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Abstract 

 

Industrial measurements are invalidated by the presence of random errors (i.e., background 

noise) and gross errors (i.e., outliers, bias, etc…). Data reconciliation (Romagnoli and Sanchez, 

2000) allows to reduce these effects by solving an optimization problem constrained to satisfy 

the mass and energy balances. However, the presence of gross errors deteriorates the 

reconciliation efficiency. In order to cope with this issue, the adoption of robust estimators is 

needed. Furthermore, it is possible detect and identify the gross errors through gross error 

detection methods (Romagnoli and Sanchez, 2000).  

In this Thesis data reconciliation and gross error detection are exploited to provide reliable 

measurements for the estimation of fouling model parameters in crude-oil heat exchanger 

networks. In particular, six state-of-the-art robust estimators are applied to two simulated heat 

exchange systems (one static and one dynamic) and a real one with “cut-off points” and X84 

(Ozyurt and Pike, 2004) for gross error detection. As a general result it is pointed out that 

Welsch estimator offers the best trade-off between data reconciliation and gross error detection 

performances; furthermore, the “cut-off points” proves to be the more suited gross error 

detection method when adopting robust M-estimators.  

The work in this Thesis was done in collaboration with Hexxcell Ltd as a part of an industrial 

internship.  

 

 

 

 

 



Riassunto 

 
Le misurazioni industriali sono invalidate dalla presenza di errori casuali (i.e., rumore di fondo) 

e da errori sistematici (i.e., outlier, bias, ecc…). La riconciliazione dati (Romagnoli e Sanchez, 

2000) è una tecnica che permette di ridurre questi effetti attraverso la risoluzione di un 

problema di ottimizzazione vincolata, soddisfacendo i bilanci di materia ed energia. Tuttavia, 

la presenza di errori sistematici riduce l’efficacia della riconciliazione dati. Per sopperire a 

questa problematica, l’adozione di stimatori robusti è necessaria per la riconciliazione. È 

possibile inoltre confermare ed indentificare la presenza di errori sistematici mediante 

metodologie specifiche.  

La riconciliazione dati e l’individuazione degli errori sistematici sono sfruttate per fornire 

misurazioni affidabili nella stima dei parametri predittivi dello sporcamento nei sistemi di 

scambiatori di calore per il petrolio greggio. In particolare, sei stimatori robusti all’attuale stato 

dell’arte sono applicati a due sistemi simulati di scambio termico (uno statico ed uno dinamico) 

e ad uno reale. Allo stesso modo, le metodologie “cut-off points” e X84 (Ozyurt and Pike, 

2004) sono applicate per individuare gli errori sistematici. In generale, si è concluso che lo 

stimatore di Welsch offre la miglior combinazione di prestazioni tra riconciliazione dati ed 

individuazione degli errori sistematici; inoltre, la metodologia dei “cut-off points” si è rivelata 

essere la più adatta per l’individuazione di errori sistematici, qualora si utilizzino gli stimatori 

robusti. 

Il lavoro in questa Tesi è stato realizzato in collaborazione con Hexxcell Ltd come parte di un 

tirocinio aziendale. 
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Introduction 
 

In industrial plants, the reliability of collected data has always been a challenge. Process 

monitoring, unit revamping or operational optimization are just ones of the most frequent 

situations where the process or systems reliability depends on the quality of the process 

measurements. Therefore, it is important to guarantee the validity and the accuracy of the 

collected and processed data. However, process data are inevitably corrupted by errors during 

collection and processing. This makes data deviate from their true values, leading to significant 

deviations from physical conservation laws (Tamhane and Mah, 1985). 

Two types of measurement errors usually invalidate the measured data: random errors and 

gross errors (Miao et al., 2009). Random errors cannot be eliminated and are always present in 

the measurements. This is identified as random noise, and usually is of relatively limited 

magnitude, with the exception of few occasional spikes. This type of disturbance cannot be 

predicted certainly, therefore, the only possible way to characterize it is to use probability 

distributions. On the other hand, gross errors are due to non-random events. These errors occur 

less frequently, but their magnitude is typically larger. They can be due to process leaks, 

malfunctioning sensors and systematic bias. Since both random and gross errors lead to 

erroneous data, degrading the performances and safety of the whole process, it is necessary to 

minimise their impact on the measurements.  

Data reconciliation (DR) is a well-known methodology that improvs the accuracy of process 

data by reducing the effect of random errors in measurements (Romagnoli and Sanchez, 2000). 

Typically, the reconciled estimates are expected to be more accurate than the measurements. 

However, the reconciled process data can suffer the presence of gross errors. For this reason, 

the effect of gross errors must be eliminated to guarantee the effectiveness of data 

reconciliation. Therefore, Gross Error Detection (GED) is a companion technique of data 

reconciliation that has been developed to identify and eliminate gross errors in process data 

(Romagnoli and Sanchez, 2000). DR and GED are applied together to improve the estimates 

accuracy of process data.  



 

Over the past decades many techniques were developed to perform DR and GED. They can 

essentially follow two strategies: 

• the strategies based on serial elimination (Ripps, 1965; Serth and Hennan, 1986; 

Rosenberg, Mah and Iordache, 1987), serial compensation (Narasimhan and Mah, 1987) 

and simultaneous/collective compensation (Sanchez, Romagnoli et al., 1999). All of them 

perform DR through a constrained WLS algorithm but then they detect and eliminate 

variables with gross errors using statistical test, such as Global Test, Measurement Test 

and Nodal Test (Tamhane and Mah, 1985).  

• the strategies that mitigate the effect of gross errors by using cost functions that reduce the 

weight of variables with large errors. This are called robust estimators and do not detect, 

nor eliminate gross errors, but reduce their effect on the solution, thus avoiding the 

propagation of the error (Arora and Biegler, 2001). 

Many authors pointed out the optimal performance of the robust estimators (Prata et al., 2010; 

Johnston and Kramer, 1995). For example, using Contaminated Normal estimators allow 

reconciled values to replace any outliers in the measured data, without requiring iterative 

detection and elimination procedures (Prata eta al., 2008). In particular, the performances of 

the M-estimators have been widely assessed (Ozyurt and Pike, 2004; Llanos et al., 2015), and 

a selection of six robust M-estimators was made in order to operate a comparison between the 

most promising estimators of the discussed over last decades: Simple Method, Sophisticated 

Method, Welsch estimator, Quasi Weighted Least Squares estimator, Correntropy estimator 

and Fair estimator. Along with these DR robust methods some effective GED techniques (such 

as, cut-off points and X84) were adopted (Ozyurt and Pike, 2004).  

DR and GED techniques can have a specific application in thermal systems in order to improve 

the fouling modelling in crude oil pre-heat trains (Loyola-Fuentes and Smith, 2019). This issue 

is of great importance industrially because fouling causes additional fuel and production costs, 

difficult operations, CO2 emissions and safety issues (Coletti and Macchietto, 2011).  Fouling 

deposition can be predicted according to specific fouling rate models. These models are based 

on several parameters, which can be also estimated by measured process data. Therefore, 

having a confident data source is crucial, with reliable and free-of-error measurements.  



 

In this perspective, the present Thesis deals with the application of robust DR and GED 

methods in the case of heat exchange. In particular, the performance of DR and GED 

methodologies proposed in Literature are tested and analysed in three case studies. The first 

two consist of simulated shell-and-tube heat exchangers, one treated as steady-state system and 

the second as a dynamic system. The third case study is related to an industrial heat-exchangers 

network (HEN) of a pre-heat train for crude-oil. From the simulated case studies, it is possible 

to evaluate the most robust methods for DR and GED.  

In Chapter 1, the mathematical background behind DR, robust M-estimators and GED 

techniques is presented. Then the three case studies are illustrated in Chapter 2. Chapter 3 

shows the discussion of the results in the preliminary simulated case studies. Chapter 4 deals 

with the application of DR and GED in the industrial system. Finally, in the concluding Chapter 

the final remarks and the future work are discussed. 
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CHAPTER 1 

Mathematical background 
 

In this Chapter the mathematical background regarding on robust data reconciliation (DR) and 

gross error detection (GED) techniques is presented. Starting from the general DR formulation 

and characteristics, the difference between steady-state DR and dynamic DR is highlighted. 

Then the robust M-estimators are explained. Finally, the formulations of the adopted GED 

techniques are presented and discussed. 

1.1 Data reconciliation  

Data reconciliation (DR) is a technique to improve the accuracy of process data by reducing 

the effect of random errors in measurements; by solving a constrained optimization problem, 

it adjusts of the process measurements to obtain more accurate estimates of flowrates, 

temperatures, compositions, etc…, that are consistent with material and energy balances. 

Consider a process whose process variables are identified by 𝐼 variables that can be measured 

with error. This set of system variables are stored in a vector: 

𝐱T = [𝑥1, 𝑥2, 𝑥𝑖, … , 𝑥𝐼]. Let us assume that a set of 𝐽 (noisy) measurements 𝐲i are available as 

a function of the 𝐼 variables in 𝐱: 

𝐲𝑖 = 𝑓𝑖(𝑥𝑖) + 𝛆𝑖 ,                                                                                                 (1.1)                                                                                                                           

where 𝛆𝑖 is the measurement error. These measurements are collected in vectors: 𝐲𝑖
T =

[𝑦𝑖1, 𝑦𝑖2, 𝑦𝑖𝑗, … , 𝑦𝑖𝐽]    for  𝑖 = 1,2,3, … 𝐼 and for 𝑗 = 1,2,3, … 𝐽, where 𝐽 is the total number of 

measurements taken during steady-state plant operation to estimate the system variable 𝑥i: 𝐽 = 

1 if we are interested in the snapshot of the process; 𝐽 > 1 if our concern is a smoothed average 

within a time window of interest. 

If the difference of the measured values y𝑖 and the system variable 𝑥𝑖 is 𝛆𝑖 = 0, the 

measurements are perfect and 𝐲𝑖 = 𝑓𝑖(𝑥𝑖). In general, in a state of statistical control and with 

only common cause variations occurring in the system (i.e., without any assignable/special 
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cause), 𝛆𝑖 ≠ 0 and 𝛆𝑖~𝐞𝑖 = 𝑁(0, 𝜎𝛆𝑖

2~1), namely, the measured values 𝐲𝑖 and the system 

variable 𝑥𝑖 do not coincide and the measurement errors are independent and normally 

distributed with zero mean. However, process data may contain other types of errors caused 

by non-random events (e.g., assignable or special causes occurring, such as: instruments not 

adequately compensated, sensors malfunction, etc…). These are called gross errors and they 

can be occasional (i.e., outliers) or systematic and time-persistent (i.e., biases). Biases do not 

follow a particular distribution and their magnitude is usually higher with respect to the random 

errors (Miao et al., 2009). Under this situation Equation (1.1) can be rewritten as 

𝐲𝒊 = 𝑓𝑖(𝑥𝑖) + 𝛆𝑖 = 𝑓𝑖(𝑥𝑖) + 𝐞𝑖 + 𝐨𝑖                                                                        (1.2) 

in the case outliers are present and   

𝐲𝑖 = 𝑓𝑖(𝑥𝑖) + 𝛆𝑖 = 𝑓𝑖(𝑥𝑖) + 𝐞𝑖 + 𝐛𝑖                                                                   (1.3) 

in the case biases are present, where 𝐨𝑖
𝑇 and 𝐛𝑖

𝑇
 are the [1 × 𝐽] vectors of variable 𝑖 for outliers 

and bias magnitudes, respectively (Llanos et al., 2017). 

In the case 𝜀𝑖 ≠ 0  and 𝑓𝑖 is differentiable at a point 𝑥𝑖,0, a vector 𝐟𝑖 can be defined: 

𝐟𝑖(𝑥𝑖,0) =
𝑑𝑓𝑖

𝑑𝑥𝑖
|
𝑥𝑖,0

   ,                                                                                                  (1.4)                                                                                                                 

which can be used for the linearized version of the measurements in Equation (1.1). For linear 

systems 𝐟i is constant and independent of 𝑥𝑖 . Accordingly, a linearized system can be 

considered as a good approximation of Equation (1.1): 

𝐲𝑖 = 𝐟𝑖𝑥𝑖 + 𝛆𝑖    ,                                                                                                                         (1.5) 

where 𝐟i is the [𝐽 × 1] vector of the Jacobian of fi. To uniquely determine this model a minimum 

number I of independent variables exists. Defining as redundant a system in which the amount 

of available data exceeds the minimum amount necessary for a unique determination of the 

independent variables (𝐽 > 𝐼) (Romagnoli and Sanchez, 2000) that determine a chosen model, 

if the number of observations 𝐽 is not sufficient for determining the 𝐼 variables, the situation 

will be obviously deficient. Furthermore, note that not only the number of observations must 

be larger than the number of variables, but the observations must be also independent. This 

means that, when (𝐽 > 𝐼), redundancy exists and is defined as:  

𝑅 = 𝐽 − 𝐼                                                                                                                                       (1.6) 
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that is equal to the (statistical) degrees of freedom. The definition of redundancy through 

Equation (1.6) can be also expressed in terms of observability (Loyola-Fuentes and Smith, 

2020) where: 

• redundancy: a measured variable is defined as redundant if it is observable even when its 

measurement is not available. 

• observability: an unmeasured variable is defined as observable if it can be estimated using 

the available process measurements and system equations (i.e., material and energy 

balances). 

From these two definitions it is clear that measured variables can be classified as redundant or 

non-redundant; the unmeasured variables, for which measurements are not available, can be 

only classified as observable or non-observable. 

However, since the observations are obtained from measurements that are subject to 

probabilistic fluctuations, redundant data are usually inconsistent because each sufficient 

subset of measurement yields different results from other subsets. To obtain a unique solution, 

an additional criterion is needed: among all the solutions that are consistent with the 

measurement model, the estimates that are as close as possible to the measurements are 

considered to be the solution of the estimation problem. To this purpose a generalized least 

squares solution is considered (Romagnoli and Sanchez, 2000): 

�̂� = 𝑚𝑖𝑛
𝑥𝑖

∑ (𝐲𝑖 − 𝐟𝑖𝑥𝑖)
𝐼
𝑖=1 (𝐲𝑖 − 𝐟𝑖𝑥𝑖)

𝑇.                                                                      (1.7)                                                                                                                                                                  

The vector �̂� contains the final estimates which are the reconciled values of the measured 

variables and should be closer to the true values of the system variables. 

System constraints are needed to satisfy material and energy balances, and depending on their 

formulation DR can be performed on a steady-state (css)  or dynamic system (cdyn), as reported 

below, 

𝑐𝑠𝑠(�̂�) = 𝟎                                                                                                                                (1.8) 

𝑐𝑑𝑦𝑛 (
𝑑�̂�(𝑡)

𝑑𝑡
, �̂�(𝑡)) = 𝟎 .                                                                                                  (1.9) 

 

1.1.1 Reduced data reconciliation problem 

If some of the variables are not measured the DR problem can be reformulated into a reduced 

DR problem (Romagnoli and Sanchez, 2000). Consider that the unmeasured variables are 
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stored in the vector 𝐮T = [𝑢1, 𝑢, 𝑢𝑧 , … , 𝑢𝑍]. In this case, the dimensionality of the optimisation 

problem is reduced to reconcile only the redundant variables.  

Let us assume a steady-state system with variables 𝐤. The problem constraints can be linearized 

according to the following equation: 

𝐀𝐤 = 𝐜 ,                                                                                                                                   (1.10) 

where 𝐀 is the compatible matrix and 𝒄 is the resulting vector from the equality constraints and 

it could equal to 0. A compatible matrix (Romagnoli and Sanchez, 2000) is a [U × I] which 

describes the structural topology of I streams and U units in terms of variables and equations. 

Consider for example the following simple system of Figure 1.1, whose mass balances around 

unit 1 and 2 are shown below, 

 

 

 

 

 

𝑓1 + 𝑓2 − 𝑓3 = 0  

𝑓3 − 𝑓4 = 0 , 

the correspondent compatible matrix 𝐀 has the form: 

𝐀 = [
1 1 −1 0
0 0 1 −1

]  

The previous  𝐤 variables can be divided into 𝐱 measured variables and 𝐮 unmeasured 

variables. Therefore, Equation (1.10) changes to the following form:  

𝐀𝐱𝐱 + 𝐀𝐮𝐮 = 𝐜 ,                                                                                                   (1.11) 

where 𝐀𝐱 and 𝐀𝐮 are the compatible matrix respectively for the measured and unmeasured 

variables. The dimension of the overall problem is reduced by using a projection matrix 𝐏 such 

that: 

      𝐏𝐀𝐮𝐮 = 𝟎 , 

obtaining the following reduced set of constraints,                                                                                                                     

      𝐏𝐀𝐱𝐱 = 𝐏𝐜 .                                                                                                                    (1.12)  

1 2 

f2 

f1 f3

 

f4

 

Figure 1.1. Flowsheet diagram for a simple serial system. 
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The projection matrix is estimated using the Q-R decomposition method (Romagnoli and 

Sanchez, 2000). Matrix 𝐀𝐮 is decomposed using this method in matrices 𝐐𝐮 and 𝐑𝐮. 

Depending on the case, a permutation matrix 𝛑𝐮 can also be estimated with the purpose of 

reordering the columns of 𝐀𝐮 if necessary. The factorisation results in:  

𝐀𝐮 = 𝐐𝐮𝐑𝐮𝛑𝐮 = [𝐐𝐮𝟏 𝐐𝐮𝟐] [
𝐑𝐮𝟏

0
]𝛑𝐮 ,                                                                 (1.13) 

and the matrix 𝐐𝐮𝟐
T corresponds to the projection matrix 𝐏 (Crowe et al., 1983). Using 

Equation (1.13) in combination with Equation (1.11), the solution for the unmeasured variables 

𝐮 is 

𝛑𝐮𝐮 = 𝐑𝐮𝟏
−1𝐐𝐮𝟏

T𝐜 − 𝐑𝐮𝟏
−1𝐐𝐮𝟏

T𝐀𝐱𝐱 .                                                                          (1.14) 

This formulation is only valid when each unmeasured variable is observable, that is verified 

when the columns of matrix 𝐀𝐮 are linearly independent (Narasimhan and Jordache, 2000). In 

case there are unobservable the factorisation must be properly modified (Loyola-Fuentes and 

Smith, 2020). This method provides also a classification for the measured variables as 

redundant or non-redundant, through the inspection of the reduced constraint matrix 𝐐𝐮𝟐
T𝐀𝐱. 

When all the elements in a column of this matrix are zero, then the corresponding measured 

variable is non-redundant. On the contrary, when a column contains non-zero elements, the 

corresponding measured variables is classified as redundant, and its value will be adjusted 

during reconciliation (Loyola-Fuentes and Smith, 2020).  

The reduced problem and the consequent QR factorisation can be solved also for a dynamic 

system (Albuquerque and Biegler, 1986).  

1.1.2 Steady-state formulation 

In a steady state scenario, the solution of the optimization problem for DR can be calculated 

using a special case of Equation (1.7) (Ozyurt and Pike, 2004): 

�̂� = 𝑚𝑖𝑛
𝑥𝑖

∑ ∑ (
𝑦𝑖𝑗−𝑥𝑖

𝜎𝑖
)
2

= 𝑚𝑖𝑛
𝑥𝑖

∑ ∑ 𝑟𝑖𝑗
2𝐼

𝑖=1
𝐽
𝑗=1

𝐼
𝑖=1

𝐽
𝑗=1                                  (1.15)                             

such that                                    

𝑐(�̂�, �̂�) = 𝐜,                                                                                                                                   

𝑔(�̂�, �̂�) ≥ 0 ,                                                                                                                                        

𝐿𝑏𝑥𝑖
≤ �̂�𝑖 ≤ 𝑈𝑏𝑥𝑖

 ,                                                                                                        

𝐿𝑏𝑢𝑧
≤ �̂�𝑧 ≤ 𝑈𝑏𝑢𝑧

 ,                                                                                                                  
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where 𝑦𝑖𝑗 is the measurement 𝑗 for variable 𝑖, 𝑥𝑖 is the variable 𝑖 estimate,  𝜎𝑖 is the standard 

deviation of the set of measurements 𝐲i
T and 𝑟𝑖𝑗  is the respective standardized residual. �̂�𝑻 and 

�̂�𝑻 are the [1 × 𝐼] and [1 × 𝑍] vectors of the final estimates respectively for the measurable 

variables and unmeasurable variables and c is the process constraint equations. Finally, 𝑔 

represents the inequality constraints while 𝐿𝑏 and 𝑈𝑏 are the lower and upper bounds for both 

measured and unmeasured variables. 

In a steady-state system, temporal redundancy is exploited because the measurements of the 

process data are made continuously or discretely in time at a specific sampling rate (Miao et 

al., 2009). The solution of the optimization problem provides a reconciled value �̂�𝑖 for each of 

the I measured variables will be obtained. As mentioned earlier, in some situations a single 

snapshot of the process can be considered, leading to the following formulation without 

temporal redundancy 

�̂�𝑗 = 𝑚𝑖𝑛
𝑥𝑖

∑ (
𝑦𝑖𝑗−𝑥𝑖

𝜎𝑖
)
2

𝐼
𝑖=1 = 𝑚𝑖𝑛

𝑥𝑖

∑ 𝑟𝑖𝑗
2𝐼

𝑖=1 ,                                                    (1.16) 

subject to the same constraints as in Equation (1.8). At the end vector �̂�𝑗 is obtained, which 

contains the reconciled values for each of the 𝐼 variables at specific snapshot 𝑗. In this way, if 

measurements of the considered set of variables are available at several time instants, 

reconciled values (i.e., steady state values) will be obtained at each sample time. This strategy 

allows to take into account a possible change in the system steady state due to unwanted effects. 

On the other hand, it loses accuracy because temporal redundancy which is not exploited to 

mitigate the effect of bad measurements better (Llanos et al., 2017). 

1.1.3 Dynamic formulation 

In the case of dynamic systems, the data-time horizon has to consider the system dynamics. 

The general DR formulation changes to the following 

�̂� = 𝑚𝑖𝑛
𝐱𝑡

∑ (
𝐲𝑡−𝐱𝑡

𝛔
)
2

= 𝑚𝑖𝑛
𝐱𝑡

∑ 𝐫𝑡
2𝑇

𝑡=0
𝑇
𝑡=0                                                                     (1.17)                                                                                                

such that 

𝑐 (
𝑑�̂�(𝑡)

𝑑𝑡
, �̂�(𝑡),

𝑑�̂�(𝑡)

𝑑𝑡
, �̂�(𝑡) ) = 𝐜,                                                                                                   

ℎ(�̂�(𝑡), �̂�(𝑡)) = 0,                                                                                                                         

𝑔(�̂�(𝑡), �̂�(𝑡)) ≥ 0,                                                                                                           
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𝐿𝑏𝑥𝑖
≤ �̂�𝑖(𝑡) ≤ 𝑈𝑏𝑥𝑖

 ,                                                                                                           

𝐿𝑏𝑢𝑧
≤ �̂�𝑧(𝑡) ≤ 𝑈𝑏𝑢𝑧

   , 

where 𝐲𝑡
𝑇, 𝐱𝑡

𝑇 and 𝐫𝑡
𝑇 are respectively the [1 × 𝐼] measurement, estimate and standardized 

residual vectors at time instant 𝑡 = 0,1, … , 𝑇 of the 𝐼 variables. As before, 𝐮𝒕
𝑇 is the [1 × 𝑍] 

vector at time instant 𝑡 and 𝛔𝑇  is the  [1 × 𝐼] vector of the variables’ standard deviation.  �̂� is 

the reconciled values matrix [𝑇 × 𝐼] which stores the reconciled values for each variable at 

each time instant. 𝐜 is the differential process constraint equations, while ℎ and 𝑔 are 

respectively the algebraic and inequality constraints.  

1.2 Robust estimators 

1.2.1 General characteristics 

The previous DR formulations use a Weighted Least Squares (WLS) formulation as the 

objective function to minimize. However, they are reliable for measurement errors which 

follow a distribution with zero mean and known variance. For any possible deviation from this 

assumption, a more appropriate formulation is used, mainly the case when the measurements 

contain some gross errors (Ozyurt and Pike, 2004). For example, a measurement of a variable 

affected by gross error can deteriorate the final estimates of the other variables through the DR 

constraint equations, which relate all system variables. In this way the gross error effect is 

“smeared” across all of them (Narasimhan and Jordache, 1999). A class of objective functions 

which are robust to gross errors is that of M-estimators, which are a generalization of the 

maximum-likelihood estimators (Albuquerque and Biegler, 1996). M-estimators are built in 

such a way as to concentrate the gross error effect only on the affected variable (Fuente et al., 

2015) avoiding the smearing effect.  

Their objective function is a loss function 𝜌 which depends on the standardized residual and 

its shape is specific for the estimator considered. For example, for the WLS, 𝜌 corresponds to 

the squared standardized residual. Considering this new formulation, Equations (1.15), (1.16) 

and (1.17) can be rewritten as: 

�̂� = 𝑚𝑖𝑛
𝑥𝑖

∑ ∑ 𝜌 (
𝑦𝑖𝑗−𝑥𝑖

𝜎𝑖
) = 𝑚𝑖𝑛

𝑥𝑖

∑ ∑ 𝜌(𝑟𝑖𝑗)
𝐼
𝑖=1

𝐽
𝑗=1

𝐼
𝑖=1

𝐽
𝑗=1 ,                                   (1.18) 

�̂�𝑗 = 𝑚𝑖𝑛
𝑥𝑖

∑ 𝜌 (
𝑦𝑖𝑗−𝑥𝑖

𝜎𝑖
)𝐼

𝑖=1 = 𝑚𝑖𝑛
𝑥𝑖

∑ 𝜌(𝑟𝑖𝑗)
𝐼
𝑖=1 ,                                                         (1.19) 
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�̂� = 𝑚𝑖𝑛
𝐱𝒕

∑ 𝜌 (
𝐲𝑡−𝐱𝒕

𝛔
) = 𝑚𝑖𝑛

𝐱𝒕

∑ 𝜌(𝐫𝑡)
𝑇
𝑡=1

𝑇
𝑡=0 ,                                                             (1.20) 

maintaining the correspondent set of constraint equations as before  

1.2.2 The adopted robust estimators 

Simple Method (SiM), Sophisticated Method (SoM), Welsch (W), Quasi-Weighted Least 

Squares (QWLS), Correntropy (Co) and Fair (F) are the robust DR strategies considered in this 

Thesis. Their formulation and characteristic are briefly reviewed in the following1.  

1.2.2.1 SiM and SoM  

They are both non-adaptive techniques based on the combination of two different estimators 

(Llanos et al., 2015) in order to reduce the bad effect of outliers on the final estimation. Their 

formulation consists of two steps for SiM and of an additional third step for SoM: 

• Step 1: an estimate of the median of the 𝐽 measurements of variable 𝑖 , �̃�𝑖, is calculated 

using an estimator of the Biweight (BW) family and it corresponds to the solution of the 

following 

�̃�𝑖 = 𝑚𝑖𝑛
𝑦𝑖

∑ 𝜌𝐵𝑊 (
𝑦𝑖𝑗−𝑦𝑖

𝜎𝑖
)𝐽

𝑗=1 ,                                                                                (1.21)                                                                                                     

where:  

 𝜌𝐵𝑊 = {
1 − [1 − (𝑟𝑖𝑗 𝑐𝐵𝑊)⁄ 2

]
3

  𝑖𝑓 |𝑟𝑖𝑗| ≤ 𝑐𝐵𝑊

1  𝑖𝑓|𝑟𝑖𝑗| ≥ 𝑐𝐵𝑊

 .                                                   (1.22)  

• Step 2:  the solution �̂� of Equation (1.18) is achieved by solving  

𝑚𝑖𝑛
𝑥𝑖

∑ 𝜌𝐻 (
�̃�𝑖−𝑥𝑖

𝜎𝑖
)𝑛

𝑖=1 ,                                                                                                              (1.23) 

where: 

𝜌𝐻 = {
𝑟𝑖

2  𝑖𝑓 |𝑟𝑖| ≤ 𝑐𝐻

2𝑐𝐻|𝑟𝑖| − 𝑐𝐻
2   𝑖𝑓|𝑟𝑖| ≥ 𝑐𝐻

 ,                                                                             (1.24) 

which is a loss function of the Huber (H) family.  

 
1 Note that the following formulation considers the steady-state case exploiting time redundancy. The extension 

to the non-time redundancy and dynamic case is straightforward and not reported here for the sake of conciseness. 
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• Step 3: SoM adds an extra third step, which is a refinement of the solution obtained from 

the second step. The reconciled values obtained from Equation (1.24) are used as 

initialization points for the following 

𝑚𝑖𝑛
𝑥𝑖

∑ ∑ 𝜌𝐵𝑊 (
𝑦𝑖−𝑥𝑖

𝜎𝑖
)𝑛

𝑖=1
𝐽
𝑗=1 .                                                                             (1.25)                                                                                               

When temporal redundancy is not used the first step is neglected, losing all its benefits. 

Therefore, SiM and SoM must be explicitly applied to data within a predefined time window. 

Furthermore, these two approaches are not designed for dynamic DR, since at the end of Step 

1 just one estimate for each variable is produced. This is in conflict with the dynamic behaviour 

of the system which implies an estimate for each time instant for the same variable.  

1.2.2.2 Welsch estimator 

The Welsch estimator (Dennis and Welsch, 1976) is usually applied to reconcile measurements 

of dynamic systems for time varying moving windows (Prata et al., 2008, 2010). Its loss 

function has the following formulation: 

𝜌𝑊 = 𝑐𝑊
2 {1 − 𝑒𝑥𝑝 [−(

𝑟𝑖𝑗

𝑐𝑊
)

2

]}    .                                                                                   (1.26) 

1.2.2.3 Quasi-Weighted Least Squares estimator 

The Quasi-Weighted Least Squares loss function (Zhang et al., 2010) is defined as below 

𝜌𝑄𝑊𝐿𝑆 =
𝑟𝑖𝑗

2

2+𝑐𝑄𝑊𝐿𝑆|𝑟𝑖𝑗|
    .                                                                                                        (1.27) 

1.2.2.4 Correntropy estimator 

The correntropy estimation loss function is shown in Equation (1.26) and it is a Gaussian kernel 

function (Chen et al., 2013): 

𝜌𝐶𝑂 = −
1

𝑐𝐶𝑂√2𝜋
𝑒𝑥𝑝 [− (

𝑟𝑖𝑗
2

2𝑐𝐶𝑂
2 )]   .                                                                             (1.28)                                                                                                

1.2.2.5 Fair estimator 

The Fair estimator (Fair, 1974) behaves like a least square estimator for small residuals, while 

as an absolute value estimator for large residuals. Its loss function is the following: 

𝜌𝐹 = 2𝑐𝐹
2 [

|𝑟𝑖𝑗|

𝑐𝐹
− 𝑙𝑛 (1 +

|𝑟𝑖𝑗|

𝑐𝐹
)].                                                                               (1.29)                                                                                                  

In particular, for large residuals it behaves as an absolute value estimator. On the other hand, 

for small residuals it behaves as WLS. 
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1.2.2.6 Estimators’ tuning parameters, efficiency and robustness 

Tuning parameters (cBW, cH, 𝑐𝑊, 𝑐𝑄𝑊𝐿𝑆, 𝑐𝐶𝑂 and 𝑐𝐹) are present in all the loss functions 

(Ozyurt and Pike, 2004). Depending on their values the loss function changes, influencing the 

efficiency and robustness of the correspondent estimator. 

To understand how well the method performs when the measurement errors follow a known 

reference distribution, the efficiency is defined according to what reported in Albuquerque and 

Biegler (1996): 

𝐸 =
𝑉𝑜𝑝𝑡

𝑉𝑎𝑐𝑡

                                                                                                                                                                                            (1.30) 

𝑉𝑜𝑝𝑡 is the optimal error variance (after DR) of an estimator with the reference residual 

distribution (i.e., standard normal distribution 𝑁(0,1)), while 𝑉𝑎𝑐𝑡 is the residual variance 

attained by the considered estimator. From the literature (Ozyurt and Pike, 2004; Prata et al., 

2010; Llanos et al., 2015), robust M-estimators are usually tuned to reach 95% efficiency 

relatively to standard normal distribution. For decreasing values of the tuning parameter, the 

efficiency decreases (Rey, 1983). Furthermore, it is necessary that different estimators have 

the same efficiency in order to compare their DR performances. In this Thesis estimators were 

tuned to reach that efficiency and the correspondent tuning parameters values, retrieved from 

the literature (Rey, 1983; Llanos et al., 2015), are reported in Table 1.1. 

Table 1.1. Tuning parameters for the adopted robust estimators for 95% efficiency 

relatively to standard normal distribution of the residuals. 

𝑐𝐵𝑊 𝑐𝐻 𝑐𝑊 𝑐𝑄𝑊𝐿𝑆 𝑐𝐶𝑂 𝑐𝐹 

4.680 1.345 2.980 0.890 2.050 1.3998 

 

Robustness refers to the characteristic which makes an estimator insensitive to gross deviations 

from ideality. As for efficiency, tuning parameters influence the robustness of an estimator, 

where a lower tuning parameter value corresponds to higher robustness (Rey, 1983). In 

particular, estimator robustness can be assessed by evaluating the influence function. The 

influence function “describes the effect of an infinitesimal contamination at the point x on the 

estimate” (Hampel et al., 1986) or in other words, the importance of an observation on the 

estimator. For M-estimators, it is proportional to the first derivative of 𝜌 with respect to the 

residual (Albuquerque and Biegler, 1986).  
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Depending on the shape of both loss and influence functions, robust estimators can be 

classified into two categories: monotone and redescending.  

For what concerns monotone estimators (Huber, Fair and QWLS) the influence function 

reaches a constant value for large residual values, while their loss functions increase in a 

monotone way and are convex. This determines that when adopting these estimators for DR at 

the end there will be a unique local minimum. Therefore, the values used to start the iterative 

solution procedure may influence the number of iterations, but not the final outcome (Llanos 

et al., 2017).  

For what concerns redescending estimators (Welsch, Correntropy and Biweight) the influence 

function reaches a maximum for low residuals and then their profile “descend” quite fast as 

residuals’ magnitude increases. These estimators are further divided into two sub-classes: i) 

unbounded because at infinite residual magnitude their influence functions tend to zero, or ii) 

bounded when they exactly go to zero. In general, thanks to these characteristics the 

redescending estimators are best suited to deal with large errors (heavy-tailed error 

distributions) with respect to the monotones (Llanos et al., 2017). However, they may have 

several local minima which requires good initialization to ensure attaining an optimal solution. 

The profiles of the loss and influence function for all the chosen estimators and the Weighted 

Least Squares are shown in Figures 1.2a and 1.2b. As residuals increase the blue line of WLS 

influence function (Figure 1.2b) continues to grow and these large errors have a greater effect 

on the final estimate respect to the smallest ones; this is why WLS is not robust. On the contrary 

the influence function of the other estimators remains bounded, allowing them to be robust to 

increasing errors. Furthermore, two different behaviours can be noticed:  

• the dashed lines of Huber, Fair and QWLS influence functions reach a constant value 

for large residual values, while their loss functions increase. They are monotone and 

convex estimators2;  

• the solid lines for Welsch, Correntropy and Biweight highlight their redescending 

behaviour. In particular, the first ones have unbounded ρ because at infinite residual 

magnitude their influence functions tend to zero, while Biweight has bounded ρ 

because its influence function goes exactly to zero after a certain threshold.  

 
2 Their convexity cannot be appreciated from the figure because only positive residuals are considered in 

Figure 1.2. 
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(a) 

 

(b) 

Figure 1.2. Loss function (a) and influence function (b) for the adopted estimators 

tuned at 95% efficiency and for the Weighted Least Squares (WLS). 
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(a) 

 

(b) 

Figure 1.3. Detailed view of loss function (a) and influence function (b) for 

Correntropy redescending estimator tuned at 95% efficiency  

 

1.3 Gross error detection techniques 

Gross error detection (GED) is a technique that has been developed to detect the presence of 

gross errors in the measurements dataset and identify the affected variables. In general, two 

different situations may rise depending on the quantity of variables affected by gross errors. 

When one variable contains gross errors, a single GED must be performed; when more than 

one variable contains gross errors a multiple GED (MGED) is necessary and the affected 

variables can be detected one by one or simultaneously (Romagnoli and Sanchez, 2000). In 
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any case, DR and GED are applied together to improve the accuracy of the final estimates. In 

the past decades (Romagnoli and Sanchez, 2000; Miao et al., 2009) many GED approaches 

have been developed and analysed. In this Thesis two approaches are used, which are suitable 

to be implemented with robust estimators (Ozyurt and Pike, 2004): “cut-off points” and X84. 

1.3.1 Cut-off points 

The influence function of a robust estimator can be exploited in order to simultaneously 

perform DR and GED, by using a series of cut-off points 𝑐𝑝𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 as a discriminant for the 

residuals’ magnitude after DR. This method does not imply the knowledge of the prior 

measurements’ distribution (Ozyurt and Pike, 2004). According to this technique a gross error 

is therefore identified if 

|𝑟𝑖𝑗,𝑅| ≥ 𝑐𝑝𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟                                                                                                     (1.31) 

where 

𝑟𝑖𝑗,𝑅 =
𝑦𝑖𝑗−�̂�𝑖

𝜎𝑖
                                                                                                          (1.32) 

is the standardized residual after DR for measurement 𝑗 of variable 𝑖3. Therefore, if the 

condition (1.29) is verified an outlier is detected; in case of four outliers are found out of five 

consecutive observations a bias is identified (Prata et al., 2010). 

At least, four different 𝑐𝑝𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 values can be assigned as criterion: the maximum of the 

influence function, its inflection point and two inflection points of the first derivative of the 

influence function. In this Thesis just the maxima and the second inflection point of the first 

derivative of the influence function were considered because they were proven to grant the best 

GED results (Ozyurt and Pike, 2004). From Figure 1 it is clear that only redescending 

estimators have cut-points contrarily to the monotone ones. However, provided that the 

functions have the same efficiencies, the cut points for redescending influence functions can 

be considered a cut point candidate for the non-redescending estimators (Ozyurt and Pike, 

2004).  

Cut-off points GED can be applied to both steady-state and dynamic systems (Rey, 1983) and 

to residuals of a fixed horizon time window or of a moving time window. It is suitable for 

 
3 Note that in this case 𝑟𝑖𝑗,𝑅 is referred to steady-state DR exploiting time redundancy. For steady non-time 

redundancy DR and dynamic DR, a different reconciled value �̂�𝑖 must be considered in accordance. 
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simultaneously performing DR and simultaneous detection/identification of multiple gross 

errors by exploiting the same influence function for two different tasks. 

1.3.2 X84 

X84 (Hampel et al., 1986) rejection criterion is considered in this work as an alternative to the 

previous GED algorithms. This technique rejects the measurements whose residuals after DR 

are more than 5.2 (commonly assumed value) times the median deviation away from the 

median of the residuals. In this case, the median deviation (median absolute deviation) 

corresponds to the median of the absolute value of the difference between the residuals and 

their median. This rule can be applied to any ρ-function, not relying on a predetermined and ρ-

function-dependent cut-off point. 
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CHAPTER 2 

Case studies  
 

In this Chapter three case studies of heat exchange in the refinery sector are illustrated: two 

simulated cases (Singhmaneeskulchai, Siemanond et al., 2013; Kongchuay and Siemanond, 

2014) (namely, one steady-state case and one dynamic), and a steady-state industrial example 

(Coletti and Macchietto, 2011).  

2.1 Simulated steady-state case study 

2.1.1 Simulated system 

The simulated steady-state case study considered in this Thesis is a shell-and-tube heat 

exchanger presented in the literature by Kongchuay and Siemanond (2014). The involved 

fluids are a dowthermal oil, as a hot fluid, and ethane, as cold fluid to heat-up. The following 

six process variables were measured: the inlet temperature of the oil 𝑇𝑜,𝑖𝑛, the oulet temperature 

of the oil 𝑇𝑜,𝑜𝑢𝑡,the inlet temperature of the ethane 𝑇𝑒,𝑖𝑛, ,the outlet temperature of the ethane 

𝑇𝑒,𝑜𝑢𝑡, the oil volumetric flowrate �̇�𝑜 and the ethane volumetric flowrate �̇�𝑒. 

 

Figure 2.1. Simulated single shell-and-tube heat exchanger with the six measured 

process variables. The hot stream is a diathermic oil, while the cold one is ethane 

(Kongchuay and Siemanond, 2014). 
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The system is assumed at its steady state. The material balance is assumed to be satisfied for 

both fluids and it is explicitly embedded in the two energy balances at the hot and cold side, 

respectively: 

−𝑄 = �̇�𝑜𝐶𝑝,𝑜(𝑇𝑜,𝑜𝑢𝑡 − 𝑇𝑜,𝑖𝑛)                                                                                   (2.1)                                                                                                                                        

𝑄 = �̇�𝑒𝐶𝑝,𝑒(𝑇𝑒,𝑜𝑢𝑡 − 𝑇𝑒,𝑖𝑛)                                                                                     (2.2) 

with                                                                                                                                             

𝑄 = 𝑈𝐴∆𝑇𝑚𝑙 ,                                                                                                      (2.3) 

where 𝑄 is heat-duty of the heat exchanger in [W] and  𝑈𝐴 is the “thermal size” in [W/°C] 

composed respectively by the overall heat transfer coefficient U and the exchange area A. �̇�𝑜 

and �̇�𝑒 are the fluids mass flowrates in [kg/s], while 𝐶𝑝,𝑜 and 𝐶𝑝,𝑒 are the respective specific 

heats in [J/kg °C]. Finally, ∆𝑇ml is the mean logarithmic temperature calculated according to 

the approximation proposed by Chen (2019) considering the two fluids counter-current: 

∆𝑇ml = [(𝑇𝑜,𝑖𝑛 − 𝑇𝑒,𝑜𝑢𝑡)(𝑇𝑜,𝑜𝑢𝑡 − 𝑇𝑒,𝑖𝑛)0.5(𝑇𝑜,𝑖𝑛 − 𝑇𝑒,𝑜𝑢𝑡 + 𝑇𝑜,𝑜𝑢𝑡 − 𝑇𝑒,𝑖𝑛)]
1/3

                 (2.4)                                      

The 4 degrees of freedom of the considered system were saturated by fixing the four 

temperatures and solving the balance equations in order to determine the two volumetric 

flowrates. The system of equations was implemented in Python and solved through the SciPy 

library. 

These six values correspond to the true values, necessary for measurements generation and 

DR/GED performance evaluation. In the Tables 2.1 and 2.2 the true values and physical 

parameters are reported. In particular, the temperatures and parameters (assumed independent 

from temperature variations) were retrieved from the literature (Singhmaneeskulchai, 

Siemanond et al., 2013; Kongchuay and Siemanond, 2014). 

Table 2.1. True values of the six measured process variables. 

𝑻𝒉,𝒊𝒏 [°C] 𝑻𝒉,𝒐𝒖𝒕 [°C] 𝑻𝒆,𝒊𝒏 [°C] 𝑻𝒆,𝒐𝒖𝒕[°C] �̇�𝒐 [m3/h] �̇�𝒆 [m3/h] 

170 103 16 65 39.4 30614.44 

 

Table 2. 2. Physical parameters for the two fluids and heat-exchanger thermal size. 

𝑪𝒑,𝒆[J/kg°C] 𝝆𝒆  [kg/m3] 𝑪𝒑,𝒐  [J/kg°C] 𝝆𝒐 [kg/m3] 𝑼𝑨 [W/°C] �̇�𝒆 [m3/h] 

2473.00 1.33 2419.00 772.65 14318.66 2473.00 



23 

 

 

2.1.2 Measurements generation 

Six simulated datasets of 365 measurements for each variable were generated according to the 

scenarios reported below. 

1) Scenario 1: measurements affected by random noise. The 365 data were randomly 

generated from a normal distribution with a mean which is equal to the true values in Table 

2.1 and the lowest level of standard deviation reported in Table 2.3; 

2) Scenario 2: measurements affected by random noise with the highest level of standard 

deviation reported in Table 2.3. 

3) Scenario 3:  measurements affected by low noise and 40 outliers on three variables (𝑇𝑜,𝑖𝑛, 

𝑇𝑒,𝑖𝑛, �̇�𝑜): 20 were generated by subtracting a value between 15% and 150% of the true 

value from the correspondent measurement; the other 20 were obtained by adding a value 

between 15% and 150% of the true value instead. 

4) Scenario 4: measurements affected by low noise and 120 outliers on variable 𝑇𝑒,𝑖𝑛: 60 were 

generated by subtracting a value between 50% and 200% of the true value from the 

correspondent measurement; the other 60 were obtained by adding a value between 50% 

and 200% of the true value instead.  

5) Scenario 5: measurements affected by low noise and biases on variables 𝑇𝑒,𝑖𝑛, �̇�𝑜, adding 

5 [°C] and 10 [m3/h] to the measurements, respectively.  

6) Scenario 6: measurements affected by low noise and biases on variables 𝑇𝑒,𝑖𝑛, �̇�𝑜, adding 

10 [°C] and 20 [m3/h] to the measurements, respectively. 

Table 2.3. Process variables standard deviations used for noise generation in 

Scenario 1 and Scenario 2. 

noise 𝑻𝒉,𝒊𝒏 [°C] 𝑻𝒉,𝒐𝒖𝒕 [°C] 𝑻𝒆,𝒊𝒏 [°C] 𝑻𝒆,𝒐𝒖𝒕 [°C] �̇�𝒐 [m3/h] �̇�𝒆 [m3/h] 

low  5 5 2 2 2 5 

high  25 25 10 10 10 25 

 

In this way, a variety of scenarios were tested, allowing to evaluate the adopted estimators in 

a realistic way. All the scenarios were generated through the numpy.random command in 

Python. The values for the standard deviation of the normal distributions for Scenario 2 were 

retrieved from the literature (Kongchuay and Siemanond, 2014), and they were lowered for 
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Scenario 1. The magnitude of the outliers and biases were also chosen considering other 

simulated cases performed by other authors (Ozyurt and Pike, 2004; Llanos et al., 2017).  

2.2 Simulated dynamic case study 

2.2.1 Simulated system 

The same single shell-and-tube heat exchanger of the previous case was simulated as a dynamic 

system (Singhmaneeskulchai, Siemanond et al., 2013). The two fluids remained unchanged, as 

well as their physical properties. The outlet temperatures (𝑇𝑜,𝑜𝑢𝑡, 𝑇𝑒,𝑜𝑢𝑡) are assumed at steady-

state, while the remaining ones (𝑇𝑜,𝑖𝑛, 𝑇𝑒,𝑖𝑛, �̇�𝑜, �̇�𝑒) have a dynamic behaviour. The degrees of 

freedom are saturated by fixing the two outlet temperatures and the parameters needed to 

determine the dynamics of the inlet temperatures, which are perturbed through a sinusoidal 

change: 

𝑇𝑜,𝑖𝑛(𝑡) =  𝑇𝑜,𝑖𝑛(0) + 𝐴𝑜 sin(𝜔𝑜𝑡)                                                                             (2.5) 

𝑇𝑒,𝑖𝑛(𝑡) =  𝑇𝑒,𝑖𝑛(0) + 𝐴𝑒 sin(𝜔𝑒𝑡) .                                                                          (2.6) 

𝐴𝑜 and 𝐴𝑒 are the two oscillation-amplitudes respectively equal to 10 [°C] and 5 [°C], while 

𝜔𝑜  and 𝜔𝑒 are the angular frequencies both set to 1 [rad/s]. These values are chosen because 

they yield the most satisfactory time-profile. The system differential energy equations are 

presented by: 

𝑑𝑞

𝑑𝑡
= (

 𝑟ℎ𝑜𝑒 𝑐𝑝𝑒

3600
) [𝑇𝑒,𝑜𝑢𝑡

𝑑𝑉𝑒

𝑑𝑡
− 𝑇𝑒,𝑖𝑛

𝑑𝑉𝑒

𝑑𝑡
− 𝑉𝑒

dTe,in

𝑑𝑡
]                                                (2.7)                                                                                 

𝑑𝑞

𝑑𝑡
= −(

 𝑟ℎ𝑜𝑜 𝑐𝑝𝑜

3600
) [𝑇𝑜,𝑜𝑢𝑡

𝑑𝑉𝑜

𝑑𝑡
− 𝑇𝑜,𝑖𝑛

𝑑𝑉𝑜

𝑑𝑡
− 𝑉𝑜

dTo,in

𝑑𝑡
]                                             (2.8) 

where, 

𝑑𝑞

𝑑𝑡
= 𝑈𝐴

𝑑∆𝑇𝑚𝑙

𝑑𝑡
  .                                                                                                        (2.9) 

As in the steady-state case, the material balance is assumed to be satisfied for both fluids and 

it is explicitly embedded in the energy balances above.                                                          

The solution of these equations yielded the time-profiles of the two volumetric flowrates 

which, together with the profiles of the temperatures, correspond to the true values time-

profiles. As in the steady-state case, these values were necessary for the measurements’ 
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generation and DR/GED performance evaluation. As initial guesses for the flowrates the 

correspondent steady-state values, reported in Table 2.1, were used; in the same way 𝑇𝑜,𝑖𝑛(0), 

𝑇𝑒,𝑖𝑛(0), 𝑇𝑜,𝑜𝑢𝑡 and 𝑇𝑒,𝑜𝑢𝑡 were all set equal to the previous steady values.  

The system was implemented in Pyhton and the system of differential equations was solved by 

applying the Forward Euler method. This choice is driven by the explicit behaviour of this 

method and its straightforward implementation. 

2.2.2 Measurements generation 

Six different data scenarios were generated once again by using numpy.random, and 

measurements were generated at time steps of 1 s for 50 s for all the variable.  

1) Scenario 1: measurements affected by low random noise. A single normal distribution was 

generated for each time instant (for each dynamic variable) with mean equal to the 

respective true value (at that time instant) and low standard deviation, as reported in Table 

2.3. Two examples of measurements and true values for a dynamic and a steady variable 

are shown in Figure 2.2; 

  

 

                   (a)                                                                                  (b) 

Figure 2.2. Measurements of Scenario 1 and true values for ethane inlet temperature 

(a) and ethane outlet temperature (b). 

 

2) Scenario 2: measurements affected by high random noise; 

3) Scenario 3: measurements affected by low noise and 5 outliers on three variables (𝑇𝑜,𝑖𝑛, 

𝑇𝑒,𝑖𝑛, �̇�𝑜), generated by adding a value between 100% and 150% of the true value from the 

correspondent measurement.  
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4) Scenario 4: measurements affected by low noise and 5 outliers on variable 𝑇𝑒,𝑖𝑛, generated 

by adding a value between 200% and 250%.  

5) Scenario 5: measurements affected by low noise and biases on variables 𝑇𝑒,𝑖𝑛, �̇�𝑜:  20 

consecutive data affected by a bias of 5 [°C] and 10 [m3/h] respectively. 

6) Scenario 6: measurements affected by low noise and biases on variables 𝑇𝑒,𝑖𝑛, �̇�𝑜: 20 

consecutive data affected by bias of 10 [°C] and 20 [m3/h], respectively. 

2.3 Industrial case study 

2.3.1 Industrial system 

The industrial case study considered in this Thesis is based on a network of heat exchangers 

originally presented by Coletti and Macchietto (2011) whose simplified flowsheet is shown in 

Figure 2.3. It represents the hot end of a pre-heat train for crude oil before the crude distillation 

column.  

 

Figure 2.3. Simplified flowsheet of the hot end of a pre-heat train for crude oil 

(Coletti and Macchietto, 2011). 

The considered heat exchanger network (HEN) begins downstream of the pre-flash drum (D-

01) where a crude oil passes through 5 shell-and-tube heat exchanger units before the furnace 

(F-01), where it is heated-up to 340 [°C]. The crude flows on the tube-side in all units, while 

on the shell-side different hot crude fractions from the distillation column flow. The API degree 

and the coded name of the involved fluids are reported in Table 2.4. Downstream the first unit 

(heat exchanger E-01AB), the crude stream splits in two branches B1 and B2, and re-connects 

before the furnace through a mixer. The branch, B1, comprises heat exchanging units E-02 and 

E-03 while the branch B2, comprises units E-04 and E-05. 
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Table 2.4. Coded HEN fluids and their relative API degree. 

Fluid Crude SS1 SS2 SS3 SS4 

API 35.00 26.37 17.09 18.44 29.84 

 

In Table 2.5 the main geometrical parameters of the heat exchangers are reported. It can be 

seen that all five heat exchangers have counter-current inlets, E-04 has a single shell and the 

others are double shell. 

Table 2.5. Geometrical parameters for the five heat exchangers of the considered 

network. The term “c.c” is for counter-current arrangement. 

Parameters E-01AB E-02AB E-03AB E-04 E-05AB 

Arrang. c.c. c.c. c.c. c.c. c.c. 

No. shells 2 2 2 1 2 

No. tube pass  4 8 4 4 8 

 

2.3.2 Industrial measurements 

This network comprises 5 streams for which temperature and flowrate measurements are 

available for five years of operations. The correspondent nominal values are not available. 

These variables will be denoted through the names of the correspondent sensors. For flowrates 

it will be FC (flow controllers) followed by a progressive number (i.e., FC001…, FC007); for 

temperatures it will be TI (temperature indicator) followed by a progressive number (i.e., 

TI001…, TI017) instead. In particular, the temperature measurements are related to dirt heat 

exchangers. 

6.3% of the dataset elements are found to be Not A Number (NaN), due to recording errors, 

and the correspondent set of measurements are deleted. The behaviour of these datapoints can 

be sum up by their standard deviations, as reported in Table 2.6.  

The positions of the sensors led to the presence of unmeasured variables in some streams and 

therefore along with the measured variables there were also unmeasured flowrates and 

temperatures.  
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Table 2.6. Standard deviations of the measured flowrates (a) and temperatures (b). 

(a) 

Variable σ [kg/s] 

FC001 14.46 

FC002 12.04 

FC003 13.50 

FC004 5.19 

FC005 10.28 

FC006 4.33 

FC007 11.58 

(b) 

Variable σ [°C] 

TI001 7.10 

TI002 9.64 

TI003 9.61 

TI004 8.30 

TI005 10.17 

TI006 10.58 

TI007 10.43 

TI008 11.41 

TI009 4.84 

TI010 30.01 

TI011 9.15 

TI012 26.20 

TI013 21.06 

TI014 9.62 

TI015 24.59 

TI016 14.06 

TI017 6.66 

 

2.3.3 Unit models 

The HEN was modelled according to the following assumptions: 

• the system is at steady-state within the considered time-frame; 

• The effectiveness of the heat exchangers was not considered; 

• No fouling effect or model was accounted. 

The system is described according to the mass and energy balances for each unit: 

• heat exchangers: the mass balances on a single heat-exchanger for hot and cold side, 

respectively, are: 

𝑚ℎ,𝑖 − 𝑚ℎ,𝑜 = 0                                                                                                      (2.10)                                                                                                                           

𝑚𝑐,𝑖 − 𝑚𝑐,𝑜 = 0 ,                                                                                                    (2.11) 
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where the subscripts ℎ and 𝑐 represent the hot and cold streams, and the subscripts 𝑖 and 𝑜 

represent the heat exchanger inlet and outlet.  

The energy balance for the cold and hot side were evaluated by: 

𝐶ℎ = 𝑚ℎ,𝑖
(𝐶𝑝ℎ,𝑖+𝐶𝑝ℎ,𝑜)

2
                                                                                           (2.12) 

                                                                                                                 

𝐶𝑐 = 𝑚𝑐,𝑖
(𝐶𝑝𝑐,𝑖+𝐶𝑝𝑐,𝑜)

2
 ,                                                                                         (2.13)    

where the stream 𝐶𝑝s are estimated from the retrieved measurements using engineering 

judgment. 𝐶ℎ and 𝐶𝑐 are the heat capacities of the hot and cold sides, respectively.  

    The energy balance around the heat-exchanger yields 

𝐶𝑐(𝑇𝑐,𝑜 − 𝑇𝑐,𝑖) = 𝐶ℎ(𝑇ℎ,𝑖 − 𝑇ℎ,𝑜)                                                                    (2.14)                                                                                  

     which corresponds to  

𝑇𝑐,𝑖 − 𝑇𝑐,𝑜 + 𝐶𝑅𝑇ℎ,𝑖 − 𝐶𝑅𝑇ℎ,𝑜 = 0 ,                                                                     (2.15)                                                                                

where 𝐶𝑅 is the ratio between the lower and the larger heat capacity flow rates. 

If the heat capacity flow rate of the hot stream is larger than heat capacity flow rate of the 

cold stream, a correspondent equation to Equation (2.15) can be developed: 

−𝐶𝑅𝑇𝑐,𝑖 + 𝐶𝑅𝑇𝑐,𝑜 − 𝑇ℎ,𝑖 + 𝑇ℎ,𝑖 = 0 .                                                                 (2.16)                                                                                  

The set of Equations (2.15) and (2.16) can be organized in a single structure, through the 

definition of the parameter 𝑦, where 𝑦 = 1, if the hot stream has the lower heat capacity 

flowrate, and 𝑦 = 0, if the cold stream has the lower heat capacity flowrate. Thus,                                                      

[𝐶𝑅(𝑦 − 1) + 𝑦 −𝐶𝑅(𝑦 − 1) − 𝑦 𝐶𝑅𝑦 + (𝑦 − 1) −𝐶𝑅𝑦 − (𝑦 − 1)]

[
 
 
 
𝑇𝑐,𝑖

𝑇𝑐,𝑜

𝑇ℎ,𝑖

𝑇ℎ,𝑜]
 
 
 

= 𝟎 (2.17) 

• mixer: several inlet streams generate a unique outlet stream. Mixer model equations are 

valid for hot and cold streams. Therefore, the mass balance results 

𝑚𝑖,1 + 𝑚𝑖,2 + 𝑚𝑖,3 + ⋯− 𝑚𝑜 = 0 ,                                                                             (2.18)                                                                                

and the correspondent energy balance is  

𝐶𝑖,1𝑇𝑖,1 + 𝐶𝑖,2𝑇𝑖,2 + 𝐶𝑖,3𝑇𝑖,3 + ⋯− 𝐶𝑜𝑇𝑜 = 0 .                                                  (2.19) 
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• splitter: the mass balance equations have to consider the split fraction parameter 𝛼 as 

follows and are valid for hot and cold streams: 

𝑚𝑖 − 𝑚𝑜,1 − 𝑚𝑜,2 = 0                                                                                     (2.20) 

𝛼𝑚𝑖 − 𝑚𝑜,1 = 0 .                                                                                                                    (2.21) 

The energy description involves an additional equation which establishes that the 

temperature between inlet and outlet streams cannot change: 

𝐶𝑖𝑇𝑖 − 𝐶𝑜,1𝑇𝑜,1 − 𝐶𝑜,2𝑇𝑜,2 = 0 ,                                                                           (2.22)                                                                                           

𝑇𝑖 − 𝑇𝑜,1 = 0 .                                                                                                                           (2.23)   

2.3.4 Heat exchanger network model 

According to the network connectivity, the previous individual unit models must be 

interrelated, building the HEN model. The HEN model is composed by two systems of 

equations: a network flow model (i.e., mass balance equations) and a network energy model 

(i.e., energy balance equations) (de Oliveira Filho et al., 2007).  

According to this method, the topology of the heat exchanger network is represented by a 

digraph consisting in edges and vertex (Mah, 1990), representing internal streams and HEN 

units, respectively. HEN units are denoted by heat exchangers (HE), splitter (SP), mixer (MX) 

and furnace (FUR). Therefore, the network connectivity can be represented using a [𝑁 × 𝑆] 

incidence matrix 𝐌, Equation (2.24), which contains the interactions among 𝑆 edges and 𝑁 

vertices. 𝑆 can be further divided into 𝑆𝑐 cold streams and 𝑆ℎ hot streams. In the same way 𝑁 

is the sum of the total number 𝑁𝐻𝐸  of heat exchangers, the number 𝑁𝑀𝑋 of mixers, the number 

𝑁𝑆𝑃 of splitters and the number 𝑁𝐹𝑈𝑅 of furnaces. The elements of 𝐌 assume values of -1, 0 

and 1, depending if a stream is directed from, is not directed or is directed to a unit, 

respectively, meaning that 𝐌 is made of a series of submatrices:  

𝐌 = [
𝐌𝐻𝐸

𝐌𝑀𝑋

𝐌𝑆𝑃

] = [

𝐌𝑐
𝐻𝐸 𝐌ℎ

𝐻𝐸

𝐌𝑐
𝑀𝑋 𝐌ℎ

𝑀𝑋

𝐌𝑐
𝑆𝑃 𝐌ℎ

𝑆𝑃

] .                                                                                            (2.24) 

The incidence matrix can be exploited to formulate the two following network models for mass 

and energy: 

𝐀𝐱 = 𝐛 ,                                                                                                                                    (2.25) 
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 𝐂𝐳 = 𝐝 .                                                                                                                                (2.26) 

The matrices 𝐀 and 𝐂, and vectors 𝐛 and 𝐝 comprise of the linear mass and energy balance 

equations, respectively, which are formulated in terms of incidence matrices 𝐌. These 

equations are solved for the vector of network flow rates 𝐱 [7 × 1] and the vector of network 

temperatures 𝐳 [17 × 1], respectively. Details regarding the general formalization of the full 

model in terms of incidence matrices can be found in the work by Loyola-Fuentes (2019) and 

in de Oliveira Filho et al. (2007). 
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CHAPTER 3 

Results of the data reconciliation and 

gross error detection for the simulated 

heat exchanger case study  

 
In this Chapter the results of the two simulated case studies are presented. The methodologies 

and performance indexes applied for DR and GED are firstly discussed, before illustrating the 

results. 

3.1 Results for the simulated steady-state case study  

3.1.1 Evaluation of the data reconciliation and gross error detection performance 

DR was performed by adopting the formulation which exploits and does not exploits temporal 

redundancy, Equations (1.18) and (1.19). The heat-exchanger energy balance equations, 

Equations (2.1), (2.2) and (2.3) were used as the DR system constraints.  

In order to evaluate and compare the performances of DR with different estimators in all the 

simulated scenarios, two performance indexes were calculated.  

The first one is the sum of squared error (SSE),  

SSE = ∑ (
x�̂�−𝑥𝑖

σi
)
2

n
i=1 ,                                                                                            (3.1)        

SSEj = ∑ (
xiĵ−xi

σi
)
2

n
i=1 ,                                                                                           (3.2)                                                                                                       

Where �̂�𝑖, 𝑥𝑖 and 𝜎𝑖 are respectively the reconciled value, the true value and the measurements 

standard deviation for variable 𝑖. Equation (3.1) is applied in case of reconciliation exploiting 

time-redundancy, while Equation (3.2) is for no-time redundancy, referring to a certain 

snapshot 𝑗 . 

The other relevant index is total error reduction (TER) (Ozyurt and Pike, 2004) whose Equation 

is defined as follow: 
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𝑇𝐸𝑅 = 100
√∑ ((𝑦𝑖𝑗−𝑥𝑖) 𝜎𝑖⁄ )

2𝑛
𝑖=1 −√∑ ((𝑥�̂�−𝑥𝑖) 𝜎𝑖⁄ )2𝑛

𝑖=1

√∑ ((𝑦𝑖𝑗−𝑥𝑖𝑗) 𝜎𝑖⁄ )
2𝑛

𝑖=1

  ,                                           (3.3)    

𝑇𝐸𝑅𝑗 = 100
√∑ ((𝑦𝑖𝑗−𝑥𝑖) 𝜎𝑖⁄ )

2𝑛
𝑖=1 −√∑ ((𝑥𝑖�̂�−𝑥𝑖) 𝜎𝑖⁄ )

2𝑛
𝑖=1

√∑ ((𝑦𝑖𝑗−𝑥𝑖) 𝜎𝑖⁄ )
2𝑛

𝑖=1

  ,                                                   (3.4)                                                                                                                                           

where 𝑦𝑖𝑗 is the measured value of variable 𝑖 at measurement/snapshot 𝑗. Equation (3.3) is 

applied in case of reconciliation exploiting time-redundancy, while Equation (3.4) for non-

time redundancy.  

It is desirable to have low SSE values and high TER values. This means that the reconciled 

values are close to the true ones and the measurements errors have been successfully reduced. 

A negative TER means that the error is increased after DR. 

The DR algorithm was implemented in Python and the constrained optimization problem was 

solved by adopting the Sequential Least Squares Quadratic Programming (SLSQP; Nocedal 

and Wright, 2006). The calculations are executed using a Processor Intel Core (TM) i7-7500U 

CPU @ 2.90 GHz, 16GB RAM which is adopted also for the next case studies. The 

measurements median was used to initialize the problem when adopting the time redundancy 

formulation, being a robust trend indicator. In the case without redundancy the measurements 

of the correspondent snapshot were used instead. In fact, the median embeds all the snapshots 

and it would be inappropriate as initial guess of a problem concerning just a single snapshot. 

In order to evaluate the GED performances of each estimator in all the scenarios, the following 

parameters are calculated: average number of type I error (AVTI) (Ozyurt and Pike, 2004), 

Equation (3.5) , and overall power (OP) (Ozyurt and Pike, 2004), Equation (3.6), respectively: 

 

𝐴𝑉𝑇𝐼 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑤𝑟𝑜𝑛𝑔𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑔𝑟𝑜𝑠𝑠 𝑒𝑟𝑟𝑜𝑟𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠
   ,                                                          (3.5)                                                                                        

𝑂𝑃 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑔𝑟𝑜𝑠𝑠 𝑒𝑟𝑟𝑟𝑜𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑟𝑜𝑠𝑠 𝑒𝑟𝑟𝑜𝑟𝑠 
 .                                                               (3.6) 

In AVTI the numerator indicates the number of measurements which do not contain gross 

errors but they are detected as containing instead; its denominator refers to the number of 

simulations for the same scenario, in this Thesis just one simulation for each scenario was 

performed. Regarding OP, the denominator considers the measurements which are really 

affected by the simulated gross errors, while the denominator refers to the number of 
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measurements where a gross error is present (i.e., number of simulated outliers or number of 

measurements affected by bias). The optimal GED technique should lead to low AVTI value 

and high OP value, detecting all and only the true gross errors. 

Table 3.1. Cut-off points adopted for GED for the seven estimators adopted in this 

Thesis. 

Estimator Cut-points 

Simple Method Biweight influence function: 2.093 (max.), 2.093 (i.p.) 

Sophisticated Method Biweight influence function: 2.093 (max.), 2.093 (i.p.) 

Welsch Welsch influence function: 2.11 (max.), 4.92 (i.p.) 

QWLS 4.51 (α=0.05) and 4.78 (α=0.025) from 𝑁(0,1)   

Correntropy Correntropy influence function: 2.05 (max.), 4.78 (i.p.) 

Fair Contaminated Normal influence function: 2.13 (max.), 3.34 (i.p.)  

WLS 4.51 (α=0.05) and 4.78 (α=0.025) from 𝑁(0,1)   

 

3.1.2 Results 

3.1.2.1 Data reconciliation  

In Tables 3.2a and 3.2b the SSE and the median SSE are reported for all the tested estimators 

and all the scenarios for both DR formulations. The reconciled values are much closer (lower 

SSE) to the true ones when temporal redundancy is available. This is due to the beneficial 

effect of exploiting all available measurements which mitigates the effect of outliers, 

improving the quality of the final estimates.  

Comparing in the specific the estimators, the following observations can be done: 

• SiM and SoM yield the best reconciled values in the time redundancy case, taking 

advantage from the reconciliation provided by the first Step. However, they lose their 

superiority in the last two Scenarios; 

• in the case without time redundancy, the median SSE is substantially the same for each 

estimator in the same Scenario. However, as bias increases Welsch and Correntropy have 

a clear superiority; 

From these results it is highlighted that the presence of bias is an issue for robust estimators as 

already highlighted by Prata et al. (2008). The use of temporal redundancy can mitigate this 

negative effect but the presence of more reconciliation steps can emphasize it, as happened for 

SiM and SoM. In absence of temporal redundancy, the greater robustness of redescending 

estimators, Welsch and Correntropy, proves to be a good protection. 
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Table 3.2. Simulated steady-state case study: SSE for the time-redundancy DR (a) 

and median SSE for the non-time redundancy DR (b) of each estimator and scenario. 

(a) 

SSE with time redundancy 

Scenario SiM SoM Welsch QWLS Correntropy Fair WLS 

1 2∙10-3 2∙10-3 1.4∙10-2 1.5∙10-2 1.4∙10-2 1.5∙10-2 1.4∙10-2 

2 2∙10-3 2∙10-3 1.4∙10-2 1.5∙10-2 1.5∙10-2 1.5∙10-2 1.4∙10-2 

3 2∙10-3 1 ∙10-3 2∙10-3 2∙10-3 2∙10-3 2∙10-3 2∙10-3 

4 6 ∙10-3 6 ∙10-3 1.6∙10-2 1.6∙10-2 1.6∙10-2 1.6∙10-2 1.7∙10-2 

5 29.789 29.789 8.934 8.942 8.933 8.934 8.935 

6 143.345 143.345 45.734 45.313 45.851 45.677 45.565 

(b) 

SSE without time redundancy 

Scenario SiM SoM Welsch QWLS Correntropy Fair WLS 

1 3.31 3.31 3.32 3.29 3.32 3.29 3.27 

2 3.38 3.41 3.42 3.41 3.43 3.41 3.31 

3 2.76 2.76 2.89 2.78 2.90 2.79 2.84 

4 3.58 3.57 3.65 3.61 3.67 3.60 3.46 

5 34.43 38.15 34.16 35.76 33.78 35.61 31.62 

6 145.13 173.05 74.94 143.54 65.88 141.77 123.76 

 

An unexpected result is that the DR performances of WLS result comparable to those of robust 

estimators. According to the theory, it is expected to behave quite well when only noise is 

present (Scenarios 1 and 2) and in a poor way in presence of outliers/bias (Scenarios 3-6). 

This is probably due because the measurements’ residuals are not great enough. They do not 

fall in the region where the WLS influence function begins to diverge from those of robust 

estimators. In this way, the benefits of having a bounded influence function cannot be 

exploited. However, this seems to not happen in Scenario 6, where the SSE of WLS is higher 

than those of Welsch and Correntropy, the two most robust estimators. This is likely due to the 

smearing effect which affects the WLS final estimates. Under this perspective, a close look to 

the median squared errors (SE) in Table 3.3 is helpful: 

• as highlighted in the first row of Tables 3.3a and 3.3b, in Scenario 5 both estimators cannot 

lead to good reconciliation for the two variables affected by bias (𝑇𝑒,𝑖𝑛, �̇�𝑜). The other 

variables have quite low SE values: they are not influenced by the faulty variables; 

• for what concerns the second row of Tables 3.3a and 3.3b, in Scenario 6 there is an increase 

of the SE of 𝑇𝑒,𝑖𝑛 and �̇�𝑜. However, for Correntropy the SE of the other variables remains 

low, contrarily to WLS where there is a strong increase; using this estimator the error due 

to bias is propagated.  
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Table 3.3. Simulated steady-state case study: median squared error (SE) of the six 

variables in the non-time redundancy for Correntropy (a) and WLS (b) estimators in 

Scenario 5 and 6. 

(a) 

SE Correntropy 

Scenario 𝐓𝐡,𝐢𝐧  𝐓𝐡,𝐨𝐮𝐭  𝐓𝐞,𝐢𝐧  𝐓𝐞,𝐨𝐮𝐭  �̇�𝐨 �̇�𝐞  

5 2.31 1.51 4.65 0.85 19.56 0.48 

6 1.77 1.07 22.86 1.95 25.53 0.478 

(b) 

SE WLS 

Scenario 𝐓𝐡,𝐢𝐧  𝐓𝐡,𝐨𝐮𝐭  𝐓𝐞,𝐢𝐧  𝐓𝐞,𝐨𝐮𝐭  �̇�𝐨 �̇�𝐞  

5 2.59 1.44 3.36 0.91 19.78 0.48 

6 8.88 3.97 14.95 3.30 88.41 0.48 

 

Table 3.4. Simulated steady-state case study: median TER for the time-redundancy 

DR (a) and for the non-time redundancy DR (b) of each estimator and scenario. 

(a) 

Median TER with time redundancy 

Scenario SiM SoM Welsch QWLS Correntropy Fair WLS 

1 97.83 97.84 94.58 94.55 94.57 94.55 94.6 

2 97.83 97.84 94.57 94.53 94.57 94.54 94.58 

3 98.05 98.05 97.89 97.84 97.89 97.84 97.93 

4 96.52 96.52 94.48 94.44 94.48 94.44 94.42 

5 10.83 10.83 51.17 51.14 51.17 51.16 51.16 

6 -2.67 -2.67 42.01 42.27 41.93 42.04 42.11 

(b) 

Median TER without time redundancy 

Scenario SiM SoM Welsch QWLS Correntropy Fair WLS 

1 15.88 15.26 15.01 15.47 14.95 15.45 15.91 

2 15.71 15.44 15.22 14.99 15.16 14.99 16.19 

3 4.36 4.2 3.26 3.39 3.26 3.36 4.41 

4 12.86 13.01 11.87 12.23 11.83 12.16 12.86 

5 3.7 2.17 3.08 1.66 2.93 2.03 7.84 

6 -3.29 -13.54 28.64 -2.79 30.73 -2.17 4.35 

 

Similar results can be found studying the TER index (Table 3.4) but with new evidence: 

• exploiting temporal redundancy almost completely reduces the error, except when bias is 

present; 

• the presence of bias induces an increase of the error after DR for both time and non-time 

redundancy cases; 

• from Table 3.4b it is possible to notice that Welsch and Correntropy generally reduce the 

errors slightly less than the other estimators, except when bias increases. This could be due 
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by their redescending behaviour, making Welsch and Correntropy more sensitive to the 

quality of the problem initialization; the  measurements  adopted as initial guesses may not 

ensure a good quality. On the other hand, WLS reduces slightly more the errors in all 

scenarios except in Scenario 6. As before, this is quite unexpected. 

3.1.2.2 Gross error detection 

The indices AVTI and OP are reported in Appendix for all the combinations of estimators, 

scenarios and formulations. The main outcomes are: 

• for each estimator the performance in both the cases with and without time redundancy is 

similar. In general, for the AVTI there is a reduction when not adopting time redundancy 

but also for the OP. However, for specific combinations of estimators and Scenarios this 

was not verified;  

• for both formulations the GED performances decrease (higher AVTI and lower OP) as bias 

magnitude increases. This is caused by the poor reconciliation quality which impacts on 

the value of the residuals after DR. 

Furthermore, the use of the two sets of cut-points (“low” and “high”) and X84 allowed to 

observe that: 

• the lowest AVTIs (i.e., the worst performance) are achieved by applying the “high” set of 

cut-off points for all the scenarios and estimators. The highest AVTI values are found for 

the cases with bias; 

• in the case of time redundancy, the highest OP (i.e., the best performance) was achieved 

by applying X84 in Scenarios 3 and 4 and by applying the “lower” cut-off points for the 

two scenarios with bias.  

• in the case without time redundancy, the highest OP is achieved with X84. 

These observations are reasonable.  A lower magnitude of the critical value for GED means a 

higher number of detections; it could either generate a higher number of false detections but 

also a higher number of right detections.  

In order to provide a summary of the GED results, Table 3.5 shows the estimators with the best 

trade-off between AVTI and OP, considering the different Scenarios and DR approaches: 

• in the case with temporal redundancy (Table 3.5a) the redescending behavior of Welsch 

and Correntropy provided a better GED in all the scenarios and their AVTI resulted always 

equal to 0; 
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• in the case without temporal redundancy (Table 3.5b), the monotone estimator offers good 

performances. In particular, Welsch and Correntropy increase their AVTI contrarily to the 

others estimators for which AVTI decreases with respect to the redundancy case. This can 

be justified by the already-mentioned issue regarding the initialization of the redescending 

estimators. However, Welsch and Correntropy always yield the best values. 

It is clear that Welsch and Correntropy are the most promising estimators for GED in most of 

the scenarios. This superiority is not confirmed according to the DR results instead, except 

when bias increases. However, the trade-off between DR and GED has to be considered and 

these two estimators offer the best one. Regarding the GED methods, cut-off points can be 

considered more suitable than X84. In fact, they yield lower values of the AVTI index which 

is more relevant with respect to OP when adopting robust estimators. The estimators’ 

robustness already copes with the presence of gross errors which could not be seen as outliers 

from the estimators’ point of view.  

Table 3.5. Simulated steady-state case study: estimators with the best trade-off 

between OP and AVTI in the different Scenarios and formulations. W is for Welsch, 

Co for Correntropy, F for Fair, Q for Quasi Weighted Least Squares and WLS for 

Weighted Least Squares.  

(a) 

 With time redundancy 

Scenario 
AVTI 

c.p. “high” 

OP 

c.p. “low” 

OP 

X84 

1 W, Co, F Not available Not available 

2 W, Co, F Not available Not available 

3 W, Co, F / W, Co, F 

4 W, Co, F / W, Co, F 

5 W, Co / 

6 W, Co / 

(b) 

Without time redundancy 

Scenario 
AVTI 

c.p. “high” 

OP 

X84 

1 W, Co, F Not available 

2 W, Co, F Not available 

3 Q, F, WLS 

4 W, Co, F 

5 W, Co, WLS 

6 Q, WLS 
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3.2 Results for the simulated dynamic case study  

3.2.1 Evaluation of the data reconciliation performance 

Only DR was performed for this case where Equation (1.20) was used as objective function 

while the differential equations (2.7), (2.8) and (2.9) were adopted as system constraints.  

The non-linear dynamic constrained optimization problem was implemented and solved in the 

Python Optimization Modeling Objects (Pyomo) software. An abstract model was created 

considering the single time window of 50 [s]: pyomo.DAE modelling was used to incorporate 

the differential algebraic equations of the system constraints into the model. The derivatives of 

the differential equations were discretized according to the pyomo.DAE Collocation 

discretization scheme (Hart et al., 2017), where: number of finite elements points 𝑛𝑓𝑒 = 10; 

number of collocation points 𝑛𝑐𝑝 = 5. The non-linear solver adopted was the Interior Point 

OPTimizer (IPOPT) (Hart et al., 2017), and the problem was initialized using the median (for 

each variable) of the measurements along the entire time horizon. 

3.1.2 Results 

Two redescending estimators, Welsch and Correntropy, yield the highest SSE (Table 3.6a). 

Furthermore, their values are quite inhomogeneous respect to the other estimators. In 

particular, the highest SSE values are unexpectedly found in Scenario 2, where only noise 

affects the data. In the same scenario, TER (Table 3.6b) shows similar results, where QWLS 

and Fair (the monotone estimators) present the highest values. On the other hand, Welsch and 

Correntropy do not perform well. 

As matter of example, the time-profiles of the reconciled values are shown in Figures 3.1 and 

3.2, along with those of the true values and measurements. In these Figures variables 𝑇𝑒,𝑖𝑛 and 

�̇�𝑜 are considered in Scenarios 3 and 6, which are the most problematic due to the high number 

of outliers and high bias magnitude, for Correntropy, Fair and WLS.  

For Scenario 3 (Figure 3.1) the following results can be drawn: 

• in the time instants when outliers (i.e., the isolated red dots) are present the Fair estimator 

yields the best reconciliation, and the profile of the reconciled measurements (blue 

triangles) are smooth; 

• WLS presents a quite smooth profile, but its shape does not resemble the continuous line 

of the true value time-profile;  
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• Correntropy reconciled profile is much more scattered respect to the other ones, especially 

in the correspondence of the outliers. 

Table 3.6. Simulated dynamic case study: mean SSE (a) and mean TER (b) over time 

of each estimator and scenario. 

(a) 

Mean SSE 

Scenario Welsch QWLS Correntropy Fair WLS 

1 2.98 0.78 2.52 0.77 0.77 

2 8.95 0.40 7.91 0.30 0.30 

3 4.55 0.26 4.38 0.26 1.28 

4 2.19 0.65 1.62 0.69 2.12 

5 2.63 1.27 2.40 1.31 1.56 

6 4.60 0.88 5.09 0.93 0.97 

(b) 

Mean TER 

Scenario Welsch QWLS Correntropy Fair WLS 

1 -0.98 40.62 5.85 40.89 40.58 

2 -13.33 71.87 3.70 73.94 75.15 

3 7.08 61.84 18.47 62.21 12.81 

4 19.77 41.98 34.51 51.47 18.81 

5 27.89 33.61 31.70 32.44 25.55 

6 12.49 43.56 10.89 41.42 29.22 

 

For Scenario 6 (Figure 3.2), the following results can be drawn, instead: 

• Correntropy presents the same issues as in Scenario 3 when outliers are present. However, 

its reconciled profiles better match the true ones with respect to Fair and WLS; 

• Fair and WLS reconciled values appear as biased profiles of the true values, with an 

increased difference between the true and reconciled profile for variable 𝑇𝑒,𝑖𝑛. 

There is some correspondence with what observed in the steady-state case. In presence of bias 

Correntropy (as well as Welsch) offers a better reconciliation quality than the other estimators. 

However, their performance is deteriorated by the difficulties encountered when reconciling 

the ethane flowrate �̇�𝑒. This issue also persists in the other scenarios: �̇�𝑒 is the variable most 

responsible for the lower DR quality of Welsch and Correntropy.  

The reconciled value of the two inlet temperatures (𝑇𝑒,𝑖𝑛 and 𝑇𝑜,𝑖𝑛) is another element of 

concern. As previously observed the sinusoidal profile of 𝑇𝑒,𝑖𝑛 does not the match the one of 

the true values, as well as 𝑇𝑜,𝑖𝑛. This situation happens in all scenarios and for all estimators. 
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These unexpected behaviours could be caused by something happening in the constraints, 

where the temperatures are adjusted in order to accommodate a better reconciliation of the 

flowrates. This situation could be explained in turn by performing the dynamic DR in a single 

and fixed time window, leading to some inaccurate reconciled values. Therefore, the 

observations drawn from this case study may need to be reviewed 
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             (a)                                                                                  (b) 

  

             (c)                                                                                  (d) 

  

             (e)                                                                                  (f) 

Figure 3.1. Simulated dynamic case study: 𝑇𝑒,𝑖𝑛 and �̇�𝑜 time profiles of true, 

measurements and reconciled values for Correntropy (a, b), Fair (c, d) and WLS (e, 

f) estimators in Scenario 3. 
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             (a)                                                                                  (b) 

  

             (c)                                                                                  (d) 

  

              (e)                                                                                  (f) 

Figure 3.2. Simulated dynamic case study: 𝑇𝑒,𝑖𝑛 and �̇�𝑜 time profiles of true, 

measurements and reconciled values for Correntropy (a, b), Fair (c, d) and WLS (e, 

f) estimators in Scenario 6. 
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CHAPTER 4 

Data reconciliation and gross error 

detection in an industrial network of 

heat exchangers  
 

In this Chapter the outcomes of the application of DR and GED to an industrial case of a heat 

exchangers network are shown.  

4.1 Performance of data reconciliation and gross error detection in 

an industrial network of heat exchangers 

In this Chapter only Welsch and Correntropy estimators are applied, exploiting the preliminary 

selection of the most promising estimators in the simulated steady-state case. DR is performed 

by adopting the formulation without time redundancy of Equation (1.19). This is highly 

beneficial because the pre-heat train inputs change rather frequently due to fouling, cleaning 

operations, and variability of the inlet crude oil, conditions that influence the system steady-

state. Therefore, reconciling a single daily snapshot would yield final estimates closer to the 

steady-state conditions of the considered day. 

The fact that some variables are not measured requires the resolution of the DR problem on a 

reduced formulation Equation (1.12); the 𝐀 and 𝐂 matrices of Equations (2.25) and (2.26) were 

divided into their unmeasured and measured submatrices, according to Equation (1.14), and 

the latter was set as DR constraints. 

The variance percentage ratio 𝜃 was calculated in order to assess the DR quality, in absence of 

nominal values for SSE and TER: 

𝜃𝑖 = 100
𝜎𝑅,𝑖

2 −𝜎𝑚𝑠𝑟,𝑖
2

𝜎𝑚𝑠𝑟,𝑖
2  .                                                                                                (4.1)                                                                                                   

where 𝜎𝑅,𝑖
2  and 𝜎𝑚𝑠𝑟,𝑖

2  are the variance of the reconciled values and the variance of the 

measurements for a certain measured variable 𝑖 (where in this case 𝑖 = 1, 2, … 24), 
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respectively. In this way, it is possible to evaluate how much of the measurements’ variability, 

due to random and gross errors, is reduced thanks to DR.  

Before reconciling the dataset, all the measurements were scaled according to the following: 

 𝑥𝑖𝑗
𝑠𝑐𝑎𝑙𝑒𝑑 =

𝑥𝑖𝑗−𝑥𝑖
𝑚𝑖𝑛

𝑥𝑖
𝑚𝑎𝑥−𝑥𝑖

𝑚𝑖𝑛 .                                                                                                   (4.2)                                                                                             

𝑥𝑖
𝑚𝑖𝑛  and 𝑥𝑖

𝑚𝑎𝑥 are respectively the minimum and the maximum value datapoints for the 

variable 𝑖. This data pre-treatment is necessary in order to avoid a sort of “preferential” 

reconciliation; the variables with the highest magnitudes could be better adjusted as they are 

more problematic than those with lower magnitudes (performing DR with a non-scaled dataset 

yielded worse results, not shown here for the sake of conciseness).  

The DR of the network flowrates was performed prior to the HEN energy balances in order to 

have good reconciled in the energy balances reconciliation.  

The network model and the DR algorithm were implemented4 using Python. The same SLSQP 

method of the simulated case was used to solve the constrained optimization problem which 

was initialized through the measurements of the correspondent snapshot. 

The maxima of the estimators’ influence function and the inflection points are applied as GED 

method, exploiting what emerged from their comparison with X84 in the simulated steady-

state case. 

4.2 Results 

4.2.1 Data reconciliation 

Table 4.1 shows the variance ratios for the flowrates (Table 4.1a) and temperatures (Table 

4.1b). The main outcomes are: 

• the hot-streams flowrates FC004, FC005, FC006 and FC007 are classified as non-

redundant variables after the Q-R decomposition. Therefore, they could not be adjusted 

through DR or in any other way. In this way, their measurements are exploited for 

 
4 In this Thesis robust DR and GED strategies were coded, while the network model was provided by Hexxcell. 
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monitoring, control, fouling prediction, etc…, as they are recorded by the sensors. The 

presence of possible errors can invalidate the outcomes of these operations; 

• some ratios are positive meaning that the correspondent variables are bad adjusted during 

DR, with a consequent increase of the data variability. Fortunately, they are not too high 

and the greatest value found is around 6% for Welsch and around 10% for Correntropy. In 

both cases this value corresponds to the temperature TI011, which is the inlet hot 

temperature of exchanger E-05AB. This situation may occur because the correspondent 

measurement presents a relatively low variability (represented by the measurement’s 

variance). 

Table 4.1. Industrial case study: variance ratio 𝜃 of flowrates (a) and temperatures 

(b) for Welsch and Correntropy estimators. 

(a) 

Variable Welsch Correntropy 

FC001 1.71 1.712 

FC002 4.05 4.05 

FC003 -10.25 -10.25 

FC004 0 0 

FC005 0 0 

FC006 0 0 

FC007 0 0 

(b) 

Variable Welsch Correntropy 

TI001 -0.79 -1.31 

TI002 -0.49 0.59 

TI003 -19.33 -18.23 

TI004 2.88 2.94 

TI005 2.89 4.70 

TI006 -5.97 -5.86 

TI007 0.42 0.35 

TI008 3.27 3.14 

TI009 0.01 0.24 

TI010 -7.87 -3.12 

TI011 6.36 10.52 

TI012 -40.57 -38.01 

TI013 -0.49 1.27 

TI014 3.07 5.87 

TI015 0.64 0.87 

TI016 -67.43 -67.50 

 

This difference in the reconciliation quality among the variables is probably caused by the way 

the constraints are satisfied during the optimization. In fact, some variables are properly 

adjusted (i.e., negative ratios are found), while others are adjusted in a less satisfactory manner 
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(i.e., positive ratios are found) in order to fulfil the constraints. Hence, some estimates are 

closer to the correspondent nominal/true value of the process, due to the minimization of the 

error between this value and the measurement (see Equations 1.1 to 1.3), while other estimates 

show larger errors, meaning that they are even worse than the original measurements. 

 

                                        (a)                                                                                  (b) 

 

                                        (c)                                                                                  (d) 

Figure 4.1. Industrial case study: scaled measured and reconciled values of (a,b) 

TI011 and (c,d) TI016  for Welsch and Correntropy estimators. 

In summary, a solution is found which simultaneously satisfies the constraints and minimizes 

the residual. Welsch generally yields the lowest variance ratios, meaning that it offers a better 

reconciliation performance than Correntropy. The Welsch influence function has a smoother 

redescending profile respect to that of Correntropy. This difference could help to partially 

compensate the issues of the estimator. However, this could be only a sub-optimal solution, 

due to the redescending behaviour of the adopted estimators, which need a good initial guess 

in order to reach the optimal solution. Therefore, a better initialization strategy (i.e., using 
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nominal values or historical reconciled value) should be adopted to improve the estimator 

performance. 

The reconciled values profile is expected to follow the shape of the one of the measurements. 

The reconciled values should just smoothen the measurements profile, lowering the data-points 

variability and offering a better view of the true process conditions. 

For example, the scaled reconciled and the measured values of TI011 and TI016 (respectively 

the worst and best adjusted variable) are compared in Figure 4.1 in order to verify this aspect, 

highlighting the results of Table 4.1 and showing the following evidences: 

• in Figures 4.1a and 4.1b, the higher variability of the reconciled values of TI011 yield a 

more vertically stretched profile with respect to the measured ones. The original trend 

remains, but it cannot be confirmed if the steady-state between samples 0 and 400 

effectively changes. The measurement errors and the low-quality adjustments could lead 

to misleading conclusions; 

• in Figures 4.1c and 4.1d, the reconciled values (blue triangles) profile is shrunk and 

flattened with respect to the real measurements (red dots), in accordance with the low ratio 

for TI016, the mixer outlet temperature. In this way, it is highlighted that the steady-state 

of this temperature is not significantly due to possible changes in the pre-heat train inlets 

during time. This means that the crude flowing into the furnace has a quite constant 

temperature during the five years of operations. 

4.2.2 Gross error detection 

From the inspection of Table 4.2 the following observations are drawn: 

• as previously highlighted by the simulated steady-state case, the number of detections 

increase when adopting lower values for the cut-off points; 

• in general, Correntropy yields a slightly higher number of detections, thanks to its lower 

cut-off points magnitudes than those of Welsch. 

The higher number of gross errors detected when using the maxima should correspond to an 

increase of false detections (i.e., higher probability of Type I error). In order to have some 

confirmatory examples the inspection of the plots of the previous Figure 4.1 and of Figure 4.2 

is needed. In this way it is possible to visually assess the presence of gross errors for TI006, 

TI011, TI012 and TI016. 
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Table 4.1. Industrial case study: number of detected gross errors for the faulty 

variables. 

Variable 
Welsch  

max. 

Correntropy  

max 

Welsch 

i.p. 

Correntropy 

i.p. 

FC002 0 1 0 0 

TI002 2 3 0 0 

TI003 5 5 4 5 

TI004 2 4 0 0 

TI005 3 4 0 0 

TI006 4 5 0 0 

TI011 0 1 0 0 

TI012 9 9 6 6 

TI013 7 6 0 0 

TI014 0 1 0 0 

TI015 3 3 0 0 

TI016 14 17 2 2 

 

 

 

                                        (a)                                                                                  (b) 

 

                                        (c)                                                                                  (d) 

Figure 4.12. Industrial case study: scaled measured and reconciled values of TI006 

(a,b) and TI012 (c, d)  for Welsch  and Correntropy estimators. 

It is also advisable to report the reconciled values because through their visualization the 

following situations (see Equations 1.31 and 1.32) can be assessed: 
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• if the reconciled values are quite high respect to the correspondent measurement, they may 

raise the residual after DR over the cut-off points, generating a false detection. The 

measurement is flagged as containing a gross error when it is not. However, this situation 

is an issue only if the measurement has a higher magnitude than the possible nominal/true 

value; 

• if the reconciled values are similar to the correspondent measurement (poor-quality 

reconciliation or slightly bad adjustments), the residual after DR is very low even though 

the measurement could contain a gross error, generating a missed detection. 

From Figure 4.1 it can be observed that: 

• for TI011, Figures 4.1a and 4.1b, the lowest red dots should be gross errors, highlighting 

possible process drifts. The close presence of their reconciled values disables their 

detection (missed detections). However, in Table 4.1 a single outlier is detected by the 

Correntropy maximum. It is due to the highest triangle of Figure 4.1b, generating a false 

detection; 

• for TI016, Figures 4.1c and 4.1d, the two highest red dots are the detected process outliers 

by the inflection points. The most of errors found by adopting the maxima are likely to be 

false detections. They refer to the red dots slightly detached from the average of the 

measurements in both the figures. Furthermore, the three lowest red dots are probably 

outliers, but they are not detected due to their close adjustments. 

From Figure 4.2 it can be observed that: 

• for TI006, Figure 4.2a and 4.2b, the negative effect bad adjustment is highlighted. All the 

possible outliers have close reconciled values and the resultant detection are caused by the 

highest blue triangles. By adopting the inflection points these false detections are avoided, 

but the true gross errors are still missed; 

• for TI012, Figure 4.2c and 4.2d, the red dots in the bottom part of the plots are the gross 

errors. In particular, the mentioned measurements were probably recorded during cleaning 

operations, as highlighted by the block-pattern of the measurements profile. In this way, it 

is possible that cleaning/maintenance operations can be seen as gross errors, when they are 

not. Therefore, a proper assessment is needed in order to avoid misleading detections. 

From these observations it is clear how the reconciliation quality influences the GED when 

using cut-off points, not only leading to false detections but also to missed detections. 
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However, after an in-depth assessment of the obtained detections, inflection points do not 

generally yield false detections, providing a more robust detection; for these cut-off points 

Welsch and Correntropy practically offer the same results. 
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Conclusions 
 

In this Thesis a strategy for robust data reconciliation and gross error detection was developed, 

in order to cope with the issues of measurements reliability in the heat-exchange networks.  

Two simulated case studies were initially considered: a heat exchanger in steady state 

conditions, and a heat exchanger in dynamic conditions. Then, the outcomes on the most 

promising data reconciliation and gross error detection methodologies were exploited in the 

industrial case study of a heat-exchangers network for the crude oil pre-heating in refineries.   

In the first two cases a single shell-and-tube heat exchanger was considered. A preliminary 

assessment of the performance of six state-of-the-art robust estimators was evaluated: Simple 

Method, Sophisticated Method, Welsch, Quasi Weighted Least Squares, Correntropy and Fair. 

All these robust estimators were studied in six scenarios simulating the presence of different 

levels of noise in the data and the presence of different gross errors. The data reconciliation 

performances were evaluated through the sum of squared errors (SSE) and total error reduction 

(TER); the gross error detection performances were evaluated through the average number of 

Type I Error (AVTI) and overall power (OP). In general, considering the trade-off between 

data reconciliation and gross error detection, Welsch and Correntropy demonstrated to be the 

most promising estimators. They yielded the same SSE and TER values of the other estimators, 

except when bias is present where they offered by far the best results; furthermore, their AVTI 

and OP values were the best in most of the scenarios. The reconciliation quality was improved 

when exploiting temporal redundancy. However, the non-time redundancy formulation is more 

suited for systems where the inputs change rather frequently. In gross error detection the “cut-

off points” methodology yielded a lower number of false detections.  

In the dynamic case study, only data reconciliation was performed. The two monotone 

estimators, Quasi Weighted Least Squares and Fair, ensured the best data reconciliation 

performances. In fact, they always yielded the lowest SSE and to the highest TER values. 

However, some concerns arose regarding the quality of the results. The use of a single and 

fixed time window strategy for dynamic DR could be the cause of this issue. A possible 

improvement would be the implementation of a sliding-moving window approach (Prata et al., 

2008; Prata et al., 2010). 
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The results obtained in the simulated steady-state case were then exploited in the real case 

study, where Welsch and Correntropy estimators were utilized for the reconciliation. In 

particular, the non-time redundancy formulation was applied in order to account for the effect 

of cleaning/maintenance and fouling on the network inlets. Considering the combination of 

DR and GED results, the Welsch estimator was the most promising one, even though the 

difference with Correntropy is small. In GED performed using the “cut-off points” the results 

were heavily influenced by the reconciliation quality, which was found to be crucial in order 

to have reliable gross error detection. However, the use of inflection points as “cut-off points” 

did not generally yield to false detections. The measurements adopted as initial guesses could 

be the cause for DR poor results: better candidates could improve the reconciled values quality. 

Furthermore, a refinement of the GED strategy could also be considered in order to be less 

influenced by the DR results.  

A future extension of the algorithm will be oriented to include the methodology proposed by 

Llanos et al. (2017) to provide a systematic gross error classification for outliers, bias and drifts 

and take corrective actions. 

 

 

 

 

 

 

 

 

 



 

Appendix 
 

Table 2. Simulated steady-state case study: AVTI and OP values of all estimators for 

DR with time redundancy: (a) Scenario 1, (b) Scenario 2 and (c) Scenario 3. 

(a) 

Scenario 1 

Estimator 
AVTI 

c.p. “low” 

AVTI 

c.p. “high” 

AVTI 

X84 

SiM 78 78 85 

SoM 78 78 85 

Welsch 75 0 93 

QWLS 117 59 93 

Correntropy 82 0 93 

Fair 70 0 93 

WLS 117 59 93 

 

(b) 

Scenario 2 

Estimator 
AVTI 

c.p. “low” 

AVTI 

c.p. “high” 

AVTI 

X84 

SiM 78 78 85 

SoM 78 78 85 

Welsch 75 0 93 

QWLS 117 59 93 

Correntropy 82 0 93 

Fair 70 0 93 

WLS 117 59 93 

 

(c) 

Scenario 3 

Estimator 
AVTI 

c.p. “low” 

AVTI 

c.p. “high” 

AVTI 

X84 

OP 

c.p. “low” 

OP 

c.p. “high” 

OP 

X84 

SiM 42 42 48 67.50 67.50 93.33 

SoM 42 42 48 67.50 67.50 93.33 

Welsch 40 0 52 66.67 2.50 94.17 

QWLS 54 26 52 69.17 63.33 94.17 

Correntropy 49 0 52 67.50 3.33 94.17 

Fair 39 0 52 66.67 31.67 94.17 

WLS 54 26 52 69.17 63.33 94.17 



 

 

 

 

 

Table 2. Simulated steady-state case study: AVTI and OP values of all estimators for 

DR with time redundancy: (a) Scenario 4, (b) Scenario 5 and (c) Scenario 6. 

(a) 

Scenario 4 

Estimator 
AVTI 

c.p. “low” 

AVTI 

c.p. “high” 

AVTI 

X84 

OP 

c.p. “low” 

OP 

c.p. “high” 

OP 

X84 

SiM 63 63 83 27.50 27.50 92.50 

SoM 63 63 83 27.50 27.50 92.50 

Welsch 62 0 84 26.67 0.00 94.17 

QWLS 99 48 83 35.00 22.50 94.17 

Correntropy 70 0 84 31.67 0.00 94.17 

Fair 58 0 83 25.83 0.00 94.17 

WLS 99 48 83 35.00 22.50 94.17 

 

(b) 

Scenario 5 

Estimator 
AVTI 

c.p. “low” 

AVTI 

c.p. “high” 

AVTI 

X84 

OP 

c.p. “low” 

OP 

c.p. “high” 

OP 

X84 

SiM 256 256 56 7.95 7.95 5.89 

SoM 257 257 56 7.95 7.95 5.89 

Welsch 126 0 53 47.40 1.23 11.92 

QWLS 9 6 53 17.12 13.01 12.19 

Correntropy 136 0 53 48.77 1.37 11.92 

Fair 122 9 53 46.85 15.34 11.92 

WLS 9 6 53 17.26 12.88 11.92 

 

(c) 

Scenario 6 

Estimator 
AVTI 

c.p. “low” 

AVTI 

c.p. “high” 

AVTI 

X84 

OP 

c.p. “low” 

OP 

c.p. “high” 

OP 

X84 

SiM 466 466 361 6.99 6.99 5.48 

SoM 467 467 361 6.99 6.99 5.48 

Welsch 373 0 59 83.84 19.32 50.41 

QWLS 5 0 58 31.10 23.97 50.55 

Correntropy 394 0 59 85.48 22.33 50.68 

Fair 359 64 59 83.70 55.48 50.41 

WLS 5 0 59 30.68 23.15 50.55 



 

 

 

Table 3. Simulated steady-state case study: AVTI and OP values of all for DR without 

time redundancy: (a) Scenario 1, (b) Scenario 2 and (c) Scenario 3. 

(a) 

Scenario 1 

Estimator 
AVTI 

c.p. “low” 

AVTI 

c.p. “high” 

AVTI 

X84 

SiM 14 14 70 

SoM 13 13 83 

Welsch 14 2 85 

QWLS 35 13 105 

Correntropy 19 2 82 

Fair 14 0 104 

WLS 10 3 110 

 

(b) 

Scenario 2 

Estimator 
AVTI 

c.p. “low” 

AVTI 

c.p. “high” 

AVTI 

X84 

SiM 18 18 93 

SoM 15 15 98 

Welsch 15 1 105 

QWLS 36 14 122 

Correntropy 21 1 105 

Fair 16 1 123 

WLS 10 3 110 

 

(c) 

Scenario 3 

Estimator 
AVTI 

c.p. “low” 

AVTI 

c.p. “high” 

AVTI 

X84 

OP 

c.p. “low” 

OP 

c.p. “high” 

OP 

X84 

SiM 2 2 160 23.33 23.33 47.50 

SoM 2 2 160 22.50 22.50 46.67 

Welsch 20 20 181 10.00 0.00 33.33 

QWLS 2 2 165 25.83 20.00 47.50 

Correntropy 20 20 170 10.83 0.83 33.33 

Fair 2 0 160 23.33 13.33 47.50 

WLS 0 0 186 22.50 17.50 47.50 



 

 

 

Table 4. Simulated steady-state case study: AVTI and OP values of all for DR without 

time redundancy: (a) Scenario 4, (b) Scenario 5 and (c) Scenario 6. 

(a) 

Scenario 4 

Estimator 
AVTI 

c.p. “low” 

AVTI 

c.p. “high” 

AVTI 

X84 

OP 

c.p. “low” 

OP 

c.p. “high” 

OP 

X84 

SiM 11 11 53 20.83 20.83 56.67 

SoM 11 11 59 20.83 20.83 56.67 

Welsch 19 9 48 17.50 0.00 53.33 

QWLS 16 11 60 30.83 19.17 56.67 

Correntropy 21 10 62 20.00 0.00 54.17 

Fair 12 0 63 20.83 0.00 56.67 

WLS 9 1 90 26.67 12.50 56.67 

 

(b) 

Scenario 5 

Estimator 
AVTI 

c.p. “low” 

AVTI 

c.p. “high” 

AVTI 

X84 

OP 

c.p. “low” 

OP 

c.p. “high” 

OP 

X84 

SiM 227 227 224 0.00 0.00 47.81 

SoM 180 180 160 0.00 0.00 0.00 

Welsch 115 10 75 9.73 9.73 13.97 

QWLS 44 32 155 0.00 0.00 26.85 

Correntropy 119 11 92 11.10 10.96 15.75 

Fair 226 32 127 0.00 0.00 22.88 

WLS 11 2 92 0.00 0.00 10.14 

 

(c) 

Scenario 6 

Estimator 
AVTI 

c.p. “low” 

AVTI 

c.p. “high” 

AVTI 

X84 

OP 

c.p. “low” 

OP 

c.p. “high” 

OP 

X84 

SiM 443 443 427 0.00 0.00 64.93 

SoM 360 360 349 0.00 0.00 7.67 

Welsch 219 93 205 27.53 27.53 0.68 

QWLS 146 111 593 0.00 0.00 84.52 

Correntropy 213 96 194 29.32 29.32 0.96 

Fair 483 279 599 0.00 0.00 86.99 

WLS 7 3 531 0.00 0.00 49.73 
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