ = 0 brings the following expres-
sion for the instantaneous variance

νu = ξt(u) +
ν

Γ(H + 1/2)

∫ u

t

√
νs(u− s)H−1/2dB2,Q

s (4.71)

where ξt(u) = EQ[νu|Ft], with u ≥ t is the forward variance curve. Gatheral
and Keller-Ressel study the so-called affine forward variance models, and the
classical Heston model in forward variance form and the Rough Heston model
are both classified as affine forward variance models. In such case, they show
that the characteristic function of the log-price of the asset XT = logST at
time t can be written as:

ΦX(t;T, u) = EQ[eiuXT |Ft] = exp
(

iu(Xt+r(T−t))+
∫ T

t

ξt(s)g(T−s, iu)ds
)

,

(4.72)
where g(t, u) is a function expressed in terms of solutions to the Riccati (or
fractional Riccati) equation.
In the classical Heston model in forward variance form we have that, with
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a = iu:

g(t, iu) =
∂

∂t
h(t, a) + λh(t, a) (4.73)

where h(t, u) is a solution to the Riccati equation

∂

∂t
h(t, a) = −1

2
a(a+ i)− (λ− iρνa)h(t, a) +

1

2
ν2h(t, a)2. (4.74)

It is possible to solve this equation and to prove that it is indeed equivalent
to the formula (4.62) already encountered.

In the rough Heston case (with λ = 0), we have that

g(t, iu) = Dαh(t, a) = −1

2
a(a+ i) + iρνah(t, a) +

1

2
ν2h(t, a)2 (4.75)

where Dα is the fractional derivative, with 0 < α < 1.

We recall, for completeness, the definition of α-fractional derivative.
We give a very informal and quick review. For a complete treatment, see
[PT17]. The idea is to extend the definition of derivative by allowing expres-
sions like α-th derivative to be defined in such a way that some properties
change ‘smoothly’.
Let Φ : [a, b] → R be an integrable function and α ∈ (0, 1). We begin by
defining

(IαΦ)(s) :=
1

Γ(α)

∫ s

a

Φ(u)(s− u)α−1du (4.76)

with s ∈ [a, b] and Γ the gamma function. Now the idea is to invert the
operator Iα. This can be done (see [PT17], pp. 348) and leads to the
following definition of fractional derivative:

(Dαf)(u) := (I−αf)(u) :=
1

Γ(1− α)

d

du

∫ u

a

f(s)(u− s)−αds (4.77)

To find the function h(t, a) for the solution of the fractional Riccati equa-
tion for the Rough Heston model, Gatheral and Radoiĉiĉ [GR19] use an ap-
proximation scheme based on a combination of short-time expansion of the
solution and an asymptotic solution in the long-time limit τ = T − t → ∞.
This method is particularly fast and accurate to compute approximate so-
lutions of fractional ODEs. Another approach was proposed by El Euch et
al. [ER16], who used a discretization based on the Adams scheme for ODEs.
If we apply one of these approximation scheme, we can therefore obtain a
characteristic function of the log-price of the asset under the Rough Heston
model using the COS method, and thus price efficiently European options.
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Chapter 5

Conclusion

In this thesis we have presented an overview of stochastic volatility modeling
with a focus on equity models based on fractional Brownian motion, with a
particular attention to the ‘rough’ case with Hurst exponent H < 1/2. We
considered various aspects of these models based on historical data, where we
stressed the importance of the behavior of the autocorrelation in determin-
ing important properties like persistence and long memory. We also reviewed
these models from a risk-neutral point of view and we concluded that ‘rough’
models are generally successful when reproducing the at-the-money (ATM)
volatility skew typically observed on the market, in contrast with classical SV
models and with models based on fBm with Hurst parameter H > 1/2, like
the Hull-White model. Therefore, rough models, like the RFSV of Gatheral
et al. (2014) and the Rough Heston model, generally provide a more realistic
representation of the observed implied volatility surface than traditional SV
models. We then applied numerical methods based on Monte Carlo simula-
tion to the famous Heston model and by doing so, we highlighted some of the
limitations of classical numerical discretization schemes, analyzing possible
alternatives. Finally, a method for option pricing based on Fourier series ex-
pansion has been presented and applied to the Heston model, and an overview
of a possible implementation in the rough case has been presented.
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Appendix A

Main codes

A.1 Simulation of paths and PDF for the He-

ston model

function Heston_Euler

% Parameters setting

Npaths = 10;

Nsteps = 500;

T = 10;

k = 0.5;

vhat = 0.075;

v0 = 0.075;

eta = 0.1;

% Generate Heston paths with Euler-Maruyama scheme

[V,timeGrid] =

GeneratePathsHestonEM(Npaths,Nsteps,v0,k,vhat,eta,T);

% Figure

figure1 = figure;

axes1 = axes(’Parent’,figure1);

hold(axes1,’on’);
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% Plot for densty of v(t)

plot(timeGrid,V,’linewidth’,0.5,’color’,[0 0.45 0.74])

PDF = Hestondensity(k,eta,vhat,0.0,T,v0);

% Grid for the PDF of v(t)

GridT=linspace(0.1,T,5);

x_arg=linspace(0,max(max(V(:,:)))*2,250);

for i=1:length(GridT)

plot3(GridT(i)*ones(length(x_arg),1),x_arg,PDF(x_arg),’k’,’linewidth’,2)

end

axis([0,GridT(end),0,max(max(V))])

grid on;

xlabel(’t’)

ylabel(’v(t)’)

zlabel(’Density of v(t)’)

view(axes1,[-75. 45.]);

function PDF = Hestondensity(k,eta,vhat,s,t,v_s)

a = eta^2/(4*k)*(1-exp(-k*(t-s)));

b = 4*k*vhat/(eta^2);

kBar = 4*k*exp(-k*(t-s))/(eta^2*(1-exp(-k*(t-s))))*v_s;

PDF = @(x)1/a*ncx2pdf(x./a,b,kBar);

function [V,t] =

GeneratePathsHestonEM(Npaths,Nsteps,V0,k,vhat,eta,T)

% Initial datum

V=zeros(Npaths,Nsteps);

V(:,1) = V0;

% Gaussian noise
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Z=random(’normal’,0,1,[Npaths,Nsteps]);

W=zeros([Npaths,Nsteps]);

delta = T/Nsteps;

t = zeros([Nsteps+1,1]);

for i=1:Nsteps

if Npaths>1

Z(:,i) = (Z(:,i) - mean(Z(:,i))) / std(Z(:,i));

end

W(:,i+1) = W(:,i) + sqrt(delta).*Z(:,i);

V(:,i+1) = V(:,i) + k*(vhat-V(:,i))*delta+ eta* sqrt(V(:,i)).*

(W(:,i+1)-W(:,i));

V(:,i+1) = max(V(:,i+1),0);

t(i+1) = t(i) + delta;

end

A.2 P(νδtn+1
< 0) as a function of the previous

step

import numpy as np

import matplotlib.pyplot as plt

import scipy.stats as st

# Probability of negative variance given the preceding step is

positive

def ProbabilityOfNegative():

# Parameters specification of Heston model

k = 0.5

eta = 0.25

vhat = 0.075

T = 1.0

Nsteps = 10

delta = T/Nsteps

l = []

for Nsteps in range(2,11,1):

delta = T/Nsteps
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F = lambda v_n: st.norm.cdf(

(-v_n-k*(vhat-v_n)*delta)/(eta*np.sqrt(v_n)*delta))

v_n = np.linspace(0.01,0.2,100)

l.append(’Number of Steps = {0}’.format(Nsteps))

plt.plot(v_n,F(v_n))

# Feller condition

Feller = 2.0*k*vhat - eta**2.0

if Feller<0:

print("Feller condition is not satisfied".format(Feller))

else:

print("Feller condition is satisfied".format(Feller))

plt.grid()

plt.legend(l)

plt.xlabel(’v_n’)

plt.ylabel(’P(v_{n+1}<0|v_n>0)’)

ProbabilityOfNegative()

A.3 Price of European Call option in the He-

ston model by the COS method

import numpy as np

import matplotlib.pyplot as plt

import scipy.optimize as optimize

import scipy.stats as st

import enum

# [a,b]- truncation domain

# S0 - initial asset price

# r - nterest rate

# L - simple integration range

# K - strikes (list)

# tau - time to maturity

# N - COS number of addends

# phi_H- characteristic function of Heston SV model
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# Heston Characteristic function definition

def HestonCHF(r,tau,k,eta,vhat,v0,rho):

i = np.complex(0.0,1.0)

d1 = lambda u:

np.sqrt(np.power(k-eta*rho*i*u,2)+(u*u+i*u)*eta*eta)

f = lambda u: (k-eta*rho*i*u-d1(u))/(k-eta*rho*i*u+d1(u))

C = lambda u:

(1.0-np.exp(-d1(u)*tau))/(eta*eta*(1.0-f(u)*np.exp(-d1(u)*tau)))

\

*(k-eta*rho*i*u-d1(u))

A = lambda u: r * i*u *tau + k*vhat*tau/eta/eta

*(k-eta*rho*i*u-d1(u))\

-

2*k*vhat/eta/eta*np.log((1-f(u)*np.exp(-d1(u)*tau))/(1-f(u)))

phi_H = lambda u: np.exp(A(u) + C(u)*v0)

return phi_H

# xi and zeta definition

def xi_zeta(a,b,c,d,k):

xi = 1.0 / (1.0 + np.power((k * np.pi / (b - a)) , 2.0))

expr1 = np.cos(k * np.pi * (d - a)/(b - a)) * np.exp(d) -

np.cos(k * np.pi

* (c - a) / (b - a)) * np.exp(c)

expr2 = k * np.pi / (b - a) * np.sin(k * np.pi *

(d - a) / (b - a)) - k * np.pi / (b - a) *

np.sin(k

* np.pi * (c - a) / (b - a)) * np.exp(c)

xi = xi * (expr1 + expr2)

zeta = np.sin(k * np.pi * (d - a) / (b - a)) - np.sin(k * np.pi

* (c - a)/(b - a))

zeta[1:] = zeta[1:] * (b - a) / (k[1:] * np.pi)

zeta[0] = d - c

value = {"xi":xi,"zeta":zeta }

return value

# Definition coefficients B_k

def CallCoefficients(C,a,b,k):

c = 0.0

d = b
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coef = xi_zeta(a,b,c,d,k)

xi_k = coef["xi"]

zeta_k = coef["zeta"]

if a < b and b < 0.0:

B_k = np.zeros([len(k),1])

else:

B_k = 2.0 / (b - a) * (xi_k - zeta_k)

return B_k

# Value of Heston Call Option definition

def CallCOS(phi_H,C,S0,r,tau,K,N,L):

if K is not np.array:

K = np.array(K).reshape([len(K),1])

i = np.complex(0.0,1.0)

x0 = np.log(S0 / K)

a = 0.0 - L * np.sqrt(tau)

b = 0.0 + L * np.sqrt(tau)

k = np.linspace(0,N-1,N).reshape([N,1])

u = k * np.pi / (b - a);

# Coefficients B_k

B_k = CallCoefficients(C,a,b,k)

mat = np.exp(i * np.outer((x0 - a) , u))

temp = phi_H(u) * B_k

temp[0] = 0.5 * temp[0]

value = np.exp(-r * tau) * K * np.real(mat.dot(temp))

return value

# Call price definition

def CallPrice():

S0 = 100

r = 0.00

tau = 1

K = np.linspace(50,150,250)

K = np.array(K).reshape([len(K),1])

# COS method settings
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L = 10

vhat = 0.04

v0 = 0.018

rho =-0.58

eta = 0.58

k = 1.56

C =1

# CHF for the Heston model

phi_H = HestonCHF(r,tau,k,eta,vhat,v0,rho)

# COS number of addends

N = 5000

callRef = CallCOS(phi_H, C, S0, r, tau, K, N, L)

# Figure plot

plt.plot(K,callRef,’-k’)

plt.xlabel("strike, K")

plt.ylabel("Call Price")

plt.grid()

CallPrice()

A.4 Delta and Gamma in the Heston model

by the COS method

import numpy as np

import matplotlib.pyplot as plt

import scipy.optimize as optimize

import scipy.stats as st

import enum

# [a,b]- integration domain

# S0 - initial asset price

# r - nterest rate

# L - simple integration range
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# K - strikes (list)

# tau - time to maturity

# N - COS number of addends

# phi_H- characteristic function of Heston SV model

i = np.complex(0.0,1.0)

# Heston Characteristic function definition

def HestonCHF(r,tau,k,eta,vhat,v0,rho):

d1 = lambda u:

np.sqrt(np.power(k-eta*rho*i*u,2)+(u*u+i*u)*eta*eta)

f = lambda u: (k-eta*rho*i*u-d1(u))/(k-eta*rho*i*u+d1(u))

C = lambda u:

(1.0-np.exp(-d1(u)*tau))/(eta*eta*(1.0-f(u)*np.exp(-d1(u)*tau)))

\

*(k-eta*rho*i*u-d1(u))

A = lambda u: r * i*u *tau + k*vhat*tau/eta/eta

*(k-eta*rho*i*u-d1(u))\

-

2*k*vhat/eta/eta*np.log((1-f(u)*np.exp(-d1(u)*tau))/(1-f(u)))

phi_H = lambda u: np.exp(A(u) + C(u)*v0)

return phi_H

# xi and zeta definition

def xi_zeta(a,b,c,d,k):

xi = 1.0 / (1.0 + np.power((k * np.pi / (b - a)) , 2.0))

expr1 = np.cos(k * np.pi * (d - a)/(b - a)) * np.exp(d) -

np.cos(k * np.pi

* (c - a) / (b - a)) * np.exp(c)

expr2 = k * np.pi / (b - a) * np.sin(k * np.pi *

(d - a) / (b - a)) - k * np.pi / (b - a) *

np.sin(k

* np.pi * (c - a) / (b - a)) * np.exp(c)

xi = xi * (expr1 + expr2)

zeta = np.sin(k * np.pi * (d - a) / (b - a)) - np.sin(k * np.pi

* (c - a)/(b - a))

zeta[1:] = zeta[1:] * (b - a) / (k[1:] * np.pi)

zeta[0] = d - c

value = {"xi":xi,"zeta":zeta }

return value
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# Definition coefficients B_k

def CallCoefficients(C,a,b,k):

c = 0.0

d = b

coef = xi_zeta(a,b,c,d,k)

xi_k = coef["xi"]

zeta_k = coef["zeta"]

if a < b and b < 0.0:

B_k = np.zeros([len(k),1])

else:

B_k = 2.0 / (b - a) * (xi_k - zeta_k)

return B_k

def COSDelta(phi_H,C,S0,r,tau,K,N,L):

if K is not np.array:

K = np.array(K).reshape([len(K),1])

# integration domain

a = 0.0 - L * np.sqrt(tau)

b = 0.0 + L * np.sqrt(tau)

x0 = np.log(S0 / K)

k = np.linspace(0,N-1,N).reshape([N,1])

u = k * np.pi / (b - a);

B_k = CallCoefficients(C,a,b,k)

mat = np.exp(i * np.outer((x0 - a) , u))

temp = phi_H(u) * B_k * u * i

temp[0] = 0.5 * temp[0]

value = 1.0/S0 *np.exp(-r * tau) * K * np.real(mat.dot(temp))

return value

def COSGamma(phi_H,C,S0,r,tau,K,N,L):

if K is not np.array:

K = np.array(K).reshape([len(K),1])

# integration domain

a = 0.0 - L * np.sqrt(tau)
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b = 0.0 + L * np.sqrt(tau)

x0 = np.log(S0 / K)

k = np.linspace(0,N-1,N).reshape([N,1])

u = k * np.pi / (b - a);

# Determine coefficients

B_k = CallCoefficients(C,a,b,k)

mat = np.exp(i * np.outer((x0 - a) , u))

Gamma_term = (u * i)**2.0 - u * i

temp = phi_H(u) * B_k * Gamma_term

temp[0] = 0.5 * temp[0]

value = 1.0/(S0**2.0) *np.exp(-r * tau) * K *

np.real(mat.dot(temp))

return value

# COS method for Delta and Gamma in Heston model

def DeltaGammaHeston():

S0 = 100

r = 0.00

tau = 1

K = np.linspace(50,150,250)

# reshape K to a column vector

K = np.array(K).reshape([len(K),1])

# COS method settings

L = 10

vhat = 0.04

v0 = 0.018

rho =-0.58

eta = 0.58

k = 1.56

C =1

# CHF for the Heston model

phi_H = HestonCHF(r,tau,k,eta,vhat,v0,rho)

# COS number of addends
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N = 5000

DeltaCOS = COSDelta(phi_H,C,S0,r,tau,K,N,L)

GammaCOS = COSGamma(phi_H,C,S0,r,tau,K,N,L)

# Figure plot

plt.figure(2)

plt.plot(K,DeltaCOS,’r’)

plt.xlabel("strike, K")

plt.ylabel("delta, dCall/dS0")

plt.grid()

plt.figure(3)

plt.plot(K,GammaCOS,’r’)

plt.xlabel("strike, K")

plt.ylabel("delta, d^2V/dS0^2")

plt.grid()

DeltaGammaHeston()
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