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Introduction

The objective of this thesis is to study the nature of a stochastic background of
gravitational waves (GWs) induced by density (scalar) perturbations beyond linear
order, at second-order in cosmological perturbation theory.
This thesis also includes the intent to study the difference and similarities between
GWs backgrounds induced during the radiation and inflation phases. If we define
an inflationary model always stationed in a slow-roll phase, we argue a slow-
roll parameter ϵ always constant and, above all, much smaller than one; hence
from the formula linking the scalar curvature spectrum to the power-spectrum of
the inflationary fluctuation, it is clear that the former is much larger than the
latter. Since the curvature power-spectrum is the main element in producing a
second-order GWs background during radiation dominance (just as the scalar field
fluctuation spectrum induces the GWs background during the Inflation era), one
expects a totally negligible induced GWs background during Inflation compared
to that induced during the subsequent radiation phase. The hypothesis defined
earlier comes into play at this point: moving away from the slow-roll implies a
consideration of a larger slow-roll parameter (albeit less than one to have inflation);
thus the two power-spectra are placed in a different condition of comparability
(in natural units they are completely identical), so, at least in principle, one does
not expect a complete domination of one period-induced GWs background over
another. This idea match totally well with the practice of this thesis, since its aim
is to study the validity of the induced GWs background of the inflationary epoch
with respect to that induced during the later radiation epoch.
The Gravitational waves represent a smocking gun of the inflationary phase: we
can represent the principal element that lead the primordial accelerated expansion
of the Universe with a scalar field, that in a perturbative model can be divided in
a background term associated to the observative symmetries of homogeneity and
isotropy (Robertson-Walker symmetries), and a perturbative one depending on the
spatial coordinates.
This perturbative value of the real scalar field induces a perturbative term on
the stress-energy tensor, that in conclusion can be write like the sum of a first
background term describing a perfect fluid and a perturbation able to describe the
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anisotropy and the imperfection of the fluid. From the mathematical consistency of
the Einstein equation, we can argue that this last fluctuation induces a perturbation
over the Einstein tensor, so over the metric tensor. In conclusion we can write this
last term like the sum of a background tensor metric plus a perturbative tensor term.
We can decompose the perturbation of the metric tensor into scalar, vector and
tensor perturbations depending on the component of the metric perturbation that
we are considering. The tensor perturbations represent the degree of freedom of
the gravitational sector, so they describe the Gravitational waves. The study of the
dynamics of the scalar and tensorial fluctuations in the various causal regimes leads
to the conclusive result of quasi-scale-invariant curvature and tensorial spectra, in
full agreement with the observations on large scalar scales.
In addition to the vacuum fluctuations of the metric tensor, related at the first
perturbative order, it is possible to address the perturbative problem by going to an
order of development subsequent to the linear one. Developing the computations of
tensor modes at second-order in perturbation theory, and considering the transverse
and trace-free space part of the Einstein equation, we can find the dynamical
equation of a second-order background of Gravitational waves. This is a free-wave
equation equipped on the RHS with a source term given by quadratic combinations
of scalar (density and gravitational) pertubations offered by both the anisotropy
term and the Einstein tensor. From solving the equation, the two-point correlation
function of the tensor perturbations is derived, which will provide the tensor power
spectrum which is a crucial quantity to derive observable predictions for such a
stochastic background of gravitational waves. Within this general framework, a
given specific model, in agreement with the dynamic phase in which the scalar
source terms are active, specifies an appropriate source, thus a specific spectrum.
An enhanced comparability between radiation-induced and inflation-induced GWs
backgrounds is offered by a condition of departure from the slow-roll. Examples
of this approach include three specific inflationary models: a model where a step
feature in the inflaton potential is treated in a perturbative way through the so
called Effective Field Theory approach on a slow-roll background within a quasi
de-Sitter stage, a model of inflation called fast-roll, and a two-field inflationary
model that by changing the energetic nature of adiabatic-isoentropic perturbations,
and exploiting a dynamic induction mechanism leads to the result of a dominant
inflationary induced GWs background.
The aim of this thesis is to calculate the induced GWs background for the first
time for a one-field and two-field fast-roll inflationary model, respectively. The
idea is to use an analytical computational approach by building simplifying models,
and to compare, where possible, this theoretical resolution with a computational
matrix solution.
The thesis is organized as follows: in chapter 1 we resume the physics of inflation,
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talking about the principal inflationary model used in single-field, the Slow-Roll
model. In this framework we talk about the gravitational waves produced at the
linear perturbative order, and we resume the calculation for the curvature power-
spectrum and the tensor power-spectrum. In chapter 2 we introduce the classical
production of primordial Gravitational waves during the inflationary epoch, so
we go to the second order of perturbations. We resume the general tensor power
spectrum related to that theory, so we resume different physical model that produce
specific signature in the observable of the spectrum. In the chapter 3 we resume
the theory of the induced GWs background during a general post-inflationary
epoch: we talk about the general formalism of the perturbative theory at the
second order, and we derive the general form of the tensor power-spectrum, that
present specific signature with respect to the specific nature of the post-inflationary
phase of induction. In the chapter 4 we introduce different inflationary models
that define a a condition of departure with respect to the slow-roll dynamic, in
order to underline the condition for which a different ratio between the spectra
induce a more important production of induced inflationary GWs with respect to
the standard ones related to the radiation epoch. In the chapter 5 we calculate
the Spectral energy density for the induced GWs background in the two principal
epoch of production, for an inflationary model of Fast-Roll with one field. Then we
define the counts for a two field inflationary model. Here in particular we obtain
different kind of curvature power spectrum for a dynamic system of Fast-Roll and
Slow-Roll with respect to the physical complexity of the problem.



Chapter 1

Gravitational waves from single-field
slow-roll Inflation

The following chapter is written on the basis of the review [1]. The Inflationary
Solution defines an elegant treatment of some of the problems associated with the
Hot Big Bang theory, such as the horizon problem, the flatness problem and the
magnetic monopole problem [2], [3], [4], [5], [6], [7]. Inflation can be defined as a
sufficiently long period in the primordial universe characterised by an accelerated
expansion [8]. In addition to providing a careful resolution to the above problems,
considering the intrinsic quantum nature of the inflationary treatment, it is possible
to define a mechanism for the generation of primordial seeds of all observable
structures in the Universe and the anisotropies of CMB radiation: the quantum
interpretation from this point of view is of absolute regard since, by considering the
quantum fluctuation of the fields associated with the description of the dynamics
of the Universe, the above-mentioned seeds are consequentially generated, avoiding
the necessity to add them by hand in a classical theory [9], [10], [11], [12], [13].
The fields that can be considered are a scalar field and the metric tensor. From
the development of a perturbative theory within the limits of General Relativity, it
must be understood that a fluctuation of the scalar field at the dynamical level (and
this can be deduced directly from Einstein’s equation) implies a natural fluctuation
of the metric tensor, which of course in turn can be described as combinations
of fluctuations of various types and nature. The tensor-like fluctuation, already
destined to be a smocking gun of inflationary theory, describes the background
of Gravitational Waves. The beginning of this chapter will focus on a description
of the classical characteristics of Inflation, and then move on to a description
of the quantum nature of the system, so as to understand how such primordial
gravitational waves can be produced.
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CHAPTER 1. GWS FROM SINGLE-FIELD SLOW-ROLL INFLATION 5

1.1 The physics of Inflation
Standard Cosmology is described by a homogeneous and isotropic universe, the
space-temporal interpretation of which can be mathematically described by a metric
of FLRW:

ds2 = −dt2 + a(t)2

[
dr2

1−Kr2
+ r2(dθ2 + sin2 θdϕ2)

]
, (1.1)

where t is the cosmic time, r, θ, ϕ, are the comoving spherical coordinates and K is
the curvature of the three-dimensional spatial hypersurface. The metric is identified
by the evolution of the scale factor a(t) and the spatial curvature parameter. Since
the next objective is to define, via the Einstein equation, the evolution of the
scale factor that quantifies the expansion of the universe, it is necessary to specify
the energy-momentum tensor in the interspace that permeates the environment.
Working under the assumption of a homogeneous and isotropic universe, this tensor
can be that associated with a perfect fluid:

Tµν = (ρ+ P )uµuν + Pgµν , (1.2)

where ρ is the density of the fluid and P the pressure, while uµ is the four-speed
and gµν the metric tensor. Substituting (1.1) and (1.2) into the aforementioned
Einstein equation, we obtain the Friedmann equations:

H2 =
8πG

3
ρ− K

a2
,

ä

a
= −4πG

3
(ρ+ 3P ) , (1.3)

where H is the Hubble rate. From now on, it will be of appropriate simplicity
to define K = 0, since current observational constraints require us to think of a
universe that has never really felt the effects of its curvature dynamically [14] .
Friedmann’s equations reveal to us what kind of fluid can drive the inflationary
status. The definition of inflation requires only an accelerated expansion of the
universe, i.e. ä > 0. If we transfer this information into the equation just above,
it is easy to see how w < −1/3, hence how inflation cannot be supported by
radiation or normal non-relativistic matter, but by a fluid describing a singular
equation of state with the value defined above. The most representative and simple
example suitable for the description of such inflationary dynamics is that for which
we consider a De-Sitter universe, for which P ≃ −ρ, for which the scaling factor
evolves as a(t) = a0e

Hi(t−ti), where we define the Hubble parameter as a constant.
It is now necessary to introduce the concept of the Hubble radius RH(t) = 1/H(t),
which defines the region of causal connection space for any time t for an observable,
such as can be a fluctuation, with respect to the observer. In a De Sitter model,
as can be easily guessed and reasoned from a physical and non-comoving key, the
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radius of the Hubble sphere is constant during inflation, while all physical distances
are brought to increase due to accelerated expansion, so sooner or later they will
exceed this radius by becoming causally disconnected observables at a characteristic
horizon-crossing time. The idea of inflation, even in solving the horizon problem,
is exactly this: to make all observable fluctuations that initially at the inflationary
period are all inside the sphere, therefore all causally connected, slowly by virtue
of their width k exit that sphere, only to re-enter it later at the end of inflation
thus returning to a causally connected status for which they can therefore interact
again, coming out of the super-horizon freezing state. The easiest way to define a
stress-impulse source that provides such a researched equation of state is to present
a scalar field ϕ, and an appropriate associated potential. The Lagrangian density
associated with such a minimally coupled scalar field is described as follows:

L = −1

2
gµν∂

µϕ∂µϕ− V (ϕ). (1.4)

By varying the associated action with respect to the field and equating it to zero,
we obtain the dynamical equation of motion for such a zero-spin boson, i.e. the
Klein-Gordon equation □ϕ = ∂V

∂ϕ
. Assuming a RW metric in the idea of a flat

universe, it is possible to rework the equation in the following way:

ϕ̈+ 3Hϕ̇− 1

a2
∇2ϕ+ V ′(ϕ) = 0. (1.5)

By deriving the action with respect to the metric tensor, it is possible to find the
energy-momentum tensor for the scalar field:

Tµν = −2
∂L
∂gµν

+ gµνL = ∂µϕ∂νϕ+ gµν

[
−1

2
gαβ∂αϕ∂βϕ− V (ϕ)

]
. (1.6)

At this point it is necessary to match this last expression with (1.2), in order to
define, in terms of the field, a homogeneous and isotropic (perfect) fluid, finding
that the latter must have a density and pressure defined as follows

ρϕ =
ϕ̇2

2
+ V (ϕ) , Pϕ =

ϕ̇2

2
− V (ϕ). (1.7)

However, the quantity defining the sign of the acceleration of the universe reads

ρϕ + 3Pϕ = 2[ϕ̇2 − V (ϕ)], (1.8)

therefore, in order to get an accelerated expansion phase of the universe it is
necessary to require that V (ϕ) > ϕ̇2. Specifically, in the description of an almost
de Sitter universe, we need the condition that the potential is much larger than
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the kinetics of the field. Thus, a scalar field whose energy density is dominant in
the universe and whose potential dominates its kinetic energy defines the perfect
protagonist to drive the inflationary dynamics. The simplest way to describe such
a prospectus is to imagine a field defining a slow-roll phase towards the minimum
of its potential.

1.2 Slow-Roll conditions
The simplest way to analyse the configuration described above is by taking a
potential that presents a local region in which it is defined as flat. In such a
situation, starting from a general initial condition for which the inflaton begins its
motion with kinetics greater than the potential, (a condition then reversed in the
constant section thanks to the cosmic expansion that makes the velocity of the
system progressively smaller) one arrives at the constant section where in sufficiently
long times the dynamic evolution of the field will be guided by the friction, that will
overcomes the acceleration term (also with the objective of defining the inflationary
model in its vision as an attractor) for which ϕ̈ ≪ 3Hϕ̇.

Figure 1.1: Example of an inflationary Slow-Roll potential described by a flat region [1].

By substituting the two introduced slow-roll conditions into Friedmann’s first
equation and KG’s equation of motion, we obtain

H2 =
8πG

3
V , 3Hϕ̇+ Vϕ = 0, (1.9)

assuming that we are working in the background environment, i.e. defining the cen-
tral background term of the homogeneous field that defines the dynamic inflationary
solution in an isotropic homogeneous expanding curved K universe . It is necessary
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at this point to introduce the first-order slow-roll parameters [15], [16], [17] in order
to generalise the treatment exposed to any model and potential associated

ϵ =
M2

pl

2

(
Vϕ

V

)2

=
3

2

ϕ̇2

V
= − Ḣ

H2
, (1.10)

η = M2
pl

Vϕϕ

V
= − ϕ̈

Hϕ̇
. (1.11)

When these two parameters are considered to be much smaller than 1, then one
experiences a slow-roll inflationary dynamic. During such inflation, the slow-roll
parameters are constant at first order, defining a self-sustaining condition for
inflation, in fact it is easy to show how η̇, ϵ̇ = O(ϵ2, η2). In order for inflation to be
successful, thus resolving the shortcomings stated above, it must last long enough
for all the observables that were in the Hubble sphere (during the pre-inflation)
to exit (an intrinsic condition of the accelerated expansion), and then re-enter in
sub-horizon soon after the inflation, depending on the magnitude k of the mode
relative to the studied fluctuation. Usually a time estimate in the inflationary
period is offered by the number of e-foldings [16], defined by

Ntot =

tf∫
ti

H, dt, (1.12)

where ti and tf represent the inflation start and end times. The minimum number of
N required for the inflationary model to be functioning and consistent is N ≃ 60 [18].

1.3 Reheating phase
Among the greatest successes of the standard Hot Big Bang Model there are the
phenomena of primordial nucleosynthesis and CMB: it is necessary to require,
however, in order to be able to guarantee the description of these phenomena for
which we currently have observational evidence, that the universe at some point in
its life must be dominated by radiation (at 1 MeV such domination must already be
defined) and then switch to non-relativistic matter domination at the appropriate
equilibrium condition. Therefore, we know that inflation must end, sooner or later.
In single-field slow-roll models, inflation ends when the potential returns to make
the inflaton that travels through it feel its curvature, and from there the field goes
back to acquiring kinetics that allow it to oscillate around the system’s minimum,
subsequently beginning to decay by producing radiation, a fundamental condition
for initiating the subsequent hot big bang phase. The transition from inflationary
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dynamics to the domination of radiation that repopulates the universe in place of
the now decayed scalar field, is called Reheating [6], [7], [8], [19].
There are several models that associate GW production during this phase, in
addition to the classical GW induced in the inflationary period, so it is necessary
to define a state of art of the Reheating period. Furthermore, it is easy to
show how some Reheating parameters are connectable with those relating to
inflationary power-spectra (think of how the oscillation frequency of the field is
directly proportional to the slow-roll parameter ηV ), so if there are analytical
constraints on such Reheating parameters, these will be reflected in becoming limits
for scalar/tensor fluctuations.
At the end of inflation all the energy of the universe is saved in the scalar field
(having constant density in de Sitter, and since the other components have been
diluted in the cosmic expansion). Reheating must therefore define a conversion of
energy into another form, which subsequently develops into a radiation-dominated
scenario in a thermal equilibrium condition. In order to build such a transition,
many models have been advanced, in some of which the decay of the inflaton is
assumed to take place in a perturbative environment (slow decay), while others,
which go by the name of parametric resonance decays, make use of a rapid non-
perturbative decay. If the oscillations of the scalar field are sufficiently small
compared to the minimum, the inflaton can decay into relativistic particles, as soon
as the decay becomes efficient: if the decays occurs slowly, these can be described
by fermions alone. Due to the slow decay of the inflaton, the products have plenty
of time to thermalise, so that their energy distribution function will soon be argued
by a black-body function. Subsequently, these fermions will have to decay further,
so they convert into radiation. However, the scalar field could decay into bosons,
and here, in contrast to the previous case, the decay would occur in a rapid and
non-perturbative manner for the characteristic purposes of parametric resonance.
The decay process (oscillation on the minimum) is so fast that it could end with
very few oscillations. This condition is called the preheating phase [20].
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Figure 1.2: Temporal evolution of the comoving Hubble radius during Inflation and other
successive epoch [1], [21].

1.4 Quantum fluctuations: origin of cosmological
perturbations

The observational patterns associated with the formation of Large Cosmological
Structures (LSS) and the study of anisotropy in the temperature of the cosmic
background radiation, can be understood by defining the existence of small scalar
fluctuations that during the epochs following inflation can re-enter the horizon
returning to the causal connection that would lead them to a new interaction
of gravitational matrix. Standard cosmology is a classical cosmology that does
not provide for the use of such perturbative fluctuations, which would have to be
inserted manually, thus significantly affecting the plausibility of the theory. However,
granting to the cosmological model a quantum approach, would ensure the presence
of such necessary perturbative products as a default condition. With respect to
the QFT and a perturbative approach, a field can split into its central background
component and a fluctuation to which a second quantization operation must be
applied, capable of transforming the initially classical fluctuation into a quantum
field operator. Each field is associated with a quantum fluctuation defined as such
within the limits of the causal connection sphere. It is necessary to anticipate
that such fluctuations under sub-horizon conditions oscillate independently of any
frequency, with an associated null mean value calculated over macroscopic time,
leading to a null production of particle-antiparticle binary systems. As already
stated, the task of inflation is to stretch all the relative lengths of the fluctuations, so
they fall outside the causal connection horizon, defining the condition for which k ≫
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aH, where k represents the width of the fluctuation, transforming the perturbation
into a classical matrix object [9], [10], [12], [22]. Here the fluctuations remain
frozen in their amplitude value over time, while their length increases exponentially,
again in a conventional physical distance approach. When inflation ends, these
fluctuations will re-enter the Hubble sphere, starting with the smallest, during
successive domination phases, depending on the size associated with the fluctuation.
When such fluctuations re-enter in sub-horizon, with the same amplitude value
with which they exited, not null, they will again be subjected to the gravitational
impact that will shape them, producing the observed LSS and CMB anisotropy
fluctuations. In cosmology, there are two fields involved in this discussion: the
inflaton and the metric tensor, whose tensor matrix fluctuation identifies the degrees
of freedom of gravity, defining precisely the GWs. The next step is therefore to
study the dynamics of the fluctuations of these fields.

1.5 Metric Tensor perturbations
Recalling the definition of conformal time τ =

∫
dt
a(t)

the perturbation of the metric
tensor around the usual RW background is understood as follows:

g00 = −a(τ)

(
1 + 2

∞∑
r=1

1

r!
Ψ(r)

)
, (1.13)

g0i = a2(τ)
∞∑
r=1

1

r!
ω
(r)
i , (1.14)

gij = a2(τ)


1− 2

(
∞∑
r=1

1

r!
Φ(r)

) δij +
∞∑
r=1

1

r!
h
(r)
ij

 , (1.15)

where the functions Φ(r), Ψ(r), ω(r)
i , h(r)

ij , are the perturbations of the metric tensor of
order r, and h

(r)
ij is the traceless-transverse tensor that defines the GWs background.

Since maintaining an overall first-order perturbative theory (although this reasoning
is valid for any fixed order r) the dynamics of the various scalar, vector and
tensorial perturbations remain decoupled, it is convenient to decompose these
objects into elements that have well-defined transformation properties under spatial
rotation [23], [24]. From Helmoltz’s theorem it is possible to decompose each vector
into a solenoidal and a longitudinal component, called the vector and scalar part
respectively

ωi = ∂iω
∥ + ω⊥

i , (1.16)
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with ω⊥
i the null divergence vector, and ω∥ the longitudinal component. The trace-

free and transverse part of the spatial component of the metric can be decomposed
in the same way

hij = Dijh
∥ + ∂ih

⊥
j + ∂jh

⊥
i + hT

ij, (1.17)

where h∥ is the scalar function, h⊥
i is the solenoidal vector field, while hT

ij is the
solenoidal symmetric tensor part with null trace. It’s important to define the
trace-free operator Dij = ∂i∂j − δij

∇2

3
.

1.6 Stress-Energy Tensor perturbations
The generic energy-momentum tensor for a fluid can be written as follows

Tµν = (ρ+ P0)uµuν + P0gµν + πµν , (1.18)

where ρ is the energy density of the fluid, P0 the homogeneous pressure component,
uµ the quadri-velocity of the fluid and πµν represents the anisotropic stress tensor,
which takes into account all the imperfections of the fluid in question, in fact it
cancels at zero for a perfect fluid or in the case of a minimally coupled scalar field.
Perturbing the previous expression and decomposing each quantity respecting its
symmetries, the components developed to the first order of that tensor can be
written as follows:

T 0
0 = −ρ0 + δρ, (1.19)

T i
i = 3(P0 + δP ) = 3P0(1 + πL), (1.20)

T i
0 = T 0

i = 0, (1.21)

T i
j = P0

[
(1 + πL) δ

i
j + πi

T,j

]
, (1.22)

neglecting the vector perturbations. πL represents the pressure fluctuation, while πT

represents the transverse and traceless tensor component of the scalar-vector-tensor
decomposition of the stress-anisotropy tensor.

1.7 Dynamics of fluctuations
It is necessary to underline the dynamics of the fluctuations described above by
perturbing the problem (for now) to the first order, so it is necessary to start from
the development of the action of the scalar field, which we assume to be minimally
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coupled to gravity, assuming precisely that only inflaton and gravity are the only
ingredients capable of determining the dynamics of the universe

S =

∫ √
−g

[
1

2
M2

PlR− 1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
. (1.23)

At the first order, tensorial perturbations at the dynamic level remain decoupled
from those of a different nature. The result that will soon be achieved describes how
scalar and tensorial fluctuations, once exited on superhorizon scales from the sphere
of causal connection, will remain frozen for the duration of their sustainment outside
the aforementioned sphere, therefore the initial amplitude of such fluctuations upon
re-entry will be identical to that of first exit: then they will vary due to the intrinsic
nature of the causal relationship.
A relevant observable quantity for interpreting such fluctuations is the Power
Spectrum. Given a generic field g(x, t), which can be written in Fourier space as
follows

g(x, t) =

∫
d3k

(2π)
3
2

exp (ikx)gk(t). (1.24)

The adimensional Power-Spectrum Pg(k) is written in that way

⟨gk1g∗k2⟩ =
2π2

k3
Pg(k)δ

(3)(k1 − k2), (1.25)

with Dirac brackets describing a generic average over the ensamble. The sense
of such a function is to measure for each value of length k the amplitude of the
associated fluctuation. It is also useful to provide the following trivial definition
for which

⟨g2(x, t)⟩ =
∫

dk

k
Pg(k). (1.26)

Thus, the Power Spectrum per logarithmic unit interval over the frequency of the
perturbation, determines the variance over the distribution of the perturbation.
It is useful to define the generic functional trend of the spectrum in relation to
frequency by associating the typical spectral index:

ng(k)− 1 =
d lnPg

d ln k
. (1.27)

Let us refer to what has been said so far with respect to a canonically quantized
scalar field χ. We divide the scalar field into its homogeneous and classical
background component and its fluctuation which is to be canonically quantized
χ(x, τ) = χ(τ) + δχ(x, τ). Once the convenient rescaling δ̃χ = aδχ has been
defined, we move on to quantize the field δ̃χ by transforming it into a quantum
field operator, which can be written as a linear combination of its creation and
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annihilation operators (following, moreover, what we know to be the solution of
the KG equation associated with the fluctuation of a zero spin bosonic scalar field):

δ̃χ =

∫
d3k

(2π)
3
2

[
uk(τ)ak exp (ikx) + u∗

ka
∗
k exp (−ikx)

]
, (1.28)

with uk and u∗
k satisfying the typical commutation relations derived from those

associated with the creation and destruction operators

[ak, ak′ ] = 0, [ak, a
∗
k′ ] = δ(3)(k − k′). (1.29)

From the definition of δ̃χ and the last two equations, it easily follows that

⟨δχk1δχ
∗
k2
⟩ =

∣∣u2
k

∣∣
a2

δ(3)(k1 − k2), (1.30)

therefore we can write finally a scalar spectrum of the form

Pδχ(k) =
k3

2π2
|δχ|2 . (1.31)

1.8 Scalar Perturbations
In this section, the first-order dynamics of the scalar fluctuations of the physical
system will be studied. In order to describe the scalar fluctuations as simply as
possible, we attempt to express them as a function of gauge invariant potential
quantities, precisely because of the trivial properties of associated gauge transforma-
tions. We choose the metric tensor first presented, in first-order linear perturbation
with respect to the RW background. We consider the spatial curvature of the
spatial hypersurface with fixed conformal time constant at the linear level,

R(3) =
4

a2
∇2Φ̂, Φ̂ = Φ + 1

6
∇2χ∥. (1.32)

Φ̂, defined as the curvature perturbation, it is not a gauge invariant quantity, in fact
if we perform a transformation on a space hypersurface at constant shift time, such
a curvature perturbation does not remain invariant, gaining spurious terms that,
for the purpose of the notion of invariance, should elide. Therefore it is useful to
modify such a curvature perturbation with terms suitable for that purpose. Those
terms in one specific gauges allow us to return to the usual starting perturbation.
We can write

−ζ = Φ̂ +H
δρ

ρ′
. (1.33)
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This quantity is finally gauge invariant, and it is defined as the gauge invariant
curvature perturbation for hypersurfaces with uniform energy density. Infact, in
that gauge, it comes back to the usual simple curvature perturbation. It is now
necessary, in order to calculate the observable related to the power spectrum of
the curvature perturbation, to define the evolution of this fluctuation by means of
the general KG equation of motion of the inflaton; starting from the action of the
previous paragraph, we could write:

δφ
′′
+ 2Hδφ

′ −∇2δφ+ a2δφ
∂2V

∂φ2
a2 + 2Ψ

∂V

∂φ
− φ

′

0(Ψ
′
+ 3Φ

′
+∇2ω∥) = 0. (1.34)

In order to simplify this equation of motion, we introduce the Sasaki-Mukhanov’s
gauge-invariant [25]

Qφ = δφ+
φ

′

H
Φ̂. (1.35)

This quantity is intrinsically linked to the curvature perturbation gauge invariant
ζ, so solving the dynamics for one variable implies having solved it for the other as
well. Using the canonical quantization process, the field Q̃φ = aQφ is introduced,
so the previous KG equation is rewritten in a simplified way as follows [26]

Q̃′′
φ + Q̃φ

(
k2 − a

′′

a
+M2

φa
2

)
= 0,M2

φ =
∂2V

∂φ2
− 8πG

a3

(
a3φ2

H

)
. (1.36)

In the SR approximation (the case in question for the development of this chapter)
M2

φ

H2 = 3η − 6ϵ.
Translating into Fourier space, it is evident to note how expression (1.36) defines
the Bessel equation, for which we recognise a default solution given by the linear
combination of first and second-order Henkel functions. Defining the space-time
conditions for which the modified gauge invariant inflaton fluctuation is on super-
horizon scales(a necessary condition in order to be able to observationally define
the scalar power spectrum), the solution of motion is defined as follows∣∣Qφ

∣∣ = H√
2k3

(
k

aH
)
3
2
−νφ (1.37)

where νφ = 3
2
+ 3ϵ− η. Through the mathematical connection between the Sasaki-

Mukhanov variable and the curvature perturbation, knowing the scalar superhorizon
solution of the former and knowing how to analytically define the power spectrum
on the latter (very trivially, it is its square modulus), we arrive at the observable
of the curvature perturbation spectrum

Pζ =

(
H2

2πφ̇

)2(
k

aH

)3−2νφ

≃

(
H2

2πφ̇

)2

. (1.38)
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This result shows us that for each frequency k the curvature fluctuation always
maintains the same amplitude, even if during the course of the evolution of the
universe it will change the domination phase, as long as it remains in the super-
horizon condition.
The spectral index reads:

nζ − 1 = 3− 2νφ = 2ηv − 6ϵ. (1.39)
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1.9 Gravitational waves from inflation
The inflationary model, in its perturbative-quantum view, defines natural fluctua-
tions of the scalar field that induce an equally natural fluctuation on the metric
tensor, which must therefore be perturbed with respect to the basic version associ-
ated with the description of a homogeneous and isotropic universe. Such fluctuation
can be understood in terms of scalar, vector, and tensor objects; the latter specif-
ically, called hij delineates the background profile of a stochastic background of
gravitational waves [27], [28], [29], [30] describing the degrees of freedom of the
gravitational sector. No constraint equations originating from the continuity equa-
tion of the stress-impulse tensor are associated with these modes. The dynamic
evolution of such modes is in fact exclusively described by the transverse and
trace-free spatial part of the Einstein equation (where in fact hij is contained),
which, in the presence of a perfect fluid, does not provide any information on
the energy content of the universe, since no energy density terms are contained
in the resulting dynamic equation on the graviton. A possible coupling between
the GWs and the content of the universe is only present when we consider the
presence of a stress-impulse anisotropy tensor, or more generally, by sending the
development forward beyond the first order, unifying tensor terms of degree two,
with combinations of linear scalars. By perturbing the previously described action
at first order, it is possible to find the perturbed linear action for the tensorial
degrees of freedom [31], [32],

S
(2)
T =

M2
Pl

8

∫
a2(t)

[
ḣijḣij −

1

a2(t)
(∇hij)

2

]
d4x. (1.40)

Deriving this solution with respect to the gauge invariant hij, the equation of
motion of the graviton is obtained as usual:

∇2hij − a2ḧij − 3aȧḣij = 0. (1.41)

Such tensor fluctuations are called gravitational waves because they solve the wave
equation. In principle, the tensor fluctuation enjoys a total of 16 degrees of freedom,
which must obviously be reduced by virtue of the properties enjoyed by the tensor.
In fact, the symmetry, the null-trace and the transversality of the wave denote a
result of only two degrees of freedom, which can be interpreted as the two different
and perpendicular states of polarization of the wave. Thus, in general, it is possible
to underline the solution of the equation of motion as follows:

hij(x, t) =
∑

λ=+,×

h(λ)(t)e
(+,×)
ij , (1.42)

where h(t) represents the amplitude of the wave, while e
(+,×)
ij describes the polar-

ization tensor, with +,× the two chosen polarization states of the GW.
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In order to obtain a more formal solution for the equation of motion, it is appropriate
to define a change of variable

vij =
aMPl√

2
hij. (1.43)

We can rewrite the action in the following way

S
(2)
T =

M2
Pl

8

∫ [
v

′

ijv
′

ij − (∇vij)
2 +

a
′′

a
vijvij

]
d4x. (1.44)

In the Fourier space we can write

vij(x, t) =

∫
d3k

(2π)3

∑
(λ=+,×)

v
(λ)
k (t)e

(λ)
ij (k) exp (ikx). (1.45)

Using this last writing within the suitably varied action, we obtain the equation of
motion for each mode v

(λ)
k :

v
(λ)′′

k + v
(λ)
k

(
k2 − a

′′

a

)
= 0. (1.46)

This is clearly the equation for an harmonic oscillator, the solution of which is an
oscillating wave with a pulsation dependent on the scale factor that governs the
expansion of the universe. This solution is equal to that for the scalar field problem,
since the dynamic equations in the two cases are quite similar. This equation must
be solved within two specific limits, relating to the comparison of the scaling factor,
Hubble rate and frequency, which parameters intrinsically determine the causal
connection condition of the fluctuation.
The first case is that for which a

′′
/a << k2, i.e. k >> aH associated with the

subhorizon condition of the perturbation. Neglecting the term proportional to
the scaling factor in the pulsation term in the equation above, the equation on
vk becomes that of a free harmonic oscillator dependent only on the size of the
fluctuation. So the solution is a simple free waves that oscillates with the frequence
in k. The tensor hij oscillates consequently, but with a damping factor proportional
to the inverse of a, associated with the change of variable between the tensor
entities: this approximation justifies and takes into account the expansion of the
universe. The formal solution is written as follows:

vk(τ) = A exp (ikτ), (1.47)

for which the considerations made above follow. The second regime of the study
is for the superhorizon case, so k2 << a

′′
/a, for which the equation holds two

solutions (of course, we are talking about a second order differential equation):

vk(τ) ∝ a, vk(τ) ∝ 1
a2
, (1.48)
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which trace a h constant in time and one h decreasing in time. It is of factual
interest to study the solution that remains constant in time, since the second in the
regime of causal disconnection will decay, and will not be of observational interest
due to the expansion of the universe.
By solving the equation of motion more carefully, we can find the exact value of the
frozen fluctuation, which will consequently allow us to define the power spectrum
of the corresponding tensor modes. Through the standard quantization of the field

v
(λ)
k = vk(τ)

ˆ
a
(λ)
k + v∗k(τ)

ˆ
a
(λ)+
−k , (1.49)

where the modes are appropriately normalized and produced for the canonical
creation and annihilation operators respectively.
In order to simplify the problem, it is assumed as an initial condition that in the
infinite past all the modes were causally connected and were therefore described
by a Bunch-Davies [33] vacuum state. Equation (1.46) is still a Bessel equation,
which, in a convenient De Sitter space-time, defines the exact solution [27]:

vk(τ) =
√
−τ
[
C1H

(1)
ν (−kτ) + C2H

(2)
ν (−kτ)

]
, (1.50)

with C1 and C2 constants of integration, H(1)
ν e H

(2)
ν first and second order Henkel

functions with ν ≃ 3
2
+ ϵ.

In order to determine the integration constants, we exploit the condition for which
on subhorizon scales, due to the principle of equivalence, or more simply using the
initial condition set, we already know the solution of the mode, i.e. it must behave
like a plane wave e−ikτ

√
2k

.
Knowing the asymptotic Henkel functions in subhorizon scales

H(1)
ν (x >> 1) ≃ eix√

x
, (1.51)

with Henkel’s first function equal to the complex conjugate of the second, it becomes
trivial to assume C2 = 0, and so connecting the asymptotic solution with the known
wave solution we can yield the constant

C1 =

√
π

2
ei(ν+

1
2
)π
2 , (1.52)

by which it is possible to determine the overall value of the tensor fluctuation

vk =

√
π

2
ei(ν+

1
2
)π
2

√
−τH(1)

ν (−kτ). (1.53)
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In particular, for the purpose of determining the observable tensor power spectrum,
the superhorizon solution is required, where the Hankel function shows the following
behaviour

H(1)
ν (x << 1) ≃

√
2

π
e−iπ

2 2ν−
3
2

(
Γ(ν)

Γ(3
2
)

)
x−ν (1.54)

so the fluctuation becomes

vk ≃
(−kτ)

1
2
−ν

√
2k

. (1.55)

Recalling the general definition of Power Spectrum, and considering both polariza-
tion states, one can conclude

PT (k) =
k3

2π2

∑
λ

∣∣∣h(λ)
k

∣∣∣2 , (1.56)

so when the mode is in the superhorizon condition

PT (k) =
8

MPl

(
H

2π

)2(
k

aH

)−2ϵ

. (1.57)

In the Slow Roll hypothesis, the spectrum is again almost scale invariant.

1.10 Consistency relation
In the inflationary model studied (Slow-Roll), it is quite useful to discover a
fundamental consistency relation that links quantities associated with fluctuations,
especially those of tensor format. We introduce the tensor-to-scalar-ratio parameter

r(k∗) =
AT (k∗)

AS(k∗)
, (1.58)

which estimates the amplitude of gravitational waves versus scalar perturbations
at a fixed pivot scale k∗. From the ratio of the spectra calculated in the previous
sections we obtain

r =
8

M2
Pl

(
φ̇

H

)2

, (1.59)

i.e. that r = 16ϵ. In the previous section, the tensor spectral index was defined to
be nT = −2ϵ. Then, at the smallest order of expansion with respect to the usual
slow-roll parameters, one can write the consistency relation [34] :

r = −8nT . (1.60)
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This theoretical identity can be experimentally verified thanks to a measurement of
the overall tensor power spectrum, i.e. the spectral index as well as the amplitude
must be known. If the relation is true, we would have absolute certainty of
the existence of inflation, as this theory is the only one that can support such
consistency: however, if this relation is true, it would say that for a large tensor
spectral index one would have difficulty in estimating the dependence in the tensor
scale. Currently only an upper bound on the value of the tensor-to-scalar-ratio is
available, with r0.05 < 0.07 at 95% C.L [35].

1.11 Second Order Gravitational Waves
So far, only first-order metric tensor fluctuations on a RW background metric have
been considered: however, the general metric perturbation had been extended to a
generic r-order perturbative, and it makes complete sense to see what happens going
precisely beyond the linear level. In the latter, in fact, the evolution of the scalar,
vector, and tensor perturbations is governed by equations of motion in which these
unknowns are presented decoupled from each other, greatly simplifying the system
analytically. At mixed successive orders, things get much more complicated, in fact
the combination of scalar perturbations at first order can act as a source of GW
defined globally at order two. Thus, even if we assume the absence of a stochastic
first-order GWs background, if we are dealing with inflationary fluctuations that
will provide a curvature perturbation that will oscillate and decay into a new
subhorizon regime, these will naturally provide gravitational waves of order two.

1.12 Post-inflationary evolution of GW
Once the inflation is over, i.e. when the Hubble sphere radius in comoving coordi-
nates reaches its minimum value, the tensor fluctuations describing the gravitational
waves will re-enter the horizon in the next domination phases, so it makes sense
there to understand their future behaviour. The job of the inflationary epoch is
precisely to stretch the perturbations by sending them into superhorizon scales
where they will have a constant amplitude over time. Subsequently such fluctua-
tions will re-enter the causal connection domain in sequence, dependent on their
magnitude k. On superhorizon scales, however, there is also a decaying solution on
the scale factor in addition to the frozen one: however, this result is not observed
precisely infact it disappear due to cosmic expansion. Therefore it is the constant
solution that re-enters the horizon, which identifies the power spectrum statistic.
Such frozen modes, upon re-entry, return to oscillate and decay dumped by a factor
of 1/a. However, during the domination of radiation and NR matter, the scaling
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factor evolves differently, as a ≃ τ , and a ≃ τ 2, respectively, so the equation of
motion becomes the Bessel equation on tensor amplitudes that denotes two different
solutions depending on the period of re-entry

hk(τ) = hk,i

(
j0(kτ)

)
, hk(τ) = hk,i

(
3j1(kτ)

kτ

)
, (1.61)

where hk,i is the initial condition provided by the previous freezing, while j0 and j1
are the Bessel functions. These solutions suggest that the higher the frequency of
the wave, the stronger the amplitude dump.
During an epoch of pure domination of the cosmological constant, the universe can
be described under de Sitter’s key, whereby there is a scaling factor that evolves
exponentially, just as in the inflationary case for ϵ = 0. Therefore the solution in
that epoch follows the already defined (1.53). Subsequently, it will be shown how
the present energy density of the GWs background may have canalized on itself
the different modes of oscillation depending on the various epochs through which
the wave had to pass.

1.13 Energy-density of gravitational waves
An important definition to provide for the theory is the energy density of the GWs
background. Consider the weak-field limit, a limit for which gravitational waves
are considered as ripples on the space-time, which is mathematically described by
the usual background of fixed RW. Einstein’s field equation in the vacuum reads
trivially as Gµν = 0, or even more simply Rµν = 0. Once the Riemann tensor is
written as usual as the sum of a fixed background term and small perturbations up
to the second order Rµν = R̄µν +R1

µν(h) +R2
µν(h) +O(h3), thanks to the vacuum

equation (not considering additional matter sources for simplicity), it is possible
to deduce how the presence of the intrinsic GWs in the perturbative terms can
modify the background term, concretely defining the stress-energy tensor term of
the stochastic background tµν .
The Riemann tensor can be written as the sum of a background term and a
fluctuation, with both terms satisfying the vacuum equation [36]. Since the
Background term varies only on large scales with respect to some fixed reference,
it identifies together with the small term developed at second order the regular
system contribution. The remaining part establishes the fluctuation to the fixed
counterpart, and by itself solves the void equation R

(1)
µν (h) = 0. So we can write

the smooth part on the vacuum

R̄µν + ⟨R(2)
µν (h)⟩ = 0, (1.62)
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where the average on the second term quantifies the smooth contribution on the
second-order fluctuation. This reasoning can obviously be extended to the overall
Einstein equation

Ḡµν = R̄µν −
1

2
R̄ḡµν = ⟨R(2)

µν (h)⟩ −
1

2
⟨R(2)⟩ḡµν . (1.63)

The right-hand term is, as anticipated earlier, the one that modifies the background
so it quantifies the energy-momentum tensor tµν , minus a normalisation factor 8πG.
In terms of the tensorial mode this stress is written as follows

tµν =
1

32πG
⟨∂µhij∂νh

ij⟩; (1.64)

The 00 term of the previous tensor quantifies the observational result

ρgw =
1

32πGa2
⟨h′

ij(x, τ)h
′ij(x, τ)⟩. (1.65)

However, it is sometimes common to represent this energy density on a logarithmic
unit, normalizing to the critical density

ΩGW (kτ) =
1

ρc

dρgw
d ln k

. (1.66)

1.14 Why are primordial GWs so interesting?
Primordial gravitational waves define a fundamental tool for studying the funda-
mental physics of the primordial universe in which they were produced.

1.14.1 Energy scale of inflation

From the study of the GWs it is possible to trace the specific mechanism that
produced them, in fact the parallelism between the amplitudes of the tensor and
scalar spectra (which generate the former) is proof of this. In particular, the
measurement of the amplitude of the tensor power spectrum naturally allows for
an estimate of the energy scale of the inflationary momentum [37]: this conclusion
can be deduced from a better writing of the amplitude defined above:

PT (k) =
16H2

πM2
Pl

(
k

aH

)−2ϵ

. (1.67)

This amplitude, thanks to the first Friedmann equation, is totally equal in slow-roll,
to the potential of the theory that quantifying the model. Being dimensionally an
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energy to the fourth power, the fourth root of this field function manages to give
us a more direct estimate of the universe’s energy during inflation.
The difficult observability of this amplitude precludes such a measurement, so it
might be a good idea to look for this energy information in the amplitude of the
scalar spectrum, for which we have strong estimates, at least on the broad scales.
However, a similar rewriting of the amplitude of the scalar curvature spectrum
leads to the following conclusion

Pζ(k) =
H2

πϵM2
Pl

(
k

aH

)3−2ν

. (1.68)

Here it is simple to note that the measurement of this quantity does not give a direct
estimate of the energy, due to the parametrization offered by the slow-roll parameter
ϵ: therefore the energy estimate is provided depending on another parameter that
quantifies the choice of one inflationary model over another. Working in the scalar
environment, it is possible to link the inflationary potential, (and hence the energy),
with the amplitude of the scalar background and the slow-roll parameter via the
Friedmann equation, finding

V = 24π2M4
PlASϵ. (1.69)

Using the relation between the tensor-to-scalar-ratio and the prime parameter of
slow-roll, one can simply bind V to r

V =
3π2AS

2
M4

Plr. (1.70)

Knowing the amplitude of the curvature fluctuations thanks to the Planck data [18]
from the CMB study, it is possible to link the inflationary energy scale when the
pivot scale enters on superhorizon scales, with the observable r

V =
(
1.88× 1016GeV

)4 r

0.10
. (1.71)

Thus, estimating r implies determining the energy scale of inflation.

1.14.2 Predictions from inflation

It is convenient to rewrite the already discussed power spectra of scalar and tensor
perturbations in the following power form

Pζ(k) = AS(k∗)

(
k

k∗

)nS−1

, (1.72)
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PT (k) = AT (k∗)

(
k

k∗

)nT

, (1.73)

where

nS − 1 = 2ην − 6ϵ, nT = −2ϵ, (1.74)

AT (k∗) =
16H2

πM2
Pl

, (1.75)

AS(k∗) =
H2

πϵM2
Pl

. (1.76)

It is reasonable to observe the presence of four observables, i.e. the two amplitudes
and the two spectral indices: however, these are intrinsically dependent on the slow-
roll parameters which depend on the potential defining an appropriate inflationary
model. The observables depend on the model chosen, so it makes sense to place
constraints on the models themselves (hence on the slow-roll parameters) in order
to have a meaningful estimate of the observables.
In order to simplify the system, it makes sense to reduce the number of terms
through the functional relationships by which they are bound. It is quite true
to observe, at least on the large scale, that ∆T/T ≃ ζ + h: knowing the scalar
value of the anisotropy fluctuation of CMB equal to ∆T/T ≃ 10−5, it is possible
to link the scalar fluctuation to the tensor fluctuation, writing one in the terms
of the other. Furthermore, it is possible to express this reasoning in terms of the
tensor-to-scalar ratio r, which is also due to the cosmological consistency relation
related to the tensorial spectral index r = −8nT . Therefore the two amplitudes and
an index can be deduced by knowing r. Hence the linearly independent remaining
parameters suitable for cataloguing any inflationary model can be (r, nS). It is
therefore possible to define such a plane (r, nS), within which it is possible to
restrict regions of space in order to group models exhibiting the same properties,
into three main classes of models: small field models for which ηv < 0, large field
models for which 0 < ηv < 2ϵ, and hybrid models with ηv > 2ϵ. From the system
composed of (1.60), (1.74), it is possible to define r again alternatively:

r =
8

3
(1− nS) +

2ηv
3π

. (1.77)

A prediction for small field models, for which ηv < 0, is a lower value of r, hence a
lower production of GW perturbations with respect to scalar ones; on the contrary,
in large field models, r increases its value, supporting the opposite solution.
Another determination to reach the same conclusion comes from the definition of
scalar field excursion, for which it is worth remembering that

∆φ

MPl

≃
√
rNCMB. (1.78)
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By definition, large field models are marked by an LHS value greater than 1, leading
to a higher r value than in the case of small field models, for which the ratio must
be less than unity, resulting in a less consistent production of the stochastic GWs
background.

Figure 1.3: Constraints on the tensor-to-scalar ratio r0.002 in the ΛCDM model, using
Planck TT,TE,EE+lowE and Planck TT,TE,EE+lowE+lensing (red and
green, respectively), and joint constraints with BAO and BICEP2/Keck (blue,
including Planck polarization to determine the foreground components) [38].

1.14.3 GWs beyond the SR, as a testing way for the infla-
tionary model

The measurement of the tensor power spectrum suggests a strong way of distinguish-
ing between the various inflationary models (each with its own specific physical
laws) capable of producing this GWs background. In fact, beyond the already
discussed Slow-Roll there are other important inflationary models that deserve
further investigation; in general these can be divided into two macrocategories,
those that are built on a GR theory, and those that use a modified theory of gravity
(MG). It is logical to think that each model predicts a different tensor power
spectrum, with amplitude, spectral index and non-Gaussianity factor characteristic
of the system, so the theoretical-observational feedback will determine the model
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closest to the description of reality.
If we consider the models subject to a GR view, it is possible to enunciate the
existence of theories that predict sufficiently particular tensor spectra, with GW
production at the perturbative second order relative to the extra production of
fields secondary to the scalar inflaton. We could also cite the interesting predic-
tions offered by solid inflation [39], elastic inflation [40] and warm inflation [41].
MG models, on the other hand, were introduced in order to have a more elegant
explanation of the primordial accelerated expansion of the universe. Considering
the general action

S =

∫ √
−g(Lgrav + Lmat)d

4x. (1.79)

In order to obtain an accelerated expansion of the universe, (so inflation) one can
either proceed as done so far, i.e. by adding externally to the metric a scalar field
with its dynamics imprinted in the Lagrangian density of matter, or modify the
metric itself and thus the Hilbert-Einstein action, by inserting a further scalar
degree of freedom beyond those already provided by a perturbative theory.
In the last version described, the dynamics of the system is governed entirely by
the metric degrees of freedom of the gravitational field, without the addition of
an external field in order to be able to explain the accelerated expansion of the
primordial universe.

1.14.4 Primordial gravitational waves in the EFTI

Another interesting way to study the inflationary dynamics together with its
smocking gun described by gravitational waves, consists in the effective field
theory of inflation (EFTI) approach [42], in which it is possible with a single
examination, to define a multitude of inflationary models under a single class. The
basic idea of the theory is based on the definition of the action of a Goldstone
boson particle, which, by definition, defines a spontaneous symmetry breaking by
temporal diffeomorphisms. This action enjoys a symmetry shift on this fluctuation,
depending on the temporal dependencies that are guaranteed on the multiplicative
coefficients of the various operators developed to a certain order. In fact, by defining
a specific temporal dependency that is not constant, but rather perturbed by a
step-feature, the model theory leads, through the development of the action at the
appropriate order for the determination of the fluctuation’s equation of motion
through which the correlation functions can be found, to the definition of spectra
and bispectra that reflect these features with respect to, for example, a typical
intrinsic slow-roll trend. It is possible in that approach to define a general action
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for the induced tensor perturbation [43]:

S
(2)
T =

M2
Pl

4

∫
a2(τ)α

[
h

′

ijh
′

ij − c2T (∇hij)
2 −m2h2

ij

]
dτdx3, (1.80)

where the parameters α, cT , m, are induced by linear combination of the coefficients
present in the starting action [42].
This modelling allows one to think of GWs different from the standard ones, with a
propagation speed different from that of light, and a non-trivial mass. It is possible
to state how, remaining in a slow-roll inflationary case with an initial condition on
fluctuations described by the Bunch Davies vacuum, the tensor power spectrum is
defined in the following form

PT =
2H2

π2M2
PlcT

(
k

k∗

)nT

, (1.81)

with
nT = −2ϵ+

2m2

3αH2

(
1 +

4

3
ϵ

)
. (1.82)

It is essential to note that, compared to the slow-roll case in which the tensor
power spectrum index was intrinsically negative (leading to an overall red-tilt of the
process), here there are additional terms that can positively increase the spectral
index, leading to a blue-tilt variation of the system. That condition clearly induce
a growth of the observable function, hence, the observation of a greater portion of
gravitational wave density.



Chapter 2

Classical production of primordial
Gravitational waves during Inflation

In this chapter the interest shifts to the study of primordial gravitational waves
outside the previously studied mechanism of vacuum fluctuations of the gravita-
tional field, described of course by the metric tensor. This mechanism of ’Classical’
production of gravitational waves can be defined either during the inflationary
period, or during the phase after Reheating. During these two phases, in fact, there
are two different ways in which a gravitational background can be produced: by
vacuum fluctuations in the gravitational sector or by a classical mechanism. The
former case has been extensively described in the previous chapter in the study
of an inflationary one-field Slow-Roll model. In the latter case, a tensor power
spectrum has also been defined as almost scale invariant: however, it is possible to
define a zoology for such an observable related to the choice of gravitational theory
associated to the inflationary model.
On the other hand, one can speak of the second classical production model of GW
when a new source term arises in the equation of graviton dynamics, in the RHS,
to generate a new second-order perturbative class of gravitational waves. This
source term is defined according to the choosen model, e.g. it can be defined by
the presence of a second scalar field beyond the inflaton, but also by the massive
production of secondary particles. Depending on the selected model, and thus on
the associated source, it is possible to study and observe a different GW power
spectrum, which is associated with obvious features that distinguish it from the
SR model of reference. Initially, it will be interesting to study different modelling
approaches for the production of a classical second-order perturbative GWs back-
ground, and then return to the standard production by vacuum oscillation of the
metric tensor associated, however, with different gravitational approaches.
In the previous chapter, a linear first-order perturbative approach was considered
with respect to a space-time background of FRW: in such a configuration and

29
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speaking in a purely dynamical key, the scalar, vector and tensor fluctuation modes
are totally decoupled (think of the free wave equation found for h in the previous
section). However, this consideration loses its meaning if one decides to study the
problem for higher perturbative orders, in fact already at the second perturbative
order it is easy to see how an appropriate combination of scalars can give rise to a
vector or tensorial mode. This reasoning is obviously not only valid for the pertur-
bative order r=2, but also for all subsequent ones, with the only constraint that
scalar, vector and tensorial modes of the same order remain dynamically decoupled.
On the other hand, the combination of two spatially rotationally invariant objects
(i.e. two scalars) may no longer be subject to such symmetry.
Considering finally the metric tensor and the stress-energy tensor perturbed up to
the second order in Einstein’s equation, the equation that for the linear model we
had seen to be a free wave equation, now at the second order perturbative, gains in
the RHS (the LHS remains the same by shifting the tensorial modes to the second
order) a source identified by the appropriate combination of scalar modes at the
first order that can come out either from the metric tensor or from the energy
tensor. Thus a combination of two first-order scalar (or vector) perturbations
represents a generating source of a new class of gravitational waves [44]: this
implies that whenever there is a curvature perturbation there is a second-order
GWs background, in fact the curvature perturbation during the inflationary period
identify the scalar fluctuation that induces the variation of the Einstein equation,
leading to the variation of the metric tensor and the stress-energy tensor, from
whose perturbation to degree two, we obtain the equation for the induced GWs by
an opportune combination of scalars (even if we therefore neglect the presence of
the tensorial modes of order 1, which instead define the standard vacuum GWs
background).
More precisely, by taking the transverse and traceless spatial part of the Ein-
stein equation perturbed up to second order, it is possible to observe how, in
spite of the first-order case, new terms are induced beyond the standard LHS
contributions of free waves equation. These terms are defined as a combination
of perturbations of scalars from the Einstein tensor and the anisotropic tensor
component of the energy-pulse tensor, thus defining the source of the induced GWs
background [44] [45], [46], [47], [48], [49], [50], [51].
Focusing on inflationary physics, the second-order source can be structured in
different model-dependent ways, defined for example by inflationary fluctuations or
extra particle production. However, this mechanism can also be extended to a post-
inflationary time, such as radiation domination. When the curvature perturbation
(which at the end of inflation and in accordance with the predictions of the Hot
Big Bang Model obviously defines a radiation fluctuation) re-enters the Hubble
horizon during radiation domination, it becomes causally connected again, so it
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return to interact with other scalar modes and to be subject to deformations related
to gravity or simply to the expansion of the universe, thus defining a dynamic
source capable of generating the same second-order GWs background, but induced
in a later post-inflationary phase. In this section, the focus will be on the GWs
background induced during inflation. Generally speaking, what will be obtained
is either a second-order GWs background negligible in amplitude compared to a
standard first-order GWs background, or directly an induced GWs background so
small that it falls outside the sensitivity of the interferometers capable of measuring
it. However, it can be observed that thanks to the right sources, an important
second-order induced GWs background can be obtained from scalars.

2.1 Production of second order GWs
Let us consider the spatial part of Einstein’s equation at second order, and then
consider only the transverse-traceless part via an appropriate projection operator:

Π̂lm
ij G

(2)
lm = k2Π̂lm

ij T
(2)
lm , (2.1)

where Π̂lm
ij = Πi

lΠ
j
m − 1

2
ΠijΠ

lm is the projection operator, with Πij = δij − ∂i∂j
∆

and
k2 = 8πG. Consider a classical background of FLRW perturbing up to order two
(see (1.15)), neglecting for simplicity the first-order vector and tensor perturbations,
thus defining hij = h

(2)
ij .

In this form, the second-order Einstein tensor is written as follows:

G
i(2)
j = a−2

[
1

4
(h

′′i
j + 2Hh

′i
j −∇2hi

j) + 2Ψ(1)∂i∂jΨ
(1) − 2Φ(1)∂i∂jΨ

(1)

+4Φ(1)∂i∂jΦ
(1) + ∂iΨ(1)∂jΨ

(1) − ∂iΨ(1)∂jΦ
(1) − ∂iΦ(1)∂jΨ

(1)

+3∂iΦ1∂jΦ
(1) + (Ψ(2), w

(2)
i ) + (diagonalpart)δij

]
.

(2.2)

The stress-energy tensor of a second-order perturbed perfect fluid is written [52]:

T
i(2)
j = (ρ(0) + P (0))v(1)iv

(1)
j + P (0)π

(2)i
j + P (1)π

(1)i
j + P (2)δij. (2.3)

Using the expressions for the linear first-order perturbations of the energy-momentum
tensor and rewriting them as a function of the linear metric perturbations [53], the
compacted starting equation becomes:

h
′′

ij + 2Hh
′

ij −∇2hij = −4Π̂lm
ij Slm, (2.4)
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with Slm:

Slm = 2Ψ∂l∂mΨ− 2Φ∂l∂mΨ+ 4Φ∂l∂mΦ + 4Ψ∂l∂mΨ

+∂lΨ∂mΨ− ∂lΨ∂mΦ− ∂lΦ∂mΨ+ 3∂lΦ∂mΦ

− 4

3(1 + ω)H2
∂l(Φ

′
+ 3HΨ)∂m(Φ

′
+ 3HΨ)

− 2c2s
3ωH2

[
3H(HΨ− Φ

′
) +∇2Φ

]
∂l∂m(Ψ− Φ),

(2.5)

with ω = P 0/ρ0, Ψ = Ψ(1), Φ = Φ(1) and cs = P 1/ρ1. It is fundamental to note that
the source tensor is actually composed, as anticipated earlier, of linear combinations
of scalar fluctuations from both the Einstein tensor and the stress-energy tensor.
In order to solve the dynamics of the induced GWs background, the tensor solution
is appropriately transformed in the Fourier space

hij(x, τ) =

∫
d3k

(2π)
3
2

exp (ikx)[hk(τ)eij(k) + h̄k(τ)ēij(k)]. (2.6)

The two polarization tensors eij(k), ēij(k) can be expressed in terms of two
polarization vectors orthogonal to the direction of propagation of the wave marked
by vector k:

eij(k) =
1√
2

[
ei(k)ej(k)− ēi(k)ēj(k)

]
, (2.7)

ēij(k) =
1√
2

[
ei(k)ēj(k)− ēi(k)ej(k)

]
. (2.8)

We must now also rewrite the RHS source term in Fourier space in terms of the
polarization tensors

Π̂lm
ij Slm =

∫
d3k

(2π)
3
2

exp (ikx)
[
eij(k)e

lm(k) + ēij(k)ē
lm(k)

]
Slm(k). (2.9)

Thus, the second-order equation of motion for tensor modes induced by scalars in
Fourier space, for each polarization state, is defined as follows:

h
′′

k + 2Hh
′

k + k2hk = S(k, τ), (2.10)

where
S(k, τ) = −4elm(k)Slm(k), (2.11)

is the convolution of the two linear scalar perturbations. Equation (2.4) is a wave
equation with a source, the solution of which is written:

hk(τ) =
1

a(τ)

∫
dτ̃Gk(τ ; τ̃)

[
a(τ̃)S(k, τ̃)

]
, (2.12)
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where the Green’s function Gk solves equation (2.4) with a source given by 1
a
δ(τ− τ̃).

Given this solution (2.12), the expression for the two-point correlation function for
the GW background can be written in terms of the source as follows

⟨hk(τ)hk′(τ)⟩ = 1

a2(τ)

∫ τ

τ0

dτ̃1dτ̃2a(τ̃1)a(τ̃2)Gk(τ ; τ̃1)Gk′(τ ; τ̃2)⟨S(k, τ̃1)S(k
′
, τ̃2)⟩,

(2.13)
with τ0 the turn-on time of the source. Expression (2.13) represents the generic
expression for the GW power spectrum due to the induced second-order tensor
modes that solve the equation of motion with a generic source. Now it becomes
interesting to go into the specifics of some models to find some solution relative to
a specific source.

2.1.1 Second order GWs sourced by inflaton perturbations

An immediate application of the second-order perturbative development theory
adopted above, can be defined imagining that the source term is directly described
by inflationary fluctuations. It is important to note that, regardless of how they
are generated, or regardless of what these first-order linear scalar perturbations
are, they end up generating second-order tensor modes. Knowing the scalar power
spectrum for the inflationary perturbation, it is possible to calculate the tensor
power spectrum of the induced GWs: such a consideration arises very trivially
from the fact that the source term can be written as a function of the primordial
inflationary scalar perturbation evaluated on much earlier timescales Φk(τ), so the
two-point tensor correlator can be written as a function of the primordial spectrum
associated with the inflationary fluctuation PΦ(k), with:

⟨ΦkΦk′⟩ = 2π2

k3
PΦ(k)δ(k+ k

′
), (2.14)

the last, knowing the connection to the observable curvature power spectrum, is
strongly constrained by CMB and LSS measurements, at least on the large scales.
Scalar perturbations define the source role of the second-order induced GWs back-
ground not only during the inflationary period, but also in later phases, when these,
like curvature perturbations, re-enter the Hubble sphere after having been frozen
for a long time in Super-Horizon. Thus when such curvature perturbations re-enter
the horizon of causality during e.g. the radiation-dominated phase, they return to
dynamically evolve in time, and thus are ready to interact appropriately defining
a source for a new background of second-order induced tensor modes but in the
radiation phase [44], [53]. Such a GWs background could define an observable
amplitude values in present time, on specific scales, within the interferometric
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sensitivities [54]. However, considering a power spectrum for the inflationary fluc-
tuation that draws a power-law on all scales, subject to all the scalar constraints
imposed by CMB measurements, would produce an induced background whose
present spectral energy density would be much lower than the sensitivity curve
of various experimental set-up already constructed. For example, for a power-law
scalar power spectrum with a red-tilt of nS = 0.95, a spectral energy density of
ΩGWs ≃ 10−22( f

Hz
)−0.1 would be obtained [54].

The presence of a second-order GWs background induced by curvature pertur-
bations that fall within the causality horizon in the age of matter dominance,
however, changes the various predictions about the polarization of the CMB [55].
This effect limits our ability to estimate the inflationary tensor power spectrum,
thus making it even more difficult to estimate the energy of this period, as it is
totally parallel to the amplitude of the tensor spectrum mentioned earlier. The
amount of B modes due to the presence of second-order GWs is estimated to be
secondary to those produced by weak-lensing. However, the second-order grav-
itational contribution becomes non-negligible in several inflationary models, in
particular those associated with intense particle production. The main idea of
this work, which will be explored in more detail shortly, is to solve the appropri-
ate extra-field equations of motion, thus enabling the source term to be written
and thus allowing the graviton dynamics to be solved by the Green’s function
method. Usually in such designs, only the tensor perturbation is considered within
the metric tensor, neglecting scalar and vector fluctuations for the sake of simplicity.

2.1.2 GWs equation neglecting scalar and vector metric per-
turbations

Let us consider a second-order perturbed FLRW metric neglecting first and second-
order scalar and vector perturbations. The equation of motion for GWs is simplified
as follows:

h
′′

ij + 2Hh
′

ij −∇2hij =
2

M2
Pl

Π̂lm
ij Tlm, (2.15)

with Tlm the generic energy-momentum tensor. It is essential to note that the
source term is defined only by the latter, infact all scalar perturbation contributions
relative to the metric counterpart in the Einstein tensor have been set to zero. The
resolution of the equation of motion, therefore, is written as follows:

hij(k, τ) =
2

M2
Pl

∫
dτ̃Gk(τ, τ̃)Π̂

lm
ij (k)Tlm(k, τ̃). (2.16)
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Proceeding as before, we find the amplitude of the tensor mode on the fixed
polarization state

hk(τ) =
1

a(τ)

∫
dτ̃Gk(τ, τ̃)

[
a(τ̃)T (k, τ̃)

]
, (2.17)

where T (k, τ) is the purely energetic counterpart of the source before given in
Fourier space.
To specify the solution, it is necessary to fix the evolution of the scaling factor and the
evolution of the appropriate projection of the energy-momentum tensor. An exact
solution for the Green’s function exists for a de Sitter phase, but also for radiation
and matter-dominated phases. Studying the production of the GWs background in
an inflationary context, and considering the usual de Sitter background to support
inflation, Green’s solution assumes the current formulation [56]

Gk(τ, τ̃) =
1

k3τ̃ 2
[
(1 + k2τ τ̃) sin k(τ − τ̃) + k(τ − τ̃) cos k(τ − τ̃)

]
Θ(τ − τ̃). (2.18)

2.2 GWs sourced by scalar fluctuations
In the following section, two inflationary models will be analysed: here the source
for GW’s induced background is described by the presence of extra scalar fields (i.e.
their perturbation), beyond the inflaton. The spectral GW abundances generated
by the perturbations of these extra fields will be studied, without taking into
account the source terms associated with the scalar-vector metric perturbations;
we neglect them for the sake of simplicity .

2.2.1 Second order GWs in the curvatone scenario

In the curvaton scenario [57], we consider a secondary particle beyond the inflaton,
i.e. the curvaton assumed not to modify or influence the inflationary dynamics
described by the first scalar field. For simplicity, it is possible to assume that
the curvature perturbation associated with the inflationary perturbation of the
first field is so small and negligible that it does not originate LSS upon its re-
entry into the Hubble sphere. This condition can be achieved by lowering the
energy scale of the inflation (hence H), thereby also lowering the amount of
GW emitted in the standard first-order perturbative format, since H defines the
amplitude of the tensor power spectrum. Specifically, requiring the inflationary
curvature perturbation to be much smaller than that required to explain the CMB
anisotropy phenomenon (hence much smaller than 10−5) corresponds to considering
a value of H << 10−5MPl [58] . Therefore, with such a value of the Hubble
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rate associated with the inflationary period, the spectral energy density of the
first-order perturbative GW background associated with a vacuum oscillation of
the metric tensor drops significantly, becoming smaller, or at most comparable
with the second-order induced GWs background of interest [58], [59], [60] .
Let us now examine the role of the curvaton in more detail, starting with the
assumption that a secondary field involves isocurvature perturbations. Once the
inflation is over (so we no longer have the scalar inflaton field, but its fluctuation
is saved in the value of the curvature perturbation, which henceforth connotes a
transposed radiation density perturbation), the curvaton decays (into radiation too),
so that only one type of fluctuation energy remains (i.e. that of radiation), and there
will be a transition from an isocurvature perturbation to an adiabatic curvature
perturbation. When that perturbation re-entered the sphere of causal connection
will provide the seed from which the LSS and CMB anisotropy will develop, with a
time transition expressed by an appropriate transfer function. However, it is possible
to consider the presence of two different GWs backgrounds induced by different
scalar perturbations: the first is the one induced by isocurvature perturbations of
the curvaton when they re-enter the horizon between the end of inflation and the
decay of the curvaton, while the second is the GWs background induced by the final
curvature perturbation left after the decay of the curvaton, upon its re-entry into
the sphere of causal connection. The latter case is able to define a spectral energy
density of the order of ΩGW ≃ 10−20 [58]; the interesting result to evaluate is that
such a GWs background induced by the curvature perturbation is subdominant
with respect to that generated by an isocurvature source re-entering the horizon
before the decay of the secondary field [58]. Consider therefore the first GWs
background. The equation of motion of the GW background induced at second
order by the curvature isocurvature perturbations is formulated as follows

h
′′

ij + 2Hh
′

ij −∇2hij = − 2

M2
Pl

Π̂lm
ij ∂lδσ∂mδσ, (2.19)

where δσ is the isocurvature perturbation of the curvaton. The solution of this
dynamical equation is provided by equation (2.17), where the Green’s function
associated with a scalar induction in the radiation period is written Gk(τ̃ , τ) =
sin k(τ̃−τ)

k
, with the integration that begins when the scalar isocurvature fluctuation

falls within the Hubble sphere.
We must observe that the source term in the integrated solution is determined by
the fluctuation of the curvaton δσ and its temporal evolution, so it is crucial to
understand whether at the moment of re-entry into the horizon, the curvaton is
already fluctuating around its potential minimum marking a decay, or not. In fact,
for those modes that re-enter during the decay we have that δσk ≃ a−

3
2 , while for

those modes founding the source that re-enter between the end of the inflation
and the beginning of the oscillation δσk ≃ a−1 [58]. These two trends obviously
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lead to two different source, resulting in two different induced GWs backgrounds.
Knowing that the spectral energy density depends on the physics of the curvaton,
hence on its fluctuation, and that the latter after the aforementioned decay changes
from an isocurvature perturbation to an observable curvature perturbation and
knowing the connection between the two, it is always possible to redefine the
spectral energy density of the GWs background in terms of observable scalar
quantities, such as the same curvature perturbation for which we know of the
limits imposed by the CMB [61], and fNL. So knowing the connection between
the two types of perturbation (iso and curv), it is possible to transform the
dependence that the spectral energy density has with respect to the isocurvature
power spectrum, into the dependence towards the observable power spectrum of
curvature perturbation. Assuming a scale invariant curvature power spectrum
with a value of AS ≃ 10−9, and defining kD as the scale of separation that enters
the horizon when the curvaton decays, the current spectral energy density of the
induced GWs background results [58]

ΩGW ≃ 10−15

(
f local
NL

102

)2(
k

kD

)5(
Γ

m

) 7
2

, (2.20)

for kD ≤ k ≤ (m/Γ)
1
2kD for modes entering during decay, while for the remaining

ones

ΩGW ≃ 10−15

(
f local
NL

102

)2(
Γ

m

)
, (2.21)

for k ≥ kD(m/Γ)
1
2 . From this expression, in the perturbative regime Γ ≤ m

and maximizing the NG constraints [61], one can currently find an induced GWs
background of the order of Ω ≃ 10−19, proving what was asserted in the beginning
of the section.

2.2.2 Second-order GWs sourced by spectator scalar fields

It is important to define a further model suitable for a conspicuous production of
gravitational waves induced by scalars at second-order. We can introduce again
an additional scalar field called spectator field beyond the inflaton; however, this
secondary field is assumed to be light in order to not modify the inflationary
dynamics managed by the first scalar field, i.e. the inflaton. The spectator field
plays a crucial role in the additive production of a second-order induced GWs
background [62], [63], [64] ; contrary to what was assumed in the previous curvature
model, here it is to be expected that even the inflationary perturbation generates a
non-negligible curvature perturbation, such that a large production of a standard
GWs background is induced. The peculiarity of the model we intend to deal with,
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consists in observing how assuming a speed of sound for the secondary field cS < 1
produces a more abundant induced GWs background than in contrary cases, such
as the one for which the speed of the fluctuation reaches unity. It is possible to
trivially define this speed of sound from a simple lagrangian of the field P (X, σ),
with X a canonical kinetic term, so that cS = ∂XP/(∂XP + 2X∂2

XXP ). Consider
now the action associated with the scalar fluctuations of the spectator field

S
(2)
δσ =

∫
dτd3xa4

1

2a2

[
δσ

′2 − c2S(∇δσ)2
]
− V(2), (2.22)

where V(2) is the potential written at second order. The spectator field leads to the
treatment of scalar perturbations, beyond those associated with the inflaton, whose
amplitude is determined by the sound velocity of the secondary fluctuation itself;
knowing that any scalar perturbation (or rather, appropriate combinations of them)
defines a source for an induced GWs background, the spectator perturbations will
not be any less. Paying attention therefore to the field fluctuations in question, it
is possible to simply rewrite the dynamic equation of the tensor modes generated:

h
′′

ij + 2Hh
′

ij −∇2hij = − 2c2S
M2

Pl

Π̂lm
ij ∂lδσ∂mδσ. (2.23)

It is important to note that, in contrast to the other dynamic equations discussed
above, the sound velocity term is present here, which can make important changes
to the final result. Working as proposed in the previous sections we find the
solution (2.17), and subsequently integrating over the entire inflationary period
under study, we find the second-order GW power spectrum tensor on superHorizon
scales originating from the secondary field fluctuations defined as follows [62]

PT = c

 H4

c
18
5
S M4

Pl

 , (2.24)

with c a numerical factor close to three. The significant result found is that the
amplitude of the induced GWs background turns out to be inversely proportional
to the adiabatic speed of sound of the scalar fluctuation generating it. The total
scalar and tensorial power spectrum will therefore be provided by the sum of two
terms, the first standard due to the vacuum oscillations, and the second induced
by the presence of the spectator field; thus the total tensor-to-scalar-ratio will
be strongly sensitive to cS. The uncovered dependence of r with cS introduces a
degeneracy between the various parameters of the model: the most obvious example
is that there is no longer a one-to-one correlation between r and the Energy of the
inflationary system. However, Planck’s measurements on the CMB scales impose
stringent constraints to be followed for the scalar curvature fluctuations, (and hence
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for the primordial spectrum), so these observational constraints in turn constrain
cS to similarly specific values, thus reducing the abundance of the generated GWs
background [63], [64]. Assuming in fact that the spectator field does not originate
a major curvature perturbation, a strong upper limit is defined on the amplitude
of GWs originated by the secondary field on the CMB scales, thus drawing a
negligible total contribution. On the contrary, if the curvature perturbation is
mainly originated by the spectator field fluctuation, the GWs background produced
will be greater, and considering the fixed amplitude of the scalar fluctuations on
the CMB scales (which mark the denominator of the tensor-to-scalar-ratio), the
value of r may be greater than other cases.
Considering a spectator field with a light mass m evolving in a near de-Sitter
background, the spectral tilt associated with the power spectrum of δσ does not
vanish, thus affecting the tensor power spectrum with its spectral tilt [62]

nT = 2

(
2m2

3H2
− 2ϵ

)
− 18

5

ċS
HcS

, (2.25)

The following expression shows how, in contrast to the first-order GWs associated
with a vacuum fluctuation, the induced GWs on superHorizon scales can exhibit a
blue tilt, leading to an increase for the overall GWs background abundance.

2.3 Particle production as a source of GWs
There are a multitude of inflationary models associated with quantum production
of extra fields during inflation, which can contribute strongly to the generation
of an induced GWs background. If the inflaton is minimally (or not minimally)
coupled to a secondary scalar or gauge field, there will be an active transfer of
energy from the first to the second sector, thus leading to the expected creation
of extra quanta [65]. These new particles will make a major contribution to the
energy-momentum tensor, in particular to its anisotropic tensor component: we
know from the previous sections that a second-order treatment of such tensor
energy components is proposed as the source of an induced GWs background, so
the more particles are produced, the more the anisotropic term of the stress-energy
tensor is enlarged, leading to a consequent increase in the source, hence in the
abundance of the GWs background of interest [66], [67], [68], [69], [70].
Various models have been built on this construction, in particular it is necessary to
distinguish scenarios in which the production of these extra fields occurs during an
inflationary Slow-Roll phase of the inflaton, and scenarios in which this creation
occurs during the oscillation of the main scalar field around the minimum, i.e.
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during the description of the decay of the inflaton; it will be of interest to analyse
both cases. Among these models, it is worth mentioning the one that sees a coupling
link between the inflaton and an Aµ [71] gauge field: here a band of modes of
the aforementioned produced gauge field is subject to exponential growth, which
leads to a strong increase in the energy-momentum tensor, hence in the source,
leading to a conspicuous induced GWs background. However, such exponentially
increasing extra modes will also produce a curvature perturbation, for which at
least on the CMB scales there are stringent observational limitations. In fact, the
current data on the amplitude value of the scalar fluctuations severely restrict
the parameter space of these models, even though they allow the treatment of an
induced GWs background so abundant that it falls within the sensitivity window
of known measuring instruments.
The first models analysed in this overall view present non-minimal coupling between
the inflaton and extra fields [66], [72], [67], [68]. In particular, couplings of the
inflaton with massive scalar fields or with gauge fields are investigated: in the
former case a production of extra fields describing a flare is defined, while in the
latter case the production occurs continuously during the inflationary dynamics.

2.3.1 Inflaton coupled to a scalar field

Consider a physical system described by the following Lagrangian [56]:

L = −1

2
∂µφ∂

µφ− V (φ)− 1

2
∂µχ∂

µχ− g2

2
(φ− φ0)

2χ2, (2.26)

where φ is the inflaton, V (φ) is the potential driving the inflationary dynamics, χ is
the scalar extra field, whose self-interaction component we imagine we can neglect.
The mass of the secondary field, as clearly deduced from the Lagrangian density,
depends on time, being linearly related to the value of the inflationary field, which in
the meantime describes a slow-roll dynamics slowly rolling in the constant potential
section: when the inflaton φ reaches the value of φ0, mχ cancels to zero, making
the production of the particle section identified by the secondary field energetically
favoured. During such a dynamical period for which the inflaton reaches this
non-trivial value, a non-perturbative and explosive production of particles χ is
thus described: once dynamically this phase is concluded, it is possible to observe
a Universe filled with secondary field particles χ, beyond the usual inflaton. As
confirmed above, the presence of this new and intense particle support provides an
important contribution to the overall energy-momentum tensor, in particular its
spatial part will be read Tab = ∂aχ∂bχ+δab(...), where the factor proportional to the
Kronecker delta will be swept away by the transverse-traceless projection operator
(whose application is necessary to define the background). As done firstly, we
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promote the scalar field χ(k, τ) to a quantum operator via the second quantization
χ̂(k, τ), and moving in Fourier space:

χ̂(x, τ) =
1

a(τ)

∫
d3k

(2π)
3
2

exp (ikx)χ̂(k, τ). (2.27)

If we substitute this transformation into the recently provided definition of the
energy-momentum tensor, and subsequently the latter into (2.17) to find the
amplitude of the generated tensorial mode, it is possible to define the two-point
correlator of the induced GWs background [56] (from which the tensor GW power
spectrum, hence the observable spectral energy density, will then be derived)

⟨hij(k, τ)hij(k
′
τ)⟩ = 1

2π3M4
Pl

∫
dτ̃1

a(τ̃1)2
Gk(τ, τ̃1)×∫

dτ̃2
a(τ̃2)2

Gk′ (τ, τ̃2)Π
ab
ij (k)Π

cd
ij (k

′
)×∫

d3pd3p
′
pa(kb − pb)p

′

c(k
′

d − p
′

d)×

⟨χ̂(p, τ̃1)χ̂(k − p, τ̃1)χ̂(p
′
, τ̃2)χ̂(k

′ − p
′
, τ̃2)⟩.

(2.28)

Applying Wick’s theorem and neglecting the discontiguous terms, it can be seen that
the GW power spectrum depends on the two-point correlator of scalar operators
⟨χ̂(p, τ̃1)χ̂(q, τ̃2)⟩.
We could write this latter quantity only after solving the equation of motion for
the scalar field χ . We decompose χ̂(k, τ) in terms of the creation and destruction
operators

χ̂(k, τ) = χ(k, τ)âk + χ∗(−k, τ)â⊥−k. (2.29)

From the Lagrangian, the equation of motion for χ is derived:

χ
′′
(k, τ) + ω2(k, τ)χ(k, τ) = 0, (2.30)

with

ω2(k, τ) = k2 + g2a2(τ)[φ(τ)− φ0]
2 − a

′′(τ)

a(τ)
. (2.31)

This expression can be approximated in different ways depending on the behaviour
of the system, in fact three main periods can be identified in the treatment of the
problem:

— At the beginning of the inflationary phase where the value of the inflationary
field in the background still reaches φ0, the Universe does not yet contain
the massive scalar field χ (since it hasn’t yet been produced in terms of the
perturbative flare), therefore the source of the GWs background does not
exist, as well as the GWs background itself.
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— At some point the inflaton will reach φ0, so the mass of the secondary field
will fall to zero, therefore energetically speaking the creation of the secondary
particle sector will be favoured, so for a period of production ∆tnad the
evolution of mχ(t) will be non-adiabatic, i.e. ṁχ > m2

χ.
In order to have an efficient particle production, the production time must
be significantly shorter than the characteristic Hubble expansion time. In a
de-Sitter background it is trivial to write the inflaton evolution equation in a
linear format φ(t) = φ0 + φ̇0t. Conjugating the non-adiabaticity condition
with the definition of mχ we obtain ∆tnad ≃ (gφ̇0)

− 1
2 : applying the efficient

production requirement, we obtain g >> H2/|φ̇0|. This condition obviously
implies that the accelerated cosmological expansion can be neglected in the
intuition of the process occurring so rapidly.

— the end the inflaton will leave the value φ0, therefore mχ will go back
to adiabatically evolving together with the whole production process: the
creation of secondary particles will therefore be stopped, but the Universe
is now filled with these particles χ that we know give a large contribution
to the energy-momentum tensor, therefore to the source, going to define an
important induced GW background.

Let us consider the dynamic nature of the last stage: in order to calculate the
abundance of the GWs background, hence the tensor power spectrum, one needs
the amount of χ quanta produced during the non-adiabatic central phase, since
these will define the source. Thus imposing the non-adiabatic condition and using
the linear evolution approximation of the inflaton, expression (2.30) is rewritten as
follows:

χ̈+ (k2H2τ 20 + g2φ̇2
0t

2)χ = 0. (2.32)

From this form it is possible to deduce the amount of extra quanta produced
during the non-adiabatic phase, which defines an initial condition for the dynamic
treatment of the subsequent adiabatic phase. During the final adiabatic phase,
in fact, one can appropriately rewrite the pulsation as ω =

∣∣g[φ(τ)− φ0]/(Hτ)
∣∣,

so that one can solve (2.30) in the last phase of interest as well. By sending the
conformal time to zero, characteristic of the end of inflation, the correlator (2.28)
results [56]:

⟨hij(k)hij(k
′
)⟩ = δ(3)(k + k

′
)

2π5k6|τ0|3
H4

MPl

(1 +
1

4
√
2
)× (

gφ̇0

H2
)
3
2F∆τnad/τ0

(k|τ0|), (2.33)

where

Fϵ(y) =

∣∣∣∣∣
∫ 1−ϵ

0

x
sinxy − xy cosxy

lnx
dx

∣∣∣∣∣
2

≃ [(y cos y − sin y) ln ϵ]2, (2.34)
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where the last approximate expression holds when the parameter ϵ goes to zero.
In order to determine the overall tensor power spectrum, one must add, to the
result just found, the spectral contribution of the first-order GWs background
associated with a vacuum oscillation of the meric tensor, obtaining, in conclusion:

Ph(k) =
2H2

π2M2
Pl

[
1 + 4.8× 10−4 (kτ0 cos kτ0 sin kτ0)

2

|kτ0|3
× H2

M2
Pl

(
gφ̇0

H2
)
3
2 ln2

√
gφ̇0

H2

]
.

(2.35)
As can easily be seen, the contribution induced by the production of extra quanta
turns out to be the scale dependent term that is added to the standard power spec-
trum scale invariant relative to the first-order problem. Reasoning on the slow-roll
condition for which φ̇0 =

√
2ϵHMPl, and considering a reasonably small value for

the first slow-roll parameter, it is possible to evaluate how the correction inflicted
on the global power spectrum due to the second-order contribution turns out to
be extremely small, of the order of 10−2

√
H/MPl, i.e. an amount much smaller

than unity. Therefore, it is reasonable to conclude that the presence of a scalar
particle gas during inflationary dynamics does not contribute to an appreciable
change in the standard tensor power spectrum originating at first order due to an
obvious vacuum fluctuation of the metric tensor induced by a previous inflationary
perturbation.
It should be remarked that, if the scalar mode had been calculated during the
second non-adiabatic period, the additional second-order spectrum produced would
have been quite similar to that found by the third time period of the model. Even
if the presence of several separate secondary particle bursts were proposed to the
model, the amount of GWs induced by these scalars would still be negligible com-
pared to the main first-order phenomenon provided by the vacuum oscillations [56].

2.3.2 Axion inflation: pseudoscalar inflaton coupled to a
gauge field

Consider a new physical system described by this Lagrangian density

L = −1

2
∂µφ∂

µφ− V (φ)− 1

4
FµνF

µν − φ

4f
FµνF̃

µν , (2.36)

where V is the potential of the first field driving the slow-roll inflation, f is an
estimate indicating the degree of coupling of the pseudo-scalar inflaton φ and the
gauge field Aµ, Fµν = ∂µAν −∂νAµ, is the field strenght associated with the bosonic
field of spin 1, while F̃ µν is its dual.
The above coupling leads, as seen exactly in the previous model, to a production



CHAPTER 2. CLASSICAL GWS PRODUCTION DURING INFLATION 44

of a second-order induced GWs background, since the energy transfer from the
inflationary sector to the secondary field leads to a massive production of the latter,
feeding the presence of a new current capable of magnifying the energy-momentum
tensor, hence the source of the induced GWs background; the consequence is
obviously also a conspicuous production of boosted scalar modes, which provide an
increase in the curvature perturbation, always within the required observational
constraints. However, there is a second factor that must be taken into account here,
namely the phenomenon of back-reaction on the background dynamics: indeed,
in order to produce gauge quanta one must transfer energy from the inflaton
sector to the gauge sector, so this new form of energy in the form of new and
secondary particles can counteract the inflaton by modifying its dynamics at the
background [67], [68], [69] [73], [74]. The inflaton in fact gains, from this back-
reaction, an additional friction term that further slows down the already slow-rolling
dynamical mechanism. As in the previous case, therefore, the equation of motion
of the produced tensorial modes is (2.15), with solution given by (2.16).
One chooses to work in a convenient Coulomb gauge, so Aµ can conveniently be
described by the potential vector A(τ,x), defined as a2B = −∇×A, a2E = −A

′ ,
where E and B have the usual relationships with the force tensor, so the spatial part
of the stress-energy tensor results in the form Tab = −a2(EaEb +BaBb) + (...)δab.
Following the same logic as in the previous section, one must first find the solution
to the equation of motion for the gauge field, and then substitute it into the energy-
momentum tensor delineating the source inducing GWs background [72], [67]. The
equation of motion for the potential vector introduced earlier is:(

∂2

∂τ 2
−∇2 − φ

′

f
∇

)
×A = 0. (2.37)

We promote the potential vector A(τ,x) to a quantum operator Â(τ,x), and
then decompose its modes as a combination of the usual creation and destruction
operators, taking into account how each mode holds two degrees of freedom
associated with two different and perpendicular states of polarization

Âi(x, τ) =

∫
d3k

(2π)
3
2

exp ikxÂi(τ,k) =
∑
s=±

∫
d3k

(2π)
3
2

[
ϵis(k)As(τ,k)â

k
s exp ikx+ h.c

]
(2.38)

with ϵis the usual polarization tensor to which the usual transformation properties
are associated. Assuming a de-Sitter inflationary background, it is possible to write
the equations of motion for the amplitudes A±:

d2A±(k, τ)

dτ 2
+

[
k2 ± 2k

ζ

τ

]
A±(τ, k) = 0, (2.39)
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with

ζ =
φ̇

2fH
=

√
ϵ

2

MPl

f
. (2.40)

that expose the coupling term f in a different manner.
Equation (2.39) shows a different behaviour for the two different helicity states of
the gauge field; indeed, depending on the sign of the coupling parameter, one mode
will be subject to an exponential instability, while the perpendicular one will go to
zero. This explicit parity violation will, as will be seen later, also generate a parity
violation in the final tensor power spectrum. Assuming positive ζ, the solution of
equation (2.39) is written

A+(k, τ) ≃
1√
2k

(
k

2ζaH

) 1
4

exp (πζ − 2
√

2ζk/aH), (2.41)

while at the same time the polarization mode - goes to zero A− ≃ 0.
We think that a parity violation of this form is also reported in the treatment of
induced tensor-polarized modes, since they are precisely generated by a source that
is defined via the modes of the gauge field. Therefore, to define the behaviour of
the two helicity states of the GWs, one split the general tensorial mode into the
sum of the two polarization contributions. So in Fourier space we project hij onto
the two helicity modes

hij(k) =
√
2
∑
s=±

ϵis(k)ϵ
j
s(k)hs(k). (2.42)

We can elevate h± to an operator ĥ±, the expression of which can again be defined
by equation (2.17) [72], [67]

ĥ±(k) = −2H2

M2
Pl

∫
dτ̃Gk(τ, τ̃)τ̃

2

∫
d3q

(2π)
3
2

Π̂lm
± (k)×

×
[
Â

′

l(q, τ̃)Â
′

m(k− q, τ̃)− εlabÂ
(
bq, τ̃)εmcd(kc − qc)Âd(k− q, τ̃)

]
,

(2.43)

with the Green’s function obtained in the previous sections for the inflationary
resolution.
Substituting (2.41) into the last expression, using Wick’s theorem, we are able to
define the GWs power spectrum in terms of Green’s function and the amplitude of
the gauge field modes. Specifically, for ζ > 1, the correlator results

⟨hs(k)hs(k
′)⟩ = H4ζ

4π3M4
Pl

exp (4πζ)δ(k+ k
′
)

∫
dτ̃1dτ̃2|τ̃1|

3
2 |τ̃2|

3
2 Gk(τ, τ̃1)Gk(τ, τ̃2)×

×
∫

d3q
∣∣∣ϵi−s(k)ϵ

i
+(q)

∣∣∣2∣∣∣ϵj−s(k)ϵ+(k− q)
∣∣∣2×

×
√
|k− q|√q exp (−2

√
2ζ)(

√
|τ̃1|+

√
|τ̃2|)(

√
q +

√
|k− q|).

(2.44)
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The two terms in the second row are those that show different behaviour for the
two polarization states. In the limit for which kτ → 0, the integrals above can be
solved numerically, so [66]

⟨h+(k)h+(k
′
)⟩ ≃ 8.6× 10−7 H4

M4
Pl

exp 4πϵ

ζ6
δ(3)(k+ k

′
)

k3
, (2.45)

⟨h−(k)h−(k
′
)⟩ ≃ 1.8× 10−9 H4

M4
Pl

exp 4πϵ

ζ6
δ(3)(k+ k

′
)

k3
. (2.46)

The numerical factors define a difference of at least 3 orders of magnitude between
the two scale invariant correlators.
To conclude, it is therefore necessary to acknowledge the final tensor power spectrum
by also taking into account the central first-order contribution

P+
T =

H2

π2M2
Pl

(
1 + 8.6× 10−7 H2

M2
Pl

exp 4πζ

ζ6

)
, (2.47)

P−
T =

H2

π2M2
Pl

(
1 + 1.8× 10−9 H2

M2
Pl

exp 4πζ

ζ6

)
. (2.48)

The parity violation can be identify through the chiral parameter [75]:

∆χ =
P+
T − P−

T

P+
T + P−

T

, (2.49)

that can be also written as follows

∆χ =
4.3× 10−7 exp 4πζ

ζ6
H2

M2
Pl

1 + 4.3× 10−7 exp 4πζ
ζ6

H2

M2
Pl

. (2.50)

When one considers the coupling parameter ζ as small, then inevitably the GWs
background generated by the vacuum oscillations of the metric tensor dominates,
hence one returns to the restoration of symmetry for parity ∆χ → 0, while vice
versa, for large ζ the induced GWs background dominates, hence ∆χ → 1.
The departure of ∆χ from zero thus marks an innovative feature of parity violation
peculiar to the selected model, since, as seen in the first chapter, such a violation is
not supposed to occur in the study of the GWs background generated by vacuum
fluctuations.
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2.4 GWs production during reheating after Infla-
tion

From the previous section, the strong message that must get through is that when
there is a strong time-dependent inhomogeneity in the energy density distribution
of the Universe, i.e. when feeding the anisotropic sector of the stress-energy tensor,
a non-trivial source is defined to produce second-order induced GWs. Such produc-
tion can occur not only during the inflationary phase, but also subsequently during
reheating, where the inflaton decays and produce a set of secondary particles that
can describe the source term. The production of GWs during reheating was first
theorised by Khlebnikov and Tkachev [76]. Since the reheating is the final phase
of any inflationary model, it is easy to see how GWs produced during this phase
can represent a fundamental source of information of the physics of inflation and
reheating. Since it is well after Planck time, so that as soon as they are produced
the GWs are already highly decoupled, they do not interact with the environment
and arrive at us at exactly this size. Their spectrum hides fundamental information
about the physics of the production period, such as the degree of coupling between
the inflaton and other fields present.
At the end of inflation, the field that had driven the accelerated expansion phase
falls into the minimum of its potential, beginning to oscillate around this stable
minimum and decay into lighter particles, which subsequently begin to interact in
order to reach a state of observable and assumed thermal equilibrium. Initially,
it was always thought that the inflaton’s oscillation phase around the minimum
point could be described through a perturbative mathematical approach (slow,
small oscillations around the minimum), resulting in a collection of decay products
already in thermal equilibrium [7], [77]. However, it is possible that such oscillations
may also be large and coherent, thus describing a non-perturbative dynamics for
which the overall energy of the system is explosively and rapidly shifted from
the scalar starting sector to the producing sector. Such a rapid mechanism is
called Parametric Resonance [20], [78]: here an approach of oscillation around
the minimum does not work, as the process is rapid and violent. To distinguish
this mechanism from the entire reheating process, this phase is called Preheating.
Following this explosive production phase, the particle products are not yet in a
state of thermal equilibrium since they have not time to reach it, as opposed to a
peturbative approach; therefore, after Preheating, a subsequent phase is required
in which the rapidly and violently oscillating products (bosons) can interact to
thermalize. Preheating is the specific moment of interest for the study of the
boson-induced GWs background. Usually the two inflationary models that are
put before this Preheating phase are chaotic inflation [6], [79], [80] and hybrid
inflation [81], in the latter of which the Preheating process is markedly different,



CHAPTER 2. CLASSICAL GWS PRODUCTION DURING INFLATION 48

and is called Tachyonic Preheating [81], [82], [83], [84]; nevertheless, in both cases
the production process of GWs is essentially the same.

2.4.1 Preheating with Parametric Resonance

We can talk about Parametric Resonance when one expects a coupling between the
scalar inflaton field driving the accelerated expansion of the universe and another
scalar field, whose mass is assumed to be light such that it does not influence the
dynamics of the inflaton during the period of inflationary expansion [20], [78], [85].
Consider then a system with an inflaton φ coupled with a light scalar field χ, via
the following Lagrangian

L =
1

2
∂µφ∂

µφ+
1

2
∂µχ∂

µχ− V(φ, χ), (2.51)

with
V(φ, χ) = V (φ) +

1

2
g2φ2χ2 − 1

2
m2

χχ
2, (2.52)

where g represents the coupling constant between the two fields. During inflation
the field χ is assumed to be light such that the inflationary dynamics is driven only
by φ, without interaction or back-reaction interference. It is therefore possible to
make the assumptions for which the mass of the secondary field and the expansion
of the Universe are neglected, given the intrinsic non-perturbative rapidity of the
model [85]. Thus, ignoring the second field, one can see that the equation of motion
for the background component of the inflaton at the end of inflation is described
by equation (6), taking however into consideration how here, contrary to what
happens for inflation, the field cannot be considered homogeneous and the kinetic
energy cannot be neglected: given the interaction in fact, there will be a continuous
energy interchange between the parts involved, leading K to vary. Consider a
potential for the inflaton of the type

V (φ) =
1

2
m2

φφ
2 (2.53)

to determine the dynamics of the scalar field. Substituting in (6), and not neglecting
this time the gradient term, the dynamical solution for the inflaton will be described
by a damped harmonic oscillator φ(t) = ϕ(t) sin (mφt), with ϕ the amplitude of
the damped oscillation in time [85].
From the Lagrangian (2.51) it is possible, via Lagrange’s equation, to describe the
equation of motion relative to the secondary field

χ̈+ 3Hχ̇− 1

a2
∇2χ+ g2φ2χ = 0. (2.54)
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so, switching to Fourier space, and with a simple change of variables [85]

q =
g2ϕ2

4m2
φ

, Ak =
k2

m2
φ
+ g2ϕ2

2m2
φ
, z = mφt (2.55)

the equation for each individual mode χk becomes a Mathieu equation

d2χk

dz2
+ [Ak − 2q cos 2z]χk = 0. (2.56)

The solution to this Mathieu equation is given by the following combination

χk(z) = f+(z) expµkz + f−(z) exp−µkz, (2.57)

where f± are oscillating periodic functions and µk is a complex number, which
depends on both the wavelength k and the parameters of the system, including Ak

and q.
If µk has an imaginary part then the solution χk exhibits an exponential growth
(increasing the energy-momentum tensor, hence the source, producing an induced
background Gws). Thus for each k it is necessary to calculate Ak and q and
establish the band of frequencies associated with stable modes, and those for which
there is parametric instability. In order to distinguish these two regimes q must be
studied, since if larger than unity, it quantifies the class of growing modes. The
amplitude explosion of the secondary field modes can be interpreted as a rapid
and violent production of bosonic particles, since the number density of particles is
proportional to the energy mode.
Preheating ends when the exponential growth becomes energetically disadvanta-
geous, i.e. when the energy density of the created secondary field begins to equal
the energy density of the oscillating field, reasoning that trivially follows from the
conservation of energy. The system produced, given the celerity of the process, is
certainly not thermalized, so the pumped bosonic modes will interact with each
other dissipating heat and energy, leading to the thermalization of the final system.
If a potential of the type is choosen

V (φ) =
λc

4
φ4 (2.58)

with φ at null mass, the inflaton at the end of the accelerated expansion phase
would not be dynamically described by a damped sinusoid, but by an elliptical
cosine [86], [87]. However, all the considerations made above apply almost identically.
However, it is worth mentioning how, beyond the assumptions made, one is ignoring
the back-reaction capacity of the exponentially enlarged secondary field on the
oscillating inflaton, a phenomenon that can complicate the analysis in question [86].
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In fact, as soon as the bump-modes begin to be produced, the presence of a bubble
production phase [88] must be mentioned. At a certain point, the oscillations of the
secondary field χ over time become non-linear (favouring exponential rather than
oscillating growth), so that these bumped modes counter-react on the oscillating
inflaton field, leading it to modify its oscillations overall, making them larger and
of variable amplitude and frequency. Thus, the overall profile of the first scalar
field φ(t,x), can be seen as the sum of a still oscillating background part and a new
inhomogeneity term induced by the back-reaction in the coupling between fields.
This new term present peaks in same place of the peaks of the secondary field: these
peaks are called bubbles. When the height of these peaks becomes comparable with
the central oscillating background value induced by the oscillation itself, the bubbles
begin to grow, expand, then collide with each other. This turbulent collision phase
leads to a subsequent thermal equilibrium phase. These bubbles, in the short
production and collision phase, act as the source of the induced GWs background.

2.4.2 Tachyonic Preheating

The simplest way to describe a tachyonic preheating phenomenon [81], [82], [83], [84]
is to consider a usual scalar field ϕ starting from the maximum of its potential
V (ϕ), and then rolling towards the minimum of the same potential, starting to
oscillate around it. In fact, near the maximum of the potential, where the second
derivative of the potential by definition is negative, the quadratic mass of the field
(which is precisely the second derivative of V ) becomes negative, and this condition
induces an exponential growth on the modes of first-order fluctuations of the field.
In fact, the dynamic equation for such modes is written as follows:

ϕ̈k(t) + E2
k(t)ϕk(t) = 0, (2.59)

with
E2

k(t) = k2 +m2(t), (2.60)

where m is the mass of the field, i.e. m2(t) = Vϕϕ.
When the scalar field is close to the maximum, as stated above, the second derivative
of the potential is negative, so the quadratic mass of the field will also be negative,
thus E2

k may become negative; substituting this condition into the dynamic equation
of the first-order fluctuations we find a solution for them which predicts a strong
exponential growth. The value of ϕ for which there is a turn in the potential, i.e.
the inflection point for which there is cancellation of the quadratic mass of the
field, establishes the moment at which this function returns definitively positive
together with the quadratic energy, thus marking the end of tachyonic preheating.
Subsequently, the scalar field rolls towards the minimum oscillating on it, tending
to rise above the inflection point and to originate a successive phases of Tachyonic
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Preheating: the entire process is only concluded when this rising condition is denied
by the damping of the overall amplitude of the oscillation, followed by the decay
of the field. Such a mechanism is expected after an hybrid inflation phase: the
advantage of these models lies in the fact that they can take place on a large variable
energy scale, as opposed to large field models; moreover, hybrid inflation does not
require small couplings to explain the observed CMB anisotropies, contrary to the
New Inflation. Such models therefore lead to the production of an induced GWs
background at frequencies and amplitudes accessible to current observational tools.
In the case in question, the field that starts to fall from the maximum of the
potential and then oscillates around its minimum is a secondary scalar field called
the waterfall field σ. Due to the spinoidal instability, some fluctuations of the
secondary field will gain a strong exponential growth trend, producing, as in
the previous case, bubbles [89], [90], whose interaction leads to a subsequent
thermalization of the Universe as well as to the definition of an anisotropic scalar
source term devolved to induce a GWs background. Consider the model described
by the following potential:

V(φ, σ) = 1

4
λt(σ

2 − v2)2 +
1

2
g2φ2σ2 + V (φ), (2.61)

where |σ|2 = σ2
1 + σ2

2 with σ1 and σ2 the two scalar field, is the waterfall field, while
φ describe the inflaton field.
The minimum energy of the system is allocated at the points σ = ±v and φ = 0.
The critical point at which the potential curvature changes is given by φc = v

√
λt/g.

When φ > φc the inflaton decreases rolling the potential where σ = 0 and the
masses are quadratically positive. The inflaton ends when φ reaches φc, or at any
time when the attached Slow-Roll conditions are broken. When the critical point
is reached, the curvature of the effective potential with respect to the secondary
field becomes negative (as can be seen in the figure), so the waterfall field acquires,
as seen above, a negative quadratic mass inducing an exponential growth on the
fluctuation modes; subsequently, the field rolls towards its minima.

Figure 2.1: Typical potential for the hybrid inflation [1].
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When σ reaches the maximum of its effective potential, the modes of the field
fluctuations grow exponentially, leading to an overproduction of the field itself with
a consequent inhomogenization of the homogeneous energy field. Identical to the
previous model, a sequence of events can be provided: the σ fluctuations grow
exponentially, formation and collision of bubbles associated with the fluctuation
peaks, turbulent regime and thermalization, with the interaction of bubbles origi-
nating the source of the GWs background [91].
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2.5 GWs from inflation in Modified Gravity

2.5.1 Why Modified Gravity?

The idea to move away from a standard gravitational theory offered by the for-
malism of General Relativity, thus arriving at a treatment of Modified Gravity
(MG), arises from a growing desire to solve problems concerning the fundamental
physics of interactions and concerning cosmological observables. In fact, it is well
known that using GR as the theory for studying gravity [92], a complete quantum
description of metric space-time and fundamental gravitational interactions is not
possible, i.e. a quantum theory of gravity is missing. Moreover, when one tries to
unify all possible interactions, (via superstring or supergravity approaches), one
runs into the modelling of effective actions with minimal couplings that somehow
bear problems of a geometric nature, or related to the presence of higher order
terms associated with the presence of curvature invariants. Reasoning in the
cosmological sphere instead [93], it is simple to note how the combination of GR
with the Standard Model fails when try to resolve some serious inconsistencies of
the Standard Hot Big Bang Model, such as the problems of flatness, horizon or
magnetic monopole. Therefore it is necessary to introduce, in order to interpret the
primordial expansion of the universe during inflation, always in the GR modelling,
the presence of a scalar field with zero spin not contemplated by the SM. In addi-
tion, recent cosmological observations claim that even at this time the universe is
experiencing an accelerated expansion phase, and in order to dynamically explain
this process in the GR, a cosmological constant to represent dark energy had to be
forced into Einstein’s cosmological equation. However, this idea fails when try to
explain certain cosmological inconsistencies, including the coincidence problem.
It is therefore sufficiently clear that GR cannot efficiently explain the accelerated
expansion mechanism of the universe in its criticality regimes.
The simplest and most intuitive way to try to overcome these problems is to extend
Einstein’s theory with corrections and modifications, which must then be able to
reproduce the same GR results in the observable ranges. The simplest way to define
such extension terms is to add higher order curvature invariants and minimally
or non-minimally coupled scalar fields. The greatness of the MG consists in its
simplistic ability to describe the primordial accelerated expansion of the universe
without the presence of a scalar field external to the gravitational sector described
by the metric tensor, but rather directly due to the gravitational sector itself.
In such a scenario we will use only first-order GWs originating from quantum
vacuum fluctuations of the metric tensor, appropriately treated in the first chapter:
here the difference lies precisely in a different gravitational approach, of MG pre-
cisely, and it will be interesting there to see the new tensor power spectra produced
with different specific features that will characterise them with respect to the tensor
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spectra obtained in GR.

2.5.2 Overview of the main models

When we think the inflation on a gravitational theory of MG, we expect however
the studied GWs to be produced via a quantum mechanism associated with the GR
models; however such GWs could acquire several features, such as a propagation
velocity different from c cT ̸= c and a possibly non-negligible mass mT : in general
one imagines that GWs are subject to a dynamical equation of motion significantly
different from that frequently seen, therefore one can expect a different tensor mode
solution, hence a different observable tensor GWs power spectrum.
In particular several works have been advanced to consider the effects that these
new and modified tensorial modes may have on the CMB, considering the features
of different propagation velocity cT [94], [95], [96], [97], [98], [99], different mass
mT [100], [101] or with a non-standard friction term [95], [96], [97] in the dynamic
equation of the graviton. [102] studied the relationship between cT and the NG of
the primordial tensor perturbations in an inflationary approach of EFTI.
There are a wide variety of MG models that link so well with an inflationary
dynamics framework; it is possible to distinguish all these models into three broad
macro-categories

• Theories involving extra scalar fields in the gravitational metric tensor:
in GR the gravitational degrees of freedom are entirely contained in the
metric tensor, which is a tensor of rank 2. However, in order to describe a
matter-gravity coupling, no one denies us the possibility of adding within
the metric tensor the presence of a scalar field, the effect of which obviously
must vanish on the scales in which GR correctly work. However, vector or
tensor fields can also be added within the metric tensor. However, between
all these theories, the most interesting and productive is the scalar-tensor
theory, which will be discussed shortly.

• Theories in which action terms are introduced relative to higher-order deriva-
tives. By means of the GR theory inscribed in the definition of the metric
tensor, one arrives to the definition of the equation of motion for the various
fields studied that at most reach the second order of derivation; one way to
go beyond GR theory would be to ensure the presence of higher orders of
derivation in the field equations. Such an approach could still lead to the
presence of instability in the theory, however there are several theories that
start from a Lagrangian with higher orders of derivation which (through
games relating to appropriate symmetry breaking) eventually involve only
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dynamic field equations (scalar and tensorial) at the second order of derivation
to which we therefore associate a stable dynamics.
The most trivial way around this practice is to replace the curvature invariants
with functions of the latter: we therefore speak of the f(R) theories [103]. As
an example, it is well known that an R2 term leads to an equation of motion
of fourth order derivation: correcting the curvature term implies adding an
additional scalar degree of freedom to the system. Specifically theories in
which R is replaced by R +R2 are the so-called scalar-tensor theories.

• Theories built on higher-dimensional spaces.

2.5.3 Primordial GWs in the Scalar-Tensor theories of grav-
ity

Such theories, as mentioned above, add a scalar degree of freedom in the gravi-
tational sector appropriately described by gµν . The simplest Lagrangian density
suitable to describe such a formalism that includes an extra scalar degree of freedom
is the following [104], [105], [106]:

L =
1

16πG

√
−g
[
f(Φ)R− g(Φ)∇µΦ∇µΦ− 2Λ(Φ)

]
, (2.62)

where f , g, h, Λ are arbitrary functions of the additional scalar degree of freedom
Φ. This Lagrangian is so general that it describes several models including the
Brans-Dicke [107] model, which constitutes the first MG model to replace GR.
In the last period, these models have been carefully modified taking into account
strong considerations on the general symmetry imposed on the system. The basic
idea is to define Lagrangians with higher derivation terms, which, however, since
they do not satisfy the imposed symmetry requirements, are eliminated when
drawing up the equation of motion; therefore, from a L constructed with high
derivation terms we arrive at an equation of motion for fields at the second-order.
These models are based on Galilean symmetry [108], i.e. the invariance on a
Minkowski space-time under the Galilean field transformation Φ → Φ + bµx

µ + c,
where c is a constant and bµ is a constant vector. Subsequent models [109], [110],
[111] extended this symmetry developing it on a dynamical background, resulting
in the Covariant Galileon Inflationary model. Subsequently this theory was further
generalized to the more general scalar-tensor theory leading to equations of motion
for fields on an expanding curved space-time, called Generalized G-Inflation. This
model is fully equivalent to the Lagrangian proposed by Horndeski [112], which
is proposed to be the most general scalar-tensor gravitational theory leading to
an equation of motion for fields of the second derivative order starting from a
Lagrangian with higher derivative order (with respect to the second).
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Generalized G-Inflation

In 1974, Horndeski presented a paper [112] in which the most general Lagrangian
of a scalar-tensor theory defined in a four-dimensional space-time is presented,
which although contain terms with order of development greater than the second,
nevertheless generates an equation of motion for the associated fields at the second-
order, without any kind of dynamical instabilities. This is written as follows [111],
[112]

S =
5∑

i=2

∫
d4x

√
−gLi, (2.63)

with
L2 = K(Φ, X),L3 = −G3(Φ, X)□Φ, (2.64)

L4 = G4(Φ, X)R +G4X

[
(□Φ)2 − (∇µ∇νΦ)

2
]
, (2.65)

L5 = G5(Φ, X)Gµν∇µ∇νΦ− G5X

6

[
(□Φ)3 − 3(□Φ)(∇µ∇νΦ)

2 + 2(∇µ∇νΦ)
3
]
,

(2.66)
where Gµν is the Einstein tensor, GiX = ∂Gi

∂X
, and K e Gi are generic function of

the scalar degree Φ, while X = −∂µΦ∂
µΦ/2.

It should be noted that the system is described by four arbitrary functions of Φ
and X, and that the addition of the default Hilbert-Einstein term is not required.
It is important to see how the system is described only by the gravitational sector,
since no external scalar matter field is introduced. The action just described is
able to describe a variety of models, including single-field slow-roll inflation, k
inflation [113], Higgs G inflation [114], and Galileon inflation.
It is possible to observe how this action [115] can dynamically explain the primor-
dial accelerated expansion phase of the universe, favouring the development of the
known Hot Big Bang Model, which, once the accelerated expansion phase is over,
would like a precise domination in radiation.
In order to describe the equations of motion in the background of the scalar field,
a unitary gauge is assumed for which Φ = Φ(t), and the metric is of the form
ds2 = −dt2 + a2(t)dx2 and we have to substitute it into the action.
In order to calculate the GWs tensor power spectrum instead, one needs a pertur-
bative theory beyond the background, so in the usual unitary gauge one considers
a metric of the form

ds2 = −N2dt2 + γij

(
dxi +N idt

)(
dxj +N jdt

)
, (2.67)

where

N = 1 + α, Ni = ∂iβ, γij = a2(t) exp (2ζ)

(
δij + hij +

1

2
hikhkj

)
, (2.68)
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with α, β e ζ scalar perturbations, while hij is the transverse-tracefree tensor which
specify the GWs.
Perturbing the overall action to the second order (necessary to calculate the two-
point correlation function), and leaving only the tensor degrees of freedom suitable
for describing gravitational modes, we write [115]

S
(2)
T =

M2
Pl

8

∫
dtd3xa3(t)

[
GT ḣijḣij −

FT

a2(t)
(∇hij)

2

]
, (2.69)

where
FT =

2

M2
Pl

[
G4 −X(Φ̈G5X +G5Φ)

]
, (2.70)

GT =
2

M2
Pl

[
G4 − 2XG4X −X(HΦ̇G5X −G5Φ)

]
. (2.71)

It is trivial to observe that this action is entirely identical to the classical second-
order action seen in chapter one describing freely propagating gravitational waves,
however there is a substantial difference in the multiplicative coefficients. Specifi-
cally, these new multiplicative amplitudes will bring the GWs background of the
first type to a different propagation velocity than the usual c, i.e. c2T = F/G, and
will change the amplitude of the GWs background with respect to the standard
GR case. In order to avoid instability, it is required that F ,L > 0 [115], while to
simplify the model appropriately we write

ϵ = − Ḣ

H2
≃ const, fT = ḞT

HFT
≃ const, gT =

ĠT

HGT

≃ const. (2.72)

We now perform a shift in Fourier space, and a rescaling of hij and time t in order
to obtain an equation of motion quite similar to the standard GR equation [115]

dyT =
cT
a
dt, zT = a

2
MPl(FG) 1

4 , vij = zthij. (2.73)

These rescaling operations are analogous to those provided in the first chapter,
defining an appropriate one this time also on the time scale in order to put
ourselves in a convenient reference frame where c = cT . Following these useful
transformations, the action is rewritten

S
(2)
T =

M2
Pl

2

∫
dyTd

3x

[
(v

′

ij)
2 +

z
′′
T

zT
v2ij − (∇vij)

2

]
, (2.74)

where the prime derivative is placed with respect to the new time variable. Deriving
the action with respect to the tensor modes as done in chapter one, we find the
standard free wave motion equation, of which we already know the two solutions:
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on superhorizon scales one will decay, while the other of observational interest
will remain frozen by defining the constant hij. Being interested in the latter
solution, once the usual canonical quantization is performed, we define the frozen
superhorizon solution for the tensor mode GWs

k
3
2hij ≃ 2νT−2 Γ(νT )

Γ(3/2)

(−yT )
1/2−νT

zT
k3/2−νT eij, (2.75)

from which we can derive the observable of the tensor power spectrum scale
invariant [115]

PT =
8γT
M2

Pl

G1/2
T

F3/2
T

(
H

2π

)2

, (2.76)

with a tensor spectral index nT = 3− 2νT .
A first difference to the tensor power spectrum of a single-field slow roll model in
GR is in the description of the amplitude, which suffers from the fact that here
the GWs are not calculated from the geometric degrees of freedom alone, but also
from the added extra scalar degrees of freedom. The system is thus affected by
an unusual starting Lagrangian density. Furthermore, here, in contrast to the GR
case, there is a spectral index that can be blue-tilted.

Potential-Driven G-Inflaton

It is interesting to investigate a specific instance of the general model just shown,
where only the first two Lagrangian terms of (2.63) are taken into account [115];
the basic idea remains the same: to start from a generic Lagrangian density with
high degrees of derivation embedded in some symmetry, and then conclude with a
general equation of motion for the extra scalar field and the tensor GWs metric
perturbation at the right order. Such a model is interesting not so much for the
features related to the tensor power spectrum (one can anticipate it to be the same
as a single-field slow-roll inflationary theory in GR), but rather because it is able
to state a different consistency equation between the tensor-to-scalar-ratio and the
tensor spectral tilt, which can thus be compared with the standard GR one found.
The action is rewritten as follows [115]:

S =

∫
d4x

√
−g

[
1

2
M2

PlR + LΦ

]
, (2.77)

with
LΦ = K(Φ, X)−G(Φ, X)□Φ, (2.78)

where K and G are the generic function of the extra scalar field Φ and X =
∇µΦ∇µΦ/2.
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It is important to note that from LΦ one can derive the known Einstein-Hilbert
term thanks to an appropriate choice of G4. For the model, the following choice is
imposed in order to derive an appropriate consistency relation

K(Φ, X) = X − V (Φ), G(Φ, X) = −g(Φ)X. (2.79)

One of the most resonant models written with such analytical choice is the Higgs
G-Inflation model, the purpose of which is to explain the primordial accelerated
expansion of the universe using only Standard Model particles.
As far as the evolutionary study of the scalar field background is concerned, it is
worth mentioning how, under the construction of slow-roll inflation, an accelerated
primordial expansion can be achieved. To achieve this construction we require [115]

ϵ = − Ḣ

H2
, η = − Φ̈

HΦ̇
, α =

gΦΦ̇

gH
, β =

gΦΦX
2

VΦ

, (2.80)

with all these parameters in modulus taken much less than one under the slow-roll
assumptions. One chooses the regime in which the Galileon effect is dominant,
i.e.

∣∣∣gHΦ̇
∣∣∣ >> 1, so that the equation of motion of the background in slow-roll

becomes gH2Φ̇2 + VΦ ≃ 0 [115], the solution of which can be interpreted as follows

Φ̇ = −sgn(g)MPl

(
VΦ

3gV

)1/2

, (2.81)

with the obvious requirement that the field rolls slowly over the flat potential.
The solution is one of constant velocity, thus in line with a slow-roll model in GR.
However here an additional factor is found to further decrease the constant velocity
by a term of 1/

√
gVΦ.

As far as the calculation of the tensor power spectrum is concerned, it is sufficient
to simply take the general observational solution found previously (2.76) and
substitute it with the settings of the studied model; we will obtain

PT (k) =
8

M2
Pl

(
H2

2π

)2

, nT = −2ϵ. (2.82)

There is a complete lack of features compared to the single-field slow-roll GR model
in vacuum fluctuations of the metric tensor, so much to induce a degenerative
character for the diffrent kind of GWs . However, one main difference between the
cases is again the tensor spectral tilt, which can blue-tilt if the quadratic sound
speed of the scalar fluctuations associated with the extra first-order scalar degree
of freedom is positive.
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In order to obtain the tensor-to-scalar-ratio, however, it is also necessary to define
the scalar power spectrum associated with the curvature perturbation relative to
the fluctuation not of the inflaton, but of the new intrinsic scalar degree of freedom
always in the gravitational sector, hence in the metric tensor; from the model, at
the Horizon crossing where the curvature perturbation is defined, we obtain

Pζ =

(
3
√
6

64π2

)2
H2

M2
Plϵ

. (2.83)

One can observe a clear distinction with respect to the multiplicative amplitude
coefficient: this observation allows one to understand how r therefore changes the
consistency relation.

Figure 2.2: Table summarising the main GWs production mechanisms studied so far,
relating to the inflationary and subsequent reheating period [1].
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2.6 Consistency relation and possible violations
The measure of the primordial gravitational waves treated so far would provide a
vast understanding of the fundamental physics of the primordial universe, and could
allow for the testing of the consistency relation, which, if experimentally ascertained,
would confirm the existence of an inflationary period. In the first chapter we studied
how, from an inflationary slow-roll model in a de-Sitter background in single field
GR, there exists a very specific consistency relation between the tensor-to-scalar-
ratio and the spectral tensor tilt, at the first order in the development of the
slow-roll parameters and for each k perturbation scale:

r = −8nT , (2.84)

where in general these two parameters are usually scale-dependent. A similar rela-
tionship connecting tensorial and scalar features also exists in the characterization
of the running spectral tensor index, indeed [15]

dnT

d ln k
≃ r

8

[
r

8
+ (nS − 1)

]
. (2.85)

Nevertheless, it is legitimate to think that such tensor running is suppressed in
slow-roll, so it is useful to think that the tensor spectral tilt is described only by
nT .
The expression (2.84) is related to the model that formulates it, and binds two
potential observables. The experimental link that can be constructed between
them determines the winner among all theoretical models that set out to study
inflationary dynamics, predicting different modifications of the standard consistency
relation. It is important to remember that the standard connectivity between the
two parameters is offered by the fact that both are writable in the terms of ϵ, which
offers a scale for measuring energy during inflation. Therefore, (as already seen),
it is possible to infer how the knowledge of r, or nT , allows us to quantify the
energy status during accelerated expansion. Nevertheless, a deviation from this
consistency relation would allow the loss of this connection, so knowledge of either
observational tenor would not guarantee the energy knowledge.
The choice of rewarding different inflationary models (including those exposed so
far), would lead to an intrinsically different choice of non-standard tensor and
scalar power spectrum, leading to different values of r and nT , thus a violation
of consistency. For example, some proposed inflationary examples evaluated the
possibility of a blue tensor tilt, obviously an assumption in total disagreement with
(2.84), which, associated with a model of GWs production by vacuum fluctuation,
predicted red-tilt relations on the various observable spectra. However, it is worth
mentioning how such models of extra particle production, or of MG also predict



CHAPTER 2. CLASSICAL GWS PRODUCTION DURING INFLATION 62

a different amplitude approach for the tensor power spectrum, destroying the
standard connection created between the latter and the energy of the inflationary
system.
For the sake of completeness, a table summarizing all the main models with their
modifications of consistency laws is left on .

Figure 2.3: Summary table for the main GWs production models of the overall tensor
power spectrum amplitude and spectral index. The last column shows for
each model the associated consistency relation [1].
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2.7 GWs as source of information for the thermal
history of the Universe

The gravitational waves treated so far are produced during the inflationary era
and initially have a mode width such that they persist in the sub-horizon, inflation
itself enlarging these dimensions leads to the freezing of the modes, which, at
the end of inflation (and therefore during a subsequent domination phase) will
re-enter the causally connected regime. It has already been analyzed how, on
re-entry, they return to oscillate in a dumped way, and this dump is described
precisely by the scale factor indicating the cosmological expansion factor. Hence
the present abundance of the GWs background will be observed, and will reflect the
expansion history of the universe [116]. Therefore, measuring such a background of
inflationary GWs would allow the possibility of tracing the history of the thermal
evolution of the universe, including the reheating phase.

GWs transfer function

In the usual FLRW spacetime, tensor modes obey the free waves equation if there
are no sources of the second type. During inflation the tensor modes are stretched
into superhorizon scales where they remain frozen in time; however, these will
sooner or later re-enter the Hubble regime, so they will again vary in time subject
to causal interaction influences: this temporal variation from a regime of constant
nature is analytically expressed in terms of a temporal transfer function

hk(τ) = hk,primTh(τ, k). (2.86)

Th is the transfer function describing the evolution of the tensor mode GWs once it
re-enters the horizon at the end of inflation. It is appropriately normalized such
that Th(τ, k) → 1 when k → 0 (the obvious superhorizon condition for which the
mode remains frozen in time at its primordial value).
We define

∆2
h,prim(k) =

d⟨hijh
ij⟩

d ln k
, (2.87)

therefore linking the equations (2.86) with the (1.66) we can obtain the spectral
energy density for the GWs background

ΩGW (k, τ) =
1

12

(
1

aH

)2

∆2
h,prim(k)T

′2
h (k, τ). (2.88)

For modes within the horizon, this formula can be re-approximated as follows [116]

ΩGW (k, τ) =
1

12

(
k

aH

)2

∆2
h,prim(k)T

2
h (k, τ). (2.89)
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It is known that the primordial tensor power spectrum in a slow-roll single field
inflationary model can be written in terms of the slow-roll parameters and the
Hubble parameter during inflation as follows

∆2
h,prim(k) = 64πG

(
H2

2π

)[
1− 2ϵ ln

k

k∗
+ 2ϵ (η − ϵ)

(
ln

k

k∗

)2
]
. (2.90)

Solving (1.46) during radiation or matter domination, on subhorizon scales, we
find, as already anticipated, that the amplitude of the tensorial mode solution
obviously depends on k and is modulated by the inverse of the scaling factor (which
in turn depends on time), while the oscillatory trend is guaranteed by the Bessel
solutions. The dumping factor is the protagonist of this section. It should be
pointed that each tensor mode has a dimension k, therefore the present GWs
background consists of a superposition of waves that re-enter the horizon at times
of different historical evolution: in particular different classes of k will undergo
different dumping dependent on a scaling factor that presents distinct temporal
evolutions according to the domination phase in question.
Within the matter domination, the solution of (1.46) results:

hk(τ) = hk,prim

(
3j1(kτ)

kτ

)
. (2.91)

This solution has to be averaged over time, so that the dumping amplitude 1/a
can be extracted. Therefore, the GWs spectrum looks like this

ΩGW (k, τ0) =
1

12

(
k

aH

)2

∆2
h,prim(k)

(
¯3j1(kτ)

kτ0

)2

(...) , (2.92)

where the last factor defines all the terms associated with the change in the scaling
factor from the re-entry of the mode in the horizon to the present observation
for each mode k: a first dumping factor comes from the change in the relativistic
degrees of freedom going from one domain phase to the next. Another function
takes into account the various temporal transitions of the dumped scaling factor
associated with the GWs amplitude when it passes from one domain phase to
another (from reheating to radiation, and from this to matter). To sum up, the
entire transfer function can be rewritten

T 2
h (k) = Ω2

m

(
g∗(Tin)

g∗s

)(
g∗s0

g∗s(Tin)

)4/3
(

¯3j1(kτ)

kτ0

)2

T 2
1 (xeq)T

2
2 (xR). (2.93)

This expression suggests how, once the various degrees of freedom are defined in
the various epochs and Ωm, the GWs spectrum turns out to be a function of only r
and the reheating temperature TR.
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Figure 2.4: Actual GWs spectral energy density [1].

2.7.1 Equation of state of the Universe and spectral tilt

From a direct observation of the present GWs spectral background, it is possible to
reconstruct the evolution of the equation of state [117], [118] that characterized the
universe in its primordial phase. Assuming, as in the standard inflationary frame,
that the primordial tensor power spectrum is scale invariant, then the dependence
of the present GWs spectrum on frequency is completely inscribed in the transfer
function, so that ΩGW ∝ k2T 2

T (k). Recalling that the tensor modes return to vary
only into the Hubble sphere, oscillating and decaying due to a dumping factor
of 1/a, it can be guessed that TT (k) =

∣∣hk,0

∣∣ /∣∣hk,prim

∣∣ = (a0/ain)
−1, hence that

ΩGW ∝ k2a2in.
If it is possible to write the equation of state describing the dynamics of the
universe at the ’in’ when the tensor mode cross on subhorizon scales as ω = p/ρ,
then the Hubble rate is H2 ∝ a−3(1+ω). Therefore for the mode of width k, which
falls within the horizon and for which therefore k = aH we obtain in conclusion
ain ∝ k−2/(1+3ω). If we assume a successive adiabatic evolution of the universe, for
each mode that enters the horizon when the universe is described by ω, we get

ΩGW (f) = Ωgw,F (f/F )[2(3ω−1)/(1+3ω)]. (2.94)

Thus it is trivial to observe that for modes re-entering during the matter domination
Ω ∝ f−2, while for modes that re-enter during the radiation domination one obtains
Ω ∝ f 0. Thus a change in domination in the universe will be seen in the final
present spectrum as a change in slope at the scale of the modes that cross the
horizon at that time. Therefore from the slope analysis it is possible to infer the
equation of state that the universe had at the time the frequencies of the modes
associated with that slope were crossing the horizon, also identifying the exact
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moment of switch of the different phases of dominations, where there is a net
change of slope [117].



Chapter 3

Scalar induced Gravitational waves
in the Post-Inflationary epoch

This chapter is based on the reviews [119], [120], [121], [122], [123] . The aim of
this chapter consists in the description of the state of art of induced gravitational
waves from primordial scalar fluctuations, making explicit the general analytical
formulation of the problem. The key idea of this section consists in imagining a
different evolution of the primordial universe with respect to the standard one.
This idea makes it possible to generalize the study of an induced GWs background
to a general post-inflationary phase, which is not necessarily the radiation phase,
which is the one always considered. From the generalization of the problem, it is
possible to derive an observable related to the tensor power spectrum that is affected
by specific features associated with the dynamics of the generic post-inflationary
phase of induction. Therefore, an observation of such an induced GWs spectrum
could give us an idea of the presence of an initial post-inflationary phase other
than the radiation phase that is typically taken into account. We have to imagine
that before the radiation-dominated phase (which must necessarily be thought
within the limits of the Hot Big Bang Model) there is an earlier phase with a
generic constant equation of state and a generic adiabatic speed of sound as a
consequence. This adiabatic speed of sound is the adiabatic velocity related to the
physics fluctuations that interact during the sub-horizon period of re-entry, and
that generate the source term for the scalar induced GWs background.

67
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3.1 General formalism
It is necessary to introduce a general formulation related to the production of such
a second-order induced GWs background, thus deriving the equation of motion
for the aforementioned tensor perturbations of the second order in perturbation
theory; in order to obtain this result, a different approach is chosen with respect to
the previous chapter: a study associated with the writing of the action formalism
will follow, taking into account all contributions, including those relating to a
non-Gaussian distribution of the scalar system.

Derivation from the action

This section will be mainly based on the articles [121], [54], [124] [120]. The
ultimate goal of this section is to write the equation of motion for the transverse-
traceless component of the second-order perturbation of the metric tensor in the
spatial region, i.e. for hij. Although the physics is for a second-order perturbative
cosmological system, the action formalism works well enough, if one chooses an
appropriate working gauge and focuses only on the correct tensor-scalar-scalar
interactions (necessary to have a second-order problem). We can decide to work with
a Newton gauge using an exponential notation of Misner, Throne and Wheeler [36].
Assuming to construct the perturbation metric on a background of FLRW, one
finds an overall metric of the form:

ds2 = gµνdx
µdxν = − exp (2Ψ)dt2 + a(t)2 exp (2Φ)Yijdx

idxj, (3.1)

where gµν is the space-time metric, i = 1, 2, 3 are the space component, a(t) is the
scale factor; the conformal decomposition notation of the spatial metric was used
in the writing, whereby

∂

∂t
detY = Y ij ∂

∂t
Yij = 0. (3.2)

Note how for a flat FLRW background in Cartesian coordinates we have that
Yij = δij. The conformal decomposition of the spatial component of the metric
tensor is very useful for the treatment of the system, as it splits the degrees of
freedom related to the trace (thus to the overall volume change of the system)
from the degrees of freedom of the null trace (related to volume preservation). In
Newton’s Gauge, as can be easily observed, such a decomposition splits the scalar
modes from the tensorial ones in the definition of spatial metric perturbation, in
fact Yij contains only transverse and trace-free tensorial degrees of freedom (hij).
This decomposition is also very useful for the action in fact it leaves a clear split
between Yij and Φ.
Consider, for simplicity of the system, a perturbed metric on the FLRW on which
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we insert a scalar field φ, which will later be generalized to the description of a
perfect fluid. The action is presented in its generality as follows:

S =

∫
d4x

√
−g

(
1

2
R− 1

2
gµν∂µφ∂νφ− V (φ)

)
, (3.3)

where g is the determinant of the tensor metric gµν , R is the Ricci scalar 4D, ∂
∂xµ

= ∂µ
and V (φ) is the potential for the scalar field. In the conformal decomposition
(3+1), after writing several algebraic steps and integrations by part, we can rewrite
the action in the following way

S =

∫
d3xdt

[
aeΨ+Φ

(
1

2
R(3)[Yij]− 2Y ijDiDjΦ− Y ijDiΦDjΦ− 1

2
Y ijDiφDjφ

)

+a3e3Φ−Ψ

(
1

8
Y ijY klẎikẎjl − 3(H + Φ̇)2 +

1

2
φ̇2

)
− a3e3Φ+ΨV (φ)

]
,

(3.4)

with R(3)[Yij] and Di respectively the Ricci scalar 3D and the covariant derivative
applied to the tensor mode Yij. Working in Cartesian coordinates we have that
detY = 1. Now we should derive the action for the tensor modes Yij , knowing that
we obtain a result that obviously must preserve the transverse-traceless symmetry
offered by the modes, and thus obtain the equation of motion for the graviton, i.e.
the transverse and traceless space part of Einstein’s equations.
However, before performing the action derivation, it is useful to exploit a perturba-
tive cosmological approach with a relative action expansion. An elegant and useful
way of decomposing the spatial metric, remaining within the assumptions of the
problem, consists in considering the exponential matrix

Yij = (eh)ij = δij + hij +
1

2
δklhikhjl +O(h3), (3.5)

with hij << 1 the transverse and tracefree tensor. From now on, the spatial indices
will be contracted with the spatial background metric δij, so δijδklhikhjl = hijhij.
Instead, the inverse metric is written Y ij = δikδjl(e−h)kl. With such an expansion,
we will write the second-order 3D Ricci scalar as follows

R(3)[eh] = −1

4
∂ihkl∂

ihkl +O(h3). (3.6)

Obviously, the whole problem is developed to the second perturbative order with
respect to the equation of motion, while we are up to the third order if we consider
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the problem with respect to the action. The other perturbative variables can be
written as follows

Ψ = Ψ(t,x), Φ = Φ(t,x), φ = φ̄(t) + δφ(t,x) (3.7)

with φ̄(t) the background solution for the scalar field Φ, Ψ e δφ are instead the
scalar perturbations for the system scalar field/metric tensor.
Using these expansion terms and retaining only the third-order terms (with two
scalars and a tensor), we arrive at a simplified version of the action

S =

∫
d3xdt

[
a3

8
ḣijḣij − a

8
∂ihkl∂

ihkl − 2ahij∂i(Φ + Ψ)∂jΦ+

+ahij∂iΦ∂jΦ +
a

2
hij∂iδφ∂jδφ

]
,

(3.8)

where the first two terms are the second-order action values of the Lagrangian for
the tensor modes, so the variation of these two terms will provide the LHS of the
famous graviton free dynamics equation. Now varying with respect to hij we obtain
the overall equation of motion at the second order of the GWs induced by scalars

ḧij + 3Hḣij − a−2∆hij = a−2Pab
ij [−8∂a(Φ +Ψ)∂bΦ+ 4∂aΦ∂bΦ+ 2∂aδφ∂bδφ] (3.9)

with Pab
ij the transverse traceless projector, so the equation is consistent with such

degrees of freedom, thus presenting an important analytical consistency. In the
present case under study we do not assume the presence of stress-anisotropy tensor
sources at the linear order of scalar perturbations, therefore we have, from the
spatial component of the null-trace Einstein equations, the condition for which

Ψ+ Φ = 0. (3.10)

This condition in the primordial Universe is not so true, given the presence of
neutrinos with a large mean free path, the latter of which generates a non-trivial
stress-anisotropy component in the energy-momentum tensor of the overall fluid
[53], [125]. Before defining the general GWs solution, let us come back to the
description of a scalar field described by a perfect fluid. Such a perfect fluid
with energy density ρ and pressure P predicts an energy-momentum tensor of the
following form

Tµν = (ρ+ P )uµuν + Pgµν , (3.11)

with uµ the four-velocities of the fluid. A perfect fluid is characterised by the
simple equation of state for which ω = P/ρ. In the perturbative case, we have that
ρ = ρ̄+ δρ and ui = ∂iv, with v the velocity perturbation; we neglect the vector
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modes brought to decay with the expansion of the Universe. The previous tensor
valid for a perfect fluid must be properly compared with the generic tensor of a
scalar field

Tφ
µν = ∂µφ∂νφ− gµν

(
1

2
∂αφ∂

αφ+ V (φ)

)
. (3.12)

The description of a scalar field described as a perfect fluid follows from the following
comparison

uµ =
∂µφ√

−∂αφ∂αφ
. (3.13)

Moving on to the spatial component ui we have that

δφ ⇐⇒ v
√

ρ+ P . (3.14)

In the terms of a perfect fluid, the equation of motion is very trivially rewritten
as [53], [54]

ḧij + 3Hḣij − a−2∆hij = a−2Pab
ij

[
4∂aΦ∂bΦ + 2(ρ+ P )∂av∂bv

]
. (3.15)
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3.1.1 General Solutions

This section is written on the basis of the articles [126] and [127] [120] [121],
[122], [123]. In order to solve the conclusive equation of motion for the induced
GW background, it is necessary to solve the first-order dynamics of the scalar
fluctuations that generate it. From the conservation of momentum it is possible
to link the scalar field fluctuation δφ to the scalar curvature metric fluctuation
Φ [128]

δφ = −
√

2

ϵ

(
Φ +

Φ
′

H

)
. (3.16)

Therefore, it is sufficient to find a single scalar solution, in function of Φ. We can
define the Bardeen potential as the product of an evolutionary transfer function in
time for a constant value representing the curvature perturbation originating on
super-horizon scales during inflation

Φ(k, τ) = TΦ(k, τ)Φk. (3.17)

Considering primordial fluctuations, we have that Φk is brought into Super-horizon
scales by accelerated expansion and comes from quantum fluctuations during
inflation. In general, as explored in the previous chapter, any source of fluctuation
capable of generating a curvature perturbation will define a source for the induced
GWs background.
Thanks to the last two equations, it is possible to write the dynamics of the induced
GWs background, which in Fourier space reads [53], [54], [121], [122], [123]

h
′′

k,λ + 2Hh
′

k,λ + k2hk,λ = Sk,λ, (3.18)

with
Sk,λ = 4

∫
d3q

(2π)3/2
eijλ (k)qiqjΦqΦ|k−q|f(τ, q,|k− q|), (3.19)

and

f
(
τ, q,|k− q|

)
= TΦ (qτ)TΦ

(
|k− q| τ

)
+
1 + b

2 + b

(
TΦ(qτ) +

T
′
Φ(qτ)

H

)(
TΦ(|k− q| τ) +

T
′
Φ

(
|k− q| τ

)
H

)
.

(3.20)

Where b = (1−3ω)/(1+3ω). If we want to switch from equation (3.15) to equation
(3.18), the Fourier transform for hij in terms of the polarization tensor eij(k) was
used. The solution to the Fourier dynamics expressed in (3.18) can be found
through Green’s method,

hk,λ(τ) =

∫ τ

τi

dτ̃Gh(τ, τ̃)Sk,λ(τ̃), (3.21)
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where Gh is the Green’s function defined on the homogeneous solution of (3.18).
This formal solution (3.21) is defined in such a way that at the initial time τi
there are no solutions of GWs induced during the inflationary phase, which have
to be added separately, in fact we have that hk,λ(τi) = h

′

k,λ(τi) = 0. Since we
are interested in particular to the tensor power-spectrum of the induced GWs
background, it is legitimate to calculate the two-point correlation function for the
induced GWs, i.e.

⟨hλ(k, τ)hλ(k
′
, τ)⟩ =

∫ τ

0

dτ1

∫ τ

0

dτ2G(τ, τ1)G(τ, τ2)⟨Sλ(k, τ1)Sλ(k
′
, τ2)⟩. (3.22)

From the Fourier definition of the source (and neglecting any induced input of
primordial origin), the two-point contribution of the RHS term is calculated

⟨Sλ(k, τ1)Sλ(k
′
, τ2)⟩ = 16

∫
d3q

(2π)3/2

∫
d3q

′

(2π)3/2
eijλ (k)qiqje

ij
λ (k

′
)q

′

iq
′

j

×f
(
τ1, q,|k− q|

)
f

(
τ2, q

′
,
∣∣∣k′ − q

′
∣∣∣) ⟨ΦqΦ|k−q|Φq′Φ|k′−q′|⟩.

(3.23)

It is clear to observe how the induced GWs spectrum depends on the four-point
function of the scalar perturbation. This statistical function could be decomposed
into a disconnected term, i.e. the product of two two-point functions, and a con-
nected term [129]; the latter, however, assuming a Gaussian-distributed curvature
perturbation, goes to zero, so the overall four-point function becomes

⟨ΦqΦ|k−q|Φq′Φ|k′−q′ |⟩ =
2π2

q3
PΦ(q)

2π2

|k− q|3
PΦ

(
|k− q|

)
×(2π)6δ(3)(q+ q

′
)δ(3)(k+ k

′ − q− q
′
).

(3.24)

In the next section we will study the case for which the primordial fluctuations
are non-Gaussian. Reworking (3.22), integrating on an internal momentum using
the definition of delta and rewriting the remaining integral in spherical momentum
coordinates, we find [126]

P̄h = 8

∫ ∞

0

dv

∫ 1+v

|1−v|
du

(
4v2 − (1− u2 + v2)2

4uv

)2

Ī2(τ, k, u, v)PΦ(ku)PΦ(kv).

(3.25)
This expression takes into account the sum over the two polarization states, and
also considers an appropriate average over the oscillation, taking into account how
the observation of an SGWB always measures an average over different length
scales λ. For convenience, a reparametrization of the momenta was introduced

v =
q

k
, u = |k−q|

k
. (3.26)



CHAPTER 3. SCALAR INDUCED GWS AFTER INFLATION 74

All time dependencies have been appropriately placed in a special kernel function
defined as follows

I(τ, k, u, v) =

∫ τ

τi

dτ̃G(τ, τ̃)f(τ̃ , k, u, v), (3.27)

The tensor power spectrum averaged in (3.25) defines the main quantity needed in
order to study the scalar-induced GW background, in fact its knowledge allows
us to calculate the spectral energy density observable. It is essential to remember
how this formulation holds as long as we assume that the curvature perturbation,
whatever its origin, has a clear statistic, relative to a Gaussian distribution. Failing
this assumption changes the current result.

3.1.2 Inclusion of primordial non-Gaussianity

The primordial fluctuations, generated by the quantum scalar field fluctuations
during inflation, are very close to represent a Gaussian distribution statistic;
however, a departure condition is expected due to the gravitational interactions [128]
. This perturbative departure from a Gaussian distribution is called non-Gaussianity
(NG) [130], [131], [132], [133], [52], [134]. Interestingly, the observation of such NG
on primordial fluctuations can provide information on the particle content during
the inflationary phase. For practical convenience, we express predictions about the
primordial fluctuations generated during inflation as a function of the curvature
perturbation R, due to the well-established and convenient gauge properties of
time conservation on Super-Horizon scales [135]. In the Newtonian working gauge
one has the possibility to connect the curvature quantities Φ and R [136]

R =
5 + 3ω

3(1 + ω)
Φ =

2b+ 3

b+ 2
Φ. (3.28)

The interest of this section relates to the study of NGs generated during inflation,
thus relating to primordial NGs [130] [137], [138], [139].
Such primordial NGs are statistically analyzed by the magnitude and shape of the
three-point correlation function [140], [141], [130] (or equivalently by the bispec-
trum). We consider a type of local NG that can be expressed as a local perturbative
expansion around the already defined Gaussian-style curvature perturbation Rg

R(x) = Rg +
3

5
fNL(Rg(x))2, (3.29)

where the fraction 3
5

comes from the equation (3.28). It is important to note,
however, that this is only a specific choice of local writing of the curvature per-
turbation, and that it is also possible to choose different ones. However there is
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no study on the impact of other shape of primordial NGs on the induced GWs
spectrum. Translating into Fourier space, one can see trivially how the square in
(3.29) becomes a convolution. Therefore by changing variable, in Fourier space we
obtain

Φq = Φg
q + FNL

∫
d3l

(2π)3
Φg

lΦ
g
|q−l|, (3.30)

with
FNL =

3

5

(
2b+ 3

b+ 2

)
fNL. (3.31)

It is now necessary to reconsider (3.23) in the light of the new definition of
the curvature perturbation, and to rewrite its four-point correlation function
appropriately

⟨ΦqΦ|k−q|Φq′Φ|k′−q′ |⟩ = ⟨Φg
qΦ

g
|k−q|Φ

g

q′
Φg

|k′−q′|⟩

+F 2
NL

∫
d3l

(2π)3

∫
d3l

′

(2π)3
⟨Φg

qΦ
g
lΦ

g
|k−q−l|Φ

g

q′
Φg

l′
Φg

|k′−q′−l′ |⟩

(|k− q| ⇐⇒ q) +

(∣∣∣k′ − q
′
∣∣∣ ⇐⇒ q

′
)
+

(
q ⇐⇒ q

′
;|k− q| ⇐⇒

∣∣∣k′ − q
′
∣∣∣)

F 2
NL

∫
d3l

(2π)3

∫
d3l

′

(2π)3
⟨Φg

lΦ
g
|q−l|Φ

g

l′
Φg

|k−q−l′|Φ
g

q′
Φg

|k′−q′|⟩(
q ⇐⇒ q

′
;|k− q| ⇐⇒

∣∣∣k′ − q
′
∣∣∣)+O(F 4

NL).

(3.32)

The first term of the RHS is the Gaussianity term already calculated in the past
section. The second line (i.e., the six-point correlation function of the primordial
curvature perturbation), which highlights NG’s first contribution, delineates a
total of 6 possible non-zero Wick contractions, which, counted together with the
four possible permutations expressed in the third subsequent line, provides a net
contribution of 24 terms for the leading-order contribution of NG. The fourth line,
on the other hand, preserves eight possible non-zero contractions, which, counted
together with the two possible permutations (found in line 5), provides a second
contribution of 16 terms. NG contributions can be classified into three different
classes: the "H", "C" and "Z" classes [142]. These terms, used appropriately
in (3.22) guarantee a perturbative NG contribution to the induced tensor power
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spectrum of the following form [142]:

P̄H
h = 25F 2

NLk
3
∑
λ

∫
d3q

2π
(eijλ (k)qiqj)

2Ī2(τ, q,|k− q|)

×PΦ(q)

q3

∫
d3l

2π

PΦ(l)

l3
PΦ(|k− q− l|)
|k− q− l|3

,

(3.33)

P̄C
h = 26F 2

NLk
3
∑
λ

∫
d3q

2π

∫
d3l

2π
eijλ (k)qiqje

ij
λ (k)lilj Ī(τ, q,|k− q|)Ī(τ, l,|k− l|)

×PΦ(l)

l3
PΦ(|k− l|)
|k− l|3

PΦ(|q− l|)
|q− l|3

,

(3.34)

P̄C
h = 26F 2

NLk
3
∑
λ

∫
d3q

2π

∫
d3l

2π
eijλ (k)qiqje

ij
λ (k)lilj Ī(τ, q,|k− q|)Ī(τ, l,|k− l|)

×PΦ(l)

l3
PΦ(q)

q3
PΦ(|k− q− l|)
|k− q− l|3

.

(3.35)

Working in a perturbative way, it is simple to assume that these contributions
offered by the non-Gaussian character of the problem, are simple perturbations
of the central term found previously under conditions of pure Gaussian formalism
expressed in formula (3.25). The first NG contribution (3.33) is also called hybrid
correction. It should be noted that the second line of (3.33) can be absorbed into a
new definition of the primordial curvature spectrum including the NG contributions.
In fact one can write

PNL
R (q) = PR(q) + F 2

NLq
3

∫
d3l

2π

PR(l)

l3
PR(|q− l|)
|q− l|3

, (3.36)

with that term following from the generic calculation of the two-point function
⟨Φ(k)Φ(k′

)⟩ using (3.30). Using such a formulation in the definition of the tensor
power spectrum, it is easy to derive an induced GWs background that also takes
into account the possible non-Gaussian nature of the scalar fluctuations generating
it [143].
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3.2 Analytical Transfer Functions
This section is mainly based on the articles [127] and [144]. In the most general
case the kernel (3.27) and the tensor power spectrum (3.25) must be calculated
numerically. However, in the situation of causally connected modes of interest
for which kτ >> 1, the time integration of the kernel is very difficult, in fact the
integrand is the product of three oscillating functions with frequencies dependent
on the tensor and scalar wave numbers. The region for which kτ >> 1 is the one
of observational interest, in the sense that for GWs to be defined as such, they
must necessarily fall within the causal horizon. Extending the integral so far to
time τ0 and focusing on scales much smaller than the horizon we have trivially
that kτ0 >> 1. It should be mentioned that the accessible scales for future GWs
interferometers are in the range between k ≃ 107 − 1018Mpc−1. However, these ob-
servational scales are very small, so much so that they fall within the horizon much
earlier than the BBN (scales that enter the horizon at the BBN epoch correspond
to k ≃ 103Mpc−1). This means the possibility of calculating such a kernel at a
time much earlier than the BBN, i.e. when the GWs modes have already re-entered
far inside the horizon in a Universe dominated by radiation: in this context we
assume for simplicity such GWs as a radiation fluid with ω = 1/3. It is crucial
to note, however, that such observational modes of interest re-enter the horizon
considering time much before the epoch of BBN, leaving one possibility to have a
phase in the early Universe prior to a complete radiation dominated epoch that
could have therefore wnew ̸= 1/3; in such a case, one will necessarily have to follow
the GWs up to the Universe transition in a later radiation-dominated phase. This
shows the potentiality of exploiting GWs to infer information about the evolution
of the Universe at very early times to reveal a possibly non-standard evolution
during those phases.
In the model under consideration, it is considered that immediately after inflation
there is a period of domination of the Universe prior to radiation, in which ω (hence
b) is taken as the free parameter, and second-order waves are induced at this stage.
It should be noted that when the equation-of-state ω and the adiabatic speed of
sound of the associated fluid c2s are constant (therefore during an epoch that is not
a thermal transition phase), it is possible to analytically calculate the kernel (3.27).
With these assumptions, it is first necessary to calculate the solution of the scalar
fluctuation defining the source term generating the induced GWs background, in
a suitable Newtonian gauge. In the situation in which ω ̸= 1/3, the time kernel
can be computed in two different regimes: for modes that re-enter the horizon
before the transition and for modes that re-enter after the transition during the
radiation dominated epoch; the kernel will therefore be computed for modes that
before the reheating transition (so the instantaneous transition that divide the
new post-inflationary phase and the radiation epoch) will be on sub-horizon or
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super-horizon scales. Then we have to match these solutions with kernel associated
to the radiation epoch, when the related tensor modes re-ntry on subhorizon scales.
These kernel in fact will give us the observable spectral energy density.

3.2.1 First order solutions

In order to have a complete solution for the induced tensor modes, it is necessary,
as already stated, to find a dynamic solution of the scalar fluctuations that induces
this GWs background by defining the source. After a series of simplifications, the
equation of motion for the Newtonian potential for generic values of c2s and in the
absence of isocurvature fluctuations, reads [136]

Φ
′′
+ (2ϵ− η)HΦ

′ −

(
η + 2s

(
1 + ϵ− η − 2s+

ṡ

Hs

))
H2Φ + c2sk

2Φ = 0, (3.37)

where

η =
ϵ̇

Hϵ
, s =

ċ2s
Hc2s

. (3.38)

This notation with ϵ, η and s is typical of inflationary models, and is used to
greatly simplify the form of the equation of motion. The solution to the dynamics
identified above for generic cosmological parameters, is expressed in terms of a
linear combination of Bessel functions of the first and second kind

Φ(kτ) = (cskτ)
−b−3/2(C1Jb+3/2(cskτ) + C2Yb+3/2(cskτ)). (3.39)

This solution deserves a correct initial condition, which is provided by the fact that
this curvature perturbation, before returning to oscillation if it’s on subhorizon
scales again, was in a frozen condition. Therefore this value is the starting condition
when the system returns to oscillate

Φ(kτ) = Φk2
b+3/2Γ[b+ 5/2](cskτ)

−b−3/2Jb+3/2(cskτ), (3.40)

with Φk the frozen superhorizon-value defined by the inflationary phase. Note how
this general solution cannot hold in the case where cs = 0 as the gradient term in
the general starting equation would disappear. Such a system predicts a solution
that does not decay, thus defining a constant source suitable for the production of
induced GWs of the second-order in perturbation theory.
Given knowledge of the scalar solution, one can now finally find the tensor solution
using Green’s integration techniques. First, the two independent and homogeneous
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solutions associated with (3.18), called h1 and h2, must be structured. These
homogeneous solutions can be written, for a constant ω, in the terms of the Bessel
functions

h1(kτ) = (kτ)−b−1/2Jb+1/2(kτ), h2(kτ) = (kτ)−b−1/2Yb+1/2(kτ). (3.41)

These solutions are an increasing and a decaying mode respectively. Obviously,
the solution does not predict the presence of cs since such modes propagate at the
speed of light c. Therefore it is possible to write the Green’s solution

G(τ, τ̃) =
π

2k

(kτ̃)b+3/2

(kτ)b+1/2

(
Jb+1/2(kτ̃)Yb+1/2(kτ)− Jb+1/2(kτ)Yb+1/2(kτ̃)

)
. (3.42)

With such a result, one has all the necessary inputs for the study of the GWs
background. It is most convenient to introduce the variable

x = kτ, (3.43)

to be used from now on, considering also that x̃ = kτ̃ .
It is possible to overcome the difficulty related to a time integration of a product
of at least three oscillating functions by suitably simplifying the source term of
the induced background GWs; in fact, by exploiting the properties of the Bessel
functions we have

f(x, u, v) =
22b+3Γ2[b+ 5/2]

(2b+ 3)(b+ 2)
(csx)

−2b−1 (uv)−b−1/2

×
(
Jb+1/2(csxv)Jb+1/2(csux) +

b+ 2

b+ 1
Jb+5/2(csvx)Jb+5/2(csux)

)
.

(3.44)

The work done consists in writing the Bessel functions Jb+3/2 present in the
definition of the scalar fluctuation Φ as a linear combination of Jb+1/2 and Jb+5/2:
this rewriting has no specific physical meaning, but only the mathematical purpose
of simplifying the analyticity of the computations in question as much as possible.
Replacing (3.44) and (3.43) in the definition of the kernel (3.27) we obtain

I(x, u, v) = π4bΓ2[b+3/2]
2b+ 3

b+ 2
(c2suvx)

−b−1/2(Jb+1/2(x)IY−Yb+1/2(x)IJ ), (3.45)

where

IJ /Y =

∫ x

0

dx̃x̃1/2−b(Jb+1/2(x̃)/Yb+1/2(x̃))

×
(
Jb+1/2(x̃csv)Jb+1/2(x̃ucs) +

b+ 2

b+ 1
Jb+5/2(x̃vcs)Jb+5/2(x̃ucs)

)
.

(3.46)
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Unfortunately, we are not aware of a general analytical solution in time, unless
b is a complex number, in which case the Bessel functions are simplified into
spherical Bessel functions, so that the whole problem can be rewritten in terms
of transcendental functions. A practical example is that offered by radiation, for
which b = 0 [126]. Now (3.46) must be integrated in the two relevant regimes of
subhorizon (x >> 1) and superhorizon scales (x << 1). In fact we have to consider
that in the first post inflationary phase we study the induced GWs that could be on
superhorizon scales or on subhorizon scales before the reheating period. Since we
need the definition of the kernel during the radiation epoch (for an observational
interest), we have to follow the tensor modes until we reach the radiation phase.
Facing this problem we have to divide the calculation for these two kind of tensor
modes (so the problem will be reflected on the associated kernel). In the model
under consideration, it is considered that immediately after inflation there is a
period of domination of the Universe prior to radiation, in which ω (hence b) is
taken as the free parameter, and second-order waves are induced at this stage.
However, in order to join to the correct cosmological solutions of the Standard Hot
Big Bang Model, one must subsequently and necessarily go through a subsequent
phase of standard radiation domination, so whatever tensor solution is found in the
first phase must be matched and followed appropriately until the radiation phase
is reached and beyond. For simplicity we assume an instantaneous transitive phase
in a time called reheating τrh. The magnitude of the Hubble sphere marked at that
time is called krh. This approximation of instantaneous transition is particularly
positive for the study of those intermediate modes that fall within the horizon at
the time of reheating, for which therefore k ≃ krh; in this sense a smooth transition
would accentuate the difficulty of the problem.
Let us further assume that the scalar scale associated with the peak of the primor-
dial spectrum enters the horizon long before the instantaneous reheating phase,
such that during or after such reheating there is no longer a source term for the
induced GWs background, since it has already decayed because of the oscillation,
long ago; therefore these tensorial modes, once temporally transited in the radiation-
dominated phase and obviously in a causally connected condition, will define a
free-waves dynamic, so they oscillate and decay (whereas in the previous phase
there was a source term able to change the damping of the oscillating phase, so
in the transitive moment we must define a mathcing condition between the two
distinct dynamics).
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3.2.2 General SubHorizon Kernel

In this section we will explore the case where all tensor modes of observational
interest are already within the horizon, well before reheating, so that we have
that k >> krh. This condition allows the integration extremum in (3.46) to be
extended to x >> 1, since when one needs to perform a solution match at the
moment of reheating with a subsequent solution of free GWs propagating in a
radiation-dominated Universe, the upper integration limit will be xrh ≃ k/krh >> 1.
With this mathematical approximation, it is possible to rewrite the complete kernel
solution, already taking into account the integration over time, expressed in equation
(3.45) [145]

I(x >> 1, u, v) = x−b−14bΓ2[b+ 3/2]
2b+ 3

b+ 2

∣∣1− y2
∣∣b/2

c2suv

×

[
cos

(
x− bπ

2

)(
P−b
b (y) +

b+ 2

b+ 1
P−b
b+2(y)

)
Θ[cs(u+ v)− 1]

2

π
sin

(
x− bπ

2

)(
Q−b

b (y) +
b+ 2

b+ 1
Q−b

b+2(y)

)
Θ[cs(u+ v)− 1]]

− 2

π
sin

(
x− bπ

2

)(
Q−b

b (−y) +
b+ 2

b+ 1
Q−b

b+2(−y)

)
Θ[−cs(u+ v) + 1]

]
,

(3.47)

where P−b
b (y) e Q−b

b (y) are the one type and second type Ferrer function, valid for
|y| < 1 while Q−b

b (y) is the Legendre function of second kind, correct for |y| > 1.
We can define for sake of simplicity the parameter

y = 1− 1− c2s(u− v)2

2c2suv
= −1− 1− c2s(u+ v)2

2c2suv
. (3.48)

It is necessary to perform a series expansion of the Bessel functions for large
arguments of interest. Note how the term y is associated with the area of the
triangle composed of the three main momenta of the problem, cs|k− q|, cs|q|, and
k.
The presence of the Heaviside function indicates the presence of a possible resonance,
when the frequency of the tensorial modes equals the sum of the two typical scalar
frequencies k ≃ 2cskp where kp describes the peak value for the spectrum . In more
direct terms, if cs(u+v) → 1 the three Bessel functions defined in (3.46) for x → ∞
lead to a diverging integral. It might also be of interest to take into account the NG
contributions studied above, but this would complicate the problem exponentially,
so the problem will only be investigated in the Gaussian framework. The goal is to
define the mean of the kernel square, so if we square (3.47) and then we calculate
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the oscillation (time) average we conclude

Ī2(x, u, v) = x−2(b+1)42bΓ4[b+ 3/2]

(
2b+ 3

b+ 2

)2
∣∣1− y2

∣∣b
2c4su

2v2

×
(
P−b
b (y) +

b+ 2

b+ 1
P−b
b+2(y)

)2

Θ[cs(u+ v)− 1]

+
4

π2

(
Q−b

b (y) +
b+ 2

b+ 1
Q−b

b+2(y)

)2

Θ[cs(u+ v)− 1]

+
4

π2

(
Q−b

b (−y) + 2
b+ 2

b+ 1
Q−b

b+2(−y)

)2

Θ[−cs(u+ v) + 1]).

(3.49)

With such a solution, we are ready to calculate the overall induced GWs background
with the specifications for the starting assumptions. It will remain only the integral
on momenta, which can also be performed computationally. The following objec-
tive is to connect this kernel to the radiation domination kernel, and look at the
behaviour of the latter in typical IR and resonance regimes for the GWs background.

Matching with Radiation Domination

It is now necessary to discuss the connection between the two thermal phases
defined earlier, the second of which is the radiation phase. First we match the
background quantities in the reheating time τrh, i.e. the scaling factor and the
Hubble parameter. Conclusively it is found from the matching condition that these
parameters in radiation domination follow a typical solution related to that period,
but with an additional time shifting that is written

τ̃ = τ − b

1 + b
τrh, (3.50)

where b is related to the equation of state of the previous epoch . Now the tensor
modes, or equivalently the associated kernel, must be matched: the continuity
condition on the reheating time of the modes and its derivative imply equivalent
continuity conditions on the kernel in question. Working on scales already in
subhorizon, we have that the kernel before the transition defines itself as follows:

I(x >> 1, u, v) ≃ x−b−1

(
A1,b sin

(
x− bπ

2

)
+ A2,b cos

(
x− bπ

2

))
, (3.51)

where the coefficients are known from before from (3.47). The kernel after the
radiation transition must still be associated with tensor modes on subhorizon
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scales. These ones from the assumptions made earlier must behave as free GWs
propagating in a radiation-dominated Universe. Hence we have that the kernel has
the following form

IRD(x >> 1, u, v) = A1,RD
sin x̄

x̄
+ A2,RD

cos x̄

x̄
. (3.52)

By setting the reheating time τrh and defining the continuity conditions, we find
the unknowns A1,RD and A2,RD, which allow us to have the correct form of the
kernel in successive subhorizon radiation domains. Therefore we have that

ΩGWs(k >> krh, τ >> τrh) =
k2

12a2H2
P̄RD

h , (3.53)

with

P̄RD
h = 8

∫ ∞

0

dv

∫ 1+v

|1−v|
du

(
4v2 − (1− u2 + v2)2

4uv

)2

Ī2RD(τ, k, u, v)PΦ(ku)PΦ(kv).

(3.54)
This spectral energy density solution is, moreover, totally equivalent to

ΩGWs(k >> krh, τ >> τrh) =
k2

12a2H2
P̄h|τ=τrh , (3.55)

with

P̄h = 8

∫ ∞

0

dv

∫ 1+v

|1−v|
du

(
4v2 − (1− u2 + v2)2

4uv

)2

Ī2(τ, k, u, v)PΦ(ku)PΦ(kv).

(3.56)
where the kernel is that of (3.47), obviously computed at the time of continuity.
However, it must be remembered that this solution is only valid for tensorial modes
on subhorizon scales at the time of reheating, i.e. for kτrh >> 1. Then a solution
must also be found for all the remaining complementary modes, which only go into
subhorizon scales after the reheating time, i.e. for kτrh << 1. From the match of
the two solutions, one can also find the correct evolution of the system for all those
intermediate modes that re-enter the horizon in a period approximately close to
reheating, which will therefore be characterized by the condition kτrh ≃ 1. Such
scales will be called km. Connecting the two solutions is not so easy, however. By
writing the scale that last crosses the horizon in reheating

krh =
1 + b

τrh
(3.57)

it is possible to make a comparison between this and the km scale as follows

km
krh

=
1

1 + b
. (3.58)
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Therefore if b > 0 we have that km < krh, then the approximation in subhorizon
approach is extendable up to the scale of krh, where one expects a good matching
between the two causal connection theories (since the scale km at the time of
reheating is in superhorizon). For b < 0 we can find the opposite solution.

Resonances

It is necessary to devote a section to the study of the kernel seen in formula (3.49)
with respect to its resonance point that we have discussed earlier. We discuss the
possibility to study a peak in the spectral energy density for the specific condition
for which k → 2cskp. The theory involved allows us to consider three interacting
vectors, one for the produced tensorial modes k, and two for the two scalar modes q
and |k− q|; these vectors obviously satisfy the conservation of momentum, implying
a triangular inequality that can be defined as follows:

|k − q| < |k− q| < k + q ,
∣∣|k− q| − q

∣∣ < k < |k− q|+ q (3.59)

which in terms of u and v can also be read as

|1− v| < u < |1 + v| , |u− v| < 1 < u+ v. (3.60)

These three momenta identify a triangle whose area is defined through the angle
between k and q, in fact

sin (θk) =
2A

kq
. (3.61)

Figure 3.1: Illustration of the triangular inequality and the vector relationship involved
in the GWs integral convolution [119].

This consideration implies that the projection performed with the polarization
tensor on the scalar momenta is literally proportional to that area

eijλ qiqj ∝ sin2 (θk) ∝ A2. (3.62)

This result leads to the reasoning according to which if the triangular inequality
should be saturated, therefore for example 1 = u+ v, there would be a zero area,
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so the integral (3.25) would go to zero locally. The theory allows one to expect
resonance when

cs(u+ v) = 1. (3.63)

Logic allows one to think that if c2s = 1, then the point of resonance would coincide
with the saturation of the triangular inequality, so that there would be a zero overall
contribution. As a consequence (due to conservation of momentum), in the case of
c2s = 1, there would be no resonance in the induced spectrum. Conversely, if instead
c2s < 1, there would be a resonance effect on the final spectrum. This condition can
be proven by expanding the kernel (3.49) around the point cs(u+ v) ≃ 1, which
corresponds to choose y ≃ −1, where the Legendre functions of the theory present
a divergence. Assuming a first case for which b < 0, it is possible to see that the
kernel diverges as:

Ī2res(x, u, v, b < 0) ≃ x−2(b+1)42bΓ4[b+ 5/2]
8

c4su
2v2

csc2 bπ

Γ2[3 + b]

∣∣1−|y|
∣∣2b . (3.64)

So it’s possible to observe that a very peaked primordial spectrum leads to
Ωres

GWs(b < 0) ∝
∣∣k − 2cskp

∣∣2b. If instead we consider b > 0, we should observe

Ī2res(x, u, v, b < 0) ≃ x−2(b+1)43bΓ4[b+ 5/2]
32

π2c4su
2v2

(
(1 + b+ b2)

(b+ 1)(b+ 2)

Γ[b]

Γ[2b+ 3]

)2

,

(3.65)
the result of which, being independent of y, has no divergence. However, it is
possible to show that for 1 > b > 0, there is still a peak in the GWs spectrum at
k = 2cskp, if we consider a very peaked scalar spectrum, finding in fact

Ωres
GWs(1 > b > 0) ∝ constant−

∣∣k − 2cskp
∣∣b . (3.66)

Infrared regime

It is useful to identify the behaviour of the kernel where u ≃ v >> 1, a condition
that best represents the IR regime for the GWs spectrum being v ≃ kp/k, with
k << kp. This condition implies that, whenever there will be a peak kp that can
be studied in the scalar fluctuation spectrum, one would study the system for
scales much larger than this peak. The kernel studied on subhorizon scales should
therefore be restricted for frequencies for which krh << k << kp (putting together
the IR and subhorizon condition of the system). Again, the cases where b < 0 and
b > 0 exhibit different behaviour. In the limit y → 1 (from (3.48) if we consider
the conditions u ≃ v >> 1), the averaged kernel (3.49) becomes

Ī2IR(x >> 1, u, v, b < 0) ≃ x−2(b+1)42bΓ4[b+5/2]
8

c4su
2v2

csc2 bπ

Γ2[3 + b]

∣∣1−|y|
∣∣2b . (3.67)
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when b < 0 and

Ī2res(x, u, v, b < 0) ≃ x−2(b+1)43bΓ4[b+ 5/2]
32

π2c4su
2v2

(
(1 + b+ b2)

(b+ 1)(b+ 2)

Γ[b]

Γ[2b+ 3]

)2

,

(3.68)
when b > 0.
These solutions are only quite similar to those previously seen for the resonance
study given in formulae (3.64) and (3.65); however the fundamental difference lies
in the fact that now these formulae are to be studied in the IR limits in which,
u ≃ v >> 1, therefore 1 − y ≃ v−2. Calculating these results at reheating and
adding the k2 term present in (3.25), one obtains a GWs spectrum that in the
infrared view scales proportionally to a factor of k3−2|b| [146].

3.2.3 SuperHorizon Kernel approximation

In the previous section the kernel was studied in subhorizon approximation; how-
ever, at the time of reheating there exist several tensor modes which are still on
superhorizon scales, so k << krh. Therefore in that section we cannot consider the
extension to the upper integration limit of the kernel at x >> 1. In fact we have
to consider the opposite range according to which x << 1. We recall another key
approximation in the model, namely that the scalar modes re-enter the horizon
long before reheating, in order to have in that period a GWs background similar
with the radiation, subjected to a free-wave condition; therefore it is imposed that
kp >> krh >> k. Therefore, in order to have the largest integral contribution to
the system, one must concentrate in the region of integration of the generic kernel
around the peak in PΦ, where therefore one has that v ≃ kp/k >> 1 and hence
also u ≃ v >> 1.
With these assumptions we arrive at a kernel of the form

I(x << 1, u, v) ≃ B1,b +B2,bx
−2b, (3.69)

with the exact coefficients

B1,b = −(3 + 2b)2(1 + b+ b2)

4b(1 + b)2(2 + b)
(csv)

−2, B2,b =
41+bΓ2[b+ 5/2]

b(1 + b)(2 + b)π
(csv)

−2(1+b). (3.70)

This solution describes the kernel for those modes that are on superhorizon scales
before reheating. These modes are therefore not yet actual GWs, so this result
must be followed until after re-entry into the horizon during the next radiation
domination phase.
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3.2.4 Matching to radiation domination

The kernel (3.69) is valid for modes in superhorizon during an arbitrary pre-radiation
domination phase in which b = const. After this period there will be reheating, so
the source term will go to zero in oscillatory decay and thereafter the tensor modes
will start to move as freely propagating massless tensor modes. The continuity of
the modes hij and its derivative at the reheating boundary extends to the continuity
condition on the kernel. Therefore we have to go from the superhorizon kernel for
modes in the first domination phase, to a kernel for modes still on superhorizon
scales but experiencing the next domination phase of radiation, the latter of which
must read

IRD(x̄ << 1, u, v) ≃ B1,RD +B2,RD(kτ̄)
−1, (3.71)

with τ̄ , the conformal time shifted. From the matching to reheating of the two
kernels and derivatives, we obtain

B1,RD = B1,b +
1− b

1 + b
B2,b(kτrh)

−2b , B2,RD =
2b

(1 + b)2
B2,b(kτrh)

1−2b. (3.72)

The operation just performed describes the passage of a superhorizon kernel between
the two domination stages. Now, however, it is necessary to follow the kernel (or
the induced tensorial modes) until it re-enters on subhorizon scales, where it will
begin to describe freely oscillating tensorial modes in radiation without of any
scalar source. Therefore, if we define the average of the square of this last term, we
read

Ī2RD(k << krh, τ >> τrh) ≃
1

2x̄2
(B2

1,RD +B2
2,RD). (3.73)

Gathering the most significant contributions, offered by the condition for which
v >> 1, we arrive at the following final form of kernel for tensor modes finally on
subhorizon scales during the radiation epoch

Ī2RD(k << krh, τ >> τrh) ≃
1

2x̄2

(
(3 + 2b)2

4b(1 + b)2(2 + b)

)2

×

(
(1 + b+ b2)(csv)

−2 − 41+bΓ2[b+ 3/2]
1− b

π
(csv)

−2(1+b)

(
(1 + b)

k

krh

)−2b
)2

.

(3.74)

This averaged squared kernel will be used in the definition of the induced GWs
background (3.25), complementing the previous case, where one working only
on specific tensor modes for which k >> krh. The union of the two solutions
in subhorizon and superhorizon scales quantifies the overall result of the GWs
background, while their matching in the intermediate condition for which k ≃ krh
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turns out to be particularly good if reheating occurs in instantaneous terms.
We therefore conclude by calculating the observable of the problem

ΩGWs(k << krh, τ >> τrh) =
k2

12a2H2
P̄RD

h , (3.75)

with

P̄RD
h = 8

∫ ∞

0

dv

∫ 1+v

|1−v|
du

(
4v2 − (1− u2 + v2)2

4uv

)2

Ī2RD(x >> 1, u, v)PΦ(ku)PΦ(kv).

(3.76)
processed using the latest kernel estimated in (3.74).

3.3 Typical induced GWs spectra
This section is mainly based on the articles [127] and [144].
While in the last section we studied the kernel for a GW background induced in
the radiation period, it is now also important to calculate, given the latter, some
characteristic examples of spectral energy densities of induced GW backgrounds:
it is clear that in order to define that function, it is necessary to integrate in
convolution on the momenta the kernel found in the desired domination regime
with the product of the scalar spectra; Now, such functions will be necessary
for the determination of the final result. It is convenient, therefore, to consider
standard input power spectra, such as a Dirac delta, a broken power law, an almost
scale-invariant function, to see what induced GW background are able to produce,
knowing from now on the kernel, calculated earlier.
It is clear to think that the induced GW background that can be measured today
is defined as follows

ΩGWs,0 =
1

3M2
plH

2
0

dρGWs,0

d ln k
. (3.77)

Nevertheless, the solution found earlier defines the GWs background in the radiation
period. Now inside the horizon the GWs behave like a radiation fluid, therefore
after reheating it will be seen that ΩGW = ΩGW,rh = const. To correlate ΩGW,rh

with the actual ΩGWs,0 one can exploit the behaviour of GWs as radiation and
therefore write that

ΩGWs,0h
2 = Ωr,0h

2 1

ρr,0

dρGW,0

d ln k

ΩGWs,0h
2 = 1.62× 10−5

(
Ωr,0h

2

4.18× 10−5

)(
g∗(Trh)

106.75

)(
g∗,s(Trh)

106.75

)−4/3

ΩGW,rh,

(3.78)
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where Ωr,0h
2 ≃ 4.18×10−5 is the current radiation density fraction given by Planck.

In the case where the induced GW are generated during the radiation phase, the
index "rh" should be replaced by "c", which indicates the time point at which the
induced tensor modes enter on subhorizon scales and thus begin to behave like
perfect GWs.

3.3.1 Dirac Delta Peak

This one is perhaps the most trivial and analytically simple example of a scalar
spectrum inducing a GW background; such a scalar spectrum cannot be produced
by a single-field inflationary model [147] [148] [149], so it will be necessary to
introduce the presence of a multi-field system into the associated model [150]. If
the peak is extremely steep, the model of a Dirac delta can be used

PR(k) = ARδ
(
ln k/kp

)
. (3.79)

In the integral convolution it can be rewritten as

PR(kv) = ARδ
(
ln kv/kp

)
= AR

kp
k
δ

(
v − kp

k

)
, (3.80)

same for u. Recalling the boundaries for u arising from the conservation of
momentum, and integrating over the momenta using the definition of Dirac Delta,
we can adapt the range over the frequencies of tensor modes to 0 < k < 2kp.
Considering this range and evaluating the problem for v = u = kp/k, we arrive at

ΩGW,rh(k) =
2

3

(
kp
krh

)2
(
1− k2

4k2
p

)2

Ī2RD(k/krh, k/kp)Θ(2kp − k). (3.81)

Note that this solution is written under the more general condition for which
there is a domination phase at b = constant before radiation, so the intermediate
scale krh must be taken into account in the problem. If, on the other hand, in a
more specific case one wishes to consider the induced GWs background directly
in radiation, it is sufficient to remove krh in favour of kp [126]. It makes sense
to evaluate the specific trend of the GWs background in the infrared regime by
expanding this solution for k << kp. For b < 0 one finds

ΩGW,rh(b < 0, k << kp) =
A2

R
12

(
21+b(2 + b)Γ2[3/2 + b]

πc
2(1+b)
s (1 + b)1+b

)2(
krh
kp

)2+4b

×


23+2b

π(1+b)2b

(
k

krh

)2
, (k ≤ krh/(1 + b))(

π
sin (bπ)Γ[2+b]

)2 (
k

krh

)2+2b

, (k ≥ krh/(1 + b)).

(3.82)
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A broken power law has been set in the constraint for which k ≃ km, where for
b < 0 there is a transition between the subhorizon kernel approximation and the
superhorizon kernel approximation, so the two complementary kernels found must
be used in these two frequency ranges. For b > 0 instead one finds

ΩGWs,rh(b > 0, k << kp) =
A2

R
24π

(
(2 + b)(1 + b+ b2)

c2sb(1 + b)2

)2(
krh
kp

)2

×
(

k
krh

)2
, (k ≤ krh)

1
2

(
21+bΓ[b+3/2]

(1+b)1+b

)2 (
k

krh

)2−2b

(k ≥ krh),

(3.83)

where this time the match occurs at k ≃ krh. The most important information
that these two results are able to bring is that the IR tilt has dependence on the
equation-of-state parameter in the period in which the induced GWs were generated.
Therefore, an observational study of this index can give clear indications of the
thermal history of the expanding primordial Universe.

Figure 3.2: Induced GWs spectral energy density for a primordial scalar Dirac spectrum
with different values of b [119].
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Figure 3.3: Induced GWs spectral energy density for a primordial scalar Dirac spectrum
with assumed value c2s = 1 [119].

3.3.2 Log-Normal peak

We must complete the previous discussion by imagining that we are once again
describing a scalar peak, which will now, however, have a finite width. This
scalar spectrum, which can be modelled by multi-field inflationary models, can be
parameterized by a log-norm function [151], of the type

PR(k) =
AR√
2π∆

exp

(
− ln(k/kp)

2∆2

)
, (3.84)

with ∆ the dimensionless width of the peak. Note how such a curvature spectrum
is perfectly normalized. We can consider the limit of the highly peaked spectrum,
for which ∆ << 1 [150] [152] [153], on the other hand, if ∆ ≃ 1, then it will be
said to be a broad peak [154] [155] . In the first sharp peak case, the following
induced GWs background is found

ΩGWs,∆(k) = erf

 1

∆
sinh− 1

(
k

2kp

)ΩGW,δ(k), (3.85)

where erf(x) is the error function and ΩGW,δ(k) is the spectrum induced by a scalar
spectrum function equal to a Dirac delta, so this solution in the background induces
a simple corrective factor with respect to (3.81) due to the ∆ width. This allows us
to evaluate a typical behaviour of k3 in IR under the domination of radiation [146].
The largest corrective effects occur when the ratio k/kp is smaller than the width
∆. Thus for k << kp we obtain

ΩGW,∆(k) = erf

(
k

2kp∆

)
ΩGW,δ(k), (3.86)
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which provides a correction of erf(k/2kp∆) ≃ k/2kp∆ when ∆ >> k/2kp. There-
fore, due to the presence of the thickness ∆, the IR tail calculated in the previous
section is modified in the cases 2kp∆ < krh and 2kp∆ > krh, respectively, in

ΩGWs(k << kp, 2kp∆ < krh) ∝ A2
R



(
k
kp

)3
, k << 2kp∆ << krh(

k
kp

)2
, 2kp∆ << k << krh(

k
kp

)2−2|b|
, k << 2kp∆ << kp

(3.87)

or

ΩGWs(k << kp, 2kp∆ > krh) ∝ A2
R



(
k
kp

)3
, k << krh(

k
kp

)3−2|b|
, krh << k << 2kp∆(

k
kp

)2−2|b|
, 2kp∆ << k << kp

(3.88)

It is essential to note how the introduction of a finite peak width induces an
increase in the richness of the induced GWs spectrum. Note also how if b = 0, as
is the case in radiation dominance, there will only be two distinct types of slope,
with krh losing its meaning completely. If, on the other hand, the peak has a
significant width, thus ∆ = 1 [151], it is possible to define the radiation-induced
GWs background in the vicinity of the scalar peak as follows

Ωpeak
GWs(∆ > 1) ≃ 0.125

A2
R

∆2
e−

ln2 k/kp

∆2 . (3.89)

This result implies how a background induced GWs from a log-norm scalar spectrum,
is itself of the log-norm form, however presenting a narrower peak given by ∆/

√
2.

Factor two comes into play as an indirect reflection of the secondary perturbative
nature of the proposed GWs [151].
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Figure 3.4: Induced GWs spectral energy density for a primordial log-normal scalar
spectrum [119].

3.3.3 Broken power-law

If the curvature perturbation during a single-field inflationary phase is boosted,
then a curvature power spectrum relative to a broken power-law function can
be defined [147] [148] [149] [156]. It is possible to parameterize the primordial
curvature power spectrum as a broken power-law in the following way

PR = AR


(

k
kp

)nIR

k < kp,(
kp
k

)−nUV

k > kp,
(3.90)

where nIR, nUV > 0 are respectively the infrared and ultraviolet scalar tilts relative
to a peaked spectrum in kp. In single-field models it is often possible to find that
nUV = 4 [147]. If, on the other hand, the bump in the curvature perturbation
occurs by virtue of a bump in the scalar field potential [156], then nUV will be
related to the second derivative of that potential in the bump, as well as to the
non-Gaussianity parameter fNL [156]. It is necessary to study the problem with the
aim of working the scalar-induced GWs background during the radiation-dominated
phase. From the curvature power spectrum one can therefore find such GWs
spectrum, whose behaviour in the IR follows the following pattern

ΩGWs,rh(k << kp) ≃ 12A2
R

(
1

2nIR − 3
+

1

2nUV + 3

)(
k

kp

)3

ln2

(
k

kp

)
. (3.91)

This equation only holds true if nIR > 3/2 (condition related to the requirement of
convergence of the integral for large internal momenta u ≃ v >> 1) and nUV > 0.
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The UV tail of the induced background GWs, on the other hand, exhibits two
possible behaviours. If 0 < nUV < 4 then the integral also converges in the limit
for which v → 0. Thus this implies that one can take the scaling dependence of the
curvature power spectrum out of the integral convolution on momenta, so that one
can define a solution of the form ΩGWs,rh ≃ P2

R, unless numerical multiplicative
factors characteristic of the integral on momenta. Therefore in the UV limit, the
induced background GWs reads

ΩGW,rh(k >> kp, nUV < 4) ≃ A2
R

12
F (nUV )

(
k

kp

)−2nUV

(3.92)

where F (nUV ) is given by

F (nUV ) = 8

∫ ∞

0

dv

∫ 1+v

|1−v|
du

(
4v2 − (1− u2 + v2)2

4uv

)2

Ī2(nUV , k, u, v)(uv)
nUV

(3.93)
This form was found by noticing that the integral shows a divergence in the exact
limit in which nUV = 4; in fact, in the case in which nUV = 4 the induced GWs
spectrum shows a logarithmic type of divergence. Concluding, if instead we take
the UV case for which nUV > 4, we would have a rapidly decreasing primordial
power spectrum, so we wouldn’t expect a solution for which ΩGWs,rh ≃ P2

R, but
rather a result expressing, due to conservation of momentum, a strong fall-off for
frequencies k ≃ 2kp. In fact, for nUV > 4, we observe

ΩGW,rh(k >> kp, nUV > 4) ≃ 16

3
A2

R

(
1

nUV − 4
+

1

nIR + 4

)(
k

kp

)−4−nUV

. (3.94)

Combining all the results together, it is possible to conclude that

ΩGWs,rh(k) ∝ A2
R


(

k
kp

)3
, k << kp(

k
kp

)−∆

, k >> kp
(3.95)

with

∆ =

{
2nUV , 0 < nUV < 4

4 + nUV , nUV > 4.
(3.96)

So it is easy to see how the knowledge of the UV tilt of the GWs background leads
to a consequent knowledge of the UV tilt of the scalar induction spectrum. If, on
the other hand, one had a GWs background induction phase different from that of
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radiation (which precedes it), one would have a variation of the sensitive (3.96),
which can be defined as follows [157]

ΩGWs,rh(k) ∝ A2
R



(
k
kp

)3
, k << krh(

k
kp

)3−2|b|
, krh << k << kp(

k
kp

)−∆−2b

, k >> kp

(3.97)

where b quantifies the dominance fluid in the pre-radiation phase, in which the
GWs background is induced; this time the UV tilt changes as follows

∆ =

{
2nUV , 0 < nUV + b < 4

4 + nUV , nUV + b > 4.
(3.98)

A limiting case of the broken power-law is that of quasi-scale-invariant curvature
power spectrum for which nUV = nIR = 0, a typical result obtainable from an
inflationary slow-roll model in a single field. An induced GWs background will be
found equal to

ΩGW,rh = A2
RF(b, cs)

(
k

krh

)−2b

(3.99)

with

F(b, cs) =
2

3

∫ ∞

0

dv

∫ 1+v

|1−v|
du

(
4v2 − (1− u2 + v2)2

4uv

)2

Ī2(b, cs, u, v), (3.100)

a numerical factor that always converges.
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Figure 3.5: Induced GWs spectral energy density for a primordial scalar broken-power
law spectrum with nIR = 4 and nUV = 2 [119].



Chapter 4

Inflationary models with features in
the Power-Spectrum

4.1 Effective field theory of inflation models with
sharp features

This section is written on the basis of the article [158]. The focus of this model is
to face a slow-roll single-field inflation system with small, steep step features in the
potential (and sound velocity) of the inflaton in an EFTI environment [42] [159] [160].
This solution makes it possible to study the correlation functions between curvature
perturbations and to associate a usual quasi-scale invariant trend due to the de-
Sitter background with features that allow for an observable modification of it.
In conclusion it will therefore be possible to find a modified power-spectrum self-
consistent and an elevated NG both dependent on the main parameter of step
features β that quantify the steepness of the step in the potential. This approach is
so simple that it is possible to translate and generalize it by subjecting to features
not only the potential (hence H), but also the other multiplicative coefficients
present in the action of the linear inflaton perturbation.
One of the key goals of standard cosmology is to explain the origin of the currently
observable cosmic structures of LSS: taking advantage of what has been said
in the previous chapters, it is worth recalling how the standard cosmological
approach predicts the existence of an inflationary period that can be read from
a perturbative point of view, whereby the inflationary fluctuation originates a
curvature perturbation on superhorizon scales, and this on re-entry, returns to
oscillate generating such cosmological seeds. The simple single-field slow-roll model,
as already seen, predicts a quasi-scale-invariant curvature perturbation spectrum
that completely fits Planck’s observational data [161], which predicts an amplitude
for the CMB anisotropy fluctuations on the instrument’s large sensitivity scales.

97
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However, one has to imagine how even a slight modification of the model in question,
i.e. a perturbation on the slow-roll approach, could lead to a modification of the
curvature spectrum that could still fit well with the observational data. The EFTI
is an example among them, which reduces a perturbative single-field theory in SR
developed therefore around an expanding metric background, to a theory concerning
the physics of a Goldstone Boson that breaks symmetry by time diffeomorphism.
The idea of this section is therefore to study a model of single field slow-roll inflation,
with the addition of a modification concerning the presence of a small sharp step
in the inflationary potential assumed trivially to be flat (as the standard theory
predicts), in an EFTI context. This approach, as we shall see, leads to significant
modifications of the curvature power spectrum, which will no longer remain scale
invariant, but will be modified by the presence of slight damped oscillations; this
model will also lead to the raising of the NG.

Effective field theory of single field inflation

It is fundamental to introduce the concept of EFTI by describing the main ideas of
this approach. The main idea of EFTI [42] [159] [160] is that instead of considering
a standard lagrangian density of a scalar field and studying the perturbations of
the same living in an expanding metric background of FRW, one studies the more
general action of such fluctuations (around a quasi-de-Sitter background, in a slow-
roll model) rewritten in the physical terms of a Goldstone boson, which explicitly
breaks symmetry by temporal diffeomorphisms. Hence an initial quasi-de-Sitter
universe is assumed to experience an accelerated inflationary expansion by slow-roll,
thus with constant V , H, ϵ, which are then at a certain point in time modified
and ’perturbed’ by the arrival of a feature on the potential (which, however, is
also reflected in the other parameters mentioned above). Inflationary fluctuations
will enjoy a generic Bunch-Davies trend as usual initial condition written on the
SR; however, if such fluctuations have a magnitude k such that they remain in
the Hubble sphere even during such a feature step, this results in modifying the
oscillating and decaying perturbation. Such modified modes will subsequently
come out of the horizon with their degree of modification and define a different
curvature perturbation, whose square modulus will quantify a slighly modified
power spectrum. By choosing a perturbative variation approach on the SR (we
will vary ϵ, V and H by very little) it is easy to see how this deviation from the
scale invariant PS of slow roll is indeed minimal. The goldstone boson field π,
under diffeomorphism transforms nonlinearly, since for t → t+ ζ0(x), we have that
π → π − ζ0(x); moreover as mentioned before, this field parametrizes the linear
adiabatic inflationary perturbation δϕ(x). At the linear level therefore, π makes
explicit the comoving curvature perturbation

ζ = −Hπ. (4.1)
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The most general and effective action for π can be constructed geometrically using a
gauge in which the metric results in δϕ = 0. Then we can reintroduce the goldstone
boson via the Stuckeldberg trick [42]. We obtain finally

S =

∫
d4x

√
−g

1
2
M2

PlR−M2
PlḢ(t+ π)

(
π̇2 − (∂iπ)

2

a2

)

+2M4
2 (t+ π)

(
π̇2 + π̇3 − π̇

(∂iπ)
2

a2

)
− 4

3
M4

3 (t+ π)π̇3 + ...

 .

(4.2)

An important physical simplification comes from the fact that we are interested in
making predictions at very high energy scales, of the order of H, so assuming that
the Golstone boson gravitational interaction mixting terms with metric fluctuations
are associated with much lower energy scales, they can be safely neglected. The
key reasoning in the approach consists in the time dependence of the multiplicative
coefficients of the field operators: the basic approach is to take such coefficients,
including H and Ḣ constant over time, so as to have an inflationary attractor
solution that persists in the background status of the theory inscribed in a slow-roll
/ quasi-de-Sitter stage. Doing so we have an approximately invariant Lagrangian
for shift symmetry on π. This reasoning therefore leads to the elimination of any
development after the zero background term of the coefficients in question, since

f(t+ π) ≃ f(t) + ḟ(t)π + .... (4.3)

We have to see that this shift symmetry on π is nothing but the translation
of an inflationary background in quasi-de-Sitter in Slow-roll. So assuming a
slow-roll Universe in quasi-de-Sitter, H and Ḣ are weakly time-dependent, so
there is invariance on the shift symmetry for the Lagrangian density as long as
temporally one remains in the inflationary phase for which precisely H (or V of all
consequence), is constant. When, however, the step features on these parameters
arrive temporally, the coefficients of S will acquire a non-trivial dependence in time
that will lead to an obvious break in shift symmetry, ϵ will therefore not be at least
momentarily constant and could therefore vary to the point of no longer being
much smaller than one, causing the system to fall out of a slow-roll inflationary
model and thus producing a curvature spectrum no longer scale invariant, since
nS − 1 ∝ ϵ. Therefore the feature must occur temporally at a sufficiently distant
time to guarantee the formation of a quasi scale invariant spectrum. We further
imagine, in order to avoid the problems outlined above, that the slow-roll parameter
ϵ = −Ḣ/H2 controlling the symmetry breaking assumes a temporary modification
for which however ϵ << 1 [162], remaining in the slow-roll classification that
guarantees the observable (and hence sought-after) quasi-scale-invariant power



CHAPTER 4. INFLATIONARY MODELS WITH FEATURES IN THE PS 100

spectrum of curvature.
It is necessary to anticipate how, remaining with the multiplicative parameters
constant (thus remaining in SR), the typical scale-invariant slow-roll spectrum
would be found from the action. Adding the developments of these coefficients
over time (a factor related to the introduction of a step feature that make these
coefficients no longer constant), modifies this result by adding damped oscillations
to the perturbations.

Effective approach for models with step features in the inflaton potential

Models with features, as expressed earlier, define a breaking condition on the scale
invariance of the curvature spectrum and they increase the multi-point curvature
correlators, which are strongly momentum-dependent. The idea is to specify a
potential model with step features, study the background evolution of the scalar
field, and calculate modified versions of the slow-roll parameters to define the
multi-point correlators of the curvature perturbation. With an EFTI approach,
one initially considers a system in which H and Ḣ, (hence also V (ϕ)) present a
small step feature. At least in the initial phase it is convenient to bring all other
coefficients to zero, and then eventually reintroduce them with a feature condition
identical to the one we are considering for the Hubble parameter. Consider a
potential of the following form [163]:

V (ϕ) = V0(ϕ)

[
1 + cF

(
ϕ− ϕf

d

)]
, (4.4)

which describes a step c high, d wide and centred in ϕf with a generic step function
F . When the field crosses the feature, the potential energy ∆V = cV is converted
into kinetic energy for the field ϕ̇2 = 2Ḣ. As long as the step is small, the kinetic
conversion is minimal, so the evolution of the inflationary background is not ruined
and its effect can be considered as a perturbation on a fixed background.
The idea of the approach is to assume Ḣ as a time-dependent function, as well as
V and H. We therefore consider

Ḣ(t) = Ḣ0(t)

[
1 + ϵstepF

(
t− tf
b

)]
, (4.5)

which expression indicates a rewriting of the slow-roll parameter as follows

ϵ(t) = ϵ0(t)

[
1 + ϵstepF

(
t− tf
b

)]
. (4.6)

Here ϵstep represents the height of the step, which in order not to ruin the slow-roll
inflation must necessarily be ϵstep << 1. tf defines the time of the feature while b
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denotes the width of the step, with F the step function defined in a very general way.
It is assumed that the background parameters Ḣ0(t), ϵ0(t) are time-independent,
and thus all the time dependence of the problem is inscribed in the step features.
With

∣∣ϵstep∣∣ << 1 it is possible to expand each parameter with ϵstep parameter of
smallness, around a generic constant and dominant background of order zero

ϵ = ϵ0 + ϵ1 + ...O(ϵ2step) (4.7)

where the dots point a term of greater degree than the first one with respect to the
smallness parameter in ϵstep. Although ϵ is very small, this does not imply that the
other higher-order slow-roll parameters are also very small, in fact these, on the
contrary, may also be very large. This is the case for the parameter

δ =
1

2

d ln ϵ

d ln τ
= − ϵ̇

2ϵH
. (4.8)

Since the first parameter of slow-roll is a function close to a Heaviside theta, the
second parameter of slow-roll, which is trivially its derivative, could easily be close
to a Dirac delta.
Expanding again in powers of ϵstep we find

δ = δ0 + δ1 +O(ϵ2step). (4.9)

The largest contribution to δ1 is given by

δ1 ≃ −1

2

ϵstep
H

Ḟ

(
t− tf
b

)
, (4.10)

This term is the dominant one among all δ, since for steep steps for very small values
of b, the variation of the step function becomes giant. Transforming everything
into conformal time we find

δ1 ≃ −1

2
ϵstepβF

′

(
−β ln

τ

τf

)
, (4.11)

with
β =

1

bH
(4.12)

the steepness parameter.
The idea of the process now is to substitute in the Goldstone Boson action (3.2)
the Taylor series developments (3.3) of the multiplicative coefficients taken as
functions having steps: there will thus be a break in shift symmetry, since these
coefficients no longer being constant in time will have a development in series that
will continue even on successive orders; since the derivative at the first order of
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step development is a peaked function, this in its corresponding order will make a
non-trivial additive contribution to the entire action, leading to the creation of a
modified power-spectrum.
The advantage of this approach lies in the simplicity of studying its validity regime
and in its ability to extend to all the other coefficients that we have ignored.

Power spectrum

In order to obtain the curvature power-spectrum, in the case of a very steep step
β >> 1, we must go first through the Goldston Boson equation of motion, obtained
from the variation of the second-order development of the action; expanding the
Hubble parameter around π = 0 [162]

S2 =

∫
d4xa3

−M2
PlḢ

(
π̇2 − (∇π)2

a2

)
+ 3M2

PlḢ
2π2

 . (4.13)

From the variation of this action written at second order, the equation of motion
for π is derived:

π̈ +

(
3H +

Ḧ

Ḣ

)
π̇ − ∇2π

a2
= π̈ +H(3− 2δ)π̇ − ∇2π

a2
= 0, (4.14)

where all terms suppressed by the first slow-roll parameter have been deleted. It is
straightforward to study the dynamics by rewriting it using the conformal time.
The action is rewritten as follows:

S2 =
1

2

∫
d3xdτz2

[
π

′2 − (∇π)2 − 3a2Ḣπ2
]
, (4.15)

where the prime derivative marks the derivative with respect to time conforming τ
while

z2 = −2a2M2
PlḢ. (4.16)

By redefining π = u/z we find

S2 =
1

2

∫
d3xdτ

u′2 − (∇u)2 +

(
z
′′

z
+ 3a2H2ϵ

)
u2

 . (4.17)

It should be noted that here the dominant term lives in the second derivative of z,
as it is proportional to the second derivative of ϵ, thus to the first derivative of δ,
which can be rewritten as

δ̇

H
= − dδ

d ln τ
. (4.18)
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This term is proportional to β2 as can be deduced from (4.11), so it represents the
most important contribution. In order to study the perturbation, we must go from
the equation of motion for u in the simplistic terms of the variable x = −kτ

∂2
xu− 2

x2
u+ u =

δ̇

Hx2
, (4.19)

where the small slow-roll parameters were eliminated under the assumption of
small sharp step features. This solution is solved by the Green’s function technique,
treating the RHS of (4.19) as the source for the LHS [163] [164]. By the usual
calculation of the dimensionless spectrum at large times τ → 0 is found,

lnPζ = lnPζ,0 +
2

3

∫ +∞

−∞
d ln τW (kτ)

dδ

d ln τ
, (4.20)

where
W (x) =

3 sin 2x

2x3
− 3 cos 2x

x2
− 3 sin 2x

2x
, (4.21)

is a window function.
The zero-order power spectrum is that which is found from the constant background
terms of H, ϵ, V substituted in the action, finding as already anticipated the
background result (for the almost de-Sitter in Slow-roll) almost scale-invariant
system

Pζ,0 =
H2

8π2ϵM2
Pl

. (4.22)

By integrating (4.20) and substituting (4.11) we find

lnPζ = lnPζ,0 −
1

3
ϵstepβ

∫ +∞

−∞
d ln τW

′
(kτ)F

′
(−β ln τ/τf ), (4.23)

where
W

′
(x) =

(
−3 +

9

x2

)
cos 2x+

(
15− 9

x2

)
sin 2x

2x
, (4.24)

is the derivative of the window function with respect to lnx. It is trivial to note
that if β → ∞ the function F

′ would become a Dirac delta, then its integration in
(4.23) would provide a spectrum relative to an oscillation of constant amplitude
with frequency 2kτf up to k → ∞. However, this limit is highly unphysical, since
the step must necessarily have a dimension of finite width. Therefore the integral
(4.23) can be analytically evaluated for β >> 1 [163], arriving at

lnPζ = lnPζ,0 −
2

3
ϵstepW

′
(kτf )D

(
kτf
β

)
, (4.25)
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with D(y) being the normalized damping function. The function W
′
(x) oscillates

between -1 and 1 until k → ∞, while D defines the damping for the oscillation.
When x → 0 also W

′
(x) → 0, so no extra spurious superhorizon contribution is

produced. The dumping term localizes in the space of frequencies the range of
modes that are perturbed and varied by the features, confirming the idea that
modes too far prior or posterior to the temporal occurrence of the step do not turn
out to be modified by the initial Bunch-Davies state. Such observations can be
deduced in the figure, where it is easy to note that the modes subject to variation in
oscillation are those for which 1 < kτf < β, i.e. those that at the time of the feature
are on subhorizon scales but with a moment not larger than the temporal inverse
b = 1/(βH), characterizing the width of the step. It is necessary to emphasize
that as β increases, the space-momentum in which observe the dumped oscillations
increase as well.

Figure 4.1: Curvature Power-spectrum of the EFTI theory in a step features approach
for the potential [158].

For the calculation of the bispectrum, on the other hand, it is necessary to start
from a Goldstone boson action developed at the third order; from this, the solution
of the equation of motion of the fluctuation is defined, which is used to calculate
the three-point correlation function in an in-in formalism [165]. Using at leading
order the bunch-davies solution for simplicity, the bispectrum is calculated, which



CHAPTER 4. INFLATIONARY MODELS WITH FEATURES IN THE PS 105

can be expressed in the convenient and reduced quantity fNL [166]

f̃NL(k1, k2, k3) = −10

3

k1k2k3
k3
1 + k3

2 + k3
3

G(k1, k2, k3)
k1k2k3

, (4.26)

with [166]

G(k1, k2, k3)
k1k2k3

=
1

4
ϵstepD

(
Kτf
2β

)((k2
1 + k2

2 + k2
3)

k1k2k3τf
−Kτf

)
Kτf cos (Kτf )−(4.27)

−

(
k2
1 + k2

2 + k2
3

k1k2k3τf
−
∑

i ̸=j k
2
i kj

k1k2k3
Kτf

)
sin (Kτf )

 ,(4.28)

with K = k1 + k2 + k3.

Figure 4.2: Bispectrum in the EFTI Theory [158].
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Generalizations

It is possible to generalize the discussion so far by importing the step features
seen only on the potential, hence on the Hubble parameters, also on the other
multiplicative coefficients of the Goldstone Boson operators present in the action,
among which the speed of sound is noteworthy [167] [168] [169] [170] [171] . It is
therefore necessary to reactivate these previously reset multiplicative coefficients,
and to define them with a time format of step features, as for H. As in the previous
section, if one admits a time dependence for ϵ, hence its deviation from the constant
course, one must also assume that its perturbation is very small, in order not to
spoil the inflation and still guarantee a curvature spectrum that is still almost
scale-invariant, although the presence of possible dumped oscillations. In EFTI,
the shift symmetry invariance relative to the Lagrangian density supports the
thesis that the various multiplicative coefficients associated with it are constant,
so their hypothetical development in a Taylor series would only guarantee as a
domination term the one of order zero; from such values the classical SR scale-
invariant power spectrum without any features is deduced. However, breaking this
symmetry guarantees a temporal dependence (in the analytical form of a step) to
these coefficients, which in the development will altogether guarantee the presence
of terms of the next degree, which generate precisely the damped oscillation above
the central background term. This breaking, however, must be a soft-symmetry-
breaking: therefore ϵ, i.e. the intrinsic symmetry-breaking parameter, can vary
from its constant value, but only imperceptibly, so that the SR condition for which
ϵ << 1 persists. The generalization of this process import a temporal step features
in all coefficients of the perturbation action. Therefore we write

Mn(t) = M (0)
n

[
1 +mnFn

(
t− tf
bn

)]
, (4.29)

where the several parameters introduced have exactly the same meaning as those
seen in the previous sections, with mn << 1. As we have seen before, the operators
associated to the derivative of the step will give the best perturbative contribution
on the term of degree 0, rather than the step itself, which is suppressed in slow-roll.
The derivative term of the step instead involves a term of the type β, which in the
theory in question is the dominant one. Looking at the series development (4.3),
we see that the n-th derivative of the coefficient Mn is always multiplied by the
term of πn. If the coefficient Mn appears for the first time in the action developed
at order m (so it will be multiplied by an operator πm), then its derivative will
only appear in the development of order (m+1) in the action. For example, the
coefficient M3 appears for the first time in the action written at third order, so it
is multiplied by the operator π̇3. If we develop this parameter in series, to which
we guarantee a stepwise progression of the type (3.28), it can be seen that the
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term of order 0 will guarantee only the constant background value M
(0)
3 , (since

the perturbative term proportional to m3 will be suppressed), while the first-order
development term associated with the derivative of the coefficient (thus of one
step, guaranteeing a piqued function) will guarantee the total major perturbative
contribution. Nevertheless this term must be read in the action of order 4, since
this first derivative naturally carries with it an order 1 to be multiplied by the base
of degree 3. Therefore this effect must be sought in the trispectrum.
If we want to write in EFTI the action at second order, we observe how only the
parameters Ḣ, M2, M̄1, M̄2, M̄3 are present [172]; therefore since these present the
form of a step features, it is possible to see such feature effects only at the level of
the bispectrum.
The specific treatment of the term M4

2 (t) and its trend described by (3.28), induces
a trend of step-features also in the defined adiabatic speed of sound c2s. Using the
same exact analytical steps as in the last sub-section, the same power-spectrum
can be found [158]

Pζ = Pζ,0

[
1− 2

3
σstepW

′
(ksf )D

(
ksf
β

)]
. (4.30)
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4.2 PBH and GWs from resonant amplification
during Inflation

This section is based on the article [173].
In this section, an inflationary model consisting of two distinct stages dominated,
dynamically speaking, by two scalar fields, respectively, will be discussed: the first
stage is handled by the scalar ϕ with a potential of the axion-monodromy-like
periodic structure, while the second and final stage is defined by the second field χ
with a hilltop-like potential. This inflationary mechanism will be able to produce a
mechanism of resonance production not only of PBHs, but also of GWs induced at
the second-order in perturbation theory: the basic concept is that by increasing
the curvature perturbation in resonance, the latter, on re-entry into the horizon,
will have a higher density amplitude value, which will be subject to gravitational
deformations again due to the causality. Such a re-entry fluctuation could therefore
defines a density value above a certain critical threshold, abruptly collapse in on
itself, inducing the creation of a Primordial Black Hole. Thus, the more the mech-
anism involved in resonance raises the curvature perturbation value, the greater
is the probability of the creation of such primordial objects. However, knowing
that the abundance of the induced GWs background is nothing more than a double
integral of convolution of the curvature spectrum, if the latter increases, given the
linear relationship, it will cause the induced GWs background itself to increase.
The parametric resonance under discussion originates from the periodic trend of
the potential of the first inflationary phase, and brings a boost to the perturbations
of both fields as long as they are inside the Hubble sphere (and therefore can vary).
At a certain point in time, these fluctuations in the potential will become so high,
and therefore no longer surmountable by the first field classically, that a turn on
the background trajectory will be performed: consequently the boosted values of
the fluctuation of the second field (at this point the dynamically dominant field)
will individually contribute to the determination of the final curvature perturbation.
The curvature spectrum on the small scales will perform a resonance peak that will
lead to the abundant production of PBHs and GWs induced at the second order,
both during the inflationary phase and in the post-inflationary phase of re-entry of
the scalar modes defining the source term, i.e. the radiation-dominated phase.
PBHs have recently become a very important element of study in modern cosmol-
ogy [174] [175] [176], as well as being one of the main candidates for representing
dark matter [177] [178]. They represent a decisive tool for the study of the universe
in its primordial form; furthermore, with the advent of GWs astronomy [179], it
came to be thought that the observation of a GWs background could be explained
by the phenomenology of PBHs. There are different theoretical approaches to
the creation of PBHs [180] [181] [182] [183] , where the most credited is the one
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described earlier above, associated with the curvature perturbation boost. Nev-
ertheless, in an inflationary model with a single field (which therefore produces a
single adiabatic perturbation mode), it is known that such a curvature perturbation
on SuperHorizon scales is frozen [135] [184], blocking any growth. Therefore, if
one wants to generate a controlled instability in order to handle the boost of this
gauge invariant quantity, it is simply necessary to add a second field that defines,
at least in the first inflationary part, the entropic mode. The idea is to boost the
first resonance fluctuation, and through a dynamical mechanism that induces this
parallel growth, also on the fluctuation of the second field. During the first phase
δϕ quantifies the adiabatic curvature fluctuation on superhorizon scales, while
δχ quantifies the isocurvature fluctuation on superhorizon scales. When the first
inflationary phase ends, only the second field will remain and its previously boosted
fluctuation on superhorizon scales will become curvature fluctuation (and no longer
isocurvature fluctuation), eventually defining a final power spectrum of curvature
perturbations with an important peak on small scales.
In order to describe this construction, the idea of an inflationary model with two
stages of domination is necessary: the first stage dominated by the first ϕ field,
which has a specific oscillatory character in its potential, while the second stage
is managed by the second ϕ field with a hill-top potential. The first part of the
first inflationary stage is not characterized in the potential by any oscillatory trend:
thus the linear potential induces a first slow-roll inflationary dynamics that there-
fore predicts a flat curvature spectrum on the large scales (i.e. those that go on
superhorizon scales first during inflation), in full agreement with the observational
data of the CMB offered by Planck. The oscillatory features of the potential comes
out gradually and only afterwards, until the motion of ϕ stops at one of the minima
of the potential itself. During this first phase χ remains massless, hence has no
dynamics, and only begins to move at the beginning of the second phase, when the
first field has now stopped at the minimum of its potential.
In the last e-folding of the first phase, the oscillation of the potential on ϕ, via
Mathieu’s dynamical equation, induces an exponential growth on δϕ, which subse-
quently induces a further exponential growth on δχ (as long as the modes are on
subhorizon scales).
In the field space the background evolution first goes along the direction of ϕ, and
then performs a turn in the trajectory towards the direction identified by χ. This
implies that the initial isocurvature perturbation δχ (such in the first phase) will
become an adiabatic curvature perturbation (once on superhorizon scales), in the
second phase, when it will remain the only energetic fluctuation left. Therefore the
boost induced on δχ, now an adiabatic fluctuation, will show up on the final (in
time) power spectrum with a peak on the small scales.
This mechanism, in addition to strongly generating PBH, also generates a second-
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order induced GWs background during inflation and during the radiation domi-
nation; in the first case the inducing source is represented by the two subhorizon
field fluctuations during inflation, while the second GWs background is induced by
the evolution of the curvature perturbation once it re-enters the horizon during
radiation. The aim of this model is to verify how (contrary to what is usually
obtained), the GWs background induced during inflation is higher than that induced
during the radiation-dominated phase.

Figure 4.3: Summary of the two-field potential model [173].

Resonant Amplification of Cosmological perturbation

It is important to remember how the choice of using two fields is made in order
to dramatically raise the effect of the oscillations. The first inflationary phase is
dominated by ϕ with the effect of the oscillations on the potential that become
important later on. Initially, the oscillatory character is assumed to be negligible,
leading to the definition of a quasi-scale invariant power spectrum curvature on
the broad CMB scales, in complete agreement with the observational data [137].
In the very last e-folds of the first phase, the oscillatory term is activated by
inducing a Mathieu equation of motion for δϕ on the dynamics of the fluctuations,
so the latter results in an exponentially boost when it is on subHorizon scales.
This fluctuation represents the dynamical source term on the fluctuation of the
second field, so when δϕ increases exponentially on subHorizon scales, it induces a
consequent (in time) exponential growth on δχ as well. Subsequently ϕ will stop at
one of the potential minima that it will dynamically not be able to bypass, hence
the second phase dominated by χ alone will begin. Therefore, δχ generated during
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the first phase will be converted into an adiabatic curvature perturbation (once
it enters on superhorizon scales), whose square modulus will mark the curvature
power spectrum (according to the standard model approximation).
At the end of inflation, it is to be expected that the χ field will decay, giving rise
to the subsequent reheating phase.
It is possible to define the potential V (ϕ, χ) of the model using the following
figure (4.4). It is assumed for simplistic evidence that ϕ has a linear trend with
small increasing periodic oscillations, while χ has a purely linear potential. The
Lagrangian of the model is as follows

L = −1

2
(∂µϕ)

2 − 1

2
(∂µχ)

2 − V (ϕ, χ), (4.31)

with a two-field potential given by

V (ϕ, χ) = gΛ3
0ϕ+ Λ4(ϕ) cos

ϕ

fa
+ εΛ3

0χ+ V0. (4.32)

The dimensional coefficient Λ0 determines the energy scale associated with the
background evolution. The dimensionless coefficients g and ε are coupling constants
that generate the slope of the potential. The massive scale fa determines the period
of oscillation of the first potential, while Λ(ϕ) describes the amplitude of the
field-dependent barrier defined as follows

Λ(ϕ) = Λ0

(
1 + α

ϕ

Mp

)
. (4.33)

The modulation of the potential barrier is defined by the monotonicity parameter
b∗

b∗(ϕ) =
Λ4(ϕ)

|g|Λ3
0fa

. (4.34)

The ϕ component of the potential is again shown in the figure: it is trivial to see
how on its left-hand side the periodic barrier is small enough to define the potential
as a linear inflationary potential where only higher-order slow-roll conditions are
violated. This dynamic slow-roll initial condition guarantees a quasi-scale invariant
power spectrum on the broad CMB scales.

Subsequently the field will continue to roll in its potential reaching the ϕ0 point: from
this moment, the oscillating barrier becomes important and no longer negligible,
so that the perturbation modes of sufficiently small scale that stay on subhorizon
when this condition is reached, are found to fall in the resonance band.
Finally the field ϕ will reach the end point defined by ϕ = ϕe.
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Figure 4.4: Potential for the first dynamical field [173].

After that moment, the inflationary dynamics will be driven by χ, until its decay
into reheating. It is necessary to assume that the field excursion ∆ϕ = ϕe − ϕ0 is
small enough such that |g|Λ3

0∆ϕ << V0, so that V0 plays the role of the cosmological
constant. Beyond these approximations, new constraints with the following form
are required in order to simplify the model under consideration:

• The ϕ evolution dominate first:
|g| >> |ε|

• In the first phase the potential should be flat: b∗(ϕ << ϕ0) << 1

• Later on a mechanism must stopϕ: b∗(ϕe) ≃ 1

• With a gauge flat-slicing the effective mass of δϕ is governed by V
′′
(ϕ) when

the parametric resonance occur: V0 >> 2|g|Λ3
0fa.

Background evolution

The Friedmann equations for the background of the fields are as follows:

H2 =
ρ

3M2
p

,
ä

a
= − 1

6M2
p

(ρ+ 3p) (4.35)

with energy density and background pressure defined as follows

ρ =
1

2
χ̇2 +

1

2
ϕ̇2 + V (ϕ, χ) , P =

1

2
χ̇2 +

1

2
ϕ̇2 − V (ϕ, χ). (4.36)

The standard Klein-Gordon equations for the two fields are

ϕ̈+ 3Hϕ̇+
∂V

∂ϕ
= 0 , χ̈+ 3Hχ̇+

∂V

∂χ
= 0. (4.37)
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It is convenient to introduce a set of slow-roll parameters

ϵϕϕ =
ϕ̇2

2H2M2
P

, ϵχχ =
χ̇2

2H2M2
P

, (4.38)

ηϕϕ =
ϵ̇ϕϕ
Hϵ

, ηχχ =
ϵ̇χχ
Hϵ

, (4.39)

with ϵ = −Ḣ/H2 = ϵϕϕ + ϵχχ.
It is assumed true that these slow-rolls parameters are small, in order to have the
dynamic description of the main body of the first inflationary moment: hence, the
expressions of velocity and acceleration of the fields, under slow-roll approximations,
can be found as follows:

ϕ̈ = 3Hb∗(ϕ)ϕ̇0 sin (ϕ/fa),

ϕ̇ = ϕ̇0 − 3Hfab∗(ϕ) cos (ϕ/fa),

χ̇ = χ̇0 = −εΛ3
0

3H
,

(4.40)

with
ϕ̇0 = −gΛ3

0

3H
. (4.41)

During the first phase dominated by ϕ the potential is taken flat given the very small
value agreed to the monotonicity parameter b∗, therefore it results that ϕ̇ = ϕ̇0, and
therefore that χ̇ << ϕ̇. Therefore, at least in this phase, the evolution of χ should
be ignored. Given the natural growth of ϕ in time, in (4.39.2) it is clear to observe
how the second term outlining the oscillatory trend becomes increasingly important
until it equals the first velocity term, thus leading to an overall cancellation of the
same. The field therefore stops at a minimum of the highly oscillatory potential
where ϕ = ϕe. Henceforth the domination of the field χ begins.
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4.2.1 Field fluctuation and induced amplification

In terms of a gauge choice of flat slicing, the following coupled equations of motion
for field fluctuations are chosen:

δ̈χk + 3H ˙δχk +
k2

a2
δχk +m2

χχδχk +m2
χϕδϕk = 0,

δ̈ϕk + 3H ˙δϕk +
k2

a2
δϕk +m2

ϕϕδϕk +m2
χϕδχk = 0,

m2
χχ =

∂2V

∂χ2
− 1

M2
p

(
3χ̇2 +

2χ̇χ̈

H
− Ḣχ̇2

H2

)
,

m2
ϕϕ =

∂2V

∂ϕ2
− 1

M2
p

(
3ϕ̇2 +

2ϕ̇ϕ̈

H
− Ḣϕ̇2

H2

)
,

m2
χϕ =

∂2V

∂χ∂ϕ
− 1

M2
p

(
3χ̇ϕ̇+

χ̇ϕ̈+ ϕ̇χ̈

H
− Ḣχ̇ϕ̇

H2

)
.

(4.42)

We have to observe that the previously imposed conditions require the generation
of a scale of magnitude on the masses involved with m2

ϕϕ >> m2
χϕ >> m2

χχ. With
this approximation, the equations of motion are greatly simplified

δ̈χk + 3H ˙δχk +
k2

a2
δχk ≃

χ̇ϕ̈

M2
pH

δϕk,

δ̈ϕk + 3H ˙δϕk +

(
k2

a2
− Λ4(ϕ)

f 2
a

cos (
ϕ

fa
)

)
δϕk = 0.

(4.43)

Consider the second of the two equations presented above. By introducing the new
variable δΦk = a3/2(t)δϕk, one can rewrite the dynamics on the fluctuation of the
first field as follows

δ̈Φk + ω2
k(t)δΦk = 0, (4.44)

where
w2

k(t) =
k2

a(t)2
− Λ4(ϕ)

f 2
a

cos

(
ϕ

fa

)
− 9

4
H2 − 3

2
Ḣ. (4.45)

It is well known that at sub-horizon scales and for scaling times much smaller
than the characteristic expansion period, the scaling factor can be considered
approximately constant. This further assumption leads to redefining the dynamics
expressed above in terms of a Mathieu equation defined on an expanding universal
background of FRW. The solution that this equation produces for the first field is
an exponential growth, as anticipated

|δϕk| ∝ exp (λkHt) (4.46)
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where we can define the growning rate as follows

λk = µk
|g|Λ3

0

6H2fa
− 3

2
, (4.47)

with µk the Floquet number for the mode k.
Now it is time to focus on the first equation of (4.42), making explicit the dynamics
of δχk. For the sake of simplicity it is important to focus on the mode k∗, which
comes out of the horizon at the moment of switch between the two inflationary
periods, i.e. when ϕ = ϕe. Since for the first long period of the first phase,
i.e. until ϕ reaches ϕ0, the source term proportional to δϕk is negligible, in fact∣∣∣ χ̇ϕ̈
M2

pH
δϕk∗

∣∣∣ <<
∣∣∣k2a2 δχk∗

∣∣∣, we have that δχk∗ decays as a decreasing exponential

|δχk∗| ∝ exp (−Ht). (4.48)

However δϕk∗ increases successively in time due to Mathieu’s oscilation growth,
so the source term for the fluctuation of the second field will also increase, be-
coming more and more important in the latter’s dynamics. Therefore, when
χ̇ϕ̈

M2
pH

δϕk∗/
k2

a2
δχk∗ reaches an O(1), then δχk∗ will also grow due to the source term

that grows exponentially, and we obtain dynamically

|δχk∗| ∝|δϕk∗ | ∝ exp (λk∗Ht). (4.49)

As long as the first mode δϕk∗ remains in the resonance band growing, δχk∗ will
also continue to grow. Nevertheless, it is known that at a certain moment in the
dynamics, the first field will stop: from that moment on, the fluctuation modes of
the first field that have already gone into superhorizon scales, will be transformed
into perturbations of the next field, while the modes that are still inside the sphere
at that specific moment will go to zero, since from that moment on, the first field
no longer exists. Therefore from that moment the source term of δχ goes to zero,
so this fluctuation, after having grown in the previous phase in induction, decays
again as in the first phase. All this quantifies a peak in the final spectrum. The
mode k∗ represents the peak of such a spectrum, since at the exact moment when k∗
exits the sphere of causal connection, the first field decays, therefore the fluctuation
associated with this quantity has no time to decay.
In conclusion, we can state how δχk follows an exponential decay for those small k
(wide scales) that are not in the resonance band. Those that are present in will
decay first, then grow exponentially in an induced way, and then decay again from
the beginning of the second phase, if those modes have a width k such that they
are still on the horizon when this condition occurs. The mode k∗ is the last mode
to come out of the horizon and freeze when exactly this condition occurs, so it has
no time (as opposed to subsequent modes) to decay.
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Curvature power spectrum

Given the resolution of the dynamics of the fluctuations up to their exit from the
horizon and given the known dynamics in the background, it is possible to calculate
the curvature power spectrum Pζ for the model in question through the use of the
δN formalism [135] [185] [186] [187]. This formalism asserts that the final value
assumed by the conserved comoving curvature perturbation Rc(x) in the adiabatic
limit and on superhorizon scales is given by

Rc(x) = N(x, t, tf )− N̄(t, tf ) = δN(x, t), (4.50)

with N the number of e-folds computed from t to tf determined locally by the
solution relative to the dynamics of the background, with tf time greater than t,
the exit time of the scale in question. In the model we have:

δN(x, ti) =

(
∂N

∂ϕ
δϕ+

∂N

∂χ
δχ+

1

2

∂2N

∂ϕ2
δϕ2 +

∂2N

∂χ∂ϕ
δχδϕ+

1

2

∂2N

∂χ2
δχ2

)
t=ti

,

(4.51)
where the fluctuations δϕ and δχ are calculated at time ti in a flat slicing gauge.
The hypothesis of the model specifies that having constructed most of the first
inflationary period to be fundamentally slow-roll (of which we know the curvature
spectrum), it is possible to concentrate the study in a time period after the decay
of the first field; in fact the simplicity of this argument lies in understanding that
at this time ti (of exit from the horizon of the scales involved) the fluctuations of
the first field δϕ have gone to zero, simplifying the problem

δN(x, ti) =

(
∂N

∂χ
δχ+

1

2

∂2N

∂χ2
δχ2

)
ti

, (4.52)

if we integrate we can obtain the right number of e-fold for the theory

N =
χ2

2M2
p

+ χ
V0 + gΛ3

0ϕe

εM2
pΛ

3
0

+O((ϕ− ϕe)
2/M2

p ). (4.53)

From this result, the curvature power spectrum is defined in the model:

Pζ(k) =
k3

2π2

∣∣∣∣∂N∂χ
∣∣∣∣2|δχk|2 (ti) ≃

H2

8π2M2
p ϵχχ

A2(k), (4.54)

with

A2(k) = 1 +A2(k∗) exp

(
− ln2 k/k∗

2∆2

)
. (4.55)



CHAPTER 4. INFLATIONARY MODELS WITH FEATURES IN THE PS 117

Trivially, such a script is inaccurate, as it would still lack the contribution to the
spectrum of the first fluctuation, as the general formula of formalism would have
it. However, since the first is basically a slow-roll contribution (and one that is
known), it can be ignored initially and added later.
It is possible to calculate the NG associated with the curvature perturbation

3

5
f local
NL =

∂χχN

2(∂χN)2
= ϵχχ. (4.56)

therefore this quantity is thought, at least initially, to be small. However, since
the fluctuation involved δχ is boosted exponentially during the induction, the
development of a non-trivial non-Gaussianity term is expected. It is crucial to note
that only the fluctuation δχ makes any contribution to the spectrum, with δϕ not
appearing explicitly in the result.

Induced GWs during radiation

We write the perturbative metric, choosing a Newton’s Gauge for scalar perturba-
tions, as follows:

ds2 = −a2(1 + 2Ψ)dτ 2 + a2[(1 + 2Φ)δij + hij]dx
idxj, (4.57)

where Ψ is the Newton potential, Φ the curvature perturbation and hij the transverse
and traceless tensor perturbation. In the absence of an anisotropic stress component
we have trivially Ψ = −Φ. It is now possible to study the induced second-order
perturbative GWs originating from the interaction of first-order scalar perturbations.
In Fourier space we decompose the tensor perturbation

hij(τ,x) =
∑

λ=+,×

∫
d3k

(2π)3/2
exp (ikx)hλ

k(τ)e
λ
ij(k), (4.58)

with eλij the polarization tensor, with λ = +,× the two polarization-state. We
could write the dynamics for the tensor modes in the usual way

hλ′′

k (τ) + 2Hhλ′

k (τ) + k2hλ
k(τ) = Sλ

k(τ), (4.59)

while the source term is written like

Sλ
k(τ) = 2

∫
d3p

(2π)3/2
eλ(k,p)

2Φp(τ)Φk−p(τ) +

(
Φp(τ) +

Φ
′
p(τ)

H

)(
Φk−p(τ) +

Φ
′

k−p(τ)

H

) .

(4.60)
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where eλ(k,p) = eλlm(kplpm). We can write the solution using the retarded Green
function gk(τ, τ

′
),

hλ
k(τ) =

1

a(τ)

∫ τ

−∞
dτ1a(τ1)gk(τ, τ1)S

λ
k(τ1). (4.61)

During radiation domination, the perturbation term Φ can be expressed in terms
of the conserved comoving curvature perturbation

Φk(τ) =
2

3
T (kτ)Rc,k, (4.62)

with T (kτ) transfer function.
Using Green’s typical function for the radiation domination period, we find [54] [188]

Ph(k, τ) =

∫ +∞

0

dy

∫ 1+y

|1−y|
dx

[
4y2 − (1 + y2 − x2)

4xy

]2
× Pζ(kx)Pζ(ky)F (kτ, x, y),

(4.63)
The resulting energy density of the induced GWs background at the present time
ΩGW (f)h2

0 is shown in the figure below (4.5).

Induced GWs during Inflation

During the inflationary period, the two fluctuations associated with the two scalar
fields act as the generating source of an induced GWs background in the accelerated
expansion phase: since these fluctuations are exponentially boosted, a large source
term is expected, hence a large induced GWs background [189].
In Sub-Horizon scales during inflation a convenient gauge choice is flat slicing. The
source term mentioned earlier in such a phase can be written as follows

Sλ
k(τ)

2

M2
p

∫
d3p

(2π)3/2
eλ(k,p)δϕp(τ)δϕk−p(τ) + (ϕ ⇐⇒ χ). (4.64)

Being interested in studying GWs on SubHorizon scales in inflation, we can
approximate the background to a De-Sitter space, with a(τ) = −1/(Hτ) and
H = a

′
/a = −1/τ , (−∞ < τ < 0). Knowing the delayed Green’s function during

inflation we find conclusively [190]

Ph(k, τend) =
4

π4M4
p

k3

∫ +∞

0

dpp6
∫ +1

−1

d cos (θ) sin4 (θ)

×

∣∣∣∣∣
∫ τend

τ0

dτ1gk(τend, τ1)(δϕp(τ1)δϕ|k−p|(τ1) + δχp(τ1)δχ|k−p|(τ1)

∣∣∣∣∣
2

,

(4.65)
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where τend ≃ 0 defines the conformal time of the end of inflation. A numerical
integration of the following conclusion yields the present energy density spectrum,
also represented in the same figure as before together with the radiation GWs
background and the sensitivity curve of LISA.
It is the key message of the model to recognize that the GWs background induced
during inflation is fundamentally induced by δϕ, as this is much larger than
the second fluctuation, which does indeed grow exponentially, but it must be
remembered that this growth is developed by induction through the first-field
fluctuation, which has a longer exponential growth time-frame. If in an inflationary
model there are no features on a slow-roll basis (thus remaining in such basic
dynamics), we will have a very small slow-roll parameter. This condition deliberately
destroys the inflation-induced GWs background with respect to the radiation-
induced one, and the reason for this is quite simple: the former GWs background is
induced in convolution by the fluctuation spectrum of the inflationary field, while
the latter is generated in convolution by the curvature spectrum. These functions
are trivially connected by the following script

P 2
Φ(k)/M

4
p ≃ ϵ2P 2

ζ (k). (4.66)

Therefore, by not assuming a receding feature from the slow-roll, from its almost
scale invariant spectrum with an infinitesimal ϵ value, it is observed that PΦ is
completely negligible with respect to Pζ , therefore the argument concerning the
induced GWs background follows. In the model in question, since δϕ is much
larger than δχ, there is a much larger induced GWs background in inflation than
in radiation, since

Ωinf
GW

Ωrad
GW

≃ ϵχχ
P 2
Φ(k∗)

P 2
χ(k∗)

>> 1. (4.67)

expressing a comparable relative width factor of the order of O(105).
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Figure 4.5: Induced GWs spectral energy density in the two dominance phases studied
[173]. The grey area determines the sensitivity range of Lisa [191].

4.3 Fast Roll Inflation
This section will be based on the reading of the article [192].
It is the goal of the following section to show the adaptability of a simple theory of
spontaneous symmetry breaking with a fast roll inflation phase, where the classical
slow-roll conditions |m|2 << H2 are violated. Nevertheless, it is possible to see
how for sufficiently small mass values it is possible to turn this new inflationary
phase into a long period. This inflationary phase can be taken to generate the
initial conditions for a subsequent and observationally expected slow-roll phase,
again in the primordial universe. The fast roll could even justify and explain the
current accelerated expansion phase in the universe. It is important to summarize
the idea that the Universe, after a long inflationary phase by fast roll (or slow-roll)
cannot reach an anti-de-Sitter regime even if the cosmological constant turns out
to be negative. Furthermore, for theories with a negative stable minimum on the
potential at V (ϕ) < 0, at the cosmological background level, they exhibit the same
instabilities as theories with an unlimited potential from below. Such instabilities
lead to the development of singularities with properties that are thus completely
independent of the potential theory. The most famous and realistic versions of
inflationary models, such as new inflation, chaotic inflation or hybrid inflation are
based on the existence of a scalar field ϕ that drives the accelerated expansion
dynamics by satisfying the known slow-roll conditions. The simplest is the one
for which |m|2 << H2, where m is the mass of the inflaton and H is the Hubble
constant. Using the convenient system of natural units Mp = 1, we have that
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H2 = V/3, while the condition |m|2 << H2 can be expressed as η =

∣∣∣V ′′ ∣∣∣
|V | << 1 .

The second slow-roll condition can be defined as ϵ = 1
2
(V

′

V
)2 << 1 [34].

The consequences of these and applied slow-roll conditions are to make the ac-
celerated expansion stage sufficiently long and to guarantee an approximately
scale-invariant curvature power spectrum. The density perturbations with which
such a spectrum is associated are obviously the products of the primordial scalar
inflationary perturbations, defining the seeds of subsequent large-scale structure-
forming processes in the known universe. Under slow-roll conditions one finds how
the tilt of such a scalar spectrum is of the form n− 1 ≃ 2η − 6ϵ [34].
Recent observations on the anisotropy of the CMB agree with such inflationary
hypotheses for which an almost null tilt would result in the definition of a scale-
invariant spectrum.
However, there are several theories for which |m|2 ≃ O(H2): for example, if one
has a scalar field ϕ not minimally coupled to gravity, this can acquire a correction
on the mass terms of the form ∆m2 = ζR. R is the curvature constant and during
inflation is R = 12H2. From the choice of a conformal coupling for which ζ = 1/6,
we find that ∆m2 = 2H2. A similar situation occurs in theories of super-gravity
N = 1 [193].
We could ask ourselves whether such slow-roll violation theories can describe the
accelerated expansion of the Universe.
The aim of this section is to show how a fast-roll inflationary phase could be
fundamental in generating consistent initial conditions for a subsequent slow-roll
inflation phase in the primordial universe. Such an inflationary moment could
further last long enough to justify the current accelerated expansion of the Universe.
In the last case scenario there are four distinct possibilities: the scalar field potential
could have a minimum for V (ϕ) > 0, at V (ϕ) = 0 , at V (ϕ) < 0 or it could be
unbounded from below. It is to be expected that the scalar field will naturally tend
towards its minimum, stopping there. If the potential has a positive minimum then
the Universe will behave as a de-Sitter space; if the minimum is found for V = 0,
then once reached the minimum the Universe will behave describing a Minkowski
regime, while in the case of a negative minimum the Universe will behave as an
anti de-Sitter space with a negative cosmological constant.
However, it is possible to show how, at the level of the cosmological background,
the latter case turns out to be more complicated. First of all, and this is a
trivial consequence of the Friedmann equation for a flat Universe, the Universe
cannot reach an anti-de-Sitter phase with negative cosmological constant after a
long inflationary phase. Furthermore, theories with a negative stable minimum
exhibit the same types of instability in the cosmological background as theories
with unlimited potential from below. Such instability leads to the development
of singularities with properties therefore independent of the potential V (ϕ), so



CHAPTER 4. INFLATIONARY MODELS WITH FEATURES IN THE PS 122

the existence of a minimum does not guarantee too much security. On the other
hand, the development of such instabilities could occur so slowly that theories with
unlimited potential from below (as well as those with a stable negative minimum)
can describe the present phase of accelerated expansion of the Universe even if this
acceleration is due to a previous phase of fast-roll inflation.

Dynamics of spontaneous symmetry breaking and fast-roll inflation

Consider a theory for a scalar field ϕ with a potential V (ϕ) and energy density
ρ(ϕ) = V (ϕ)+ ϕ̇2

2
+ (∂iϕ)

2

2
. In natural units for which Mp = 1, the generic Friedmann

equation is written

H2 +
k

a2
=

(
ȧ

a

)2

+
k

a2
=

ρ(ϕ)

3
. (4.68)

where k defines the constant curvature of the Universe, (which can, in good
observational approximation, be thought flat). Then

H2 =

(
ȧ

a

)2

=
ρ(ϕ)

3
. (4.69)

Consider a potential that has a maximum at ϕ = 0. This potential is generally
represented as follows

V (ϕ) = V0 −
m2ϕ2

2
, (4.70)

at least in the vicinity of the maximum. From chapter two we know how in the
vicinity of the maximum the second derivative of the potential associated with the
quadratic field mass, is defined to be negative, therefore perturbative cosmological
modes of tachyonic form develop. We assume that this form of potential holds as
long as |ϕ| = ϕ∗, where V (ϕ∗) = V0/2, i.e.

ϕ∗ =

√
V0

m
. (4.71)

Suppose that such a field rolls starting from the specific initial condition ϕ0 until
it reaches ϕ∗ in a time frame ∆t with a small initial kinetics and energy gradient,
i.e. ϕ̇2

2
, (∂iϕ)

2

2
<< V0. If the kinetics should have to decrease due to the present

expansion of the universe, the energy density ρ(ϕ) ≃ V (ϕ) would decrease by a
factor of two upon reaching ϕ = ϕ∗, and the Hubble factor would decrease by
a factor of 1/

√
2. If this field does not slow down instead, then ρ will remain

approximately equal to V0. In both cases H remains approximately constant, and
this information helps us to estimate the total growth in accelerated expansion of
the Universe at that stage

a(t∗)

a0
≃ exp (Ht∗) (4.72)
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where H2 = V0

3
and t∗ is the arrival time of the field at the critical point.

In theories where ϕ∗ >> 1, the Universe can continue to expand exponentially
even if ϕ >> ϕ∗, as for example happens in chaotic inflation,. However this is not
our case, in which the arrival of ϕ at ϕ∗ defines the end of inflation. Assuming
the background component of the scalar field to be sufficiently homogeneous, in
H = const, it is possible to write the dynamics of this field component as follows

ϕ̈+ 3Hϕ̇ = −V
′
= m2ϕ. (4.73)

You should then look for a solution answer of the form ϕ = ϕ0 exp (iωt). We get

ω2 − 3iHω +m2 = 0, (4.74)

finding that

ω = i

(
3H

2
±
√

9H2

4
+m2

)
. (4.75)

While the + sign leads to an exponentially decreasing background solution that is
likely to disappear, the - sign leads to an exponentially increasing background field
ϕ.

ϕ(t) = ϕ0 exp [(HtF (m2/H2))], (4.76)

with

F (m2/H2) =

√
9

4
+

m2

H2
− 3

2
. (4.77)

Equation (4.75) provides a simple estimate of the growth rate of the Universe
during the period of Inflation

exp (Ht∗) =

(
ϕ∗

ϕ0

)1/F

. (4.78)

It is possible to make this result explicit in the two diametrically opposite infla-
tionary limits for which m << H (SR) and m >> H (FR). In the first case we
have:

F (m2/H2) =
m2

3H2
, (4.79)

ϕ = ϕ0 exp

(
m2t

3H

)
, (4.80)

and

exp (Ht∗) =

(
ϕ∗

ϕ0

)3H2/m2

=

(
ϕ∗

ϕ0

)V/|V |
′′

. (4.81)
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This result set in SR quantifies what was said earlier, namely that the more true
it is that m2 << H2 the more giant is the growth of the universe during such
inflation.
In the opposite case, then in FR with m >> H we read

F (m2/H2) =
m

H
, (4.82)

ϕ = ϕ0 exp (Ht), (4.83)

so

expHt∗ =

(
ϕ∗

ϕ0

)H/m

, (4.84)

arriving at the exact opposite solution. We must now think in terms of initial
conditions. The formula expressed above would allow the initial condition value of
the field ϕ0 to be taken as a very small term, guaranteeing a long and indefinite
inflationary phase. Therefore, why doesn’t we take ϕ0 = 0 and obtain an inflation
that persists even during the electroweak spontaneous symmetry breaking [83]? The
answer is in the natural perturbative approach, since ϕ0, at null time, cannot be
smaller than the corresponding fluctuation value at m > k, which itself is defined in
an exponential growth given the tachyonic nature of the problem. When m >> H,
we have:

δϕk(t) ≃ δϕk(0) exp (
√
m2 − k2t). (4.85)

Typically the exponential growth of such fluctuations, (rather than the value of the
background field itself), gives rise to the subsequent phenomenon of spontaneous
symmetry breaking [83].
Choosing the initial conditions for an inflationary process (or SSB problem), a
typical initial amplitude for scalar field fluctuations with m > k, it is possible to
assume a plane wave SR condition when t = 0 in the symmetric potential condition
in which ϕ = 0. At the next time the massive term will turn on, hence the tachyonic
feature of the fluctuation problem [83]. The initial dispersion of all exponentially
increasing modes having m > k will be defined as [194]

⟨δϕ2⟩ =
∫ m

0

dk2

8π2
=

m2

8π2
, (4.86)

therefore the initial mean value of the amplitude of all fluctuations is given by
δϕ ≃ m/2π. This averaged value, however, represents a slight overestimation. As
an example, note how for fluctuations with k = m/2 there is a less exponential
subhorizon growth than for fluctuations with k = m/4. This difference on long time
scales, becomes more and more important, in fact requiring the field to roll along
the potential in virtue of a time much greater than m−1 (condition for having FR),
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it is clear to observe that the fluctuations that will make the main contribution
to the distribution of growing modes will be those related to the modes for which
m >> k. Therefore such strong exponential growth must be somehow damped by
a smaller initial condition in amplitude. We therefore assume that the smallest
value that ϕ0 can ever take is of the form m/C, with C = O(10). One can then
substitute this solution in place of ϕ0, in order to estimate the maximum expansion
growth rate of the universe

exp (Ht∗) ≃
(
10ϕ∗

m

)1/F

. (4.87)

It is now possible to develop this result in different models. In the theories associated
with the potential discussed so far, with m = O(H) we have that ϕ∗ ≃ Mp = 1,
thus

exp (Ht∗) =

(
10

m

)1/F

. (4.88)

In the even simpler case in which m = H, we have that F−1(1) = 3.3, so

exp (Ht∗) =

(
10

m

)3.3

. (4.89)

Such a solution for m << 1 (i.e. when m << Mp) can be significantly large.
Assume in one improbable construction that such a model is responsible for the
present accelerated expansion of the Universe with Hubble constant H ≃ 10−60.
Fast-Roll inflation in such a case would be able to drive the expansion of the
Universe by a factor

exp (Ht∗) ≃ (1061)3.3 ≃ 10200 ≃ exp (460). (4.90)

At the same time, taking m ≃ 102 GeV,corresponding to the electro-weak scale
would result in an expansion by fast roll by a factor of

exp (Ht∗) ≃ (1017)3.3 ≃ exp (130). (4.91)

Fast-Roll Inflation and scalar field perturbation in the very early Universe

It is now necessary to analyze the fast-roll inflation as a possibility of interpreting
the primordial Universe, assuming a mass sufficiently smaller than the Planck mass;
in the light of what has been said before, in such a case, inflation may be very short
and inefficient, however it may still have its place. Suppose that in addition to the
scalar field ϕ with

∣∣m2
∣∣ = O(H2), there is a second scalar field χ that during the

fast roll remains without dynamics, i.e. light
∣∣∣m2

χ

∣∣∣ <<
∣∣m2

∣∣ = O(H2). Therefore
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it follows that the perturbations of these broad-wavelength fields are generated:
since the FR is a very short expansive phase, the short modes are not even affected
by the resulting exponential growth, since they remain in the Hubble sphere for a
long time, thus experiencing the subsequent slow-roll phase that causes the overall
oscillation and decay of the short modes. On the contrary, the long modes are
strongly affected by the boost provided by the FR and have no way of balancing
this growth with the subsequent SR decay since, given their width, they are able to
exit and freeze immediately. If inflation occurs during time t the average amplitude
of these fluctuations becomes [194]√

⟨χ2⟩ = H

2π

√
Ht, (4.92)

term that can in certain occurrences even reach large values close to 1018 GeV.
Such an effect can be very useful in defining the correct initial conditions for a
subsequent slow-roll phase, if the light χ field decides to play the role of the inflaton.
In fact, it is possible to imagine a first FR inflationary phase in which the ϕ field
energetically dominates over the second χ field: the dynamical coupling on the
field fluctuations leads to an exponential growth of the same. Once the FR is
over, when ϕ falls into its hole and decays, the δχ fluctuation remains alone and
therefore dominant (from entropic to adiabatic): this through the previous phase
has reached a high amplitude value that could define the initial condition (i.e. the
height point of δχk from which the perturbation starts due to SR to oscillate and
decay) for the subsequent slow-roll phase.
There are several inflationary models, including chaotic inflation with its polynomial
format potential, which predicts that inflation can start during the Planck era and
continue until V (ϕ) becomes sufficiently small. This last condition is necessary
knowing the analytical link between V and H and knowing that the latter deter-
mines the amplitude of scalar density perturbations and tensor modes. Therefore
this condition becomes necessary since one does not want an overproduction of such
observables. However, such models can enter into a definition of eternal inflationary
reproduction, if the Universe starts such a phase in a spatial domain on sufficiently
homogeneous Planck scales [194].
However, there are other inflationary models for which inflation can only actually
start long after the Planck conditions, i.e. when H becomes much smaller than the
respective Planck mass. For models in which inflation arises near the maximum
of the potential (an example are the various modifications of hybrid inflation) the
Hubble constant doesn’t change its initial value. Therefore, in order to avoid an
exaggerated production of GWs a restriction on V (thus on H) must be required,
so that during inflation it must be true that V < 10−10M4

p . Therefore inflation
starts much later, for times in which t ≃ H−1 >> M−1

p . This statement leads to
the problem with initial conditions, since if inflation is delayed in starting, appro-
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priate initial conditions from an earlier stage will be needed to define it. Moreover,
it is worth mentioning the difficulty in explaining an excessive homogeneity of
the Universe at the beginning of inflation, i.e. long after Planck time, when the
increasing scalar fluctuations will have produced an important inhomogenisation of
the Universe. If the Universe were closed and dominated by non-relativistic matter,
it would collapse before the inflationary phase could begin.
However, such problems end with the assumption of an initial ”bad inflation” phase
producing unacceptable density and tensor perturbations, which are then, at least
on the smallest scales, readjusted by the subsequent SR phase that decays and
oscillates these solutions in the Hubble sphere. The idea is to assume that this
pre-inflation is described by the fast-roll, which can begin in the Planck era. Such a
phase, (which has generally been described as short and inefficient) can however last
a longer time if one forces the scalar field to remain bound at the top of its effective
potential. There are different techniques in order to build such a system: firstly, one
can require a coupling condition in interaction between the scalar field ϕ and other
fields present in the Universe, the latter of which, in order to force ϕ to remain
on the maximum in zero, must preserve a thermal equilibrium condition [194].
Nevertheless, this condition goes against the determination of small but observable
density perturbations, which are achievable only if the interaction is extremely
weak, thus negating the thermal equilibrium condition.
Here lies the problem with the initial conditions, as we would like an inflation that
begins long after the Planck time, and so the previous FR must be required to last
a proper time limit in order to arrive at such a phase. Another solution, adopted in
cases of Hybrid Inflation, consists in the creation of interaction with other classical
fields. A last chance is offered by considering a possible quantum creation from
nothing. Such a process is plausible given that the period of development of the
FR is that of the Planck scales, and a creation of the particle systems defining the
Universe directly on top of the potential is assumed, describing the condition of
maximal elongation of the FR, in order to reach the correct starting conditions
of the actual Slow-Roll Inflation. Even in the latter case the Fast-Roll stage may
be short-lived, but long enough to define in its conclusion a wide and relatively
homogeneous Universe that avoids the possibility of collapsing before inflation.
Due to inflation and the subsequent phase of accelerated expansion of the Universe,
the fluctuations of the secondary field χ reach high amplitude values and will be
brought to become classical once they leave the horizon. However, these fluctuations
take on different values depending on the region of the Universe in which one finds
them. Those spaces in which the aforementioned fluctuations define optimal initial
conditions for a necessary SR-driven inflationary start, will expand exponentially,
while regions with poor initial conditions will be suppressed. The pre-inflationary
phase solves the problems on initial conditions. However, even a slow-roll-pre-phase
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would work discretely from this perspective. It must be concluded that a short FR
phase could help in solving the SSB problem in SUSY GUT, justifying the stronger
version of the anthropic principle.
The new inflation model is able to justify a Universe composed of several exponen-
tially large parts with different laws of physics in each, providing one of the first
interpretations of the anthropic principle. It is possible in such a view to discuss the
spontaneous symmetry breaking of a supersymmetric model described by the SU(5)
group. This theory predicts at extraordinarily high temperatures a single SU(5)
minimum: as the temperature decreases, the system may collapse to the minimum
of an SU(4)× U(1) theory or to the minimum of an SU(3)×SU(2)× U(1) theory.
Nevertheless these minima have the same GUT height, hence the same probability
of approach. Since the primordial universe is initially hot and defined by a potential
with only one minimum of SU(5) therefore the SSB is neglected, although it is not
clear how to choose, when the temperature goes down, the minimum in which to
fall with respect to the two theories defined above. The answer is in the value of
the large perturbations of the scalar field ϕ produced by inflation: there will be
regions in the universe in which the value of such field perturbations are such as to
make the system fall on a minimum of a theory SU(3)×SU(2)× U(1), and regions
in which the same will happen relative to the minimum of the complementary
theory, thus descending from the minimum of SU(5), to the minimum of SU(4) ×
U(1). Therefore, to justify a first form of the anthropic principle, there are different
regions with different physical laws; we live in the one in which the SSB drives
towards the minimum of the known and valid SM theory.
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4.4 Induced GWs from slow-roll after an enhanincg
phase

This section is based on the reference [195].
The presence of features during inflation can cause a boost on inflationary scalar
perturbations, and result in the presence of large peaks in the primordial spectrum
of these fluctuations. Examples of features may include bumps in the potential,
ultra slow-roll phases or trajectory shifts in a space of multiple fields [196] [147] [197]
[155] [152] [173]. However, it must be noted that an inflationary model does not
necessarily have to end with the description of a boost feature, but the latter can
continue with a subsequent, secondary slow-roll phase. Potentially such a second
slow-roll inflationary phase should not produce, at second order, an amount of
induced GWs background considerable in amplitude. Nevertheless, by constructing
a model in which the primordial spectrum is written as a combination of several
pieces (among which the second SR), one will not only have the GWs background
induced by the peak-to-peak convolution, or SR-SR, but the mathematics of the
problem will also bring mixed convolution terms associated to the interactions of
modes experiencing the two distinct inflationary moments of the system. We are
able to study a source-induced background defined by the interaction of a scalar
mode of the peak that undergoes the increasing features with the mode of the
subsequent SR that decays.
GWs provide a promising window in order to study the physics of the primor-
dial universe, and they could be generated by induction from primordial scalar
fluctuations in the primordial universe. Such primordial density perturbations
are strongly studied and constrained on the broad CMB scales, and originate
from the quantum-derived fluctuations associated with the inflationary period.
However, while on the large scales one has a clear idea of what value such density
perturbations should have, the same cannot be said on the smaller scales, where
the spectrum of perturbation curvatures can take on the most disparate forms as
long as one does not have stronger observational constraints.
Therefore, the presence of peaks on the small scales in the scalar spectrum can, in
the convolution product, also give rise to a peak on the induced GWs background
during the radiation phase. An increase in the primordial curvature perturbation
spectrum also leads, as already explained, to the further overproduction of PBH.
However, the interest of this section shifts to underline how a peak in the scalar
spectrum (for which a convolution is applied in order to determine the induced
GWs background) induces an increase in the abundance of the gravitational wave
background. However, the inflation does not necessarily have to end with such
a peak induced by a sharp feature, but can continue with a second, subsequent
slow-roll phase, in which the corresponding SR parameter is assumed to be a free
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parameter (it therefore follows that the amplitude of this spectral part is also a
free parameter since it is defined by the second ϵ).
The aim of this section is to study the induced GWs background generated by
such a second slow-roll phase: as mentioned before, in the scalar convolution
the interaction case between the peak spectrum and the free amplitude spectrum
associated to the second slow-roll can be considered, identifying a crossing GWs
background induced by the interaction of the radiation-scalar modes (in radiation)
associated to a boosting phase and a different phase of oscillation with decay in
the cosmic expansion. Thus the final solution will consist in the study of a GW
background induced in part by a flat scalar contribution, with such a background
that will not carry over from the convolution the expected (and observable for an
interaction of SR-SR modes) plateau.

Induced GWs from two stages of inflation

In this section we consider an inflationary solution composed of two distinct slow-roll
stages joined by a special boosting feature on the primordial scalar perturbations.
The first slow-roll phase is standard and is used to justify the correct amplitude of
the primordial fluctuations to explain the CMB anisotropies, and will be denoted
by ACMB. Then an inflationary feature will be defined that will increase the scalar
modes of primordial fluctuation by defining a peak in the curvature spectrum,
with amplitude Apeak. Thereafter, inflation continues and ends with a secondary
slow-roll phase, and the spectrum designated to this phase is assumed to be quasi-
scale-invariant with an arbitrary amplitude called Aflat. This function represents
a free parameter in the theory, so we don’t fix the value for the first slow-roll
parameter ϵ. The smaller it is chosen, the larger is the value of Aflat. It is assumed
in the model that ACMB << Aflat, so this idea allows to neglect the induced
contribution provided by the first inflationary phase.
In light of what has been said so far, it is possible to define the approximate
primordial power spectrum of curvature fluctuation

Pζ(k) = ApeakPζ,peak(k/kp) +AflatPζ,flat(k/kp), (4.93)

where Pζ,peak(k/kp) is a sharp function in the scale k = kp, and Pζ,flat(k/kp) is a
step function having step in k = kp, assuming non-zero and unit values after the
peak scale. It is expected that this formulation can approximate well models where
a sharp feature defines a sharp transition between a first and a second slow-roll
phase. Where, on the other hand, the transition between the two phases is more
gradual, (4.92) is no longer as accurate, although it still allows the system to be
solved in a good approximation.
The assumption made in equation (4.92) makes it possible to split the primordial
scalar power spectrum into two contributions, and this approximation allows a
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clear and mathematical separation of the total induced GWs background: in fact
there will exist the GWs background induced by the interaction in convolution of
two Pζ,peak, the one associated with the convolution of two Pζ,flat, but also the one
associated with the interaction convolution between the two distinct terms of peak
and flat, which we will call the crossing term.
This crossing term indicates the GWs background induced by the interaction of
two distinct scalar modes associated with the two different dynamical moments
characteristic of the model, that of boosting and that of oscillation in decay offered
by the second slow-roll. It is to be expected that the more the width of the second
scalar mode k, close to the large one having length kp, is assumed at the horizon
re-entry, the more the decay time of the larger mode is limited, promoting the
development of a larger source term able to produce a larger GWs background:
therefore a smooth decreasing trend in frequency is expected for such a crossing
background. The Universe after inflation is assumed to be dominated by a radiation
phase but with an arbitrary adiabatic speed of sound. Therefore the resulting
induced GWs spectrum produced during the radiation phase evaluated today is
written

ΩGW,0h
2 = Ωr,0h

2

(
g∗(Tc)

g∗,0

)(
g∗s(Tc)

g∗s,0

)−4/3

ΩGW,c, (4.94)

where Ωr,0 is the current radiation density today and g∗(T ) and g∗s(T ) are the
effective degrees of freedom in the energy and entropy density at temperature T .
Thanks to the data offered by the Planck satellite we observe Ωr,0h

2 ≃ 4.18× 10−5

[38]. It is also found that g∗,0 = 3.36 and that g∗s,0 = 3.91. It is also understandable
how for T > 100 GeV and assuming only standard model particles, we have
g∗(T ) = g∗s(T ) = 106.75. The ’c’ term [198] instead indicates the evaluation at the
time when the spectral energy density is constant, i.e. at the time when the tensor
modes are well contained within the Hubble horizon. Therefore we read [119] [144]

ΩGW,c =

∫ ∞

0

dv

∫ 1+v

|1−v|
duT (u, v, cs)Pζ(ku)Pζ(kv), (4.95)

with u and v being dimensionless variables related to the internal scalar momenta
q and |k− q| via the relations v = q/k and u = |k− q| /k;in the convolution is also
present the transfer function, also called kernel, T (u, v, cs) defined as

T (u, v, cs) =
y2

3c4s

(
4v2 − (1− u2 + v2)2

4u2v2

)2

×π2

4
y2Θ[cs(u+ v)− 1] +

(
1− 1

2
y ln

∣∣∣∣1 + y

1− y

∣∣∣∣
)2
 ,

(4.96)
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with
y =

u2 + v2 − c−2
s

2uv
. (4.97)

The transfer function (4.95) [119] [199] [199] is assumed for a primordial universe
dominated by a radiation fluid, i.e. having a state relation for which ω = 1/3, but
with an arbitrary adiabatic sound speed for scalar fluctuations cs. For a perfect
adiabatic fluid we have that c2s = ω = 1/3, but for a canonical scalar field having
a potential of exponential format we have that ω = 1/3 but c2s = 1 [200]. It is
permissible to consider c2s as a free parameter of the theory, and it will become clear
later how in certain frequency regimes the velocity term will have an important
influence on the trend of the final induced GWs background spectral energy density.
Substituting in the formulation of the spectral energy density (4.94) the definition
of the primordial curvature spectrum (4.92), the total GWs abundance can be
defined through the sum of several mathematical contributions

ΩGWs,c = A2
peakΩGW,peak + 2ApeakAflatΩGW,cross +A2

flatΩGW,flat. (4.98)

It is essential to recall how this separation is only possible due to the original
assumption of breaking the scalar curvature spectrum into several complementary
components.
In order to define ΩGW,peak, it suffices to substitute in the overall spectral energy
density (4.94) Pζ,peak, the same for the totally flat case. The study of the cross
term, as mentioned before, evaluates the scalar interaction of convolution of the
peak and flat regime modes in the following way

ΩGW,cross =

∫ ∞

0

dv

∫ 1+v

|1−v|
duT (u, v, cs)Pζ,peak(v/vp)Pζ,flat(u/vp), (4.99)

where vp = kp/k; Furthermore, the exchange symmetry between the momenta u
and v has been exploited, marked by the number 2 in (3.97). The aim of the section
lies in calculating the new crossing contribution as the free parameter c2s varies,
since the other integral contributions have already been calculated [157] [126] [151].
It is necessary at this point to interpret the problem by studying the trend of the
GWs background in an infrared regime where k << kp, and an ultraviolet one
where k >> kp.

Low-frequency (IR) approximation

In the IR limit, i.e. k << kp, or equivalently vp >> 1, it is safe to assume that
since Pζ,peak is strongly spiked, only momentum values v very close to the peak
value vp will actively contribute to the integral for v. Therefore it must be assumed
that v >> 1, so u being constrained by the law of conservation of momentum
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by |1− v| < u < 1 + v, we have that u ≃ v >> 1. In such a regime the transfer
function approximates as follows

T (u ≃ v >> 1, cs) ≃
1

c4s
v−4 ln2 v. (4.100)

Taking advantage of the mean value theorem of the integral, we evaluate the integral
result in u for u ≃ v, producing a minimum error. This results in summary:

ΩIR
GW,peak/cross ≃

1

c4s

(
k

kp

)3

ln2

(
k

kp

)
× (Pζ,peak/flat(k = kp))

∫ ∞

0

dV Pζ,peak(V )V −4,

(4.101)
where V = v/vp has been defined. It is therefore inferred that both contributions
to the peak and crossing background decay in the infrared as k3 ln2 k, defining
the typical universal IR behaviour of an induced GWs background during the
domination of radiation [199]. Since Apeak >> Aflat, the contribution of the cross
term to the total, will always be subdominant to that offered by the scalar peak
convolution in the IR. This cross term will indeed become more interesting for high
frequency limits.

High frequency approximation (UV)

The ultraviolet limit on the external frequency of the GWs background is written
through the condition k >> kp, i.e. vp << 1. Thinking as before about the peak of
the scalar function under consideration, we conclude that the only analytic region
to make an active contribution to the integral on the momenta is for v << 1, hence
u ≃ 1 (and the opposite, by symmetry, which can be accounted for by a factor of
2) [157].
In contrast to the IR case, the approximate behaviour of the transfer function
in UV tends to vary according to the choice of c2s (taken as an example equal to
1, or the usual value of 1/3). This makes sense in light of the contrast between
the resonance induced in u+ v = c−2

s and the limits of integration for u = 1 + v
and u = |1− v| where the integral vanishes. Specifically, if c2s = 1 the resonance
is completely annihilated by the boundaries u = 1− v. The kernel has a different
analytical approximation in the UV in the two cases expressed above, and this
result is seen thanks to the Taylor expansion of the variable y for v << 1 and
u → 1

y ≃ 1− c−2
s

2v
+

v

2
. (4.102)

When c2s = 1 the first term cancels perfectly, therefore y << 1 for v << 1. By
contrast, for c2s < 1 this consideration no longer exists, so for v < 1 we have that
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|y| >> 1. The cases we wish to discuss are those for which c2s = 1/3 and c2s = 1.
We find in conclusion

ΩUV
GW,peak/cross(c

2
s < 1) ≃ 8

27

1

(1− c2s)
2(

k

kp

)−4

(Pζ,peak/flat(k/kp))

∫ ∞

0

dV Pζ,peak(V )V 3,

(4.103)

and

ΩUV
GW,peak/cross(c

2
s = 1) ≃ 2

(
35 + 24π2

8505

)(
k

kp

)−2

(Pζ,peak/flat(k/kp))

∫ ∞

0

dV Pζ,peak(V )V.

(4.104)

The most significant conclusion of these results is to observe how the second case
defines a smaller decrease than the first in the UV, thus creating an increased
crossing GWs background in its tail that could define a higher observable abundance.



Chapter 5

Induced Gravitational waves from
inflationary models

In the previous chapter, an examination was made of different inflationary models
capable of deviating from a slow-roll inflationary phase; Indeed, Sasaki’s model [173],
Linde’s Fast-Roll model [192], the model in EFTI [158] despite their profound
differences, can be united with each other precisely by this characteristic of de-
parture from an initial (or concluding) quasi scale-invariant spectrum phase. It is
important to remember the strength of this hypothesis, as defining an inflation
model perpetually stationed in a slow-roll phase, defines a slow-roll parameter ϵ
always constant and, above all, much smaller than one; hence from the formula
linking the scalar curvature spectrum to the power-spectrum of the inflationary
fluctuation, it is clear that the former is much larger than the latter. Since the
curvature power-spectrum is the main element in producing a second-order GWs
background during radiation dominance (just as the scalar field fluctuation spec-
trum induces the GWs background during the Inflation era), one expects a totally
negligible GWs background during Inflation compared to that induced during the
subsequent radiation phase. The hypothesis defined earlier comes into play at this
point: moving away from the slow-roll implies a consideration of a larger slow-roll
parameter (albeit less than one to have inflation); thus the two power-spectrums are
placed in a different condition of comparability (in natural units they are completely
identical), so, at least in principle, one does not expect a complete domination of
one period-induced GWs background over another. This idea match totally well
with the practice of this thesis, since its aim is to study the validity of an induced
GWs background during inflation, given that the latter is always neglected and
therefore not considered in the light of the reasoning proposed earlier.
The goal of this last chapter is to take up the theory of the inflationary models
proposed in the last section, and to calculate, for the first time, the spectral energy
density induced by such schemes both during radiation and during the domination

135
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phase of the scalar field. For this study, an analytical-theoretical approach will be
used, supported, where possible, also by a computational comparison provided by
a program for the analytical calculation of the problem (https://github.com/Lukas-
T-W/SIGWfast).
The first model to be described will be the one-field fast-roll phase, followed by the
EFTI model.

5.1 Scalar GWs induced by Fast-Roll (one-field
model)

In this section, the radiation and inflation-induced GWs from a one-field Fast-Roll
model will be calculated. The idea of such a model has already been described
extensively in the previous chapter; it suffices to recall how such a model is entirely
suitable for providing the initial conditions for a subsequent (and necessary) slow-
roll phase, describing modes that in sub-horizon grow brutally as exponentials.
However, as the scale k increases, the residence time in the sphere increases, but
the exponential growth factor due to the relationship between the mass of the
scalar field and the scale itself decreases. It is important to remember how such an
inflationary model is built on large scales, such as those of the CMB. Knowing that
on such scales the various measuring apparatuses force us to have a spectral value
of the order of PR ≃ 10−9, it is normal to assume that the fast-roll phase must
then relax subsequently with a slow-roll phase, which latter guarantees the scalar
values observed on such scales. It is important to remember how precisely the
subsequent slow-roll phase serves to deflate the modes that remained on subhorizon
scales throughout the FR phase, which in fact grew a lot, avoiding the creation of
unobservable GWs or PBH. However, the latest empirical data released by Planck
in 2018 [14], allow us to define a useful variation from the flat phase on the large
scale of the problem. It is therefore possible to construct theoretical inflationary
models that can fit such curvature data, and one of these, is precisely the Fast-Roll
model; recall how this defines a strong red-tilt phase on the scalar spectrum, on
the CMB scales, followed by the observed quasi-scale-invariant section produced by
the slow-roll. This Planck review [14] reports a parameterization of the curvature
spectrum due to such an inflationary construction thus writable [14]

PR = P(0)
R γkin

(
k

kc

)
. (5.1)

Here we define P(0)
R the curvature power-spectrum of the next slow-roll phase,

assumed scale-invariant in the modelling; kc is the dip scale in which the change
of inflationary regime from FR to SR takes place. It is therefore the last scale
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that freezes in the moment concluding the FR and is therefore the last scale that
is subject to the red-tilt. The subsequent scales in fact, remaining even more in
the Hubble sphere will experience the slow-roll phase where they will be made
to oscillate and decay in order to define a flat scalar spectrum compatible with
observations on typical values mentioned earlier. It is important to note how this
formulation is modified when the condition for which k >> kc occurs (due to the
reasoning just described). Therefore we can rewrite

PR → P(0)
R , (k >> kc). (5.2)

The function γ expresses the parametrization for the fast-roll, thus describing the
inflationary phase of strong red tilt. In Planck’s review [14] is considered an initially
generic function, as other models besides the fast-roll can provide scalar values
that can be adapted to the observations. However, in the problem addressed, the
kinetic theory of the fast-roll is considered, whereby

γkin(y) =
π

16
y
∣∣Cc(y)−Dc(y)

∣∣2 , (5.3)

with:
Cc(y) = e−iy

[
H

(2)
0 (

y

2
)− (

1

y
+ i)H

(2)
1 (

y

2
)

]
, (5.4)

Dc(y) = eiy
[
H

(2)
0 (

y

2
)− (

1

y
− i)H

(2)
1 (

y

2
)

]
, (5.5)

with H
(2)
0 (y

2
) e H

(2)
1 (y

2
) the Henkel function at the second order.
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Figure 5.1: Power-spectrum curvature of the problem presented in equation (5.1). This
results in an excellent parametrization of the Fast-Roll problem. Clearly, it
should be read in the scales to which the problem belongs, i.e. the CMB scales
(10−3Mpc−1); therefore we have to consider the function from the red-tilt
onset. [14].

5.1.1 Spectral energy density of GWs from Radiation epoch

Recall how the induced GWs background during radiation is written as [119]:

ΩGWs,c(k) =

∫ ∞

0

dv

∫ 1+v

|1−v|
duT (u, v, cs)PR(ku)PR(kv), (5.6)

with
v =

q

k
, (5.7)

and
u =

|k− q|
k

. (5.8)
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It is important to remember that the c in the definition of the induced GWs
background follows from the Inomata nomenclature [198]; therefore from now on
we are calculating the induced GWs background during radiation in the period in
which this abundance is constant, i.e. during radiation, where GWs behave exactly
like radiation.
The radiation-dominated kernel is the one addressed in Chapters 3 and 4, and is
written [119] [195]:

T (u, v, cs) =
y2

3c4s

(
4v2 − (1− u2 + v2)2

4u2v2

)2

×[
π2

4
y2Θ[cs(u+ v)− 1] + (1− 1

2
y ln

∣∣∣∣1 + y

1− y

∣∣∣∣)2
]
.

(5.9)

Here we have to remember that

y =
u2 + v2 − c−2

s

2uv
. (5.10)

The scale invariant curvature spectrum proposed by the slow-roll phase is defined
instead:

P(0)
R ≃ H2

πϵM2
Pl

. (5.11)

The exact way to analytically calculate the induced GWs background during
radiation would be to substitute the curvature spectrum in the definition of the GWs
background (5.6); however, it is easy to see that, for the purposes of an analytical-
theoretical approach, this road is particularly difficult, given the complexity of the
scalar spectrum. Therefore what is best to do is to define a decomposition of the
power-spectrum curvature function into its infrared (IR), intermediate (IM) and
ultraviolet (UV) limits. The idea is to calculate the double integral of convolution
on the power spectrum using these approximations; we will therefore calculate
pieces of the induced GWs background, which, when combined at the end, will
allow us to have a complete picture of the solution. So the calculation will be
performed by substituting, in the spectral convolution, first the IR-IR contribution,
then the IM-IM contribution, and finally the UV-UV contribution. However, these
are not the only contributions that can be studied; in fact, it is also permissible to
have modes adhering to different periods of evolution interact in the convolution,
so the last cross-talk contributions from the interaction of distinct, unpaired scalar
regimes will also be calculated.
Following this reasoning, it is possible to approximate the scalar curvature spectrum.
In the infrared limit, i.e. for y << 1,(i.e. k << kc), we obtain

H
(2)
0

(
y

2

)
≃ 1−

2i log y
2

π
, (5.12)
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H
(2)
1

(
y

2

)
≃ 4i

πy
. (5.13)

Then in the approximation of the complex functions of the kinetic spectrum, we
find that

Cc(y) ≃ 1−
2i log y

2

π
−
(
1

y
+ i

)
4i

πy
, (5.14)

Dc(y) ≃ 1−
2i log y

2

π
−
(
1

y
− i

)
4i

πy
. (5.15)

Trivially, their difference becomes:

Cc(y)−Dc(y) =
8

πy
. (5.16)

Therefore, in the infrared scalar limit, i.e. for y << 1 we get

PR(k) ≃ P(0)
R

4

π|k|
. (5.17)

The accuracy of this approximation is reasonable, since the infrared part of the
scalar spectrum, as is also evident from figure (5.1), must define the red-tilt phase.
Therefore we first calculate the IR-IR contribution, so we can write:

ΩGWs,c(k) =

∫ ∞

0

dv

∫ 1+v

|1−v|
duT (u, v, cs)

16

π2

(
1
ku
kc

)(
1
kv
kc

)
. (5.18)

From now on we will define vc =
kc
k
. It is worth mentioning the use of the infrared

approximation for the curvature spectrum inscribed in the scalar convolution.
Therefore, the arguments of the two convolution spectra must be much smaller
than one in order to guarantee a formulation like the one written above.
Obviously, the arguments are written for the purpose of the convolution, so they
will not be defined by the frequency k (i.e. the external frequency associated with
the induced GWs background) but rather by q

kc
and |k−q|

kc
. We can write:{

q
kc

<< 1
|k−q|
kc

<< 1.
(5.19)

From the decomposition of the absolute value, staying within the analytical limits
of interest, one solves the system arriving at the solution for which k << kc. A
very important result is then defined: the convolution between two curvature
spectra in the respective infrared convolution regimes determines the production of
the infrared component of the scalar-induced GWs background. Therefore, let us
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calculate such a solution, in which k << kc.
In order to define the problem analytically, it is necessary to introduce the modelling
of a toy-model able to reproduce the system theory. Since the input curvature
spectrum turns out to be strongly red-tilted, we are allowed (on the large scales
characteristic of the problem) to assume that this spectrum is imaginable as a
Dirac-delta; the dip of this delta is marked by the switch scale kc, (or by vc) in the
rewriting of the function PR(v/vc). Therefore in the following limit of the problem,
we have that vc >> 1 and that consequently v << vc; in the terms of the moment
v and the definition of delta, we choose to remain sufficiently distant from the dip
vc, remaining close to the peak: here in fact we will have the maximum integral
contribution to the GWs background.
Since v is, in theory, much smaller than a very large quantity, it is easy to define
two domains for the internal momentum:{

v >> 1, u ≃ v

v << 1, u ≃ 1.
(5.20)

In the first case of (5.20), i.e. for v >> 1 and u ≃ v, we have a very simple radiation
kernel approximation [195]

T (u, v, cs) ≃ v−4 ln2 v. (5.21)

If we substitute this information in the definition of the GWs background (5.6):

ΩGWs,c(k) = P(0)2
R

∫ ∞

0

dv

∫ 1+v

|1−v|
duv−4 ln2 (v)

16

π2
× v2c

uv
. (5.22)

Using the similarity of momenta, together with the mean value theorem of the
integral, we find

ΩGWs,c(k) = P(0)2
R

16

π2

∫ ∞

0

dvv−6 ln2 (v)× v2c , (5.23)

ΩGWs,c(k) = P(0)2
R

16

π2
v−3
c ln2 (vc)

∫ ∞

0

dV

V
. (5.24)

In the last step, the variable change from v to V = v/vc was defined. The idea
for this substitution comes from the necessity, in solving the integral, to extract
all contributions of external frequency k out of the integral. Such a change of
variable, since V is also rewritable as V = q/kc, best handles this requirement.
Note how the result found, of the form ΩGWs ≃ (k/kc)

3 × ln2 (k/kc), defines an
increasing solution (the typical increasing solution in radiation-induced IR); this
result should obviously be seen in its defining limit, i.e. it should be considered
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as long as k << kc. It is easy to see how this result marks the first IR trend, the
latter of which is to be divided into two phases: an infrared at lower frequencies
(i.e. the latter just found), and an infrared at significantly higher frequencies for
which v << 1 and u ≃ 1. Let us move on to the second and last infrared case.
In this limit, it is analytically important to remember the scripture for which

y ≃ 1− c−2
s

2v
+

v

2
. (5.25)

Therefore, the value of cs quantifies the possibility of having a different kernel
development of the system, since if cs < 1, then it will be the case that v << 1, so
|y| >> 1, since y = 1−c−2

s

2v
, so the kernel is rewritten as:

T (u, v, cs) ≃ y−α ≃
(

2v

1− c−2
s

)α

, (5.26)

with the value of α taken positive and even, in order to respect the symmetry
of the theory. We decided to parametrize the kernel approximation in order to
guarantee the most general conclusive result possible. However, a possible choice
of parameter that well describes the kernel approximation is α = 6. Exploiting
this regime on the adiabatic speed of sound of the scalar fluctuation that acts as a
source for the system, we find

ΩGWs,c(k) ≃ P(0)2
R

(
2

1− c−2
s

)α ∫ ∞

0

dvvα
∫ 1+v

|1−v|
du

16

π2
× v2c

uv
, (5.27)

ΩGWs,c(k) ≃ P(0)2
R

(
2

1− c−2
s

)α
16

π2

∫ ∞

0

dvvα−1v2c , (5.28)

ΩGWs,c(k) ≃ P(0)2
R

(
2

1− c−2
s

)α
16

π2

(
kc
k

)α+2 ∫ ∞

0

dV V α−1. (5.29)

Note how the trend that follows the logarithmic growth is defined, again in the
same infrared connotation, by a steep fall of the induced GWs background. The
analytical case just studied is associated with the choice of a general and typical c2s
for the classical radiation period (where c2s = 1/3). However, as anticipated earlier
and also discussed in Chapter 4, there is the possibility of considering the limit in
which during the radiation there is a c2s = 1 [195] [200]. Thus this condition implies
that v << 1, with |y| << 1 since y ≃ v/2, so the kernel is rewritten

T (u, v, cs) ≃
y2

3
≃ v2

12
. (5.30)

Note how the course of this kernel differs only in the spectral index from the
standard case; both will lead to a decreasing induced GWs background. In this



CHAPTER 5. INDUCED GWS FROM INFLATIONARY MODELS 143

situation, and similarly to before, the GWs background is calculated:

ΩGWs,c(k) ≃ P(0)2
R

∫ ∞

0

dv

∫ 1+v

|1−v|
du

v2

12
× v2c

uv
, (5.31)

ΩGWs,c(k) ≃ P(0)2
R

3

36

∫ ∞

0

dvv × v2c , (5.32)

ΩGWs,c(k) ≃ P(0)2
R

3

36

(
kc
k

)4 ∫ ∞

0

dV V. (5.33)

It is important to stress that the integrals written in V are all convergent, and
make a unitary contribution to the amplitude of the problem.

Intermediate regime (k → kc)

Having calculated the convolutional contribution provided by the paired IR-IR, it
is necessary to proceed with the calculation of the GWs background contributions.
With this logic we proceed by requiring a development of the scalar spectrum in
the convolution when the argument tends to unity; an interaction between modes
is therefore defined at the boundary between FR and SR. As before we could write{

q
kc

→ 1
|k−q|
kc

→ 1.
(5.34)

Solving this system, decomposing the modulus as before, it is easy to find two
distinct induced ranges. In fact, if we require that k >> q, then k/kc → 1, with
v << 1 and u → 1. This writing is reconfirmed by the same definition of delta,
since v < vc → 1.
However in the opposite limit, in which q >> k, we find that q/kc → 1, but since
q/kc >> k/kc, we trivially arrive at the limit in which k << kc if we consider
v >> 1 with u ≃ 1. The scalar IM-IM convolution therefore induces the presence of
two distinct induced GWs backgrounds. The first characteristic of the intermediate
section of the external frequency, and one again in the IR regime, which will be
added to those calculated above.
Let us therefore proceed to calculate the first intermediate contribution; it will
be necessary, as was done for the IR case, to define a series development of the
curvature power spectrum function for the argument close to unity. It is recalled
that

γkin(y) =
π

16
y
∣∣Cc(y)−Dc(y)

∣∣2 . (5.35)
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Henkel functions of the second type are developed for y → 1 up to first order:

H
(2)
0

(
y

2

)
≃ H

(2)
0

(
1

2

)
− 1

2
H

(2)
1

(
1

2

)
(y − 1) , (5.36)

H
(2)
1

(
y

2

)
≃ H

(2)
1

(
1

2

)
+

1

4

(
H

(2)
0 −H

(2)
2

)
(y − 1) , (5.37)

where we have that:

H
(2)
0

(
1

2

)
= 0.93 + 0.44i, (5.38)

H
(2)
1

(
1

2

)
= 0.24 + 1.47i, (5.39)

H
(2)
2

(
1

2

)
= 0.03 + 5.44i. (5.40)

Exponential functions are therefore also developed

e−iy = e−i − ie−i(y − 1), (5.41)
eiy = ei + ie−i(y − 1). (5.42)

Using these definitions, it is possible to write the square modulus of the difference
in the definition of the kinetic spectrum:

Cc(y)−Dc(y) =
[
e−i − ie−i(y − 1)

] [
0.93 + 0.44i−

(
1

y
+ i

)
[0.24 + 1.47i+

+
1

4
[0.93 + 0.44i− 0.03− 5.44i] (y − 1)

]]
+

−
[
ei + iei(y − 1)

] [
0.93 + 0.44i−

(
1

y
− i

)
[0.24 + 1.47i+

+
1

4
[0.93 + 0.44i− 0.03− 5.44i] (y − 1)

]]
.

(5.43)

This solution must then be raised to modulus square, and multiplied by a frequency
term in order to define the curvature spectrum; however, it is easy to see the
complexity of the last formula. It is therefore necessary to perform an analytical
simplification of the spectrum. This simplification is provided by the program



CHAPTER 5. INDUCED GWS FROM INFLATIONARY MODELS 145

Mathematica, which allows us to write:

γkin(y) =

∣∣∣∣∣(5.59− 0.44i)−
(
1.63− 0.009i

y

)
− (6.20 + 1.35i)y + (2.10 + 0.37i)y2

∣∣∣∣∣
2

× π

16
y.

(5.44)
It should be noted that the plot of this function, observed in the limit of regard,
allows us to observe a function that starts to decrease, then it observes a flattening
when the argument reaches unity. Therefore this result found is completely suitable,
from a graphical point of view, to approximate the curvature spectrum in the limit
of argument tending to one. This function must therefore be substituted in (5.6),

Figure 5.2: Curvature Power-spectrum of the problem presented in equation (5.44), ap-
proximated in the intermediate frequency limit of the problem. The value of
x in the x-axis determines the y-value of the formulation.

together with the appropriate kernel associated with the corrected limit on internal
momenta. We then calculate the IM-IM contribution to the intermediate region of
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the GWs background as follows (using the condition that c2s < 1)

ΩGWs,c(k) ≃ P(0)2
R

×

∣∣∣∣∣∣(5.59− 0.44i)−

(
1.63− 0.009i

k
kc

)
− (6.20 + 1.35i)

k

kc
+ (2.10 + 0.37i)

(
k

kc

)2

∣∣∣∣∣∣
2

×

k

kc
×
∫ ∞

0

dv
kv

kc

∣∣∣∣∣1.63− 0.009i
kv
kc

∣∣∣∣∣
2

× vα

(1− c−2
s )α

. (5.45)

It is important to highlight that, within the square modulus inscribed in the integral,
only the contribution 1/y has been considered, in q, in the limits adopted, k → kc,
with v << 1; therefore this contribution is indeed the dominant one. Further
developing the above formula, we obtain

ΩGWs,c(k) ≃ P(0)2
R

×

∣∣∣∣∣∣(5.59− 0.44i)−

(
1.63− 0.009i

k
kc

)
− (6.20 + 1.35i)

k

kc
+ (2.10 + 0.37i)

(
k

kc

)2

∣∣∣∣∣∣
2

×

∫ ∞

0

dvvα−1, (5.46)

therefore

ΩGWs,c(k) ≃ P(0)2
R

×

∣∣∣∣∣∣(5.59− 0.44i)−

(
1.63− 0.009i

k
kc

)
− (6.20 + 1.35i)

k

kc
+ (2.10 + 0.37i)

(
k

kc

)2

∣∣∣∣∣∣
2

×

(
2

1− c−2
s

)α

×
(
kc
k

)α ∫ ∞

0

dV V α−1. (5.47)

We have to plot this solution. The plot observes a behaviour quite similar to that
of the input scalar function: near the unity of the argument (understood as k/kc)
the GWs background first descends, and then flattens out for successive larger
values of the argument (to be precise, as soon as the descent is over, the function
undergoes a slight ascent before flattening out completely).

It is entirely logical to understand how the solutions found so far in the IR and IM
external frequency regimes report an obviously expected analytical continuity. If
we instead decide to choose a model for which cs = 1, with the same accounts as
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Figure 5.3: Spectral energy density of the problem exposed in equation (5.47).

above, but with a different kernel (seen in the IR section), one finds the following
induced GWs background:

ΩGWs,c(k) ≃ P(0)2
R

×

∣∣∣∣∣∣(5.59− 0.44i)−

(
1.63− 0.009i

k
kc

)
− (6.20 + 1.35i)

k

kc
+ (2.10 + 0.37i)

(
k

kc

)2

∣∣∣∣∣∣
2

×

(
k

kc

)(
kc
k

)3 ∫ ∞

0

dV V. (5.48)

Unlike the previous plot, the latter does not admit a subsequent flattening; in the
appropriate argument limits, the function first descends and then rises again.
This result defines a GWs background that can be studied in the intermediate
region of external frequencies (k → kc), induced by the double convolution of the
two intermediate scalar contributions. Nevertheless, it was seen earlier how such a
double convolution between two intermediate scalar contributions is also capable
of inducing an infrared regime GWs background, to be added to that calculated
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earlier from the IR-IR scalar convolution. It is therefore written:

ΩGWs,c(k) ≃ P(0)2
R ×

∫ ∞

0

dvv−4 ln2 v

(
kv

kc

)2
∣∣∣∣∣1.63− 0.009i

kv
kc

∣∣∣∣∣
4

, (5.49)

ΩGWs,c(k) ≃ P(0)2
R ×

∫ ∞

0

dvv−4 ln2 v

(
kv

kc

)−2

, (5.50)

ΩGWs,c(k) ≃ P(0)2
R ×

(
k

kc

)3

ln2

(
k

kc

)∫ ∞

0

dV

V 6
. (5.51)

In (5.49) we still only considered the dominant term, deduced through the delta
definition assumed in the study model.
It is important to note that this contribution is completely identical to the first
one found through IR-IR convolution in the first infrared region; the similarity is
total, both in terms of amplitude and analytical trend.

Ultraviolet regime (k >> kc)

Identically to the previous sections, the scalar spectrum for argument y >> 1
should be approximated. In such a case, the approximation is entirely trivial,
and already presented at the beginning of the chapter; in fact, for y >> 1, only
the flat section defined by P(0)

R will remain of the scalar spectrum. The double
scalar convolution between the two UV spectra is the convolution between constant
functions, so the final result will be a number. Again, Mathematica allows us to
evaluate this solution

ΩGWs,c ≃ P(0)2
R × 0.82. (5.52)

Requiring both arguments of the scalar spectra studied in convolution to be much
greater than one one finds, (by means of the same analytical procedure used so
far), how such a UV-UV scalar convolution interaction induces a GWs background
in the external UV frequency limit, whereby k >> kc. It is important once again
to note the analytical continuity between the GWs background solutions found in
the various topological frequency regimes.
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Cross-Talk term in Radiation

So far, the double scalar convolution of approximate pieces of curvature power
spectrum has been calculated. This scalar function has been broken into the three
main internal frequency regimes (IR, IM, UV) and a convolution in the double
integral on the momenta has been performed, only between equal terms. In the
previous sections, the IR-IR, IM-IM and UV-UV contributions were calculated,
and it was seen how these specific convolutions lead to the generation of an induced
GWs background that must respect a well-defined frequency range. However, as
already mentioned, these are not the only possible convolutions, as one must also
consider those associated with unpaired terms. From a physical point of view, it is
possible to interpret this dynamics by saying that it is necessary to consider the
interaction of modes that belong to different moments of inflationary evolution
(upon re-entry into the Hubble sphere).
Therefore, the purpose of this section is to provide such final convolution calcula-
tions, so that we will have, by putting together all the results found, a final and
complete picture of the scalar-induced GWs background.
We must first recall the shape of the scalar spectrum in its three frequency approx-
imations

PR(y)
(IR) ≃ P(0)

R
4

π|y|
, (5.53)

PR(y)
(IM) ≃ P(0)

R

×

∣∣∣∣∣(5.59− 0.44i)−
(
1.63− 0.009i

y

)
− (6.20 + 1.35i)y + (2.10 + 0.37i)y2

∣∣∣∣∣
2

× π

16
y,

(5.54)

PR(y)
(UV ) ≃ P(0)

R . (5.55)

At this point it is possible to continue with the convolution counts; it should be
noted that the latter is not symmetrical, so it will be necessary to calculate all
permutations of the combinations that can be studied.
The IR-UV convolution defines the following spectra:

PR

(
kv

kc

)
≃ P(0)

R

(
4

π kv
kc

)
, (5.56)

PR

(
ku

kc

)
≃ P(0)

R . (5.57)
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To define such a script, it is necessary to declare the state of the scalar function
arguments {

q
kc

<< 1
|k−q|
kc

>> 1.
(5.58)

Splitting the modulus as done so far, within the limits of interest on the momenta,
it is easy to solve the system; however, it is observed that only for k >> q, (thus
with v << 1 and u ≃ 1) a finite solution is obtained, defining the production of
a GWs background living in the ultraviolet region (it is found in the resolution
of the system that k >> kc). Therefore the IR-UV convolution induces a GWs
background in the external UV frequency regime. Moving on to the calculations
we obtain, following the same logic as before

ΩGWs,c(k) ≃ P(0)2
R

∫ ∞

0

dv

∫ 1+v

|1−v|
du

(
2v

1− c−2
s

)α

×

(
4

π kv
kc

)
× 1, (5.59)

ΩGWs,c(k) ≃ P(0)2
R

∫ ∞

0

dvvα−1vc, (5.60)

ΩGWs,c(k) ≃ P(0)2
R

(
kc
k

)α+1 ∫ ∞

0

dV V α−1. (5.61)

The contribution found to be valid in the ultraviolet is, as we can easily observe,
a decreasing contribution that must be added to the flatness term found by the
UV-UV convolution. Thus for smaller UV frequencies, the latter result will give a
non-zero contribution in the sum, which, however, as the frequency increases with
respect to the dip momentum, will tend to zero, leaving only the constant term.
Since no symmetry can be exploited in the definition of the scalar problem, the
permutation of the case just given must also be calculated; we therefore calculate
the UV-IR convolution. In such a case, we rewrite the same system as before
(obviously inverting the inequalities): it is easy to see how this system, for no value
of the internal momenta, presents a solution. This convolution therefore physically
makes no contribution to the GWs background. The same can also be said for
IM-IR, UV-IM couplings. A non-zero term is that offered by the IR-IM interaction.
It is therefore written

PR

(
kv

kc

)
≃ P(0)

R

(
4

π kv
kc

)
, (5.62)
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PR

(
ku

kc

)
≃ P(0)

R

×

∣∣∣∣∣∣(5.59− 0.44i)−

(
1.63− 0.009i

ku
kc

)
− (6.20 + 1.35i)

ku

kc
+ (2.10 + 0.37i)

(
ku

kc

)2

∣∣∣∣∣∣
2

× π

16

ku

kc
.

(5.63)

The system related to that combination result{
q
kc

<< 1
|k−q|
kc

≃ 1.
(5.64)

Again, in the case for which k >> q, there is a solution by finding a GWs background
that is defined in the intermediate external frequency region (k → kc). For the rest
of the momenta, no solution is allowed.
We proceed to the usual calculation:

ΩGWs,c(k) ≃ P(0)2
R

∫ ∞

0

dvvα
∫ 1+v

|1−v|
du

(
4

π kv
kc

)
× π

16

ku

kc
×∣∣∣∣∣∣(5.59− 0.44i)−

(
1.63− 0.009i

ku
kc

)
− (6.20 + 1.35i)

ku

kc
+ (2.10 + 0.37i)

(
ku

kc

)2

∣∣∣∣∣∣
2

×

π

16

ku

kc
, (5.65)

ΩGWs,c(k) ≃ P(0)2
R∣∣∣∣∣∣(5.59− 0.44i)−

(
1.63− 0.009i

k
kc

)
− (6.20 + 1.35i)

k

kc
+ (2.10 + 0.37i)

(
k

kc

)2

∣∣∣∣∣∣
2

∫ ∞

0

dvvα−1, (5.66)

ΩGWs,c(k) ≃ P(0)2
R∣∣∣∣∣∣(5.59− 0.44i)−

(
1.63− 0.009i

k
kc

)
− (6.20 + 1.35i)

k

kc
+ (2.10 + 0.37i)

(
k

kc

)2

∣∣∣∣∣∣
2

× (
kc
k
)α
∫ ∞

0

dV V α−1. (5.67)
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This result is the same as that found by the IM-IM convolution. Since two identical
solutions live in the same external frequency regime, they can simply be added
together, thus doubling the amplitude value.
The last non-zero contribution of unpair convolution is offered by the IM-UV
convolution. It is therefore written

PR

(
kv

kc

)
≃ P(0)

R

×

∣∣∣∣∣∣(5.59− 0.44i)−

(
1.63− 0.009i

kv
kc

)
− (6.20 + 1.35i)

kv

kc
+ (2.10 + 0.37i)

(
kv

kc

)2

∣∣∣∣∣∣
2

×

π

16

kv

kc
, (5.68)

PR

(
ku

kc

)
≃ P(0)

R . (5.69)

The system for the argument follows:{
q
kc

≃ 1
|k−q|
kc

>> 1.
(5.70)

The system again presents solution only for v << 1 and u → 1, inducing a non-
trivial background living in the UV, exactly like the first calculated cross-talk.
Calculating the GWs abundance we obtain

ΩGWs,c(k) ≃ P(0)2
R

∫ ∞

0

dvvα
∫ 1+v

|1−v|
du

π

16

kv

kc

∣∣∣∣∣ 1kv
kc

∣∣∣∣∣
2

, (5.71)

ΩGWs,c(k) ≃ P(0)2
R

∫ ∞

0

dvvα−1vc, (5.72)

ΩGWs,c(k) ≃ P(0)2
R ×

(
kc
k

)α+1 ∫ ∞

0

dV V α−1. (5.73)

This result is identical to that offered in the first IR-UV scattered convolution, so
the associated physical considerations are the same.
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5.1.2 Final Results

Having reached this point in the discussion, it is possible to conclude by pointing
the results of the physical model. The theoretical amplitude of the model can be
calculated by calculating the amplitude of each individual contribution. Since the
remaining convolution integrals on V are of the order of unity, the amplitude of each
result is based on the general trend of P(0)2

R ≃ 10−18. After all, this reasoning is very
intuitive: we are calculating the convolution of an input spectrum that has a fixed
amplitude scale; one can therefore expect that the induced GWs background, in
every frequency range, also respects this numerical property. The final abundance,
on the other hand, as can be easily seen in an analytical reconstruction, defines a
rising trend followed by a decreasing phase, defined by the IR-IR convolution (also
supported by a part of the IM-IM convolution); subsequently, near the reference
frequency kc, a continuous decrease is observed at the previous limit, ending with
a slight rise. The latter then naturally tends to flatten out. This flattening is
entirely in accordance with the next and last constant trend, defined by the UV-UV
convolution and the unpaired convolutions defined above. The figure thus illustrates
the analytical-theoretical result found by using the idea of a Dirac Delta toy-model
on the dip of the system.

Figure 5.4: Analytical qualitative plot that resume all the theoretical trend in the overall
frequency range.

A computational confirmation of the work done is offered by a program developed
by Domenech (https://github.com/Lukas-T-W/SIGWfast), which, in radiation
domination, calculates the same GWs background. The operation of the script is
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very simple: it involves as an input the curvature power-spectrum of the problem,
and then it defines the analytical computational result. Therefore, substituting our
scalar spectrum offered by Planck [14], the solutions found are shown in the figures
(5.4), (5.5).

Figure 5.5: Curvature Power Spectrum (https://github.com/Lukas-T-W/SIGWfast).

As can be seen, the theoretical amplitude found coincides with that shown in the
graphical solution. The analytical trend of both constructions coincides optimally.
The only discrepancy can be seen in the first section of the spectral energy density:
the growth trend defined by the IR-IR convolution in the first internal frequency
limit is missing from the computational calculation. However, this lack can be
justified by the fact that the reference scale of the kc problem is very small, of the
order mentioned before, on the scales of the CMB. Therefore there will exist few
scales that can be involved in the FR problem smaller than the aforementioned,
and they will all be very close to the value of the latter. This reasoning allows us to
assert that therefore in the infrared, the value of vc is large (greater than one), but
not so large as to justify the existence of frequencies in the first range. Therefore,
considering only the last IR range for v << 1, there is a total correspondence
between the analytical-modelling model and the computational solution.
It is important to remember that the calculated induced GWs background, in
both cases, is still not the GWs background we observe today; in fact it is the one
calculated in the radiation epoch.
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Figure 5.6: Induced GWs spectral energy density during the final radiation domination
period. The plot presents the spectral energy density calculated in the
conformal time ηc with respect to the frequency ratio k/kref . kref is the
reference frequency of the system, and was chosen to be of the order of 103,
in order to have a positive match with the frequency values involved in the
theory. In fact, as Planck’s graph itself shows us, the fast-roll problem occurs
on scales kc of the order of 5× 10−3Mpc−1. Both spectra therefore have to
be processed on such values (https://github.com/Lukas-T-W/SIGWfast).

The following formula is used to switch from one to the other:

ΩGW,0h
2 = Ωr,0h

2

(
g∗(Tc)

g∗,0

)(
g∗s(Tc)

g∗s,0

)−4/3

ΩGW,c, (5.74)

where Ωr,0 is the current radiation density today and g∗(T ) and g∗s(T ) are the effec-
tive degrees of freedom in the energy and entropy density at temperature T . Thanks
to the data offered by the Planck satellite we observe Ωr,0h

2 ≃ 4.18 × 10−5 [38].
It is also found that g∗,0 = 3.36 and that g∗s,0 = 3.91. It is also understandable
how for T > 100 GeV and assuming only standard model particles, we have
g∗(T ) = g∗s(T ) = 106.75. The ’c’ term [198] instead indicates the evaluation at the
time when the spectral energy density is constant, i.e. at the time when the tensor
modes are well contained within the Hubble horizon. The multiplicative pre-factor
to the radiation density is of the order of 10−7, so the final abundance observable
today, induced during radiation, defines a minimal amplitude value, of the order of
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ΩGW,0h
2 ≃ 10−25.

Assuming that the induced tensor power spectrum has the same order of magnitude
as the abundance found (since they imply the same physical observable), it is
possible to give an estimate of the tensor-to-scalar-ratio, relating the abundance
to the known curvature power spectrum. The k∗ for which the maximum of the
background is observed coincides with k∗ ≃ 5.03512 × 10−3Mpc−1, and at this
external frequency it is found that ΩGWs(k∗) ≃ 4.95334× 10−18.
It is observed, again from the above plot, that PR(k∗) ≃ 2.32× 10−9. It is therefore
possible to give an estimate of r by relating the two spectral values just described.
The order of magnitude is of the type r(∗) ≃ 2.32 × 10−9; the value is definitely
very small, but it is an expected value, being the problem related to the production
of a GWs background at the second perturbative order.
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5.1.3 Spectral energy density of GWs from Inflationary
epoch

It is now necessary to conclude the entire treatment of the studied model. So far,
the scalar-induced gravitational wave background during the radiation-dominated
phase has been calculated. Now we want to calculate the GWs background during
the inflaton domination instead: we would like to proof a superiority of the latter
over the former GWs background.
Inomata’s article [201] gives us the formulation of the conformal time-dependent
tensor power spectrum associated with tensor modes induced during the inflationary
phase [201]

Ph(k, η) =
4

M4
pl

∑
j

∫ ∞

0

dv

∫ 1+v

|1−v|
du

[
4v2 − (1 + v2 − u2)2

4uv

]2
× (5.75)

∣∣Ij(u, v, k, η)∣∣2Pδϕj
(kv)Pδϕj

(ku). (5.76)

In such a formulation, the sum is over the scalar field j; in our one-field case, this
term will be transparent. We define [201]

Ij(u, v, k, η) = k2

∫ η

−∞
dη̃gk(η; η̃)fj(ku, kv, η̃), (5.77)

with

gk(η; η̃) =
Θ(η − η̃)

k3η̃2
[
k(η̃ − η) cos (k(η̃ − η))− (1 + k2ηη̃) sin (k(η̃ − η))

]
, (5.78)

the Green’s solution in inflaton domination (already encountered in Chapter 2).
The source term, on the other hand, is written [201]:

fj(k1, k2, η) = Tj(k1, η)Tj(k2, η), (5.79)

where [201]

Tj(k, η) =
Uj(k, η)

Uj(k, η → 0)
, (5.80)

with Uj the causally connected inflationary solution of the model. The value of this
function is taken from the third chapter, in the section on the fast-roll, thus [192]

Tj(k, η) =
m
C
× e

√
m2−k2 ln

(
1

1−ηH

)
1
H

m
C

, (5.81)

Tj(k, η) =

(
1

1− ηH

)√m2−k2

H2

, (5.82)
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using conformal time notation inscribed in a de-Sitter inflationary model. Know-
ing the rescaling formula between the curvature power-spectrum and the power
spectrum of the scalar field fluctuation, we write

Pδϕ(k) ≃ PRϵM
2
Pl ≃ ϵM2

PlP
(0)
R γkin

(
k

kc

)
. (5.83)

We rewrite the kernel term in the problem

I

(
u, v,

k

kc
, η

)
=

(
k

kc

)2 ∫ η

−∞

dη̃Θ(η − η̃)(
k
kc

)3
η̃2 k

kc
(η̃ − η) cos

(
k

kc
(η̃ − η)

)
−

(
1 +

(
k

kc

)2

ηη̃

)
sin

(
k

kc
(η̃ − η)

)×( 1

1− η̃H

)αu+αv

,

(5.84)

where

αu + αv =

√
m2 − k2u2

k2c

H2
+

√
m2 − k2v2

k2c

H2
. (5.85)

The problem continues with the resolution of the integral over the kernel time;
it is easy to see how this represents the most complex point of the model, given
the analytical complexity of the integral. In principle, it would be convenient
to send the conformal time η at the upper limit of the integral to zero, since we
conventionally assume finite inflation for this limit; moreover, we are observationally
bound to know the value of Ph(k, η → 0). However, this simplification will only be
made later. In the analytical spirit of the radiation section, it is appropriate to
study the kernel in its infrared approximation (k << kc), sending the conformal
time to zero only at the end. This kernel will then be replaced in the integral on
the momenta and will allow us to calculate, as done in radiation, the IR trend
of the induced inflationary GWs background. Obviously, to calculate the GWs
background in other external frequency regimes, such an approximate kernel loses
its value, and must be calculated in its entirety form.
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Infrared Regime (k << kc)

In the infrared limit, the kernel is simplified as follows

I ≃
(
kc
k

)∫ η

−∞

dη̃

η̃2
× k

kc
(η̃ − η)

(
1− k2(η̃ − η)

k2
c

)
−

(
1 +

k2

k2
c

ηη̃

)
×

(
k

kc
(η̃ − η)− k3

k3
c

(η̃ − η)3

6

)×( 1

1− η̃H

)ω

,

(5.86)

with
ω = αu + αv, (5.87)

and with the series development of the oscillating functions by small argument,
given the regime of interest. By simplifying the integral algebraically, we obtain

I ≃
(
k

kc

)2

×
∫ η

−∞

dη̃

η̃2

[
−1

3
(η̃ − η)3 − (η̃ − η)ηη̃

]
×
(

1

1− η̃H

)ω

. (5.88)

The Mathematica program manages to solve this integral, finding the solution of
the approximate kernel in the infrared limit

I ≃
(
k

kc

)2

× 1

3H2(ω − 1)[
−(1− ηH)1−w(Hη(ω − 1)− 1))

ω − 2

+H3η3[−((ω − 1)ωH−ω(−H)ωπ csc (πω))

+(1− ηH)1−ωHyperG2F1(2, ω − 1, 2− ω, 1−Hη)]
]
. (5.89)

Now the square modulus of this solution must be calculated; this must then be
entered into the double scalar convolution integral over internal momenta. For the
sake of simplicity, we will rename the kernel function in the following way

I ≃
(
k

kc

)2

f(η). (5.90)

This simplification leads us to consider the term ω as a function independent of
the momentum, and which will therefore not be integrated later. This analytical
simplification is implicit in the IR treatment as well as in the fast-roll model in its
most general form.
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We now turn to the double integral on momenta. Let us recall the form of the
spectrum in the IR-IR convolution

Pδϕ

(
ku

kc

)
≃ H2

π
× 4

π ku
kc

, (5.91)

Pδϕ

(
kv

kc

)
≃ H2

π
× 4

π kv
kc

. (5.92)

Since the fluctuation spectrum of the scalar field, is the same, one can use again
the toy-model of the Dirac delta introduced in the first calculation. In the infrared
vc >> 1, v << vc, therefore the two infrared limits will again be obtained for which{

v >> 1, u ≃ v

v << 1, u ≃ 1.
(5.93)

We can call B the term

B =

[
4v2 − (1 + v2 − u2)2

4uv

]2
(5.94)

for analytical simplicity. In the first case of the system described above, i.e. for
v >> 1, we have that B → 1. Therefore the tensor power spectrum will be written:

Ph(k, η) ≃
4

M4
Pl

∫ ∞

0

dv

∫ 1+v

|1−v|
du16×

∣∣f(η)∣∣2( k

kc

)4

×

(
H4

π4

)
vc
uv

, (5.95)

Ph(k, η) ≃
64

M4
Pl

H4

π4

∣∣f(η)∣∣2 ∫ ∞

0

dv

v2
v2c

(
k

kc

)4

, (5.96)

Ph(k, η) ≃
64

M4
Pl

H4

π4

∣∣f(η)∣∣2( k

kc

)3 ∫ ∞

0

dV

V 2
. (5.97)

The analytical trend found at this stage is an increasing function as the third power
of the external frequency. This growth, collinear to that of radiation domination
(k3 ln2 k) is greater than the latter, demonstrating, at least as far as the analytical
trend is concerned, a first domination of inflation over radiation.
In the second consecutive infrared limit, when v << 1, we have that B ≃ v2. We
get

Ph(k, η) ≃
4

M4
Pl

∫ ∞

0

dv

∫ 1+v

|1−v|
du16×

∣∣f(η)∣∣2( k

kc

)4

×

(
H4

π4

)
vc
uv

× v2, (5.98)

Ph(k, η) ≃
64

M4
Pl

H4

π4

∣∣f(η)∣∣2 ∫ ∞

0

dv
v2

v
v2c

(
k

kc

)4

, (5.99)

Ph(k, η) ≃
64

M4
Pl

H4

π4

∣∣f(η)∣∣2 ∫ ∞

0

dV V. (5.100)
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The clear result from this last IR limit is a constant behaviour.

Intermediate regime (k → kc)

Proceeding with the same scheme as in the last section, we now calculate the IM-IM
convolution contribution that provides the creation of a GWs background in IM.
Recall how, identical to the radiation case, it is required in the space of momenta
that v < 1, u → 1.
The curvature power spectrum IM of the problem is recalled:

PR(x) = P(0)
R ×∣∣∣∣∣(5.59− 0.44i)−

(
1.63− 0.009i

x

)
− (6.20 + 1.35i)x+ (2.10 + 0.37i)x2

∣∣∣∣∣
2

× π

16
x.

(5.101)

Recalling the parametrization on the radiation and inflation power spectra, the
tensor power-spectrum is calculated. For the moment, we choose, in an approximate
key, to still use the approximate kernel, and see if the final result will be more or
less close to the rigorous one calculated with the generic kernel.
We can write:

Ph(k, η) ≃
4

M4
Pl

∫ ∞

0

dv

∫ 1+v

|1−v|
du

(
k

kc

)4∣∣f(η)∣∣2 × v2
(
H

π

)4
kv

kc

ku

kc∣∣∣∣∣∣(5.59− 0.44i)−

(
1.63− 0.009i

kv
kc

)
− (6.20 + 1.35i)

kv

kc
+ (2.10 + 0.37i)

(
kv

kc

)2

∣∣∣∣∣∣
2

∣∣∣∣∣∣(5.59− 0.44i)−

(
1.63− 0.009i

ku
kc

)
− (6.20 + 1.35i)

ku

kc
+ (2.10 + 0.37i)(

ku

kc
)2

∣∣∣∣∣∣
2

,

(5.102)

Ph(k, η) ≃
4

M4
Pl

(
k

kc

)4∣∣f(η)∣∣2 × (H

π

)4

×∣∣∣∣∣∣(5.59− 0.44i)−

(
1.63− 0.009i

k
kc

)
− (6.20 + 1.35i)

k

kc
+ (2.10 + 0.37i)

(
k

kc

)2

∣∣∣∣∣∣
2

∫ ∞

0

dvv3
(
k

kc

)2

× 1∣∣∣kvkc ∣∣∣2 , (5.103)
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Ph(k, η) ≃
4

M4
Pl

∣∣f(η)∣∣2 × (H

π

)4

×∣∣∣∣∣∣(5.59− 0.44i)−

(
1.63− 0.009i

k
kc

)
− (6.20 + 1.35i)

k

kc
+ (2.10 + 0.37i)

(
k

kc

)2

∣∣∣∣∣∣
2

(
k

kc

)2 ∫ ∞

0

dV V. (5.104)

The plot of the latter describes a curve which, (read in the correct range, i.e. near
kc) first starts out flat, and then rises and flattens immediately thereafter.

Figure 5.7: Inflationary spectral energy density of the problem set out in equation (5.103),
to be read in the frequency limit of interest,

As mentioned earlier, this result uses the approximation of a kernel that is not
properly suited to the frequency range of the calculation. It is therefore convenient
to give the complete definition of the kernel under consideration. Taking (5.83),
and sending the conformal time η → 0 primordially, it is possible, with the help of
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Mathematica, to solve the integral over the times, finding the following solution

I ≃ 1

z

1

3(ω − 2)(ω − 1)Γ(ω + 5)
H−3−ω

(
3

2
Hπω(16− 12ω − 8ω2 + 3ω3 + ω4)z|z|ω csc (πω

2
)(H2(3 + ω) cos (

z

H
)

+ z2HypergeometricPFQ[(
3

2
+

ω

2
), (

3

2
,
5

2
+

ω

2
),− z2

4H2
])+

+H1+ωz3Γ(5 + ω)HypergeometricPFQ[(1,
3

2
), (

5

2
,
3

2
− ω

2
, 2− ω

2
),− z2

4H2
]−

1

2
πω(6− ω − 7ω2 + ω3 + ω4)|z|1+ω sec (

πω

2
)

(z3HypergeometricPFQ[(2 +
ω

2
), (

5

2
, 3 +

ω

2
),− z2

4H2
] + 3H2(4 + ω) sin (

z

H
))).

(5.105)

This is the generic solution of the kernel in a complete external frequency range.
In such writing z represents the term k/kc. Let us call the term Iz = A for
simplicity. It is therefore possible to recalculate the IM-IM contribution with the
same analytical procedures as above, the only difference being to use this kernel,
rather than the one approximated in IR. The final solution is written:

Ph(k, η) ≃
4

M2
Pl

(
H

π

)4
1

z4
|A|2∣∣∣∣∣(5.59− 0.44i)−

(
1.63− 0.009i

z

)
− (6.20 + 1.35i)z + (2.10 + 0.37i)(z)2

∣∣∣∣∣
2

.

(5.106)

Having chosen appropriate values of H and ω, and looking at the function in the
vicinity of z ≃ 1 (i.e. for k → kc), we could find a solution that analytically behaves
very similarly to that found in the IR kernel approximation; it is therefore logical
to think how this approximation is still valid in order to study the contribution of
intermediate external frequencies.

It should be recalled that the IM-IM convolution also produces a GWs background
contribution in the IR, if one chooses a set of momenta for which v >> 1, and
u ≃ v.
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Figure 5.8: Inflationary spectral energy density of the problem set out in equation (5.105),
to be read in the frequency limit of interest, neglecting the inaccurate ampli-
tude values, as the amplitude over-all factor was not graphed for analytical
simplicity. Unlike the previous plot, here the generic kernel was considered,
choosing a value of H ≃ 1016GeV and a value of ω ≃ 20, both of which
conform to the model studied.

It is therefore written:

Ph(k, η) ≃
4

M4
Pl

∫ ∞

0

dv

∫ 1+v

|1−v|
du

(
k

kc

)4∣∣f(η)∣∣2 × (H

π

)4(
kv

kc

)2∣∣∣∣kvkc
∣∣∣∣−4

, (5.107)

Ph(k, η) ≃
4

M4
Pl

∣∣f(η)∣∣2 × (H

π

)4(
k

kc

)3

. (5.108)

The plot reflects that found by the IR-IR convolution, both in terms of amplitude
and analytical trend. Therefore, in the IR, in the outer frequencies, these two GWs
background contributions are safely added together.
As far as the last paired UV-UV convolution is concerned, identical to the radiation
case, the double convolution of constant functions is evaluated, which releases a
number that follows the general amplitude trend of the inflation problem.
It is therefore possible to plot all the trends found so far in the overall external fre-
quency bands. Leaving aside for a moment the amplitude character of the problem,
which will be addressed below, it is possible to note that, functionally speaking,
the inflation GWs background grows more than the radiation GWs background,
and is always greater; this is a proof, albeit partial, of the initial intent that this
thesis had set.
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Cross-Talk terms in Inflation

Once again, in order to conclude the discussion, it is necessary to study the final
convolutional terms; doing so, one has a complete picture of all the possible inter-
actions between the modes associated with the scalar spectrum in question, which
create the source term. The terms that contribute to the final GWs background are
the same as in the radiation case (as well as those that do not provide an analytical
contribution). Therefore, the IR-UV, IR-IM, IM-UV convolution contributions
will be calculated. The IR-UV convolution induces a background living in the
ultraviolet, so the use of the general kernel will be necessary; it is written

Ph(k, η) ≃
4

M4
Pl

∫ ∞

0

dv

∫ 1+v

|1−v|
du×

(
4

π kv
kc

)
v2 ×

(
H4

π4

)
|A|2

(
1
k
kc

)2

. (5.109)

Using the same analytical procedures up to now, the following solution is found

Ph(k, η) ≃
4

M4
Pl

×

(
H4

π4

)(
1

z

)5

|A|2 . (5.110)

Choosing appropriate values of H and ω, and choosing an high range of study for
z, one can read the plot of a function that remains substantially flat; this term
should therefore be added to the constant contribution induced by the UV-UV
convolution.
It can be verified that the IM-UV contribution is identical to that just written,
so the same conclusions follow. The final term to be calculated IR-IM carries a
contribution identical to that studied in the IM-IM convolution, therefore these
terms should be added together.
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Figure 5.9: Inflationary spectral energy density of the problem set out in equation (5.105),
to be read in the frequency limit of interest, neglecting the inaccurate ampli-
tude values, as the amplitude over-all factor was not graphed for analytical
simplicity. Note how for large frequency scales the curve tends to remain flat,
bringing a constant contribution to the general UV solution.

Final results and comments

The overall graph of the GWs background induced during inflation shows, from an
analytical point of view, a substantially higher growth than that described in the
case of radiation.

The generic amplitude of the inflationary problem, as can be deduced from the IR
solutions in particular, is of the order of unity; it therefore describes an extraordinar-
ily high value, yielding a tensor-to-scalar-ratio value of the order of r → 109. Such
a value would indeed exclude a Fast-Roll model from inflationary phenomenology.
It is necessary to switch from the inflationary tensor-power spectrum, for observa-
tional reasons, to the inflation-induced spectral energy density studied during the
time of radiation domination. It can be shown that [201]

ΩGW (k, ηc) ≃
1

48
Ph(k, η → 0). (5.111)
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Figure 5.10: Analytical qualitative plot that resume all the theoretical trend in the overall
frequency range.

Taking into account the era of subsequent matter domination, the current energy
density parameter [201] is found:

ΩGW (k, η0)h
2 = 0.39

(
g∗,c

106.75

)− 1
3

Ωr,0h
2ΩGW (k, ηc), (5.112)

ΩGW (k, η0)h
2 = 3.4× 10−7

(
g∗,c

106.75

)− 1
3

Ph(k, η → 0), (5.113)

where g∗,c represents the effective number of degrees of freedom at time ηc.
It is therefore possible to verify that the current inflation-induced GWs background
observable is of the order of ΩGW (k, η0)h

2 ≃ 10−9.
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5.2 Scalar induced GWs from EFTI
In this section, the focus is to take the curvature perturbation solution offered by
the EFTI theory seen in the previous chapter, and to calculate the spectral energy
density of the second-order induced GWs background. A main difference between
this model and the fast-roll model can already be defined. While the Fast-Roll
defines a strong departure from the slow-roll in terms of ϵ, thus defining a strong
comparability between the two power spectra of the theory, the EFTI model defines
a perturbative departure condition from the slow-roll: ϵ in fact always remains very
small, so here we will never expect a higher inflationary GWs background than the
radiation background. In fact, the curvature power spectrum overpowers the scalar
field perturbation power spectrum, which induces the induced inflationary GWs
background.
Another difference between the two models is certainly related to the analytical
approach. It is easy to see how a double convolution integral on the momenta
of a spectrum oscillating in a damped way in certain frequency ranges does not
represent a case of simple analytical handling. Therefore, the idea to deal with such
a problem is to develop the curvature power-spectrum around the limit points of
the argument’s range. Therefore we have to develope around the points of kτf → 1,
and kτf → β, where kτf → β is remembered to be the sharpness parameter of the
features induced in the model. It is obvious to think that this approximation will
only allow us to have a part of the GWs background induced in specific external
frequency ranges. However, it will be possible to exploit the symmetry of the input
function to try to understand the background even in ranges where the analytical
development remains forbidden.

5.2.1 Spectral energy density of GWs from Radiation epoch

Recall the formula that defines the induced GWs background in radiation [119] [195]

ΩGWs,c(k) =

∫ ∞

0

dv

∫ 1+v

|1−v|
duT (u, v, cs)PR(ku)PR(kv), (5.114)

with
v =

q

k
, (5.115)

and
u =

|k− q|
k

. (5.116)
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The radiation-dominated kernel is the one addressed in Chapters 3 and 4, and it is
written [119] [195]:

T (u, v, cs) =
y2

3c4s

(
4v2 − (1− u2 + v2)2

4u2v2

)2

(5.117)

×

π2

4
y2Θ[cs(u+ v)− 1] +

(
1− 1

2
y ln

∣∣∣∣1 + y

1− y

∣∣∣∣
)2
 . (5.118)

We have to remember that
y =

u2 + v2 − c−2
s

2uv
. (5.119)

The scale invariant curvature spectrum proposed by the slow-roll phase is defined
instead:

P(0)
R ≃ H2

πϵM2
Pl

. (5.120)

The curvature power spectrum that we want to use as input is:

PR(k) ≃ P(0)
R

(
1− 3

2
ϵstepW

′(kτf )D

(
kτf
β

))
, (5.121)

with 1 < kτf < β.
For the following problem we choose a step function F of the form F = tanhx.
Therefore it is found that D(x) = πx

sinhπx
with x =

kτf
β

.
We therefore choose to compute the contribution offered in the convolution by the
first oscillating scalar terms; we then proceed to approximate the various analytic
terms in the limit for which kτf → 1 (obviously this limit will have to be reconverted
with the right convolution arguments). We recall that

W
′
(x) =

(
−3 +

9

x2

)
cos 2x+

(
15− 9

x2

)
sin 2x

2x
. (5.122)

Developing for x → 1 we obtain:

sin (2x) ≃ sin (2) + 4 cos (2)(x− 1)− 8 sin (2)(x− 1)2, (5.123)
cos (2x) ≃ cos (2)− 4 sin (2)(x− 1)− 8 cos (2)(x− 1)2. (5.124)

It is simple to observe how for kτf → 1, considering that in the theory β >> 1, the
argument of the dumping function tends to zero; hence in that limit the dumping
function will tend to unity. As in the Fast-Roll model, we write the system of
arguments in the convolution that tend to the value of the development{

qτf → 1

|k− q| τf → 1.
(5.125)
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The decomposition of the modulus leads to two main limits of interest on momenta.
If we assume the condition that k >> q, then we have that kτf → 1, hence that
v << 1 and u ≃ 1. Therefore, this limit allows us to induce a GWs background
living in the outer frequency range for which kτf → 1. In the opposite limit, however,
we have that q >> k, hence that qτf >> kτf , so we observe that kτf << 1 for
v >> 1, u ≃ v. This limit defines the induction of a GWs background in the
"infrared" interval, i.e. for kτf << 1. Let us proceed to the calculation of the latter
infrared contribution. We could write

ΩGW,c(k) ≃
∫ ∞

0

dv

∫ 1+v

|1−v|
duv−4 ln2 v

9

4
ϵ2stepP

(0)2
R[−3 +

9

(kvτf )2

] [
cos (2)− 4 sin (2)(kvτf − 1)− 8 cos (2)(kvτf − 1)2

]
+

[
15− 9

(kvτf )2

]
× 1

2kvτf
×
[
sin (2) + 4 cos (2)(kvτf − 1)− 8 sin (2)(kvτf − 1)2

]×

same(kuτf ). (5.126)

We rename the round brackets of rows two and three of (5.124) with the help of
the function A(kvτf). It should be explained how this calculation relates only to
the product of the oscillating terms that cause a variation on the constant slow-roll
value. This term is in fact the dominant perturbation contribution, and therefore
the most interesting to study. In simpler form it is rewritten

ΩGW,c(k) ≃
∫ ∞

0

dvv−4 ln2 v
9

4
ϵ2stepP

(0)2
R × A(kvτf )

2. (5.127)

By developing the term A in such a way as to consider within it only the dominant
terms of order 0, considering only the positive contributions in order to have the
maximum numerical contribution to the integral, and considering the limit on the
intrinsic momentum of the case, it is possible to approximate and suppose the
function A ≃ n, with n a number independent of the momentum (or rather, weakly
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dependent on it) and positive. With this idea, the integral is greatly simplified

ΩGW,c(k) ≃
∫ ∞

0

dvv−4 ln2 v
9

4
ϵ2stepP

(0)2
R × n2, (5.128)

ΩGW,c(k) ≃
9

4
ϵ2stepP

(0)2
R × n2

∫ ∞

0

dvv−4 ln2 v, (5.129)

ΩGW,c(k) ≃
9

4
ϵ2stepP

(0)2
R × n2

∫ ∞

0

dq

k

k4

q4
ln2 q, (5.130)

ΩGW,c(k) ≃
9

4
ϵ2stepP

(0)2
R × n2 (kτf )

3

τ 3f

∫ ∞

0

dq

q4
ln2 q. (5.131)

The solution expresses a cubic power growth of the GWs background in the regime
of external frequencies for which kτf << 1.
We now proceed to the calculation of the second convolution contribution offered
by the interaction of the first oscillating modes, i.e. the one defining an induced
background in the limit of external frequencies for which kτf → 1. In the standard
case of c2s < 1, we write

ΩGW,c(k) ≃
∫ ∞

0

dv
9

4
ϵ2stepP

(0)2
R

(
2v

1− c−2
s

)α

× A(kvτf )× same(kuτf ). (5.132)

Then, simplifying using the same mathematical techniques seen in the Fast-Roll
model, we obtain

ΩGWs,c(k) ≃
9

4
ϵ2stepP

(0)2
R
(
1− c−2

s

)−α[−3 +
9

(kτf )2

]
[cos (2)− 4 sin (2)(kτf − 1)− 8 cos (2)(kτf − 1)2]+

[
15− 9

(kτf )2

]
× 1

2kτf
× [sin (2) + 4 cos (2)(kτf − 1)− 8 sin (2)(kτf − 1)2]


∫ ∞

0

dvvαn. (5.133)

We rename the round bracket just outside the integral with the function γ. Thus:

ΩGWs,c(k) ≃
9

4
ϵ2stepP

(0)2
R (1− c−2

s )−α × n× γ(kτf )

∫ ∞

0

dvvα, (5.134)

ΩGWs,c(k) ≃
9

4
ϵ2stepP

(0)2
R (1− c−2

s )−α × n× γ(kτf )
(kτf )

−α−1

τ−α−1
f

∫ ∞

0

dqqα+1. (5.135)
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The plot of such a solution is to be studied in the external frequency range for
which kτf → 1. In this range the function defines a first undamped oscillation
condition, which precisely follows from the power growth calculated earlier. Having
calculated the GWs background induced by the scalar convolution of the first
oscillation modes, it is now necessary to define the second GWs background induced
by the convolution of approximate curvature power spectrum on the upper limit of
the moment; hence we proceed to define the GWs background induced by scalars
associated with the last part of the damped oscillation in the convolution.
We rewrite the system for the curvature power-spectrum arguments{

qτf → β

|k− q| τf → β.
(5.136)

The decomposition of the modulus leads to two main limits of interest on momenta.
If we assume the condition for which k >> q, then we have that kτf → β, hence
that v << 1 and u ≃ 1. Thus this limit allows us to induce a GWs background
that lives in the external frequency range for which kτf → β. In the opposite limit,
on the other hand, we have that q >> k, hence that qτf >> kτf , therefore we
observe that kτf << β for v >> 1, u ≃ v. This limit defines the induction of a
GWs background in the "infrared" range, i.e. for kτf << β, which overlaps with
those calculated above; these terms must therefore be added together.
In this case, the dumping function will have a non-trivial development. Developing
the hyperbolic sine function around the value of π, we write

sinh (πx) ≃ sinh (π) + π2 cosh (π)(x− 1) + .... (5.137)

The new infrared contribution is now calculated. We write

ΩGWs,c(k) ≃ P(0)2
R

9

4
ϵ2step

∫ ∞

0

dv

∫ 1+v

|1−v|
duv−4 ln2 v×[−3 +

9

(kvτf )2

]
[cos (2β)− 4 sin (2β)(kvτf − β)− 8 cos (2β)(kvτf − β)2]+

[
15− 9

(kvτf )2

]
× 1

2kvτf
× [sin (2β) + 4 cos (2β)(kvτf − β)− 8 sin (2β)(kvτf − β)2]

×

πkvτf/β

sinh (π) + ...
same(kuτf ). (5.138)
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With the same approximations as in the previous case, we write

ΩGWs,c(k) ≃ P(0)2
R

9

4
ϵ2step

∫ ∞

0

dvv−4 ln2 v × n2 × (
(πkvτf/β)

sinh (π)
)2, (5.139)

ΩGWs,c(k) ≃ P(0)2
R

9

4
ϵ2step

(
nπ

β sinhπ

)2

(kτf )
2

∫ ∞

0

dvv−2 ln2 v, (5.140)

ΩGWs,c(k) ≃ P(0)2
R

9

4
ϵ2step

(
nπ

β sinhπ

)2
(kτf )

3

τf

∫ ∞

0

dq

q2
ln2 q. (5.141)

As can easily be seen, this contribution reflects the first infrared result found. The
only difference is in the definition of the amplitude which is significantly smaller
due to the presence of the large sharpness term β in the denominator. It is now
necessary to calculate the last UV contribution offered by the second convolution
interaction studied. In the standard case in which c2s < 1, we write

ΩGWs,c(k) ≃ P(0)2
R

9

4
ϵ2step

∫ ∞

0

dv

∫ 1+v

|1−v|
du

(
2v

1− c−2
s

)α

×[−3 +
9

(kvτf )2

]
[cos (2β)− 4 sin (2β)(kvτf − β)− 8 cos (2β)(kvτf − β)2]+

[
15− 9

(kvτf )2

]
× 1

2kvτf
× [sin (2β) + 4 cos (2β)(kvτf − β)− 8 sin (2β)(kvτf − β)2]

×

πkvτf/β

sinh (π) + ...
same(kuτf ). (5.142)

Solving the integral we get

ΩGWs,c(k) ≃ P(0)2
R

9

4
ϵ2step(1− c−2

s )−α × γ(kτf )×
πkτf/β

sinhπ

∫ ∞

0

dvvαn× πkvτf/β

sinh (π)
,

(5.143)

ΩGWs,c(k) ≃ P(0)2
R

9

4
ϵ2step(1− c−2

s )−α × γ(kτf )
nπ

2β sinh (π)
× πkτf

β sinh (π)

∫ ∞

0

dvvαkvτf ,

(5.144)

ΩGWs,c(k) ≃ P(0)2
R

9

4
ϵ2step(1− c−2

s )−α × γ(kτf )n

(
π

β sinhπ

)2
(
(kτf )

−α

τ−2−α
f

)∫ ∞

0

dqqα+1.

(5.145)

The plot of such a function must take into account a β2 in the denominator leading
to a total flattening to zero of the GWs background induced in the relevant range,
i.e. for kτf → β.
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5.2.2 Spectral energy density of GWs from Inflationary
epoch

Identical to how it was done in the Fast-Roll section, we will now calculate the
spectral energy density of the second-order induced GWs background during the
inflationary phase. Let us recall the main formulae to be used in that section. The
tensor-power spectrum is defined as follows [201]

Ph(k, η) =
4

M4
pl

∑
j

∫ ∞

0

dv

∫ 1+v

|1−v|
du

[
4v2 − (1 + v2 − u2)2

4uv

]2
× (5.146)

∣∣Ij(u, v, k, η)∣∣2Pδϕj
(kv)Pδϕj

(ku). (5.147)

In such a formulation, the sum is over the scalar field j; in our one-field case, this
term will be transparent. We define [201]

Ij(u, v, k, η) = k2

∫ η

−∞
dη̃gk(η; η̃)fj(ku, kv, η̃), (5.148)

with

gk(η; η̃) =
Θ(η − η̃)

k3η̃2
[
k(η̃ − η) cos (k(η̃ − η))− (1 + k2ηη̃) sin (k(η̃ − η))

]
, (5.149)

the Green’s solution in inflaton domination (already encountered in Chapter 2).
The source term, on the other hand, is written [201]:

fj(k1, k2, η) = Tj(k1, η)Tj(k2, η), (5.150)

where [201]

Tj(k, η) =
Uj(k, η)

Uj(k, η → 0)
, (5.151)

with Uj the causally connected inflationary solution of the model.
In the EFTI model in question, it is convenient to choose a definition of causally
connected modes that describes a Bunch-Davies vacuum state, (since the departure
from the slow-roll condition is minimal). Hence we write

T (k, η) ≃ (1 + ikη)e−ikη. (5.152)

Recall the shape of the inflationary power spectrum:

Pδϕ ≃ ϵM2
PlPR ≃ ϵM2

PlP
(0)
R

(
1− 3

2
ϵstepW

′(kτf )D

(
kτf
β

))
, (5.153)
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with
W ′(x) =

(
−3 +

9

x2

)
cos (2x) +

(
15− 9

x2

)
sin (2x)

2x
, (5.154)

and the dumping function defined as before

D(x) =
πx

sinhπx
. (5.155)

It is crucial now to solve the integral over the times that defines the kernel function;
in this problem, the kernel is written as

I ≃ k2

∫ η→0

−∞
dη

′
gk(η, η

′
)(1 + ikvη

′
)(1 + ikuη

′
)e−ikη

′
(u+v). (5.156)

In such a model, we choose to send the conformal time to zero, and thus find the
analytical form of the kernel valid in every frequency region. The Mathematica
program succeeds in solving this integral, providing the solution:

I ≃ − u2 + 4uv + v2 − 1

(u+ v − 1)2(1 + u+ v)2k2
k2. (5.157)

Note how this problem, compared to the Fast-Roll problem, offers a much simpler,
analytically tractable solution. It is now possible to write down the tensor-power-
spectrum of the system:

Ph(k, η → 0) ≃ 4

M4
Pl

∫ ∞

0

dv

∫ 1+v

|1−v|
du

(
4v2 − (1 + v2 − u2)2

4uv

)2

∣∣∣∣∣ u2 + 4uv + v2 − 1

(u+ v − 1)2(u+ v + 1)2

∣∣∣∣∣
2

× P(0)2
R

9

4
ϵ2stepϵ

2M4
Pl×(−3 +

9

(kvτf )2

)
cos (2kvτf ) +

(
15− 9

(kvτf )2

)
sin (2kvτf )

2kvτf

× πkvτf/β

sinh (πkvτf/β)
×

same(kuτf ). (5.158)

Now, exactly as in the case of radiation, we study the GWs background induced by
the scalar convolution of the first oscillating scalar modes: thus it is necessary to
develop the spectra with the convolution argument that tend to one (as done in
radiation), and to calculate the double convolution on the momenta. Again, from
the system on the arguments, a bifurcation of the induced GWs background is
evident: for q >> k, then for v << 1 and u ≃ 1 a valid GWs background is induced
for kτf → 1. In the opposite case, for v >> 1 and u ≃ v the convolution in question
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induces an infrared background for which kτf << 1. Let us first concentrate on
the calculation of this last infrared term. In the limits of v >> 1 and u ≃ v we
have that (

4v2 − (1 + v2 − u2)2

4uv

)2

≃ 1, (5.159)∣∣∣∣∣ u2 + 4uv + v2 − 1

(u+ v − 1)2(u+ v + 1)2

∣∣∣∣∣
2

≃ v−4. (5.160)

Therefore we can write the tensor-power spectrum

Ph(k, η → 0) ≃ 4
9

4
ϵ2ϵ2stepP

(0)2
R

∫ ∞

0

dv

∫ 1+v

|1−v|
duv−4[−3 +

9

(kvτf )2

]
[cos (2)− 4 sin (2)(kvτf − 1)− 8 cos (2)(kvτf − 1)2]+

[
15− 9

(kvτf )2

]
× 1

2kvτf
× [sin (2) + 4 cos (2)(kvτf − 1)− 8 sin (2)(kvτf − 1)2]

×

same(kuτf ), (5.161)

Ph(k, η → 0) ≃ 4
9

4
ϵ2ϵ2stepP

(0)2
R

∫ ∞

0

dvA(kvτf )
2v−4, (5.162)

Ph(k, η → 0) ≃ 4
9

4
ϵ2ϵ2stepP

(0)2
R n2

∫ ∞

0

dv

v4
, (5.163)

Ph(k, η → 0) ≃ 36

4
ϵ2ϵ2stepP

(0)2
R n2

(
kτf
τf

)3 ∫ ∞

0

dq

q4
. (5.164)

The solution grows as a third power, parallel to the homologous result found in the
radiation. In the second and last case induced by the first scalar convolution, then
for v << 1 and u ≃ 1 a background is induced for kτf → 1. With such limits one
can approximate: (

4v2 − (1 + v2 − u2)2

4uv

)2

≃ v2, (5.165)∣∣∣∣∣ u2 + 4uv + v2 − 1

(u+ v − 1)2(u+ v + 1)2

∣∣∣∣∣
2

≃ v−2. (5.166)
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where we culd write the tensor-power spectrum in that way

Ph(k, η → 0) ≃
∫ ∞

0

dv

∫ 1+v

|1−v|
du

36

4
ϵ2ϵ2stepP

(0)2
R × γ(kτf )n, (5.167)

where γ(kτf) is the same as used above in the case of radiation. Developing as
done so far, we obtain:

Ph(k, η → 0) ≃ 36

4
ϵ2ϵ2stepP

(0)2
R × γ(kτf )n

∫ ∞

0

dv, (5.168)

Ph(k, η → 0) ≃ 36

4
ϵ2ϵ2stepP

(0)2
R × γ(kτf )n

τf
kτf

. (5.169)

This solution, in the limit of interest kτf → 1, once the third power growth is
complete, starts to oscillate, as can be deduced from a plot of it.
At this point, the last contribution to the GWs background offered by the con-
volution of the last oscillating modes can also be calculated; the spectrum in the
maximum limit of argument, when kvτf → β, is studied again. As in the radiation
case, there are two subcontributions given by the splitting of the modulus in the
resolution of the system on the convolution arguments. For v << 1 and u ≃ 1 we
induce a GWs background for kτf → β, while for v >> 1 and u ≃ v we induce
a readable induced GWs background for kτf << β, which will be added to the
previous infrared contributions (favouring, as in radiation, only an upward shift of
the term seen just before). For the first contribution we write

Ph(k, η → 0) ≃ 36

4
ϵ2ϵ2stepP

(0)2
R ×

∫ ∞

0

dv

v4
A2(kvτf )

(
πkvτf/β

sinhπ

)2

, (5.170)

Ph(k, η → 0) ≃ 36

4
ϵ2ϵ2stepP

(0)2
R n2

(
π

β sinh (π)

)2
(kτf )

3

τf

∫ ∞

0

dq

q2
. (5.171)

This GWs background solution holds for kτf << β and provides a contribution
parallel to the infrared one found by the paired convolution of the first oscillating
modes, but with an amplitude value strongly damped by the sharpness term β2.
The last contribution is instead written

Ph(k, η → 0) ≃ 36

4
ϵ2ϵ2stepP

(0)2
R ×

∫ ∞

0

dvn×
(
πkvτf/β

sinh (π)

)
× γ(kτf )kτf−β ×

πkτf
sinh (π)

,

(5.172)

Ph(k, η → 0) ≃ 36

4
ϵ2ϵ2stepP

(0)2
R n

(
π

β sinh (π)

)2

γ(kτf )kτf−βτ
2
f

∫ ∞

0

dqq.

(5.173)
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Again, the function, by virtue of the additional factor of β2 in the denominator, is
damped to a flat trend in the relevant ultraviolet limit (kτf → β). As in radiation,
it is only possible to evaluate the induced GWs background in three selective
zones, in the external limits of the problem. A principle of oscillation is evident
for small frequencies, while for higher values of k there will be flattening of the
oscillation that is damped altogether. It can easily be assumed that in the central
frequency region (which cannot be calculated analytically due to the difficulty of
approximation in the central region) there is a continuation of the first oscillation
which undergoes increasingly stronger damping.
It is fundamental to note that the dominant amplitude term in the radiation is
handled by the term P(0)2

R . The same applies to the study of the inflationary
amplitude, but with the addition of the slow-roll term ϵ2 << 1, which makes this
amplitude much smaller. This result fully respects the general thought outlined
at the beginning of the section: the GWs background induced during inflation is
totally negligible compared to the radiation GWs background.

5.2.3 Cross-talk terms

Also in this model it is necessary to make different modes, belonging to different
topological regions of the spectrum, communicate in the convolution. In the present
case it is only possible to calculate the convolution between the first oscillating
mode and the last one (and vice versa, given the non-symmetry of the convolution
itself). We calculate these last terms in both domination regimes.

Cross-talk term in Radiation era

We start with the IR-UV convolution count; then we write the system on the
momenta: {

kvτf → 1

kuτf → β.
(5.174)

The modulus splitting shows how only for k >> q, then for v << 1 with u ≃ 1 a
concrete induced GWs background is produced, for kτf → β. The corresponding
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spectral energy density is then written

ΩGWs,c(k) ≃
9

4
ϵ2stepP

(0)2
R

∫ ∞

0

dv

∫ 1+v

|1−v|
du

(
2v

1− c−2
s

)α

×[−3 +
9

(kvτf )2

]
[cos (2)− 4 sin (2)(kvτf − 1)− 8 cos (2)(kvτf − 1)2]+

[
15− 9

(kvτf )2

]
× 1

2kvτf
× [sin (2) + 4 cos (2)(kvτf − 1)− 8 sin (2)(kvτf − 1)2]


[−3 +

9

(kuτf )2

]
[cos (2β)− 4 sin (2β)(kuτf − β)− 8 cos (2β)(kuτf − β)2]+

[
15− 9

(kuτf )2

]
× 1

2kuτf
× [sin (2β) + 4 cos (2β)(kuτf − β)− 8 sin (2β)(kuτf − β)2]

×

kuτf/β

sinh (π)
. (5.175)

So we find that

ΩGWs,c(k) ≃
9

4
ϵ2stepP

(0)2
R γβ(kτf )

kτf
β sinh (π)

∫ ∞

0

dvvαn, (5.176)

ΩGWs,c(k) ≃
9

4
ϵ2stepP

(0)2
R γβ(kτf )

1

β sinh (π)

(kτf )
−α

τ−α−1
f

∫ ∞

0

dqqα. (5.177)

The nature of this GWs background underlines a total flattening to zero in the
region of interest, quantifying an additional negligible sum contribution in the ex-
ternal UV frequency region kτf → β. It is possible to verify how, on the other hand,
the permutation of the convolution just studied does not lead to any physical results.

Cross-Talk term in Inflationary era

Also in the inflationary period the unpaired convolution contribution is the same
as that seen in radiation, as can easily be expected. Therefore in the internal
momentum limit for which v << 1 and u ≃ 1 the IR-UV scalar convolution induces
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a GWs background for kτf → β. We could write

Ph(k, η → 0) ≃ 36

4
ϵ2ϵ2stepP

(0)2
R

∫ ∞

0

dv

∫ 1+v

|1−v|
du[−3 +

9

(kvτf )2

]
[cos (2)− 4 sin (2)(kvτf − 1)− 8 cos (2)(kvτf − 1)2]+

[
15− 9

(kvτf )2

]
× 1

2kvτf
× [sin (2) + 4 cos (2)(kvτf − 1)− 8 sin (2)(kvτf − 1)2]


[−3 +

9

(kuτf )2

]
[cos (2β)− 4 sin (2β)(kuτf − β)− 8 cos (2β)(kuτf − β)2]+

[
15− 9

(kuτf )2

]
× 1

2kuτf
× [sin (2β) + 4 cos (2β)(kuτf − β)− 8 sin (2β)(kuτf − β)2]

×

kuτf/β

sinh (π)
, (5.178)

finding the following solution

Ph(k, η → 0) ≃ 36

4
ϵ2ϵ2stepP

(0)2
R

nτf
2β sinh (π)

γ(kτf )β

∫ ∞

0

dq. (5.179)

This solution brings a further oscillation around the value of β, to be added to the
others found by the paired contributions.
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5.3 Scalar induced GWs from two-field Fast-Roll
The goal of this section is to introduce a Fast-Roll model described by the presence
of two scalar fields. The background idea of this section is similar to that proposed
in the article by Sasaki [173], described in chapter four.
In that article, we want to make it clear that one way to have a strong growth
(a variation, in general) of the curvature perturbation is to rely on the presence
of two fields. In fact, if there were only one, this would produce a unique and
natural adiabatic curvature perturbation that tends to freeze on superhorizon scales,
blocking all growth. With the addition of a field there will be adiabatic curvature
perturbation and isocurvature perturbation, so it is generally possible to see how
the curvature perturbation on superhorizon scales does not remain constant over
time, but can vary.
Controlled growth of the curvature perturbation, on the other hand, leads to
increased formation of PBH and an induced background at the second order of
GWs, both in radiation and during the inflationary phase. Two fields ϕ and χ are
thus introduced, with the former initially dominating over the latter, until its decay.
The first field, due to the shape of its potential, initially describes a long slow-roll
phase. Subsequently a growth in the oscillatory character of the potential induces
a differential Mathieu equation on the fluctuation of ϕ, leading to an exponential
growth of δϕ. Given the coupling between the fields, the fluctuation of the second
field δχ will also be affected by this phase, and will also grow exponentially over
time and frequencies by induction.
At a certain point in time, the first field will decay, so that only the second field
will remain, which will finally become the dynamically dominant one, and will
concretely begin to move on its potential. At this time there will remain only the
fluctuation of the only remaining field, δχ, which from isocurvature perturbation
will become curvature perturbation, once on SuperHorizon scales. Therefore at
this time it is possible to write the curvature power spectrum as parallel to the
power-spectrum of δχ, since δϕ has either gone to zero if on subhorizon scales, or
has been replaced by the modes of the now dominant fluctuation already gone out
of the Hubble sphere. So, in summary, the first scalar field defines exponential
growth on its fluctuation; this dynamically induces growth on the isocurvature
fluctuation of the second field. At the time of the decay of the first, the second
field will dominate, and its fluctuation will become of adiabatic curvature, defining
the curvature power spectrum, once this fluctuation is on superhorizon scales. It is
safe to assume that this fluctuation alone originates the curvature perturbation
in the time studied, since it remains the only single adiabatic scalar fluctuation.
From here we can assume the reasoning offered in equation (4.50), with solution in
(4.53).
However, this result does not contain all the contributions of curvature perturbation
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that the theory has to offer: the formula (4.50) in fact, in its entirety, must
take into account all the temporal instants t∗ in which a scalar fluctuation exits
on superhorizon scales as an adiabatic perturbation, originating the curvature
perturbation. In summary, the approximate formula (4.51) forgets the curvature
contributions offered by the first field in its first domination phase. However,
this approximation remains possible, as the model was meant. In fact, the first
field, temporally speaking, does practically only slow-roll (whose contribution in
curvature is considered in the final moment of the discussion). The exponential
growth phase of the primary fluctuation is so rapid in time that it can be critically
assumed to make no contribution to the formation of a curvature perturbation
(and associated spectrum).
The convenience of such line lies in the parallelism between the curvature power-
spectrum and the power-spectrum of δχ. Assuming that the latter induces the
radiation-induced GWs background, and the power spectrum on the fluctuation of
the former field induces the inflationary GWs background (with Pδϕ >> Pδχ) one
finds how the latter GWs background is extraordinarily greater than the former.
The idea of this section is to take up this system, imagining a first field ϕ that
does Fast-Roll, dynamically dominating a second scalar field χ that does Slow-Roll
instead. Initially only the first one moves; when this decays it will leave for the
actual dynamics of χ which will propose the slow-roll phase on the scales of the
CMB. The idea is to be able to demonstrate a trend in the fluctuation of the first
field, right from the start, of the form of an exponential increasing in time and
decreasing in frequencies (as in the case of single field, of course); the latter will
induce a parallel growth on the fluctuation of the second field. In the decay time
the boosted δχ fluctuation will remain alone, and will generate the curvature power
spectrum of the system, identically as seen before. This applies for an exit-time of
the scalar modes following the decay, to ensure the disappearance of the first field
fluctuations. The same reasoning is generated as before: this approach doesn’t
contain the contribution to the curvature perturbation by the first field fluctuation.
With good reason we can accept this lack, given the temporal rapidity with which
the Fast-Roll occurs. In summary, the Fast-Roll induced growth phase replaces the
oscillatory growth phase induced with the Mathieu equation. As the two phases
are identical and extremely short, in terms of time (compared to the subsequent or
preceding dynamic phases), their contribution to the definition of the perturbation
of the e-folding number can be neglected. Thus, in this FR-SR model, with a good
approximation we will have a curvature power spectrum defined by the fluctuation
of the secondary field alone, during an exit-time following the decay.
As in Sasaki’s model [173], since the exponential growth in time of the second
fluctuation is induced by the first, which therefore begins this process earlier, we
will have the same relationship between the spectra, with the same conclusion.



CHAPTER 5. INDUCED GWS FROM INFLATIONARY MODELS 183

This would be another way of defining a GWs background induced in inflation
greater than that of radiation.
Let us therefore consider, the two-field model, ϕ the first FR field that dominates
dynamically in the first phase of an inflationary model composed of two moments,
and χ the SR field that begins to dominate in the second phase, i.e. once ϕ has
decayed.
It’s now possible to build the potential for the following theory:

V (ϕ, χ) = V0 −
m2ϕ2

2
g + V

′

0

(
1− cos

(
χ

µ

))
α. (5.180)

Writing the system with separable potentials, we take for ϕ a classical Fast-Roll
potential, as studied in chapter four, and for χ a typical Small-field-model Slow-Roll
potential. The terms g and α represent the coupling constants of the system. In
order to satisfy the dynamic condition between the fields, it will be necessary to
require that g >> α. It is important to define the solution for the background of
the scalar fields. Recall how

ϕ̈+ 3Hϕ̇+ U
′
= 0, (5.181)

χ̈+ 3Hχ̇+W
′
= 0, (5.182)

with U and W the separable potential for the two field, respectively.
For the second field that describe a Slow-Roll phase we can easily find

3Hχ̇ ≃ W
′
. (5.183)

The Fast-Roll is a pre-inflationary period for which the slow-roll parameter ϵ is
considered close to 1, not higher, in order to have an accelerated expansion anyway.
Recall the link between the slow-roll parameters

η = ηv − ϵ, (5.184)

where η quantifies the ratio between the acceleration of the field and the friction
term, while ηv represents the ratio between the second derivative of the potential
and the potential itself. Given the form of U , and under the assumption that the
mass of mϕ is close to the starting value V0, it is easy to see that ηv is a highly
increasing function, and so the same follows for η. This reasoning, which is not
necessary for the purposes of the discussion, allows us to neglect the friction term
(related to velocity) with respect to the acceleration term. Therefore

ϕ̈+ U
′ ≃ 0. (5.185)
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The solution for the background of the first field has already been seen in chapter
four

ϕ(t) = ϕ0e
HtF

(
m2

ϕ

H2

)
, (5.186)

with

F

(
m2

ϕ

H2

)
=

√√√√(9

4
+

m2
ϕ

H2

)
− 3

2
, (5.187)

in the Fast-Roll hypothesis for which
∣∣∣m2

ϕ

∣∣∣ >> H2.
This background solution, however, is expressed in its most general form, including
the dynamic friction term. From now on, the calculation of the curvature power
spectrum will be divided into three categories. The first (0) involves the consider-
ation of only the contribution of the fluctuation of the secondary field, following
the decay. As seen above, this reasoning, although plausible, does not consider the
contributions made by the fluctuation of the first field at earlier times. Therefore
the second category (1) will also consider this addition, arriving at a more formal
description of the problem.
It is now necessary to make a theoretical remark on the nature of the formalism to
be used in the theory, namely the formalism δN [202]. The latter, in the multi-field
treatment, allows us to study the total curvature perturbation of the system in the
following way [202]

ζ(tc,x) ≃ δN(tc, t∗,x) =
∑
i

N,iδϕ
i
∗ +

1

2

∑
i,j

N,ijδϕ
i
∗δϕ

j
∗. (5.188)

where

N,i =
∂N

∂ϕi
∗

(5.189)

N,ij =
∂2N

∂ϕi
∗∂ϕ

j
∗
. (5.190)

Here N is the number of e-folds of an unperturbed theory, with ϕ∗ the value of the
field in the background definition. The summation is exhibited over the number
of fields of the theory. According to the formalism δN , ζ, computed at some time
tc is equivalent, on the large scales, to the perturbation of the e-folding number
N (tc, t∗,x) from an initial flat hypersurface in t = t∗ to a final hypersurface of
uniform density in the final time t = tc [202]. We consider, during inflation, t∗
as the time of exit from the Hubble sphere of the mode, while tc some later time
during or after inflation. The statement exhibited in (5.185) is possible by splitting
the field value into the sum of the background with the perturbation value, and



CHAPTER 5. INDUCED GWS FROM INFLATIONARY MODELS 185

serially expanding δN(tc, t∗,x) with respect to the small value of the perturbation
of the i-th field.
This formalism, however, is built in the view in which all fields make Slow-Roll [202].
In fact generally N would depend on the value of the field ϕi(t), but also on the
value of the derivative ϕ̇i(t) [202]. In the above formalism, this last dependence is
omitted precisely because of the Slow-Roll. In fact

3Hϕ̇i ≃ −V,i, (5.191)

in t∗; it can be seen that the velocity feature is embedded in a function of a totally
positional character: hence the approximation. However, in general, this kinetic
contribution must be fully taken into account (in our fast-roll case in particular).
Therefore, while sections (0) and (1) will define a calculation of the curvature
power-spectrum via the approximation of the δN formalism for which the fields
indicatively make SR, the last section (2) will evaluate the final spectrum also
taking into account the non-negligible kinetic contributions of the theory, relative
to the first field ϕ.
To summarize, count (0) only evaluates the scalar contribution of the second field
fluctuation at the second time moment of domination. Count (1) also considers
the scalar contributions of curvature made by the first field at earlier times. Both
theories, however, rest on a model constructed to ignore kinetic contributions in
defining the curvature perturbation. Model (2) will rewrite the definition of the
formalism in a more general form, thus allowing the kinetic terms, which a Fast-Roll
phase inevitably defines, to be taken into account.

5.3.1 Fast-Roll, two-field model within the Slow-Roll formal-
ism

In this section, as argued above, the contributions to the curvature perturbation
offered initially by the second field’s fluctuation alone (at a time moment of domi-
nation of the latter) in case (0) will be studied; later, in case (1) the contributions
related to the first field’s fluctuation at its previous time of domination will also
be added. Everything will take place in the approximate Slow-Roll version of the
formalism δN [202].
We therefore recall the form of the perturbation on the number of e-folds on large
scales [202]:

ζ(tc,x) ≃ δN(tc, t∗,x) =
∑
i

N,iδϕ
i
∗ +

1

2

∑
i,j

N,ijδϕ
i
∗δϕ

j
∗. (5.192)
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We could remember the general definition for the number of e-folds

N =

∫
Hdt, (5.193)

so we can write, in this case with two field

N =

∫
Hdφ

φ̇
, (5.194)

N = − 1

m2
p

∫
V

V ′ dχ− 1

m2
p

∫
U + ϕ̇2

U ′ + ϕ̈
dϕ. (5.195)

Now we have to introduce this integration constant in order to continue with our
calculation

C = m2
p

∫
dχ

V ′ −m2
p

∫
dϕ(ϕ̈+ U

′
). (5.196)

The physical meaning of this constant is to uniquely identify the particle trajectory
of the binary system in field-space [202]. This constant is calculated by exploiting
the respective symmetries relative to the dynamics of the two fields, directly from
their equation of motion in a Lagrangian formalism.
It is possible to write the variation of the number of e-folds, simply by deriving
(5.192)

dN =
1

m2
p

( V

V ′

)
∗
− ∂χc

∂χ∗

(
V

V ′

)
c

− ∂ϕc

∂χ∗

(
U + ϕ̇2

U ′ + ϕ̈

)
c

 dχ∗

1

m2
p

(U + ϕ̇2

U ′ + ϕ̈

)
∗

− ∂ϕc

∂ϕ∗

(
U + ϕ̇2

U ′ + ϕ̈

)
c

− ∂χc

∂ϕ∗

(
V

V ′

)
c

 dϕ∗. (5.197)

This analytic construction is based on the reasoning that (5.192) depends on χ∗
and ϕ∗, obviously. Furthermore, in the derivation, we take into account that the
terms χc and ϕc depend on C which depends on ϕ∗ and χ∗, in fact C = C(ϕ∗, χ∗).
We now derive the values of the fields calculated on the last hypersurface of the
problem

dϕc =
dϕc

dC

(
∂C

∂ϕ∗
dϕ∗ +

∂C

∂χ∗
dχ∗

)
, (5.198)

dχc =
dχc

dC

(
∂C

∂ϕ∗
dϕ∗ +

∂C

∂χ∗
dχ∗

)
. (5.199)

From the form of C that identifies the classical trajectory of the problem, we can
write:

∂C

∂ϕ∗
= −m2

p(ϕ̈+ U
′
)∗, (5.200)
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∂C

∂χ∗
=

m2
p

V ′
∗
. (5.201)

Energy considerations must now be consider for the problem. On the hypersurface
with uniform energy density in time tc we have that

U(ϕc) +W (χc) +
1

2
ϕ̇2
c = const. (5.202)

Deriving with respect to C, and remaining within the exclusively positional working
hypothesis of the problem (typical of the 0,1 models), we obtain

dϕc

dC
U

′

c +
χc

dC
V

′

c = 0. (5.203)

A second condition to be imposed comes from the derivation of the integration
constant. We obtain

1 = −m2
p

dϕc

dC
(ϕ̈+ U

′
)c +m2

p

dχc

dC

1

V ′
c

. (5.204)

It is logical to see how the last two equations (5.200) and (5.201) define a closed
system for the variables dϕc

dC
e dχc

dC
, whose solution is written

m2
p
dϕc

dC
= −1

(ϕ̈+U ′ )c+
U
′
c

W
′2
c

,

m2
p
dχc

dC
= 1

(ϕ̈+U ′ )c+
U
′
c

W
′2
c

× U
′
c

W ′
c
.

(5.205)

Now we have to define the following variation:

dϕc

dϕ∗
=

dϕc

dC

dC

dϕ∗
≃ (ϕ̈+ U

′
)∗

(ϕ̈+ U ′)c +
U ′
c

W ′2
c

, (5.206)

dϕc

dχ∗
=

dϕc

dC

dC

dχ∗
≃ −1

(ϕ̈+ U ′)c +
U ′
c

W ′2
c

× 1

V ′
∗
, (5.207)

dχc

dχ∗
=

dχc

dC

dC

dχ∗
≃ 1

(ϕ̈+ U ′)c +
U

′
c

W ′2
c

× U
′
c

W ′
c

× 1

W ′
∗
, (5.208)

dχc

dϕ∗
=

dχc

dC

dC

dϕ∗
≃ (ϕ̈+ U

′
)∗

(ϕ̈+ U ′)c +
U ′
c

W ′2
c

× U
′
c

W ′
c

. (5.209)
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These derivations are essential and must be substituted in the variation of the
e-folding number N set out in formula (5.194). We therefore find

dN

dϕ∗
=

1

m2
p

(U + ϕ̇2

ϕ̈+ U ′

)
∗

− (ϕ̈+ U
′
)∗

(ϕ̈+ U ′)c +
U ′
c

W ′2
c

(
U + ϕ̇2

ϕ̈+ U ′

)
c

+

+
(ϕ̈+ U

′
)∗

(ϕ̈+ U ′)c +
U ′
c

W ′2
c

× U
′
c

W ′
c

(
W

W ′

)
c

 , (5.210)

dN

dχ∗
=

1

m2
p

(W

W ′

)
∗
− 1

(ϕ̈+ U ′)c +
U ′
c

W ′2
c

× U
′
c

W ′
c

× 1

W ′
∗

(
W

W ′

)
c

+

+
1

(ϕ̈+ U ′)c +
U ′
c

W ′2
c

× 1

W ′
∗

(
U + ϕ̇2

ϕ̈+ U ′

)
c

 . (5.211)

These terms are those necessary for the calculation of the curvature perturbation
on large scales, as easily observed through equation (5.189).
In the case (0), as also reported in Sasaki’s paper [173], only the contribution of
the second scalar field in ti = t∗ > tdecay to the spectrum is considered, since the
Fast-Roll is so fast in time that it provides a minimal resource to the spectrum.
Therefore

Pζ ≃ Pδχ =
k3

2π2

∣∣∣∣ dNdχ∗

∣∣∣∣2|δχ∗|2 . (5.212)

In case (1), instead, the contributions of the first field are also taken into account,
for a more complete result

Pζ =
k3

2π2
|δN |2 ≃ k3

2π2

∣∣∣∣dNdϕ∗
δϕ∗ +

dN

dχ∗
δχ∗

∣∣∣∣2 . (5.213)

The only unknowns for the complete solution of curvature power-spectrum remain
the perturbations on the fields calculated in the exit time from the horizon, namely
δϕ∗ and δχ∗. We will eventually calculate the value of these functions.
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5.3.2 Fast-Roll, two-field model beyond the Slow-Roll for-
malism

In case (2), the kinetic contribution is also taken into account, since, at least the
field ϕ, does not do Slow-Roll, but Fast-Roll. Therefore, as explained before, the
formalism must be modified and generalized, since now δN will depend not only
on the position, but also on the velocity term ϕ̇.
We can generalize the theory of the formalism δN as follows

ζ(tc,x) = δN(t∗, tc,x) =
∑
i

N,iδϕ
i
∗ +

∑
i

∂N

∂ϕ̇i
∗
δϕ̇i

∗, (5.214)

We choose to remain in a first-order perturbative theory for analytical simplicity.
The form of the integration constant of the classical trajectory is also modified. It
is possible, for the purposes of the theory, to think that this variable also depends
on the kinetic contribution of the first field. It can be written

C = m2
p

∫
dχ

V ′ −m2
p

∫
dϕ(ϕ̈+ U

′
)−m2

p

∫
dϕ̇(ϕ̈+ U

′
). (5.215)

The function N will obviously remain of the same form as expressed in (5.192).
Nevertheless now the functions ϕc and χc will have the dependence of C which
in turn depends on C = C(ϕ∗, χ∗, ϕ̇∗). Therefore now ϕc and χc will be functions
that also depend on the new term ϕ̇∗. Thus, the variation of N will include new
derivative contributions

dN = dN(0,1) +
1

m2
p

−∂ϕc

∂ϕ̇∗

(
U + ϕ̇2

ϕ̈+ U ′

)
c

−
(
W

W ′

)
∗

∂χc

∂ϕ̇∗

 dϕ̇∗. (5.216)

We have to write the derivatives of the fields calculated on the last hypersurface,
taking into account the new dependence of the integration constant with respect
to the kinetic term of the first field

dϕc =
dϕc

dC

[
∂C

∂ϕ∗
dϕ∗ +

∂C

∂χ∗
dχ∗ +

∂C

∂ϕ̇∗
dϕ̇∗

]
, (5.217)

dχc =
dχc

dC

[
∂C

∂ϕ∗
dϕ∗ +

∂C

∂χ∗
dχ∗ +

∂C

∂ϕ̇∗
dϕ̇∗

]
. (5.218)
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Now, as before, the variations of the constant with respect to its defining variables
must be defined

∂C

∂ϕ∗
= −m2

p(ϕ̈+ U
′
)∗, (5.219)

∂C

∂χ∗
=

m2
p

V ′
∗
, (5.220)

∂C

∂ϕ̇∗
= −m2

p(ϕ̈+ U
′
)∗. (5.221)

At this point, the energetic condition on the uniform energy density spatial-
hypersurface must be introduced again

U(ϕc) +W (χc) +
1

2
ϕ̇2
c = const. (5.222)

Nevertheless, this time, the kinetic dependence of the integration constant must be
considered, so the derivation brings a new term

dϕc

dC
U

′

c +
dχc

dC
W

′

c + ϕ̇c
dϕ̇c

dC
= 0. (5.223)

The latter must be coupled to the equation of variation of the integration constant,
as before

1 = −m2
p

dϕc

dC
(ϕ̈+ U

′
)c +m2

p

dχc

dC

1

V ′
c

−m2
p

dϕ̇c

dC
(ϕ̈+ U

′
)c. (5.224)

It is logical to observe that in this case the system is not closed: a new energy
condition must be introduced, and a system of three independent equations must
be defined for three unknowns.
Such a new condition can be found in the definition of the first slow-roll parameter,
which we imagine tends to 1 in the time for which the system is studied. Thus

ϵtc,ϕ ≃ 1 ≃

(
ϕ̇2

U

)
c

. (5.225)

We can write
dϕ̇c

dC
≃ −m2ϕc√

2Uc

dϕc

dC
. (5.226)

At this point we are able to write the closed system
dϕc

dC
U

′
c +

dχc

dC
W

′
c + ϕ̇c

dϕ̇c

dC
= 0

1 = −m2
p
dϕc

dC
(ϕ̈+ U

′
)c +m2

p
dχc

dC
1
V ′
c
−m2

p
dϕ̇c

dC
(ϕ̈+ U

′
)c

dϕ̇c

dC
≃ −m2ϕc√

2Uc

dϕc

dC
.

(5.227)
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This system must be solved algebraically, leading to the following solutions on the
derivatives

m2
p

dϕc

dC
≃ 1

−(ϕ̈+ U ′)c
m2ϕc√
2Uc

+ 1
W ′2

c
×
(

m2ϕcϕ̇c√
2Uc

− U ′
c

)
− (ϕ̈+ U ′)c

, (5.228)

m2
p

dχc

dC
≃

m2ϕcϕ̇c√
2Uc

− U
′
c

−(ϕ̈+ U ′)c
m2ϕc√
2Uc

+ 1
W ′2

c
×
(

m2ϕcϕ̇c√
2Uc

− U ′
c

)
− (ϕ̈+ U ′)c

× 1

W ′
c

, (5.229)

m2
p

dϕ̇c

dC
≃

−m2ϕc√
2Uc

−(ϕ̈+ U ′)c
m2ϕc√
2Uc

+ 1
W ′2

c
×
(

m2ϕcϕ̇c√
2Uc

− U ′
c

)
− (ϕ̈+ U ′)c

. (5.230)

For the sake of analytical simplicity, let us rename the common denominator of the
three unknowns defined above with the term B.
It is now possible to calculate the derivatives of the fields

dϕc

dϕ∗
≃ dϕc

dC

dC

dϕ∗
≃ −(ϕ̈+ U

′
)∗

B
, (5.231)

dϕc

dχ∗
≃ dϕc

dC

dC

dχ∗
≃ 1

W ′
∗ ×B

, (5.232)

dχc

dϕ∗
≃ dχc

dC

dC

dϕ∗
≃ −(ϕ̈+ U

′
)∗

W ′
c ×B

×

[
m2ϕcϕ̇c√

2Uc

− U
′

c

]
, (5.233)

dχc

dχ∗
≃ dχc

dC

dC

dχ∗
≃

m2ϕcϕ̇c√
2Uc

− U
′
c

B ×W ′
cW

′
∗
, (5.234)

dϕc

dϕ̇∗
≃ dϕc

dC

dC

dϕ̇∗
≃ −(ϕ̈+ U

′
)∗

B
, (5.235)

dχc

dϕ̇∗
≃ dχc

dC

dC

dϕ̇∗
≃ −(ϕ̈+ U

′
)∗

W ′
c ×B

×

[
m2ϕcϕ̇c√

2Uc

− U
′

c

]
. (5.236)

Now, as a final step, it is necessary to replace these terms in the definition of the
perturbation of the e-folding number expressed in formula (5.213).
We therefore write

dN

dχ∗
≃ 1

m2
p

(W

W ′

)
∗
−
(
W

W ′

)
c

m2ϕcϕ̇c√
2Uc

− U
′
c

B ×W ′
cW

′
∗
−

(
U + ϕ̇2

U ′ + ϕ̈

)
c

× 1

W ′
∗ ×B

 , (5.237)

dN

dϕ∗
≃ 1

m2
p

(U + ϕ̇2

U ′ + ϕ̈

)
∗

+

(
U + ϕ̇2

U ′ + ϕ̈

)
c

(ϕ̈+ U
′
)∗

B
+

(
W

W ′

)
c

(ϕ̈+ U
′
)∗

B ×W ′
c

m2ϕcϕ̇c√
2Uc

− U
′

c

 ,

(5.238)
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dN

dϕ̇∗
≃ 1

m2
p

(U + ϕ̇2

U ′ + ϕ̈

)
c

(ϕ̈+ U
′
)∗

B
+

(
W

W ′

)
c

(ϕ̈+ U
′
)∗

B ×W ′
c

m2ϕcϕ̇c√
2Uc

− U
′

c

 . (5.239)

Therefore we can conclude:

Pζ ≃
k3

2π2
|δN |2 ≃ k3

2π2

∣∣∣∣∣dNdϕ∗
δϕ∗ +

dN

dχ∗
δχ∗ +

dN

dϕ̇∗
δϕ̇∗

∣∣∣∣∣
2

. (5.240)

In order to get a final solution of the curvature spectrum, the dynamic solution
of the field fluctuations must be defined. This can be found by solving the given
system of differential equations associated to a theory of two coupled fields

δ̈χk + 3H ˙δχk +
k2

a2
δχk +m2

χχδχk +m2
χϕδϕk = 0,
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(
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)
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(5.241)

Under the hypothesis of the theory for which the first field ϕ dynamically dominates
over the second field χ, thus for g >> α, a singular simplification occurs for
which mϕϕ >> mχϕ >> mχχ. Therefore, the system of differential equations on
fluctuations is simplified as followsδ̈χk + 3H ˙δχk +

k2

a2
δχk ≃ χ̇ϕ̈

M2
pH

δϕk,

δ̈ϕk + 3H ˙δϕk + (k
2

a2
−m2)δϕk = 0.

(5.242)

The differential equation on the first field fluctuation leads to the following solution:

δϕ ≃ 1

20
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. (5.243)
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It is possible to read such a solution analytically: as expected, this solution grows
exponentially in time and decreases exponentially in frequency space. This solution
is completely parallel to the one described by Linde in his one-field Fast-Roll
study [192]. Therefore it is logical to think how these two produce a totally parallel
curvature spectrum: a strong red-tilt (intrinsic to FR theory) followed by a flatten-
ing typical of SR. The latter is appropriately initialized by the previous inflationary
phase.
This solution must now be included in the source term of the differential equation
on the scalar fluctuation of the second field. Solving the equation, as expected, we
find a solution parallel to the input solution, decreasing in frequency and increasing
in time in the sphere.
This result is fully expected, given the complete symmetry with the case offered by
Sasaki. Therefore the conclusion offered earlier follows. Such fluctuations induce a
curvature power-spectrum totally parallel to that seen in single-field theory. There-
fore, if the input function is analytically similar, the induced GWs background
solutions will also follow this line.



Conclusions

The purpose of this thesis is to study the scalar-induced gravitational wave back-
ground at different phases of cosmological domination. Understanding the paramet-
ric formula that links the curvature and inflationary perturbation spectra explains
how a phase of departure from the slow-roll is necessary, thus ensuring hypothetical
numerical comparability between the GWs backgrounds. It is certainly a viable
numerical option to have comparable scalar spectra, so the condition of negligi-
bility of the inflationary GWs background with respect to the radiation-induced
background becomes absolutely to be reformulated.
The one-field fast-roll model aims to study both the backgrounds produced by the
system, evaluating their analytical comparability. The complex analytical form
that the source spectrum guarantees, leads to a mathematical operation of approxi-
mating the function in the internal frequency ranges of interest. The convolution
count between approximated scalar spectrum terms in the respective ranges, (both
paired and unpaired), shows how a GWs background of external frequency living
in a region of specific momenta is produced. Therefore, the cohesion of all results
provides a complete picture of the problem. In the radiation computation, the
overall trend of the GWs induced background well fit that found by computational
solution. This result confirms the validity of the approximations used, both mathe-
matical and physical, in having used appropriate theoretical modeling. However,
the overall amplitude of the problem is extremely low in terms of observation in
the respective frequency ranges. Nevertheless, this solution is acceptable, given the
nature of the problem at the second-order perturbative.
The result of the inflationary induction phase cannot be compared with a compu-
tational solution, since the program used does not work in appropriate dynamic
de-Sitter ranges. Nevertheless, having used the same physical modeling techniques
as for the radiation account, there is a good hope that this calculation is also correct.
This problem, however, is extremely more complex because of the analytical form
of the inflationary kernel. An amplitude estimate of the total system is therefore
possible only through the infrared convolution account, given the strong analytical
complexity of the generalized kernel. The amplitude value found is extremely large,
showing not only an analytical but also a numerical augmentation of that GWs
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background, but one that goes far beyond initial expectations. In fact, the value of
the tensor to scalar ratio far exceeds empirical limits, so we would be inclined to
exclude the model from inflationary phenomenology. The two-field model, on the
other hand, gives us confidence that we would be able to find a curvature spectrum
totally parallel to that for the single-field theory. Therefore it would be possible to
reproduce the exact same accounts, with the same approximations, and a totally
similar result would be found. The only difference would be in the strong analytical
complexity associated with the introduction of a secondary field. Moreover, account
(0), relating to the contribution to the curvature of the secondary field alone in the
double slow-roll regime guarantees a higher inflation fund than that produced in
the later epoch.
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