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Abstract

The recent diffusion of audio recording devices together with the rapid evolution of deep-
fake technologies have fostered the widespread of synthetic speech signals. Being ex-
tremely convincing and realistic can be used in many malicious applications, e.g., for fake
news spreading over social media platforms, frauds or specifically in impersonation at-
tacks, since speech signals are needed to unlock or control many devices. As a matter
of fact, the development of efficient detection algorithms that verify the authenticity of
audio recordings and help human listeners in discriminating fraudulent audio samples
from real ones is therefore of paramount importance. Synthetic Speech Detection (SSD)
algorithms are systems that estimate whether a speech signal under analysis has been syn-
thetically created or has been authentically acquired by an audio recorder. However, this
problem is getting challenging due to the constant development of new technologies and
methods brought by deep learning for fake speech generation. For this reason, the study
of new detection strategies is becoming increasingly urgent and necessary. In this thesis,
some algorithms for the SSD task are proposed. The first approach uses the First Digit
(FD) statistics computed on signal transform coefficients to detect peculiar characteristics
of fake audio signals. The second method instead adopts Implicit Neural Representations
(INRs) of speech signals, which are obtained with neural networks overfitted on each sig-
nal, to distinguish fake samples from bonafide ones. In both cases, it has been pointed out
the fundamental role of silenced parts in synthetic speech detection. However, this thesis
represents only a preliminary analysis, which we hope will help widening the perspectives
of audio forensic research.





Sommario

La recente diffusione di dispositivi capaci di registrare segnali audio insieme al rapido
sviluppo delle tecnologie deepfake hanno favorito una sempre più crescente diffusione
di audio sintetici. Queste registrazioni di voci umane create sinteticamente sono sempre
più convincenti e realistiche, a tal punto da poter essere utilizzate in modo malevolo, ad
esempio per diffondere notizie false sui social media, per frodi o per attacchi di imperson-
ificazione, poiché al giorno d’oggi i segnali vocali sono necessari per sbloccare e controllare
numerosi dispositivi. È quindi di fondamentale importanza sviluppare efficienti algoritmi
che verifichino l’autenticità delle registrazioni audio ed aiutino l’uomo a distinguere cam-
pioni audio potenzialmente fraudolenti da quelli reali. Definiamo come Synthetic Speech
Detection (SSD) il problema di determinare se un certo segnale audio è stato creato sinteti-
camente oppure è reale. Questo problema sta diventando sempre più difficile da risolvere
a causa del costante sviluppo di nuove tecnologie basate sul deep learning per la gener-
azione di audio falsi. Per questo motivo, lo studio di nuove strategie per la rilevazione di
audio falsi sta diventando sempre più urgente e necessario. In questa tesi vengono pro-
posti alcuni algoritmi per far fronte al problema della SSD. Il primo approccio utilizza le
statistiche First Digit (FD), calcolate su coefficienti estraibili dal segnale audio, per rilevare
alcune caratteristiche tipiche di un audio falso che invece un audio reale non presenta. Il
secondo metodo proposto adotta invece Neural Implicit Representations (NIRs) dei seg-
nali vocali, che sono ottenute con reti neurali overfittate su ciascun singolo segnale, per
distinguere i campioni falsi da quelli reali. In entrambi i casi è stato evidenziato il ruolo
fondamentale delle parti silenziose nel rilevamento del parlato sintetico. Tuttavia, questa
tesi rappresenta solo un’analisi preliminare, che speriamo possa aiutare ad ampliare le
prospettive della ricerca nel campo dell’audio forense.
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1Introduction

In this chapter a brief overview of the problem and the contribution of this work are given. Details
about the organisation of the thesis are provided.

∗ ∗ ∗

Recent advancements in digital technologies such as smartphones, tablets and digital cam-
eras have led to an exponential growth of multimedia content like audio recordings, im-
ages and videos. Moreover, the increasing social media usage has resulted in a massive
generation of these content to be shared online and that can be accessed easily by anyone
from any part of the world.

At the same time, the recent advances of Artificial Intelligence (AI) techniques have sig-
nificantly increased the capability to produce realistic multimedia content and its quality.
Therefore, it has become difficult to distinguish between real and fake content generated
through highly advanced computer graphics and AI algorithms. These synthetically gen-
erated content like speech audio signals, images and videos can have useful applications
in real life, but can also lead to various threats related to privacy and security through the
so-called “Deepfake”.
The term is a combination of the worlds “deep learning” and “fake", meaning that us-
ing deep learning techniques anyone can manipulate multimedia content or generate new
fake ones to obtain even more credible audio signals, images and videos [85]. In a study
conducted in 2021 by Statista, a leading company in data ranking and analysis, deepfake
was placed among the five most diffused scenarios of AI-enabled cyberattacks worldwide
(Fig. 1.1) [79].

Deepfakes caught people’s attention and started to spread in autumn 2017, when a Red-
dit user under the pseudonym “Deepfake” used deep learning technology to generate a
pornographic video by swapping the face of the original character for the face of some
Hollywood actresses like Emma Watson, Katy Perry and Scarlett Johansson. The quality
of these videos was high enough that it made it hard to distinguish them from real ones,
thus this can be considered the initiator of deepfakes. Face manipulation is one of the most
famous applications of deepfake and involves swapping one person’s face in an image or
video with the face of another person, while the original facial expressions, movements
and surroundings remained unchanged [23]. An example of this deepfake application is
reported in Figure 1.2.



1. INTRODUCTION

Figure 1.1: Types of AI-enabled cyberattacks 2021: 43% of survey respondents stated that
AI can be used for deepfake attacks against their companies in the future. (from Statista -
The Statistics Portal, 2022

Figure 1.2: Example of a deepfake: (left) the original image; (right) the fake one.

Nevertheless, there’s a whole range of useful deepfake applications as well, for example
in the film industry. Indeed, the technology allows to revive a dead actor or to realistically
dub films in different languages by matching the mouth movements of the actors with the
spoken dialog. Similarly, this concept could also be applied to the advertising industry
to use the face of a celebrity in more then one campaign. Photo shoots would no longer
require the celebrities themselves to be present, but instead simply a person of similar
stature.

However most of the times, deepfake technologies are used maliciously for example for
pornographic or political purposes. Indeed they allow to counterfeit the identity of a per-
son in a video by falsifying their face or voice [88] (for example to defame politicians [20]
or innocent individuals [81]). Moreover, deepfake can be used to spread false information
and fake news on the Internet or to attack the payment and authentication systems based
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on face or voice recognition.

Deepfake technology can do more than just swap faces. Essentially, any objects can be
swapped as long as they have enough similarity in their basic features. For example, zebras
can be transformed into horses, or summer photos can be turned into winter ones, or even
natural photographs can be rendered into different artistic styles (Fig. 1.3). The only limit
to the possibilities is a person’s own creativity [104].

Figure 1.3: Another example of a deepfake in which an image is automatically “translate”
into the other and vice versa: (left) Monet paintings and landscape photos; (center) zebras
and horses; (right) summer and winter photos; (bottom) natural photograph and paintings
rendered into the respective styles of famous artists.

In this work we put our attention on the application of deepfake to audio signals, which
has only recently become a problem of significant interest to the research community.
Many AI-generated tools have lately been developed with the ability to generate convinc-
ing voices [40], leading to a new technology known as Audio Deepfakes (ADs). However,
while these tools were introduced to help people, they have also been used maliciously
to manipulate public opinion for propaganda, defamation, or even terrorism [17]. Audio
deepfakes are becoming widely accessible by everyone using only a simple smartphone or
a personal computer [64]. Consequently, a massive amounts of voice recordings is broad-
cast daily over the Internet, but detecting fakeness from them constitutes a challenging
task [43].

The problem of fake audio detection has become increasingly popular since there have
been several criminal activities using fake audio in recent years. One of all, in 2019 an
AI-based software was used to impersonate a CEO’s voice and stole more than $243,000
via a telephone call [28]. Now more than ever, there is the need of fake audio detection
techniques that can discriminate efficiently fraudulent audio samples from bonafide ones.
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1. INTRODUCTION

For this purpose, ADs have thus recently come to the attention of researchers, with several
fake audio detection methods being developed to detect them, focusing on different types
of acoustic features that are present in a real signal and, at the same time, are difficult to
synthesize.

The majority of traditional strategies estimate fake audio characteristics from audio trans-
form coefficients like Mel-Frequency Cepstral Coefficients (MFCCs) or Linear Predictive
Coding (LPC) [30]. The general AD detection process is illustrated in Figure 1.4. Each
audio clip should be preprocessed and transformed into suitable audio feature (as MFCC,
LPC, etc.). These features are given as input to the detection model, which performs the
training process. Then, the output is fed into a fully connected layer with an activation
function to produce a prediction probability of real or fake class.

Figure 1.4: An illustration of the AD detection process.

Some other approaches are based on the effects of the physical acquisition environment
on the signal (like reverberation, noise, etc.) [10, 37, 45] or on prosodic and emotional
characteristics of the synthetic speech [13]. Other methods rely instead on statistics and
symmetry properties of speech signals [71]. In the last years, more advanced methods
that learn features representation by processing the analyzed audio with Convolutional
Neural Network (CNN) or Recurrent Neural Network (RNN) architectures have become
increasingly popular [103].

1.1 PROPOSED CONTRIBUTION

The objective of this work is to develop algorithms that aim at discriminating efficiently
synthetic generated speech signals from real ones. Given a speech audio track, the goal
consists in detecting whether the speech is synthetic (i.e., it has been generated through
synthetic algorithms) or bonafide (i.e., it belongs to a real human speaker).

In order to validate the proposed methods on multiple kinds of synthetically generated
speech signals, the publicly available ASVspoof 2019 dataset [83] was used. Some initial
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1.2. Thesis Outline

analyses have been carried out on it, highlighting some interesting insights related to its
samples. According to these, it was possible to explain the outcomes of the proposed
strategies.

The first suggested method is based on the First Digits (FD) statistics. This approach con-
sists in extracting FD statistics from signal transform coefficients and shows how they can
efficiently enable a robust detection. Indeed, it will be proved that the probability distribu-
tion of the FD statistics usually follows a pre-defined behavior that instead is completely
altered whenever the signal is synthetic. Moreover, this work investigates the discrimina-
tive role in synthetic speech detection of silenced parts, which are present in many speech
audio tracks of the ASVSpoof dataset [83].

The second strategy relies on Implicit Neural Representations (INRs) of speech signals.
This method parametrizes each signal using a neural network that is trained to map 1D
temporal coordinates of the input signal to its corresponding amplitude values. Each net-
work is overfitted to its specific input and is able to reconstruct only this signal. It will be
demonstrated that the trend of the training losses in terms of epoch vs reconstruction Mean
Square Error (MSE), is different in most of the cases between fake and bonafide samples.
Also in this case, it has been pointed out the essential role of silenced parts in synthetic
speech detection.

1.2 THESIS OUTLINE

In this thesis we describe the contributions just illustrated in the previous section by or-
ganizing them in three different chapters. In the following, we give some details about
the organisation of the thesis. In Chapter 2 an overview of the theoretical background
concerning both synthetic speech generation and synthetic speech detection is provided.
Moreover, the ASVSpoof 2019 dataset [83], which is used to test the proposed methods,
is presented. Chapter 3 describes how FD statistics extracted from MFCC coefficients can
be used to detect synthetically generated speech signals. Then, chapter 4 illustrates how
INRs of speech signals can be useful to discriminate between fake and bonafide samples.
Finally, conclusions are drawn in Chapter 5.
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2Theoretical Background

In this chapter, the state of the art relative to synthetic speech generation and synthetic speech
detection is introduced. Additionally, the ASVSpoof 2019 dataset is presented.

∗ ∗ ∗

Thanks to the constant development of new technologies and neural networks, synthetic
speech generation is nowadays an easy operation. Thus, it is becoming increasingly diffi-
cult to distinguish the synthetic audio material from original one. This can lead to danger-
ous consequences so much that in the last few years, also speech analysis research commu-
nity has recognised the centrality of the synthetic speech detection problem. Consequently,
many challenges have been organized to specifically addressed the problem of automatic
speaker verification (ASV), like ASVSpoof 2019 [83] and ASVSpoof 2021 [98].

In this chapter, some backgrounds on state of the art algorithms for synthetic speech gen-
eration and synthetic speech detection are provided. This insight is useful to better under-
stand the challenges that lie behind the synthetic speech detection problem. Finally, we
provide a detailed description of the ASVSpoof 2019 [83] dataset, which has been chosen
to evaluate the proposed methods.

2.1 RELATED WORKS

In the first part of this section, different approaches and latest trends in the field of synthetic
speech generation are presented. Then, in the second part, we investigate the literature
regarding the topic of this thesis, i.e., synthetic speech detection.

2.1.1 Synthetic Speech Generation

The aim of Synthetic Speech Generation (SSG) task is to automatically create speech sam-
ples which seem natural and perfectly comprehensible. Many techniques that achieve
natural sounding results are presented in the literature, thanks to the recently advances of
neural networks architectures.

People have tried to build machines to synthesize human speech dating back to the 12th

century [93]. In the second half of the 18th century, an Hungarian scientist had constructed
a speaking machine with a series of bellows, springs, bagpipes and resonance boxes to
produce some simple words and short sentences [19]. The first speech synthesis system
that built upon computer came out in the latter half of the 20th century [93].



2. THEORETICAL BACKGROUND

The early computer-based speech synthesis methods include an articulatory synthesis,
in which speech is produced by simulating the behavior of human articulator (like lips,
tongue, glottis and moving vocal tract) [11]; a formant synthesis, in which speech is cre-
ated on a set of rules that mimic the formant structure and other spectral properties of
speech and that control a simplified source-filter model [4]; and a concatenative synthesis,
which relies on the concatenation of pieces of speech that are stored in a database [25].

From 2010s, neural network-based speech synthesis has gradually become the dominant
methods achieving much better voice quality [101, 102]. These synthetic speech generation
methods can mainly be divided in two branches, i.e., text-to-speech and voice conversion
algorithms. In the following, we first present text-to-speech methods, and then review
some recent voice conversion techniques.

2.1.1.1 Text-To-Speech

Text-To-Speech (TTS) methods start from a textual representation of the speech and aim
at producing the correspondent waveform signal. The first TTS approaches were largely
based on waveform concatenation [6, 52], i.e., given a text as input, the output audio is
produced by selecting the correct diphones from a large dataset of diphone waveforms
and concatenating them so that intelligibility is ensured [25, 49]. The main problem of
waveform concatenation is the complexity of modifying the voice timbral characteristics,
for example to change the speaker, embed emotion in the voice or insert prosodic content
in it.

Another proposed method to increase the naturalness of generated speech is the Statis-
tical Parametric Speech Synthesis (SPSS). Given an input text, these models first process
it into a sequence of phonemes and other linguistic features. Then, an acoustic model is
built to learn and predict the mapping between the extracted linguistic features and some
traditional acoustic features like duration, fundamental frequency, spectral envelope and
excitation signal. Usually, this acoustic model is a Hidden Markov Model (HMM) trained
on large datasets of acoustic features extracted from diphones and triphones [41]. Finally,
it is defined a vocoder synthesizer to transform a spectral representation of the audio in the
final raw waveform. Recently, the vocoder synthesizers are for example STRAIGHT [31],
WORLD [47] and VOCAINE [1]. The simplicity of the SPSS approach makes it suitable for
real-time scenarios, since it obtains good results with a reduced computational cost.

Additionally, neural networks have also been used to replace only portions of the SPSS
systems to improve the results. Indeed, RNNs [89] have substituted HMMs in acoustic
model and traditional vocoders have been replaced with neural vocoders. Some examples
are WaveNet [70], which predicts samples of the waveform using convolutional layers
in an auto-regressive setup, or LPCNet [86], which combines LPC analysis and RNNs to
predict sample by sample a speech waveform.

Later, first end-to-end models have been proposed to overcome the problem of synchroni-
sation between the acoustic and linguistic features. The even more powerful neural net-
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2.1. Related Works

work has allowed to use more informative acoustic features, like mel-spectrograms and
simpler linguistic features, like simple phoneme or characters. One example is Tacotron
[92], based on seq2seq [76] architecture and attention mechanism. Given as input a se-
quence of characters, it produces the corresponding raw spectrogram, which is then trans-
formed in a waveform using the Griffin-Lim algorithm [22]. Then a second version called
Tacotron2 [69] was proposed. It improves the reconstruction of the waveform by predict-
ing mel-spectrograms and using WaveNet as vocoder. The generated speech signals sound
really natural and comprehensible, especially if compared to the one created with SPSS
methods. Another examples of end-to-end TTS generation algorithms are Deep Voice [68],
which roughly recalls the structure of SPSS systems and Deep Voice 3 [59], which consists
of a fully convolutional network architecture.

2.1.1.2 Voice Conversion

Voice Conversion (VC) methods manipulate the voice signal to change the perceived iden-
tity of the speaker in the audio. Therefore, differently from TTS, the input is not text but a
speech waveform.

VC pipelines are usually split in three blocks [72] a feature extraction step in which a suit-
able intermediate representation of the audio signal is extracted, a feature mapping step
in which the modifications necessary to match the target characteristics are applied, and
finally a reconstruction step in which the raw waveform is reconstructed. Each different
VC method combines distinct techniques for each pipeline’s block. For the feature extrac-
tion step, the chosen strategies are usually based on Pitch Synchronous Overlap and Add
(PSOLA) [12] that represents the input as the parameters required by a vocoder synthesizer
to reproduce it.

The use of a vocoder guarantees good quality in the final speech reconstruction, since these
algorithms are well tested and efficient. On the other hand, it is not easy to adapt vocoder
parameters to match the target voice characteristics and for this reason, alternative spectral
representations are often adopted (like MFCC or LPC).

Regarding the mapping function, it can be implemented with parallel training, i.e., on
the pairs of utterances of original and target speaker with the same content, or with non-
parallel training data. Parallel training methods can be performed using Gaussian Mixture
Model (GMM) [75] or more advanced neural network architectures [16]. More recently
encoder-decoder architectures with attention mechanism has been proposed to implicitly
learn the alignment between the input and the output [39]. On the other side, non-parallel
training of the mapping function allows more flexibility on the choice of the training data.
It can be performed by means of Generative Adversarial Networks (GANs) since the task
is similar to image to image translation allowing similar techniques to be adopted [14].

2.1.2 Synthetic Speech Detection

Synthetic Speech Detection (SSD) can be defined as the task of estimating whether a speech
signal under analysis has been synthetically created or it is bonafide. Since there is a wide
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variety of algorithms through which synthetic speech tracks can be generated, it is hard to
find a general model suitable for all possible synthetic speech methods. Additionally, the
continuous advances in deep learning allow the development of always new and better
ways of generating fake speech. To try to overcome these difficulties, a series of detection
algorithms has been proposed in literature to prevent the diffusion of fake speech record-
ings.

Traditional methods rely on the extraction of meaningful features from speech samples
that will be used to discriminate between fake and real audio tracks like the Constant-Q
Cepstral Coefficients (CQCC) [82], based on a perceptually inspired time-frequency anal-
ysis, Log Magnitude Spectrum, based on the magnitude, or Group Delay [95], based on
the phase. Moreover, also other audio transform coefficients like Linear-Frequency Cep-
stral Coefficients (LFCC), Mel-Frequency Cepstral Coefficients (MFCC), Cepstral Mean
and Variance Normalization (CMVN), Cochlear Filter Cepstral Coefficient (CFCC), Linear
Prediction Cepstral Coefficient (LPCC) and many of their variations and combinations can
be used [65]. Usually, one or a few of these features are used to train a Gaussian Mixture
Model (GMM) or a Support Vector Machine (SVM) for classification. Taking the advantage
of deep neural networks (DNNs) in classification tasks, multilayer perceptron (MLP) and
CNN based classifiers have been used to replace the conventional back-end classifiers. On
the other side, DNN structures have also been used at the front-end to facilitate feature
extraction [60], followed by traditional classifiers.

Among the features listed above, CQCC has been found to be the best choice, which is
also the baseline feature in the ASVspoof2019 challenge [91]. Recently, a set of subband
CQCC features is introduced in [99] for better detection performance. Subsequently, in
[15] eight hand-crafted features are further fused and followed by an MLP classifier. For
deep learning based approach, Lavrentyeva et al. [35] proposed the use of Fast Fourier
Transform (FFT), LFCC, and CMVN followed by a CNN for classification, while Li et al.
[36] adopted a Res2Net structure and a squeeze-andexcitation (SE) block. Lavrentyeva et
al. [35] and Li et al. [36] have achieved the state of the art performance on ASVspoof2019
dataset [83].

Neural network based techniques have proven very successful and effective for the SSD
task. Some examples are [37], where the time frequency representations of the signals are
fed to simple CNNs, and in [103] where the CNN is just exploited for feature extraction
while a RNN is used for classification. In this case, several inputs have been tested, rang-
ing from classic spectrograms to more complex novel features like Perceptual Minimum
Variance Distortionless Response (PMVDR). In [80] instead, linear filter banks are fed into
a Resnet to generate embeddings used as input of a neural network classifier, and in [30]
long-term features are used to discriminate fake and real audio tracks.

Most recently methods to detect audio deepfakes that have been introduced in literature
use the bicoherence matrix [3], long-short term features computed in an autoregressive
manner [8], environmental cues [10], or even emotions [13].
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Some approaches have also been directly applied to the raw input signal, i.e., in the time
domain [77]. In particular, Rawnet2 [77] has achieved impressive results both for synthetic
speech detection and user identification. This architecture is composed by a first layers
made by a SincNet [63], i.e., a novel convolutional network that transforms the raw input
with a band-pass filter bank for which the set of parameters is learnt during training. Then,
three layers corresponding to three residual blocks are inserted. Finally, a Gated Recurrent
Unit (GRU) and a fully connected layer are placed. Since this architecture has been proved
to be successful for synthetic speech detection, it has been proposed as baseline in the
recent ASVSpoof 2021 challenge [98].

2.2 DATASET

In order to test the proposed methods on different synthetically generated speech signals,
we work on the publicly available ASVSpoof 2019 dataset [83, 91]. This dataset has been
created for different tasks, from spoofing detection to countermeasures to replay attacks.
Since we are focusing on the SSD problem, we only use a part of the dataset called logical
access (LA) dataset.
This dataset is derived from the VCTK base corpus [97] which includes real speech data
captured from 107 speakers (46 males, 61 females), and also contains synthetic speech
tracks generated through 17 different speech synthesis techniques, ranging from the older
based on waveform concatenation (WC), text to speech (TTS), voice conversion (VC), trans-
fer function (TF) or non parallel voice conversion (NP) to novel ones based on CNNs ap-
proaches (NN). Here we describe synthetically each of them using the convention pro-
posed in [91]:

- A01 is a NN-based TTS system. It uses WaveNet [87], which is an efficient neural
waveform generator.

- A02 is a NN-based TTS system similar to A01 except that the WORLD vocoder [48]
rather than WaveNet is used to generate waveforms.

- A03 is a NN-based TTS system similar to A02 that can be easily built by using recipes
in an open-source TTS toolkit called Merlin [94].

- A04 A waveform concatenation TTS system based on the MaryTTS platform [66].

- A05 is a NN-based VC system that uses a Variational Auto-Encoder (VAE) [24] and
WORLD vocoder for waveform generation.

- A06 is a transfer-function-based VC system [42]. This method analyzes the input
voice signal following a source-filter model to replace a speaker voice into another
speaker voice. The signal is synthesized using a vocoder and overlap-add technique.

- A07 is a NN-based TTS system. The waveform is synthesized using the WORLD
vocoder, and it is then processed by WaveCycleGAN2 [78], a time-domain neural fil-
ter that transforms output waveform of the vocoder into a natural-sounding wave-
form.
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- A08 is a NN-based TTS system similar to A01. However, A08 uses a neural-source-
filter waveform model [90], which is much faster than WaveNet.

- A09 is a NN-based TTS system [100] that uses Vocaine vocoder [2] to generate wave-
forms.

- A10 is an end-to-end NN-based TTS system [27] that applies transfer learning from
speaker verification to the neural TTS system Tacotron 2 [69]. The synthesis is per-
formed through WaveRNN neural vocoder [29].

- A11 is a neural TTS system that is the same as A10 except that it uses the Griffin-Lim
algorithm [21] to generate waveforms.

- A12 is a neural TTS system based on WaveNet. It produces high-quality waveforms.

- A13 is a combined NN-based VC and TTS system that directly modifies the input
waveform to obtain the output synthetic speech of a target speaker [34].

- A14 is another combined VC and TTS system. It uses the STRAIGHT vocoder [32]
for waveform reconstruction.

- A15 is another combined combined VC and TTS system similar to A14. However,
A15 generate waveforms through speaker-dependent WaveNet vocoders rather than
the STRAIGHT vocoder.

- A16 is a waveform concatenation TTS system that uses the same algorithm as A04.
However, A16 is built given a different training set.

- A17 is a NN-based VC system that uses the same VAE-based framework as A05.
However, rather than using the WORLD vocoder, A17 uses a generalized direct
waveform modification method [34] for waveform generation.

- A18 is a non-parallel VC system [33] that uses a vocoder to generate speech from
MFCCs.

- A19 is a transfer-function-based VC system using the same algorithm as A06. How-
ever, A19 is built given different training set.

The dataset is divided in training set DASV tr, development set DASV dev and evaluation set
DASV eval. The three partitions are disjoint in terms of speakers, and the recording condi-
tions for all source data are identical (the sampling frequency is equal to 16000Hz).
In Table 2.1 are reported more specific details about the dataset. In particular, the training
set DASV tr includes real speech from 20 (8 male, 12 female) subjects and synthetic speech
generated from 6 methods (i.e., from A01 to A06). The development set DASV dev contains
real speech from 10 (4 male, 6 female) subjects and synthetic speech generated with the
same 6 methods used in DASV tr (i.e., from A01 to A06). The evaluation set DASV eval con-
tains real speech from 48 (21 male, 27 female) speakers and synthetic speech generated
from 13 methods (i.e., from A07 to A19). While the training and development sets contain
speech signals produced with the same algorithms, the evaluation set also contains record-
ings generated with different and new ones. Notice that however A16 and A19 actually
coincide with A04 and A06, respectively with small changes in the algorithms parameters.
Consequently, DASV eval only shares 2 synthetic speech generation methods with DASV tr
and DASV dev, whereas 11 methods are completely new.
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DASV tr DASV dev DASV eval Category

Samples Real 2580 2548 7355

Synthetic 22800 22296 63882

Total 25380 24844 71237

Speakers Real 20 10 48

Synthetic Algorithms A01 ✓ ✓ NN

A02 ✓ ✓ VC

A03 ✓ ✓ VC

A04 = A16 ✓ ✓ ✓ WC

A05 ✓ ✓ VC

A06 = A19 ✓ ✓ ✓ VC

A07 ✓ NN

A08 ✓ NN

A09 ✓ VC

A10 ✓ NN

A11 ✓ NN

A12 ✓ NN

A13 ✓ NN

A14 ✓ VC

A15 ✓ VC

A17 ✓ VC

A18 ✓ VC

Table 2.1: ASVSpoof2019 dataset: training, development and evaluation compositions per
number of samples, speakers, and synthetic algorithms. In particular, in the "Category"
column specifies which method is used by the algorithm to synthetically generate speech
signals, where NN = network, VC = vocoder and WC = waveform concatenation.
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3First Digit Features

In this chapter is investigated how first digit statistics extracted from MFCC coefficients can effi-
ciently enable a robust synthetic speech detection.

∗ ∗ ∗

In the following we present a strategy to address the problem of synthetic speech detec-
tion, i.e., discriminate fraudulent audio samples that have been synthetically generated
from bonafide ones. The proposed procedure relies on First Digits (FD) statistics com-
puted on signal transform coefficients [5], whose applications have been widely exploited
in other multimedia contents [7]. More precisely, we show that FD statistics are success-
ful in detecting fake audio samples generated by a set of algorithms and are extremely
useful in highlighting the statistics of silenced parts. Finally, we design a simple classifier
that can efficiently compete with more complex detectors in discriminating fake audios
from bonafide ones. Even if the suggested strategy does not rely on large neural network
architectures, it still obtains an accuracy above 90% in most of the examinated cases.

In this chapter we initially introduce the theoretical background related to the FD statistics
and then we explain its application for detecting traces left in the signals by the synthetic
algorithms. In the final part of this chapter, we apply this strategy to the ASVSpoof 2019
dataset [83] and we show the results achieved.

3.1 BACKGROUND

First Digit (FD) law, also known as the Benford’s law law or Significant Digit law, affirms
that the statistical frequencies of the leading significant digits of a large dataset coming
from real-life measurements (e.g., population numbers, stock prices, death rates, physical
and mathematical constants, etc.), follow a peculiar distribution illustrated in Figure 3.1.

More precisely, the probability value of the d-th digit is computed as follows:

p(d) = log10
�
1+

1
d

�
(3.1)

where d is the FD in base 10.

Nowadays, first digit law is a well-defined probabilistic problem and it has been observed
over a vast number of natural measurements. [62]. Additionally, it has also been no-
ticed that this rule plays an important role in the detection of data altered by humans.
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Figure 3.1: Benford’s law FD pmf computed in base 10

Indeed, FD statistics from manipulated data do not perfectly follow Benford’s law: when-
ever numbers are manipulated maliciously, the Benford’s distribution is destroyed (i.e., FD
frequencies diverge from their theoretical values) [18]. Consequently, this rule has been
successfully applied to many forensics problems such as fake accounts, false financial re-
ports and frauds detection [84] but also to multimedia forensics, with the aim to detect
image tampering [56] and AI-generated images [7].

3.2 FD FEATURES FOR SYNTHETIC SPEECH DETECTION

In this section, we demonstrate that fake audio recordings do not respect the first digit law.
In particular, in the first part we explain the rationale behind the proposed method. After
that, we provide a formal definition of the FD analysis for SSD and report all the technical
details about the detection strategy we propose.

3.2.1 Proposed Method

First digit law has been successfully used to detect multiple compressed data [45, 54] and
more recently also to identify GAN generated images [7]. Starting from this point, it is
possible to demonstrate that any synthetic signal generated by a set of FIR filters with
limited support fits Benford’s law with a different accuracy with respect to a natural signal.

The suggested method aims at detecting any possible relevant traces in the signal left
from the synthetic algorithms and using them to distinguish between natural and fake
audio recordings. Actually, this can be done by studying the statistics of quantized Mel-
Frequency Cepstral Coefficients (MFCC), which are then fed to a classifier.

Initially, given as input a speech signal x(t), we have obtained its representation in the
frequency domain by computing the MFCC coefficients mw(f ), where f is the considered
frequency and w is the index of the frame. We have choosen the MFCC coefficients since
they highlight the more meaningful frequency elements in speech signals [65].

30



3.2. FD Features for Synthetic Speech Detection

By looking at the considered dataset, we have noticed that many samples sometimes con-
tained long sequences of zeros that resulted in zero-valued MFCCs coeffiecients. Since
computing FD statistics requires processing non-zero signals, we have decided to remove
from the input data these zero values. We have verified on both training and test sets that
this operation did not compromise the final results.

In order to obtain more informative features, MFCC coefficients were rescaled (to obtain
different first digits quantization steps) with different quantization step ∆ as

mw,∆(f ) =
mw(f )
∆

. (3.2)

Given b as integer representation base (e.g. 10 for decimal), the first digits related to
mw,∆(f ) were obtained as

dw,∆(f ) =
$

|mw,∆(f )|
b⌊logb |mw,∆(f )|⌋

%
. (3.3)

We can notice that the FD can only assume values in {1,2, . . . , b − 1}.

The probability mass function (pmf) for each distinct cepstral coefficient and for each quan-
tization step can be computed as

pf ,∆(d) =
nwX
w=1

1d(dw,∆(f ))
nw

(3.4)

where nw is the number of windows in the signal (whose value depends on the duration
of the audio and on the window overlap) and 1d(dw,∆(f )) is the indicator function for digit
d, i.e.,

1d(x) =

1 if x = d

0 otherwise.
(3.5)

On the contrary, as it was already said previously, the pmf of natural audio signal must
follow the generalized Benford’s law defined as

p̂f ,∆(d) = βlogb

 
1+

1
γ + dδ

!
(3.6)

where β is a scale factor, γ and δ parameterize the logarithmic curve and d ∈ {1,2, ...,b − 1}
is one potential value that the considered FD in base b can assume.

The approximation accuracy between the pmf and the generalized Benford’s law highly
varies if we are considering bonafide w.r.t. forged data [57, 58]. As a matter of fact, such
accuracy was measured using different distance and divergence measures to quantify the

31



3. FIRST DIGIT FEATURES

proximity of pf ,∆(d) w.r.t. p̂f ,∆(d). In the rest of this section, we will omit indexes ∆ and f
for the sake of simplicity although in the creation of the final set of features multiple values
of f and ∆were considered.

The first divergence metric that we have computed is the Shannon divergence

DJS (p|p̂) =DKL(p|p̂) +DKL(p̂|p). (3.7)

which can be considered as a symmetrized version of the Kullbak-Leibler divergence
DKL(p|p̂). Additionally, since such metric proves to be unstable for biased pmfs, we have
computed also Renyi DRα (p|p̂) and Tsallis DTα (p|p̂) (α ∈ [0,1]) divergences as

DRα (p|p̂) =
1

1−α
�
logSα(p, p̂) + logSα(p̂,p)

�
(3.8)

DTα (p|p̂) =
1

1−α
�
2− Sα(p, p̂)− Sα(p̂,p)

�
(3.9)

where

Sα(p,q) =
b−1X
d=1

p(d)α

q(d)α−1
(3.10)

Since Shannon, Renyi and Tsallis divergences can be highly correlated for certain values
of the parameter α (in our specific case α = 0.3 is used), we also added the Mean Square
Error (MSE)

DMSE(p, p̂) =
1
b − 1

b−1X
d=1

(p(d)− p̂(d))2. (3.11)

We have adopted also this metric in some preliminary tests where the divergences of orig-
inal and fake audios were compared. We have discovered that the three divergences often
agree, i.e., in the original sample they are always smaller than those in the forged sample
or vice-versa. This statement does not always hold for MSE.

Finally, we have obtained a total number of features nf equal to

nf = ndncnbnq (3.12)

where nd is the number of divergences, nc is the number of chosen cepstral coefficients,
nb is the number of basis for the first digit extraction and nq is the number of different ∆
parameters.

With this procedure, it is possible to prove that Benford’s law is not respected anymore
by fake speech signals since the modification introduced by the synthetic algorithms re-
distributes data among the bins of the quantizer. Indeed, the final pmf presents some
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oscillating probability values that deviate from the ideal distribution. That’s why we have
computed the divergences between the empirically estimated pf ,∆(d) and its ideal fitted
version p̂f ,∆(d) to discover whether an audio recording is natural or it has been syntheti-
cally generated.

3.2.2 Problem Formulation

Let us consider a speech signal x(t) sampled at sampling frequency Fs. Our goal is to
identify whether it is bonafide or a fake. For this reason, we are in a binary classification
problem in which we associate to each speech signal x(t) a label

y =

0 if x(t) is bonafide

1 if x(t) is fake.
(3.13)

Therefore given an audio signal, the proposed procedure aims at obtaining and ŷ i.e. an
estimate of the ground-truth label y.

To reach this goal, we will proceed in two steps: a features extraction and a supervised
classification. The features extraction phase returns for each speech signal the correspond-
ing feature vector f = F(x(t)), where the function F(·) assigns to the speech recording a more
concise and informative representation. The classification block instead is responsible of
assigning the correct label to a specific signal. It can be described by the function C(·) that
can assume two values: C(f) = 0 or C(f) = 1 depending on whether the signal is bonafide o
fake.

3.2.3 Detection Method

The feature extraction block is shown in Figure 3.2. Given an audio signal x(t), we have
divided it in nw windows and for each of them we have computed the MFCCs, which were
then quantized with a quantization step ∆.

Figure 3.2: Feature extraction pipeline.

In agreement with (3.3) and given a base b, we have calculated the first digit statistic of
the f -th quantized MFCC frequency sample from the w-th block. Then the estimated pmf
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pf ,∆(d) was computed according to (3.4). An example of these pmfs for both bonafide
and fake signal is reported in Figure 3.3. It is possibile to see that the pmf associated to
the fake signal presents some oscillating probability values that deviate more from the
ideal distribution compared to the bonafide one. Other examples of pmfs computed with
different frequency numbers, quantization steps and bases can be found in Appendix A.

Figure 3.3: Pmf p̂ for bonafide (blue) and fake (orange) speech signal compared to the ideal
Benford curve (dashed light blue and red respectively) for frequency number 10 and base 10.

In the end, we have calculated the Shannon DJS (3.7), Renyi DR (3.8) and Tsallis DT (3.9)
divergences and finally the mean square error DMSE (3.11).

Given a set B of bases, a set F of MFCC frequencies and a set Q of quantization steps ∆,
we have concatenated all the computed values in a final feature vector as

fB ,F ,Q = [DJS ,DR,DT ,DMSE]b∈B ,f ∈F ,∆∈Q. (3.14)

Consequently, this feature vector was fed to a basic supervised classifier, which in this case
is a Random Forest classifier.

3.3 APPLICATION

In the following section we present the dataset preprocessing and the technical details
related to our experiment. Finally, we show and discuss the results obtained on the
ASVSpoof 2019 [83].

3.3.1 Dataset Preparation

In order to test the proposed method on different synthetically generated speech signals,
we work on the ASVSpoof 2019 dataset [83]. The work by Muller et. al. [50] highlights
the presence of a bias in the distribution of the lengths of leading and trailing silences in
real and synthetic speeches. Given that, probably most detectors are just discriminating
between fake and real samples by using this information. In order to avoid this problem,
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silent parts were removed from the signal, as suggested in [50] but this led to a big loss in
performance.

For this reason, we have analyzed the effectiveness of FD features on the silent (without
considering leading and ending silences) and voiced parts of the signals, independently. In
this way, we understood which speech elements were the most discriminative and whether
the proposed approach was reliably effective. For this purpose, we chose signal windows
of 101 samples with energy E(s, t) higher than −40 dB (assuming energy is normalized).

Since the number of silent values was sufficient to obtain meaningful statistics, only a
few samples (less than 1%) were then removed. However, this is not a big issue since as
shown in [50], the very low amount of silence in the audio track allows an easy detec-
tion of synthetic audio samples. Moreover, computing FD statistics on a limited amount
of signal windows would lead to highly irregular statistics: this implies strong diver-
gences/distances with respect to Benford’s law (and therefore, a correct classification).

Starting from the original data, three datasets called respectively Full, Silence and Voiced
have been created. In particular, Full contains the whole samples, Silence comprises the
silent parts of the signals and Voiced includes the remaining samples.

3.3.2 Experimental Setup

Our feature vectors are built as described in (3.14) and the following parameter values
were selected after some optimizations:

• In the computation of MFCCs, we select all the MFCC frequencies F = {1,2, ...,F},
where a filter bank of 26 filters was adopted: only coefficients from the second to
the fourteenth frequency were considered. Computation was carried out on window
sizes of 1024 samples with an overlap of 512 in the case of Full and Voiced. Overlap
was set to 128 in the case of Silence to have a sufficient number of signal windows
(and therefore stable FD statistics).

• The base for the first digit was chosen asB = {10,20} since higher values would imply
only a few samples (or no samples at all) for many FD values.

• The quantization factor ∆ varied in the set Q = {1,2,3,4}.
At the end our feature vectors were composed by nf = 420 features.

Since the amount of features was not huge, we avoided the adoption of complex neural
network classifiers and instead we selected a low complexity classifier. For this reason, a
simple random forest classifier was chosen as it proved well suited for tabular data pro-
cessing and highly robust w.r.t. overfitting problems and unbalancing. We used the imple-
mentation provided with the open source e ScikitLearn Python library [55]. A grid search
to tune the parameters is performed on the following set of values:

• number of decision trees, ntrees ∈ {10,100,500,1000}

• split criteria, criterion ∈ {gini, entropy}
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while all the other parameters are left as their default values.

For this experiment we consider only a portion of DASV tr. Indeed, it originally contains
2580 natural and 22800 generated recordings, but for our binary classification problem we
would prefer a balanced dataset. For this reason, we extract the same number of real and
fake audio, i.e., all the 2580 natural audio and only 2580 audio generated by all the algo-
rithms (specifically, 430 recordings for each algorithm). Then, we use the 80% of this new
version of the training set to actually train the classifier, while the remaining 20% is used for
parameters tuning. In this way, we ensure that every generated class has the same number
of audio traces and that the total amounts of bonafide and synthetic data are balanced (the
adopted classifier is a random forest which has low overfitting problems so the data used
for training is plenty). Then we test the method on both development set DASV dev, which
consists of samples generated with the same algorithms used for synthesised the training
samples, and evaluation set DASV eval, which comprises also new synthesis algorithm.

3.3.3 Results

Here, we report the results obtained by applying a random forest classifier to the feature
vectors described before to detect whether a speech signal is real or fake. For each features
configuration, we run an indipendent grid search to assure a fair comparison between the
various configurations.

In table 3.1 are reported the one-vs-one on-set results achieved by performing binary clas-
sification between bonafide and generated samples. In particular, we show the accuracy in
detecting fake speech signals based on the used synthetic algorithm. Instead, in Table 3.2
are reported the one-vs-one off-set accuracy. In both cases, all the results are reported for
Silence, while for Full and Voiced only the best results are shown.

Dataset Development

Algorithm A01 A02 A03 A04 A05 A06

Silence ∆=1 0.944 0.962 0.961 0.819 0.949 0.471

Silence ∆=1-2 0.953 0.972 0.970 0.829 0.961 0.472

Silence ∆=1-3 0.951 0.972 0.972 0.836 0.964 0.466

Silence ∆=1-4 0.952 0.973 0.972 0.838 0.963 0.456

Silence b=10 0.945 0.959 0.961 0.830 0.924 0.468

Silence b=20 0.866 0.973 0.881 0.796 0.957 0.434

Full ∆=1-4 0.951 0.982 0.949 0.871 0.956 0.424

Voiced ∆=1-3 0.755 0.708 0.713 0.548 0.574 0.532

Table 3.1: On-set results and ablation studies for the proposed algorithm
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Regarding the quantization parameter ∆, we incrementally concatenated the features com-
puted with different ∆s in order to measure how much each specific feature affected the
final performance. We noticed that that using only one ∆ value is usually not enough to
achieve the best performance. With several trials, we discovered that in general a quanti-
zation step equal to 3 or 4 allow to maximize the performance.

With respect to the base value, we observed that keeping the features generated by both
b = 10 and b = 20 (with all the selected values of ∆) was more effective than selecting only
one base value. Indeed, the statistics generated for b = 10 were not very correlated with
those obtained for b = 20, and therefore, merging them provides additional information to
the system.

From table 3.1 and 3.2, we can see that the performance obtained on Silent is comparable to
or even better to the one obtained for Full especially in the off-set tests. On the other hand,
removing silences from the signals leads to very poor performance on Voiced. This means
that synthetic algorithms are able to reconstruct realistic voices more easily, while the noise
present in silent sequences instead cannot be easily modelled. Additionally, the slightly
lower performance achieved on Full w.r.t. Silence might be explained by the presence of
spoken parts in some bonafide samples that might deviate the FD statistic towards the
ideal FD distribution.

The lower performance are obtained by algorithms A06, A17, A18, A19, which perform a
voice conversion task starting from real audio samples as input and converting them into
voiced samples for a desired speaker. However, also the algorithm A05 is a VC algorithm
but in this case the achieved accuracy is higher. This happends because the task is car-
ried out by a neural network that processes the entire sequence with the silence included
leading to FD statistics that are detected by our approach.

Dataset Evaluation

Algorithm A07 A08 A09 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19

Silence ∆=1 0.946 0.948 0.955 0.947 0.947 0.952 0.953 0.931 0.876 0.860 0.597 0.615 0.592

Silence ∆=1-2 0.953 0.953 0.965 0.954 0.956 0.959 0.960 0.939 0.888 0.861 0.598 0.626 0.597

Silence ∆=1-3 0.955 0.957 0.968 0.956 0.957 0.962 0.962 0.941 0.888 0.864 0.600 0.629 0.599

Silence ∆=1-4 0.951 0.955 0.965 0.952 0.956 0.960 0.959 0.942 0.887 0.864 0.601 0.625 0.598

Silence b=10 0.925 0.933 0.944 0.927 0.929 0.936 0.928 0.912 0.860 0.846 0.598 0.642 0.599

Silence b=20 0.919 0.897 0.929 0.924 0.924 0.903 0.945 0.889 0.842 0.820 0.590 0.579 0.593
Full ∆=1-4 0.941 0.942 0.952 0.939 0.940 0.915 0.951 0.896 0.853 0.866 0.597 0.581 0.596

Voiced ∆=1-3 0.656 0.796 0.798 0.629 0.648 0.628 0.687 0.720 0.709 0.640 0.526 0.533 0.580

Table 3.2: Off-set results and ablation studies for the proposed algorithm
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Moreover, A16 and A04 approaches show an higher misclassification probability. These al-
gorithms are based on waveform concatenation, i.e., signals are obtained by concatenating
real samples from big databases of real diphones. Such composite nature makes the syn-
thetic speech FD statistics closer to that of bonafide samples leading to a lower detection
accuracy.

On the other hand, an high accuracy is reached by the algorithms A13, A14, and A15,
in which voice converted samples are generated starting from TTS outputs. This could
happen because VC algorithms do not change drastically silenced parts as they are not
relevant in characterizing speaker ID and present a completely different statistics w.r.t.
voiced parts. In these cases, the statistics of the original silenced intervals are not altered
leading to a higher misclassification probability. However, this result is not verified when-
ever VC is applied after TTS since in that case also the generated nature of silence leads to
non-conventional FD statistics, which lead to higher divergences.

3.4 FINAL REMARKS

In this chapter, we focused on the effect of voiced and silenced parts in synthetic speech
detection. After some analysis on silences, we pointed out that most of the discriminative
information in a speech signal is contained in the silenced parts. Consequently, we pro-
posed a method for synthetic audio detection based on first digit statistics. Despite having
very low computational complexity, this approach obtained good detection performance
against different types of algorithms. Numerical results showed that most algorithms are
able to produce statistically meaningful voice signals but often fail at creating realistic si-
lences, especially in the case of algorithms based on neural networks.
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4Implicit Neural Representations

In this chapter a synthetic speech detection method that uses neural networks for implicit neural
representations of speech signals is presented. The results obtained on the ASVSpoof 2019 dataset
with the proposed solution are reported.

∗ ∗ ∗

The proposed strategy relies on Implicit Neural Representations (INRs), which is a novel
way to parameterize signals of all kinds using neural networks [73]. It has emerged as
a powerful paradigm, offering many possible benefits over conventional representations.
Indeed in recent years, the introduction of neural representations has completely changed
the generation and representation of images in deep learning [67]. Although much atten-
tion has been attracted for neural representation in images, few studies have been done in
the audio domain.

The suggested method implements a neural network for INRs of speech signals to address
the problem of synthetic speech detection. More specifically, each signal is parametrised
using a neural network that is trained to map 1D temporal coordinates of the specific input
speech signal to its corresponding amplitude values. This procedure is repeated for all the
available audio recordings, so that a way that each network is overfitted to its specific input
and is able to reconstruct this signal only. This operation is performed also on silent and
voiced parts of the signals, independently. By comparing the trends of the training losses in
terms of epoch vs reconstruction MSE, in most of the cases a different behaviour between
fake and bonafide samples is observed. However, the noise presents in silent sequences
proves to be useful and almost necessary for an efficient synthetic speech detection.

In this chapter the theoretical background related to the INRs technique is introduced.
Then, it is explained how this representation of speech signals can be used efficiently for
detecting synthetically generated audio. In the final part of this chapter, this strategy is
applied to the ASVSpoof 2019 dataset [83] and the obtained results are discussed.

4.1 BACKGROUND

Implicit Neural Representations (INRs), also known as coordinate-based neural represen-
tations, are a class of techniques to parametrise signals using neural networks [38, 53]. This
paradigm has recently attracted the attention of the machine learning community for their
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capability of representing complex signals, especially in computer vision, 3D rendering,
and image synthesis applications [44, 46].

Even if the world around us is not discrete, real-world signals such as images or sound
are usually represented in a discrete manner. For example, images are represented as a
grids of pixels, 3D shapes as grids of voxels, point clouds, or meshes, and audio signals
as discrete samples of amplitudes (Fig. 4.1). However, discrete representations come with
a significant drawback: they only contain a discrete amount of information regarding the
signal. For example, the amount of information we have for an image is bound by the size
of the pixel grid.

Figure 4.1: Discrete representations of various signals.

In contrast, INRs parameterize a signal as a continuous function that maps the domain
of the signal to whatever is at that coordinate. In the case of images, this function will
take as input the 2D pixel coordinates and outputs the correct RGB value for that specific
pixel. In this way, we could sample pixels at any resolution, without the constraints of the
pixel grid. Regarding the speech signals instead, this function will parameterize the signal
as a mathematical formula such that it will take as input the 1D temporal coordinate and
outputs the correct amplitude value at that specific time. As V. Sitzmann from MIT’s Scene
Representation Group writes, such functions are too complex to simply “write them down”
[73] and thus this method is introduced. Indeed, neural implicit representations use neural
networks that learn how to estimate a function which mapping the domain of the input
signal to whatever is at that coordinate (Fig. 4.2).

4.2 INR FOR SYNTHETIC SPEECH DETECTION

In this section, we demonstrate that the performances of the neural network in terms of
MSE are different between bonafide and fake audio recordings, thus these can be used for
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4.2. INR for Synthetic Speech Detection

Figure 4.2: Implicit neural reprentations for images and speech signals.

the SSD task. In particular, in the first part we explain the rationale behind the proposed
method. After that, we provide a formal definition of the SSD problem and report all the
technical details about the detection strategy we propose.

4.2.1 Proposed Method

The application of INR to time-series data has been relatively underdeveloped. Represen-
tation of time varying 3D geometry has been explored [51], but they do not investigate
time-series data. Although SIREN [74] showed the capability to represent audio, its focus
was limited to the high-quality representation of the input signals. More recently in 2022,
[26] uses INR to solve the problem of time-series anomaly detection.

In this thesis we propose the use of INRs of speech signals to detect synthetically generated
audio. More in details, let denote a speech signal as

X = {(t1, y1), (t2, y2), (t3, y3), . . . , (tN , yN )} (4.1)

where ti denotes the 1D temporal coordinate, yi is the corresponding amplitude value, and
N indicates the length of the sequence. After preprocessing the time coordinate input via
an encoding function γ (see Section 4.2.1.1), our aim is to learn a function fθ : R 7→ R with
parameters θ that maps the encoded time γ(ti) to its corresponding value yi of the data,
i.e.,

fθ[γ(ti)] = yi i = 1, . . . ,N . (4.2)

This function is different for each specific audio and it can be learned by a neural network,
which is overfitted to that particular sample. Indeed after training, the estimated func-
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tion would be implicitly encoded in the neural network, hence the name “Neural Implicit
Representation”.

To represent a given speech signal, we build a fully connected neural network, resulting in
a simple yet powerful model capable of representing audio (see Section 4.2.1.2).

4.2.1.1 Positional Encoding

Recent works have highlighted that INRs benefit from computing sinusoidal transforma-
tions of the coordinates with a positional encodings (PEs) [46, 96], which enables the neural
network to represent higher frequency functions.

Indeed, a network fθ that directly operates on the input ti performs poorly at represent-
ing high-frequency variation in amplitude. This is consistent with recent work by [61]
which shows that deep networks are biased toward learning lower frequency functions.
They additionally show that mapping the inputs to a higher dimensional space using high-
frequency functions before passing them to the network enables better fitting of data that
contains high-frequency variation. We leverage these findings in our context, and we re-
formulate fθ as a composition of two functions:

fθ = f
′
θ ◦γ. (4.3)

Here γ is fixed and it is a mapping from R into a higher dimensional space R2L , and f ′θ is
learned and it is still simply a regular neural network. Formally, the encoding function we
use is:

γ(p) =
�
sin(20πp),cos(20πp), · · · ,sin(2L−1πp),cos(2L−1πp)

�
. (4.4)

This function γ(·) is applied separately to each coordinate values ti , which are previously
normalized to lie in [0, 1].

4.2.1.2 Architecture

We implement a fully connected neural network without any convolutional layers, often
referred to as a ReLU-based Multi-Layer Perceptron (MLP).

Since the network is trained on only one sample the time, there is no need to build a very
deep neural network. Indeed, a deep network has many layers and consequently many
parameters, which require an huge amount of time to be trained without improving per-
formance too much given the reduced dataset size. For this reason, a fully connected feed-
forward network with only three hidden layers is defined to perform this specific task. As
activation function for the hidden layers, the ReLU function is chosen. However, other
activation functions (like tanh, sigmoid,. . . ) have also been tried, but the ReLU func-
tion was preferred since it is less prone then the others to the vanishing gradient problem,
which could impair the networks capability to learn. Instead, a sigmoid activation func-
tion is used for the output layer since it produces a vector where each element lies in the
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range [0, 1] (the inputs were previously normalized in this range). Before the output layer,
dropout is introduced. This technique aims to contain overfitting effects, since during the
training phase it randomly ignores some neurons according to a certain probability. The
entire architecture is summarized in Figure 4.3.

Figure 4.3: MLP architecture

To accelerate the SGD procedure we choose Adam (Adaptive Moment Estimation) as opti-
mization algorithm, being it the most recent and reliable among the others (e.g. Adadelta,
RMSprop,. . . ) with two parameters: the learning rate and the L2 regularization (weight
decay) to avoid network weights taking too large values.

The selected loss function is the Mean Square Error (MSE) which computes the squared L2
norm between true and predicted values. In other words, we compare the predicted value
at each time i to its ground-truth value yi , resulting in the following optimization problem:

L =
1
N

NX
i=1

������yi − fθ[γ(ti)]������22 . (4.5)

where the sum is over all temporal values and || · || indicates the L2 norm.

4.2.2 Problem Formulation

Given a speech signal, our goal is to identify whether it is bonafide or a fake (assigning a
label to it). This is the same binary classification problem described in Section 3.2.2 of the
previous chapter.

We will try two different strategies. The first will be based on the computation of ∆MSE ,
i.e., the difference between the MSE of the last and of the first epoch (see Section 4.2.3.1). In
the second method, we will perform a linear and a polynomial fit on the MSE curves (see
Section 4.2.3.2). In both approaches, we will put a discriminative threshold respectively on
∆MSE and on fitting coefficients to distinguish bonafide from spoof signals.
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4.2.3 Detection Method

In the following, we explore two different strategies to address the problem of synthetic
speech detection using INRs. We develop these methods starting from the comparison of
the trends of the losses in terms of epoch vs reconstruction MSE. In particular, we produce
some interesting plots for both voiced and silent parts of the signals, as the ones shown in
Figure 4.4. In these plots, the solid lines represent the trend of the mean of the MSE of all
bonafide and spoof training samples, while the shaded regions fill the space between the
min and max values of the MSE. The same plots for development and evaluation sets are
reported in Figures A.2, A.3 of Appendix A.

Also in this case, we can see that most of the information useful for the discrimination
between bonafide and spoof signals is contained in the silenced parts. Indeed, the loss
curves of voiced parts show an equal behaviour for both bonafide and spoof samples. For
this reason, in the rest of the following analysis, we will focus only on the Silence version of
the datasets (defined in Section 3.3.1). Indeed for all the three Silence parts of the datasets,
a different trend between fake and bonafide losses is observed. On the basis of a first
visual analysis, it seems that bonafide losses decrease down faster than the spoof ones.
Starting from this observation, we develop two different detection methods to verify this
hypothesis.

4.2.3.1 Thresholding of ∆MSE
At this point, we want to verify that bonafide MSE trends decrease more rapidly than the
spoof ones, as the number of epochs increase. To do so, we compute for each sample the
∆MSE that we define as

∆MSE =MSEnepochs −MSE10epochs (4.6)

whereMSEnepochs andMSE10epochs are the MSE values at the last epoch and at epoch number
10 respectively. Initially the difference was computed between the last and the first epoch,
but worst results were obtained. Since the the MSE shows an unstable and oscillating
behavior in the first epochs, we decided to exclude these values from the computation of
∆MSE .

Our goal is to find a discriminative threshold between bonafide and spoof ∆MSE , i.e., we
would like to find a threshold such that∆MSEbonaf ide > threshold∆MSEspoof < threshold.

(4.7)

If these inequalities are respected by the majority of the samples, we will have demon-
strated that in the neural networks trained on bonafide samples, the MSE values decrease
more than the ones of spoof samples (considering the same number of epochs).

In other words, we want to find a threshold such that the inequalities defined in Equa-
tion 4.7 are verified. To do this, we compute the Receiver Operating Characteristic (ROC)
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Figure 4.4: Trends of the MSE means (solid lines) and ranges between min and max MSE
values (shaded regions) for both bonafide and spoof signals for Voiced and Silence version of
the training set.

curves. An ROC curve is a graph showing the performance of a classification model at all
classification thresholds.

In binary classification, there are four possible outcomes for a test prediction: true positive,
false positive, true negative, and false negative (Fig. 4.5). In our case, we define as positive
class (label=0) the bonafide category.
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Figure 4.5: Confusion matrix structure for binary classification problems

The ROC curve is produced by calculating and plotting the true positive rate against the
false positive rate for a single classifier at a variety of thresholds. One advantage presented
by ROC curves is that they aid us in finding a classification threshold that suits our specific
problem.

In our case, the threshold would be the predicted probability of a ∆MSE values belonging
to the positive class. Normally, if a ∆MSE value is predicted to be positive at > 0.5, it is
labeled as positive. However, we could really choose any threshold between 0 and 1 (0.1,
0.3, 0.6, 0.99, etc.) and ROC curves help us visualize how these choices affect classifier
performance.

The true positive rate (TPR) can be represented as:

T PR =
T P

T P +FN
(4.8)

where T P is the number of true positives and FN is the number of false negatives. The
true positive rate is a measure of the probability that an actual positive instance will be
classified as positive.

The false positive rate (FPR) can be written as:

FPR =
FP

FP + TN
(4.9)

where FP is the number of false positives and TN is the number of true negatives. The
false positive rate is essentially a measure of how often an actual negative instance will be
classified as positive.

The threshold that guarantees the inequalities defined in equation 4.7 is choosed as the one
that maximizes the difference between true positive rate and false positive rate, i.e.,

threshold = arg max
thresholds

(T PR−FPR) (4.10)
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4.2.3.2 Thresholding of MSE fitting coefficients

Now we develop a more detailed analysis of the loss curves. In a first step we perform a
linear curve fitting, i.e., we fit our curves shown in Figure 4.4 to a straight line. Given the
equation of a generic straight line, defined as

f (x) =mx+ q (4.11)

where m is the slope and q is the y-intercept of the line, we want to find the coefficients m
and q that fit the data in a least-squares sense.

To discriminate between bonafide and spoof samples, we would like to find a threshold
on the slope coefficients such thatmbonaf ide < thresholdmspoof > threshold.

(4.12)

The threshold is found using ROC curves with the method described in the previous sec-
tion. If these inequalities are verified by the majority of the samples, we will have demon-
strated that bonafide losses decrease down faster than the spoof ones.

To obtain a better fit, we also perform a polynomial curve fitting, i.e., we fit our curves
with a second-degree polynomial defined as

f (x) = ax2 + bx+ c. (4.13)

We want to discover the coefficients a, b and c that better fit the curves.

Since in this case we want to find a threshold on two coefficients (a and b), we will use
a Support Vector Machine (SVM) classifier to discriminate between bonafide and spoof
signals.

4.3 APPLICATION

In this section we describe the dataset preprocessing and the technical details related to our
proposed methods. Then, we present and discuss the results obtained on the ASVSpoof
2019 dataset.

4.3.1 Dataset Preparation

In order to test the proposed methods, we adopt the ASVSpoof 2019 dataset [83] that con-
tains the three datasets DASV tr, DASV dev and DASV eval. As it was already said in Section
4.2.3, we will focus our attention only on the Silence version of the datasets.

However, all the three datasets include speech signals with different lengths. When we
train our neural network on these samples individually, this might be a problem and can
compromise the final results. Consequently, we cut all the signals to the length of the
shortest audio of the specific dataset. In this way, the Silence versions of DASV tr, DASV dev
and DASV eval datasets will contain only signals with the same length.

47



4. IMPLICIT NEURAL REPRESENTATIONS

4.3.2 Experimental Setup

Our neural network is built as described in Section 4.2.1.2 and the following parameter
values were selected after some optimizations:

• In the function γ : R→ R2L of the positional encoding, we set L = 16.

• In the neural network, we use three fully connected layers with nunits = 64 neurons
each.

• The probability of the dropout layer is set to p = 0.1.

• Each network is trained for a maximum of nepochs = 200 epochs.

• The learning rate adopted by the adam optimizer is set to λ = 0.001.

In this experiment we consider only a portion of the three dataset DASV tr, DASV dev and
DASV eval: we prefer a balanced dataset. For this reason, we extract the same number of
real and fake audio. In particular, for the DASV tr dataset we select the 2580 natural audio
and only 2580 audio generated by all the algorithms (specifically, 430 recordings for each
algorithm). Instead for the DASV dev dataset, we use 2544 bonafide audio and 2544 spoof
audio (424 signals for each algorithm). Finally, for the DASV eval dataset we consider only
7345 natural audio and 7345 generated audio (565 samples for algorithms). In this way, we
guarantee that the total number of bonafide and spoof audio is balanced and that there is
the same amount of generated audio for each synthetic algorithm.

4.3.3 Results

Here, we report the results obtained by the two methods described before to detect
whether a speech signal is real or fake.

4.3.3.1 Thresholding of ∆MSE
In Table 4.1 are reported the results obtained with a discriminative threshold on ∆MSE
values. In particular, we show the accuracy in detecting fake speech signals based on the
used synthetic algorithm.

The lower performance are obtained for the algorithms A06 and A19, which perform a
voice conversion task starting from real audio samples as input and converting them into
voiced samples for a desired speaker.

On the other hand, an high accuracy is reached for the algorithms A04 and A16. These al-
gorithms are based on waveform concatenation, i.e., signals are obtained by concatenating
real samples from big databases of real diphones.
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Dataset

Algorithm Training Development Evaluation

A01 0.888 0.912

A02 0.862 0.900

A03 0.850 0.903

A04 0.929 0.961

A05 0.880 0.925

A06 0.504 0.544

A07 0.685

A08 0.799

A09 0.864

A10 0.674

A11 0.717

A12 0.862

A13 0.589

A14 0.874

A15 0.887

A16 0.881

A17 0.704

A18 0.827

A19 0.514

Table 4.1: Results for the ∆MSE method

In Figure 4.6 are reported the statistics of ∆MSE values of the training dataset, i.e., fre-
quency histograms that present on the horizontal axis the ∆MSE values and on the vertical
axis the frequencies with which each different value occurs. Moreover, the thresholds ob-
tained with the ROC curves and used for the classification bonafide vs spoof are shown.
The same plots for development and evaluation datasets are reported in Figure A.4 in Ap-
pendix A.

As we can see, the adopted thresholds separate quite well bonafide statistics from spoof
ones for the majority of the algorithms. The statistics of bonafide and spoof overlap only
for algorithms A06 and A19. In these cases, the threshold is not able to separate bonafide
histogram from spoof ones.
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Figure 4.6: ∆MSE values vs frequency of occurrence for bonafide (blue) and spoof (orange)
training samples. The discriminative threshold is highlighted (dashed red line).

4.3.3.2 Thresholding of MSE fitting coefficients

The results obtained with the linear curve fitting are not as good as we expected. In Figure
A.5 in Appendix A the MSE curves are fitted to a straight line and the slope coefficients
are reported.

The classification accuracies reached by placing a threshold on the slope coefficient of the
fitting line are shown in Table A.1 in Appendix A. As we can see, this approach is not able
to discriminate between bonafide and spoof samples.

For this reason, we try to fit our curves with a second-degree polynomial (the results are
shown in Figure A.6 in Appendix A for development and evaluation datasets).

In Table 4.2 are reported the classification accuracies reached by placing a threshold on
the polynomial fitting coefficients. With this approach, slightly better results are obtained.
The lower accuracies are obtained by voice conversion algorithms A06, A17, A18, A19.
Instead, better results are obtained by algorithms based on CNNs approaches, such as A11
and A13.
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Dataset

Algorithm Training Development Evaluation

A01 0.529 0.500

A02 0.821 0.781

A03 0.585 0.530

A04 0.715 0.711

A05 0.777 0.739

A06 0.522 0.481

A07 0.733

A08 0.658

A09 0.789

A10 0.754

A11 0.809

A12 0.702

A13 0.800

A14 0.784

A15 0.667

A16 0.668

A17 0.585

A18 0.597

A19 0.519

Table 4.2: Results for the polynomial curve fitting method.

4.4 FINAL REMARKS

In this chapter, we proposed two methods for synthetic audio detection based Implicit
Neural Representations. In particular, we focus on studying the trends of the neural net-
work losses of bonafide and spoof samples. We find out that the neural networks trained
on bonafide samples have a loss that decrease faster than the spoof ones. This observation
is used to discriminate bonafide from spoof sample by looking only at the trend of the
losses. This approach obtained discrete detection performance against different types of
algorithms.
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5Conclusions

In this chapter the overall work is summarized while final conclusions and remarks are drawn.
Finally, a perspective towards future works is presented.

∗ ∗ ∗

In this thesis we presented two different research perspectives for audio forensics analy-
sis and we proposed solutions that use classic signal processing techniques or recent ML
methodologies. We mainly focused on Synthetic Speech Detection (SSD) task, which is the
task of estimating whether a speech signal under analysis has been synthetically gener-
ated or it is real. This research theme is not lacking of challenges, given the number and
the variety of methods for creating synthetic speech.

In Chapter 2 we described the state of the art algorithms for synthetic speech generation
and synthetic speech detection to better understand the challenges that lie behind the SSD
problem. Moreover, we provided a detailed description of the dataset that we used to
tested our methods. We chose the ASVSpoof 2019 dataset, a large dataset containing
speech signals that are real or that are created by several different synthesis algorithms.

In Chapter 3 we presented a first approach to address the SSD problem. This method uses
the First Digit (FD) statistics computed on MFCC coefficients to detect peculiar character-
istics of fake audio signals.

In Chapter 4 we introduced a second method that instead adopts Implicit Neural Repre-
sentations (INRs) of speech signals, which are obtained with neural networks overfitted
on each signal, to distinguish fake samples from bonafide ones.

In both methods, we analyzed the impact of voiced and silent parts in synthetic speech
detection. After some preliminary analysis and comparisons, we pointed out that silent
parts within the speech contain most of the discriminative information, thus they have a
fundamental role in synthetic speech detection. Indeed, we tested our methods separately
on voiced and silent parts of the speech signals. Empirical results showed that most audio
forging algorithms are able to produce statistically meaningful voice signals but often fail
at creating realistic silences.



5. CONCLUSIONS

Indeed on silence parts, both methods achieves good detection performance against a va-
riety of algorithms. Instead, lower performances are obtained in both cases on voice con-
version algorithms, which start from real audio samples as input and convert them into
voiced samples for a desired speaker. A possible explanation for this evidence is that VC
algorithms do not change significantly silenced sections as they are not relevant in charac-
terizing speaker ID. In these cases, the original silenced parts are not altered and this leads
to a higher misclassification probability.

Comparing the numerical results, the first procedure based on FD statistics reaches better
resutls. Indeed, it is computationally-lightweight and effective on many different algo-
rithms since it does not rely on large neural detection architecture and obtains an accuracy
above 90% in most of the classes of the ASVSpoof dataset.

5.0.1 Future Works

Future works should try to tackle the problem of detection in a voice conversion scenario
(possibly by integrating this with other well working state of the art approaches) since
the transformation of a naturally acquired signal could retain most of the statistics for the
silenced parts thus leading to a higher misclassification probability.

Moreover, the FD statistics method may be applied on different types of audio features
(e.g., FFT, LPC, ..) or may be combined with a similar state of-the-art algorithm (i.e. with
separate feature extraction and classification steps). For example with the work by Borrelli
et. al. [9], which exploits short-term and long-term (STLT) cues and the bicoherence matrix
to extract a discriminative representation between spoof and bonafide samples. For the
INRs method, other more complex neural architectures may be investigated (e.g., more
layers may be added or some parameters may be changed). Furthermore, other analysis
may be done on the loss curves of the neural networks or additional useful information
may be extracted from them. Also, both methods may be tested on other datasets due to
the huge variety of synthetic speech generation methods that exist.

Despite the achieved promising results, several scenarios need further investigation. For
example, we only considered the logical access synthetic speech detection problem, i.e., we
analyze a clean recording of each speech. It is therefore part of our future studies to con-
sider what happens if speech tracks get corrupted by noise, coding, or transmission errors.
This scenario is particularly important if we consider that synthetic speech recordings may
be shared through social platforms or used live during phone calls.
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AAppendix

In this chapter additional data concerning the analyses led on the dataset are reported.

∗ ∗ ∗

b=10, ∆=1

b=10, ∆=2



A. APPENDIX

b=10, ∆=3

b=10, ∆=4

b=20, ∆=1
Figure A.1: Pmf p̂ for bonafide (blue) and fake (orange) speech signal compared to the
ideal Benford curve (dashed light blue and red respectively) for different frequency numbers,
quantization steps ∆ and bases b.

56



Dataset

Algorithm Training Development Evaluation

A01 0.500 0.500

A02 0.504 0.501

A03 0.644 0.724

A04 0.500 0.500

A05 0.500 0.500

A06 0.551 0.509

A07 0.500

A08 0.509

A09 0.500

A10 0.500

A11 0.500

A12 0.500

A13 0.500

A14 0.500

A15 0.500

A16 0.500

A17 0.500

A18 0.502

A19 0.524

Table A.1: Results for the linear curve fitting method.
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Figure A.2: Trends of the MSE means (solid lines) and ranges between min and max MSE
values (shaded regions) for both bonafide and spoof signals for Voiced and Silenced version
of the development set.
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Figure A.3: Trends of the MSE means (solid lines) and ranges between min and max MSE
values (shaded regions) for both bonafide and spoof signals for Voiced and Silenced version
of the evaluation set.
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Figure A.4: ∆MSE values vs frequency of occurrence for bonafide (blue) and spoof (orange)
samples for both development and evaluation datasets. The discriminative threshold is
highlighted (dashed red line).
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Linear fitting - training set

Linear fitting - development set
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Linear fitting - evaluation set

Figure A.5: Linear fitting on MSE curves.

Polynomial fitting - training set
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Polynomial fitting - development set

Polynomial fitting - evaluation set

Figure A.6: Polynomial fitting on MSE curves.

63





Acknowledgements

Vorrei ringraziare tutte le persone che sono state al mio fianco durante questo percorso,
senza di voi non sarei mai arrivata fino a qui.

Ringrazio innanzitutto il Prof. Milani ed i dottorandi Daniele ed Elena del laboratorio
LTTM, per avermi accompagnata con gentilezza e disponibilità in questo percorso di tesi
stimolante ed istruttivo.

Il grazie più sentito va alla mia Famiglia, è merito vostro e di tutti i sacrifici che avete fatto
se sono arrivata fino a qui. In particolare, a mamma Maria Grazia per avermi accompag-
nata durante tutta la mia carriera scolastica e per non avermi mai fatta sentire sola durante
i lunghi pomeriggi di studio. A papà Vincenzo, per essere stato sempre disponibile ad
aiutarmi e per essere sempre riuscito a risollevarmi il morale nei momenti di difficoltà. A
mia sorella Francesca, per essere sempre stata un modello di rifermento e fonte di ispi-
razione nello studio e nella vita, crescere ed imparare insieme a te è stato fondamentale
per arrivare fino a qui.

Un sentito grazie va anche a tutti i miei parenti, nonni, zii e cugini. In particolare a mia
cugina Noemi, con cui ho da sempre un legame speciale. Sei sempre riuscita a capirmi,
supportarmi e a darmi buoni consigli.

Ci tengo poi a ringraziare le mie amiche di una vita Alesia, Beatrice e Martina che sono al
mio fianco praticamente da sempre. Senza di voi tutto il mio percorso di studi, dalle scuole
elementari al liceo, non sarebbe stato lo stesso. Se oggi sono arrivata fin qui è anche grazie
a voi e al vostro esserci sempre state.

Ringrazio poi la mia compagnia di amici Aeiouipsilon, per tutti i bei momenti che abbiamo
vissuto insieme e per quelli che verranno.

Infine, ringrazio la me stessa del passato. Per aver avuto il coraggio di intraprendere
questo percorso impegnativo, che inizialmente tanto la spaventava. Per non aver mai mol-
lato nonostante le numerose difficoltà incontrate. Per avermi condotto fino a qui. E questo
è soltanto l’inizio.





Bibliography

[1] Y. Agiomyrgiannakis. Vocaine the vocoder and applications in speech synthesis. In
2015 IEEE international conference on acoustics, speech and signal processing (ICASSP),
pages 4230–4234. IEEE, 2015.

[2] Y. Agiomyrgiannakis. Vocaine the vocoder and applications in speech synthesis.
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015.

[3] E. A. AlBadawy, S. Lyu, and H. Farid. Detecting ai-synthesized speech using bispec-
tral analysis. In CVPR workshops, pages 104–109, 2019.

[4] J. Allen, S. Hunnicutt, R. Carlson, and B. Granström. Mitalk-79: The 1979 mit text-
to-speech system. Journal of the Acoustical Society of America, 65, 1979.

[5] Tiziano Bianchi, Alessia De Rosa, Marco Fontani, Giovanni Rocciolo, and Alessan-
dro Piva. Detection and classification of double compressed mp3 audio tracks. In
Proceedings of the First ACM Workshop on Information Hiding and Multimedia Security,
page 159–164, 2013.

[6] A. Black and Nick N. Campbell. Optimising selection of units from speech databases
for concatenative synthesis. 1, 07 1996.

[7] Nicolo Bonettini, Paolo Bestagini, Simone Milani, and Stefano Tubaro. On the use of
benford’s law to detect gan-generated images. In 2020 25th international conference on
pattern recognition (ICPR), pages 5495–5502. IEEE, 2021.

[8] C. Borrelli, P. Bestagini, F. Antonacci, A. Sarti, and S. Tubaro. Synthetic speech de-
tection through short-term and long-term prediction traces. EURASIP Journal on
Information Security, 2021(1):1–14, 2021.

[9] Clara Borrelli, Paolo Bestagini, Fabio Antonacci, Augusto Sarti, and Stefano Tubaro.
Synthetic speech detection through short-term and long-term prediction traces.
EURASIP Journal on Information Security, 2021(1):1–14, 2021.

[10] Davide Capoferri, Clara Borrelli, Paolo Bestagini, Fabio Antonacci, Augusto Sarti,
and Stefano Tubaro. Speech audio splicing detection and localization exploiting re-
verberation cues. In 2020 IEEE International Workshop on Information Forensics and
Security (WIFS), pages 1–6. IEEE, 2020.



BIBLIOGRAPHY

[11] C. H. Coker. A model of articulatory dynamics and control. Proceedings of the IEEE,
64:452–460, 1976.

[12] G. Colombetti. From affect programs to dynamical discrete emotions. Philosophical
Psychology - PHILOS PSYCHOL, 22:407–425, 08 2009.

[13] Emanuele Conti, Davide Salvi, Clara Borrelli, Brian Hosler, Paolo Bestagini, Fabio
Antonacci, Augusto Sarti, Matthew C Stamm, and Stefano Tubaro. Deepfake speech
detection through emotion recognition: A semantic approach. In ICASSP 2022-
2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 8962–8966. IEEE, 2022.

[14] L. Cuccovillo, S. Mann, M. Tagliasacchi, and P. Aichroth. Audio tampering detection
via microphone classification. pages 177–182, 09 2013.

[15] R. K. Das, J. Yang, and H. Li. Long range acoustic features for spoofed speech detec-
tion. In Proc. Interspeech 2019, pages 1058–1062, 2019.

[16] S. Desai, E. V. Raghavendra, B. Yegnanarayana, A. W. Black, and K. Prahallad. Voice
conversion using artificial neural networks. 2009 IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 3893–3896, 2009.

[17] N. Diakopoulos and D. Johnson. Anticipating and addressing the ethical implica-
tions of deepfakes in the context of elections. volume 23, pages 2072–2098, 2020.

[18] A. Diekmann. Not the first digit! using benford’s law to detect fraudulent scientific
data. Journal of Applied Statistics, 34:321–329, 2007.

[19] H. Dudley and T. H. Tarnóczy. The speaking machine of wolfgang von kempelen.
Journal of the Acoustical Society of America, 22:151–166, 1949.

[20] Euronews. Media forensics and deepfakes: an
overview. 2019. https://www.euronews.com/2019/10/09/
french-charity-publishes-deepfake-of-trump-saying-aids-is-over.

[21] D. Griffin and Jae Lim. Signal estimation from modified short-time fourier trans-
form. IEEE Transactions on Acoustics, Speech, and Signal Processing (TASLP), 1984.

[22] D. W. Griffin and J. S. Lim. Signal estimation from modified short-time fourier trans-
form. In ICASSP, 1983.

[23] Andrea Hauser. Deepfake - an introduction. scip Labs, October 2018.

[24] C. Hsu, H. Hwang, Y. Wu, Y. Tsao, and H. Wang. Voice conversion from non-parallel
corpora using variational auto-encoder. Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference (APSIPA), 2016.

68

https://www.euronews.com/ 2019 / 10 / 09 / french - charity - publishes - deepfake- of- trump- saying- aids- is- over
https://www.euronews.com/ 2019 / 10 / 09 / french - charity - publishes - deepfake- of- trump- saying- aids- is- over


Bibliography

[25] A.J. Hunt and A.W. Black. Unit selection in a concatenative speech synthesis system
using a large speech database. In 1996 IEEE International Conference on Acoustics,
Speech, and Signal Processing Conference Proceedings, volume 1, pages 373–376, 1996.

[26] K. Jeong and Y. Shin. Time-series anomaly detection with implicit neural represen-
tation. 01 2022.

[27] YY. Jia, Y. Zhang, R. Weiss, Q. Wang, J. Shen, F. Ren, z. Chen, P. Nguyen, R. Pan,
I. Lopez Moreno, and Y. Wu. Transfer learning from speaker verification to multi-
speaker text-to-speech synthesis. Advances in Neural Information Processing Systems
(NIPS), 2018.

[28] The Wallstreet Journal. Fraudsters used ai to mimic ceo’s voice in
unusual cybercrime case. 2019. https://www.wsj.com/articles/
fraudsters-use-ai-tomimic-ceos-voice-in-unusual-cybercrimecase.

[29] N. Kalchbrenner, E. Elsen, K. Simonyan, S. Noury, N. Casagrande, E. Lockhart,
F. Stimberg, A. van den Oord, S. Dieleman, and K. Kavukcuoglu. Efficient neural
audio synthesis. International Conference on Machine Learning (ICML), 2018.

[30] Madhu R. Kamble, Hardik B. Sailor, Hemant A. Patil, , and Haizhou Li. Advances
in anti-spoofing: from the perspective of asvspoof challenges. APSIPA Transactions
on Signal and Information Processing, 9, 2020.

[31] H. Kawahara. Straight, exploitation of the other aspect of vocoder: Perceptu-
ally isomorphic decomposition of speech sounds. Acoustical science and technology,
27(6):349–353, 2006.

[32] H. Kawahara, I. Masuda-Katsuse, and A. De Cheveigne. Restructuring speech repre-
sentations using a pitch-adaptive time–frequency smoothing and an instantaneous-
frequency-based f0 extraction: Possible role of a repetitive structure in sounds.
Speech Communication, 1999.

[33] T. Kinnunen, J. Lorenzo-Trueba, J. Yamagishi, T. Toda, D. Saito, F. Villavicencio, and
Z. Ling. A spoofing benchmark for the 2018 voice conversion challenge: leverag-
ing from spoofing countermeasures for speech artifact assessment. The Speaker and
Language Recognition Workshop, 2018.

[34] K. Kobayashi, T. Toda, and S. Nakamura. Intra-gender statistical singing voice con-
version with direct waveform modification using log-spectral differential. Speech
Communication, 2018.

[35] G. Lavrentyeva, S. Novoselov, T. Andzhukaev, M. Volkova, A. Gorlanov, and A. Ko-
zlov. Stc antispoofing systems for the asvspoof2019 challenge. pages 1033–1037, 09
2019.

[36] X. Li, N. Li, C. Weng, X. Liu, D. Su, D. Yu, and H. Meng. Replay and synthetic speech
detection with res2net architecture. 10 2020.

69

https://www. wsj.com/articles/fraudsters- use- ai- tomimic-ceos-voice-in-unusual-cybercrimecase
https://www. wsj.com/articles/fraudsters- use- ai- tomimic-ceos-voice-in-unusual-cybercrimecase


BIBLIOGRAPHY

[37] Alessandro Lieto, Daniele Moro, Francesco Devoti, Claudia Parera, Vincenzo Lipari,
Paolo Bestagini, and Stefano Tubaro. " hello? who am i talking to?" a shallow cnn
approach for human vs. bot speech classification. In ICASSP 2019-2019 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 2577–2581.
IEEE, 2019.

[38] Y. Lipman. Phase transitions, distance functions, and implicit neural representations.
In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International Con-
ference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pages 6702–6712. PMLR, 18–24 Jul 2021.

[39] M. T. Luong, H. Pham, and C. D. Manning. Effective approaches to attention-based
neural machine translation. CoRR, abs/1508.04025, 2015.

[40] S. Lyu. Deepfake detection: Current challenges and next steps. In 2020 IEEE Interna-
tional Conference on Multimedia Expo Workshops (ICMEW), pages 1–6, 2020.

[41] T. Masuko, K. Tokuda, , T. Kobayashi, and S. Imai. Speech synthesis using hmms
with dynamic features. In 1996 IEEE International Conference on Acoustics, Speech, and
Signal Processing Conference Proceedings, volume 1, pages 389–392, 1996.

[42] D. Matrouf, J. Bonastre, and C. Fredouille. Effect of speech transformation on impos-
tor acceptance. IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2006.

[43] D. M.Ballesteros, Y. Rodriguez-Ortega, D. Renza, and G. Arceb. Deep4snet: deep
learning for fake speech classification. Expert Systems with Applications, 184:115465,
2021.

[44] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger. Occupancy
networks: Learning 3d reconstruction in function space, 2018.

[45] Simone Milani, Pier Francesco Piazza, Paolo Bestagini, and Stefano Tubaro. Audio
tampering detection using multimodal features. In 2014 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 4563–4567, 2014.

[46] B. Mildenhall, P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng.
Nerf: Representing scenes as neural radiance fields for view synthesis, 2020.

[47] M. Morise, F. Yokomori, and K. Ozawa. World: a vocoder-based high-quality speech
synthesis system for real-time applications. IEICE TRANSACTIONS on Information
and Systems, 99(7):1877–1884, 2016.

[48] M. Morise, F. Yokomori, and K. Ozawa. World: a vocoder-based high-quality speech
synthesis system for real-time applications. IEICE Transactions on Information and
Systems, 2016.

70



Bibliography

[49] E. Moulines and F. Charpentier. Pitch-synchronous waveform processing techniques
for text-to-speech synthesis using diphones. Speech Communication, 9(5):453–467,
1990.

[50] Nicolas Müller, Franziska Dieckmann, Pavel Czempin, Roman Canals, Jennifer
Williams, and Konstantin Böttinger. Speech is silver, silence is golden: What do
asvspoof-trained models really learn? In 2021 Edition of the Automatic Speaker Verifi-
cation and Spoofing Countermeasures Challenge, 06 2021.

[51] M. Niemeyer, L. M. Mescheder, M. Oechsle, and A. Geiger. Occupancy flow: 4d
reconstruction by learning particle dynamics. 2019 IEEE/CVF International Conference
on Computer Vision (ICCV), pages 5378–5388, 2019.

[52] S. P. Panda and A. K. Nayak. A waveform concatenation technique for text-to-speech
synthesis. International Journal of Speech Technology, 20(4):959–976, 2017.

[53] J. J. Park, P. Florence, J. Straub, R. Newcomb, and S. Lovegrove. Deepsdf: Learning
continuous signed distance functions for shape representation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

[54] Cecilia Pasquini, Giulia Boato, and Fernando Perez-Gonzalez. Multiple jpeg com-
pression detection by means of benford-fourier coefficients. In 2014 IEEE Interna-
tional Workshop on Information Forensics and Security (WIFS), pages 113–118, 2014.

[55] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in python.
Journal of Machine Learning Research (JMLR), 2011.

[56] F. Perez-Gonzalez, C. Abdallah T. T. Quach, G. L. Heileman, and S. J. Miller. Appli-
cation of benford’s law to images. Benford’s Law: Theory and Applications, 2015.

[57] Fernando Perez-Gonzalez, Greg L. Heileman, and Chaouki T. Abdallah. Benford’s
lawin image processing. In 2007 IEEE International Conference on Image Processing,
volume 1, pages I – 405–I – 408, 2007.

[58] Tomas Pevny and Jessica Fridrich. Detection of double-compression in jpeg images
for applications in steganography. IEEE Transactions on Information Forensics and Se-
curity, 3(2):247–258, 2008.

[59] W. Ping, K. Peng, A. Gibiansky, S. Arik, A. Kannan, S. Narang, J. Raiman, and
J. Miller. Deep voice 3: 2000-speaker neural text-to-speech. CoRR, abs/1710.07654,
2017.

[60] Y. Qian, N. Chen, and K. Yu. Deep features for automatic spoofing detection. Speech
Commun., 85(C):43–52, dec 2016.

71



BIBLIOGRAPHY

[61] N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F. Hamprecht, Y. Bengio, and
A. Courville. On the spectral bias of neural networks. 2018.

[62] R. A. Raimi. The first digit problem. The American Mathematical Monthly, 83:521–538,
1976.

[63] M. Ravanelli and Y. Bengio. Speaker recognition from raw waveform with sincnet.
pages 1021–1028, 12 2018.

[64] Y. Rodriguez-Ortega, D.M. Ballesteros, and D. Renza. A machine learning model to
detect fake voice. In Applied Informatics, pages 3–13, 2020.

[65] Md Sahidullah, Tomi Kinnunen, and Cemal Hanilçi. A comparison of features for
synthetic speech detection. 2015.

[66] M. Schröder, M. Charfuelan, S. Pammi, and I. Steiner. Open source voice creation
toolkit for the mary tts platform. Conference of the International Speech Communication
Association (INTERSPEECH), 2011.

[67] N. Seonghyeon, M. A. Brubaker, and M. S. Brown. Neural image representations for
multi-image fusion and layer separation, 2021.

[68] O. Sercan, M. Chrzanowski, A. Coates, G. Diamos, A. Gibiansky, Y. Kang, X. Li,
J. Miller, A. Ng, J. Raiman, S. Sengupta, and M. Shoeybi. Deep voice: Real-time
neural text-to-speech. In Doina Precup and Yee Whye Teh, editors, Proceedings of the
34th International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pages 195–204. PMLR, 06–11 Aug 2017.

[69] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen, Y. Zhang,
Y. Wang, and R. Skerrv-Ryan. Natural tts synthesis by conditioning wavenet on
mel spectrogram predictions. IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2018.

[70] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen, Y. Zhang,
Y. Wang, R. Skerry-Ryan, R. A. Saurous, Y. Agiomyrgiannakis, and Y. Wu. Natu-
ral tts synthesis by conditioning wavenet on mel spectrogram predictions. 2018.

[71] Arun Kumar Singh and Priyanka Singh. Detection of ai-synthesized speech using
cepstral & bispectral statistics. In 2021 IEEE 4th International Conference on Multimedia
Information Processing and Retrieval (MIPR), pages 412–417, 2021.

[72] B. Sisman, J. Yamagishi, S. King, and H. Li. An overview of voice conversion and
its challenges: From statistical modeling to deep learning. IEEE/ACM Trans. Audio,
Speech and Lang. Proc., 29:132–157, jan 2021.

[73] V. Sitzmann and C. M. Jiang. Awesome implicit neural representations. 2021.

72



Bibliography

[74] V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein. Implicit neural
representations with periodic activation functions. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing
Systems, volume 33, pages 7462–7473. Curran Associates, Inc., 2020.

[75] Y. Stylianou, O. Cappe, and E. Moulines. Continuous probabilistic transform for
voice conversion. IEEE Transactions on Speech and Audio Processing, 6(2):131–142, 1998.

[76] I. Sutskever, O. Vinyals, and Q. Le. Sequence to sequence learning with neural net-
works. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger,
editors, Advances in Neural Information Processing Systems, volume 27. Curran Asso-
ciates, Inc., 2014.

[77] H. Tak, J. Patino, M. Todisco, A. Nautsch, N. Evans, and A. Larcher. End-to-end
anti-spoofing with rawnet2. In ICASSP 2021-2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 6369–6373. IEEE, 2021.

[78] Tanaka, H. Kameoka, T. Kaneko, and N. Hojo. Wavecyclegan2: Time-domain neural
post-filter for speech waveform generation.

[79] B. Thormundsson. Potential ai-enabled cyberattacks on companies worldwide 2021.
Statista - The Statistics Portal, 2022.

[80] C. Tianxiang, K. Avrosh, N. Parav, S. Ganesh, and K. Elie. Generalization of Audio
Deepfake Detection. In Proc. The Speaker and Language Recognition Workshop (Odyssey
2020), pages 132–137, 2020.

[81] The New York Times. Pennsylvania woman accused of using deepfake technol-
ogy to harass cheerleaders. 2021. https://www.nytimes.com/2021/03/14/us/
raffaela-spone-victory-vipers-deepfake.html.

[82] M. Todisco, H. Delgado, and N. Evans. Constant q cepstral coefficients: A spoof-
ing countermeasure for automatic speaker verification. Computer Speech Language,
45:516–535, 2017.

[83] M. Todisco, X. Wang, M. Sahidullah, H. Delgado, A. Nautsch, J. Yamagishi, N. Evans,
T. Kinnunen, and K. A. Lee. Asvspoof 2019: Future horizons in spoofed and fake
audio detection. In Conference of the International Speech Communication Association
(INTERSPEECH), 2019.

[84] K. H. Todter. Benford’s law as an indicator of fraud in economics. German Economic
Review, 10:339–351, 2009.

[85] X. Tong, L. Wang, X. Pan, and J. Wang. An overview of deepfake: The sword of
damocles in ai. In 2020 International Conference on Computer Vision, Image and Deep
Learning (CVIDL), pages 265–273, 2020.

73

https://www.nytimes.com/2021/03/14/us/ raffaela-spone-victory-vipers-deepfake. html
https://www.nytimes.com/2021/03/14/us/ raffaela-spone-victory-vipers-deepfake. html


BIBLIOGRAPHY

[86] J. M. Valin and J. Skoglund. Lpcnet: Improving neural speech synthesis through
linear prediction. In ICASSP 2019 - 2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 5891–5895, 2019.

[87] A. van den Oord, S. Dieleman, K. Simonyan H. Zen, O. Vinyals, N. Kalchbrenner
A. Graves, A. Senior, and K. Kavukcuoglu. Wavenet: A generative model for raw
audio. ISCA Workshop on Speech Synthesis Workshop, page 125.

[88] L. Verdoliva. Media forensics and deepfakes: an overview. CoRR, 2020.

[89] W. Wang, S. Xu, and B. Xu. First step towards end-to-end parametric tts synthesis:
Generating spectral parameters with neural attention. In INTERSPEECH, 2016.

[90] X. Wang, S. Takaki, and J. Yamagishi. Neural source-filter-based waveform model
for statistical parametric speech synthesis. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2019.

[91] X. Wang, J. Yamagishi, M. Todisco, A. Nautsch H. Delgado, N. Evans, M. Sahidul-
lah, V. Vestman, T. Kinnunen, K. A. Lee, L. Juvela, P. Alku, Y.H. Peng, H. T. Hwang,
Y. Tsao, H. M. Wang, S. L. Maguer, M. Becker, F. Henderson, R. Clark, Y. Zhang,
Q. Wang, Y. Jia, K. Onuma, K. Mushika, T. Kaneda, Y. Jiang, L.J. Liu, Y.C. Wu,
W. C. Huang, T. Toda, K. Tanaka, H. Kameoka, I. Steiner, D. Matrouf, J.F. Bonastre,
A. Govender, S. Ronanki, J.X. Zhang, and Z. H. Ling. Asvspoof 2019: A large-scale
public database of synthesized, converted and replayed speech. Computer Speech
Language, 2020.

[92] Y. Wang, R. J. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N. Jaitly, Z. Yang, Y. Xiao,
Z. Chen, S. Bengio, Q. V. Le, Y. Agiomyrgiannakis, R. Clark, and R. A. Saurous.
Tacotron: A fully end-to-end text-to-speech synthesis model. CoRR, abs/1703.10135,
2017.

[93] Wikipedia. Speech synthesis — wikipedia, the free encyclopedia. 2021.
http://en.wikipedia.org/w/index.php?title=Speech%20synthesis&
oldid=1020857981.

[94] Z. Wu, O. Watts, and S. King. Merlin. An open source neural network speech syn-
thesis system. Speech Synthesis Workshop (SSW), 2016.

[95] X. Xiao, X. Tian, S. Du, H. Xu, C. E. Siong, and H. Li. Spoofing speech detection using
high dimensional magnitude and phase features: the ntu approach for asvspoof 2015
challenge. In INTERSPEECH, 2015.

[96] L. Yariv Y., Kasten, D. Moran, M. Galun, M. Atzmon, B. Ronen, and Y. Lipman. Mul-
tiview neural surface reconstruction by disentangling geometry and appearance. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33, pages 2492–2502. Curran Asso-
ciates, Inc., 2020.

74

http://en.wikipedia .org/w/index.php?title=Speech%20synthesis&oldid=1020857981
http://en.wikipedia .org/w/index.php?title=Speech%20synthesis&oldid=1020857981


Bibliography

[97] J. Yamagishi, C. Veaux, and K. MacDonald et al. Cstr vctk corpus: English multi-
speaker corpus for cstr voice cloning toolkit (version 0.92). 2019.

[98] J. Yamagishi, X. Wang, M. Todisco, M. Sahidullah, J. Patino, A. Nautsch, X. Liu, K. A.
Lee, T. Kinnunen, N. Evans, and H. Delgado. Asvspoof 2021: accelerating progress
in spoofed and deepfake speech detection. In ISCA, editor, ASVspoof 2021, Automatic
Speaker Verification<br /> Spoofing And Countermeasures Challenge, 16 September 2021,
2021.

[99] J. Yang, R. K. Das, and H. Li. Significance of subband features for synthetic speech
detection. page 2160–2170, 2020.

[100] H. Zen, Y. Agiomyrgiannakis, N. Egberts, F. Henderson, and P. Szczepaniak. Fast,
compact, and high quality lstm-rnn based statistical parametric speech synthesizers
for mobile devices. In Conference of the International Speech Communication Association
(INTERSPEECH), 2016.

[101] H. Zen and H. Sak. Unidirectional long short-term memory recurrent neural net-
work with recurrent output layer for low-latency speech synthesis. In Proceedings of
the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
pages 4470–4474, 2015.

[102] H. Zen, A. Senior, and M. Schuster. Statistical parametric speech synthesis using
deep neural networks. In Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), pages 7962–7966, 2013.

[103] Chunlei Zhang, Chengzhu Yu, and John HL Hansen. An investigation of deep-
learning frameworks for speaker verification antispoofing. IEEE Journal of Selected
Topics in Signal Processing, 11(4):684–694, 2017.

[104] J. Zhu, T. Park, P. Isola, and A. Efros. Unpaired image-to-image translation using
cycle-consistent adversarial networks. pages 2242–2251, 10 2017.

75


	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Proposed Contribution
	1.2 Thesis Outline

	2 Theoretical Background
	2.1 Related Works
	2.1.1 Synthetic Speech Generation
	2.1.2 Synthetic Speech Detection

	2.2 Dataset

	3 First Digit Features
	3.1 Background
	3.2 FD Features for Synthetic Speech Detection
	3.2.1 Proposed Method
	3.2.2 Problem Formulation
	3.2.3 Detection Method

	3.3 Application
	3.3.1 Dataset Preparation
	3.3.2 Experimental Setup
	3.3.3 Results

	3.4 Final Remarks

	4 Implicit Neural Representations
	4.1 Background
	4.2 INR for Synthetic Speech Detection
	4.2.1 Proposed Method
	4.2.2 Problem Formulation
	4.2.3 Detection Method

	4.3 Application
	4.3.1 Dataset Preparation
	4.3.2 Experimental Setup
	4.3.3 Results

	4.4 Final Remarks

	5 Conclusions
	5.0.1 Future Works

	A Appendix
	Bibliography

