
Università degli Studi di Padova

Master Degree in Computer Science Engineering

Academic Year 2010/2011

Dynamic Constraint Satisfaction
approach to Hospital Scheduling

Optimization

Thesis director: Prof. Silvana Badaloni
Thesis co-director: Ph.D. Francesco Sambo
Student: Marco Ventilii (matriculation: #604088)





GRAZIE DI CUORE. . .

. . . alla professoressa Silvana Badaloni, per aver creduto in me
quando nemmeno io lo facevo e per avermi sempre spinto a dare
il massimo.

. . . al dottor Francesco Sambo, per la sua incredibile disponibil-
ità ad aiutare e per il sorriso con cui l’ha sempre fatto.

. . . alla mia famiglia, Rita, Elio e Francesco, per avermi sempre
compreso e sopportato, senza mai, mai avermi fatto sentire sotto
pressione in alcun modo.

. . . alla mia dolce Elena, per avermi fatto sorridere di gioia in
questi mesi, ridandomi la serenità necessaria a continuare.

. . . a Enrico, Federica, Mariarosa e Silvia, insostitubili amici,
per avermi assistito quando ne avevo veramente bisogno.

. . . ai compagni di corso: Michele, Martina, Roberta, Federico,
Andrea, Paolo, Manuel, Cimut (non riesco mica a chiamarti
Simone, oh!), Gianmario e il resto della classe, per aver reso
speciali questi cinque anni e mezzo (e per le partite ad Unreal
Tournament).

. . . agli amici di sempre: Filippo, Alessandro, Elisa, Manuel,
Valeria, Matteo, Manuela, Edoardo, Daniele e tutti gli altri, per
le innumerevoli esperienze significative condivise, che ricordo
sempre con un gran sorriso, e per l’affetto che mi avete regalato
finora.

. . . ai murialdini, specialmente Jacopo, Marco, Michele, Gae-
tano, e ai disertori, Lele Andrea e Carlo per aver reso il Murialdo
un posto felice e pieno di zanzare.

. . . e infine ad Angelica, che mi ha insegnato che una delle
conquiste più importanti per una persona è trovare il coraggio di
volersi bene.

HEARTFELT THANKS. . .

. . . to Prof. Silvana Badaloni, for believing in me even when I
didn’t and for always pushing me to do my best.

. . . to Ph.D Francesco Sambo, for his incredible willingness to
help and for the smile with which he has always done it.

. . . to my family: Rita, Elio and Francesco, for having always
understood me and tolerated me, without never, ever put myself
under pressure in any way.

. . . to my sweet Elena, for the smile of joy that was on my face
in these months, giving me the serenity which I needed to carry
on.

. . . Enrico, Federico, Mariarosa and Silvia, irreplaceable friends,
for having assisted me when I really needed to.

. . . to classmates: Michele, Martina, Roberta, Federico, Andrea,
Paolo, Manuel, Cimut (sorry, I really can’t call you Simone),
Gianmario and the rest of the class, for making these five and a
half years special (and for Unreal Tournament matches).

3



. . . to the friend of all time: Filippo, Alessandro, Elisa, Manuel,
Valeria, Matteo, Manuela, Edoardo, Daniele and everyone else, for
the many significant experiences we shared, always remembered
with a big smile, and for the love you have given me so far.

. . . to the college buddies, especially Jacopo, Marco, Michele,
Gaetano, and to the deserters Lele , Andrea e Carlo, for making
the Murialdo a happy place, full of mosquitoes.

. . . to Angelica, who taught me that one of the most important
achievements for a person is to find the courage to love himself.

. . . to the reader, of course, for tolerating my English. I apolo-
gize from the start, buddy.

4



C O N T E N T S

1 INTRODUCTION 7

2 PROBLEM 9

2.1 Problem domain 9

2.1.1 Patients 9

2.1.2 Resources 11

2.1.3 Definitions 12

2.1.4 Particular issues 13

2.2 Computational Aspects 13

2.2.1 Optimization level vs Usefulness 13

2.2.2 Environment 14

3 STATE OF THE ART 15

3.1 Distributed Constraint Optimization for Medical
Appointment Scheduling 15

3.1.1 Description 15

3.1.2 Pros and cons 16

3.2 Multi-agent Pareto Appointment EXchange (MPAEX) 16

3.2.1 Description 16

3.2.2 Pros and cons 18

3.3 Coordinated Hospital Patient Scheduling 18

3.3.1 Description 18

3.3.2 Pros and cons 20

3.4 Optimization of online patient scheduling with
urgencies and preferences 20

3.4.1 Description 21

3.4.2 Pros and cons 22

3.5 Complementary Works 22

3.5.1 Decentralized online scheduling of combination-
appointments in hospitals 23

3.5.2 Adaptive Optimization of Hospital Resource
Calendars 24

4 RESOLUTION METHODS 27

4.1 CSP 27

4.2 Dynamic CSP 28

4.2.1 Local Changes Algorithm 29

5 SOLUTION 33

5.1 Model 33

5.1.1 Variables 34

5.1.2 Constraints 34

5.2 Algorithm 38

5.2.1 Optimization criteria 38

5.2.2 Implementation guidelines 39

5.2.3 Heuristics 39

5.2.4 Data Structure 42

5



Contents

5.2.5 Stochastic Exploration 44

5.2.6 Algorithm Pseudocode 45

5.2.7 Summary 51

6 RESULTS 53

6.1 Metrics 54

6.2 Offline Scheduling 55

6.2.1 Simulation n.1 55

6.2.2 Simulation n.2 56

6.2.3 Simulation n. 3 58

6.2.4 Simulation n. 4 60

6.2.5 Conclusions 60

6.3 Online Planning 61

6.3.1 Simulation n.1 61

6.3.2 Simulation n.2 62

6.3.3 Simulation n.3 62

6.3.4 Simulation n.4 63

6.3.5 Simulation n. 5 64

6.3.6 Conclusions 64

7 CONCLUSIONS AND FUTURE WORK 67

6



1 I N T R O D U C T I O N

A hospital is a very complex environment: if we think how many
people and resources are involved to maintain this facility fully
operative we can easily lose the count while just listing the nurses.
And all these people and resources, which includes the staff, the
machineries, even the rooms of the hospital itself, always cooper-
ate in order to to administer the right treatments to the patients
while trying to maintain a good overall performance and, why
not, trying also to satisfy patients requests in term of organization,
personalized services and so on. Such a complex environment
is surely difficult to handle: up to now the management policies
of hospitals have established an acceptable quality model, which
has become a standard de facto for Minimum Service Levels
(MSLs).

Based on this we can immediately focus our attention on the
core of the Hospital Scheduling Optimization problem: a hospi-
tal with an incoming stream of patients, each one needing a
personalized medical care treatment, must optimize the way it
serves them, trying to administer efficiently the majority of the
treatments needed by all of them, keeping in mind that a fixed
MSL has to be granted. With these premises it is not difficult
to think that a human manager can be outperformed by a fully
automatized software: after all the mission-critical goal is clear
and easily explainable from the mathematical point of view : the
treated patient throughput has to be maximized.

Let focus first our attention on each medical treatment a patient
needs, considered as a single process; we know that this process
requires some resources to be allocated (a patient requires at
least a doctor to proceed toward his medical treatments and, in
some cases, also certain devices or machineries are needed) and,
once allocated, they need to be retained for some time while
making progress to the end. With the same approach we can
decompose a medical treatment in basic sub-treatments, each
one to be performed by a different specialist, with precedence
constraints between them.

With the similarities we have just established the scheduling
problem archetype clearly fits in our case.

Such a complex environment can not avoid to arouse interests
among the scientific community: a great number of studies has,
in fact, already started to appear in the scientific literature, each
one analyzing a single problem from the hospital operative cycle
and, in some cases, a resolutive approach is proposed. Examples
of these correlated studies are a nurse rostering optimization
method[18] which can account staff preferences in the planning
process, which is a common open problem in hospitals, or a study
on how to improve the survival ratio of out-of-hospital cardiac
arrests by optimizing existing defibrillation programs [17].

7



INTRODUCTION

However, while most of the single parts of the hospital are
already accounted in separate studies, the real challenge has
become interesting only recently: a single hospital can aspire
to optimize its whole structure by managing its resources in
a way to improve the performances in term of served patient
throughput and general satisfaction of patients and staff members.
The studies in this sense are still rare among literature but they
are all recent [25, 8, 23, 12] and propose resolutive methods we
will analyze later in this thesis.

We choosed to use the Dynamic Constraint Satisfaction Problems
(DCSP) as resolutive framework for a number of reasons.

First of all we must take into account that an hospital is a
dynamic environment. An agent who finds itself in a hospital
can easily expect a wide variety of changes, even if he does not
interact with anything: an emergency could happen, medics can
be picked away from their rooms and called for consultation,
machinery can stop working, a patient’s conditions can worsen,
giving him/her a bigger priority on the scheduling, and so on.

Therefore, any resolutive algorithm we may propose to opti-
mize the patient throughput must be able to perceive and handle
such changes in a clever way.

Secondly, despite a wide literature on scheduling problems
has been written over time, conventional approaches are not
useful to our problem: according to [2, 19], in fact, the Hospital
Optimization problem is a NP-Hard problem and can not be
resolved within a reasonable timeframe with these methods.

Artificial intelligence, on the other hand, presents a wide vari-
ety of method to approach an intractable problem, like this one.
In particular, constraint networks are a versatile, high-level in-
strument which allow very detailed modeling construction, while
permitting different types of implementations.

In this thesis we will see how a DCSP-based method can sub-
stantially produce a good scheduling for every patient while
retaining a sufficient performance level to make this scheduling
approach useful for actual hospital organization.

Specifically:

• In chapter 2 we will see more about the hospital optimiza-
tion problem

• In chapter 3 we will discuss about the current solutions
proposed to this problem

• In chapter 4 we will learn about the DCOP approach

• Through chapter 5 we will examine strictly the solution
proposed by this thesis

• In chapter 6 we will show some results obtained with
the proposed solution, comparing them with the standard
scheduling policies now adopted in hospitals.

• In Chapter 7 conclusions are drawn

8



2 P R O B L E M

In this chapter we will analyze the reality that make the problem
itself interesting: the hospital and the medical reality around it.

After all why may a hospital want to optimize its activity
planning? And, even if there was the desire to do so, how can
this goal be achieved?

To answer the first question we must take a closer look to
the hospital environment and to the medical processes that take
place into it and only after that we can give an answer also to the
second question, by remarking the key aspects of the problem.

2.1 PROBLEM DOMAIN
A hospital is a concept which is easy to imagine: it is simply a
place where unhealthy people enter, after a few standard proce-
dures (like taking an appointment, being subject to a diagnostic
exam, and so on) they receive the correct treatment for their
illness and, finally, they leave.

The structure of the hospital itself, however, is really complex:
a hospital is organized in various departments, which have a
remarkable organizational and decision-making autonomy. A
perfect example of this autonomy is given by the possibility for
a specialist to fix directly an appointment to one of his (or her)
patients, rather than simply prescribe the appropriate treatment.
Such departments will obviously pursue their own (local) goals
while optimizing their patient flow, which are probably different
from the hospital (overall) goals.

Such a segmented and distributed nature of the hospital envi-
ronment naturally affects the flow of the patients into the struc-
ture, knowing that each patient can interact with more than
one department during their stay in the hospital, due to the
prescriptions they were given. This implies that a widespread
communication network among the various departments is re-
quired just to try to optimize the flow of the patients, in order to
achieve an optimal use of the available resources.

2.1.1 Patients

Patients are very heterogeneous, because their requests and char-
acteristics can vary widely.

For example, we have patients who reserved a visit in advance
(they are defined as "clinic patients") and those who need an emer-
gency assistance (defined as "urgent patients"), arriving directly
to the ER; another taxonomy of the incoming patients consists
into dividing them between patients who need to be hospitalized

9



PROBLEM

("inpatients") and patients who can go home after the needed
treatment (or treatments) have been given ("outpatients").

In addition, patients clearly differ by the urgency level of their
treatments and by their willingness (or possibility) to wait inside
the hospital for their turn to be treated.

In particular this last aspect of the patient has a remarkable
influence on the treatments planning: the patient is a required
resource for all of his/her appointments,after all. The timespan
that the patient can spend in hospital depends on various reasons,
which may include professionals (a worker has to request a
period off to his boss) or logistics (a person who travel often will
surely have difficulties with the treatment planned at his hospital)
restrictions. Furthermore, the time available for the patient to
wait for his treatment may, obviously, be restricted for medical
reasons.

In the Italian health care system, for example, medical pre-
scriptions1 can be associated with a certain priority level, which
implies a restricted due date for the proposed treatment2. The spe-
cialist doctors which perform these treatment will subsequently
compile a report of the actual severity of the patient conditions,
to give it as a feedback to the general practitioner (GP) who
fixed the original priority level, and, as already mentioned, they
can handle the rest of the patient medical course, by prescrib-
ing further necessary treatments and fixing their appointments
directly.

Hospital emergency room (ER) behaves differently: patients
that arrive at ER does not pass by a GP and has to be diagnosed as
soon as possible. This process can be speeded up if an ambulance
is called for the emergency: a summary description is given to the
centralized phone center, which coordinates ambulance exits, and
some staff members can be sent directly to the patient location
with the ambulance itself; this permits a preliminary diagnosis
on the ambulance and gives to the ER a short time period (of at
least 10 minutes) for preparations. After the diagnosis is made an
emergency code is associated to the patient3and upon this code
a due date for the patient can be determined. In the ER these
dates are usually very strict, thus the other hospital departments
can be influenced by these arrivals in various ways: a doctor

1 In the Italian health care system, medical prescriptions are given by the
general practitioner, thus they are not treated directly by the ER (source :
http://http://www.salute.gov.it/)

2 for example a U priority level (which stands for Urgent) means that the treat-
ment must be given in the next 24 hours after the prescription delivery. A
D level (which stands for Delayable), on the contrary, sets a due date of 30

days from the prescription delivery for diagnostic examinations and of 60

days for instrumental examinations. The lower assignable priority level is the
Programmed one, which fix the due date to 3-6 months for all the examina-
tions except the oculistic ones, which have a due date of 18 months. (source :
http://http://www.salute.gov.it/)

3 Italian health care system provides four codes, each one correspondents
to a color. Ordered from the less urgent one they are white (not ur-
gent at all), green, yellow and red (life-threatening emergency). (source :
http://http://www.salute.gov.it/)

10



2.1 PROBLEM DOMAIN

may be called for an advice by the ER or an urgent X-Ray scan is
committed; these event, therefore, are capable of breaking up all
the previous planning with their prioritary resource requests4.

2.1.2 Resources

Hospitals continuously aim to improve their patient-oriented
care. They want to provide their patients with high service levels.
However, the demand for health care is increasing, and more
patients must be treated with the same capacity. High efficiency
on resources is necessary for high service levels. Traditional ap-
proaches to logistical improvement are usually not suited to the
medical domain. The distributed authority in hospitals makes im-
provements involving many departments difficult to implement.
Furthermore, scheduling decisions must be made depending on
the individual patient’s specific attributes. Efficient scheduling of
patient appointments on expensive resources is a complex and
dynamic task [26].

Hospital resources are many: ranging from CT and MRI scan-
ners, to hospital beds, to attending staff. A resource is typically
used by several patient groups with different properties. There
are groups of inpatients (admitted to the hospital) and outpa-
tients (not admitted), with different levels of urgency. The total
hospital resource capacity is allocated to these groups, explicitly
or implicitly. Either way, due to fluctuations in demand, this
allocation must be flexible to make efficient use of the resources.
To allocate hospital resources, electronic calendar-systems are
widely applied. However, they are mostly just storing the patient
appointments.[22]

The resources of a hospital comprise the staff, the machinery
and the rooms, and all of them are limited resources with a finite
capacity: some of them, like the staff and many machineries, can
participate only to one appointment at time, while a room may
accommodate more peoples simultaneously.

In particular, the hospital staff is a remarkably valuable re-
source: the solution to our problem can not be as simple as hiring
more staff but, on the other hand, the doctors surely can not be
asked to work twice as many hours as planned. Neither they can
be asked to work frantically only to respect the schedule, because
a similar request may lower the quality of the given treatments,
with consequent inconveniences to patients.

The hospital staff, thus, should and must take benefits from
the reorganization of the planning method.

Machineries, on the other hand, require qualified staff to work
but, apart from this, they are a more flexible resource compared
to the staff.

It is, clearly, very difficult that a patient will be available in
the middle of the night for a simple physiotherapy session (and
it is even more difficult to find a doctor willing to do such a

4 Usually an engaged resource can not be released in hospital environment but a
preemption is not excluded, even if it happens rarely.

11



PROBLEM

session), but those devices that are useful for emergencies (like X-
Ray fluoroscopies or CAT-scan machines) can potentially operate
24/7, with the necessary precautions, and often they do so, since
it is likely that a qualified team is always ready to supervise
those machineries, alternating the shifts with other members of
the staff.

A medical device is usually quite difficult to move around the
hospital, thus we can reasonably associate a device with the room
that houses it. It is possible for a room, though, to participate
in more appointments at the same time, while a medical device
can not attend more than one patient simultaneously. With
this assumption we can establish a many-to-one correspondence
between the machine and the room it is contained into; this
means that the model can merge machinery and rooms into a
single entity, explained in the next subsection.

2.1.3 Definitions

Given the intrinsic complexity of this problem the first step is the
definition of the key terms.

PATIENT. A patient is a person who asks the hospital for a
medical treatment. We have already discussed the aspects and
the behaviour of patients.

TREATMENT. A treatment is given by a member of the staff and
may require particular medical devices.

WORKPLACE. A workplace is a space where a treatment can be
administered. A workplace represent the many-to-one correspon-
dence already mentioned just above, in Section 2.1.2; a workplace,
then, can hold more than one device and is therefore able to
participate in the administration of various types of treatment. A
workplace, however, holds a scarce resource (i.e.: the machinery)
and thus is considered, in turn, a scarce resource. Due to the
rarity of preemptive requests, which always are consequent to
high-level decisions, our model will not permit any workplace
preemptions.

APPOINTMENT. An appointment is the request by a patient for a
certain treatment. The hospital must try to satisfy this request by
assigning to this appointment a particular time instant in which
the appropriate resources (doctors, machineries, etc. . . ) will be
available and the requested treatment can acquire those resources
and be administered.

ASSIGNMENT. An assignment is the set of details needed to
satisfy an appointment request. In particular an assignment is
composed by

• A starting time for the treatment to be administered

12



2.2 COMPUTATIONAL ASPECTS

• A workplace in which the treatment will be administered

This information is given for the only purpose to locate, in time
and space, a slot in which the resources needed by the requested
treatment are available. If an appointment is provided with these
data it is said that the appointment has been assigned.

2.1.4 Particular issues

Festivities have also to be considered with great attention: dur-
ing holidays and Saturdays every non-urgent outpatient activity
is suspended and the staff present into the hospital is greatly
reduced. This means that the emergencies can still be treated
but on Mondays an increased flux of requests is expected and
will heavily influence the appointments that have already been
assigned.

2.2 COMPUTATIONAL ASPECTS

This section will focus on the scheduling optimization process,
examining the key issues which will arise during the implemen-
tation step.

The first thing that one encounters when seeking medical as-
sistance in a hospital is a schedule: the scheduled medical profes-
sionals to consult, time-slots for possible diagnostic or therapeutic
machines, and availability of simple resources like examination
rooms. Depending on the available capacity, these schedules may
be more or less congested. In particular, in countries like The
Netherlands and Greece, demand regularly exceeds capacity and
substantial waiting lists exist for many medical procedures. [25]
However, even in these situations, it is not the case that resources
are always used at high efficiency. Medical professionals report
many schedule inefficiencies. Effective scheduling algorithms
should decrease waiting lists significantly, while increasing hos-
pital efficiency [27, 5].

2.2.1 Optimization level vs Usefulness

Due to the distributed nature of a hospital, departments have
local objectives and scheduling policies [23]. The problem of
scheduling a mix of patients with varying properties has to be
solved locally, while hospital-wide performance depends on how
departments interact with each other. To make efficient use of
the resources we have already delineated an appointment-based
systems which, despite its simplicity, reflects with great fidelity
the one actually used in reality, although in current practice the
actual scheduling is often done by hand.

However, a scheduling algorithm that aims at optimizing the
hospital scheduling must satisfy, first of all, a basic requirement:

13



PROBLEM

the whole optimization process must be done in an amount of
time short enough to make the solution still useful.

In other words, the computation time of the algorithm must not
exceed the unit chosen to quantize the time flow5; the solutions,
otherwise, become useless for the planning process.

2.2.1.1 NP-Hardness.

This problem is referable to the more general "open shop" prob-
lem [4].

In open shop problems, all jobs (here patients’ appointments
set) consist of as many activities (the appointments contained int
the aforementioned set) as there are resources.

Our patient scheduling problem therefore corresponds to an
open shop problem with processing times including values of
zero: O|pij = {0, satmij}|∑ i Ci (standard scheduling notation),
where pij is the processing time of activity aij , and satmij is the
standard activity time of resource mij [25].

The general open shop problem is known to be NP-Hard[10, 14]
thus we can not expect that optimal solutions are obtainable
within a reasonable time for this problem either.

This obviously hardens the challenge of restricted times already
explained in the previous paragraph.

2.2.2 Environment

A clear aspect of our problem is that the hospital environment is
clearly dynamic.

A rational scheduler that has to plan a temporal sequence
of appointments acceptance must react to the changes that can
occur during the hospital activity period. In particular we can
observe that the frequency of these changes is unpredictable: the
environment is, therefore, a stochastic dynamic environment.

Due to the nature of our environment we can state that these
change are unpredictable but gradual: it is unlikely that a mass
patient resignation happens at the same time of a big emergency;
therefore we can assume that if we would take two snapshot
of the environment’s state, one before and the other after a cer-
tain change, we should be able to spot a very small number of
differences.

A solution found, thus, is not stable in time but a new solu-
tion is very likely to be constructible basing on the information
contained in the old one.

5 In our simulations, explained in chapter 6, this time unit is the quarter of an
hour, which is enough to organize the appointments with a significant precision.
See also Definition 5.1.

14



3 STAT E O F T H E A RT

This section will present the state of the art for the problem of
Hospital Scheduling Optimization.

Unfortunately, as already mentioned, in the literature similar
works are still rare: while we can find a lot of studies on open
problems related to the health care system there are still only a
few approaches for this kind of problem.

We will briefly examine each of these approaches, analyzing
its underlying idea, its structure and summarizing any pros and
cons.

3.1 DISTRIBUTED CONSTRAINT OPTIMIZATION
FOR MEDICAL APPOINTMENT SCHEDULING

The study described in [12] is the one that comes closest to our
approach in terms of resolving approach: in fact it builds a multi-
agent approach on an extension of Constraint Satisfaction Problems
(CSP) settings1 which is more suitable to collaborative problem
solving, called Distributed CSP.

3.1.1 Description

This study starts by defining a very detailed model: this is a
model which is very close to actual reality and covers a wide
range of attributes of patients and resources. Also, constraints,
variables and domains are rigorously described, covering most
of the significant aspects of hospital reality.

This model, being so rich in detail and fitting for a constraint
satisfaction approach, is the one we adopted, and our approach
will be based upon it. Both the approach and the model, thus,
are described in detail in chapter 5 and will not be referred in
this section anymore.

Once defined the model, the agents which operate into it are
also defined and, finally, the criteria adopted by the agents for
local optimization can be described. With this reasoning, the
model is further enriched with details, resembling even more the
actual nature of the hospital: a decentralized, distributed set of
departments, whit a great decision-making autonomy.

After this the study goes on describing a distributed solving
approach used to build the solution by collaborating agents: in
particular this method uses the Multi-Phase Agreement Finding
(MPAF) [11] algorithm to incrementally assign a value to the

1 CSPs will be described in chapter 4 of this work

15



STATE OF THE ART

variables, paying attention not to violate any of the constraints
specified by the model.

In the two subphases of this algorithm (which are a proposal
phase and an assignment phase) optimization objects are involved
in the process: these objects encapsulate CSP knowledge about
optimization criteria and strategies and have the ability to trans-
form themselves to declarative CLP expressions, which actually
build a piece of a CLP problem declaration.

The final step of the algorithm is to collect and organize all
these pieces, scattered among the various agents, and recompose
the whole CLP problem, which will be given to an off-the-shelf
constraint solver.

3.1.2 Pros and cons

This study, as already stated, presents a realistic and detailed
model of the hospital reality, including variables and constraints,
which suits perfectly a CSP-based approach. With the additional
information contained in the model this study aims to distribute
the problem in a way very similar to the one actually used in real
hospitals, although it still requires a central solver to perform the
last computation step.

However, this work misses a critical point in the modelling
phase: the hospital environment described in this study, in fact, is
not a dynamic environment. Such a modelling choice relieves the
algorithm from the burden of having to handle those particular
events that characterize an actual hospital environment. The
appointments, thus, can be assigned to certain workplaces in the
appropriate time slots, respecting the optimization criteria, but
they can not be modified after that. This makes this approach
of limited utility for our final goal, apart from the model: as
already mentioned, in fact, the model used in this study reflects
the reality with a high fidelity level, therefore is the one we used.

3.2 MULTI-AGENT PARETO APPOINTMENT EX-
CHANGE (MPAEX)

The Multi-agent Pareto Appointment EXchange (MPAEX) [25]
approach is a distributed multi-agent system designed by Ivan
Vermeulen et al. capable of managing the scheduling of an
hospital dynamic environment.

3.2.1 Description

The main idea beyond this approach is that every patient is rep-
resented by an agent that tries to exchange its reserved time
slots (obtained with the appointment acceptance) with one of
the other agents following the marketplace model, which is an
efficient way to distribute scarce resources: in fact similar mod-

16



3.2 MULTI-AGENT PARETO APPOINTMENT EXCHANGE (MPAEX)

els integrate well in dynamic environments and minimize the
required communications between participants, because only the
price-quotations must be exchanged in order for the bids to take
place.

In this way a patient will exchange his appointments only if
this reflects his preferences; an exchange of time slots, thus, will
be done only if none of the parts will suffer a satisfaction loss2.

In such a framework, the real patients are induced to coopera-
tion by the instructions of their software agents.

This method is conceived over the knowledge of the consult-
diagnostic-consult cycle, represented in figure 1, which includes
various "consultation checkpoints" that allow the doctor to decide
any other test to be administered to the patient, basing on the set
of results obtained up to that moment.

Figure 1: Consult-diagnostic(s)-consult cycle

This cycle suggests an incremental building of patient’s treat-
ments, divided among different days, but with a single partial
plan fixed at once. The target of this approach is to minimize the
patient waiting time, defined as the period of time between the
final activity of the partial plan and the creation of the partial
plan itself; this means that only the final appointment of the plan
can actually change the patient’s satisfaction, thus every other
appointment can be moved freely without worsen nor improving
the patient status.

This implies that a patient agent will always try to move the
last appointment of the plan, in order to optimize the patient
scheduling, asking the correspondent resource agent a way to
reduce the plan’s completion time. Resources agents will then
propose an alternative time slot, starting from the earliest possible
time slot, and the patient agent will try to exchange his/her time
slot with the patient-agent occupying that time slot. The deal will
be accepted if neither patient suffers a worsening of its situation
with respect to its preferences (i.e. its completion time will not
increase). If not accepted, the patient agent will request another
prospective time slot from the resource agent, and will continue

2 In economics such a "nobody-worse" improvement is called a "Pareto improve-
ment", which gives the name to the algorithm

17



STATE OF THE ART

doing so until there are no more prospective time slots, or a
proposed exchange is accepted. The process is repeated for all
patient agents iteratively, until no exchanges can be made any
more.

This method is made to improve an already existing sched-
ule, which is compiled by a very simple algorithm: for every
unscheduled activity in the partial plan a time slot is asked to
the correspondent resource, which is promptly given; if this time
slot is not conflicting with any other assignment it is accepted by
the patient’s agent otherwise the resource agent is prompted for
a new time slot.

3.2.2 Pros and cons

This decentralized approach is able to manage admirably a
distributed system in a dynamic environment and his Pareto-
improvement-based behaviour will surely facilitate its adoption
by the patients and the hospital staff.

The method, unfortunately, lacks of an efficient emergency
management: in an emergency case every patient will have his
or her schedule’s score worsened, thus will never accept an
exchange with the urgent patient’s agent.

This can easily be solved by forcing a time slot exchange with
the non-urgent patient’s agent, even if it worsen up its schedule.
This agent will subsequently try to improve its scheduling with
the usual algorithm. This case, however, is not covered in the
article.

This approach, therefore, is surely good for scheduling outpa-
tients with restricted availability set but any emergency manage-
ment must be studied separately.

3.3 COORDINATED HOSPITAL PATIENT SCHEDUL-
ING

This works [8] by Keith Decker and Jinjiang Li presents another
multi-agent system, based on the Generalized Partial Global
Planning (GPGP) approach that preserves the existing human
organization and authority structures, while providing better
system-level performance (increased hospital unit throughput
and decreased patient stay time).

3.3.1 Description

Generalized Partial Global Planning (GPGP) is an approach to
coordinated problem resolution centered on task’s environment.
The basic idea is that each agent constructs its own local view
of the structure and relationships of its intended tasks. This
view may then be augmented by information from other agents,
and it may change in other ways dynamically over time. The

18



3.3 COORDINATED HOSPITAL PATIENT SCHEDULING

GPGP approach uses a set of individual coordination mechanisms
to help to construct these partial views, and to recognize and
respond to particular task structure relationships by making
commitments to other agents. These commitments result in more
coherent, coordinated behavior. No one coordination algorithm
will be appropriate for all task environments, but by selecting
from a set of possible coordination mechanisms we can create a
wide set of different coordination responses.

The set of intended task is represented by using a particular
task structure representation language (TÆMS), which allows
the formulation of specification of dynamically changing and
uncertain task characteristics that effect an agent’s preferences
for some state of the world, including tasks with hard or soft
deadlines (which have not been included in the model, despite
the GPGP’s capability of handling them.). A TÆMS specification
also indicates relationships between local and non-local tasks or
resources that effect these agent preference characteristics. An
agent using the GPGP approach provides a planner or plan re-
triever to create task structures that attempt to achieve agent
goals, and a scheduler that attempts to maximize utility via the
choice and temporal location of basic actions in the task structure.
Each GPGP mechanism examines the changing task structure for
certain situations, such as the appearance of a particular class of
task relationship, and responds by making local and non-local
commitments to tasks, possibly creating new communication
actions to transmit commitments or partial task structure infor-
mation to other agents. The set of coordination mechanisms is
extensible, and any subset or all of which can be used in response
to a particular task environment situation

To pursue the objectives listed in the study an extension to
the GPGP approach has been made, including a new coordi-
nation mechanism able to handle mutually exclusive resource
relationships3.

The new mechanism uses a simple multi-round but not multi-
stage negotiation process which is not optimal but has good
"flow" properties since at least one agent is free to stop meta-
level communication and begin domain work at each round.
When several agents try to use the same non-sharable resource at
overlapping times, only one agent can actually get the resource
and execute its work. The others who failed to get the resource
waste this time unit and this effort. The idea behind the resource-
constraint coordination mechanism is that when an agent intends
to execute a resource-constrained task (i.e. the task is scheduled),
it sends a directed bid of the time interval it needs and the local
priority (expressed as the effect on local utility) of its task (we
will describe how this is computed later). After a communication
delay, it knows all the bids given out by the other agents at the
same time as its own bid. Since all the agents who bid will
have the same information, if they all use the same commonly

3 This new mechanism, like the other GPGP mechanisms, can be applied to any
problem with the appropriate resource relationship.

19



STATE OF THE ART

accepted rule to decide who will get the time interval, they can
get the same result on this round of bidding. The agent who
won will keep its schedule and execute that task at the time
interval it bid, and everyone else will mark this time interval
with a DON’T commitment and never try to execute a related
resource constrained task in it unless the owner gives it up. All
the agents who did not get their time intervals at this round will
then reschedule and bid again, while continue to monitoring the
just missed time-slot, in case that the agent who won that may
give it up.

3.3.2 Pros and cons

The study actually proves that cooperating agents perform better
than simple (competing) agents from an overall point of view.
GPGP, also, can handle a wide variety of relation types, which
can model task uncertainty, precedence constraints, preferences,
and so on, adding value to the final optimized scheduling.

However, the overall performance of this approach is worse
than the one of a centralized system.

The study begins modeling the hospital environment but this
model presents a couple of heavy restrictions:

1. No redundant resources are modeled. This implies that two
interchangeable resources are different for the model, thus
they can not be swapped between patients which require a
treatment that can be administered by both of them.

2. Deadlines are not included into the model: this is a really
dangerous assumption because without deadlines (hard or
soft) a patient can go on starvation4. Also by not having any
deadline constraint associated to a treatment it is impossible
to estimate an accurate metric of treatment urgency, which
has to be separately specified.

Also, the study focus more on remarking GPGP versatility than
on design of an effective hospital scheduling optimization algo-
rithm, beginning with the strict model used that is just explained,
which may not fit well in an actual hospital reality.

3.4 OPTIMIZATION OF ONLINE PATIENT SCHEDUL-
ING WITH URGENCIES AND PREFERENCES

This study done by Vermeulen et al. [23] considers the online
problem of scheduling patients with urgencies and preferences
on hospital resources with limited capacity. To solve this complex
scheduling problem effectively the problem has been split into the
following sub problems: determining the allocation of capacity

4 A job which, for its low priority, is always postponed and is never served for a
long time is called to be on starvation[13]. This is an undesirable case and, to be
avoided, a commonly taken action is to raise the starving job priority

20



3.4 OPTIMIZATION OF ONLINE PATIENT SCHEDULING WITH URGENCIES AND PREFERENCES

to patient groups, setting dynamic rules for exceptions to the
allocation, ordering time slots based on scheduling efficiency,
and incorporating patient preferences over appointment times
in the scheduling process, by dynamically controlling a trade-
off between scheduling most efficiently and fulfilling patient
preferences.

3.4.1 Description

The model used in this paper covers different urgency levels,
trying to schedule every patient on time (i.e.: before the due date
provided by the urgency description) and a minimum access time
(mat) is set for non urgent patients, such as they can not have an
appointment before that time has passed from the patient arrival.

In particular patients flow is modeled as a Poisson process with
intensity λ. Each patient p belongs to a patient group gp ∈ G
according to a patient-group distribution DG. The urgency of a
patient is given by its group up = U(gp), with up the number
of days between the arrival day and due-date. Minimum access
time for non-urgent patients is given by mat in days. Resource
capacity is C, the number of time slots on each working day. The
performance measure is based on the service levels of patient
groups. Service level SLg is the fraction of patients in group g
scheduled on time (before or on their due date). To aggregate
scheduling performance over groups the minimum service level
(MSL) is used, which is defined as MSL = min(SL0, . . . , SL|G|),
which aims at a high performance (close to 1) for each group.

The approach to each of the sub problems listed before is
parametrized: this will allow a subsequent optimization by
searching the parameters’ space. The method is based upon the
classic First Come First Served scheduling method by hybridizing
it with the Balanced Utilization (BU) scheduling method: while a
FIFO scheduling tends to become saturated during intense activ-
ity periods scheduling patients based on a Balanced Utilization
policy results in any available time slots being spread out evenly
over days, which increases the chances of them being beneficial
for overflow from other groups. To combine the two orderings,
available time slots ts are ordered via a weighted sum of two
normalized values (wg,d = 0 equals an FCFS ordering, while
wg,d = 1 equals a BU ordering):

FCFSBU(ts) = (1− wg,d)FCFS(ts) + (wg,d)BU(ts)

FCFS(ts) =
rank of ts in FCFS ordering
total number of time slots

BU(ts) =
(utilization of day of ts)− (lowest utilization)
(highest utilization)− (lowest utilization)

where we consider time slots and utilization of days before the
due date. If no time slots are available to scheduling the patient
before the due date a pure FCFS scheduling policy is applied,
scheduling the patient to the earliest available time slot.

21



STATE OF THE ART

The key issue, now, is finding the optimal value of wg,d for each
patient group and weekday, which involves two other parameters:
the number ag,d of time slots allocated to patient group g for
weekday d and tg,d, which quantify the tolerance for capacity
allocation overflow of patients of the patient group g for weekday
d.

In this model patient preferences are modelled with a boolean
preference model: a patient is scheduled either to a preferred
time slot or to a non-preferred time slot. This is motivated
by exclusion: the alternative of quantifying preferences is hard
because it is difficult for patients to put values on preferences.
Moreover, it is also hard to compare preferences values between
patients, who will surely have subjective metrics to evaluate their
desires. The overall objective, after this model improvement, is
now a weighted combination of scheduling performance (MSL)
explained before and patient preferences fulfillment (PP), the
fraction of non-urgent patients that are scheduled to a preferred
time slot:

O = (β) ∗MSL + (1− β) ∗ PP

By fixing a value for β a hospital department can set a preferred
combination of objectives.

As already mentioned the optimization step consists in search-
ing for optimal value into the parameter space; this is done by an
Estimation of Distribution Algorithm [3, 9] (EDA), which is able
to find good combinations of values for the 50 parameters of the
model in a reasonable time (< 24 hours) for a specific scenario5.

3.4.2 Pros and cons

The approach is very ingenious and allows the user to outline a
long-term scheduling while managing emergency (by reserving
an appropriate number of time slots in advance for urgencies)
and patient preferences (by accepting tradeoffs between efficiency
and patient satisfaction).

The only drawback is its "preventive" behaviour, because the
parameter optimizations are based upon predictive models. If a
situation worse than the expectations happens a simple priori-
tized FIFO policy is used, which is clearly suboptimal.

Similar situations are, however, unlike to happen often, thus
the work have a great practical value.

3.5 COMPLEMENTARY WORKS
In this section we will examine a couple of works by Vermeulen
et al. which do not resolve the hospital scheduling optimiza-
tion problem, focusing instead on other aspects of the medical
procedures left uncovered by our work.

5 Note that in practice the parameter values should be updated only as often as
a few times per year.

22



3.5 COMPLEMENTARY WORKS

These articles are cited to complete our overview of the scien-
tific approach to shceduling in health care systems; in particular
with these two works we have identified some sort of "optimiza-
tion suite", that can handle efficently most of the scheduling
problem instances spread in the whole health care system.

3.5.1 Decentralized online scheduling of combination-appointments
in hospitals

This multi-agent system is designed to handle the outpatients in
a general medical facility without incoming emergencies (i.e.: not
an hospital but, maybe, a private facility or a local outpatients’
department) [24].

The model, in fact, excludes emergencies arrival and prece-
dence constraints between activities with the initial assumptions.

It also uses the same consult-diagnostic(s)-consult cycle repre-
sented in figure 1, while considering that a patient can have only
a partial plan active at a time.

In particular this algorithm tries to increase the patient satis-
faction by scheduling "combination appointments", which are
diagnostic sessions in which two or more activities of a patient’s
partial plan are performed within the same day. A similar ap-
pointment allows the patient to come to the outpatients’ depart-
ment a reduced number of times, thus minimizing his/her effort
to follow the medical procedures.

To measure the actual performances of the algorithm two met-
rics are considered

AVERAGE MINIMUM SERVICE LEVEL. Given that the minimum
service level MSLd of a department d is the same metric defined
in section 3.4 the average minimum service level (aMSL) of all
departments is nothing more than the arithmetic mean of all the
MSLs :

aMSL =
∑d∈D
|D|

COMBINATION APPOINTMENTS RATIO (CA). This metric is de-
fined as the fraction of all partial plans with two or more activities
all scheduled within their schedule window, that are successfully
scheduled as a combination appointment.

With these metrics the pursued overall multi-objective O is
definable as

O = max
[

CA
aMSL

]
The algorithm tries to achieve a multi-objective optimization

by maximizing the just defined O value, by exploring the Pareto
front of (CA,aMSL) solutions. To explore the set of Pareto fronts
a cost function is defined and time slots are ordered in ascending
order according to this cost (or, if two time slots have equal cost,
the earliest time slot is considered to be cheaper).

23



STATE OF THE ART

This approach is really good to manage scheduling of outpa-
tients’ departments, because the model is really detailed and fits
perfectly the needs of this kind of facility.

The lacks of emergency management, unfortunately, makes
this approach useless for our work.

3.5.2 Adaptive Optimization of Hospital Resource Calendars

This work focus upon the resource scheduling calendars, instead
of patient scheduling [26].

This is a very complex problem that can not be approached
with classical methods (queuing theory will not provide any
analytical answer and modeling it as a Markov decision problem
returns a state space of unsolvable size), thus the approach here
described was designed from scratch.

Despite the fact that this study is focused on CT-scan calendar
management the explained method can be easily generalized,
due to the intrinsic complexity of CT-scans reservations. A CT-
scan, indeed, is a medical test literally tailor-made to the patient:
the various technical values of the scan has to be calculated based
on patient’s biological parameters; there are some preliminary
treatments that must be given in special occasions, like injection of
intravenous contrast fluids or the administering of a tranquilizer
medicine, for children or claustrophobic patients, and so on.
However these patients can still be classified with a general
taxonomy system: we have urgent patients, clinical patients and,
finally, outpatients.

A resource calendar, in actual health care system, is prepared by
making a long-term schedule (months), based on patients expec-
tation and hospital policies; then the scheduling is tweaked with
medium-term (weeks) adjustments, due to known future events,
like holidays, planned maintenance of machines, etc. . . and, fi-
nally, last small adjustments are performed to make the short-
term scheduling to fit any given optimization criteria.

The approach described in this work is designed to handle
the short-term adjustments and, additionally, it can optimize the
opening hours of resources as medium-term adjustment.

Knowing that non-urgent reservations are made with at least
two days’ notice and that an urgency has to be scheduled within
one to three days the algorithm works on a 4-day scheduling
window, trying to reserve time slots in advance basing on current
reservations and expectations of urgent patients load.

The plan is to divide the available time of the resource in time-
slots; each of these time-slots will be associated with a certain
priority-class, relative to the patient taxonomy: outpatients are
scheduled in their time slots (which can be further divided bas-
ing on an eventual needing of intravenous contrast, for a deeper
calendar detail level) To reserve the optimal quantity of time
slots for urgencies (i.e.: enough, but not too much), however, this
predictive approach is not enough; the algorithm, thus, virtually
divides urgent capacity while scheduling, spreading it on the

24



3.5 COMPLEMENTARY WORKS

following days. With this precaution urgencies can be handled
by switching time slots of different capacity class, if necessary.
This means, shortly, that urgencies can bump non-urgent patients
reservations in the next days if no time slots are available. This
is applied recursively for clinic patients, which can bump outpa-
tients time slots. The algorithm pay attention that no reservations
can fail their deadlines or, if no deadline are provided, can starve
(i.e.: not being served indefinitely because of a very low priority).

The medium-term adjustment (open hours optimization) is
performed basing on a fixed OHw parameter, which sets the total
amount of opening hours on week w. The actual optimization is
performed before the beginning of week w− 1 with a standard bi-
directed search method, searching for the smallest OHw that has
a minimum performance level. This approach takes into account
that on each day the closing time can not be reduced further than
the latest appointment already scheduled in the partially filled-in
calendar.

This approach is a very generalizable approach, with initially
strict assumptions which can be relaxed to fit other resource mod-
els. It is also capable of mid-term optimizations, like proposing
new opening hours to the resource manager, as well as managing
short-term adjustments.

Unfortunately, this approach requires that a scheduling has to
be already made, so this can not be useful for our problem at all.

25





4 R E S O LU T I O N M E T H O D S

In this chapter we will examine the mathematical foundations of
the solution proposed in this thesis.

As already said we focus on a CSP-based approach to find
the desired solution, so we’ll see how we can model a dynamic
environment using constraint networks.

The language of constraint networks was originally designed to
express static problems, thus the real challenge will be maintain-
ing the consistency of our model while the environment changes,
in order to ensure a coherent response to any query which can
be posed anytime about the environment.

4.1 CSP

A Constraint Satisfaction Problem (CSP) [15] is defined up by
a set of variables V = {V1, . . . , Vn} and a set of constraints C =
{C1, . . . , Cm}, with every variable Vi having a domain Di 6= ∅.
Every constraint Ci involves a subset of the variables, specifying
allowed combination of values for these variables; therefore the
following statement holds:

Let be V ⊇ V ′ = {V1, . . . , Vl}. Ch ⊆ D1 × D2 × · · · × Dl

We say that a state X of the CSP is defined from the assignment
of a value to some (or all) of its variables, such that {V1 =
x1, . . . , Vh = xh : xi ∈ Di ∀ i.

An assignment X is consistent if and only if satisfies every
constraint of the CSP. Thus X ∈ Ci ∀ i ⇐⇒ X is consistent.

An assignment X is complete if and only if it involves all the
variables of the CSP.

A solution for a CSP, thus, is given by a consistent, complete
assignment of values to its variables.

A CSP, thus, is a high-level concept framework used to model
a problem and lends itself to a wide range of implementation
approaches; the most natural one is a constraint network, which
is the mere translation of the just explained CSP definition into a
graph[6]. The variables become the nodes of the graph, with their
respective domains still associated to them, and, on the other
hand, the constraints become the edges of the graph, with an end
in each node representing one of the variables involved by the
constraint, encapsulating the list of allowed assignment for the
involved variables subset.

27



RESOLUTION METHODS

4.2 DYNAMIC CSP
The notion of dynamic CSP (DCSP) has been introduced to repre-
sent dynamic situations. A DCSP is a sequence of CSPs, where
each one differs from the previous one by the addition or removal
of some constraints. It is indeed easy to see that all the possible
changes to a CSP (constraint or domain modifications, variable
additions or removals) can be expressed in terms of constraint
additions or removals.

To solve such a sequence of CSPs, it is always possible to solve
each one from scratch, as it has been done for the first one. But
this naive method, which remembers nothing from the previous
reasoning, has two important drawbacks:

1. Inefficiency, which may be unacceptable in the framework
of real time applications (planning, scheduling, etc.), where
the time allowed for replanning is limited;

2. Instability of the successive solutions, which may be un-
pleasant in the framework of an interactive design or a
planning activity, if some work has been started on the
basis of the previous solution.

The original method of belief mantainment proposed in [7],
together with the definition of DCSP, was designed to act on the
constraint network itself, keeping in mind the undesirable limits
of the trivial resolution process.

The algorithm is invoked when the constraint network is al-
tered, due to a change in constraints or variables reflecting an
actual change happened in the dynamic environment, and it
consists of two different phases.

The first one is a phase called support propagation, in which
the change propagates through the network, notifying what hap-
pened to the variables, and if after this the network is in a con-
tradiction state the second phase, called contradiction resolution
begins.

In this subsequent phase the variable who detected the con-
tradiction tries to enumerate the other variables that have to be
reassigned in order to restore consistency and starts with these
variables a recursive solution process of the contradiction.

The other existing methods can be classified in three groups:

1. Heuristic methods, which consist of using any previous
consistent assignment (complete or not) as a heuristic in
the framework of the current CSP [20].

2. Local repair methods, which consist of starting from any
previous consistent assignment (complete or not) and of
repairing it, using a sequence of local modifications (mod-
ifications of only one variable assignment). The original
method proposed by Dechter in [7] is among these ones.

3. Constraint recording methods, which consist of recording
any kind of constraint which can be deduced in the frame-
work of a CSP and its justification, in order to reuse it in

28



4.2 DYNAMIC CSP

the framework of any new CSP which includes the same
justification[16].

The methods of the first two groups aim at improving both
efficiency and stability, whereas those of the last group only aim
at improving efficiency.

A little apart from the previous ones, a fourth group gathers
methods which aim at minimizing the distance between succes-
sive solutions[1].

4.2.1 Local Changes Algorithm

A special consideration has been reserved to the local changes
algorithm, because it was designed to tackle an objective similar
to the one we have1, i.e.: manage a scheduling in a dynamic envi-
ronment while altering as little as possible the already planning.

The local changes algorithm [21] was formalized among some
studies for the French Space Agency (CNES) which aimed at
designing a scheduling system for a remote sensing satellite
(SPOT).

In this problem, the set of tasks to be performed evolved each
day because of the arrival of new tasks and the achievement of
previous ones. One of the requirements was to disturb as little as
possible the previous scheduling when entering a new task.

For solving such a problem, the following idea was used: it
is possible to enter a new task t if and only if there exists for t
a location such that all the tasks whose location is incompatible
with t’s location can be removed and entered again one after the
other, without modifying t’s location.

In terms of CSP, the same idea can be expressed as follows:
let us consider a binary CSP; let A be a consistent assignment
of a subset V of the variables; let v be a variable which does not
belong to V; we can assign v, i.e., obtain a consistent assignment
of V ∪ {v}, if and only if there exists a value val of v such that we
can assign val to v, remove all the assignments (v′, val′) which are
inconsistent with (v, val) and assign these unassigned variables
again one after the other, without modifying v’s assignment. If
the assignment A ∪ {(v, val)} is consistent, there is no variable
to unassign and the solution is immediate.

Note that it is only for the sake of simplicity that we are
considering a binary CSP: the proposed method can deal easily
with general n-ary CSPs.

With such a method, for which we use the name local changes
and which clearly belongs to the second group (local repair meth-
ods), solving a CSP looks like solving a fifteen puzzle problem:
a sequence of variable assignment changes which allows any
consistent assignment to be extended to a larger consistent one.

The corresponding algorithm can be described as follows:

1 see paragraph 5.2.1 for a more detailed analysis of the optimization criteria

29



RESOLUTION METHODS

local-changes(csp)
// Main call to resolve whole CSP from scratch

return lc-variables(∅, ∅, variables(csp))

lc-variables(V1, V2, V3)
// Choose a variable from the unassigned set and
// call lc-variable to assign it
// V1 is the set of assigned and fixed variables
// V2 is the set of assigned and not fixed variables
// V3 is the set of unassigned variables

if V3 = ∅
then return success
else let v be a variable chosen in V3

let d be its domain
if lc-variable(V1, V2, v, d) = failure
then return failure
else return lc-variables(V1, V2 ∪ {v}, V3 − {v})

lc-variable(V1, V2, v, d)
// Try to assign the variable passed in the parameters.
// Use lc-values to verify the consistency of possible assignments

if d=∅
then return failure
else let val be a value chosen in d

save-assignments(V2)
assign-variable(v, val)
if lc-value(V1, V2, v, val) = success
then return success
else unassign-variable(v)

restore-assignments(V2)
return lc-variable(V1, V2, v, d− {val})

lc-value(V1, V2, v, val)
// Verify the consistency of current assignment and, if necessary,
// try to deassign other variables in order to achieve it
// and call lc-variables on the new unassigned variables.

let be A1 = assignment(V1)
let be A12 = assignment(V1 ∪V2)
if A1 ∪ {(v, val)} is inconsistent
then return failure
else if A12 ∪ {(v, val)} is consistent
then return success
else let V3 a non empty subset of V2 such that

let A123 = assignment(V1 ∪V2 −V3)
A123 ∪ {(v, val)} is consistent
unassign-variables(V3)
return lc-variables(V1 ∪ {v}, V2 −V3, V3)

Local changes algorithm pseudocode

30



4.2 DYNAMIC CSP

Correctness, termination and completeness of the algorithm
and the three procedures are granted by the following theorems,
proven in [21]:

Theorem 4.1. If the CSP csp is consistent (resp.inconsistent), the
procedure call lc(csp) returns success (resp. failure); in case of success,
the result is a consistent assignment of csp’s variables.

Theorem 4.2. Let V1 and V2 be two disjunct sets of assigned variables
and let V3 be a set of unassigned variables; let be V = V1 ∪ V2 ∪ V3;
let be A1 = assignment(V1). If there exists (resp. does not exist) a
consistent assignment A of V, such that A ↓V1= A1

2, the procedure
call lc-variables(V1, V2, V3) returns success (resp. failure); in case of
success, the result is a consistent assignment of V.

Theorem 4.3. Let V1 and V2 be two disjunct sets of assigned variables;
let v be an unassigned variable; let d be its domain; let be V = V1 ∪
V2 ∪ {v}; let be A1 = assignment(V1); if there exists (resp. does
not exist) a consistent assignment A of V, such that A ↓V1 −A1, the
procedure call lc-variable(V1, V2, v, d) returns success (resp. failure); in
case of success, the result is a consistent assignment of V

Theorem 4.4. Let V1 and V2 be two disjunct sets of variables; let v be
an unassigned variable; let val be one of its possible values; let be V =
V1 ∪V2 ∪ {v}; let be A1 = assignment(V1); if there exists (resp. does
not exist) a consistent assignment A of V, such that A ↓V1∪{v}= A1 ∪
{(v, val)}, the procedure call lc-value(V1, V2, v, val) returns success
(resp. failure); in case of success, the result is a consistent assignment
of V.

2 Let A be an assignment of a subset V of the CSP variables and be V′ ⊆ V; the
notation A ↓V ′ designates the restriction of A to V′.

31





5 S O LU T I O N

In this chapter we will see how the Dynamic CSP solution ap-
proach, already seen in chapter 4, has been implemented.

We will start from examining the mathematical model of the
problem and we will move on to the implementation of the local
changes algorithm, also seen in chapter 4.

5.1 MODEL
It is really hard to make a rigorous mathematical formulation of
the Hospital Optimization problem. Luckily, we can find in [12]
a strict mathematical model which resemble the hospital reality
in a truly accurate way.

Definition 5.1. HORIZON. A horizon T = {0, . . . , t̂} is a finite
set of integers that represents the set of possible starting times for
appointments. Given a constant number nd of starting times per day,
day(t) = t÷ nd + 1, Day(T) = {day(t)|t ∈ T}.

In our model the minimum allowed difference between two consec-
utive values of a horizon, referred as time unit, time quantum or
temporal quantum is the quarter of an hour. This is enough to orga-
nize the appointments with a significant precision

Definition 5.2. WORKPLACE.
A workplace is a pair w = (AT, Tavail). AT = {(at, ∆tdur, ∆tchange)}
is the set of appointment types provided by the workplace with identifier
at ∈ N, the duration ∆tdur ∈ T\{0} and the required buffer time
∆tchange ∈ T\{0} between two appointments of this type. Tavail ⊆ T is
the set of starting times on which the workplace is available, also called
"workplace availability set".

Definition 5.3. DIAGNOSTIC UNIT. A diagnostic unit is a triple
u = (W, AT, r̂sta f f ). W is the set of workplaces in this diagnostic
unit, AT = {(at, r̂day)|(at, ·, ·) ∈ w.AT ∧ w ∈ u.W} 1 is the set
of appointment types provided by the diagnostic unit with identifier
at ∈ N and the maximum number of these appointments per day
r̂day ∈ N+. r̂sta f f ∈ N+ is the maximum number of staff resources
available for parallel appointments.

Definition 5.4. APPOINTMENT. An appointment is a pair ap =
(at, asλ). at ∈ N is the appointment type identifier and asλ is the
actual reservation.

Definition 5.5. RESERVATION. A reservation is a triple as =
(tstart, ∆tdur, w) where tstart ∈ T is the starting time, ∆tdur ∈ T\{0}

1 x.y denotes the projection of the structure x onto the component with name y.

33



SOLUTION

is the duration and w is the workplace where the treatment required is
administered.

The act of accepting a patient request is formalized by associating a
reservation to the appointment which represent the request itself. An
appointment that has been accepted by associating it with a reservation
is called an assigned appointment. This definition is helpful while
managing reschedulings, which are reservations change processes that
unassign (i.e. remove the reservation from) and subsequently reassign
(i.e. associate a different reservation to) an appointment.

Definition 5.6. PATIENT. A patient is a triple p = (AP,bef,Tavail).
AP is the set of appointments of the patient, bef : 2AP×AP → {0, 1} is
the partial order relation among appointments, Tavail ⊆ T is the set of
starting times on which the patient is available.

Definition 5.7. CLINIC. A clinic is a pair cl = (P,U). P is the set of
patients, U is the set of diagnostic units.

We see that this model encompasses all the major aspect of an
hospital reality. To exploit this model to our algorithm we must
adapt this mathematical formulation to the CSP framework.

This model is weak on two fundamental aspects to be fully
usable by a CSP-based algorithm: as already said a CSP must
present a set of variables and a set of constraints.

5.1.1 Variables

By examining the logic of the model itself we can understand
that, for the purpose of writing an adequate solver, many of the
definitions are destined for mere registry purpose. Considering
that this is, first of all, a scheduling problem we can focus our
attention on definitions 5.4 and 5.5.

At a first glance the appointments are a natural choice for the
variable role, while the reservations will become the values that
those variables can assume. Logically speaking this is true: an
appointment has to be scheduled in a given workplace, and the
patient, once the treatment is started, stays in there (i.e.: he holds
that resource, which is mutually exclusive, for himself) until he
is done.

This reasoning, unfortunately, will not fit in the model we have
just formulated: an appointment, here, contains only the infor-
mation about the appointment aspects; the data of its assignment
are actually stored in the reservation entity.

This choice made on model definition leads to a single conclu-
sion: the reservations will be the variables of our CSP, while their
domains are all the possibles triples which can fit the definition
5.5.

5.1.2 Constraints

A major lack in the model regards the constraints, instead.

34



5.1 MODEL

No constraints have been specified up to now, and a real CSP
have many of them. Without the appropriate constraints our
scheduler could choose to put more than one patient in the
same CT-scan machine, or ask a patient to receive two different
treatments in two different rooms of the hospital simultaneously.

Constraints, then, are not only useful to include in the model
personal preferences, aiming to find better solutions among the
acceptable ones, but are also necessary to symbolize even the
most basic law of the ambient in which the problem is located
(the hospital, in our case).

We can divide the constraint that act in the Hospital Scheduling
Optimization problem in two different categories: constraints
which act on patients and constraints which acts workplaces.

A summary listing of these constraints, specifying a brief de-
scription and the entity which are involved, follows:

• Constraints which act on patients.

– Availability : a patient must be physically present for
a treatment;

– Partial Order : if some appointments of a patient
have precedence constraints on the other this must be
specified;

– Non-overlap : a patient can not receive two or more
treatments at the same time;

• Constraints which act on workplaces.

– Appointment type sufficiency : a workplace can ad-
minister only the treatments which are covered by its
abilities;

– Availability : a workplace must be operative to ad-
minister a treatment;

– Duration : the duration of a treatment depends on
the equipment used to administer it, thus is set by the
workplace chosen for the administration.

– Change Time : medical devices might need an inactiv-
ity period (in order to cool off, heat up, etc. . . ) between
two appointments of the same type.

– Non-overlap : a workplace can not administer two
treatments at the same time.

As we can see all the constraints represents basic laws of the
hospital environment that must be specified in the DCSP, in
order to exclude solution which can be unfeasible into reality.
In the following sections we will examine more accurately and
formalize these constraints.

5.1.2.1 Patients’ constraints

In this section are listed the constraints which act on the patients.
We will see, as just mentioned, that some constraints are meant

35



SOLUTION

to model the basic law of reality (i.e.: a patient can not be in two
different places at the same time).

Availability.
Like release and due dates on Job Shop Scheduling problem a

patient enters the clinic at a given moment and should leave the
clinic in a subsequent instant.

∀ap ∈ p.AP : . . .

· · · :
(
ap.asλ.tstart ∈ p.Tavail ∧ ap.asλ.tstart + ap.asλ.∆tdur ∈ p.Tavail

)
Such constraint is, usually, a soft constraint in a real hospital:

a patient availability, in this case, is open-ended and covers the
rest of the scheduling horizon. Nevertheless, in our model this
is considered an hard constraint: this choice came after a lot of
considerations about it.Reasons why pa-

tients availability
is changed to a
hard constraint

1. An emergency must be served as soon as possible, and the
size of its availability horizon is inversely proportional to its
criticity level: thus an emergency case has, usually, a very
restricted set of available start time for treatments. In this
case the availability can not be considered a soft constraint.

2. Choosing a hard policy for this constraint will preserve
a patient from the risk of being never served: when the
availability set is progressively reduced (which happens
naturally because the advancing of time literally erodes,
starting from the first element, the patient’s availability set)
the presence of an hard constraint automatically raises the
priority of all the appointments of this patient, helping
them to exit the starvation status.

3. In some medical systems, like the Italian one, some medical
prescriptions have a given priority level, which means that
the appropriate treatment must be given before a predeter-
mined due date. In this case, thus, this is naturally a hard
constraint.

4. Many worker patients, for not-urgent treatments, have ac-
tually an open-ended temporal availability. This availability
set, however, is really strict if examined day-by-day: a pa-
tient can have only the morning available for treatments
on Monday, maybe nothing on Tuesday, only the afternoon
on Wednesday and so on. And if this kind of constraint
is broken the patient might be criticized on his job place,
despite the medical nature of his lateness.

Partial order.
A possible partial order in appointment exists for medical

reason and has to be obeyed anyway. We can formalize this
constraint as follows:

∀ap1, ap2 ∈ p.AP : (ap1, ap2) ∈ p.be f ⇒ . . .

36



5.1 MODEL

· · · ⇒ ap1.asλ.tstart + ap1.asλ.∆tdur < ap2.asλ.tstart

Non-overlap.
The patients are, physically speaking, symbolized as a scarce

resource that has to be available for each appointment. In the
model we use a patient can participate in only one appointment
at a time, so the appointments of the same patient must not
overlap with each other.

Given a patient p with his appointments p.AP = {ap1, . . . , aps}
we can formalize this constraint using the more general cumulative
constraint2:

cumulative
(
(ap1.asλ.tstart, . . . , aps.asλ.tstart), . . .

. . . , (ap1.asλ.∆tdur, . . . , aps.asλ.∆tdur), (1, . . . , 1)︸ ︷︷ ︸
s

, 1
)

5.1.2.2 Workplaces’ constraints

In this section we will see the constraints acting on every work-
place.

Appointment Type Sufficiency.
Every appointment assigned to a workplace w must be an

appointment of a type that workplace can actually provide. This
can be formalized this way:

∀ap ∈ APw : (ap.at, ·, ·) ∈ w.AT

Availability.
Like what expressed in the homonymic patients constraint, a

workplace w has to be available for all the appointments assigned
to it

∀ap ∈ APw : ap.asλ.tstart ∈ w.Tavail

Duration.
Assigning an appointment of a certain type to a workplace w

directly determines the duration of the appointment, according
to the specification given by w.AT. We formalize it with the
following assumption:3

∀ap ∈ APw : ap.asλ.∆tdur = (head{(ap.at, ·, ·) ∈ w.AT}).∆tdur

Change time.
Change times might be necessary between appointments of

the same types. This is motivated by technical requirements of

2 Given a tuple (t1, . . . , tn) of integer starting times ti ∈ T,a tuple (∆t1, . . . , ∆tn)
of integer durations ∆ti ∈ T\{0}, a tuple (r1, . . . , rn) of integer re-
sources ri ∈ N and an integer resource threshold r̂ ∈ N+, cumula-
tive((t1, . . . , tn), (∆t1, . . . , ∆tn), (r1, . . . , rn), r̂) is specified by

∀k ∈
[

min
i∈[1,n]

{ti}, max
i∈[1,n]

{ti + ∆ti − 1}
]

: ∑
tj≤k≤tj+∆tj−1

rj ≤ r̂.

3 the head operator returns the first element of a set

37



SOLUTION

diagnostic devices used in that kind of appointments: they might
need to cool down or heat up before another treatment can be
given.

∀ ap1, ap2 ∈ APw, ap1 6= ap2, ∆tchange = (head{(ap.at, ·, ·) ∈
∈ w.AT}).∆tchange : ap1.at = ap2.at⇒ . . .

. . . ⇒ ap1.asλ.tstart + ap1.asλ.∆tdur + ∆tchange ≤ ap2.asλ.tstart∨
∨ ap2.asλ.tstart + ap2.asλ.∆tdur + ∆tchange ≤ ap1.asλ.tstart

Non-overlap.
Like the patients a workplace can only participate in one ap-

pointments at a given time. We model this assumption by using
the cumulative constraint again:

cumulative((ap1.asλ.tstart, . . . , apt.asλ.tstart), . . .

. . . , (ap1.asλ.∆tdur, . . . , apt.asλ.∆tdur), (1, . . . , 1)︸ ︷︷ ︸
t

, 1)

5.2 ALGORITHM
The dynamic CSP solution approach is perfect for modeling our
environment: an incoming patient adds a single variable and
some constraints to the problem, without altering the already
present ones, while the leaving of a patient, on the contrary,
removes a variable and the constraints associated to it, de facto
relaxing the set of constraints of the problem.

These incremental changes, distributed in time, are exactly like
what has been described in section 4.2, so we already have many
tested methods to preserve the model coherency.

Such evolution of the problem can be effectively tracked in
particular with the local canghes algorithm, seen in paragraph 4.2.1.
This algorithm fits perfectly our work environment, granting
the progressive solution stability and the computation efficiency
which are mandatory in a planning problem like the one we are
solving.

5.2.1 Optimization criteria

An hospital has a clear objective: maximize the number of treated
patients in a certain period of time.

Therefore, given a set of patients we can say that an hospital
aims at to treat the maximum number of these patients, with this
number depending on the circumstances. What we seek, thus,
is a schedule that allows every patient to be treated respecting
his time restrictions. Unfortunately this is not always possible:
some patients might have requests that are incompatible with
the constraints specified above; one or more of these patients,
thus, must be rejected, in order to treat all the others without
any constraint violation. In such cases, thus, we say that the

38



5.2 ALGORITHM

schedule we want is the one which rejects the lesser number of
patients among the ones in the set; we call this schedule as a
feasible schedule.

With such an advanced framework, actually, we can aspire
more than find just a feasible schedule with the given tasks; the
goal we pursue, then, is to find a good feasible schedule. But
when, exactly, a schedule is a good schedule?

As already specified in paragraph 2.2.1 we have many metrics
to evaluate the goodness-score of a schedule but here we focus, in
particular, on a precise aspect of the incremental schedule gener-
ated from the algorithm: the number of rescheduling operations4

performed.
In an environment like this a reschedule operation is not cost-

less: most of the rescheduled appointments imply a discomfort
for a patient and extra-work for the hospital staff, which have
to rearrange its personal planning to follow the changes of the
global schedule. In the worst case a rescheduling of an appoint-
ment which is not urgent implies a phone call to the patient,
informing him that his appointment has been rescheduled, prop-
agating the planning change outside the hospital environment
(which usually implies even more discomfort for the rescheduled
patient).

With this approach we will try to schedule all the incoming
patient, with all the objective already specified in paragraph
2.2.1 while attempting to minimize the number of this kind
of operations used during the process. This means that the
scheduler has to accept the largest number of patients up to the
hospital capability while trying to alter the current schedule as
little as possible.

5.2.2 Implementation guidelines

Referring to the algorithm described in paragraph 4.2.1 the struc-
ture of our implementation is quite similar: each unassigned
appointment has its record created but no reservation record are
associated to it. This, in a CSP context, is represented by an unas-
signed variable, actually creating the empty reservation record;
this variable will be subsequently assigned by the local changes
algorithm, preserving the solution consistency all the time.

These guidelines grant that the resolutive algorithm will be
complete, correct and will always terminate if invoked, for what
already proven with theorems 4.1, 4.2, 4.3 and 4.4.

5.2.3 Heuristics

To improve the performance of the algorithm in terms of useful-
ness of the solution found some heuristics have been used during
the implementation. The key idea behind the use of these heuris-

4 A rescheduling operation is the act of unassigning a variable and then reassign-
ing another value to it, different from the previous one.

39



SOLUTION

tic is to improve the performance achieved by two instructions,
given by the local changes algorithm, which are not specified in a
strict way, leaving a certain degree of freedom to the implementer.

Let see in detail what we can use and where:

5.2.3.1 Fail-First Heuristic

Into the lc–variables subroutine there is a single line saying

let v be a variable chosen in V3

where V3 is the set of currently unassigned variables. In terms
of hospital scheduling this line represents the act of choosing an
appointment to schedule among the unassigned ones.

A good approach, in AI problem solving, is to randomly choose
the variable v among all the variables of the set V3; such method,
as a matter of fact, give the algorithm a good capability of avoid-
ing the local minima present in the search space without loss of
performance, assuming that choosing a variable or another will
not hurt the performances.

In our reality, however, we can expect a bit of heterogeneity in
variables weight: for example, a patient can be a young student
or a worker. The first one will probably not have any urgent
tasks to attend in the next few days of his scholastic career, so it
will have a wide range of available starting times to receive his
treatment; on the contrary, if the given patient is a worker with
an important deadline his needs are more urgent that the one of
the student.

This particular urgency is reflected by the actual size of the
availability set Tavail , described in definition 5.6, so a scheduling
policy that would favor patients with restricted availability set,
scheduling them before the ones with a wider Tavail set, will
probably grant a higher level of satisfaction by the patients and
will almost certainly improve the performance of the scheduling
process[15]: a variable with a strict domain is, after all, more
likely to become unassignable if we try to assign a value to it
at the end of the process, compared to a variable with a wider
domain, so if this situation is avoided it is unlikely that we should
resort to a backtracking.

5.2.3.2 Min-Conflicts

This heuristic tries to help minimizing the number of reschedul-
ing needed to insert a new appointment in the time table. [15]

In particular we use this heuristic while executing this line of
lc-variable subroutine:

let val be a value chosen in d

where d is the domain of a variable we are trying to assign; note
that we are improving a choosing-from-a-set instruction here too.

The idea behind this heuristic is based on the fact that if an
appointment needs to be reassigned it means that it has been

40



5.2 ALGORITHM

previously unassigned for some reason, and this is just the type
of operations we try to minimize.

In particular we must unassign an appointment only for a
single, although very generic, reason: a constraint has been
violated. Some of the constraints seen in the previous section can
be violated even by one appointment only, like the availability
constraint of patients and workplaces (there is no need for a
second appointment to violate this constraint) but this kind of
violation is usually blocked in advance by preventing a similar
assignment to be made at all. An appointment, thus, is not
unassigned for any constraint violation but only for a constraint
which can be violated after this appointment’s assignment, and
this can happen only when another appointment is assigned to
an already reserved time slot.

A freshly assigned appointment can break a constraint in three
ways:

1. It tries to use a scarce resource already taken by another
appointment, infringing the non-overlap constraint of that
resource (patient or workplace)

2. It tries to access a free workplace without waiting that the
appropriate devices are ready for the treatment, being just
used for a previous appointment, violating the change time
constraint of that workplace

3. Its reservation breaks the partial order relation between his
patient’s appointments

In such cases we have no choice but to unassign one appointment
or the other and to try to reassign it. We can not exclude one
of the options in advance, because both of them can lead to the
optimal solution, but we surely recognize that it is better to avoid
a similar operation.

We say that two appointments a1 and a2 conflict if and only if
a1 breaks one or more constraints involving a2. This definition is
useful while evaluating in advance the implications of a single
reservation.

From this reasoning we have a guideline to follow while evalu-
ating which value to assign to a variable, among the ones present
in its domain: the less conflicts this variable generates if a certain
value is assigned to it, the less variables will be consequently
unassigned and, therefore, the less reassignment will be globally
done during the entire process.

It is also worth mentioning that a single reservation can conflict
with more than one already assigned appointment at the same
time, implying that all of them will be unassigned in the next
step of the algorithm.

This heuristic, therefore, change the value-picking process
slightly: let be v the variable we are trying to assign and let d be
its domain

1. for each value val ∈ d assume assigning val to v

41



SOLUTION

2. for each already assigned variable v′ evaluate if there are
any conflict between the two variables

3. if a conflict is present count that as one

In the end the min-conflict heuristic favors the value that will
generate the minimum number of conflicts if assigned to v, thus
the one who obtained the lesser score during the evaluation
process.

5.2.4 Data Structure

The local changes algorithm is a local search algorithm[15]: it takes
decisions based only on local-gathered informations while trying
to find a solution, and if no solution is found it can backtracks its
steps on the search tree until a new option, not previously taken,
can be picked.

Knowing this we must choose a data structure capable of facil-
itating this process and, given that there is no need to evaluate
informations that are no locally accessible, the best choice is
to use a tree reproducing the actual search tree. To build the
search tree as-is, however, we must consider that the decision
taken are not uniform: we pick, alternately, an appointment to
schedule and a slot on the time table to insert the appointment
into it. This means that our search tree must be a bicoloured
tree: let’s say that the nodes are black and red, we’ll have that
a black node will encapsulate an appointment to be scheduled
and, for each possible reservation with which that appointment
can be scheduled, a red node encapsulating that reservation will
be added as children. This particular pair of nodes represent a
pair (appointment, reservation) or, from a CSP point of view, an
actual variable assignment, being a pair (variable,value).

Every red node, on the other hand, will have black children
that will encapsulate all the appointments still to be scheduled
after the partial assignment currently evaluated, composed by
the set of pairs (variable,value) we found along the path from the
current node back to the root.

Nota bene: this implies that the V3 set used by the subroutines
lc-variables, lc-variable and lc-value in the local changes algorithm
is de facto embedded in every red node of the search tree. This
will come useful later on, while discussing the embedding of this
structure into the algorithm.

The resulting structure looks like the one pictured in figure 2.
Note that at the top of the tree there is a dummy red node used
as a root: this is mandatory because, knowing that the children of
a red node are the elements of the V3 list, we may have more than
one unassigned variable at the beginning, so the tree must have
more than one black node just from the first level of exploration.

A similar data structure allows a quick backtracking in case of
unsuccessful exploration and also allows, for each node we visit,

42



5.2 ALGORITHM

Dummy red root

Unscheduled
appointments

Appointment examined

Possible assignments

Chosen assignment

Other unscheduled
appointments

Figure 2: Bicoloured search tree

a clear look on the available option to carry on the exploration
of the decision tree. Minding that the objective is to embed
this structure in the local changes algorithm we can advantage
ourselves in various ways by exploiting the topological structure
of the tree. Apart from the memory-preserving strategies (i.e.:
expand only the nodes we try to explore, collapse the subtrees
we’re not interested to explore, etc. . . ) a clever implementation
choice is to encapsulate into the black nodes also the V1 and V2
sets required by the three subroutines of the algorithm. This way
we have a perfect backtrackable situation and we can improve
the performance in term of computation time even further, by
translating the recursive algorithm into an iterative version: the
information which were saved into the stack with recursive calls
now are already memorized in the tree nodes or into the tree
structure itself, having the V1 and V2 set saved into the black
nodes and the V3 set implicitly memorized into the children list
of every red node.

Considering the information encapsulated into the tree and
knowing the behaviour of local changes algorithm we can conclude
that a path from the root to a red leaf means that the algorithm
managed to find a reassignment for a certain number of variables
(maybe all of them) of the CSP. Such a path will be composed by
a certain number of pairs (variable, value) that make up a partial
reassignment for the CSP.

Contrariwise, a black leaf means that an unassigned variable
with an empty domain exists; if that’s the case the lc-variable
subroutine will return a failure while examining that leaf.

We can state the following theorem:

Theorem 5.1. Let be a CSP with a set of variables V = V1 ∪V2 ∪V3,
with V1, V2, V3 being respectively

1. the set of assigned but not deassignable variables of the CSP

43



SOLUTION

2. the set of assigned and deassignable variables of the CSP

3. the set of unassigned variables of the CSP

and let V1 ∪V2 be consistent with the CSP5.
Let T be the bicoloured tree built with the method just explained in

this paragraph.
If a path from the root to a red leaf exists we can assign every value

encapsulated into a red node on this path (except the root) to the variable
encapsulated into his black node father.

This way we obtain a consistent assignment for the original CSP.
Otherwise there’s no complete and consistent assignment for this

CSP.

Proof. The proof of this theorem follows directly from the correct-
ness of local changes algorithm, already proven by theorems 4.1,
4.2, 4.3 and 4.4.

5.2.5 Stochastic Exploration

In local search problems we travel in the solution space, moving
from a solution to another near one, trying to find an optimal
solution among the ones we are passing by. In order to do this
we specify the "moving primitives", to permit the exploration of
the solution space and an evaluation metrics used by the local
search algorithm to see which is the most promising direction to
take, step by step.

A clear example of a local search algorithm is the hill-climbing
algorithm [15]:

1. for each solution reachable from the current one evaluate
its score with a given an optimality metric.

2. travel to the solution who reaches the highest score among
the evaluated ones.

This method is really efficient because every decision is taken
evaluating a small portion of the problem space, which is why
this algorithm class is called local repair algorithms, as mentioned
in section 4.2, but has a main weakness: it may stops in a local
minimum.

A clever move is to apply a Random Walk strategy[6] to en-
hance our algorithm’s ability of escape such minim. The Random
Walk strategy was designed primarily for SAT6 problems, com-
bining a random search with a greedily computed bias. In other
words, given a variable v that we are trying to assign we can
estimate a probability distribution for this variable such that the
more a value x would be favored by our local repair algorithm
during the greedy evaluation the more this value is likely to be
picked.

5 Mind that with the three points of this definition the following statement holds:
Vi ∩Vj = ∅ ∀ i, j : i 6= j

6 SAT, or propositional satisfiability problem, is a NP-Complete problem. It’s famous
because is the first known example of NP-Complete problem [6]

44



5.2 ALGORITHM

Applying a stochastic local repair algorithm to our problems,
thus, imply that the decisions have to be made with a weighed
random policy. In other words, when an option has to be chosen,
every alternative will be associated with a probability propor-
tional to its score.

The only decisions we made are the two we have already
analyzed once noticing the "degree of freedom" left in the local
changes algorithm description: how to choose an unscheduled
appointment to be scheduled and how to choose a possible slot
to assign to this appointment.

The two aforementioned heuristic, Fail-First and Min-Conflicts
(see Section 5.2.3) can be exploited to estimate the goodness
of every option: an appointment is more attractive the more
restricted its domain is, and an reservation is more likely to be
chosen if it creates less conflicts if accepted.

Given that O is the set of options for a given choice the remain-
ing steps are to associate a probability p to each of the available
options such that ∑o∈O p(o) = 1 and pick the current option
randomly using the probability distribution just computed.

5.2.6 Algorithm Pseudocode

This section shows the pseudocode of the algorithm we’ve just
described.

Methods with a trivial implementation have only their proto-
type listed and private attributes of classes are not shown.

The behaviour of the chooseCandidateIndex method is explained
after the algorithm source code.

Code block start

interface _Node
{
//mark this node as already expanded
public void setAsExpanded();
//return true if setAsExpanded() has already been
//invoked on this node
public boolean hasBeenExpanded();
//return true if the node has no children
public boolean isLeaf();
//return the x-th child of the children list
public _Node getChild(int x);
//return the children list of this node
public Collection<_Node> getChildren();
//return the father of this node
public _Node getFather();

}
class RedNode implements _Node
{
//return the reservation encapsulated into this red node

45



SOLUTION

public Reservation getReservation();
//Build one black node for each given appointment with
//the given V1 and V2 set encapsulated into them too.
//Then add these black nodes to the children list.
public addToChildren(Collection<Appointment> apps,

Collection<Appointment> V1, Collection<Appointment> V2);
}
class BlackNode implements _Node
{
//return the appointment encapsulated into this
//black node
public Appointment getAppointment();
//return a collection of the appointments encapsulated
//in the brothers of this node
public Collection<Appointments> getBrothers();
//remove the given child from the children list
public void removeChild(RedNode target);
//build the children list of this node: each RedNode
//encapsulate a possible Reservation for the
//appointment contained in this BlackNode
public void buildChildrenList();
//return the set V1 encapsulated into this node
public Collection<Appointment> getV1();
//return the set V2 encapsulated into this node
public Collection<Appointment> getV2();

}
/**
This is the method which is called to resolve the problem

instance
@param newApp : the collection of appointments to be

scheduled
@param oldApp : the collection of appointments already

scheduled
@return a collection of reservations, each one to be assigned to

its appointment, which compose the schedule change, or null if a
feasible schedule does not exist.
*/
public Collection<Reservation>
askForSchedulingProposal(Collection<Appointment> newApp,
Collection<Appointment> oldApp)
{
//allocate V1 and V2 sets for blacknode buildings
//let suppose that collections can be instantiated
Collection<Appointment> V1 = new Collection();
Collection<Appointment> V2 = new Collection();
V2.addAll(newApp);
//build the first level of the tree
RedNode root = new RedNode();
root.buildChildrenList(newApp, V1, V2);
root.setAsExpanded();
return exploreTree(root);

46



5.2 ALGORITHM

}
/**
This method is called to explore the tree, searching for a solution
@param root : the start node for the tree exploration process
@return a collection of reservations, each one to be assigned to

its appointment, which compose the schedule change, or null if a
feasible schedule does not exist.
*/
private Collection<Reservation> exploreTree(RedNode root)
{
_Node currNode = root;
//set the exploration cycle
boolean goOn = root.hasBeenExpanded && !root.isLeaf();
while(goOn)
{
//choose what child is to be visited next
int index = visitNode(currNode);
//if index < 0 there is an interesting case
if(index<0)
{
RedNode wrongNode = null;
//if is a red node...
if(currNode instanceof RedNode)
{
//if it is a leaf a consistent assignment has been found: exit

the cycle
if(currNode.isLeaf())
goOn = false;

//otherwise there is an appointment with empty domain into
its children

else
{
//mark this reservation to be removed
wrongNode = currNode

}
}
//otherwise we are in an empty black node: the reservation to

be deleted is its red father
else
{
wrongNode = currNode.getFather();

}
//if there is a reservation to remove...

if(wrongNode != null)
{
//backtrack to the previous blacknode
currNode = wrongNode.getFather();
//if there’s no previous blacknode the problem is unsolvable

from the first level
if(currNode == null)
goOn = false;

47



SOLUTION

else
{
//otherwise remove the reservation which will bring to an

empty-domain variable
currNode.removeChild(wrongNode)
//and choose a new assignment with the new cycle iteration

}
}

}
else
{
//otherwise we move to the chosen child
currNode = currNode.getChild(index);

}
}
//check if exploration has been successful
if(currNode == null) //exploration has failed
return null;

else //build the reservations collection
return buildRetCollection(currNode);

}
/**
This method build up the collection of reservations which

compose a scheduling change by exploring the tree backward,
starting from a red leaf and going to the root
@return the reservations collection or null if this method is

invoked on the tree root
*/
private Collection<Reservation> buildRetCollection(RedNode
leaf)
{
if(leaf.getFather() == null)
return null;

Collection<Reservation> ret = new Collection();
while(leaf.getFather() != null)
{
ret.add(leaf.getReservation());
leaf = (RedNode) leaf.getFather().getFather();

}
return ret;

}
/**
this method will visit the given node and choose the next

children to visit, if there are any.
Also, it will expand the chosen child, preparing it for the

upcoming visit
@param target : the node to be visited
@return the index of the children chosen to be explored

*/
private int visitNode(_Node target)
{

48



5.2 ALGORITHM

//retrieve the children list
Collection<_Node> candidates = target.getChildren();
//build additional data structures for candidates ranking
Iterator<_Node> iter = candidates.iterator();
int[] score = new int[candidates.size()];
int index = -1;
//verify it is not empty
if(candidates.isEmpty())
return index;

//if is a RedNode choose the appointment to be scheduled on
the next step
if(target instanceof RedNode)
{
//Examine each appointment to assign a score to it
for(int i=0; i<score.length; i++)
{
BlackNode curr = (BlackNode) iter.next();
//if needed build its children list
if(!curr.hasBeenExpanded())
{
curr.buildChildrenList();
curr.setAsExpanded();

}
//the score is equal to the size of its appointment’s domain,

which is equal to the size of its children list
score[i] = curr.getChildren().size();
//if the BlackNode has no children this reservation can not

bring to a feasible schedule
//signal failure, adopting a Fast-Fail strategy
if(score[i]==0)
return -1;

}
//choose the index of the candidate to visit
index = chooseCandidateIndex(scores, scores.length);
//the chosen child is already expanded
//do not collapse the unvisited nodes: in a time-vs-memory

tradeoff time must be favored
}
else //otherwise choose the reservation to assign to the

appointment encapsulated in this node
{
//fetiching V1 and V2 lists
BlackNode target2 = (BlackNode) target;
Collection<Appointment> V1 = target2.getV1();
Collection<Appointment> V2 = target2.getV2();
//conflicts of each assignment will be saved here
Collection<Appointment> conflicts[] = new

Collection<Appointment>[score.length];
int nElem = 0;
//examine all the candidates
for(int i=0; i<score.length; i++)

49



SOLUTION

{
RedNode curr = (RedNode) iter.next();
Collection<Appointment> currConf = new Collection();
//for each candidate verify that there is no conflict with the V1

set
currConf = findConflicts(curr.getReservation(),V1);
//if there is no conflict the reservation can be candidated
if(currConf.isEmpty())
{
//test the reservation for conflicts with V2...
currConf = findConflicts(curr.getReservation(),V2);
//...and save these conflicts in the collection
conflicts[nElem] = currConf;
//save the number of conflicts in the score value
scores[nElem] = currConf.size();
//increment the saving sentry
nElem++;

}
//otherwise this reservation is ignored

}
//choose the index of the candidate to visit
index = chooseCandidateIndex(scores,nElem);
//if candidates generate no conflicts add the appointment

encapsulated into this node to V2

if(conflicts[index].isEmpty())
V2.add(target2.getAppointment());

//otherwise add it to V1

else
V1.add(target2.getAppointment());

//build the children list for the chosen candidate
RedNode cand = (RedNode) target2.getChild(int index);
//add the old unassigned appointments...
cand.addToChildren(target2.getBrothers(),V1,V2);
//...and the recently unassigned ones
cand.addToChildren(conflicts,V1,V2);

}
//return the index of the chosen candidate
return index;

}
/**
Returns all the appointments of the given collection which

conflict with the given reservation.
This is a trivial method: a nested cycle tests all appointments for

each constraint, saving them into the return collection if needed,
thus it’s not shown.
@param res : the reservation to be examinated
@param test : the appointments to be tested for conflicts
@return a collection X of the appointments which conflicts with

the given reservation. Mind that X ⊆ test.
*/

50



5.2 ALGORITHM

private Collection<Appointment> findConflicts(Reservation res,
Collection<Appointment> test);
/**
This method examine the given score sequence and choose an

index from it.
The behaviour of this method is defined outside of this source.
@param scores : an array with the score value for each

candidate, in the same order in which candidates have been
examinated
@param nElem : the number of elements contained into the

scores array. The array, in fact, may not be full.
@return the index of the candidate chosen among the available

ones.
*/
private int chooseCandidateIndex(int[] scores, int nElem);

Code block end

We have purposely left unexplained the behaviour of the
chooseCandidateIndex method in the code block.

This has been done because this method is what really differenti-
ates the deterministic scheduling from the stochastic scheduler.

In fact the deterministic scheduler use the heuristics explained
in Section 5.2.3, which means that the behaviour of the unex-
plained method is equal to the one of the following expression7

arg min
index
{score[index]} : index ∈ [0, score.length− 1]

On the other hand, the stochastic scheduler uses the passed
scores array to compute an appropriate probability distribution
for the index to be returned: in the implementation used for
the experiments performed in Chapter 6 the probability for each
index to be picked was directly proportional to its goodness for
the appropriate heuristic (i.e. Min-Conflict for RedNode picking
step and Fail-First for BlackNode picking step).

The code, as shown, has great modularity in this sense: other
strategies to choose the options, in a deterministic or probabilistic
way (like simulated annealing [6]), can be implemented by simply
overriding the chooseCandidateIndex method.

5.2.7 Summary

A stochastic exploration of the solution space clearly do not
ensure that a solution better than the one we can find with
the deterministic search policy will be obtained. The resolving
algorithm, in fact, is not meant to use only stochastic explorations:
this approach is actually meant to be an extension to the already
designed deterministic algorithm.

7 Argmin stands for the argument of the minimum, that is to say, the set of index
for which the value of the given expression attains its minimum value.

51



SOLUTION

To get the best overall performance, thus, we combine both
methods: given a reschedule to be done, first a deterministic solu-
tion can be found and subsequently a finite number of stochastic
explorations can be made; the limit of these explorations can be
set in advance, but being the stochastic local search an anytime
algorithm it is advisable to let the stochastic explorations run as
much as possible, i.e. until the beginning of next time quantum,
when new appointments are likely to be rescheduled.

Every stochastic run has the chance to improve the solution
found, following the terms explained in paragraph 5.2.1; if that
is the case we simply mark this solution as the best one and go
on with the next run.

A transaction system is useful to manage the sequence of as-
signment generated by the stochastic run: every time the solution
is improved we must note down that solution but we can not
apply the assignment before all the stochastic runs are finished.
This means that the changes will be committed only as the final
step of the algorithm, updating the reservations just before the
start of a new temporal quantum.

52



6 R E S U LT S

This section will presents the results of our experiments.

A standard benchmark procedure to compare the performance
of our solution with those already explained in chapter 3 does
not exists in the literature.

These comparisons, therefore, are made with the queue model
we can infer from our exam of the hospital environment, which
is very close to a First-In-First-Out scheduling policy without any
possibility, for the scheduler, to reschedule already scheduled
patients with a priority code equal or higher than the one which
is currently trying to insert.

The solvers who participate in this simulation, thus, are the
FIFO-like queue manager just described, and the algorithm de-
scribed in chapter 5. The full algorithm is composed by a de-
terministic exploration of the tree and subsequent stochastic
explorations trying to improve the solution just found. In order
to fully test this algorithm a first simulation will be done, for each
experiment, using only the deterministic share of the algorithm
and in the second one the stochastic exploration will be included.

The experiments we made are of two different types: offline
scheduling and online scheduling.

The first type aims to simulate a rescheduling request for a
certain number of appointments at the same time, with relaxed
time limits. This usually happens in response to a change known
in advance, as a planned maintenance session for a device.

The second type of experiments, on the other hand, try to
simulate the accesses to the hospital by the patients among a
prolonged time period. This is the usual situation we have at the
hospital bottlenecks, like the diagnostic center in the ER [23].

The hospital reality modeled includes 5 resources which offers
5 kind of different treatments. For resources that offers the same
treatment, obviously, there’s the possibility for the patient to use
any of these resources to receive his or her treatment.

The computer used for this experiments has an Intel Core2

Duo T7100 CPU with 2 gigabytes of RAM memory and, during
the experiments, every process had the whole hardware reserved
for its computation. The prototype of the scheduler using the
algorithm described in Section 5 has been implemented using the
Java language and has been tested extensively in order to verify
its robustness and its reactivity. Even with a Java implementation,
which is known to be disadvantageous in terms of execution
speed, the imposed time limits have been always respected.

53



RESULTS

6.1 METRICS

To evaluate the efficiency of each solver, however, we must define
a set of metrics, in order to quantify the performance for the
comparison.

The metrics we use are the following, listed in descending
order by the priority level associated to their optimization:

1. Refused Patients percentage (Ref%): this metric is com-
puted by counting the number of appointments which
could not be scheduled and subsequently dividing this
quantity by the number of appointments which we tried to
schedule.

We aim at keeping this metric, obviously, as low as possible,
which is the primary goal of our algorithm. The differences
between other metrics will be considered significant only
in case of equality of results obtained in this metric.

2. Relative Solution Size (Size%): this is the number of reschedul-
ing operations performed while computing the current so-
lution divided by the number of appointments actually
scheduled. This value is, obviously, always equal or greater
than 1 and minimizing it helps the hospital organization
and improve the patient satisfaction. This metric is calcu-
lated only for successful scheduling attempts.

3. Resource Utilization percentage (RU%): this metrics is com-
puted by counting, for each resource, the number of time
slots in which the resource is engaged and subsequently
dividing this number by the cardinality of its restricted
availability set. A restricted availability set of a workplace
w it is a proper subset of its availability set Tr

avail ⊆ TavailSee definition 5.2
for the "availabil-
ity set" definition

such that ∀t ∈ Tr
avail exists an assignment a scheduled in a

fixed day such that:

a.w = w ∧ (a.tstart ≤ t ∨ a.tstart + a.∆tdur ≥ t)

In this way we consider into the computation only the
period encompassed by the arrival of the first patient and
the leaving of the last patient for each given day

4. Running time (Telab): this is the actual time needed for
every solution’s computation, in seconds. It is not an im-
portant information, given its dependency on the hardware
used for computation, but knowing that all the simulations
has been run on the same conditions we can obtain interest-
ing information by comparing these results one with each
other. The FIFO policy will, obviously, have the lower of
these values but to achieve this result it sacrifices all the
other aspects considered by more sophisticated algorithms.

54



6.2 OFFLINE SCHEDULING

6.2 OFFLINE SCHEDULING
This kind of simulation is made with a complete knowing of
the set of appointments. This is unlikely to happen during high-
intensity activity period but a similar process can be launched at
night to optimize the appointments scheduled for the next day
(or days).

Different problem aspects are applied to test the algorithm
robustness: various appointments load, restricted or unrestricted
computation time allowed and presence of various appointments
that can not be rescheduled.

To have significant data for our results and knowing that a
significant portion of the computation is stochastic in nature, 20

different problem instances have been sequentially given to the
solvers.

In this section we will summarize the average results obtained
for each metric by each solver.

6.2.1 Simulation n.1

In this simulation a low quantity (50) of patients have been
inserted with no already scheduled appointments and a restricted
computation time for deterministic and stochastic explorations
of 30 minutes.

The results are summarized in Table 1

Metrics FIFO Det. only Full
Ref % 30,62% 0% 0%
Size% 100% 121,92% 117,78%
RU % 99,29% 84,43% 72,14%
Telab 0,1329 69,1015 77,6164

Table 1: Restricted, low-load offline performance

We can immediately notice a remarkable improvement on re-
jection appointments ratio compared to the one obtained by the
standard scheduling policy and, with the stochastic extension
described in Section 5.2.5, subsequent improvements of the rel-
ative solution size found with the deterministic exploration are
obtained.

This experiments clearly highlight that the algorithm responds
as desired, optimizing its objectives in the correct order. The
algorithm, in fact, ranks the solution found by examining first
the fraction of rejected appointments and, only afterward, the
Relative Solution Size. The Resource Utilization Ratio, which is
third in our priority ranks, is clearly neglected while trying to
minimize the number of reschedulings needed.

Seeing the already very good results obtained with this sim-
ulation there will be no simulations with more computation
time allowed because performance can only improve in term of
Relative Solution Size, which is a secondary objective.

55



RESULTS

6.2.2 Simulation n.2

In this simulation a high quantity (150) of patients have been
inserted with no already scheduled appointments and a restricted
computation time for deterministic and stochastic explorations
of 30 minutes.

Results obtained, as expected, are not satisfying. In this ex-
treme scenario, in fact, the exponential nature of the problem
becomes perfectly clear: a great load of work needs computation
times far greater than the ones required by the low-size problem
instances, and 30 minutes is simply not enough time to solve the
problem instance.

The simulation has been repeated, thus, with a more relaxed
computation time of 2 hours, obtaining more promising, but still
not good enough, results.

To complete this heavy-load simulation we relax the time re-
strictions to 8 hours (one night), granting as much time as possible
to the optimizers.

Metrics FIFO Det. only Full
Ref % 36,5 % 24,66 % 24,33 %
Size% 100% 689,37% 764,97%
RU % 91,6 % 94,17 % 94,34 %
Telab 0,2987 2880024,2 2880032,7

Table 2: Least restricted, high-load offline performance

Results listed in Table 2 are quite good: using the whole night
the tree-exploring optimizers have produced results that outper-
form the standard scheduling policy.

We can summarize these results with three different plots,
having a look at the overall trends.

The interesting value we must examine first is the refused
appointments rate, which we can see in the plot represented in
figure 3.

Figure 3: High-load offline performance: Ref % trend

56



6.2 OFFLINE SCHEDULING

This is surely a good result: we see that, which enough time
to work on the schedule, the rejection rate drops to a more than
acceptable level, remarkably improving the performance obtained
by the standard schedulers and respecting time limits we fixed.
For an hospital this is a great success: the lesser appointments it
has to reject the more patient it can satisfy, which is the mission-
critical goal of every hospital.

Furthermore, we can see how these appointments have been
included into the actual planning by examining the Relative Size
Ratio trend, represented in figure 4.

Figure 4: High-load offline performance: Size % trend

Obviously for subsequent adjustments some of already sched-
uled appointments have been rescheduled, and we try to mini-
mize the number of these reschedulings. We must also keep in
mind, however, that these reschedulings clearly bring the benefit
of a higher patient throughput, so this is a goal which is good to
pursue, but is clearly a secondary goal for the hospital objectives.
A similar trend suggest that, as the scheduled patients number
increase, make new appointments fit in the schedule is more
and more harder: for the best patient throughput achieved the
number of rescheduled appointments is nearly 8 times more than
the actual inserted appointments. This is clearly influenced by
the heavy-load scenario simulated in this experiments and, for
the remarkable 33,33% improvement on the patient rejection rate,
this is surely an affordable drawback.

Finally we can examine the resource utilization ratio trend,
represented in figure 5: this trend shows clearly an aptitude of
the DCSP-based optimizers to fill-in the resources more and more
over time.

This plot suggest that the resource utilization ratio seems to
benefit from the use of a DCSP-based scheduler much less than
the rejected appointments ratio. We have to remind, however,

57



RESULTS

Figure 5: High-load offline performance: RU % trend

that this metric is calculated on the local intervals where the
scheduler acts, i.e. this metric measure how the scheduler place
the appointments only in the time periods where they actually
place appointments. This mean that a high appointment rejection
ratio will make this value rise, because the less appointment
are scheduled the small is the time period where this metric is
actually calculated onto.

6.2.3 Simulation n. 3

In this simulation a low quantity (50) of patients have been in-
serted with already scheduled appointments up to approximately
50% of the hospital capacity.

As the previous step a restricted computation time for deter-
ministic and stochastic explorations of 30 minutes has been set for
the first simulation and, by gradually relaxing it, we can obtain
the results summarized in Table 3.

Metrics FIFO Det. only Full
Ref % 32,89 % 30,12 % 28,86 %
Size% 100% 233,3 % 294,62%
RU % 91,21 % 94,42 % 95,74 %
Telab 318 28800015,47 28800073,56

Table 3: Least restricted, low-load offline preloaded performance

We can summarize again these results with the plots repre-
sented in figure 6.

From the plot in figure 7a we can see that the refused appoint-
ment ratio, with the appropriate computation time limit, can
perform lightly better than the one obtained with the standard
schedulers, allowing more patients to be inserted into the plan.

58



6.2 OFFLINE SCHEDULING

Figure 6: Low-load offline preloaded performance plots

(a) Ref % trend

(b) RU % trend

(c) Size % trend

59



RESULTS

Seeing that the time limits have been respected this is, again, a
no-cost improvement, even if it is relatively small (about 12,25%)

The plot in figure 7b remarks the effectiveness of the optimiza-
tion routines: with high loads of appointments to optimize the
DCSP-approach can exploit the free time slots of the planning,
and a new appointment can be squeezed in by rescheduling his
neighbours.

The last plot of the figure show us the relative solution size.
Again: to achieve the best performance a perceptible quantity of
rescheduling must be done. This time, given that the size of the
appointments set is about 2/3 of the one of the previous simula-
tion, the number of rescheduling is much smaller. This remarks
again the exponential nature of the problem: by increasing the
size of the problem by 1/3 the number of needed rescheduling is
2,6 times higher.

6.2.4 Simulation n. 4

In this simulation we try to completely fill the hospital with our
optimization routines.

A high quantity (100) of patients, thus, have been inserted with
already scheduled appointments up to approximately 50% of the
hospital capacity. Due to the extreme quantity of patients and to
results previously obtained this simulation has been done only
with an 8 hour time limit.

Metrics FIFO Det. only Full
RU % 99,24 % 99,5 % 99,5 %
Ref % 36 % 26,72 % 26,72 %
Telab 576 28800980 28800160

Size% 100% 475,24 % 462,78 %

Table 4: High-load offline preloaded performance

performance is similar to the one listed in table 4 with the
exception that resource utilization ratios, which are naturally
high due to the fact that a previous optimized scheduling already
exists before the simulation start.

6.2.5 Conclusions

Performance are very good for light workloads: the Rejected
Appointments Ratio clearly benefits from the adoption of a more
sophisticated scheduling performance, reaching optimal perfor-
mances in this case.

We can also notice a little difference between the determin-
istic and stochastic results: a purely deterministic method will
naturally find a solution with high Resource Utilization Ratio
but subsequently stochastic explorations of the decision tree can
improve the Relative Solution Size, that takes precedence over

60



6.3 ONLINE PLANNING

the RU%, by rescheduling a lesser number of patient while still
granting a more than acceptable resource utilization ratio.

This is a really good results: in fact we can logically assume
that a patient does not like to see its appointment postponed,
even if it is done to make place to an emergency life-saving
operation. With the first simulation we have verified that with
the stochastic explorations of the decision tree the number of
postponed appointments can be reduced, and knowing that the
limited time we have set was more than enough for these explo-
rations this benefit can be obtained with no additional costs in
these conditions.

The DCSP-based scheduler outperform standard schedulers
with heavier workloads too: in fact every experiments clearly
show a reduction of the fraction of rejected appointments reached
with long running times which still respect, however, the limits
we set.

The ranking of the objectives is clearly respected: the main
goal of the algorithm is to minimize the Rejected Appointment
Ratio and, only if this is optimal, the other metrics are considered.
In particular we can see that by raising the workload size the
performance of the scheduling optimizers, in term of rejection ap-
pointments ratio, converges with the one of standard scheduling
policies but, in these cases, other goals are pursued once realized
that the prioritary metric can not be improved further.

6.3 ONLINE PLANNING

This kind of experiment is done in order to simulate an ER
system access during a prolonged period of time: the flow of
incoming patients is simulated as a Poisson process and strict
time restrictions are applied, in order to respect the assumption
that the scheduler can only use the "dead times"1 to perform the
planning optimization.

In this case a policy similar to the one of the previous chapter
is also applied, in order to test the algorithm robustness: except
for the computation time restrictions, which are always strict
by assumption, various appointments load have been tested,
modifying the λ parameter proportionally to the number of
resources N in the Poisson process, and the presence or absence
of already scheduled appointments have been considered.

6.3.1 Simulation n.1

In this simulation a low-intensity Poisson process (λ = N/4)
has been simulated, with no appointments already scheduled.
This is to show how all the scheduling policies works with a

1 Dead times are the time periods where all the resources are engaged and all
jobs are waiting or are currently being served

61



RESULTS

low quantity of patients to be scheduled. Results are reported in
Table 5.

Metrics FIFO Det. only Full
Ref % 4,64 % 3,31% 3,31%
Size% 100% 100,05% 100,05%
RU % 59,79 % 59,92% 59,92%
Telab 0,0105 0,2819 39,4178

Table 5: Low-intensity online insertion performance with no previous
load

The first interesting information we can extract from this table
is the minor contribution of the stochastic search paradigm: in
such scenarios, where simpler solution are also the better ones,
the deterministic explorations are sufficient to obtain a very good
solution.

We can also see that the rejection rates are low for all the
approaches: obviously when there is little or no need for appoint-
ment rescheduling an approach that optimize the rescheduling
process is of a limited utility.

6.3.2 Simulation n.2

In this simulation a medium-intensity Poisson process (λ = N/2)
has been simulated, with no appointments already scheduled.

Results are reported in table 6

Metrics FIFO Det. only Full
Ref % 18,12 % 10,48% 10,48%
Size% 100% 100,8% 100,8%
RU % 76,13 % 78,55% 78,55%
Telab 55,75 70,6238 612,4518

Table 6: Medium-intensity online insertion performance with no previ-
ous load

Performance is satisfying: the arriving of about N/2 patients
every time quantum can be perfectly handled by the optimizers,
which can reduce the refused patient ratio by over 42%.

Knowing that a treatment can last more than a single time
quantum, not counting change times of workplaces, we can imag-
ine that in more heavily loaded situations a similar arrival ratio
can be unmanageable for the hospital.

6.3.3 Simulation n.3

In this simulation a medium-intensity Poisson process (λ = N/2)
has been simulated, with already scheduled appointments up to
approximately 50% of the hospital capacity.

62



6.3 ONLINE PLANNING

Metrics FIFO Det. only Full
Ref % 86,58% 84,63% 84,12%
Size% 100% 108,64% 118,12%
RU % 97,59% 98,86% 99,1%
Telab 186 8124,501 16325,408

Table 7: Medium-intensity online insertion performance with low pre-
vious load

Results are summarized in Table 7

Performance here is still satisfying: due to limited hospital
capability the number of refused patient is high but we can see
that the optimizers can still squeeze some more patients into the
scheduling, compared to standard schedulers, while respecting
the fixed time limits.

There is no need to test the schedulers with more preload
and the same patient arrival ratio but we can still make one last
experiment to test algorithm capabilities.

6.3.4 Simulation n.4

In this simulation a high-intensity poisson process (λ = N) has
been simulated, with no appointments already scheduled.

This is another high-stress situation, where the hospital will
surely clogs, but our target is to see how schedulers can manage
a such a great patient flow.

Results are summarized in table 8

Metrics FIFO Det. only Full
Ref % 91,36 % 91,27 % 91,27 %
Size% 100% 117,28 % 117,27 %
RU % 99,87 % 99,92 % 99,92 %
Telab 778 11705,376 19325,408

Table 8: High-intensity online insertion performance with no previous
load

We can see we have given the schedulers a critical situation:
an income ratio comparable to the number of resources is over-
whelming for the hospital in a way such that we can spot no
sensible differences between the schedulers’ performance because
there are no free slots to insert the patients into, as we can see
from Resource Utilization Ratios.

In fact the incredible number of patients fill up almost every
free slot even with the standard scheduling policies, and eventual
stochastic improvements to deterministic explorations (-0.1% of
relative solution size) are definitely not worth the computation
time needed to find them.

63



RESULTS

6.3.5 Simulation n. 5

In this part we have tried to simulate a single emergency arrival:
one urgent patient has been inserted with already scheduled
appointments up to roughly 95% of the hospital capacity.

This simulation represents a realistic case in a heavily loaded
ER department, and will test the schedule-rebuilding capability
of the scheduler optimizers we designed.

Results are summarized in Table 9

Metrics FIFO Det. only Full
Ref % 75% 40% 40%
Size% 100% 866,67% 841,67%
RU % 98,675% 98,925% 98,925%
Telab 8,25 317,6012 496,30945

Table 9: Unestricted, high-load unitary insertion performance

We can notice immediately that the DCSP-based schedulers,
here, outperforms dramatically the standard one, reducing by
near a half the number of refused appointments2. Also, despite
having allowed only a single time quantum (15 minutes) as
computation time to the solvers, we can notice that a similar
perturbation is handled in acceptable time (from 5 to 10 minutes).
All the resource utilization ratios are high, but this is naturally
given by the appointments that are already scheduled, which
nearly push the hospital capability to its limits, but another
information is of particular interest for us: the relative solution
size ratio.

As we can see the average solution size ratio is really high
for the Deterministic and Stochastic schedulers, over 8 times the
initial number of appointments to insert. Examining extensively
the data, however, we were able to spot a single outlier solution.
By excluding this value from the data aggregation the relative
solution size ratios of the explorations are put down to 500% and
472,73%, for deterministic only explorations and deterministic
and stochastic explorations respectively.

6.3.6 Conclusions

These experiments are highlighted that a reactive approach like
the one we presented in Section 5 is suitable to handle a continu-
ous flow of patients requests: in every experiment was noted an
improvement on the Rejected Appointment Ratio obtained with
standard scheduling policies.

In particular, the improvements granted by an optimized schedul-
ing policies are present with all the tested workloads: if the
algorithm has enough space to exchange already scheduled ap-
pointments, which can also be very limited, new patients can be

2 We remark that the solvers, in order to make place to the just arrived emergency,
have the ability to dump a previously scheduled appointment

64



6.3 ONLINE PLANNING

squeezed into the planning. This is particularly visible in the ex-
periments described in Section 6.3.5: even with the hospital filled
to about 95% of its maximum capacity a single urgent patient can
be inserted in the schedule without rejecting any other patient.

It is also clear, however, that the intensity of this improvement
decreases as the workload comes close to the maximum workload
sustainable by the hospital: in these cases performances of the
scheduling optimizers converges to the one obtained with the
standard schedulers, because no scheduler can insert a patient in
a schedule already filled.

65





7 C O N C LU S I O N S A N D F U T U R E W O R K

In this thesis, we have presented a new dynamic approach for
the Hospital Scheduling Optimization problem, modelling the
hospital reality in a truly accurate way.

As we have seen, hospitals, being very complex systems, may
be really suitable for automatic administration: their vast struc-
ture, manageable by human agents with suboptimal performance,
can be handled with more precision and objectivity by automatic
algorithms.

However, hospitals are hierarchic and bureaucratic environ-
ments, in which all the procedures currently adopted as standards
have been deeply tested and monitored, in order to safeguard the
health of the patients who come to the hospital each day. In fact,
a proposal which could be attractive from a management point
of view can be disastrous, if examined with a medical eye: doc-
tors, therefore, always have the last word in term of procedural
updates.

Due to these reasons it is difficult to implement innovative
ideas while trying to improve the health care system; therefore
scientific approach for resolution of the Hospital Scheduling
Optimization problem are still rare among the scientific literature,
while there are a bit more works which analyze some of the
nearly infinite other open problems related to health care system.

In this work we have had a glance to some of them, analyzing
the pros and cons of each one, and then we proposed a new gen-
eralized, versatile and flexible approach, based on the Dynamic
Constraint Satisfaction Problems framework. Compared to other ap-
proaches already present in literature the one we propose in this
thesis is a highly reactive, dynamic approach, which is built on a
reality model that resembles hospital environments with a high
fidelity level. This approach grants to the proposed method the
ability to handle effectively the dynamic hospital environment
by promptly reacting to the changes typical of this environment
(emergencies, machinery maintenance sessions, and so on) which
can affect the resource pool, compromising a previously built
schedule.

The local changes algorithm, in particular, is a good base to
work on: the objective it pursue is very similar to our (i.e. try to
insert a new task in a feasible schedule while trying to alter the
already present scheduling as little as possible) and its architec-
ture allows us to easily adapt it to our purposes. Furthermore,
the greedy heuristics we inserted into the algorithm reflects the
standard procedures already used in hospital to manage the pa-
tients flow, making any actual deployment easier to integrate into
the hospital.

67



CONCLUSIONS AND FUTURE WORK

A really good feature of this system, in fact, is its scalability,
especially in term of adding or removing constraints on patient
and resources: due to the nature of the DCSPs, when a constraint
is added or removed the network automatically switches in order
to find a new consistent assignment, by propagating the change
event to all the variables.

By modelling the incoming patients flow as a Poisson process
we’ve been able to test the proposed method, obtaining many
promising results: as a matter of fact the system is able to manage
the appointments scheduling in a more than satisfactory way,
granting better results than standard scheduling policies while re-
specting the time limitations intrinsic in the hospital mechanism.
Furthermore, the stochastic explorations of the decision tree can
exploit all the remaining available time after a solution has been
found with deterministic strategies: in fact the algorithm used
for these explorations is an anytime algorithm, which means that
the proposed solution converges to optimal solution with the
increasing of the time available for computation.

Knowing this, it is clear that the available time plays a crucial
role in the algorithm; the performance measured and listed in
chapter 6 confirms this intuition, by showing that better solutions
are found with the gradual relaxation of the time limits. This im-
plies that an efficient implementation of the proposed algorithm
can improve the performance mentioned above even further.

Some steps to obtain this efficient implementation are already
almost done: the adoption of a tree-based data structure, for
example, take advantage of the classic "memory-vs-time" tradeoff,
and can permit an easy translation of the recursive version of
the local changes algorithm to an iterative version of the same
algorithm; this will surely grant remarkable performance im-
provements, since the algorithm itself is called on the beginning
of each time quantum in order to schedule any new requests.

With the flexible modeling instruments given by the DCSP
more details can be easily added to the model: making the patient
able to select one or more preferred time slots, for example,
will put this approach on the line with the one described in
[23] in term of functionality features. In this case, the current
implementation could be extended to the new problem model
with promising implementation approaches from the literature,
such as evolutionary algorithms [9, 23].

68



B I B L I O G R A P H Y

[1] A.Bellicha. Maintenance of solution in a dynamic constraint
satisfaction problem. In Applications of Artificial Intelligence
in Engineering VIII Vol 2 Applications and Techniques, pages
261–274, 1993.

[2] Berger B. and Cowen L. Complexity results and algorithms
for {<,≤,=}-constrained scheduling. In Proc. Second Ann.
ACM-SIAM Symp. on Discrete Algorithms, pages 137–147,
1991.

[3] Peter Bosman, Jörn Grahl, and Dirk Thierens. Enhancing the
performance of maximum-likelihood gaussian edas using
anticipated mean shift. In Günter Rudolph, Thomas Jansen,
Simon Lucas, Carlo Poloni, and Nicola Beume, editors, Par-
allel Problem Solving from Nature - PPSN X, volume 5199 of
Lecture Notes in Computer Science, pages 133–143. Springer
Berlin / Heidelberg, 2008.

[4] Peter Brucker. Scheduling Algorithms. Springer, 2001.

[5] Marinagi C.C., Spyropoulos C.D., Papatheodorou C., and
Kokkotos S. Continual planning and scheduling for manag-
ing patient tests in hospital laboratories. Artificial Intelligence
in Medicine, 20:139–154, october 2000.

[6] Rina Dechter and David Cohen. Constraint Processing. Mor-
gan Kaufmann, 2000.

[7] Rina Dechter and Avi Dechter. Belief maintenance in dy-
namic constraint network. In In Proceedings of the Seventh
National Conference on Artificial Intelligence (AAAI-88), pages
37–42, 1988.

[8] Keith Decker and Jinjiang Li. Coordinated hospital patient
scheduling. In Proceedings of the international Conference on
Multi Agent Systems, pages 104–111, 1998.

[9] D.E. Goldberg. Genetic algorithms in search, optimization, and
machine learning. Addison-Wesley Professional, 1989.

[10] Hoogeveen H, Schuurman P, and Woeginger GJ. Non-
approximability results for scheduling problems with min-
sum criteria. In Proceedings 6th international integer program-
ming and combinatorial optimization conference. Lecture notes in
computer science, volume 1412, pages 353–366. Springer, 1998.

[11] Markus Hannebauer. How to model and verify concurrent
algorithms for distributed csps. In Rina Dechter, editor,
Principles and Practice of Constraint Programming, volume 1894

69



Bibliography

of Lecture Notes in Computer Science, pages 510–514. Springer
Berlin / Heidelberg, 2000.

[12] Markus Hannebauer and Sebastian Muller. Distributed con-
straint optimization for medical appointment scheduling. In
AGENTS ’01 Proceedings of the fifth international conference on
Autonomous agents, 2000.

[13] Jane W. S. Liu. Real-Time Systems. Prentice Hall, 2000.

[14] D. S. Johnson M. R. Garey and Ravi Sethi. The complexity of
flowshop and jobshop scheduling. Mathematics of Operations
Research, 1(2):117–129, May 1976.

[15] Stuart Johnatan Russel and Peter Norvig. Artificial Intelli-
gence, a modern approach. Prentice Hall, 2010.

[16] T. Schiex and G. Verfaillie. Nogood recording for static and
dynamic constraint satisfaction problems. In In Proceedings
Fifth International Conference on Tools with Artificial Intelligence,
1993., pages 48–55, 1993.

[17] Ian G. Stiell, George A. Wells, Brian J. Field, Daniel W. Spaite,
Valerie J. De Maio, Roxanne Ward, Douglas P. Munkley, Mar-
ion B. Lyver, Lorraine G. Luinstra, Tony Campeau, Justin
Maloney, Eugene Dagnone, and for the OPALS Study Group.
Improved out-of-hospital cardiac arrest survival through the
inexpensive optimization of an existing defibrillation pro-
gram. JAMA: The Journal of the American Medical Association,
281(13):1175–1181, 1999.

[18] Chang-Chun Tsai and Sherman H. A. Li. A two-stage mod-
eling with genetic algorithms for the nurse scheduling prob-
lem. Expert Syst. Appl., 36:9506–9512, July 2009.

[19] Ullman. Polynomial complete scheduling problem. In Proc.
fourth Symp. Operating System Principles, pages 96–101, 1973.

[20] Pascal Van Hentenryck and Thierry Le Provost. Incremental
search in constraint logic programming. New Generation
Computing, 9:257–275, 1991.

[21] Gérard Verfaille and Thomas Schiex. Solution reuse in dy-
namic constraint satisfaction problem. In Proceedings of the
twelfth national conference on Artificial intelligence, volume 1,
1994.

[22] I. Vermeulen, S. Bohte, S. Elkhuizen, J. Lameris, P. Bakker,
and J. La Poutré. Adaptive optimization of hospital resource
calendars. In Riccardo Bellazzi, Ameen Abu-Hanna, and
Jim Hunter, editors, Artificial Intelligence in Medicine, volume
4594 of Lecture Notes in Computer Science, pages 305–315.
Springer Berlin / Heidelberg, 2007.

70



Bibliography

[23] I.B. Vermeulen, S.M. Bohte, P.A.N. Bosman, S.G. Elkhuizen,
P.J.M. Bakker, and J.A. La Poutré. Optimization of online
patient scheduling with urgencies and preferences. AIME
2009, pages 71–80, 2009.

[24] Ivan Vermeulen, Sander Bohte, Sylvia Elkhuizen, Piet Bakker,
and Han La Poutr. Decentralized online scheduling of
combination-appointments in hospitals. In Proceedings of
the Eighteenth International Conference on Automated Planning
and Scheduling, 2008.

[25] Ivan Vermeulen, Sander M. Bohte, Koye Somefun, and
Han La Poutré. Multi-agent pareto appointment exchanging
in hospital patient scheduling. Service Oriented Computing
and Applications, 1(3):185–196, November 2007.

[26] Ivan B. Vermeulen, Sander M. Bohte, Sylvia G. Elkhuizen,
Han Lameris, Piet J. M. Bakker, and Han La Poutré. Adaptive
resource allocation for efficient patient scheduling. Artif.
Intell. Med., 46:67–80, May 2009.

[27] Jan M. H. Vissers. Patient flow-based allocation of inpatient
resources: A case study. European Journal of Operational
Research, 105(2):356–370, 1998.

71


	1 Introduction
	2 Problem
	2.1 Problem domain
	2.1.1 Patients
	2.1.2 Resources
	2.1.3 Definitions
	2.1.4 Particular issues

	2.2 Computational Aspects
	2.2.1 Optimization level vs Usefulness
	2.2.2 Environment


	3 State of the art
	3.1 Distributed Constraint Optimization for Medical Appointment Scheduling
	3.1.1 Description
	3.1.2 Pros and cons

	3.2 Multi-agent Pareto Appointment EXchange (MPAEX)
	3.2.1 Description
	3.2.2 Pros and cons

	3.3 Coordinated Hospital Patient Scheduling
	3.3.1 Description
	3.3.2 Pros and cons

	3.4 Optimization of online patient scheduling with urgencies and preferences
	3.4.1 Description
	3.4.2 Pros and cons

	3.5 Complementary Works
	3.5.1 Decentralized online scheduling of combination-appointments in hospitals
	3.5.2 Adaptive Optimization of Hospital Resource Calendars


	4 Resolution Methods
	4.1 CSP
	4.2 Dynamic CSP
	4.2.1 Local Changes Algorithm


	5 Solution
	5.1 Model
	5.1.1 Variables
	5.1.2 Constraints

	5.2 Algorithm
	5.2.1 Optimization criteria
	5.2.2 Implementation guidelines
	5.2.3 Heuristics
	5.2.4 Data Structure
	5.2.5 Stochastic Exploration
	5.2.6 Algorithm Pseudocode
	5.2.7 Summary


	6 Results
	6.1 Metrics
	6.2 Offline Scheduling
	6.2.1 Simulation n.1
	6.2.2 Simulation n.2
	6.2.3 Simulation n. 3
	6.2.4 Simulation n. 4
	6.2.5 Conclusions

	6.3 Online Planning
	6.3.1 Simulation n.1
	6.3.2 Simulation n.2
	6.3.3 Simulation n.3
	6.3.4 Simulation n.4
	6.3.5 Simulation n. 5
	6.3.6 Conclusions


	7 Conclusions and future work

