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Abstract

The present thesis focuses on the integration of chemophysical knowledge and
data-driven insights to develop control-oriented models for submerged arc fur-
naces (SAF). The primary objective of this research is to facilitate the metallur-
gical processes involved in the production of ferrosilicon (FeSi).

The state-of-art of simulators utilized for submerged arc furnaces is founded
upon a static meta-model, that functions as a data-driven substitute for Physic-
based Finite Element Methods (FEM) models.

The aim of this study is to develop a linear dynamic model utilizing data-
driven techniques from the system identification literature, and subsequently
try to evaluate its performance in comparison to the meta-model. The current
thesis addresses the difficulties associated with this specific task and suggests
potential solutions for overcoming them.





Sommario

La tesi si concentra sull’integrazione delle conoscenze chimico-fisiche in un ap-
proccio data-driven per sviluppare dei modelli orientati al controllo di fornaci
ad arco sommerso (SAF). L’obiettivo primario di questa ricerca è quello di fa-
cilitare la comprensione dei processi metallurgici coinvolti nella produzione di
ferrosilicio (FeSi).

Lo stato dell’arte dei simulatori utilizzati per le fornaci ad arco sommerso è
basato su un meta-modello statico, derivato a sua volta da un modello basato
sul metodo degli elementi finiti (FEM).

L’obiettivo di questo studio è sviluppare un modello dinamico e lineare che
utilizzi le tecniche di identificatione dei sistemi (systems identification) e di val-
utare le sue prestazioni rispetto al meta-modello. La tesi approfondisce le diffi-
coltà associate a questo obiettivo e suggerisce potenziali soluzioni per superarle.
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1
Introduction

The production of ferrosilicon alloys in three-phase electric submerged-arc
furnaces consumes large amounts of electric energy. The control of a ferrosilicon
furnace has proven to be intricate due to its complex nature, which involvesmul-
tiple interrelated sub-processes encompassing metallurgical (chemical), ther-
mal, electrical, and mechanical processes. However, as a ferrosilicon furnace is
a complex process consisting of various closely interacting sub-processes, such
as metallurgical (chemical), thermal, electrical and mechanical processes, the
control of such a furnace has turned out to be quite complicated.

The main problems are the lack of direct measurements of the process vari-
ables in the heart of the furnace, as well as the limited understanding of the
intricate interplay among the electrical, thermal, and metallurgical conditions
within the furnace [1].

The thesis provides a broad overview of the operational principles under-
lying a submerged arc furnace. It also discusses the procedure for acquiring a
linear data-driven model and draws a comparison between this approach and
an existing metamodel.

The thesis is written for the research institute NORCE and the analyses are
part of their project Electrical Conditions in Submerged Arc Furnaces − Identification
and Improvement (SAFECI). The project spans from 2021 to 2025 and is funded
by The Research Council of Norway and the industrial partners Elkem, Eramet
Norway, Finnfjord and Wacker Chemicals Norway. NTNU also contributes as a
research partner.
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2
Submerged Arc Furnaces

2.1 SUBMERGED ARC FURNACES

The data utilized in this study was obtained from a Submerged Arc Fur-
nace belonging to Wacker Chemicals, a prominent metal manufacturer in Nor-
way. The Furnace generates Ferrosilicon (FeSi), a chemical compound compris-
ing 75% silicon and 25% iron. The manufacturing of this substance, commonly
accomplished via a metallurgical methodology, holds substantial practical and
economic importance [2].

An illustration of the Submerged Arc Furnace (SAF) is given in figure 2.1 [3].
The geometry of SAF can be described as cylindrical. Raw materials, includ-

ing quartz and coal, are combined and introduced into the furnace from its up-
permost point.

The picture depicted in Figure 2.1 illustrates the process by which energy is
supplied to three electrodes via a transformer, subsequently leading to the flow
of electrical currents into the molten material that will ultimately result in the
formation of FeSi. Ideally, the currents generated by the electrodes should be di-
rected towards the lowermost part of the furnace. The aforementioned zone en-
compasses not only the electrodes, but also a heated sub-zone, typically situated
beneath said electrodes, which harbors the majority of the electrical resistance.

The burden zone is a stratum of melted substance located above the lower
layer, which encompasses the constituents required for the aimed chemical re-
action. The region known as the hot zone exhibits a notable level of resistance.
The passage of electrical currents through the substance results in the produc-
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2.1. SUBMERGED ARC FURNACES

Figure 2.1: Illustration of a furnace.

tion of a considerable quantity of thermal energy, thereby promoting the chem-
ical reaction and facilitating the creation of FeSi (FerroSilicon).

2.1.1 ELECTRODES

The furnace is equippedwith three Söderberg electrodes [4] that are arranged
in an equilateral triangle configuration and are fully immersed in the raw mate-
rials [3].

The electrodes hold an electrical charge. The induction of an arc within the
furnace generates elevated temperatures, thereby facilitating a series of chemical
reactions [3].

The vertical movements of the electrodes are constrained by their physical
limitations. The vertical displacement range of the electrode holders is 120 cm.

Given that the electrodes are depleted during furnace operation, a distinct
control mechanism is implemented to manage electrode replenishment. This
process, referred to as electrode slipping, serves to offset the electrode consump-
tion that occurs during operation. Over an extended duration, the amount of
slipping must be commensurate with the overall consumption of electrodes [5].

The rate of slipping is modulated in response to the holder position’s prede-

4



CHAPTER 2. SUBMERGED ARC FURNACES

Figure 2.2: Söderberg electrodes

Figure 2.3: Main reaction inside the furnace. Silicon is then mixed with iron.

termined setpoint.The objective is to maintain the position of the holder at the
reference point while ensuring that the resistance within the furnace remains
unaffected.

The measurement of the tip position of the electrodes is currently unavail-
able. The rate of slippage and the positioning of the electrodes are established,
however, the consumption of the electrodes within the furnace is merely ap-
proximated. The determination of the tip location of the electrodes remains a
challenge, as the precision of the current estimation does not align with the level
of accuracy sought by furnace operators.

The displacement of a single electrode has a consequential impact not only
on the electrical current flowing through it, but also on the electrical current
flowing through the remaining two electrodes.[6] This implies that there exists
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2.1. SUBMERGED ARC FURNACES

a significant level of interdependence among the measurements associated with
distinct electrodes.

2.1.2 FURNACE’S CONTROL SYSTEM

The regulation of the furnace is achieved through the specification of a power
setpoint and an electrical resistance setpoint. The furnace has a limited number
of control actions, specifically three:

• Adjust the power given by the transformer

• Adjust the position of the electrodes vertically

• Modifying the quantity and composition of the charged material can alter
the conductivity within the furnace.

The regulation of resistance is achieved through the vertical displacement
of the electrodes. There exist upper and lower limits of resistance. In the event
that the measured resistance falls below the predetermined lower threshold, the
electrode will be elevated, resulting in an increase in resistance. Conversely, if
the resistance exceeds the desired upper limit, the electrode will be lowered to
decrease the resistance.

The control system exhibits a partial manual operation, whereby the met-
allurgists specify the quantity and composition of the charge material, which
subsequently affects the electrical conditions within the furnace.

Electrical control is considerably quicker than chemical control. The pro-
cess of mixing with a new composition typically requires several hours before it
reaches the reactive zones and exerts its influence on the process.

2.1.3 SOME NOTES ABOUT THE DISTURBANCES

The measurement systems are susceptible to significant measurement dis-
tortions due to the presence of high temperatures and intense magnetic fields
resulting from substantial conductance variations in the charge and electrode-
to-earth voltages, which adversely impact the sensors. The Böckman principle
is utilized to measure the voltage as a partial solution to the problem:

Three measuring leads in approximately 120° symmetry are used to repro-
duce the furnace bottom potential above the furnace, where it is connected
to the star point above between the electrode voltages. The idea is that the
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CHAPTER 2. SUBMERGED ARC FURNACES

voltages induced in the three measuring leads will compensate each other.
Deviation from ideal 120° symmetry which may be necessary for practical
reasons is compensated by adjusting a resistor network connecting the three
leads [7].

Figure 2.4: Böckman principle. The voltage in the bottom is moved to an area
with weak magnetic fields

In addition, it should be noted that a portion of the electrode currents is often
redirected in unfavorable pathways, such as between the electrodes, rather than
being directed downward towards the furnace base to facilitate the production
of heat for chemical reactions [2].
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3
Data Preprocessing

3.1 DATA IMPUTATION

As described in section 2.1.3, the dataset exhibits significant levels of noise
as a result of the inherent challenges associated with measuring the system.

Furthermore, the dataset exhibits a significant number of outliers that can-
not be disregarded. Outliers are data points that exhibit substantial deviation
from the remaining observations. In order to address outliers, they are system-
atically eliminated and substituted with alternative values that are considered
more plausible.

Outliers can be characterized as elements that are situated at a distance greater
than three times the scaled median absolute deviation from the median. The
scaled median absolute deviation (MAD) is a statistical measure that is formally
defined as follows:

𝑐 ∗ 𝑚𝑒𝑑𝑖𝑎𝑛(|(𝐴 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝐴)|) (3.1)

where
𝑐 =

−1√
2 ∗ 𝑒𝑟 𝑓 𝑐𝑖𝑛𝑣(3/2) (3.2)

and 𝑒𝑟 𝑓 𝑐𝑖𝑛𝑣 is the inverse complementary error function.

Outliers have been classified as missing values and replaced with MICE al-
gorithm.
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3.1. DATA IMPUTATION

3.1.1 MULTIVARIATE IMPUTATION BY CHAINED EQUATIONS

The MICE (Multivariate Imputation by Chained Equations) algorithm em-
ploys a statistical approach to estimate the missing values of each feature by
modeling it as a function of other features, and subsequently utilizes this esti-
mate for imputation. The process operates in an iterative round-robin manner
whereby, during each step, a specific feature column is selected as the output
variable y, while the remaining feature columns are considered as input vari-
ables X. [8]

A regression model is trained on a dataset consisting of input variables X
and known output variable y. Subsequently, the regressor is employed to make
predictions for the absent y values. The process is executed iteratively for each
feature and is subsequently replicated for multiple imputation rounds. [9]

Figure 3.1: Example of MICE algorithm

Figure 3.1 shows 1 imputation round of a 3-by-3matrixwith 3missing values.
The process in question is known to introduce a certain degree of error or noise
into the dataset.

The chained equationprocess can be brokendown into four general steps:[10]

Step 1: A simple imputation, such as imputing the mean, is performed for every
missing value in the dataset. These mean imputations can be thought of
as “place holders.”

Step 2: The “place holder” mean imputations for one variable (“var”) are set back
to missing.

10



CHAPTER 3. DATA PREPROCESSING

Step 3: The observed values from the variable “var” in Step 2 are regressed on the
other variables in the imputation model, which may or may not consist of
all of the variables in the dataset. In other words, “var” is the dependent
variable in a regression model and all the other variables are independent
variables in the regression model. These regression models operate un-
der the same assumptions that one would make when performing linear,
logistic, or Poison regression models outside of the context of imputing
missing data.

Step 4: The missing values for “var” are then replaced with predictions (imputa-
tions) from the regression model. When “var” is subsequently used as an
independent variable in the regressionmodels for other variables, both the
observed and these imputed values will be used.

Step 5: Steps 2–4 are then repeated for each variable that has missing data. The
cycling through each of the variables constitutes one iteration or “cycle.”
At the end of one cycle all of the missing values have been replaced with
predictions from regressions that reflect the relationships observed in the
data.

Step 6: Steps 2–4 are repeated for a number of cycles, with the imputations being
updated at each cycle.

This thesis has overlooked the errors linked to the adopted methodology.

3.2 DATA NORMALIZATION

The Euclidean norm, also known as the L-2 norm, has been employed for
the purpose of scaling each individual feature. The L-2 norm is a widely used
method for scaling features. Values are rescaled to be in the range of 0 and 1.

In comparison with alternative approaches, such as standardization, the L-2
norm preserves the original distribution’s shape, making it particularly advan-
tageous in cases where the data distribution deviates from a Gaussian distribu-
tion.

| |𝑉 | |2 =

√√√ 𝑁∑
𝑘=1

|𝑣𝑘 |2 (3.3)
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3.2. DATA NORMALIZATION

where 𝑁 is the number of samples for each feature and 𝑣𝑘 represents the k-th
sample of the variable.

Normalization also serves the purpose of obscuring the proprietary data.

12



4
Features Selection

4.1 OUTPUT SELECTION

The primary variables that exhibit a strong correlation with the overall pro-
duction levels are the electrode currents [2].

The current within the electrodes cannot be arbitrarily set by the operator,
but it is a valuable parameter for determining how to adjust the voltage and
holder position.

The electrode currents have been selected as outputs of the dynamic model
due to the aforementioned reasons.

4.2 FEATURES EXCLUDED

Several variables in the dataset are computed using established equations
that incorporate the output (current) as a parameter. (see appendix A.1).

Parameters removed
Total furnace resistance
Electrode resistances
Furnace C3
Electrode power
Electrode power factor
Electrode reactances

13



4.3. LASSO REGRESSION

and they have been removed for future analysis.
In the pursuit of comparing the dynamic model to the static meta-model, the

dataset pertaining to the electrodes’ holder position has been excluded. Addi-
tional clarifications will be provided in section (7.3).

4.3 LASSO REGRESSION

The LASSO (Least Absolute Shrinkage and Selection Operator) is a regres-
sion analysis technique that combines variable selection and regularisation to
improve the predictive accuracy and interpretability of the resulting statistical
model.

This strategy was adopted for two reasons:

• The exclusion of irrelevant features that do not contribute to the construc-
tion of the dynamic model.

• The use of additional features leads to an increase in the complexity of the
model.

Lasso regression is utilised in order to identify the most significant variables
for predicting the current.

For a given value of λ, a non-negative parameter, lasso solves the problem:

min
𝛽0 ,𝛽

©« 1
2𝑁

𝑁∑
𝑖=1

(
𝑦𝑖 − 𝛽0 − 𝑥𝑇𝑖 𝛽

)2 + 𝜆

𝑝∑
𝑗=1

��𝛽 𝑗 ��ª®¬ (4.1)

subject to

𝑝∑
𝑗=1

��𝛽 𝑗 �� ≤ 𝑡 (4.2)

with:

• 𝑡 ≥ 0 is a tuning parameter.

• N is the number of observations.

• 𝑦𝑖 is the current at observation i.

• 𝑥𝑖 is measurement data,a vector of length p, at observation i.

14



CHAPTER 4. FEATURES SELECTION

For a given value of 𝜆, the variables that are associated with a non-zero com-
ponent of 𝛽 exhibit greater significance in comparison to the variables that are
linked to a zero component of 𝛽.

As the value of 𝜆 decreases, there is an increase in the quantity of non-zero
elements within the vector 𝛽.

The Lasso regression method computes the coefficients of the least-squares
regression model that provides the optimal fit for a linear model, based on the
input data (𝑋) and output data (𝑦) [11].

Figure 4.1: Lasso Plot for current of electrode 1

Figure 4.1 displays the logarithmic lasso plot of the current observed in the
first electrode. Starting from the leftmost side, it appears evident that only one
coefficient displays a non-zero value. This suggests that the variable mentioned
above is of great importance in predicting the current.

As Lambda decreases, an increasing number of feature coefficients deviate
from zero, ultimately resulting in a scenario where all coefficients on the right-
hand side are non-zero. The quantity of non-zero coefficients is indicated in the
upper section of figure 4.1.
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4.4. INPUTS

4.4 INPUTS

The Lasso regression technique has been employed thrice, with each appli-
cation pertaining to a distinct electrode current.

The variables that have been chosen for the dynamic model are:

Table 4.1: Key variables for the prediction of each current

Current 1 Current 2 Current 3
𝑐𝑜𝑠(𝜙3) 𝑐𝑜𝑠(𝜙1) 𝑐𝑜𝑠(𝜙2)
𝑉1 𝑆𝑇𝑜𝑡 𝑆𝑇𝑜𝑡

𝑆𝑇𝑜𝑡 𝑉2 𝑉2

𝑃(𝑀𝑊) 𝑃(𝑀𝑊) 𝑃(𝑀𝑊)
𝑐𝑜𝑠(𝜙2) 𝑐𝑜𝑠(𝜙3) 𝑐𝑜𝑠(𝜙1)
𝑉3 𝑉3

Table 4.1 presents the input variables chosen for the dynamic model corre-
sponding to each electrode current. These features are arranged in a descending
order based on their level of significance.

There are a total of eight distinct variables:

1. 𝑃(𝑀𝑊) Total active power

2. 𝑆𝑇𝑜𝑡 Total apparent power

3. 𝑐𝑜𝑠(𝜙1) Furnace power factor 1

4. 𝑐𝑜𝑠(𝜙2) Furnace power factor 2

5. 𝑐𝑜𝑠(𝜙3) Furnace power factor 3

6. 𝑉1 electrode 1 to earth voltage (böckmann)

7. 𝑉2 electrode 2 to earth voltage (böckmann)

8. 𝑉3 electrode 3 to earth voltage (böckmann)

The selection of variables was determined through a process of trial and er-
ror. Reducing the quantity of inputs results in a reduction of the precision of the
model. However, expanding the quantity of inputs does not necessarily result
in a substantially more precise model. Rather, it elevates the model’s order and,
consequently, its complexity. Additionally, the model may exhibit overfitting of
the data.

16



5
Model Selection

5.1 TRAINING, VALIDATION AND TEST DATASET

The dataset has been partitioned into three distinct subsets of data. Each in-
dividual subset comprises of a matrix consisting of the input values and another
matrix representing the output values, which are referred to as targets.

Themodel is executed on a subset of the training data and subsequently eval-
uated against the target. The model is adjusted utilizing the System Identifica-
tion toolbox in Matlab, according to the obtained results.

Subsequently, the model that has been fitted is used to predict the responses
for the observations available in the subset of validation data. The purpose of
this action is to avoid over-fitting to the subset of data used for training.

The test data subset is a subset that is utilized to offer an impartial assessment
of a final model that has been fitted on the training data subset.

The complete dataset comprises a one-month duration, specifically from July
1st to August 1st, and has been sampled in the time-domain with a sample inter-
val of one second. The time-domain data comprises the input and output vari-
ables of a system that are recorded at a consistent sampling interval throughout
a specific time frame.

The dataset has been partitioned into three distinct subsets as delineated be-
low:

• The last three days are used as test dataset

• 70% of the remaining is the training dataset

17



5.2. SYSTEM IDENTIFICATION

• the last 30% is the validation dataset

5.2 SYSTEM IDENTIFICATION

Theprocess of constructingmathematicalmodels of dynamic systems through
the utilization of input and output signal measurements is referred to as system
identification.

In a dynamic system, the values of the output signals depend on both the
instantaneous values of the input signals and also on the past behavior of the
system. [12]

5.3 BLACK-BOX MODEL

A black-box refers to a system that can be analyzed solely based on its inputs
and outputs, without any understanding of its internal mechanisms. This ap-
proach can be beneficial when the main focus is on achieving a good fit for the
data, without necessarily adhering to a specific mathematical structure of the
model.

The selection of this methodology has been prioritized over a grey-box ap-
proach, which integrates qualitative prior knowledge with quantitative data.
This decision is based on the lack of sufficient reliability in the prior knowl-
edge pertaining to the SAF, making it inappropriate for constructing a conclu-
sive model.

The process of black-box modeling typically involves a trial-and-error ap-
proach, wherein solely the response behavior is taken into consideration. Vari-
ous parameters can be altered to obtain a model that fits well:

• type of model (ARX, ARMAX, BJ, OE)

• order of the model

• delay input/output

This study exclusively considers linear models as data-driven structure.

18



CHAPTER 5. MODEL SELECTION

5.4 MODEL STRUCTURES

4 distinct linear model structures have been considered.

• Arx
• Armax
• Output Error

• Box-Jenkins

5.4.1 ARX: AUTOREGRESSIVE WITH EXTRA INPUTS

For this type of model, the noise is coupled with the dynamics of the system.
Given 𝑢(𝑡), 𝑦(𝑡) and 𝑒(𝑡) the input, the output and the error at time t, respec-

tively:
𝐴(𝑞)𝑦(𝑡) = 𝐵(𝑞)𝑢(𝑡 − 𝑛𝑘) + 𝑒(𝑡) (5.1)

where

• 𝑞 is the time shift/delay operator.

• 𝑛𝑘 is the dead time, number of input samples that occur before the input
affects the output.

• 𝐴(𝑞), 𝐵(𝑞) matrices to estimate.

The limitation of this model is the lack of adequate freedom in describing the
properties of the disturbance term 𝑒(𝑡) [12].

5.4.2 ARMAX: AUTOREGRESSIVE MOVING AVERAGE WITH EXTRA IN-
PUT

ARMAX extends the ARX model structure by incorporating the moving av-
erage (MA) of the noise signal in the model.

𝐴(𝑞)𝑦(𝑡) = 𝐵(𝑞)𝑢(𝑡) + 𝐶(𝑞)𝑒(𝑡) (5.2)

where:

• C(q) is the estimated matrix associated with the error e(t).
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5.5. LINEAR ARMAX MODEL

5.4.3 OE: OUTPUT ERROR

OE models are useful when the disturbances can be modeled as white noise
[12].

𝑦(𝑡) = 𝐵(𝑞)
𝐹(𝑞)𝑢(𝑡) + 𝑒(𝑡) (5.3)

where:

• F(q) is the estimated matrix associated with the input u(t).

5.4.4 BJ: BOX-JENKINS

BJ model is the most flexible model of those tested.

𝑦(𝑡) = 𝐵(𝑞)
𝐹(𝑞)𝑢(𝑡) +

𝐶(𝑞)
𝐷(𝑞) 𝑒(𝑡) (5.4)

where:

• D(q) is the estimated matrix associated with the error e(t).

5.5 LINEAR ARMAX MODEL

The best linear model found uses a third-order discrete-time ARMAX struc-
ture:

𝐴(𝑞)𝑦(𝑡) = 𝐵(𝑞)𝑢(𝑡) + 𝐶(𝑞)𝑒(𝑡) (5.5)

where

• 𝐴(𝑞) is a 3-by-3 matrix.

• 𝐵(𝑞) is a 3-by-8 matrix.

• 𝐶(𝑞) is a 3-by-1 vector.

The model has no added delay between inputs and outputs.
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Figure 5.1: 1-step prediction on test dataset

The accuracy displayed in figure 5.1 is calculated as normalized root mean
squared error (NRMSE).

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 100 ∗
(
1 − ||𝑦 − �̂� | |

| |𝑦 − 𝑚𝑒𝑎𝑛(𝑦)| |
)

(5.6)

where 𝑦 is the test data outputs and �̂� is the output of model.
The efficacy of the model was evaluated by subjecting it to varying levels of

total active power P, in smaller subsets of the data.
[Figure 5.2 shows the response of the model when the power P is lower than

the average. In this case the average of the small portion is 46.08 MW while the
average of the total measured data is 46.98 MW. The model seems to perform
better with low active power for electrodes 1 and 2, while it’s slightly worse for
the third electrode.]

The graphical representation in figure 5.2 illustrates the model’s reaction to
a decrease in power P below the mean value. The current analysis reveals that
the mean value of the minor subset is 46.08 MW, whereas the mean value of the
entire set of observations is 46.98MW. Themodel exhibits superior performance
when the active power is low for electrodes 1 and 2, whereas it demonstrates a
slightly inferior performance for the third electrode.
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5.5. LINEAR ARMAX MODEL

Figure 5.2: 1-step prediction with low total active power P

A similar result is shown in figure 5.3 where the total active power P is higher
than the average with a mean of 47.91 MW.

Figure 5.3: 1-step prediction with high total active power P
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5.6 LINEAR BOX-JENKINS MODEL

When the BJ model is taken into consideration, a comparable outcome has
been observed:

𝑦(𝑡) = 𝐵(𝑞)
𝐹(𝑞)𝑢(𝑡) +

𝐶(𝑞)
𝐷(𝑞) 𝑒(𝑡) (5.7)

where

• 𝐵(𝑞) is a 3-by-8 matrix.

• 𝐶(𝑞) is a 3-by-1 vector.

• 𝐷(𝑞) is a 3-by-1 matrix.

• 𝐹(𝑞) is a 3-by-8 matrix.

The model has no added delay between inputs and outputs.

Figure 5.4: 1-step prediction on test dataset, BJ model
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6
Metamodel

6.1 DEFINITION OF METAMODEL

Physics–based Finite Element Methods (FEM) models of submerged arc fur-
naces (SAF) can accurately estimate the induced currents in the steel shell, the
alternating current distributions in the material layers, and the active and re-
active power densities within the furnace. However, a physics-based model is
generally very demanding in terms of computational time and resources, and
therefore difficult to employ during control operations and in fast prototyping.

A metamodel is a data-driven surrogate of the original model that retains
the same generalization capabilities as the original model while being compu-
tationally lightweight [13].

The metamodel is a linear model of the form:

𝑦 = 𝛽𝑥 (6.1)

where 𝑦 is an output vector of 126 elements and 𝑥 is the internal state vector
of 78 elements. The matrix 𝛽 encompasses the coefficients that represent the
affine mapping between the input and output variables. These coefficients are
obtained through the application of a partial least squares regression (PLSR)
approach.

The internal states are seen as the inputs of the meta-model and they are:
1. RMS Voltage at the transformer

2. Tip position of electrode 1
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6.1. DEFINITION OF METAMODEL

3. Tip position of electrode 2

4. Tip position of electrode 3

5. Crater wall thickness
6. Conductivity of crater wall 1

7. Conductivity of crater wall 2

8. Conductivity of crater wall 3

9. Sigma SiC 1-2

10. Sigma SiC 1-3

11. Sigma SiC 2-3

12. Elements 1-11 multiplied by each other

13. Elements 1-11 multiplied by themself

6.1.1 TUNING OF THE METAMODEL

The metamodel is a comprehensive representation of the furnace utilized by
the industrial partners involved in the SAFECI project.

It may be necessary to calibrate the tuning of the measurement data to the
particular Wacker furnace in question.

The raw data exclusively comprises characteristics that correspond to the
output of the metamodel. This posed a challenge in accurately calibrating the
simulator. An approach to achieving this objective involves determining the in-
ternal state values, denoted as 𝑥, that result in the minimal discrepancy between
the outputs generated by the metamodel and the corresponding empirical ob-
servations.

min
𝑥

|𝑦 − �̂�(𝑥)| = min
𝑥

|𝑦 − 𝛽𝑥 | (6.2)

where 𝑦 is the measured data and �̂� is the output of the metamodel.
The measurement data provided for this project is insufficient to encompass

the entire range of outputs produced by the metamodel.
It can be observed that the equation 6.2 possesses an infinite number of so-

lutions.The problem can be resolved by constraining all internal states within a
feasible range.
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CHAPTER 6. METAMODEL

(a) Vms bounded in [250,300] V (b) Tip positions bounded in [0.1,0.75] m

(c) Conductivity of crater wall [75,300] S/m (d) SiC bounded in [20,75] S/m

(e) Crater wall thickness bounded in [10,20]
cm

Figure 6.1: Estimated internal states from equation (6.2)
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According to Figure 6.1, it can be observed that the metamodel exhibits poor
responsiveness towards the actual data values. In fact, all internal state values
are estimated to be at their limits for a period of one thousand seconds. This
solution is not feasible. This implies that the simulator must be calibrated to suit
the particular furnace.

The time frame depicted in figure 6.2 is also illustrated in figure 6.1, although
with an increased upper limit for voltage (figure 6.2a) and an absence of bound-
aries for crater wall thickness (figure 6.2e). Consequently, the feasibility of the
internal states’ value appears to be evident. The size of the Wacker’s furnace
exceeds that of the typical submerged arc furnace, thereby accounting for the
elevated voltage levels observed.

The unfeasibility of figure 6.2e for an actual furnace is attributed to the pres-
ence of negative values. Given that all other variables are within the anticipated
ranges, it is possible to draw the following potential conclusions:

• The metamodel is not accurate in the calculation of the crater wall thick-ness.
• The measurement data has too much noise to be reliable in calculation of

the crater wall.

The accuracy of the internal states 𝑥, as provided by Equation (6.2), is com-
promised by the presence of intrinsic noise in the measurement data. The value
of (6.2) is always non-zero and it exhibits convergence towards a certain value.
The equation provides a preliminary indication of the feasibility of the meta-
model.
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CHAPTER 6. METAMODEL

(a) Vms bounded in [250,400] V (b) Tip positions bounded in [0.1,0.75] m

(c) Conductivity of crater wall [75,300] S/m (d) SiC bounded in [20,75] S/m

(e) Crater wall thickness bounded in
[-inf,inf] cm

Figure 6.2: Relaxed estimated internal states from equation (6.2)
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7
Comparison

7.1 IDEA

One of the aims of this thesis is to undertake a comparison between the linear
dynamic model and the static linear metamodel.

Initially, it is crucial to establish the inquiries that a comparison of twomodels
attempts to address.

• Are the static of the two models similar under some metric?
• How well the static model captures the gain of the dynamic model?

• Do the dynamics give more information than the statics?

• Can the static simulator (metamodel) perform better with the information
the dynamic model provides?

7.2 CHALLENGES

The comparison is not straightforward. In fact, the metamodel lacks some of
the states of the plant. The metamodel and the real measurements are funda-
mentally different organized:

• Simulator: All the measured signals are in the output and the internal
states are in the input.

• Plant: Measured signals are both in the inputs and outputs
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7.3. HOLDER POSITION VS TIP POSITION

The inability of verification is attributed to the unknown nature of the inter-
nal states. The internal states might be constant in the plant (steady-state), but
they are perceived as inputs by the metamodel.

There exists a mismatch between the inputs of the dynamic model and the
internal states (inputs) of the metamodel. The absence of internal state in the
measurement data dataset precludes a direct comparison of ”inputs to outputs”
between the two models.

7.3 HOLDER POSITION VS TIP POSITION

There exists a known correlation between the holder position and the tip po-
sition, which can be mathematically expressed through the following formula:

𝑍 = 𝑍0 + Δ𝐻 + 𝑆 − 𝐶 (7.1)

where:

• Δ𝐻 represents the vertical location of the electrode holder, which is sub-
ject to operator control. Its primary purpose is to regulate the resistance
within the hot zone by enabling upward or downward movement. The
measurement is provided by the dataset. The range of values spans from
20 to 140 centimeters.

• 𝑍0 represents the length of the electrode, and although its precise value is
indeterminate, it is postulated to be always greater than to 50 centimeters.

• 𝑍 represents the position of the electrode tip. The metamodel’s internal
state is represented as a positive number within the interval of 100 to 750
centimeters.

• 𝑆 denotes the phenomenon of slipping. The phenomenon occurs period-
ically, with a frequency of hours, and serves to regenerate the electrode
that has been depleted during the process.

• 𝐶 is the natural consumption of the electrode.
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Figure 7.1: Electrode representation

Figure 7.2 depicts a theoretical illustration of the electrode’s tip position. The
vertical displacement of the tip is a result of the electrode’s self-consumption
over time. The electrode is reconstructed by the slipping process at a specific
time T, in the order of hours. The slipping rate is subject to the discretion of the
operators.

Figure 7.2: Electrode consumption over time

33



7.4. STEADY-STATE VS METAMODEL

Assuming that S and C cancel themself out (especially in small time inter-
vals), is it possible to estimate the length of the electrode 𝑍0? In other words, can
a linear regression model describe the relation between 𝑍, 𝑍0, and Δ𝐻 through
the following formula?

𝑍 = 𝑍0 + Δ𝐻 (7.2)

If such is the case, there exists a direct correlation between a potential input
of the dynamic model and an internal state of the metamodel.

The equation 6.2 was utilized to establish a temporal correlation between the
holder positionΔ𝐻 and the tip position 𝑍, thereby enabling the recreation of the
value of the tip position within a specific time interval. A linear regression has
been constructed using the two variables:

𝑍 = 𝑍0 + 𝑥Δ𝐻 (7.3)

where 𝑍0 is the intercept that has been estimated.

The coefficient of determination 𝑅2 has been calculated in order to evaluate
howwell themodel fit the data. The result is𝑅2 = 0.0022, where the best possible
score is 1.0. Hence the linear regression model doesn’t fit the data as expected.
Therefore, it is not acceptable to assume the equation 7.2 as being reliable. As
a result, the data regarding the holder’s positions is being excluded from the
dataset of the dynamic model.

7.4 STEADY-STATE VS METAMODEL

As stated in Section 7.3, there exists no direct correlation between the inputs
of the dynamic model and the internal states of the metamodel.

Thus, an approach has been pursued to compare the inputs of the dynamic
model with the outputs of the metamodel.

The proposed approach involves partitioning the results of the linear equa-
tion of the metamodel into components that serve as inputs and outputs for the
dynamicmodel, aswell as extraneous values that are not utilized by the dynamic
model.
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CHAPTER 7. COMPARISON

𝒚𝒎 =


𝑦𝑑
𝑢𝑑
𝑧𝑑

 =

𝛽1

𝛽2

𝛽3

 𝒙𝒎 = 𝜷𝒙𝒎 (7.4)

Where 𝑦𝑑 and 𝑢𝑑 are the outputs and the inputs, respectively, of the dynamic
model in steady-state form.

The steady-state form is given by the state-space representation of the dy-
namic model:

𝑥𝑑+1 = 𝐴𝑥𝑑 + 𝐵𝑢𝑑 (7.5)

𝑦𝑑 = 𝐶𝑥𝑑 + 𝐷𝑢𝑑 (7.6)

where 𝑥𝑑+1 and 𝑥𝑑 are assumed to be equal so that:

(𝐼 − 𝐴) 𝑥𝑑 = 𝐵𝑢𝑑 (7.7)

and so:
𝑦𝑑 =

(
𝐶(𝐼 − 𝐴)−1𝐵 + 𝐷)︸                  ︷︷                  ︸

𝐾

𝑢𝑑 (7.8)

Inserting (7.5) into (7.8), it becomes:

𝛽1𝑥𝑚︸︷︷︸
𝑦𝑑

=
(
𝐶(𝐼 − 𝐴)−1𝐵 + 𝐷)

𝛽2𝑥𝑚︸︷︷︸
𝑢𝑑

(7.9)

and it can be re-written as:(
𝛽1 − (

𝐶(𝐼 − 𝐴)−1𝐵 + 𝐷)
𝛽2
)︸                               ︷︷                               ︸

𝑀

𝑥𝑚 = 0 (7.10)

Matrix M contains uncertainties derived by matrix K of equation (7.8).

Solving matrix M gives a suggestion of what the internal states are for the
dynamic model.

M is a 3-by-78 matrix (not square!). This implies that the kernel of M has
infinite solutions.

The imposition of certain boundaries on the internal states ofmatrixM serves
to decrease the quantity of feasible solutions. Nonetheless, this approach faces
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analogous challenges as explicated in section 6.1.1. The reliability of defining
precise boundaries is compromised by the inadequacy of metamodel tuning.

This approach may prove to be efficacious if one or more internal state vari-
ables are measurable.

7.5 DYNAMIC MODEL VS LINEAR REGRESSION

In order to assess the efficacy of the applied methodology in model creation,
a comparative analysis was conducted between the subject model and a model
developed using linear regression.

Linear regression is a statistical technique that aims to establish a mathemat-
ical relationship between two variables by employing a linear equation to best
fit the observed data. One variable is designated as the independent variable
(inputs of the model), while the other is designated as the dependent variable
(outputs of the model). The objective of linear regression is to minimise the
residual sum of squares between the observed targets in the dataset and the tar-
gets predicted by the linear approximation.

𝑦 = 𝐴 +𝑊𝑢 (7.11)

Where

• 𝑦 and 𝑢 are the same ouputs and inputs of the dynamic model.

• 𝐴 is the intercept matrix.

• 𝑊 is the coefficients matrix.

Once the estimation ofmatrixA andW in equation (7.11) has been performed
using the training dataset, themodel is eventually analysed against the dynamic
model in the validation dataset.
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Figure 7.3: Current: real value (black), linear regression (blue), dynamic model
(red)

Despite the adequate fit of the linear regression model to the data, its ac-
curacy remains inferior to that of the dynamic model. Indeed, the accuracy of
the two models and the actual output current can be assessed based on their
goodness of fit:

Current 1 Current 2 Current 3
Dynamic model 96.95% 97.57% 97.09%
Linear regression
model

90.81% 92.09% 89.95%

7.6 DYNAMIC MODEL VS STEADY-STATE

In Section 7.4, the model has been assumed to be in a steady-state condition
for the purpose of comparison. This section presents an analysis of the dynamic
model to determine whether the assumption of steady-state can be made for the
plant, taking into consideration the system’s slow dynamics. The steady-state
model described in equation (7.8) is compared with the dynamic model.

The output currents are compared to the actual current value for a given
input:
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Current 1 Current 2 Current 3
Dynamic model 96.95% 97.57% 97.09%
Steady-state 84.38% 85.68% 82.51%

The steady-state model appears to exhibit inferior performance compared
to the dynamic model, although the trade-off between reduced accuracy and
increased simplicity may be considered acceptable.

Figure 7.4: Current: real value (black), steady-state (blue), dynamic model (red)
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8
Conclusions and Future Works

The goal of this studywas to determine the optimal linear data-drivenmodel
for submerged arc furnaces. This paper elucidates various methodologies em-
ployed in attempting to compare a model with an existing meta-model, while
also providing an explanation as to why such a comparison is unattainable.

Ultimately, the model has been demonstrated to outperform a linear regres-
sion model.

Aportion of the research conducted in this project has been incorporated into
a forthcoming publication ”Data Driven System Identification for the Modelling of
Submerged Arc Furnaces”. The paper examines both linear and non-linear mod-
els, providing analysis for both cases.

Following works related to this project will involve improving the step pre-
diction capabilities of the models, specifically by extending the prediction hori-
zon to include intervals as short as 5 minutes.
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Appendix

A.1 MEASUREMENT DATASET

Parameters Definition Formula
𝐼1(𝐴) rms current for electrode 1
𝐼2(𝐴) rms current for electrode 2
𝐼3(𝐴) rms current for electrode 3
𝐺𝐼1(𝑚) Holder position of the electrode 1
𝐺𝐼2(𝑚) Holder position of the electrode 2
𝐺𝐼3(𝑚) Holder position of the electrode 3
𝑉1(𝑉) electrode 1 to earth voltage (Böckmann)
𝑉2(𝑉) electrode 2 to earth voltage (Böckmann)
𝑉3(𝑉) electrode 3 to earth voltage (Böckmann)
𝑃(𝑀𝑊) Total Active Power
𝑄𝑇𝑜𝑡 Total Reactive Power
𝑆𝑇𝑜𝑡 Total Apparent Power 𝑆𝑇𝑜𝑡 =

√
𝑃2 +𝑄𝑇𝑜𝑡2

𝑐𝑜𝑠(𝜙1) Furnace Power Factor 1
𝑐𝑜𝑠(𝜙2) Furnace Power Factor 2
𝑐𝑜𝑠(𝜙3) Furnace Power Factor 3
𝐸𝑙𝐶𝑜𝑠(𝜙1) Electrode Power Factor 1 Directly from the meter
𝐸𝑙𝐶𝑜𝑠(𝜙2) Electrode Power Factor 2 Directly from the meter
𝐸𝑙𝐶𝑜𝑠(𝜙3) Electrode Power Factor 3 Directly from the meter
𝑃1 Power of electrode 1 𝑃1 = 𝑉1 ∗ 𝐼1 ∗ 𝐸𝑙𝐶𝑜𝑠(𝜙1)
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𝑃2 Power of electrode 3 𝑃3 = 𝑉2 ∗ 𝐼2 ∗ 𝐸𝑙𝐶𝑜𝑠(𝜙3)
𝑃3 Power of electrode 3 𝑃3 = 𝑉3 ∗ 𝐼3 ∗ 𝐸𝑙𝐶𝑜𝑠(𝜙3)
𝐶𝑎𝑙𝑐𝑅𝑒𝑠𝑇𝑜𝑡(𝑚Ω) Total resistance of the furnace 𝑅 = 3∗𝐸 𝑓 𝑓 𝑒𝑘𝑡

(𝐼1+𝐼2+𝐼3)
𝑅1(𝑚Ω) Resistance of electrode 1 𝑅1 = 𝑃1/(𝐼1)2
𝑅2(𝑚Ω) Resistance of electrode 2 𝑅2 = 𝑃2/(𝐼2)2
𝑅3(𝑚Ω) Resistance of electrode 3 𝑅3 = 𝑃3/(𝐼3)2
𝑋1 Reactance of electrode 1 𝑋1 = 𝑉1 ∗

√
(1−𝐸𝑙𝐶𝑜𝑠(𝜙1)

𝐼1

𝑋2 Reactance of electrode 2 𝑋2 = 𝑉2 ∗
√

(1−𝐸𝑙𝐶𝑜𝑠(𝜙2)
𝐼2

𝑋3 Reactance of electrode 3 𝑋3 = 𝑉3 ∗
√

(1−𝐸𝑙𝐶𝑜𝑠(𝜙3)
𝐼3

𝐹𝑢𝑟𝑛𝑎𝑐𝑒𝐶3 𝐶3 = 1
3 ∗ (𝐼1+𝐼2+𝐼3)

3
√
𝐸 𝑓 𝑓 𝑒𝑘𝑡2

𝑄𝐼 Crucible thermal flux
𝐺𝐼 Crucible rotational position
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