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Abstract

In this dissertation, in order to study the growth of the density fluctuations of the Cold
Dark Matter, the standard perturbation techniques, such as Eulerian perturbation theory
and Zel’dovich approximation, have been reviewed. In the second part of our work, we
introduce a novel approach to the study of large–scale structure formation in which the
Cold Dark Matter is modelled by a complex scalar field whose dynamics are ruled by cou-
pled Schrodinger and Poisson equations. In the last part, we show that results predicted
by "tree-level" perturbation theory for the cold dark matter are perfectly recovered.
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Introduction

The local Universe presents a rich hierarchical pattern of galaxy clustering covering a
broad range of length scales, which result into rich clusters, super-clusters and filaments.
The large-scale structure of the universe is the result of a process known as gravitational
instability, according to which small density fluctuations in the early universe stands at
the origin of the formation of galaxies.
The discovery of some fluctuations in the cosmic microwave background (CMB) tem-
perature are the experimental evidence that assure the validity of the theory of the
gravitational instability.

In order to construct an appropriate scenario for the origin of cosmic protostructure,
cosmologists built their theories around the idea that the universe is dominated by non-
baryonic dark matter, which are weakly interacting and collisionless particles. Therefore,
there are two possible scenarios: The Hot Dark Matter (HDM) scenario, characterised
by the assumption that these particles are relativistic and the Cold Dark Matter (CDM)
scenario characterised by the assumption that we have non-relativistic particles.

The Cold Dark Matter is the scenario in which the most common analytical methods to
understand structure formation will be discussed later on in this work. These methods,
which are based on the idea that cold dark matter can be treated as a self-gravitating
pressureless fluid, can be divided into two wide classes:

• The Eulerian Perturbation Theory (EPT), which considers macroscopic fluid quan-
tities as the density field, and is based on applying the perturbation theory to the
equations of motion of the pressureless fluid. This approach ranges from first order
- linearized fluid approach - to higher order approaches;

• The Lagrangian Perturbation Theory (LPT), which considers linear perturbations
in the trajectories of individual elements of the fluid, the so-called Zeldovich ap-
proximation.

Despite the fact that the growth of the density fluctuations are well understood when
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density variations are significantly smaller than the density average (linear regime), it
becomes analitically intractable when the non-linear regime occurs showing internal weak-
nesses. Indeed, they do not assure a density field that is positive everywhere and this
could lead to absurdities. Secondly, they might possibly totally break down like the
Zeldovich approximation does when particle trajectories cross. When this phenomenon,
known as shell-crossing, happens the density field generates a singularity called caustic.
In this work we are introducing a novel approach where CDM is modelled by a complex
scalar field whose dynamics are ruled by coupled Schrödinger and Poisson equations.
This approach overcomes the above mentioned problems that affect standard perturba-
tion methods.

The layout of our work is as follows. In Chapter 1, the cosmological background and
its fundamental concepts will be introduced, as they are quite useful for the following
dissertation. In Chapter 2, we present the standard cosmological tecniques and its own
limits. Finally, in Chapter 3, we propose a new approach based on the correspondence
limit of the Schrödinger equation.
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Chapter 1

The Cosmological Background

On large scales, i.e. on a distance of hundreds of Mpc, the universe is homogeneous and
isotropic for a comoving1 observer at a fixed cosmic time. This idea is of such importance
in cosmology that it has been elevated to the status of principle, known as Cosmological
Principle [1].

1.1 The Robertson–Walker metric

The most general spacetime that describes a universe in which the Cosmological Principle
is valid is the Robertson–Walker metric:

ds2 = (cdt)2 − a(t)2

[
dr2

1− κr2
+ r2(dθ + sin2θdϕ2)

]
(1.1)

Where t is the cosmological proper time, a(t) is the cosmic scale factor, κ is the spatial
curvature, an adimensional constant, that takes only the values ±1 if we have positive or
negative curvature, respectively and 0 in the case of flat space sections. In this context,
the equations of motion are determined by the Einstein’s field equations which assume
the following form: (

ȧ

a

)2

=
8πG

3
ρ− κc2

a2
+

Λc2

3
, (1.2)

ä

a
= −4πG

3

(
ρ+ 3

P

c2

)
+

Λc2

3
, (1.3)

ρ̇ = −3
ȧ

a

(
ρ+

P

c2

)
. (1.4)

Where ρ is the density matter and Λ is the cosmological constant.
1we will see in the next pages the meaning of this term
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1.2 Einstein-De Sitter model: dust dominated universe

Our work is taking place in an Einsten-De Sitter universe, that is flat (κ = 0) and
characterised by the fact that the cosmological constant Λ is equal to zero. In order to
solve Friedmann equations we need to consider a perfect fluid with an equation of state
P = P (ρ) (barotropic fluid) of the form:

P = wρc2

where ω is an adimensional constant that lies in the range, known as Zel’dovich interval:

0 ≤ w ≤ 1

If we insert this relations in the third Friedmann equation, we obtain:

ρ̇ = −3H(1 + ω)ρ ⇒ ρ̇

ρ
= −3

a

ȧ
(1 + ω) ⇒ ρ ∝ a−3(1+ω)

In this work we are treating, as mentioned above, a pressureless fluid that means ω = 0.
This is the case of a dust or matter-dominated universe, in which the relation between
the density matter and the scale factor is the following:

ρa3 = const.
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Chapter 2

Cosmological Structure Formation

In this chapter we run through the standard basics of gravitational instability in an ex-
panding universe. First, we treat the first order Eulerian perturbation theory which well
describes the gravitational amplifications when they are still small [2]. Then we pene-
trate the weakly non-linear regime with the Zel’dovich approximation and, afterwards,
with tree-level PT giving the relative results.

2.1 Fluid treatment

The Cold Dark Matter can be described as a pressureless fluid. In this section we
investigate the behaviour of density fluctuations of CDM in the linear regime (δ << 1)1.
First of all we have to introduce a set of coordinates that have property to be inertial for
an observer who moves with the Hubble expansion:

~r = a(t)~x

These coordinates set us up in the comoving reference frame. One has:

~w ≡ ~̇r =
ȧ

a
~r + a

dx

dt
≡ H~r + ~v (2.1)

∇~r =
1

a
∇~x (2.2)

1We consider that perturbations are adiabatic, i.e. entropy is constant.
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with ~v the peculiar velocity ~v ≡ adxdt . The convective derivative of a generic function
f(~r, t) is:

Df(~r, t)

Dt
=
∂f

∂t

∣∣∣∣
~r

+ (~w · ∇~r)f =
∂f

∂t

∣∣∣∣
~r

+H(~r · ∇~r)f + (~v · ∇~r)f

Now we take f(~x, t) we have:

Df(~x, t)

Dt
=
∂f

∂t

∣∣∣∣
~x

+
1

a
(~v · ∇~x)f

But Df(~r,t)
Dt = Df(~x,t)

Dt , so:
∂f

∂t

∣∣∣∣
~x

=
∂f

∂t

∣∣∣∣
~r

+H(~r · ∇~r)f (2.3)

Once introduced comoving coordinates, we can introduce the equations of motion of the
Cold Dark Matter:

• The Euler equation

∂ ~w

∂t

∣∣∣∣
~r

+ (~w · ∇~r)~w +
1

ρ
∇~rp+∇~rΦ = 0; (2.4)

• The continuity equation
∂ρ

∂t

∣∣∣∣
~r

+∇~r(ρ~w) = 0; (2.5)

• The Poisson equation
∇2
~rΦ− 4πGρ = 0. (2.6)

2.2 Linear Eulerian Perturbation Theory

In order to get the perturbative solutions at first order of the Eulerian PT, we have
to place the fluctuation of the Cold Dark Matter in the Friedmann-Robertson-Walker
background:

ρ ≡ ρb + δρ ≡ ρb(1 + δ), Φ ≡ Φb + φ (2.7)

where ρb is the mean background density, δ ≡ ρ−ρb
ρb

is the density contrast2 and φ is the
peculiar Newtonian gravitational potential, i.e. the fluctuations in potential with rispect
to the background. At this point, we eliminate all background terms and rephrase in

2It’s necessary remind, as written above, that the perturbation δ can assume positive or negative
values.
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the new comoving coordinates our set of three equations. We begin with Euler equation
that, using (2.1), it becomes:

∂~v

∂t

∣∣∣∣
~r

+
∂(H~r)

∂t

∣∣∣∣
~r

+H2(~r ·∇~r)~r+H(~v ·∇~r)~r+(H~r ·∇~r)~v+(~v ·∇~r)~v = −1

ρ
∇~rp−∇~rΦb−∇~rφ

we have to equate to zero all background terms, i.e. ignoring those terms without peculiar
velocity ~v:

∂(H~r)

∂t

∣∣∣∣
~r

+H2(~r · ∇~r)~r +∇Φb = 0

it is possible to obtain:

(Ḣ +H2)~r = −4πG

3
ρb~r

which is satisfied by Friedmann equations (1.2) and (1.4), leading to:

Ḣ = −4πGρ.

Hence we have:

∂~v

∂t

∣∣∣∣
~r

+H(~v · ∇~r)~r + (H~r · ∇~r)~v + (~v · ∇~r)~v = −1

ρ
∇~rp−∇~rφ.

Then using ∇~r~r = 1 and (2.3) we obtain:

∂~v

∂t
+H~v +

1

a
(~v · ∇x)~v = − 1

aρ
∇xp−

1

a
∇xφ. (2.8)

Regarding continuity equation, using (2.1) and simplifying, it results in:

∂ρ

∂t

∣∣∣∣
~x

+Hρ∇~r · ~r + ρ∇~r · ~v +∇~rρ · ~v = 0

therefore using (2.2) and trivial vectorial identity, we have the continuity equation in
comoving coordinates:

∂ρ

∂t
+ 3Hρ+

1

a
∇x(ρ~v) = 0, (2.9)

about Poisson’s equation, let’s keep in mind that ∇2
~r = 1

a2
∇2
~x, so

∇2
xφ− 4πGa2δρ = 0. (2.10)

Once we have our equations in comoving coordinates, we can proceed to linearize them
going to Fourier space. Indeed, we have to think of a perturbation as a superposition

13



of plane waves, which evolve linearly, while the fluctuation grows indipendently of each
other. So the most natural way to represent this superposition of plane waves is the
Fourier representation:

δ(~x, t) =
1

(2π)3

∫
e(i~k·~x)δ~k(t)d

3k,

~v(~x, t) =
1

(2π)3

∫
e(i~k·~x)~v~k(t)d

3k,

~φ(~x, t) =
1

(2π)3

∫
e(i~k·~x)~φ~k(t)d

3k.

Before Fourier expanding our equations we have to adjust them. About Euler equa-
tion we neglect the non-linear term 1

a(~v · ∇x)~v obtaining:

∂~v

∂t
+H~v = − 1

aρ
∇~xp−

1

a
∇~xφ. (2.11)

For the continuity equation we substitute the first term of (2.7):

∂ρb(1 + δ)

∂t
+ 3Hρb(1 + δ) +

1

a
∇x
(
ρb(1 + δ)~v

)
=

=
∂ρbδ

∂t
+ (1 + δ)

(∂ρb
∂t

+ 3Hρb
)

+
1

a
∇x(ρb(1 + δ)) · ~v +

1

a
(ρb(1 + δ))∇x · ~v = 0

Keeping in mind that the Friedmann equation (1.4) for P = 0 is ρ̇ = −3Hρ and elimi-
nating all background terms, we get:

∂δ

∂t
+

1

a
∇~x · ~v = 0 (2.12)

and finally for Poisson equation using ρ = ρbδ:

∇2
~xφ = 4πGa2ρbδ. (2.13)

Only now, we can Fourier expand (2.11), (2.12) and (2.13). Then the Euler equation
becomes:

1

(2π)3

∫
e(i~k·~x)

[
~̇v~k(t) +H~v~k(t)

]
d3k = − 1

(2π)3

∫
e(i~k·~x)i~k

[
1

aρb

∂P

∂ρ
ρbδ~k(t) +

1

a
~φ~k(t)

]
d3k

where ∂P
∂ρ = c2

s that is the speed of sound,

1

(2π)3

∫
e(i~k·~x)

[
~̇v~k(t) +H~v~k(t)

]
d3k = − 1

(2π)3

∫
e(i~k·~x)i~k

[
c2
s

a
δ~k(t) +

1

a
~φ~k(t)

]
d3k,
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~̇v~k +H~v~k = − ik
a
c2
s

(
δ~k + ~φ~k

)
. (2.14)

Instead about continuity equation we have:

1

(2π)3

∫
e(i~k·~x)δ̇~kd

3k = − 1

(2π)3

∫
∇~x
[
e(i~k·~x)

]
~v~kd

3k

δ̇~k +
ik · ~v~k
a

= 0 (2.15)

Finally, Poisson equation is as follow:

1

(2π)3

∫
∇2
~xe

(i~k·~x)φ~kd
3k =

1

(2π)3

∫
e(i~k·~x)4πGa2ρbδ~kd

3k,

k2φ~k = −4πGa2ρbδ~k. (2.16)

Once we obtained the linearized equations of motion we need to use the Kelvin circulation
theorem, that says:
"The vorticity is conserved along fluid lines in the absence of dissipative processes"

~̇v⊥ +H~v⊥ = 0 ⇒ ~v⊥ ∝
1

a

where ~v⊥ is the perpendicular component of peculiar velocity. As a consequence of the
theorem, we are allowed to consider only the component of the equations relative to the
peculiar velocity parallel to ~k. Differentiating (2.15) we get:

δ̈~k +
ik

a
~̇v~k −

ik

a
H~v~k = 0 (2.17)

Replacing (2.14) in(2.17) we obtain:

δ̈~k −
ik

a
H~v~k +

(
kcs
a

)2

δ~k +

(
k

a

)2

φ~k −
ik

a
H~v~k = 0

Now using (2.16) and (2.15):

δ̈~k −
ik

a
H~v~k +

(
kcs
a

)2

δ~k +

(
k

a

)2

φ~k −
ik

a
H~v~k = 0,

δ̈~k + 2H
~̇
δ~k +

[(
csk

a

)2

− 4πGρb

]
δ~k = 0.
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We define a comoving Jeans wavenumber as:

kj ≡ a
(
4πGρb

)1/2
cs

. (2.18)

Hence, for k � kj we have the following approximate equation:

δ̈~k + 2Hδ̇~k − 4πGρbδ~k ≈ 0 (2.19)

In an Einstein-De Sitter universe we have two solutions for δ~k and ~v~k:

a ∝ t2/3, H =
2

3t
, ρb =

1

6πGt2

δ̈~k +
4

3t
δ̇~k −

2

3t2
δ~k ≈ 0

We look for a solution of the form δ ∝ tα of our equation that becomes:

3α2 + α− 2 = 0

This equation leads to two different solutions:

α = 2/3 =⇒ δ~k ∝ t
2/3 "growing mode"

α = −1 =⇒ δ~k ∝ t
−1 "decaying mode"

This latter result expects that fluctuations decrease by time. We will focus on the
growing-mode solution, instead, in which the density fluctuations, δ � 1, in the early
universe grews by time.

2.3 Weakly non-linear regime

The linearized equations of motion give a great description of gravitational instability
until density fluctuations are small (δ � 1). When density contrast grews (δ < 1) the
linear perturbation theory breaks down marking the beginning of weakly non-linear (or
quasilinear) regime.

2.3.1 Zel’dovich approximation

The Zel’dovich approximation, as written above, is a Lagrangian approach in which
individual particles’ trajectories are considered.
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First of all we introduce new variables:

η ≡ ρ

ρb
= 1 + δ, ~u ≡ ~v

aȧ
, ϕ ≡ 3t2∗

2a3
∗
φ, a(t) = a∗(t/t∗)

2/3. (2.20)

Replacing these variables in the equations (2.9), (2.8) and (2.10) we have:

∂~u

∂a
+ ~u · ∇~u+

3

2a
~u = − 3

2a
∇ϕ, (2.21)

∂η

∂a
+ ~u · ∇η + η∇ · ~u = 0, (2.22)

∇2ϕ =
δ

a
. (2.23)

Recalling the results of the previous chapter, in the growing mode we have:

δ~k ∝ t
2/3, ~v ∝ t1/3, φ ∝ const.

This implies that ~u = const and thus

D~u

Da
≡ ∂~u

∂a
+ ~u · ∇~u = 0 (2.24)

⇒ ~u = −∇ϕ (2.25)

The Zel’dovich’s Ansätze is to assume that (2.24) and (2.25) are valid even beyond linear
theory. Indeed, going to Fourier space:

φ~k ∝
δ~k
k2
, ~u~k ∝ kφ~k.

Thus, these two quantities keep on a linear level on smaller scales and for longer times
than the density fluctuation field δ~k. So we have a new set of equations:

D~u

Da
= 0, (2.26)

Dη

Da
+ η
(
∇ · ~u

)
= 0. (2.27)

We note that Poisson equation is used only for initial conditions. The first equation
rules the behaviour of a set of collisionless particles which move under their "inertia".
Its solution is:

~u(~x, a) = ~u0(~q) (2.28)
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with ~u0(~q) is the initial velocity in lagrangian position ~q of the infinitesimal fluid element
which is in the eulerian position ~x at time a(t). Integrating equation (2.28) we obtain
the particle’s trajectory:

~x(~q, a) = ~q + (a− a0)~u0(~q).

Following the Zel’dovich’s Ansätze we know that (2.25) is valid then, setting initial scale
factor a0 = 0, we have:

~x(~q, a) = ~q − a∇qϕ0(~q) ⇒ ~u(~x(~q, a), a) = ~u0(~q) =
~x− ~q
a

the particles go on straight lines. About the continuity equation (2.27) we can obtain a
solution by integration:

η(~x, a) = η0(~q)e−
∫ a
ao
da′∇·~u[~x(~q,a′),a′]

Nevertheless, it’s more suitable to consider mass conservation of individual infinitesimal
fluid element whereby

η(~x, a)d3x = η0(~q)d3q

But this relation could be equally obtained considering the fact that when we found the
particle’s trajectory we have defined nothing else than a unique map between Eulerian
and Lagrangian coordinates, so:

η(~x(~q, a), a) = (1 + δ0(~q))

∣∣∣∣∂~x∂~q
∣∣∣∣−1

with
∣∣J(~r, t)

∣∣ =
∣∣∂~x
∂~q

∣∣ is the Jacobian determinant of the mapping. For a0 → 0, so at early
times we have, recalling (2.23), δ0 → 0, then

η(~x(~q, a), a) =

∣∣∣∣∂~x∂~q
∣∣∣∣−1

,

the matrix of the change of cordinates ~q → ~x has components3

∂xi

∂qj
= δij − a

∂2ϕ0(~q)

∂qi∂qj
(i, j = 1, 2, 3)

where ∂2ϕ0(~q)
∂qi∂qj

is the deformation tensor D0,ij(~q).
Now, we can locally diagonalize this tensor going to principal axes Q1, Q2, Q3 with eigen-

3according to the Einsten summation notation.
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values λ1(~q), λ2(~q), λ3(~q). Write now

η(~x(~q, a), a) =
1

(1− λ1(~q)a)(1− λ2(~q)a)(1− λ3(~q)a)
(2.29)

Now taking the highest positive eigenvalue λi of the deformation tensor D0,ij(~q), at the
time asc = 1

λi(~q)
the equation (2.29) indicates that a singularity, called shell-crossing

occurs because of the density field which becomes locally infinite. Indeed what happens
is that trajectories of particles cross and then two points with different Lagrangian coor-
dinates get to the same Eulerian coordinate. Hence the Jacobian

∣∣∂~x
∂~q

∣∣ is ill defined and
diverges. This singularity occurs via one-dimensional collapse4 - creating the so-called
pancake. If there is more than one positive eigenvalue, then collapse will occur along the
axis corresponding to the most positive one.
The validity of Zel’dovich categorically breaks down after shell-crossing: particles enter-
ing a pancake from either side merely sail through it and pass out the opposite side, the
pancake appears only instantaneously and rapidly smeared out. In reality, the matter
that enters in the caustic -the region in which shell-crossing occurs- would remain there
because of the strong gravity. However the Zel’dovich approximation is only kinematic
so it doesn’t take into account of gravitational interaction.

2.3.2 "Tree-level" Perturbation Theory

In the previous section we described the Eulerian perturbation theory in the linear regime,
now we penetrate the non-linear regime through the use of a perturbative expansion [7].
First of all, we consider two different formulations of continuity and Eulerian equation:

∂δ

∂τ
+∇ ·

[
(1 + δ)~v

]
= 0, (2.30)

∂~v

∂t
+H~v + (~v · ∇)~v = −∇φ. (2.31)

With dτ = dt/a is the conformal time and H = d ln a
dτ = Ha is the conformal expansion

rate. Now going to Fourier space (2.31) and (2.30) read

∂δ̃(~k, τ)

∂τ
+ θ̃(~k.τ) = −

∫
d3k1d

3k2δD(~k − ~k1 − ~k2)α(~k1,~k2)θ̃(~k1, τ)δ̃(~k2, τ) (2.32)

∂θ̃(~k, τ)

∂τ
+Hθ̃(~k, τ)+

3

2
H2δ̃(~k, τ) = −

∫
d3k1d

3k2δD(~k−~k1−~k2)β(~k1,~k2)θ̃(~k2, τ) (2.33)

4The Zel’dovich approximation becomes exact if ϕ0 depends only on one coordinate qi.
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where δD is the three-dimensional Dirac delta distribution and α(~k1,~k2), β(~k1,~k2) are
the mode coupling functions:

α(~k1,~k2) ≡ (~k1 + ~k2) · ~k1

k2
1

, β(~k1,~k2) ≡ (~k1 + ~k2)2(~k1 · ~k2)

2k2
1k

2
2

. (2.34)

These functions contain all non-linear terms of Eulerian and continuity equation encod-
ing, de facto, the non-linearity of the evolution. These equations are very hard to solve
because they are coupled integrodifferential equations. In order to find a solution, we
make a perturbative expansion which lets formally solve equations (2.32) and (2.33):

δ̃(~k, τ) =
∞∑
n=1

an(τ)δ(n)(~k, τ), θ̃(~k, τ) =
∞∑
n=1

−H(τ)θ(n)(~k, τ). (2.35)

At small a(τ), the series are dominated by their first terms, and since we obtain from
the continuity equation that δ1(~k) = −θ1(~k), δ1(~k) totally defines the linear fluctuations.
The equations (2.32) and (2.33) determine δn(~k) and θn(~k) in term of linear fluctuations:

δn(~k) =

∫
d3q1...

∫
d3qnδD(~k − ~q1...n)Fn(~q1, ..., ~qn)δ1(~q1)...δ1(~qn), (2.36)

θn(~k) =

∫
d3q1...

∫
d3qnδD(~k − ~q1...n)Gn(~q1, ..., ~qn)δ1(~q1)...δ1(~qn). (2.37)

Where Fn(~q1, ..., ~qn) and Gn(~q1, ..., ~qn) are homogeneous functions, known as kernels, that
are constructed from the fundamental mode coupling functions α(~k1,~k2) and β(~k1,~k2).
Now, given the perturbative expansion, if we take the first non trivial term of our per-
turbative expansions (tree-level), we must consider its corresponding kernels as well:

F2(~q1, ~q2) =
5

7
+

1

2

~q1 · ~q2

q1q2

(
q1

q2
+
q2

q1

)
+

2

7

(~q1 · ~q2)2

q2
1q

2
2

, (2.38)

G2(~q1, ~q2) =
3

7
+

1

2

~q1 · ~q2

q1q2

(
q1

q2
+
q2

q1

)
+

4

7

(~q1 · ~q2)2

q2
1q

2
2

. (2.39)

Hence, higher order of "tree-level" PT involve more complex kernels. These functions are
used to calculate quantities such as power spectrum, bispectrum, skewness, cumulants et
cetera. The necessity for a statistical approach gets stronger and stronger and it is due to
the fact that is impossible to have direct observational access to primordial fluctuations.
Then, we briefly introduce some statistical tools that are indispensable to describe the
results of "tree-level" perturbation theory:

• The two-point correlation function, which is the joint ensemble average of the den-
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sity of two different positions

ξ(r) = 〈δ(~x)δ(~x+ ~r)〉 (2.40)

this definition can be extended to Fourier space leading to the density power spec-
trum P (k):

ξ(r) =

∫
d3kP (k)ei

~k·~r (2.41)

or equivalently,
〈δ( ~k1)δ( ~k2)〉 = δD(~k1 + ~k2)P (k) (2.42)

where δD(~k1 + ~k2 + ~k3) is a term that comes out when we go to Fourier space.
It is possible to define higher-order correlation functions, for instance, three-point
correlation function, which is defined as the connected part of the joint ensemble
average density at three different location and its counterpart in Fourier space that
is the bispectrum B(~k1,~k2):

〈δ( ~k1)δ( ~k2)δ( ~k3)〉c = δD(~k1 + ~k2 + ~k3)B(~k1,~k2); (2.43)

• The moments and cumulants and their respective generating functions. The mo-
ments provide a specific quantitative measure of the shape of the probability den-
sity. The first moment is the mean, the second one is the variance, the third central
moment is the skewness, and the fourth one is the kurtosis. A function from which
all moments can be generated is the moment generating functions defined by

M(t) ≡
∞∑
p=0

〈δp〉
p!

tp; (2.44)

The cumulants of a probability distribution are a set of quantities that represent
an alternative to the moments. The function from which all cumulants can be
obtained is the cumulant generating functions

C(t) ≡
∞∑
p=2

〈δp〉c
p!

tp = log[M(t)]; (2.45)

• The vertices νn and µn, that are the spherical average of the PT kernels Fn and
Gn, defined as follow:

νn ≡ n!

∫
dΩ1

4π
...
dΩn

4π
Fn(~k1, ...,~kn), (2.46)
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µn ≡ n!

∫
dΩ1

4π
...
dΩn

4π
Gn(~k1, ...,~kn). (2.47)

Using relation (2.46) and using kernel Fn we can calculate the first four vertices:

ν1 = 1, ν2 =
34

21
, ν3 =

682

189
, ν4 =

446, 440

43, 659
. (2.48)

As written above, the moments are the suitable mean through which one can give a fully
description of gravitational fluctuation in the weakly non-linear regime. The first relevant
moments that arise from mode coupling function are the third moment, the skewness S3,
and the fourth moment, the kurtosis S4. The skewness, in particular, measures the
propensity of gravitational clustering to generate an asymmetry between overdense and
underdense region. They are defined as follows:

S3 ≡
〈δ3〉
〈δ2〉2

, S4 ≡
〈δ4〉c
〈δ2〉3

. (2.49)

However the direct calculation of Sp parameters beyond kurtosis becomes extremely
difficult because the complexity of kernels Fn and Gn. Nevertheless, it’s possible to use a
relationship that exists between the vertices νp and Sp parameters to calculate the latter.
Using (2.48), we give the explicit relation until S5:

S3 = 3ν2 =
34

7
, (2.50)

S4 = 4ν3 + 12ν2
2 =

60, 712

1323
, (2.51)

S5 = 5ν4 + 60ν3ν2 + 60ν3
2 =

200, 575, 880

305, 613
. (2.52)

These results, that were obtained taking until third-order of "tree-level" PT, allow us to
compare the effectiveness of the new approach to gravitational instability based on the
use of Schrödinger equation.

22



Chapter 3

SPT: Schrödinger perturbation
theory

In the linear regime, the Eulerian PT through the linearization of fluid dynamics equa-
tions of motion and in the weakly non-linear regime, the Lagrangian approaches, such as
the Zel’dovich approximation, establish a consistent standard framework within which
the evolution of gravitational fluctuations can be described and understood. When fluc-
tuations become strongly non-linear the perturbation theories break down and we has to
resort to numerical simulation to study their evolution. In this chapter we are introducing
a new approach to the study of the growth of density fluctuations of CDM suggested by
Widrow and Kaiser [5]. This approach overcomes the limits of the standard perturbation
theory such as the problem to have a density field that is not positive everywhere or the
fact that methods, such as the Zel’dovich approximation, break down at shell-crossing.

3.1 The Widrow-Kaiser approach

The new approach to the study of collisionless matter is based on the coupled Schrödinger
and Poisson equations:

i}
∂ψ

∂t
= − }2

2m
∇2ψ +mV ψ ∇2V = 4πGψψ∗ (3.1)

where the squared modulus of the wavefunction ψ corresponds to the density matter.
The validity of this approach is due to the equivalence between the classical mechanics
of point particles and wave mechanics in the geometric limit. In the next section we
will show, step by step, the procedure to get Schrödinger’s equation from fluid dynamics
equations.
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3.1.1 From fluid dynamics to Schrödinger’s equation

We assume a pressureless fluid in a static Universe with an irrotational velocity field, i.e.
~w = ∇φ. Hence the equations (2.5) and (2.4), become:

∂ρ

∂t
+∇ · (ρ∇φ) = 0 (3.2)

∂∇φ
∂t

+ (∇φ · ∇)∇φ = −∇V (3.3)

with V ≡ Φ.
Then, we focus on the equation above to show how 1

2∂i(∂jφ∂
jφ) = (∇φ · ∇)∇φ:

1

2
∂i(∂jφ∂

jφ) =
1

2
(∂i∂jφ∂

jφ+ ∂jφ∂i∂
jφ) = ∂jφ∂i∂

jφ = wj∂iw
j = (∇φ · ∇)∇φ.

Once we obtain this relation we can substitute in (3.3):

∂i
∂φ

∂t
+

1

2
∂i(∂jφ∂

jφ) = −∂iV.

Now using the divergence theorem we find:

∂φ

∂t
+

1

2
(∇φ)2 = −V (3.4)

This equation, known as Bernoulli equation, togheter with (3.2) provide our starting set
of equations. First of all, we make the so-called Madelung transformation1 [8] - in honour
of who first noticed that the Schrödinger equation can be put into a fluid dynamical form:ψ(r, t) = R(x, t)e

iφ
ν

ρ = ψ∗ψ = R2
(3.5)

with ν a new parameter of dimension L2

T . Now we calculate ∇ψ and ∇2ψ that are
necessary for our calculations:

∇ψ = e
iφ
ν
[
∇R+

iR

ν
∇φ
]

(3.6)

and
∇2ψ = e

iφ
ν

[
∇2R+

i

ν
(2∇R · ∇φ+R∇2φ)− R

ν2
(∇φ)2

]
. (3.7)

1It’s interesting observe that ψ includes in itself both position and velocity information.
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Therefore we start substituting the density field of (3.5) in (3.2):

∂R2

∂t
+∇ · (R2∇φ) = 2RṘ+ 2R∇R · ∇φ+R2∇2φ

=⇒ 2∇R · ∇φ+R∇2φ = −2Ṙ (3.8)

We substitute the relation (3.8) in (3.7) to get (∇φ)2

∇2ψ = e
iφ
ν

[
∇2R− 2i

ν
Ṙ− R

ν2
(∇φ)2

]

=⇒ (∇φ)2 = ν2∇2R

R
− 2iν

Ṙ

R
− ν2

R
∇2ψe−

iφ
ν (3.9)

Let’s consider the time derivative ∂ψ
∂t

∂ψ

∂t
= e

iφ
ν

(
Ṙ+

iR

ν
φ̇

)
.

We can invert and find ∂φ
∂t

∂φ

∂t
= − iν

R
e−

iφ
ν ψ̇ + iν

Ṙ

R
. (3.10)

Now we can finally substitute (3.10) and (3.9) in the Bernoulli equation obtaining:

− iν
R
e−

iφ
ν ψ̇ + iν

Ṙ

R
+

1

2

(
ν2∇2R

R
− 2iν

Ṙ

R
− ν2

R
∇2ψe−

iφ
ν

)
= −V. (3.11)

Then,

�
�
�

iν
Ṙ

R
− iν

R
e−

iφ
ν ψ̇ +

ν2

2

∇2R

R �
�

��
−iν Ṙ

R
− ν2

2R
∇2ψe−

iφ
ν = −V

with some rearrangements we arrive to the Schrödinger equation:

iν
∂ψ

∂t
= −ν

2

2
∇2ψ +

(
V +

ν2

2

∇2R

R

)
ψ. (3.12)

We immediatly notice that there is an additive term in the right side of the equation:
the quantum pressure term. This name is due to the fact that it resembles a pressure
gradient. Indeed, if we introduce our wave function in the usual Schrodinger’s equation
and we work backwards, we arrive at Bernoulli equation with an extra term that is exactly
the same [4]. It’s evident how this novel approach totally overcomes the issues of the
standard perturbation theory. Indeed the way we defined the wave function ψ causes the
density ρ to assume only positive values. Secondly, Widrow and Kaiser do not consider
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trajectories of single particles but a complex scalar field, hence this approach doesn’t
break down at shell-crossing. Moreover in the wave function no singularities occur at
any time.

3.2 Perturbation Theory with the Schrödinger equation

In this section, we work in an expanding universe. Our aim is to obtain the statistical
tools that allow us to compare the Schrödinger perturbation theory with the tree-level
Eulerian perturbation theory results. We start from equations (2.21), (2.22) and (2.23),
assuming an irrotational velocity field ~v = ∇Φ, then the Euler and continuiy equation
assume the following form:

∂η

∂a
+∇ · (η∇Φ) = 0, (3.13)

∂∇Φ

∂a
+ (∇Φ · ∇)∇Φ +

3

2a
∇Φ = − 3

2a
∇ϕ. (3.14)

As demonstrated in the previous section, 1
2∂i(∇Φ)2 = (∇Φ · ∇)∇Φ then we substitute it

in (3.14) and using the divergence theorem we arrive at:

∂Φ

∂a
+

1

2
(∇Φ)2 +

3

2a
Φ = − 3

2a
ϕ. (3.15)

Now we can proceed to look for Schrödinger equation with the following set of equations:∂Φ
∂a + 1

2(∇Φ)2 + 3
2aΦ = − 3

2aϕ

∂η
∂a +∇ · (η∇Φ) = 0

(3.16)

For this calculations we use a complex scalar field, that represents the CDM, of the
following form:

ψ(r, t) = eA(r,t)+ i
}B(r,t) (3.17)

where A(r, t) and B(r, t) are two scalar fields. the density of the c, with this definition
of the wave function, is:

δ = η − 1 = e2A − 1. (3.18)

Once we introduced our wave function we can proceed as done in the previous section
calculating ∇ψ and ∇2ψ:

∇ψ = ψ

[
∇A+

i

}
∇B

]
(3.19)

and
∇2ψ = ψ

[
∇2A+ |∇A|2 +

i

}
(2∇A · ∇B +∇2B)− 1

}2
|∇B|2

]
. (3.20)
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We fix Φ(r, t) = B(r, t) and use the continuity equation (3.13) in the following way:

∂η

∂a
+∇ · (η∇B) = 2e2A∂A

∂a
+

(
2∇A · ∇B +∇2B

)
e2A = 0

we find that:
=⇒ 2∇A · ∇B +∇2B = −2

∂A

∂a

We insert this relation in the equation (3.20). Once we did it we can express |∇B|2 in
function of ∇2ψ obtaining:

|∇B|2 = }2

(
∇2A− 2i

}
∂A

∂a
+ |∇A|2 − ∇

2ψ

ψ

)
. (3.21)

In order to find ∂B
∂a we derive ∂ψ

∂a and as done previously we arrive at:

∂B

∂a
= −i}

(
1

ψ

∂ψ

∂a
− ∂A

∂a

)
. (3.22)

At the end our wave function (3.17) can be inverted to find:

B =
}
2i

ln

(
ψ

ψ∗

)
. (3.23)

Finally, keeping in mind that Φ = B(r, t), we substitute (3.22), (3.21) and (3.23) in
equation (3.15) obtaining:

−i}
(

1

ψ

∂ψ

∂a
− ∂A

∂a

)
+

}2

2

(
∇2A− 2i

}
∂A

∂a
+ |∇A|2 − ∇

2ψ

ψ

)
+ }

3

4ai
ln

(
ψ

ψ∗

)
= − 3

2a
ϕ

multiplying and eliminating the opposite terms:

−i} 1

ψ

∂ψ

∂a
+
�
�
�

i}
∂A

∂a
+

}2

2

(
∇2A+ |∇A|2

)
−
�

�
�

i}
∂A

∂a
− }2

2

∇2ψ

ψ
+ }

3

4ai
ln

(
ψ

ψ∗

)
= − 3

2a
ϕ

with some calculations and ignoring the quantum pressure term }2
2

(
∇2A + |∇A|2

)
, we

obtain:

i}
∂ψ

∂a
= −}2

2
∇2ψ + V ψ (3.24)

where we introduced a general potential V defined as follow:

V =
3

2a

(
B + ϕ

)
=

3

2a

(
}
2i

ln
( ψ
ψ∗
)

+ ϕ

)
. (3.25)
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Once we have shown how to arrive at Schrodinger equation in an expanding universe we
proceed to work with it. We substitute the wave function ψ = eA(r,t)+ i

}B(r,t), that we
previously defined, in the Schrodinger equation:

i}
[
∂A

∂a
+
i

}
∂B

∂a

]
ψ = −}2

2

[
∇2A+ |∇A|2 +

i

}
(2∇A ·∇B+∇2B)− 1

}2
|∇B|2

]
ψ+V ψ = 0,

i}
∂A

∂a
− ∂B

∂a
= −}2

2

(
∇2A+ |∇A|2

)
− i}

2
(2∇A · ∇B +∇2B) +

1

2
|∇B|2 + V.

After some simple rearrangements we obtained an equation that can be split in two
coupled equations respectively for imaginary and real part.
Then for the imaginary part we have:

∂A

∂a
= −1

2

(
∇2B + 2∇A · ∇B

)
. (3.26)

Instead for the real one:

∂B

∂a
=

}2

2

(
∇2A+ |∇A|2

)
− 1

2
|∇B|2 − V. (3.27)

Before going to Fourier space in order to operate in the most natural space for the
perturbation, as we explained in section 2.2, we want focus on the Poisson equation

(2.23). Indeed, keeping in mind our change of coordinates V = 3
2a

(
}
2i ln

( ψ
ψ∗

)
+ ϕ

)
we

can invert it and find the expression of ϕ:

ϕ =
2a

3

(
V +

3i}
4a

ln

(
ψ

ψ∗

))
,

we substitute in the Poisson equation

∇2ϕ ≡ ∇2

[
2a

3

(
V +

3i}
4a

ln

(
ψ

ψ∗

))]
=

(e2A − 1)

a
(3.28)

that in the correspondence limit, i.e. }→ 0, become:

∇2ϕ ≡ 2a

3
∇2V =

(e2A − 1)

a
.

We work in the correspondence limit for the others two equations as well:

∂A

∂a
= −1

2

(
∇2B + 2∇A · ∇B

)
,
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∂B

∂a
= −1

2
|∇B|2 − V.

Now going to Fourier space we obtain the following expressions:

∂Ak
∂a

= −1

2

(
k2B(~k) + 2

∫
d3k1d

3k2δD(~k − ~k1 − ~k2)~k1 · ~k2A(~k1)B(~k2)

)
(3.29)

∂Bk
∂a

=− 1

2

∫
d3k1d

3k2δD(~k − ~k1 − ~k2)~k1 · ~k2B(~k1)B(~k2)− 3H2a2

2k2

×
∑
N≥1

2N

N !

∫
d3k1...d

3kNδD(~k − ~k1 − ...− ~kN )A(~k1)...A(~kN )
(3.30)

where δD is the three-dimensional Dirac delta. We show how we obtained the last term
of the second equation2 recalling:

ϕ ≡ 3t2∗
2a3
∗
φ, a3

∗ = a3 t
2
∗
t2
, t =

2

3H
.

So, we can transform Poisson equation (3.28) in this manner:

∇2ϕ =
3t2∗
2a3
∗
∇2φ =

(e2A − 1)

a

Now Fourier transforming and using the definition of the exponential:

3t2∗
2a3
∗
k2φk =

1

a

∑
N≥1

2N

N !

∫
d3k1...d

3kNδD(~k − ~k1 − ...− ~kN )A(~k1)...A(~kN ) (3.31)

=⇒ φk =
3H2a2

2k2

∑
N≥1

2N

N !

∫
d3k1...d

3kNδD(~k − ~k1 − ...− ~kN )A(~k1)...A(~kN ) (3.32)

In order to render the equations (3.29) and (3.30) homogeneous in a and H we procede
to make a perturbative expansion of our scalar field using the Ansätze given by Szapudi
and Kaiser [3]: Ak =

∑
A

(N)
k aN

Bk = −H
∑
B

(N)
k aN+2

(3.33)

where the usual kernels that has the following definition appear:

A
(N)
k =

∫
d3k1...

∫
d3knδD(~k − ~k1...n)F (N)(~k1, ...,~kn)A

(1)
k1
...A

(1)
kN
, (3.34)

2here we use φ (peculiar gravitational potential) instead of ϕ (gravitational potential) that, after
applied the correspondence limit, is related to V (general potential) through: ∇2ϕ ≡ 2a

3
∇2V .
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B
(N)
k =

2

k2

∫
d3k1...

∫
d3knδD(~k − ~k1...n)G(N)(~k1, ...,~kn)A

(1)
k1
...A

(1)
kN
, (3.35)

substituting to the equations (3.29) and (3.30) we obtain two recursive relations for the
two respective kernels F (N) and G(N). Here we give explicitly the N=2 case just for F :

F2(~k1,~k2) =
3

7
+

10

7
α(k1, k2) +

2

7
β(k1, k2). (3.36)

The kernels are constructed from mode coupling functions that are similar to the Eulerian
case:

α(q1, q2) =
(q1q2)

k2
2

, β(q1, q2) = k2 (q1q2)

(q2
1q

2
2)
. (3.37)

3.2.1 Connection with "tree-level" PT

Once we have obtained the expressions for the kernels we can introduce the respective
vertices, that we defined in the subsection 2.3.2:

ν1 = 1, ν2 =
26

21
, ν3 =

568

189
, ν4 =

473, 744

43, 659
. (3.38)

From these quantities we can proceed to calculate first the tree-level cumulants of the
scalar field A that are:

SA3 = 3ν2 =
26

7
, (3.39)

SA4 = 4ν3 + 12ν2
2 =

40, 240

1323
, (3.40)

SA5 = 5ν4 + 60ν3ν2 + 60ν3
2 =

119, 609, 680

305, 613
. (3.41)

Then, we can find the cumulants of the density field δ, that is connected to A through
δ = e2A − 1, using the formula of Fry and Gatzañaga [6]. Indeed, they assume that
the galaxy density can be written as a function of the mass density of dark matter and
they express this function as a Taylor series. For instance, the first coefficient of the
expansion is the linear bias factor b (δg = bδρ). They showed that under a certain
limit the cumulants of δρ are connected with the cumulants of δg and they obtained the
following recursive equations that we can use for our purpose due to the fact that we
have an analogous relation between our two fields. Then, the cumulants of our density
field are:

S3 = b−1(SA3 + 3c2) =
34

7
, (3.42)

S4 = b−2(SA4 + 12c2S
A
3 + 4c3 + 12c2

2) =
60, 712

1323
, (3.43)
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S5 = b−3[SA5 +20c2S
A
4 +15c2S

A
3 +(30c3+120c2)SA3 +5c4+60c3c2] =

200, 575, 880

305, 613
; (3.44)

where in our case the coefficients are: b = 2 and cN = bN/b = 2N−1. These are exactly the
same results, that we have presented in subsection 2.3.2, for the "tree-level" perturbation
theory.
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Conclusions

In this work, we have presented a novel approach to the study of the evolution of Cold
Dark Matter under the influence of gravity based on the correspondence limit of the
Schrödinger equation. First, we investigated the growth of gravitational amplifications
in the linear regime, i.e. when the density variations are very small than the unity, using
the linear eulerian perturbation theory.
Then we penetrated the weakly non-linear regime with the Zel’dovich approximation,
which follows the particle’s trajectory giving a formidable comprehension of the behaviour
of Cold Dark Matter fluid until the shell-crossing occurs. Then it totally breaks down
falling into a singularity.
Therefore we introduced the "tree-level" perturbation theory with some statical tools
that allow us to verify the validity and the power of the approach suggested by Widrow
and Kaiser.
In the second part of our dissertation we focused on the new formalism that we derive
from the equations of the fluid dynamical in a static universe. This approach exceeds the
issues that affects the perturbation theories mentioned above. In the end, we deduced the
Schrödinger equation in an expanding universe and following the Ansätze by Widrow and
Kaiser we showed how they have recovered the "tree-level" perturbation theory results.
Hence, this technique can be a useful tool to pursue the growth of the density fluctuations
in the mildly non-linear regime.
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