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Preface

This work focuses essentially on two main topics. In the �rst part, we de-
scribe Temporal Logic and, in particular, some logics for Branching-Time.
In the second part we analyse from a topological point of view the algebraic
structure of trees, on which many semantics for temporal logics are based.

The main objective of Temporal Logic is the de�nition of a formal lan-
guage (and of an associated semantics) capable of expressing tensed asser-
tions like �It rained�, �I slept in the past�, �In the future we will learn how to
�y�. It must be immediately observed that the truth conditions for assertions
of this kind can not be expressed in the context of classical logic, since the
truth of these sentences depends on the moment in time in which they are
considered. Therefore, the �rst step towards an adequate de�nition of truth
is the search for suitable mathematical structures representing time. In the
�rst two chapters, we will analyse di�erent possible syntactic and semantic
choices for temporal logic and di�erent ontological assumptions about time
that can variously shape our models.

Then, following [29], we will consider an unusual semantics for temporal
logic, based on a natural topological structure added to the (usual)Ockhamist
semantics. In particular, it turns out that the set of maximal branches (his-
tories) in a tree-like representation of time constitutes a non-Archimedean
topological space. The relationships between topological properties and Ock-
hamist semantics will be investigated in detail.

In the �nal part of the thesis, trees will be considered just as algebraic
structures, without any reference to the semantics for branching time. We
will try to analyse some set-theoretical properties of trees and to rephrase
them into a �topological language�.

The structure of the thesis is the following:
• Chapter 1 contains an overview of the development of Temporal Logic
and a �rst formalization of linear-time logic. In the �nal part, some
issues about validity and de�nability will be considered.

• Chapter 2 contains the description of various types of branching time se-
mantics, which arise from the ontological assumption of Indeterminism.
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A particular attention is paid to the bundled-tree semantics.
• Chapter 3 essentially presents the contents of the paper we mentioned
above: Topological Aspects of Branching-Time Semantics by M. Sab-
badin and A. Zanardo. We completely develop the topological perspec-
tive for time logic they analysed, and we show that it is equivalent to
bundled-tree semantics.

• Chapter 4, which is partially a research work, contains the analysis
of some properties of trees from the topological perspective that was
introduced in Chapter 3. We discuss various classical properties, like
linearity, �nitely branchingness, well-foundedness, and some more par-
ticular ones, like ω-co�nality and jointedness. This chapter ends with an
analysis of Souslin and special trees, which are linked to the well-known
Souslin's Problem.
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Chapter 1

Time logic and linear-time

semantics

1.1 Brief history of temporal logic

Temporality has been a centre of discussion for philosophers since ancient
times because of its complexity and theoretical nature: as an example, some
of Zeno's paradoxes (5th Century B.C.) refer to the questions about in�nite
divisibility of time intervals.

The �rst scienti�c approach to time reasoning certainly is Aristotle's ar-
gument about future contingents (statements about possible future events
which may or may not occur, such as the famous �There will be a sea-�ght
tomorrow�) in Chapter 9 of his De Interpretatione (4th Century B.C.): he
asserts that de�nite truth values should not be ascribed to future contingents
at the present time. A few decades later, the philosopher Diodorus Cronus
de�ned possibility as �what is or will ever be�, and necessity as �what is and
will always be�: these concepts are still central in time logic.

During the Middle Ages, some philosophers brought important contribu-
tion in the discussion on temporality, often analysing the relation between
free will and determinism. Apparently, the most important development
is the work of William of Ockham (c. 1287-1347). He argued that propo-
sitions about the contingent future can not be known by humans as true
or false at the present time. However, he thought that humans still have
some freedom of choice amongst di�erent possible futures, thus he suggested
a future-branching model of time with many possible time-lines (histories).
Hence, the truth of propositions regarding future events is relativized to a
possible actual history. This model of time is now called Ockhamist.

The �rst traces of these problems in mathematical logic can be found
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in the work of George Boole (1815-1864) and Charles S. Peirce (1839-1914).
However, the �o�cial� introduction of time logic in modern logic is commonly
linked to the works of Arthur Prior (1914-1969), in particular [26], [27] and
[28], published in the second half of the 20th century. His formalization of
tensed verbs led to the development of present formal Temporal Logic: it
is applied in various �elds, such as Philosophy, Computer Science, Arti�cial
Intelligence, Physics and Linguistics.

In the same period, the research of Saul Kripke (1940-) on the semantics
for modal logics endowed time logic with a language and a semantics suitable
for a logical and mathematical development of this subject. In Kripke's
models, time is represented as an arbitrary ordered set of moments with a
�before-later� relation, hence they are suitable for a lot of applications, not
necessarily linked to the original idea of physical time (for example, the set
of states of a computation).

In the recent years, time logic developments follow two main paths: on
one hand, semantics are investigated from various points of view (logical,
algebraic, topological, . . . ), on the other hand, time logic is implemented in
the context of Computer Science, Arti�cial Intelligence, where the fact that
the truth of a statement may depend on time needs to be formalized and
implemented.

The interested reader can �nd other information about the history of
Time Logic in [25] and in [41].

1.2 Syntax

In this section we de�ne a syntax, a language, in order to provide a formal-
ization of sentences like �in the past, it rained� or �in the future, we will be
able to �y�.

The logic we consider in this thesis is an extension of propositional clas-
sical logic and, accordingly, its language is an extension of propositional
language. In addition to the usual Boolean connectives ∧ , ∨ ,→, and ¬, this
language for time logic contains the unary operators F and P . The formulae
Fφ and Pφ are respectively read as �φ will happen� and �φ happened�1.

The following de�nition gives a �rst answer to the question about the
syntax for temporal logic. Other symbols will be added later.

De�nition 1.2.1. The set of the Priorean formulae, LP , is the smallest set
containing the propositional variables p0, p1, p2, . . . and every formula con-

1These operators were introduced for the �rst time by Arthur Prior. Thus, F and P
are often referred to as Priorean operators.
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structed by recursive application of the boolean operators ¬, ∧ ( ∨ and ⇒
de�ned as usual) and the temporal operators P , F .

Remark 1.2.1. We could take both F and P as de�ned operators, starting
from other two operators, G and H.

Given a proposition φ, we read Gφ as �henceforth, φ� (or �from now on,
φ� or �since now, φ�) and Hφ as �hitherto, φ� (or �until now, φ�).

Starting from them, we can de�ne F and P by the positions Fφ = ¬G¬φ
and Pφ = ¬H¬φ: in fact, in the future φ will occur if and only if it is not the
case that from now on ¬φ will occur, and similarly, in the past φ occurred if
and only if it is not the case that until now ¬φ has always occurred.

Dually, we can work the other way around and de�ne G and H starting
from F and P : Gφ = ¬F¬φ and Hφ = ¬P¬φ.

De�nition 1.2.2. Given a Priorean formula φ, the mirror formula is ob-
tained replacing every F with P in φ, and vice-versa (and, consequently,
every G with H and vice-versa).

1.3 Flow of time and semantics

In order to assign truth values to tensed propositions, we need to de�ne a
valuation: a function that inductively associates truth values to propositions.
The �rst idea is to make valuation time-dependent, which is to associate a
di�erent valuation to each moment.

In everyday life language, the truth of tensed assertions generally depends
on the moment in time in which they are considered. For instance, the
sentence �The battle of Waterloo was fought� is true now, and it has been
true at every moment since June 18th, 1815. On the contrary, it is false if
considered at any previous moment. Then, the �rst step towards a formal
de�nition of truth for tensed propositions is to provide a formal description
of the set-theoretical structure of the set of moments in time.

1.3.1 Representation of time

De�nition 1.3.1. A representation of time, or a �ow of time, is a pair
T = (T,<) consisting of a set T , whose elements are called moments , or
time points , and a binary relation < on T with the following properties:
• transitivity: ∀t1, t2, t3 ∈ T , t1 < t2 and t2 < t3 implies t1 < t3,
• irre�exivity: ∀t ∈ T, t 6< t.

In this chapter, possibly indexed T always denotes the �ow of time (T,<),
indexed in the same way.
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Then, the representations of time are particular Kripke Frames2, which
consist of a set W (of possible worlds) endowed with a set of accessibility
relations between worlds. In our case, possible worlds are called moments
and the accessibility relations are < and its inverse >.
Remark 1.3.1. The relation< is meant to represent the �earlier than� relation,
so t1 < t2 is read as �the moment t1 precedes t2�, �the moment t1 is in the
past of t2�, �the moment t2 follows t1�, or �the moment t2 is in the future of
t1�. Hence, the transitivity of < expresses the (expected) fact that if t2 is in
the future of t1 and t3 is in the future of t2, then t3 is in the future of t1. The
irre�exivity expresses the fact that every moment is not in its own past, nor
in its own future.

Example 1.3.1. Since the requests expressed in De�nition 1.3.1 are not very
tight, there are many mathematical structures that can be viewed as �ows
of time. Here are some examples and remarks:
• natural or integer numbers with the usual order: they are both discrete
�ows of time, the �rst one with a beginning, a starting moment.

• rational or real numbers with the usual strict order <: they are both
dense3, and the second one is also continuous.

• the examples above are totally ordered sets, but totality is not requested
in the de�nition. A non linear example of �ow of time is a set X with
an irre�exive and transitive relation ≺ such that for every x0 ∈ X there
are exactly two distinct x1, x2 ∈ X, both di�erent from x0, such that
x0 ≺ x1 and x0 ≺ x2.

• a less usual but very important example of �ow of time is the four
dimensional Minkowsky spacetime, S = (R4, /), with (x0, x1, x2, t) /
(x′0, x

′
1, x
′
2, t
′) if t < t′ and the spatial distance between the two points is

less than c · (t′− t), with c the speed of light. One may observe that this
example is very di�erent from the ones presented above: in fact, the past
of a given space-time moment is not unique. For example, if we consider
1 year in the past of a space-time moment (x1, x1, x2, t), it is a 3 dimen-
sional ball in R3 with a 1 light-year radius centred in (x0, x1, x2), with
temporal coordinate equal t− 1 year. In the next chapter we will avoid
this kind of situation, and to do so we will require the left-connectedness
property for our �ows of time.

Further assumptions on the structure of representations of time will be
discussed in the next chapter. They will be aimed at a characterization of

2They were �rstly developed in [17] and [16], and they are analized, for example, in
[10].

3For every pair of subsets X,Y of R such that ∀x ∈ X, y ∈ Y , x ≤ y, there exists a
z ∈ R such that ∀x ∈ X, y ∈ Y , x ≤ z ≤ y.
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these structures that suits better the intuition that we have about time. We
will also add some remarks about the ontological commitments that those
assumptions involve.

Remark 1.3.2. We can notice that our de�nition of �ow of time excludes
circular time models: if there were moments t1 < t2 < t3 < . . . < tn < t1,
by transitivity we would have t1 < t1, against the irre�exivity property. As
Venema says in [34], why should logicians choose to exclude this kind of rep-
resentation? They (maybe) should not choose between di�erent ontologies,
and moreover many cultures have precisely a circular and cyclic idea of time.
It seems that circular time simply did not receive great attention in logical
literature.

We conclude this section by introducing some new notations, which will
be useful later on:

De�nition 1.3.2. Given a �ow of time (T,<) and a moment t of T , we
will call the future of t the set of time points in the future of t, which is
Ft = {t′ ∈ T | t < t′}. Symmetrically, the past of t is the set of time points
in the past of t, which is Pt = {t′ ∈ T | t′ < t}.

1.3.2 Valuation

Now that we have a basic structure for time, we can give a �rst de�nition
of valuation in the context of temporal logic, i.e. a valuation for Priorean
Formulas: it is a function that maps every moment to possibly di�erent
classical valuations, which send propositional variables to truth values (clas-
sically, true or false, 0 or 1). From now on the set {p1, p2, . . .} of propositional
variables is always denoted by Φ, in every language we will consider.

De�nition 1.3.3. A valuation over a representation of time T = (T,<)
is a function V : T → Φ{0, 1} 4, which associates a classical valuation of
propositional variables in Φ to each time point t of T .

De�nition 1.3.4. Given a �ow of time (T,<) and a valuation V over it, a
model is the tripleM = (T,<,V).

We can now give a formal inductive de�nition of truth for Priorean for-
mulae at a moment t in a modelM:

De�nition 1.3.5. Given a Priorean formula φ, a modelM = (T,<,V) and
a time point t, we write �φ is true, or holds, in the modelM at the moment
t� asM, t � φ.

4If X and Y are sets, by XY we denote the set of all functions from X into Y .
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The formal de�nition is given by the the following rules, by induction on
the complexity of the formula.

M, t � pi if and only if V(t)(pi) = 1

M, t � ¬φ if and only if notM, t � φ

M, t � φ∧ψ if and only if M, t � φ andM, t � ψ

M, t � Pφ if and only if ∃s ∈ T, s < t, M, s � φ (1.1)
M, t � Fφ if and only if ∃s ∈ T, t < s, M, s � φ (1.2)

Remark 1.3.3. It is interesting to consider the common language reading of
rows (1.1) and (1.2) in the de�nition above. These rows describe the meaning
of the new non-classical operators, that characterize temporal logic:
• in the modelM, the proposition Pφ is true at the time t if there exists
another time point s, in the past of t, in which the proposition φ holds.

• in the modelM, the proposition Fφ is true at the time t if there exists
another time point s, in the future of t, in which the proposition φ holds.

It is clear from this reading that the de�nition conveys the right idea.

Remark 1.3.4. As stated in Remark 1.2.1, the operators G and H can be
de�ned on the basis of P and F . But one can follow the other way around.
In this case, the last two rows of De�nition 1.3.5 have to be replaced by:

M, t � Gφ if and only if ∀s ∈ T, s < t, M, s � φ (1.1*)
M, t � Hφ if and only if ∀s ∈ T, t < s, M, s � φ (1.2*)

Remark 1.3.5. If in the representation of time (T,<) there exists a moment
ts with empty past (i.e. a starting time point), then for every formula φ, Hφ
is true in ts, since the condition ∀s, s < tM, s � φ is trivially veri�ed.

Similarly, if there exists a moment te with empty future (i.e. an ending
time point), then for every formula φ, Gφ is true in te, since the condition
∀s, t < sM, s � φ is trivially veri�ed.

Example 1.3.2. We can consider an example of valuation in a simple time
model, as done in [34].

Consider the set N with the usual order < of natural numbers as �ow of
time, and let φ, ψ be two Priorean formulae. LetM = (N, <,V) be a model
such thatM, n � φ for every n > 1000, andM,m � ψ for every even time
point m.

With this valuation, we can show that FGφ holds for every n ≥ 0. In
fact, Gφ is �from now on, φ�, so it is true for every n ≥ 1000; hence the
sentence FGφ is �in a future moment, from that moment on, φ� is true for
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every moment in the past of any n ≥ 1000, which is for every n ≥ 0. In
symbols: M, 1000 � Gφ implies that for all n,M, n � FGφ.

Similarly, we can show that GFψ holds throughout M. In fact, the
�translation� into natural language of the sentence evaluated in a time point
n would be �for every moment m in the future of n, there is a moment in
the future of m in which ψ holds�. And this is clearly true for every n, since
there will always be even numbers in which ψ holds by construction ofM.

It is likewise easy to see that FGψ is not true at 0, nor at any moment
of this model. M, n 6 �Gψ, because there will always be moments in which
ψ is false (the odd ones), henceM, n 6 �FGψ.

Some authors, like Sabbadin and Zanardo (of [29], [37], [38]), prefer the
following di�erent notation for the valuation:

De�nition 1.3.6. A valuation is a function V : L → P(T ) that associates
to every propositional variable p a subset of the set T in the �ow of time T .
The points of this subset are meant to be the ones in which the proposition is
true. For complex formulae φ, the valuation is de�ned recursively by means
of the following rules:

t ∈ V (¬φ) if and only if t /∈ V (φ)

t ∈ V (φ∧ψ) if and only if t ∈ V (φ) ∩ V (ψ)

t ∈ V (Pφ) if and only if ∃s ∈ T, s < t such that s ∈ V (φ)

t ∈ V (Fφ) if and only if ∃s ∈ T, t < s such that s ∈ V (φ)

This �subset notation� for valuation will be slightly more convenient than
the �functional� one in the following chapters.

Remark 1.3.6. It is easy to switch from the functional notation of De�nition
1.3.5 to the subset one with the position V (pi) = {t ∈ T | V(t)(pi) =
1} = {t ∈ T | M, t � p}. It turns out also that, for arbitrary formula φ,
V (φ) = {t ∈ T | M, t � φ}.

1.4 Validity and de�nability

We conclude this chapter with a brief description of some problems about
validity, satis�ability and de�nability. They are not the main focus of this
thesis, but it is worth discussing them in order to have a wider overview of
Temporal Logic. The following material is borrowed from [34] and [38].

In general, the truth of a formula at a given moment in a given model is
not very signi�cant in Temporal Logic. The interesting problem is to identify
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the formulae that maintain their truth throughout the representation of time,
independently of the chosen valuation. As said in [34], it is felt that such
formulae provide information concerning the structure of the underlying �ow
of time, as they describe properties of the �earlier-later� relation <. Formally:

De�nition 1.4.1. Given a formula φ and a �ow of time T = (T,<), we
say that φ is valid in T , written T � φ, if for every valuation V and every
moment t ∈ T , we have (T,<,V), t � φ.

De�nition 1.4.2. Given a formula φ and a family (Tλ)λ∈Λ of �ows of time,
φ is valid in (Tλ)λ∈Λ if it is valid in every Tλ.

Dually, we have the de�nition of satis�ability: a formula is satis�able if
its negation is not valid, hence if there exists a valuation that veri�es its
truth. Formally:

De�nition 1.4.3. Given a formula φ and a �ow of time (T,<), we say that
φ is satis�able in T , if ¬φ is not valid in T .

De�nition 1.4.4. Given a formula φ and a family of �ows of time (Tλ)λ∈Λ,
we say that φ is satis�able in (Tλ)λ∈Λ, if ¬φ is not valid in (Tλ)λ∈Λ.

Example 1.4.1. Let LD be the class of dense linearly ordered sets. Given
any propositional variable p0, the formula Fp0 → FFp0 is valid on LD , and
it is not valid in the class of non-dense �ow of time.

To prove this, consider a dense linear order T , an arbitrary valuation V
on it, and a time point t ∈ T such that (T,<,V), t � Fp0. Then, by de�nition
of F , there is s ∈ T , such that t < s and (T,<,V), s � p0. By density, there is
u ∈ T , t < u < s, so that (T,<,V), u � Fp0 and (T,<,V), t � FFp0. Then,
we can conclude T � Fp0 → FFp0 because both V and t were arbitrary.

Moreover, if we take T = (Z, <), and a valuation V such that V(z)(p0) = 0
for every z 6= 3 and V(3)(p0) = 1, we have that Fp0 is clearly true at 2, but
FFp0 is not true at 2 because there is no other integer between 2 and 3, and
there is no other future point in which φ holds.

We can generalize this argument by showing that Fp0 → FFp0 can be
falsi�ed in every non-dense time model. In fact, T is non-dense if there are
two points t < s with nothing else in between, so we can build a valuation
which makes p0 true only at s. As above, Fp0 is true at t, but FFp0 is not.
Hence T 6� Fp0 → FFp0.

From this example we understand that the formula Fp0 → FFp0 is very
informative, since it characterizes dense linear time representation. We can
generalize this behaviour with the de�nition of de�nability :
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De�nition 1.4.5. A Priorean formula φ de�nes a class C of �ows of time
in a class K if for every �ow of time T in K , T � φ if and only if T ∈ C .

The discussion of Example 1.4.1 contains the proof of the following Propo-
sition:

Proposition 1.4.1. The Priorean formula Fφ→ FFφ de�nes the class LD

of dense linearly ordered �ows of time.

There are many interesting properties that can be de�ned using Priorean
formulae. The following propositions present some of them. Most of the
proofs are straightforward and some of them can be found in [3], Section
II.2.2.

Proposition 1.4.2. The conjunction of the Priorean formula

PFp0 → (Pp0 ∨ p0 ∨ Fp0)

with its mirror formula de�nes the class of non-branching �ows of time.

Proposition 1.4.3. Let Lin be the class of linear ordered �ows of time.
The following list contains a number of properties of (T,<) ∈ Lin and the
respective de�ning Priorean formulae:

having a �rst point ∃x∀y, x < y ∨ x = y H⊥ ∨ PH⊥
left-seriality ∀x∃y, y < x P>
left-unboundedness ∀x∃y, y < x Hp0 → Pp0

having a last point ∃x∀y, y < x ∨ x = y G⊥ ∨ FG⊥
right-seriality ∀x∃y, x < y F>
right-unboundedness ∀x∃y, x < y Gp0 → Fp0

density ∀x < y ∃z, x < z < y Fp0 → FFp0

discretness ∀x,∃y = P (x),∃z = S(x) [(p0 ∧ Hp0)→ FHp0] ∧
∧ [(p0 ∧ Gp0)→ PGp0]

with P (x) the immediate predecessor of x, i.e. y < x such that @w, y < w < x,
and S(x) the immediate successor of x, i.e. x < z such that @w, x < w < z.

Proposition 1.4.4. Each of the following formulae de�nes the class of tran-
sitive orderings, i.e. posets (X,<) in which < satis�es the �rst order formula
∀t, t′(∃t′′(t < t′′ < t′)→ t < t′):

• FFp→ Fp

• Gp→ GGp

• Pp→ GPp

• Fp→ HFp
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Thus, they all are tense logic counterparts of transitivity5.

However, it can be shown that there are some properties of �ows of time
that can not be tense logically de�ned. To give a proof of a �negative� result
of this kind, we use the important notion of p-morphism.

De�nition 1.4.6. Let F1 = (W1, R1) and F2 = (W2, R2) be Kripke frames6.
A p-morphism from F1 to F2 is a function f : W1 → W2 such that
• for every u,w ∈ W1, if uR1w, then f(u)R2f(w),
• for every s, t ∈ W2, if sR2t and s = f(u) for some u ∈ W1, then there
exists w ∈ W1 such that uR1w and t = f(w).

We will write f : F1 → F2 to denote that f is a p-morphism from F1 to F2.

Proposition 1.4.5 (Preservation under p-morphisms). Let φ be a formula
in a language L with a binary relation <, and let F1 and F2 be Kripke frames.
If f : F1 → F2 is an onto p-morphism, then F1 � φ implies F2 � φ.

Proof. A detailed proof of this result can be found in the entry "p-morphism"
of the on-line mathematical encyclopedia PlanethMath.org. It involves the
notion of p-morphism between models.

A frame F ′ is said to be a p-morphic image of a frame F if there is an
onto p-morphism f : F → F ′.
Remark 1.4.1. Let Cφ be the class of all frames validating a formula φ. Then,
by the previous proposition, Cφ is closed under p-morphic images: if a frame
is in Cφ, so is any of its p-morphic images.

Starting from this remark, we can produce an e�ective proof of the non-
de�nability of some properties of frames: it su�ces to show that there is a
p-morphism from a model with the considered property onto a model without
it.

Proposition 1.4.6. Irre�exivity (∀t, t 6R t) and asymmetry ( ∀t, t′, tRt′ →
t′ 6R t) can not be expressed by Priorean formulae.

Proof. Let F1 = (N, <) and F2 =
(
{0}, R

)
, where the relation R is simply

0R0. Notice that F1 is in both the class of irre�exive frames and in the
class of asymmetric frames, and F2 is in neither. Let f : N → {0} be the
obvious surjective map, sending n 7→ 0. Clearly, m < n implies f(m)Rf(n),

5About this result, in [3] Van Benthem interestingly pointed out that �Apparently
unrelated axioms [. . .] turned out to express the same property of precedence (<)�.

6We recall that a Kripke frame (W,R) is made by a set W (of worlds) and a binary
relation R on it, as said in Section 1.3.1.

http://planetmath.org/pmorphism
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which is the �rst condition of De�nition 1.4.6. Moreover, if f(m)R0, then
f(m)Rf(m+ 1), which is the second condition of De�nition 1.4.6. So, f is a
p-morphism.

Let C be either the class of all irre�exive frames or the class of all asym-
metric frames. Let φ be a Priorean formula expressing irre�exivity (respec-
tively, asymmetry). Then φ is validated by C , hence φ is validated by F1

(since F1 is in C ). So, by the previous proposition, φ is validated by F2

as well, which means F2 is C too, which is a contradiction. Therefore, a
Priorean formula de�ning irre�exivity or asymmetry can not exist.

This result implies that the class of all �ows of time (in the larger class
of frames) can not be de�ned using Priorean formulae, because it is the class
of transitive and irre�exive frames.

Proposition 1.4.7. The class of properly branching �ows of time7 can not
be de�ned by a Priorean formula.

Proof. Let F1 = (T,<) and F2 = (L,≺), where T = {a, b, c} with a < b, a <
c and b 6^ c, and L = {x, y} with x < y. T is a properly branching �ow of
time, while L is linear, hence non-properly branching. Let f : T → L be the
morphism sending a 7→ x, b 7→ y and c 7→ y. It is an onto p-morphism, since
• a < b→ f(a) = x ≺ y = f(b) and a < c→ f(a) = x ≺ y = f(c),
• x < y and x = f(a) and b (or c) satis�es a < b and y = f(b),
• f(a) = x, f(b) = y, so it is surjective.

Let C be the class of properly branching frames. Let φ be a Priorean formula
expressing properly branchingness. Then φ is validated by C , hence φ is
validated by F1 (since F1 is in C ). So, by the Proposition 1.4.5, φ is validated
by F2 as well, which means F2 is properly branching, which is a contradiction.
Therefore, a Priorean formula de�ning properly branchingness can not exist,
hence the class of properly branching �ows of time can not be de�ned by a
Priorean formula in the class of �ows of time.

This kind of research can be included in the branch of Modal Logic called
Correspondence Theory. A wide discussion on this topic can be found in [3]
Chapter II.2.18, where some preservation properties are fully developed and
proved.

7See De�nitions 2.1.1 and 2.1.3.
8Even if there are probably some more complete sources on this topic in the literature.





Chapter 2

Branching-time semantics

2.1 Indeterminism

We now introduce and discuss the ontological assumptions that characterizes
the structure for time that we introduced in Section 1.3.1.

Indeterminism is the idea that events are not deterministically caused:
no event is certain and the outcome of any process is not �xed a priori. If
we assume this principle, we can describe time in a tree-like fashion: every
moment has a unique and determined past, but, in general, many possible
futures. In other words, the future causal �ow of events is not settled, while
the causal past is. The philosophical implications of indeterminism can be
deepened in the interesting items Indeterminism of [44] and Theories of free
will of [40].

As said in the preface, choosing between di�erent time ontologies is not
a logicians' task: they do not have to decide which structure represents time
faithfully. They just study the properties of such representations and let
others (physicians, programmers, philosophers) decide about the one that
�ts their applications1 best.

However, the basic principles of indeterminism, with the consequent tree-
like representation of time, will be adopted in the following chapters of this
thesis. The set-theoretical and topological properties of this representation,
as well as the semantics based on them, will be the main object of our dis-
cussion in the next chapters.

1For example, the set of real numbers R is the best choice for Physics, since it allows
to use the powerful tools of calculus, based on the continuity property of the model.
Instead, in Computer Science it is useful to represent time moments as phases or steps
of a computation. This will produce a discrete model, in which every moment has an
immediate successor, such as is N.
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2.1.1 New properties for the �ow of time

The property of the uniqueness of the past described above can be written as
a �rst order condition, which needs to be satis�ed by the elements of (T,<),
a �ow of time. If two di�erent time points are in the past of a given time
point t, then they must be totally ordered, which is, comparable by <. This
clearly implies that the past is unique and determined, and that there is only
one possible �ow of time going from a point backwards. Formally:

De�nition 2.1.1. A �ow of time T = (T,<) is an indeterministic �ow of
time, or a tree, if it ful�lls the tree condition2:

∀ t, t′, t′′ ∈ T, [(t′ < t ∧ t′′ < t)→ (t′ < t′′ ∨ t′ = t′′ ∨ t′′ < t′)] (2.1)

Then, in this thesis, trees are transitive and irre�exive orders ful�lling
the tree condition. The reader should notice that no connectedness or well-
ordering properties are involved in this de�nition: in some contexts (and in
several sources we have used) one of them is often involved in the de�nition
of the tree structure.

Moments with no predecessor are called roots and moments with no suc-
cessor are called leaves . A tree with at least a root is called rooted tree.

A subtree of a tree (T,<) is a structure (S,<�S) in which S ⊆ T and <�S
is the restriction of the relation < to S: the restriction of < to the subtree
is still transitive, irre�exive, and satis�es the tree condition, since they are
universal properties.

Given two trees (T,<), (T ′,≺), a map φ : T → T ′ is an isomorphism of
trees if it is bijective and order-preserving (i.e. t < t′ implies φ(t) < φ(t′)).
As usual, if there exists an isomorphism between two trees we said that they
are said to be isomorphic.

From now on, in this thesis, possibly indexed T will always denote a tree
(T,<), with T and < indexed in the same way. For example Tδ denotes the
tree (Tδ, <δ). Di�erently from Chapter 1, this symbol will not stand anymore
for a generic �ow of time, without the tree-property.

De�nition 2.1.2. Let T be a tree and let t and t′ be elements of T . We say
t and t′ are comparable moments, and write t ^ t′, if either t < t′ or t′ < t
or t = t′. We write t 6^ t′ if the two moments are not comparable.

For example, the �rst order formula for the tree condition (2.1) can be
written as ∀t, t′, t′′ ∈ T, (t′ < t ∧ t′′ < t)→ (t′ ^ t′′).

2This property is also called left-connectedness or subtotality in some contexts (for
example in [19]).
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The fact that the �ow of time is properly branching in the future of a
given moment can be expressed by a �rst order condition too. This says that
there exist moments in the future of t that are not in the �early-later� order
relation, i.e. they belong to di�erent branches. Formally:

De�nition 2.1.3. A tree T is properly branching in the future of t ∈ T if

∃ t′, t′′ ∈ T such that t < t′ ∧ t < t′′ ∧ t′ 6^ t′′ (2.2)

One may also require that there is just one �ow of time, avoiding the
situation in which two or more disjoint �sub�-�ows of time coexist. This can
be done by requiring the tree to be connected3:

De�nition 2.1.4. A tree T is connected if, for all t, t′ ∈ T , there exists
t′′ ∈ T such that t′′ < t and t′′ < t′.

We consider now a problem that this new time structures (and in general
non-linear time structures) create when the de�nition 1.3.5 in the Fφ case
(1.2) is applied. This leads to unsatisfactory consequences, as described in
the following example, which can be found in many works on this subject:

Example 2.1.1. Consider a time model with three instants, t0, t1, t2, such
that t0 < t1, t0 < t2 and t1, t2 are not in an �early-later� relation. We can
suppose that a coin is �ipped at t0 and that t1 and t2 represent the future
of t0 in which we obtain heads and the future of t0 in which we obtain tails,
respectively.

t0

t1

(φ)
t2

(ψ)

If we apply the notion of valuation mentioned above, we have counter-
intuitive consequences. If φ = �heads� and ψ = �tails� = ¬φ, we obtain that
both Fφ and Fψ (which is equivalent fo F¬φ) are true when evaluated at
t0, since they refer to possible futures.

This result may be confusing, but its �opposite� is not less controversial:
we can not accept that just one formula between Fφ and Fψ is true at t0,
since there is complete symmetry in the setting (assuming that the coin is
balanced).

3Some authors, like Kellerman in [19], prefer to call forest any transitive and irre�exive
order that ful�lls the tree condition, and they call tree any connected forest.
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This example points out that the semantics de�ned in Chapter 1 is an
interesting notion if the �ow of time is linear : because of this, it is also re-
ferred to as �linear-time semantics�. It is clear that we must consider di�erent
semantics in case we have a non-linear model, for example a branching-time
one.

2.2 Piercean and Ockhamist logics

Arthur Prior �rstly tried to overcome the problem described in Example
2.1.1 by investigating it in a three-valued logic framework4, in which every
sentence can be true, false or undetermined. For instance, the sentences Fφ
and Fψ in the example above turn out to have the undetermined truth value
in this framework.

Later, Prior considered two new di�erent approaches, that have been
known as Piercean and Ockhamist semantics, in which the modal notions of
possibility and necessity play a fundamental role. Both semantics introduce
a new �reading� of the proposition Fφ, and consequently give a new meaning
to the operator F . The Ockhamist logic, in particular, will lead to our main
discussion in the next chapters.

Both logics involve the notion of history, a new idea that will greatly
enrich our structure for time. Moreover, a second-order quanti�cation over
histories is a crucial aspect of these semantics.

2.2.1 Histories

A history is a course of events in our representation of time, which is a chain
of time points maximal under inclusion. Formally:

De�nition 2.2.1. Let T be a tree. A subset h of T is an history of T (or a
course of events) if it has two properties:
1. totality: ∀t, t′ ∈ h, if t 6= t′, then either t < t′ or t′ < t,
2. maximality: ∀k ⊇ h, if k totally ordered, then k = h.

Remark 2.2.1. There are di�erent terminologies for moments and histories
in a context regarding tree structures (for example in Kellerman [19] and
Nyikos [23, 24]): moments are called nodes , while histories are called path,
or maximal branches. In this thesis we will maintain our temporal-logic
terminology for these objects. However, from now on, we will always use

4Prior studied some papers of Jan �ukasiewicz, like �On Three-valued Logic� (1920) in
the '50s, and took the Polish notation from him.
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the term tree instead of �indeterministic �ow of time�, and roots and leaves
instead of starting and ending moments.

Remark 2.2.2. The reader may notice that, given a tree T , the existence of
histories is guaranteed by the Axiom of Choice, in its Zorn's Lemma5 form:
every total subset (chain) of T can be extended to a maximal one. This in
particular implies that for every moment t there is at least a history h such
that t ∈ h, since the subset {t} ⊆ T is obviously totally ordered.

Given a history h of T , if t ∈ h, we say that the history h passes through
t. The set of histories passing through t is denoted by Ht(T ), while the set
of all histories of T (which is the set of maximal chains of the frame (T,<))
will be written as H(T ). We will often denote these two sets with Ht and H
respectively, if the context makes the dependence on T clear.

Given a time point t, a possible future for t is the intersection of a history
h passing through t with the future of possibilities of t (see De�nition 1.3.2).

Remark 2.2.3. We are now able to rewrite two properties of �ow of time
structure with this new language of histories, and to prove the equivalence
from a set-theoretical point of view:
• the tree condition (De�nition 2.1.1) is equivalent to

∀t ∈ T, ∀h ∈ Ht, we have Pt ⊆ h (2.3)

with Pt the past6 of t. This means that there might be many histories
passing through t, but all of them overlap in the past of t.

• the properly branching condition (De�nition 2.1.3) is equivalent to

∃t ∈ T, ∃h, h′ ∈ Ht such that t ∈ h ∧ t ∈ h′ ∧ h 6= h′ (2.4)

which means that there are at least two di�erent histories passing through
a certain common time point.

We must observe that these properties are second-order conditions on the
set T , since histories are particular subsets of T . We prove the equivalence
stated above using some hints from [37].

Proposition 2.2.1. Let T be a tree. Then, using references from Section
2.1.1 and 2.2.1 we have (2.3) ⇔ (2.1) and (2.4) ⇔ (2.2).

5
Theorem (Zorn's Lemma). Suppose a partially ordered set P has the property that

every chain in P has an upper bound in P . Then the set P contains at least one maximal
element.

6See De�nition 1.3.2.



CHAPTER 2. Branching-time semantics 18

Proof. Since h is totally ordered and Pt ⊆ h, then Pt is obviously totally
ordered. Conversely, by (2.1), the past of t is totally ordered, hence it is
contained in every maximal totally ordered subset of T passing through t,
i.e. ∀h ∈ Ht we have that Pt ⊆ h.

Similarly, from h 6= h′ we deduce that there must be some not totally
ordered t′ ∈ h and t′′ ∈ h′ in the future of t, so T is properly branching.
Conversely, by the Axiom of Choice, every pair of temporally comparable
moments can be extended to a history, hence t < t′ and t < t′′ imply that
there are two histories h′ and h′′ containing respectively t and t′, and t and
t′′. From the non-comparability of t′ and t′′ we have that h′ 6= h′′.

Remark 2.2.4. Despite the logical complexity of a second-order quanti�ca-
tion, histories are often involved in branching time logic. A second-order
quanti�cation, for example, is the only way to make sense of propositions
that involve the complete �ow of time, or the set of possible �ows of time,
for example �it is possible that it will never rain�.

2.2.2 Piercean semantics

As said in Section 1.1, Arthur Prior named Piercean logic after Charles Pierce
(1839− 1914), an American logician and philosopher.

Prior's idea to solve the problem brie�y explained in Example 2.1.1 was
to read Fφ as �φ will inevitably happen�. This means that Fφ is true at a
time point t if in every possible future of t (i.e. in the future of every history
passing through t) there is a moment in which φ is true.

Prior also de�ned the operator G as primitive, similar to the one of Re-
mark 1.2.1, which is �in the future, it will always occur�: Gφ is true in t if φ
is true in every moment in the future of t of every history passing through t.

Formally:

De�nition 2.2.2. The set of the Piercean formulae, LPi, is the smallest
set containing the propositional variables p0, p1, p2, . . . and containing every
formula constructed by recursive application of the boolean operators ¬, ∧
( ∨ and ⇒ de�ned as usual) and of temporal unary operators P , F , and G.

We can now de�ne the evaluation rules in Piercean semantics, according
to the new reading of the operators F and G introduced above:

De�nition 2.2.3. Given a propositional variable pi and a Piercean formula
φ, a modelM = (T,<,V) and a time point t, we have, by induction on the
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complexity of the formula:

M, t � pi if and only if V(t)(pi) = 1

M, t � ¬φ if and only if notM, t � φ

M, t � φ∧ψ if and only if M, t � φ andM, t � ψ

M, t � Pφ if and only if ∃s ∈ T, s < t, M, s � φ

M, t � Fφ if and only if ∀h ∈ Ht,∃s ∈ h, t < s, M, s � φ

M, t � Gφ if and only if ∀h ∈ Ht,∀s ∈ h, t < s, M, s � φ

From this de�nition, it is clear that the past operator P has the same
meaning and valuation as in Priorean temporal logic, and consequently the
same is true for H.

Prior also introduced a weak future operator, called f and de�ned as
f = ¬G¬. It expresses the possibility of a future event and it coincides with
the �old� Priorean future operator F (so that the Priorean and Piercean G's
coincide as well). The formula fφ is read as �it is possible that φ will occur in
the future� or �φ may occur in the future�. Clearly, Fφ → fφ is a Piercean
validity for every formula φ. The valuation rule for f turns out to be

M, t � fφ if and only if ∃h ∈ Ht, ∃s ∈ h, t < s, M, s � φ.

The operator g = ¬F¬, instead, expresses truth on at least one history:
gφ is true at t whenever there exists a history h ∈ Ht such that φ is true at
every time point of h later than t. In fact, gφ is true if F¬φ is false, which
is equivalent to �not every history of Ht contains a time point in which ¬φ
holds�. Equivalently, there exists h ∈ Ht such that in every s ∈ h, t < s, φ is
true.

Remark 2.2.5. We are now able to formalize Example 2.1.1 in this new
Piercean setting. Given φ = �heads�, we simply have that both fφ and f(¬φ)
are true in t0, and both Fφ and F (¬φ) are false in t0.

We do not pay much attention to Piercean logic, since it can be viewed as
a fragment of Ockhamist logic, as pointed out in Remark 2.2.8. We conclude
this section with one �nal observation, in which we compare the validity of
a formula using linear time semantics and Piercean semantics.

Remark 2.2.6. If we have a linear time model, we can use the valuation
of linear-time semantics (De�nition 1.3.5), and the �rst description of the
operator F . In this setting, the formula φ → HFφ is true in every t for
every formula φ: this expresses the fact that if φ is true in a moment t, then
�φ will be true� is true in every moment of the past of t. On the contrary, in
the Piercean context outlined above, that same formula is not always true,
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because of the branching nature of time: using the usual �ip-of-the-coin
Example 2.1.1, φ is true in t1, but HFφ is not true in t1 since in the future
t2, φ is false. Of course, if we instead consider the weak future operator, we
have that φ→ Hfφ is true at every moment and for every φ.

2.2.3 Ockhamist semantics

Prior named the Ockhamist Logic after the English philosopher and theolo-
gian William of Ockham (1285-1347). This new approach radically changes
one of the ideas we based our previous semantics on. In fact, it denies the
principle that the truth of temporal formulae depends (just) on the time
point t in which the formulae are evaluated: we must also specify what his-
tory passing through t we are considering.

Since we are developing this new semantics with a (properly) branching
time model in mind, from now on we will consider trees as time models (see
De�nition 2.1.1). Moreover, we will write 〈t, h〉 for pairs t ∈ T , h ∈ Ht, and
denote by T̃ = {〈t, h〉 | t ∈ h} ⊆ T ×H(T ).

Given h ∈ Ht, we say that Fφ is true at 〈t, h〉 if there exists a moment s
in the future of t along h in which φ holds.

Remark 2.2.7. Since every history is a totally ordered set, the properties
of the Ockhamist operators P and F re�ect the properties of their linear-
time logic counterparts. For example, φ → HFφ, which can be false in the
Piercean context (see Remark 2.2.6), is again true for every formula φ in
every moment t.

Ockhamist logic uses another operator, usually denoted by �. It is called
historical necessity operator and it constitutes the syntactic counterpart of
the branching property of time. Given a formula φ, the proposition �φ is
true at 〈t, h〉 if φ is true in 〈t, h′〉 for every h′ ∈ Ht, i.e. regardless of the
future evolution of time.

The dual operator ♦ = ¬�¬, called historical possibility operator , can be
read as �there exists a history h ∈ Ht such that ... in t�. Given a formula φ,
the proposition ♦φ is true at 〈t, h〉 if there exists h′ ∈ Ht such that φ is true
in 〈t, h′〉.

Formally:

De�nition 2.2.4. The set of the Ockhamist formulae, LO, is the smallest
set containing the propositional variables p0, p1, p2, ... and containing every
formula constructed by recursive application of the boolean operators ¬, ∧
(∨ and⇒ de�ned as usual), the temporal operators P , F and the historical
necessity operator �. Dual tense operators (G,H) are de�ned in the usual
way and the historical possibility operator ♦ is de�ned as above.
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We can now de�ne a valuation that takes into consideration the new two-
sorted dependence on moments and histories, and the new modal operators
�,♦. In Ockhamist context, the Ockhamist valuation is a function de�ned
on T̃ , which maps pairs 〈t, h〉 (with t ∈ h) to di�erent classical valuations.
These valuations send propositional variables to truth values. Since it is a
function with a di�erent domain, we change its name into π.

De�nition 2.2.5. For any Ockhamist model M = (T,<, π) and a time-
history point 〈t, h〉, the truth conditions atM, 〈t, h〉 are de�ned by the fol-
lowing rules, by induction on the complexity of the arbitrary Ockhamist
formula:

M, 〈t, h〉 � pi if and only if π(〈t, h〉)(pi) = 1

M, 〈t, h〉 � ¬φ if and only if notM, 〈t, h〉 � φ
M, 〈t, h〉 � φ∧ψ if and only if M, 〈t, h〉 � φ andM, 〈t, h〉 � ψ
M, 〈t, h〉 � Pφ if and only if ∃s ∈ h, s < t, M, 〈s, h〉 � φ
M, 〈t, h〉 � Fφ if and only if ∃s ∈ h, t < s, M, 〈s, h〉 � φ
M, 〈t, h〉 � �φ if and only if ∀h′ ∈ Ht, M, 〈t, h′〉 � φ (2.5)
M, 〈t, h〉 � ♦φ if and only if ∃h′ ∈ Ht, M, 〈t, h′〉 � φ (2.6)

Given a propositional variable pi, we de�ne the �subset� valuation V (pi)
(see De�nition 1.3.6) as a set of pairs 〈t, h〉 with t ∈ T, h ∈ Ht, which are
meant to be the ones in which pi is true. If we express all the conditions
above in this new notation, we have:

De�nition 2.2.6. For any Ockhamist model M = (T,<,V) and a time-
history point 〈t, h〉, the truth conditions atM, 〈t, h〉 are de�ned by the fol-
lowing rules, by induction on the complexity of the arbitrary Ockhamist
formula:

〈t, h〉 ∈ V (¬φ) if and only if 〈t, h〉 /∈ V (φ)

〈t, h〉 ∈ V (φ∧ψ) if and only if 〈t, h〉 ∈ V (φ) ∩ V (ψ)

〈t, h〉 ∈ V (Pφ) if and only if ∃s ∈ h, s < t, 〈s, h〉 ∈ V (φ)

〈t, h〉 ∈ V (Fφ) if and only if ∃s ∈ h, t < s, 〈s, h〉 ∈ V (φ)

〈t, h〉 ∈ V (�φ) if and only if ∀h′ ∈ Ht, 〈t, h′〉 ∈ V (φ) (2.7)
〈t, h〉 ∈ V (♦φ) if and only if ∃h′ ∈ Ht, 〈t, h′〉 ∈ V (φ) (2.8)

Example 2.2.1. We are now able to formalize the �ip-of-the-coin Example
2.1.1 in this Ockhamist setting. In our time model with three di�erent time
points (t0, t1, t2), we call h1 the history {t0, t1} with t0 < t1 and h2 the
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history {t0, t2} with t0 < t2; t1 and t2 are not in early-later relation. Given
φ = �heads�, we have that Fφ is true at 〈t0, h1〉 and F (¬φ) is true at 〈t0, h2〉:
these formulae are true if considered on a suitable history, but none of them
is necessary. In fact, both �φ and �(¬φ) are false in 〈t0, hi〉 for i = 1, 2; on
the contrary, ♦φ and ♦(¬φ) are both true.

Remark 2.2.8. Piercean operators F, f, g,G can be expressed in the Ock-
hamist context by �F,♦F,♦G,�G respectively, so Piercean language can
be viewed as a fragment of Ockhamist language. For this reason, from now
on we will only consider Ockhamist logic.

Remark 2.2.9. The second-order quanti�cation in the valuation of � and ♦
makes the truth of �φ and ♦φ history-independent: the truth for this type of
formulae depends just on the considered time moment, as in Piercean logic.

Remark 2.2.10. Some authors like Gabbay, Hodkinson and Reynolds require
that the Ockhamist valuation does not depend on the chosen history, which
means that given a moment t, for all h, h′ ∈ Ht, π(t, h) = π(t, h′). This
kind of valuation is used in many branching time logics for computation, for
example the Computation Tree Logic CTL∗. See [9] for a complete discussion
on this topic.

As observed in [37], this requirement corresponds to the idea that propo-
sitional variables should represent atomic, and hence untensed, sentences, so
their truth should depend only on the moment we are considering. How-
ever, as suggested by Stefan Wöl�, everyday language can express untenced
sentences that contain �a trace of futurity� (this expression was coined by
Prior himself). As an example, the sentence �the king is dying� is true at a
moment-history pair only if the king actually dies along the chosen history.
The truth of �the king is dying� at a pair 〈t, h〉 implies that the sentence �the
king behaves in the same way as a man who is dying� is true at 〈t, h′〉 for
every h′ passing through t. Thus, according to these observations, it seems
natural to assume that the valuation of propositional variables contains ar-
bitrary sets of pairs.

This kind of problem was already discussed by Prior in [27]. He sug-
gested to distinguish between two di�erent kinds of propositional variables:
variables of the �rst kind are true at moments, variables of the second kind
are true at moment-history pairs.

2.3 Bundled trees

The literature on branching-time presents other semantics in which second-
order quanti�cation is somehow avoided, although histories are still deeply
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involved. An important example is the bundled-tree semantics, which we are
going to investigate in detail in this section and in the following chapters.
In [37], the author presents also the Kamp frames and Ockhamist frames
semantics, which we are not going to investigate in this thesis. In any case,
these two semantics can be easily shown to be equivalent to that based on
bundled trees.

De�nition 2.3.1. A bundle on a tree T is a subset B of H(T ) such that
every moment of T belongs to some history in B, i.e. such that ∀ t ∈ T ,
∃h ∈ B with t ∈ h. Given a time point t ∈ T , the set B ∩Ht of all histories
in B that pass through t, will be denoted by Bt.
De�nition 2.3.2. Pairs (T ,B) in which B is a bundle on the tree T are
called bundled trees . (T ,B) will also be written as TB. We will denote by T̃B
the set {〈t, h〉 | t ∈ h ∈ B} ⊆ T × B.

The ontological assumption behind the restriction of the quanti�cation to
bundles, is that we assume the existence of a set of admitted histories. This
set needs to satisfy the adequate closure property described above: every
moment has at least one admitted history passing through it.

With this idea in mind, we need to modify conditions (2.5) and (2.6)
in De�nition 2.2.5. In the bundled trees context, a model M consists of a
tree (T,<), a bundle B on it, and a valuation π that associates a classical
valuation to every moment-history pair 〈t, h〉 ∈ T̃B (which means h ∈ Bt),
according to the rules described below:

De�nition 2.3.3. For any Ockhamist bundled modelM = (TB, π), with B a
bundle on the tree T , and a time-history point 〈t, h〉, the truth conditions at
M, 〈t, h〉 are de�ned by the following rules, by induction on the complexity
of the arbitrary Ockhamist formula:

M, 〈t, h〉 � pi if and only if π(〈t, h〉)(pi) = 1

M, 〈t, h〉 � ¬φ if and only if notM, 〈t, h〉 � φ
M, 〈t, h〉 � φ∧ψ if and only if M, 〈t, h〉 � φ andM, 〈t, h〉 � ψ
M, 〈t, h〉 � Pφ if and only if ∃s ∈ h, s < t, M, 〈s, h〉 � φ
M, 〈t, h〉 � Fφ if and only if ∃s ∈ h, t < s, M, 〈s, h〉 � φ
M, 〈t, h〉 � �φ if and only if ∀h′ ∈ Bt, M, 〈t, h′〉 � φ (2.5*)
M, 〈t, h〉 � ♦φ if and only if ∃h′ ∈ Bt, M, 〈t, h′〉 � φ (2.6*)

Moreover, in the �subset� notation of De�nition 2.2.6, conditions (2.7)
and (2.8) become:

〈t, h〉 ∈ V (�φ) if and only if ∀h′ ∈ Bt, 〈t, h′〉 ∈ V (φ) (2.7*)
〈t, h〉 ∈ V (♦φ) if and only if ∃h′ ∈ Bt, 〈t, h′〉 ∈ V (φ) (2.8*)
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Remark 2.3.1. Clearly we can consider as a bundle the set of all histories
H(T ). If this is the case, the bundled tree is said to be complete, and we
come back to the Ockhamist-tree semantics introduced above.

Remark 2.3.2. The technique of replacing trees with bundled trees is often
called a Henkin move. It can appear in many di�erent contexts to replace
a second-order quanti�cation in a simple structure, with a �rst-order quan-
ti�cation in more a complex structure. This technique was �rstly introduced
by Leon Henkin in [13], in the context of general semantics for the Theory
of Types. Henkin's aim was to move from the second-order quanti�cation
over the power set P(D) of the domain D, to a quanti�cation over a suitably
closed subset X of P(D). This new quanti�cation is over elements of X, and
hence it is a �rst-order quanti�cation.

Fixing a set of admitted histories is a further (and controversial) ontolog-
ical assumption, but it produces a great simpli�cation from a technical point
of view. On one hand, the ontology is much more complicated, since histories
are primitive entities. On the other hand, bundled trees are (equivalent to)
�rst-order de�nable structures (Theorem 2.3.1 below), so the bundled tree
semantics turns out to be simpler than the one based on trees: in fact, as
shown below in Theorem 2.4.1 (Proposition (6.3) of [37]), the second-order
quanti�cation over branches in the tree semantics can not be mimicked by a
�rst-order quanti�cation in any way.

The changes produced by the Henkin move in our context will be studied
in Section 2.4.

2.3.1 First-order de�nability for bundled trees

In order to describe bundled trees in a �rst-order language, we borrow the fol-
lowing idea from geometry. Several presentations of geometry consider both
points and lines as primitive entities (lines are not viewed as sets of points),
and the mutual relation between them is described with suitable axioms. In
the same way, we can describe bundled trees as two-sorted �rst-order struc-
tures where moments and histories are two di�erent kinds of individuals. In
the following parts of the thesis, opposite to the Ockhamist context, there
will be no set-theoretical construction favouring one sort of entities (primitive
moments) over another (histories as sets of moments).

In this perspective, the relation involved will be the usual earlier/later
relation between moments (≺), and a new binary relation ε between moments
and histories: the meaning of ε(t, h) is t occurs in h or h passes through t.

This section and Section 2.4.1 are essentially borrowed from [37].
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De�nition 2.3.4. A two sorted structure S = 〈T,H,≺, ε〉 is a bundled-tree
(�rst-order) structure (BTS ) if the following axioms hold.7

(A0) tree axioms8 for (T,≺)

(A1) ∀h∃t ε(t, h) ∧ ∀t∃h ε(t, h)

(A2) ∀h∀t, t′ [(ε(t, h) ∧ ε(t′, h))→ (t ≺ t′ ∨ t′ ≺ t ∨ t′ = t)]

(A3) ∀h∀t [ε(t, h)→ ∀t′ (t′ ≺ t→ ε(t′, h))]

(A4) ∀h∀h′ [∀t (ε(t, h)→ ε(t, h′))→ h = h′]

Remark 2.3.3. The consistency of these axioms can be readily veri�ed ob-
serving that, for every bundled tree TB = (T,B), the structure S(T ,B) =
〈T,B, <,∈〉 is a model for BTS.

Conversely, the next proposition shows that every BTS can be viewed
as a bundled-tree-like �ow of time, which means that the elements of H can
represent histories and that H can be seen as a bundle on T.

Proposition 2.3.1. Let S = 〈T,H,≺, ε〉 be a BTS. Then,

(1) (T,≺) is a tree;

(2) for every h ∈ H, the set h̄ = {t ∈ T | ε(t, h)} is a history in (T,≺);

(3) the set HS = {h̄ | h ∈ H} is a bundle on (T,≺).

Proof. Claim (1) is just (A0).
Axiom (A1) states that every t ∈ T occurs along some h̄, and every h̄

passes at least through one t, and hence it is not empty. Moreover, by Axiom
(A2), every h̄ is totally ordered by ≺. In order to prove that h̄ is a history,
we have to show that it is a maximal chain. Assume by reductio that h̄ is not
maximal, so there exists t0 /∈ h̄ such that ≺ totally orders h̄ ∪ {t0}. Then,
since every h̄ contains the past of all its moments (as a consequence of Axiom
(A3)), t0 must be in the future of every t in h̄ (i.e. ∀t ∈ h̄, t ≺ t0). By (A1)
(�rst part), we can consider h̄0 containing t0, hence, again by (A3), h̄ ⊆ h̄0.
But, by Axiom (A4), if h ⊆ h′ the h = h′, so h̄ = h̄0. Then t0 ∈ h̄, which
contradicts the assumption. Hence h̄ is maximal, so it is a history according
to De�nition 2.2.1. Thus, we have proved claim (2).

Moreover, by Axiom (A1) (second part), every t ∈ T belongs to some h̄,
so HS is a bundle in the tree (T,≺) since it satis�es the De�nition 2.3.1, so
we have proved claim (3).

7These axioms are meant to be expressed in a two-sorted �rst order language, LBTS ,
for BTS 's. In order to avoid heavy notation, we use ε, ≺, t, t′, . . . , and h, h′, . . . also as
symbols of the language, with their obvious interpretation.

8See De�nitions 1.3.1 and 2.1.1.
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Remark 2.3.4. According to the remark and the proposition above, we have
that any BTS S corresponds to a bundled tree THS = (T,HS), and that
any bundled tree TB = (T ,B) corresponds to the structure S(T ,B). Then,
it is natural to observe that the �rst map is the inverse of the second and
vice-versa, which implies that the following isomorphisms hold:

S ∼= S(T,HS) and (T ,B) ∼= (T ,HS(T ,B))

Hence, bundled trees turn out to be the best candidates for the correspon-
dence with two-sorted �rst-order structures for �ows of time.

2.4 Trees vs. bundled trees

In this section we want to compare bundled trees and trees from two points
of view:
• from the logical point of view, we will prove that the Henkin move from
trees to bundled trees is an actual move from second-order logic to �rst-
order logic;

• from the semantics point of view, we will analyse the descriptive ade-
quacy of the two structures, and give an example of di�erent results we
obtain if we choose one model or the other.

The aim is to show that the bundled tree semantics is really di�erent from
the tree semantics, and that an ontological position is involved in a choice
between them.

2.4.1 Second-order de�nability for trees

The tree semantics can be viewed as a particular case of bundled tree seman-
tics, in which only complete bundled trees are considered. Then, we need to
extend the axiomatization of De�nition 2.3.4 in a way such that the set HS
de�ned in the Proposition 2.3.1 coincides with the set H(T) of all histories of
(T,≺), in any model S of the new set of axioms. This can be done resorting
to second-order logic as follows:
• we extend the language LBTS with variables X, X ′, X ′′, . . . ranging
over P(T), so that also the symbol ∈ will occur in formulae. Then, the
quanti�cations ∀X and ∃X are second-order quanti�cations;

• we de�ne the formula (coming from Axiom (A2))

Lin(X)
def

= ∀t, t′ [(t ∈ X ∧ t′ ∈ X)→ (t ≺ t′ ∨ t′ ≺ t ∨ t′ = t)

with a free variable X, which is true in S if and only if X is interpreted
on a totally ordered subset of T.
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• we de�ne the formula

His(X)
def

= Lin(X) ∧ ∀X ′ [(Lin(X ′) ∧ X ⊆ X ′)→ (X = X ′)]

with a free variable X, where ⊆ is de�ned in the usual way. The formula
His(X) is true in S if and only if X is interpreted on a history of T.

• now, the condition HS = H(T) is equivalent to the second-order condi-
tion

∀X [His(X)→ ∃h∀t (t ∈ X → ε(t, h))] (2.9)

Hence, a structure for trees can be de�ned in the language LBTS +
{X,X ′, X ′′, . . . ,∈,⊆} as a structure ful�lling (2.9) in addition to (A0), . . . ,
(A4) of De�nition 2.3.4.

De�nition 2.4.1. A two-sorted structure S = 〈T,H,≺, ε〉 is a tree structure,
if the following axioms hold (see footnote 7).
(A0) tree axioms for (T,≺)

(A1) ∀h∃t ε(t, h) ∧ ∀t∃h ε(t, h)

(A2) ∀h∀t, t′ [(ε(t, h) ∧ ε(t′, h))→ (t ≺ t′ ∨ t′ ≺ t ∨ t′ = t)]

(A3) ∀h∀t [ε(t, h)→ ∀t′ (t′ ≺ t→ ε(t′, h))]

(A4) ∀h∀h′ [∀t (ε(t, h)→ ε(t, h′))→ h = h′]

(A5) ∀X [His(X)→ ∃h∀t (t ∈ X → ε(t, h))].

The next theorem shows that there is no set of �rst-order conditions that
can replace (A5).

Theorem 2.4.1. There exists no set Σ of sentences of the �rst-order lan-
guage LBTS for BTS such that, for every structure S = 〈T,H,≺, ε〉, S is a
model of Σ if and only if the set HS coincides with H(T).

Proof. Assume by reductio that Σ exists, and consider any tree T0 = (T0, <0)
in which every moment has at least two not <0-comparable successors. In
other words, it contains a copy of a binary tree (see Example 1.3.1). Then
the �rst-order formula

α0
def

= ∀t∃t′, t′′[t ≺ t′ ∧ t ≺ t′′ ∧ ¬(t′ ≺ t′′ ∨ t′′ ≺ t′ ∨ t′ = t′′)] (2.10)

is true in every structure of the form 〈T0,H, <0, ε〉 (a structure with set of
moments equal to a tree as above, with no further assumptions on the set
H).

Consider now the particular structure ST0 = 〈T0, H(T0), <0,∈〉, with
H(T0) the set of all histories of T0 and ∈ the usual membership relation.
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Let Σ0 be the set of all sentences of LBTS which are true in ST0 . Since H(T0)
is precisely the set of all histories of T0, we have H(T0) = HST0 . This implies
that Σ ⊆ Σ0, by the assumption on Σ. Moreover, α0 ∈ Σ0, because the
structure has an at-least-binary tree as set of moments. Hence, Σ0 has an
in�nite model.

By the Löwenheim-Skolem Theorem9, Σ0 has a model S ′ = 〈T ′, H ′,≺′, ε′〉
of size ℵ0. Then T ′ and H ′ are denumerable sets. We can now reach a
contradiction by observing that:
• S ′ is a model for (A0), . . . , (A4), because these axioms are written
with the language LBTS. In particular (T ′,≺′) is a tree;

• by the assumption on Σ, the set HS′ coincides with the set H(T ′) of all
histories of T ′;

• the tree (T ′, <) has uncountably many histories (|HS′ | = |H(T ′)| ≥ 2ℵ0),
since α0 is true in S ′;

• by de�nition of HS (see Proposition 2.3.1), we have HS′ ⊆ H ′, so 2ℵ0 =
|HS′ | ≤ |H ′| = ℵ0.

This is a contradiction, so we conclude that Σ does not exist.

The results obtained in this section show that the Henkin move produces
an actual shift from second-order logic to the �rst-order one. So, from a
logical perspective, bundled trees count as the �rst-order counterparts of
trees, and there is a deep �technical� di�erence between these two structures.

2.4.2 Descriptive adequacy

In this section we compare the descriptive adequacy of trees and bundled
trees, which is their capability of validating or falsifying tensed sentences.
The example presented here is borrowed from [2].

For technical reasons, we need some moments in our time model to be
marked with a �tick�: this is an addition to the structure that allows us to
clearly identify �check-times� and easily build histories, but there is no clock,
metric or other ontological assumption involved.

Given a tree T (or a bundled tree TB), we say that a subset g ⊆ T is a
set of ticks, or of ticked moments, if
• ∀t ∈ T , ∀h ∈ Ht (or in Bt), there exists the minimum (w.r.t. < relation)
of the set h∩Ft ∩g, which means that starting from t, we can consider
the next ticked moment in h.

9
Theorem (Löwenheim-Skolem). If a theory Φ with at most countably many axioms

expressed in a �rst-order language L has an in�nite model M, then for every in�nite
cardinal number κ greater than |L| and |M|, Φ has a model of cardinality κ.
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• ∀h ∈ H (or in B), g ∩ h has no upper bound, which means that there
will always be another ticked moment in every history.

Example 2.4.1. The sentences we consider concern a particular radium
atom α and its radioactive status: at any given moment, it can be stable or
it can decay. Assume that the following sentence holds:

As long as, at a given tick, α has not yet decayed,
1. α might decay before the next tick
2. α might not decay before the next tick.

(2.11)

Then we can build a model with two kinds of histories: for every n, a
history in which α decays between the n-th and the (n+ 1)-th tick, and an-
other single history in which α never decays. This setting can be represented
by the tree T of Figure 2.1, in which each history is isomorphic to the set of
non-negative real numbers, and the subset of ticked moments in each history
is a copy of N.

Let φ be the sentence �Atom α has not decayed (yet)�.

φt0

φ

φ

φ

hω

¬φ

¬φ

h0

¬φ

¬φ

h1

¬φ

¬φ

h2

¬φ

¬φ

h3

Figure 2.1: Tree model for the decay of the radium atom.

In our model, as visually described in the considered tree of Figure 2.1,
φ is true in every moment of the history hω, and ceases to be true right after
the n-th tick on the history hn. In other words, the atom decays in t with
n < t < n+ 1 along the history hn, and never decays on the history hω.

We can now consider two di�erent models. The tree model MT uses a
second-order quanti�cation over every history of the tree T , hω included; the
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bundled-tree model MB uses a �rst-order quanti�cation, considering histories
of hn-type only: the bundle10 will be B = {hn | n ∈ N} = H(T )r {hω}.

As a consequence of the property stated in (2.11), we have that the fol-
lowing sentence is true both for MT and MB, i.e. regardless of whether hω is
an admitted history or not:

Every no-decay chain of ticks of length n can be ex-
tended to a no-decay chain of length n+ 1.

(2.12)

This extension is actually possible, for every n, in both the tree model MT

and the bundled-tree model MB. In fact:
• if α has not decayed before the n-th tick, every moment of hn+1 is in
the future of possibilities of n: in other words, n ∈ hn+1;

• along hn+1, α has not decayed at the (n+ 1)-th tick yet;
• this implies that 〈n+ 1, hn+1〉 ∈MT (φ) and 〈n+ 1, hn+1〉 ∈MB(φ);
• by the de�nition of the operator ♦ in the tree model, hn+1 ∈ H is a
witness of ♦φ in the future of n, which implies that 〈n, h〉 ∈ MT (♦φ)
for every h ∈ Hn;

• by the de�nition of the operator ♦ in the bundled-tree model, hn+1 ∈ B
is a witness of ♦φ in the future of n, which implies that 〈n, h〉 ∈MT (♦φ)
for every h ∈ Bn.

Hence, a no-decay chain of length n can be extended to a no-decay chain of
length n+ 1, both for the tree and the bundled-tree model.

On the contrary, the truth of the following sentence depends precisely on
the admissibility of hω:

At the starting moment t0, it is inevitable that α will
decay after a �nite number of ticks.

(2.13)

In fact, this sentence is formalized by �F (¬φ), and must be true when
evaluated at t0. We have that:
• 〈t0, h〉 ∈ MT (�F (¬φ)) if and only if ∀h ∈ Ht0 , 〈t0, h〉 ∈ MT (F (¬φ)),
but this is not true since 〈t0, hω〉 ∈MT (Fφ): α never decays along hω.

• 〈t0, h〉 ∈MB(�F (¬φ)) if and only if ∀h ∈ Bt0 , 〈t0, h〉 ∈MT (F (¬φ)), and
this is true since in every history in B, α decays after a �nite number of
ticks.

This example raises an ontological problem. On one side, the fact that
(2.12) and (2.13) can be simultaneously true in the bundled-tree model is
used in [2] to conclude that bundled-trees are not suitable as representation
of time. On the other side, other authors (for example Øhrstrøm and Hasle)

10This is actually the only non-trivial and interesting bundle for this model.
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think that the existence of a suitable semantics which simultaneously makes
(2.12) and (2.13) true is enough to state that �a person might hold both of
these sentences without contradicting himself�.

As said in [37], the Henkin move, and branching-time semantics as a
particular instance of it, are defended in several works of Johan van Benthem:
he a�rms that if we consider sets in a particular situation, it is preferable to
identify the range of quanti�cation which is relevant for our purposes, rather
than considering all possible sets. In private correspondence with Alberto
Zanardo, van Benthem wrote this illuminating opinion:

�Formulating things in second-order logic allows us to remain silent
on just which properties of the runs11 are crucial for our under-
standing of events over time. By contrast, putting in a set of runs
explicitly invites us at least to state interesting conditions on them,
that explain the temporal reasoning practice we want to analyse�.

Leaving this kind of matters aside12, this example proves thatMT andMB
have di�erent descriptive powers: in particular, it shows that the �rst-order
quanti�cation over a selected set can highly change the result of the valuation
in the model, even if the variation produced by the bundle is minimal.

11In our language: histories.
12For further remarks on this topic, see [2].





Chapter 3

A topological perspective

As a starting point for further results, we describe the interesting topologi-
cal perspective on time logic presented in [29]: the authors enrich bundled
tree structures with a natural topology on the set of histories and derive
some properties of this set from those of the topological space. The order of
presentation of the contents is borrowed from [29].

3.1 Some de�nitions and results in Topology

We start this chapter with some basic topological de�nitions and results.
Our aim is to create a common base of notations and concepts that will be
used later on, and to make this thesis self-contained. We will deepen some
aspects with simple propositions and remarks, which will be important in
the next sections.

The following de�nitions are taken from [20], [6] and [7]. We will prove
just some results, mainly the ones directly used in the following chapter.

De�nition 3.1.1. Given a set X, a topology on X is a subset τ of P(X)
such that
1. ∅ ∈ τ , X ∈ τ .
2. given {Ai ∈ τ | i ∈ I} any collection of elements of τ ,

⋃
i∈I Ai ∈ τ .

3. given A,B ∈ τ , A ∩B ∈ τ .
The elements of τ are open sets of X.

A topology on a set X is a set of subsets of X closed under arbitrary
unions and �nite intersections, containing the whole set X and the empty
set.

De�nition 3.1.2. A topological space is a pair (X, τ) in which τ is a topology
on the set X.
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In this section, (X, τ) always denotes a topological space. This will be
tacitly assumed in every de�nition and result.

De�nition 3.1.3. Given S ⊆ X, (S, τS) is a topological space with the
induced topology τS = {A ∩ S | A ∈ τ}.

De�nition 3.1.4. A subset C of X is closed if its complementary set XrC
is open. Subsets of X that are both open and closed are called clopen sets.

Proposition 3.1.1. The intersection of an arbitrary family of closed sets of
X is closed. The union of a �nite number of closed sets of X is closed.

De�nition 3.1.5. Given a point x ∈ X, a neighbourhood1 of x is an open
set A ∈ τ containing x.

De�nition 3.1.6. Given any subset S of X, the closure of S is the smallest
closed superset of S, and it will be denoted by S̄. Equivalently, S̄ is the
intersection of all closed supersets of S. Equivalently again, a point x ∈ X
belongs to S̄ if and only if for every A (open) neighbourhood of x, A∩S 6= ∅.

Proposition 3.1.2. A subset C of X is closed if and only if C = C̄. If C
is closed, then S ⊆ C if and only if S̄ ⊆ C.

De�nition 3.1.7. The boundary of S is ∂S = S̄ r S. The interior of S is
S
◦

= S r ∂S.

De�nition 3.1.8. A subset D of X is dense if D̄ = X, or, equivalently, if
every open set A ∈ τ has not-empty intersection with D.

De�nition 3.1.9. A topological space X is separable if there exists a subset
D of X which is dense and countable.

De�nition 3.1.10. Given two topological spaces (X, τ), (Y, τ ′), f : X → Y
is continuous if ∀V ∈ τ ′, f←(V ) = {x ∈ X | f(x) ∈ V } ∈ τ : in other words,
the preimage of any open subset of Y is open in X.

3.1.1 Connectedness, compactness and separability

De�nition 3.1.11. A topological space (X, τ) is connected if X is not the
union of two disjoint non-empty open subsets. Equivalently, X is connected
if the only clopen subsets of X are ∅ and X itself. A topological space is
disconnected if it is not connected, i.e. it is the union of a pair of disjoint
non-empty open subsets.

1Some authors call these sets open neighbourhood, and call neighbourhood of x any
superset of an open neighbourhood of x.
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Remark 3.1.1. The connected components of a topological space X are its
connected subsets, with respect to the induced topology. The collection of
the connected components of X is a partition of X.

De�nition 3.1.12. A topological space is totally disconnected if every con-
nected component has exactly one element.

De�nition 3.1.13. Given a subset S of X, s ∈ S is an isolated point of S
if there exists a neighbourhood A of x such that A ∩ S = x. If a subset S of
X consists only of isolated points, then S is called discrete2.

Lemma 3.1.3. A point x is isolated (in X) if and only if the singleton {x}
is an open subset of the topology.

Remark 3.1.2. If x is an isolated point, then every dense subset of X contains
x: in fact, {x} is open, and a dense subset has non-empty intersection with
every open subset. If x is not isolated, then X r {x} is dense: in fact, every
open subset A containing x has at least another point, so every (non empty)
open subset of τ has non-empty intersection with X r {x}.

Proposition 3.1.4. Assume that (X, τ) is a topological space in which sin-
gleton sets are closed3, and let Y be dense in X. Then (X, τ) and (Y, τY )
have the same isolated points.

De�nition 3.1.14. Given a subset S of X, an open cover of S is a family
C = {Ai | i ∈ I} of open subsets of X whose union contains S. A subcover
of a cover {Ai | i ∈ I} is a cover {Ai | i ∈ J} with J ⊆ I.

De�nition 3.1.15. A subset S of X is compact if every open cover has a
�nite subcover. If X itself is compact, it is called a compact space.

Proposition 3.1.5. A closed subset of a compact space is compact.

Proof. LetX be compact and C an open cover of the closed set C ⊆ X. XrC
is open, then C ′ = C ∪ {X r C} is an open cover of X. By compactness,
there exists a �nite subcover V = {V1, . . . , Vr} of C ′, which covers X. It is a
�nite cover of C too, and (if there exists n such that Vn = XrC) it remains
a �nite cover of C even if we remove X r C. Thus, every open cover C of C
has a �nite subcover.

De�nition 3.1.16. Two di�erent points x, y of X can be separated by neigh-
bourhoods if there exist A,B neighbourhoods of x and y respectively, such
that A∩B = ∅. A topological space (X, τ) is a Hausdor� space if all distinct
points in X are pairwise neighbourhood-separable.

2Every discrete space is clearly totally disconnected.
3Hausdor� spaces, de�ned below, have this property.
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Proposition 3.1.6. If a topological space (X, τ) is Hausdor�, then every
compact subset of X is closed.

De�nition 3.1.17. A topological space is second countable if the topology
has a countable base.

De�nition 3.1.18. A topological space is called separable if it contains a
countable and dense subset; that is, there exists a sequence (xn)n∈N of el-
ements of the space such that every non-empty open subset of the space
contains at least one element of the sequence.

Proposition 3.1.7. Let (X, τ) be a topological space. If it is second count-
able, then it is separable.

Proof. Let B be a countable base for the topology. For each non-empty set
B ∈ B, pick a point xB ∈ B. Since B is countable, the set {xB | B ∈ B} is
countable. Moreover, each open set in τ is a union of elements of B, so each
non-empty open set U contains at least one of the sets B, and so xB ∈ U .
Thus {xB | B ∈ B} is dense in X and countable, so X is separable.

De�nition 3.1.19. A topological space (X, τ) is said to satisfy the countable
chain condition (ccc) if any collection of pairwise disjoint non-empty open
subsets of X is countable.

Proposition 3.1.8. Every separable topological space satis�es the ccc.

Proof. Let X be a separable space and D be a countable dense subset of X,
and suppose that U is a family of pairwise disjoint non-empty open subsets
of X. For each U ∈ U there is an xU ∈ D∩U , since D is dense. If U, V ∈ U ,
with U 6= V , then U ∩ V = ∅, so if we take xU ∈ U ∩ D and xV ∈ V ∩ D,
we have that xU 6= xV . Thus, the function from U to D mapping U 7→ xU
is injective, and it follows immediately that |U | ≤ |D|. Therefore, U is
countable.

3.1.2 Bases, subbases, non-Archimedean spaces

De�nition 3.1.20. A subset B of P(X) is a base of (or generates) the
topology τ if every open set is a union of elements of B.4

4For the purposes of this thesis, it is convenient to assume that every base does not
contain the empty set: as an open set of τ , ∅ can be obtained as the nullary union of no
elements of the base.
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Proposition 3.1.9. A subset B of P(X) is a base for τ if and only if every
�nite intersection of elements of B is a union of elements of B. Moreover,
a subset B of P(X) is a base for τ if and only if it is a cover of X such
that, for all B1, B2 ∈ B and x ∈ B1 ∩ B2, there exists B3 ∈ B such that
x ∈ B3 ⊆ B1 ∩B2.

De�nition 3.1.21. A subset P of P(X) is a subbase for τ if the set of all
�nite intersections of elements of P is a base for τ .

Proposition 3.1.10. A subset P of P(X) is a subbase for τ if and only
if it generates the topology τ . This means that τ is the smallest topology
containing P: any topology τ ′ on X containing P must also contain τ .

De�nition 3.1.22. A base B for a topology τ is said to have rank 1 if, for
all B1, B2 ∈ B, either B1 ⊆ B2 or B2 ⊆ B1 or B1 ∩B2 = ∅.

We will often write (X,B) or (X,P), meaning the topological space
(X, τ) with topology τ generated by the base B or by the subbase P.

De�nition 3.1.23. A topological space is non-Archimedean if it is Hausdor�
and has a base of rank 1.

Lemma 3.1.11. Let B be an element of a rank 1 base B of a non-Archime-
dean space (X, τ), and let x ∈ X r B. Then there exists B′ ∈ B such that
x ∈ B′ and B′ ∩B = ∅.

Proof. Consider any b ∈ B. Then, by the Hausdor� property, there exists
B′ ∈ B such that b ∈ B′, b /∈ B′. Then neither B ⊆ B′ nor B′ ⊆ B, hence
B′ ∩B = ∅, since B has rank 1.

Corollary 3.1.12. The elements of a rank 1 base of a non-Archimedean
topological space are closed sets, hence they are clopen.

Proof. Let B be an element of a rank 1 base B of (X, τ), non-Archimedean.
Then, by Lemma 3.1.11, every x ∈ XrB is contained in an open set disjoint
from B. Then X r B is the union of these open sets, hence is open. Thus,
B is closed.

3.2 Adding topology to trees

3.2.1 Topology over trees and bundled trees

We want to equip the set of histories H(T ) of a tree T with a topological
structure. The natural choice is to consider the set of all Ht = {h ∈ H | t ∈
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h} as a subbase for the topology. As a consequence, the topological space we
will consider is (H(T ),OT ), with subbase

OT = {Ht | t ∈ T}

and we will denote the topology as τT .

Remark 3.2.1. Open sets of this topology are closely connected with sets of
moments in T : given S ⊆ T we can build an open set oS =

⋃
s∈S Hs, and,

conversely, any open set is the union of Ht's5, so it is oS for some suitable S.
The open set oS is the set of all histories passing through a certain moment
of S; the closed set H(T )r oS is the set of all histories avoiding all moments
of S.

Proposition 3.2.1. The topological space
(
H(T ),OT

)
is a non-Archimedean

space.

Proof. We must show that the base has the rank 1 property, and that the
space is Hausdor�.

Given t, s ∈ T , di�erent time points, t < s, t > s, or the two moments
are not <-comparable. In the �rst case, Ht ⊆ Hs, because the past of s is
unique and contains t, hence every history passing through s passes through
t too. In the second case, Ht ⊇ Hs. In the third case, Ht ∩ Hs = ∅: by
contradiction, h ∈ Ht ∩ Hs would contain both t and s, so they would be
<-comparable. Thus, OT has the rank 1 property.

Now, let h1, h2 be di�erent histories ofH(T ) (which means di�erent points
of the topological space

(
H(T ),OT

)
). Since they are maximal totally ordered

subsets of T , there must be two moments t1, t2 such that t1 ∈ h1 r h2 and
t2 ∈ h2 r h1. Then, h1 ∈ Ht1 and h2 ∈ Ht2 , but t1, t2 are not <-comparable
moments, so Ht1 ∩ Ht2 = ∅. Thus, di�erent points belong to disjoint open
subsets, so

(
H(T ), τT

)
is Hausdor�.

Combining this result with Corollary 3.1.12, we can conclude that Ht's
are closed in the τT topology (hence clopen).

Moreover, from Remark 3.2.1, we have that any Ht is H(T )r oS, where
S = {s ∈ T | s not <-comparable with t}: in fact, if s 6= t, s ≮ t, t ≮ s, then
no history in ht passes through s.

Remark 3.2.2. On the basis of this result, we can de�ne a map that associates
a non-Archimedean space to any tree T :

ν : (T,<) 7−→
(
H(T ),OT

)
5In general, by De�nition 3.1.21, this sentence should be �Any open set is the union of

�nite intersections of elements of the prebase�, but since OT has rank 1 (as shown below
in Proposition 3.2.1) the intersection has no e�ect.
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Moreover, given a bundled tree TB = (T ,B), we can repeat the same
construction used above, and build a topology τB on B, generated by the
subbase

OB = {Bt | t ∈ T}
The generated topological space (B,OB) turns out to be non-Archimedean,
since the topology is induced by τT : in fact, Bt = Ht ∩ B, so OB = {b ∩ B |
b ∈ OT }. Thus, it inherits the non-Archimedean property from OT .
Remark 3.2.3. As above, we can construct a map that associates a non-
Archimedean space to any bundled tree TB = (T ,B):

µ : (T ,B) 7−→ (B,OB)

3.2.2 Turnaround: from topological spaces to trees

We want to investigate the existence of �reverse� maps of the ones de�ned
in Remarks 3.2.2 and 3.2.3, that are maps that associates trees or bundled
trees to non-Archimedean spaces.

Lemma 3.2.2. Given a non-Archimedean space (X,O), the poset TO =
(O,⊃) is a tree.

Proof. The ⊃ relation is trivially irre�exive and transitive, and the rank 1
property of O implies the tree condition (De�nition 2.1.1): in fact, if B′ ⊃ B
and B′′ ⊃ B, then B′ ∩B′′ ⊇ B 6= ∅, so B′ ⊃ B′′, B′′ ⊃ B′ or B′ = B′′.

Remark 3.2.4. Notice that the elements of the subbase O are the moments
of the tree, and that we need to use the superset relation ⊃ in the opposite
direction from the < of the de�nition of tree.

Remark 3.2.5. On the basis of the previous lemma, we can build a map that
associates a tree to every non-Archimedean space:

α : (X,O) 7−→ (O,⊃)

We can give a re�nement of this map in the case of bundled trees, ex-
plained in the next lemma and remark:

Lemma 3.2.3. Let (X,O) be a non-Archimedean space. Then, for every
x ∈ X, the set

Cx = {B ∈ O | x ∈ B}
is a maximal chain in O (with respect to the inclusion ⊃), and the set

BX = {Cx | x ∈ X}

is a bundle in TO.
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Proof. Consider B1, B2 ∈ Cx: they are in relation ⊃ or ⊂, since they are
elements of a base of rank 1 with non-empty intersection (x ∈ B1 ∩ B2),
so Cx is an ⊆-chain. Moreover, if B′ /∈ Cx, by Lemma 3.1.11 it has empty
intersection with some B ∈ Cx, so every proper extension of Cx is not a
⊆-chain, hence Cx is maximal. So, in our time-logic language, it is a history.

Now, every element of BX is a history, so if we prove the closure property
(De�nition 2.3.1), we can conclude that it is a bundle on TO. Given B ∈ O,
it is not empty6, so for every x ∈ B, B ∈ Cx, hence B ∈ Cx ∈ BX . Thus, BX
is a bundle.

Remark 3.2.6. This result suggests that we can consider a map from non-
Archimedean spaces to bundled trees, namely

β : (X,O) 7−→ (TO,BX)

Clearly, if the bundled tree turns out to be complete, this map is the map α
de�ned above.

Given the notion of isomorphism between trees (see Section 2.1.1), we
can consider the composition of the maps de�ned above in Remarks 3.2.5
and 3.2.6 with the ones produced in Remarks 3.2.2 and 3.2.3. The following
are natural questions:
• is the tree (T,<) always isomorphic to the tree TOT , which comes from
the following composition?

(T,<)
ν7−→
(
H(T ),OT

) α7−→ (OT ,⊃) = TOT

• are there any relations (homeomorphisms?) between a non-Archimedean
topological space (X,O) and

(
H(TO),OTO

)
7, which comes from the fol-

lowing composition?

(X,O)
α7−→ (O,⊃)

ν7−→
(
H(TO),OTO

)
• is the bundled tree (T ,B)8 isomorphic to the bundled tree (TOB ,BB),
which comes from the following composition?

(T ,B)
µ7−→ (B,OB)

α7−→ (TOB ,BB)

6We have assumed that the empty set is not contained in any base, and it is an element
of the generated topology because of the nullary union.

7TO is simply O, the set of moments of the space TO = (O,⊃).
8We underlined the symbol for the bundle B just to di�erentiate it from the BX used

in the costruction of the map above.
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• are there any relations (homeomorphism?) between a non-Archimedean
topological space (X,O) and (BX ,OBX ), which comes from the following
composition?

(X,O)
β7−→ (TO,BX)

µ7−→ (BX ,OBX )

In order to answer to these questions, we need to prove some results regard-
ing the presentation of topological spaces: the complete solution to these
problems is given in Propositions 3.2.6 and 3.2.8.

3.2.3 Presentation of non-Archimedean spaces

Almost every topological argument involves the notion of homeomorphism:
given two topological spaces (X, τ), (Y, τ ′), an homeomorphism between them
is a bijective continuous9 map φ : X → Y with continuous inverse function.
This notion, which is also called topological equivalence, is widely used: if
two topological spaces are homeomorphic, their topologies share a lot of
properties.

Unfortunately, this notion is not relevant to our context: in fact, di�erent
bases can generate the same non-Archimedean space, but they correspond to
di�erent trees, as seen in the following example:

Example 3.2.1. Consider the topological space (N, τ), where τ is the dis-
crete topology over the set of natural numbers. (N, τ) is a non-Archimedean
space: for example, the set of the singletons O1 =

{
{n} | n ∈ N

}
is a

rank 1 base for the topology. It is easy to verify also that O2 = O1 ∪ {N},
O3 = O1 ∪

{
{n ≥ n0} | n0 ∈ N

}
, O4 = O1 ∪

{
{0, . . . , n0} | n0 ∈ N

}
are rank

1 bases for the discrete topology over N, so the topological spaces (N,Oi) are
pairwise homeomorphic. On the contrary, the correspondent trees (Oi,⊃)
are clearly not isomorphic:
• the tree (O1,⊃) consists of in�nite (disjoint) connected components,
each containing just one moment;

• the tree (O2,⊃) is a rooted tree (with root {N}) with in�nite uncompa-
rable moments above the root and nothing above;

• the tree (O3,⊃) is rooted, has a linear subtree (
{
{n ≥ n0} | n0 ∈ N

}
)

and a leaf ({n0}) starting from every moment of the subtree;

• the tree (O4,⊃) is not rooted, has a linear subtree (
{
{0, . . . , n0

}
| n0 ∈

N}) and a leaf ({n0}) attached to every moment of the subtree.
9See De�nition 3.1.10.
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{0} {1} {2}
. . .

{0} {1} {2} {3}

N

Representation of the tree (O1,⊃). Representation of the tree (O2,⊃).

{0, 1, 2, . . .} = N

{1, 2, 3, . . .}

{2, 3, 4, . . .}

{0}

{1}

{2} {0} {1} {2} {3}

{0, 1}

{0, 1, 2}

{0, 1, 2, 3}

Representation of the tree (O3,⊃). Representation of the tree (O4,⊃).

Moreover, each pair (N,Oi) determines the bundled tree Ti = (TOi ,BN)
by means of the de�nitions in Lemma 3.2.3: T1, T2, T4 are complete bundled
trees, while T3 is not, so also the completeness of bundled trees that come
from non-Archimedean spaces depends on the chosen base. In fact:
• for i = 1, Cn = {B ∈ O1 | n ∈ B} =

{
{n}

}
, thus BN,1 =

⋃
n∈N Cn

contains every possible chain, hence the bundled tree T1 is complete;

• for i = 2, Cn = {B ∈ O2 | n ∈ B} =
{
{n},N

}
, thus BN,2 contains every

possible chain, hence the bundled tree T2 is complete;

• for i = 3, Cn = {B ∈ O3 | n ∈ B} =
{
{m ≥ n0} | n0 ≤ n

}
∪ {n};

but
{
{m ≥ n0} | n0 ∈ N

}
is a chain di�erent from every Cn (before

it does not contain any {n}), so BN,3 does not contain every possible
chain, hence the bundled tree T3 is not complete;

• for i = 4, Cn = {B ∈ O4 | n ∈ B} =
{
{0, 1, . . . , n0} | n0 ≥ n

}
∪ {n},

thus BN,4 contains every possible chain, hence the bundled tree T4 is
complete.

On the basis of this example, it makes sense to consider pairs (X,O) and
(X,O′) as di�erent objects when O 6= O′, even if O and O′ generate the
same topology.
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De�nition 3.2.1. A pair (X,O), consisting of a set X and a (sub)base for
a topology on X, is called a presentation of the topological space.

De�nition 3.2.2. The presentations (X,O) and (X ′,O′) of two topological
spaces are isomorphic if there exists a bijection φ : X → X ′ such that the
induced map on the power sets φ̂ : P(X) → P(X ′), de�ned by φ̂(A) =
{φ(a) | a ∈ A}, is a bijection from O onto O′.

Lemma 3.2.4. If two presentations of topological spaces (X,O) and (X ′,O′)
are isomorphic, then the correspondent trees TO and TO′ are isomorphic, and
(X,O) and (X ′,O′) are homeomorphic as topological spaces.

Proof. Consider the map φ̂ : P(X) → P(X ′) induced by φ as in De�nition
3.2.2. It clearly preserves inclusion, hence it is an order-preserving map with
respect to ⊃. Moreover, it is a bijection of O onto O′, by de�nition. Hence,
TO ∼= TO′ . Finally, isomorphic presentations generate the same topological
space, up to homeomorphism.

The previous example is a counterexample to the converse of the last im-
plication: we can have homeomorphic topological spaces with non-isomorphic
presentations.

Now, recall that OB = {BB | B ∈ O} and that BB = HB ∩ B.

Lemma 3.2.5. For every non-Archimedean space (X,O) and every bundle
B in TO, the function ψ : O → OB mapping B 7→ BB is a bijection.

Proof. Consider B1, B2 ∈ O, and assume B1 * B2: the symmetric case can
be dealt with exchanging B1 and B2. Consider x ∈ B1 r B2: by Lemma
3.1.11, there exists B′ ∈ O such that B′ ∩B2 = ∅. Let B′′ be B1 ∩B′. Since
both B1 and B′ contain x, by the rank 1 property of the base, B′′ is either
B1 or B′, and, clearly, B′′ ∩ B2 = ∅. Now, consider any h ∈ BB′′ : h ∈ BB1

because B′′ ⊆ B1, and h /∈ BB2 because B′′ ∩ B2 = ∅. Then ψ is injective
because di�erent elements of the domain have di�erent images. Moreover,
by de�nition, every element of OB is BB for some B ∈ O, and hence ψ is
surjective.

Proposition 3.2.6. Every presentation of a non-Archimedean space (X,O)
is isomorphic to (BX ,OBX ).

Proof. Consider the function φ : X → BX de�ned by x 7→ Cx. It is a
bijection: in fact, X is Hausdor�, hence if x1 6= x2, there exist disjoint open
neighbourhoods of xi (of the form Hxi = Cxi), so φ is injective; moreover
every Cx is clearly φ(x) for some x, hence φ is surjective.
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Now, consider the restriction to O of the map φ̂ induced by φ on P(X).
Given B ∈ O and x ∈ X, the de�nition of Cx implies that B ∈ Cx if and only
if x ∈ B, so φ̂(B) = {Cx | x ∈ B} = (BX)B. Thus, the function induced by
φ on O coincides with the function ψ of the previous Lemma 3.2.5, so it is a
bijection from O to OBX .

Remark 3.2.7. In the particular case of complete bundled trees (i.e. BX =
H(TO)), this Proposition yields that (X,O) ∼=

(
H(TO),OTO

)
, as presenta-

tions of non-Archimedean spaces.

This concludes the analysis of the compositions ν ◦α and µ ◦ β: they are
isomorphisms of presentations of non-Archimedean spaces.

Regarding the compositions α ◦ ν and β ◦ µ, starting from trees or bun-
dled trees, Lemma 3.2.7 below states that they are isomorphisms only for a
particular class of trees:

De�nition 3.2.3. A tree T is said to be totally branching if Ht 6= Ht′ , for
all t 6= t′ in T . A bundled tree (T ,B) is totally branching if T is totally
branching.

Lemma 3.2.7. For every non-Archimedean space (X,O), the tree TO is
totally branching.

Proof. Consider B,B′ ∈ O, B 6= B′, and assume that B * B′, so we can
consider x ∈ B r B′ (the other case is symmetric). Then Cx is a history in
TO, which contains B and does not contain B′, hence HB 6= HB′ . Thus, TO
is totally branching.

This lemma shows that a tree T can not be isomorphic to the associated
TOT , unless it is totally branching. The next proposition proves that this
condition is su�cient for the isomorphism to be veri�ed.

Proposition 3.2.8. Every totally branching tree T is isomorphic to the tree
TOT . Moreover, every totally branching bundled tree (T ,B) is isomorphic to
the bundled tree (TOB ,BB).

Proof. The function φ : t 7→ Ht clearly maps T onto OT , and is injective
because T is totally branching, so di�erent t's are mapped to di�erent Ht's.

Moreover, since Bt = B ∩ Ht, the totally branching condition implies
Bt 6= Bt′ for all t 6= t′. So, the map φ : t 7→ Bt is an isomorphism (same proof
as above). Finally, for every h ∈ B, φ̂(h) = {φ(t) | t ∈ h} = {Bt | h ∈ Bt} =
Ch, hence the function φ induces a bijection between B and BB, so it is an
isomorphism of bundled trees.
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This concludes the analysis of the compositions α ◦ ν and β ◦ µ: they are
isomorphisms of (bundled) trees only if the starting (bundled) tree is totally
branching; if it is not the case, α ◦ ν and β ◦ µ send the (bundled) tree T to
an �associated� totally branching (bundled) tree, which is properly �smaller�
than T . This relation will be investigated in the following section.

3.2.4 Condensation of trees

We conclude this section rephrasing the de�nition of totally branching trees
and the results above using the notions of furcation, bridge and condensation.
These terms have been introduced by Ruaan Kellerman in his PhD disser-
tation [19], which, to my knowledge, is one of the most exhaustive sources
regarding the algebraic structure of trees.

The aim of this section is to prove Theorem 3.2.22, which completes the
�translation� of the results of Section 3.2.3 in this newly introduced terminol-
ogy. Therefore, the reader can skip the proofs of Propositions 3.2.9, 3.2.10,
3.2.11 and 3.2.13. We decided to prove those results in order to complete
the description of this topic, but they are technical results related to the tree
structure, and so they are not directly linked to our main objective.

In the following, we assume that every tree is connected, which is a re-
strictive hypothesis. In any case, all the de�nitions and results below can be
extended to the case of non-connected trees (forests, in Kellerman's termi-
nology) by considering the connected components.

In this section we will often use the comparability relation ^ between
moments, de�ned in De�nition 2.1.2.

De�nition 3.2.4. Given a tree T = (T,<),
• a segment on T is every subset A of T , which is totally ordered and
closed, which means that if t < t′ are elements of A and t < s < t′, then
s ∈ A10;

• a bridge on T is a segment B such that for every history h, either
h ∩B = ∅ or h ∩B = B;

• a furcation on T is a segment F , which is not a bridge: in other words,
F is a furcation if there exists a history h such that ∅ 6= F ∩ h 6= F 11.

10The notion of closeness we are using here, which is borrowed from [19], is obviously
di�erent from the topological one. It is used only in this Section 3.2.4, so the two meanings
can not be mistaken.

11Equivalently, in our time-logic terminology, a segment is a furcation if it contains a
moment with at least two distinct possible futures and a moment of one of them. A tree
has a furcation if the �ow of time is properly-branching (see De�nition 2.1.3).
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Example 3.2.2. Consider the tree T of Figure 3.1: {a, b, c}, {d, e}, {f, g}
(and every singleton, see Remark 2.2.2) are bridges of T . {b, c, d}, {c, f},
{f, g, h}, {g, i} are furcations.

a

b

c

d

e

f

g

h i

Figure 3.1: Example of a tree with some bridges and furcations.

Proposition 3.2.9. Let T be a tree and let A and B be non disjoint bridges.
Then A ∪B is a bridge.

Proof. Let h be a history, with A ∩B ⊆ h. Since A and B are bridges, then
A,B ⊆ h, hence A ∪ B ⊆ h, thus A ∪ B is totally ordered. Moreover A ∪ B
is closed. In fact:
• if a, b ∈ A and a < c < b, c ∈ A since A is a segment.
• if a, b ∈ B and a < c < b, c ∈ B since B is a segment.
• if a ∈ A r B, b ∈ B r A and a < c < b, consider d ∈ A ∩ B 6= ∅. If
b ≤ d then b ∈ A, which is a contradiction. Hence d < b. Since both c
and d are in the past of b, by tree property we have c ^ d. Thus, either
a < c ≤ d, in which case c ∈ A, or d < c < b, in which case c ∈ B.

• if a ∈ B r A, b ∈ ArB and a < c < b, symmetric proof.
Hence A ∪B is a segment.

Now, let h be a history such that h ∩ (A ∪ B) 6= ∅. Then, without loss
of generality, suppose that h ∩ A 6= ∅. Then, since A is a bridge, h ∩ A =
A ⊇ A ∩ B. Thus, h ∩ B 6= ∅, from which h ∩ B = B. Then h ∩ (A ∪ B) =
(h ∩ A) ∪ (h ∩B) = A ∪B. Thus, A ∪B is a bridge.

Proposition 3.2.10. Let T be a tree and A be a bridge in T . Then A is
contained in a unique a maximal bridge.
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Proof. Let A be the set of bridges of T containing A. Consider a ⊂-chain
C in A: we want to show that it has an upper bound in A, then from
Zorn's Lemma (see footnote 5 of Chapter 2) we have that A is contained in
a maximal bridge.

Let C0 =
⋃
C. It is totally ordered (since it is the union of a chain of

bridges) and closed, hence it is a segment. Let now h be a history in T , and
suppose that h∩C0 6= ∅. Then there exists C1 ∈ C such that h∩C1 6= ∅, but
C1 is a bridge, hence h ∩ C1 = C1. Then A ⊆ h, since C1 ⊇ A by de�nition.
It implies that for every C ∈ C, h ∩ C = C.

Then, h ∩ C0 = h ∩ (
⋃
C) =

⋃
{h ∩ C | C ∈ C} =

⋃
{C | C ∈ C0} = C0.

It implies that C0 is a bridge containing A, and it is an upper bound for C.
Then A has maximal elements, which are maximal bridges containing A.

In order to prove uniqueness, let B1, B2 be maximal bridges containing A.
By Proposition 3.2.9, B1∪B2 is a bridge containing A, hence, by maximality,
B1 = B1 ∪B2 = B2.

Remark 3.2.8. If A and B are maximal bridges in a tree T , then they are
disjoint or equal. In fact, given every h history such that h∩A = A, we have
that h∩B = ∅ or h∩B = B: in the �rst case, A∩B = ∅. In the second case,
by maximality, A = B. Hence, the set of maximal bridges forms a partition
of the tree. In the example of Figure 3.1, the partition is made by {a, b, c},
{d, e}, {f, g}, {h}, {i}.

Starting from this partition, we can de�ne a relation ∼ between moments
by t ∼ t′ if t and t′ belong to the same maximal bridge. It is readily veri�ed
that ∼ is an equivalence relation on T . The equivalence classes are obviously
the maximal bridges themselves.

Given t ∈ T , the unique maximal bridge of T containing t will be denoted
by [t]. The set of all maximal bridges can be endowed with the relations <,>,
and ^ by requiring that every element of the �rst bridge is related to every
element of the second. For instance, [a] ^ [b] holds when t ^ t′ for all t ∈ [a]
and t′ ∈ [b].

Proposition 3.2.11. Let T be a tree and let a, b ∈ T .
• If a < b and [a] 6= [b], then [a] < [b].

• If a 6^ b, then [a] 6^ [b].

Proof. Let h be a history in T with a, b ∈ h. Since [a] and [b] are bridges,
[a], [b] ⊆ h, hence [a]∪ [b] is linear. Since [a] 6= [b], then [a]∩ [b] = ∅. Assume
by contradiction that there exists a′ ∈ [a], b′ ∈ [b] with b′ < a′. Then, since
[a] ∪ [b] is linear, the relations between a, a′, b, b′ are described by one of the
following situations:
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• b′ < a′ ≤ a < b, which implies that a ∈ [b]

• b′ ≤ a < a′ ≤ b, which implies that a ∈ [b]

• b′ ≤ a < b ≤ a′, which implies that a ∈ [b]

• a < b′ < a′ ≤ b, which implies that b′ ∈ [a]

• a < b′ ≤ b < a′, which implies that b′ ∈ [a]

• a < b < b′ < a′, which implies that b′ ∈ [a]

Each of these cases violates the fact that [a] ∩ [b] = ∅. Then [a] < [b].
Moreover, assume by contradiction [a] ^ [b]. Then, by de�nition ∀x ∈

[a],∀y ∈ [b], x ^ y, but this violates the hypothesis a 6^ b.

Corollary 3.2.12. Let T be a tree and let a, b ∈ T . Then, a ^ b if and only
if [a] ^ [b].

Proposition 3.2.13. Let T be a tree and let a, b ∈ T . The following condi-
tions are equivalent:
1. a and b belong to the same bridge;

2. [a] = [b];

3. for every history h in T , a ∈ h if and only if b ∈ h;
4. for every moment t ∈ T , t ^ a if and only if t ^ b.

Proof. (1.⇔ 2.) Immediate.

(2.⇒ 3.) Suppose [a] = [b]. Let h be a history, a ∈ h. Then [a] ⊆ h, and so
[b] ⊆ h, which gives b ∈ h. From this we deduce that for every history
h, if a ∈ h, then b ∈ h. Similarly we can show necessity.

(3.⇒ 2.) Since a = b immediately implies [a] = [b], we may assume a 6= b.
Let h be a history passing through a: by condition 3. we also have that
b ∈ h, so a ^ b. Without loss of generality, we may assume that a < b.
Consider the segment [a, b] = {t ∈ T | a ≤ t ≤ b}. Let h′ be a history
with non-empty intersection with [a, b]. Then, by the tree condition,
a ∈ h′, thus, because of what we proved above, b ∈ h′. Hence [a, b] ∈ h′.
Then [a, b] is a bridge. By Proposition 3.2.10, [a, b] is contained in a
unique maximal bridge, hence [a] = [b].

(3.⇒ 4.) Let c ∈ T , c ^ a, and let h be a history with a, c ∈ h. By condition
3. we also have that b ∈ h, so c ^ b. So, for every t ∈ T , if t ^ a, then
t ^ b. Similarly we can show necessity.

(4.⇒ 3.) Let h be a history passing through a. For every t ∈ h, t ^ a, so by
condition 4. we have t ^ b. Since histories are maximal totally ordered
subsets of T , we have b ∈ h. Hence, for every history h′ of T , a ∈ h′
implies b ∈ h′. Similarly we can prove the converse implication.
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De�nition 3.2.5. Let T = (T,<) be a tree. We will denote the set of
maximal bridges of T by [T ] = {[t] | t ∈ T}. The structure [T ] = ([T ], <) is
called the condensation of the tree T .

Remark 3.2.9. The condensation of the tree is the quotient structure of the
tree generated by the relation ∼. It is straightforward to prove that < on
[T ] is irre�exive, transitive, and satis�es the tree condition, hence ([T ], <) is
a tree.

Example 3.2.3. Consider the tree T of Figure 3.1: its condensation is
described in the following picture. We want to highlight the fact that the
condensation of a tree with the �same form� of T , but with in�nitely many
moments in every bridge, would have the same condensation as T (with
nothing between di�erent �condensed� moments).

[c]

[d] [g]

[h] [i]

Figure 3.2: Condensation [T ] of the tree T of Figure 3.1.

Remark 3.2.10. If S = (S,<) is a subtree of T , then [S] is a subtree of [T ].
Clearly, if S is a proper subtree of T , the same does not apply to [S]: in fact,
[S] is a proper subtree of [T ] if and only if S and T have di�erent furcations,
i.e. if they ramify di�erently.

As an example, consider the tree T of Figure 3.1: on one hand, every
subtree S, which is obtained by cutting some moments from the bridges that
are not singletons, has the same condensation of T . On the other hand, if
we cut an entire bridge we obtain a di�erent condensation: in the following
Figure we have the condensation of the subtree S of T obtained by cutting
the bridge {d, e}.

De�nition 3.2.6. A tree T = (T,<) is called condensed if T ∼= [T ].

Lemma 3.2.14. Let T be a tree. Then every non-empty bridge in [T ] con-
sists of a single moment.

Proof. Let [a], [b] ∈ [T ] with [a] 6= [b]. Then a and b belong to di�erent
maximal bridges in T . Hence, by Proposition 3.2.13, we can conclude that
there exists c ∈ T such that c ^ a and c 6^ b. Then, by Corollary 3.2.12 we
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[c]

[g]

[h] [i]

Figure 3.3: Condensation [S] of the subtree S = {a, b, c, f, g, h, i}.

have [c] ^ [a] and [c] 6^ [b]. Thus, [a] and [b] belong to di�erent maximal
bridges in [T ] (again by Proposition 3.2.13 applied to the tree [T ]).

Proposition 3.2.15. Let T be a tree. The following conditions are equiva-
lent:
1. T is condensed;

2. T ∼= [S] for a tree S = (S,<);

3. [t] = {t} for every t ∈ T .

Proof. (1.⇒ 2.) Let T be condensed. Then T ∼= [T ].

(2.⇒ 3.) Let T ∼= [S] for a certain tree S, and φ : T → [S] an isomorphism.
Let a, b ∈ T , a 6= b. Then φ(a) 6= φ(b), so they belong to di�erent
maximal bridges in [S], by Lemma 3.2.14. Hence, without loss of gener-
ality, we may conclude that there exists c ∈ [S] such that c ^ φ(a) and
c 6^ φ(b) (by Proposition 3.2.13). Thus, a ^ φ−1(c) and b 6^ φ−1(c),
so [a] 6= [b]. Hence, di�erent moments can not be in the same maximal
bridge.

(3.⇒ 1.) Assume that {t} = [t] for every moment t ∈ T . This position
de�nes an isomorphism φ : T → [T ], by means of t 7→ [t]: in fact, if
t < t′, clearly [t] < [t′], because we need to verify the < relation just on
t and t′.

Now we can link the notion of condensation to the contents of Section
3.2.3.

Lemma 3.2.16. Let T be a tree. Then for every t, t′ ∈ T , [t] = [t′] if and
only if Ht = Ht′.

Proof. If [t] = [t′], then t′ ∈ [t]. For every h ∈ Ht, t ∈ h ∩ [t] 6= ∅, so
h ∩ [t] = [t], hence t′ ∈ h. Thus, h ∈ Ht′ , which implies that Ht ⊆ Ht′ . By
applying the same argument to t′, we have Ht ⊇ Ht′ . Hence, Ht = Ht′ .

Conversely, if Ht = Ht′ , then t ∈ h if and only if t′ ∈ h. Hence, if
h ∩ [t] 6= ∅, h ∩ t = [t] and contains t′. So t′ ∈ [t], hence [t′] ⊆ [t]. By
maximality, we have the equality.
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Corollary 3.2.17. Let T be a tree. Then it is totally branching if and only
if ∀t ∈ T , [t] = {t}, i.e. if and only if maximal bridges in T consist of a
single moment12.

Proof. By de�nition, a tree T is totally branching if, for all t 6= t′ in T ,
Ht 6= Ht′ . Assume by contradiction that there exists t such that [t] 6= {t}.
Then there exists t′ ∈ [t], t′ 6= t. Then [t] = [t′], so, by Lemma 3.2.16 we have
Ht = Ht′ , which is a contradiction.

Conversely, assume that for all t ∈ T , [t] = {t}. Then, given t′ 6= t,
[t′] = {t′} 6= {t} = [t]. Hence, by Lemma 3.2.16, Ht 6= Ht′ . Thus, the tree T
is totally branching.

Corollary 3.2.18. A tree T is totally branching if and only if it is condensed,
i.e if and only if T ∼= [T ].

Proof. By Proposition 3.2.15 and Lemma 3.2.17.

The following results are aimed to investigate the properties of maximal
totally branching subtrees of a given tree. As a consequence of these results,
we will have Theorem 3.2.22 below. A simpler proof of this theorem will also
be given.

Proposition 3.2.19. Let T be a tree and let S be a totally branching subtree
of T , ⊂-maximal with respect to this property. That is, either S = T , or,
for every t ∈ T r S, (S ∪ {t}, <) is not totally branching. Then S contains
exactly one element for every maximal bridge of T .

Proof. If T is totally branching, then S = T , so we can apply Corollary
3.2.17 and complete the proof.

Let T be a non-totally branching tree. Suppose by contradiction that S
does not contain exactly one moment for every maximal bridge. Then, either
there exists a maximal bridge that contains more than one element of S, or
there exists a maximal bridge disjoint from S.

In the �rst case, let A be the maximal bridge and s, s′ ∈ S∩A with s 6= s′.
Then for every history h such that h ∩ A 6= ∅, we have that h ∩ A = A,
because A is maximal. Hence h contains both s and s′. So every history
passing through s contains s′ too, which means that Hs = Hs′ . Thus, S is
not totally branching, which is a contradiction.

In the second case, let B be a maximal bridge such that B ∩ S = ∅, and
b ∈ B. Then (S ∪ {b}, <) is a totally branching subtree of T . In fact, for

12Equivalently, this occurs if every moment belongs to a furcation. Moreover, in our
time-logic language, a tree is totally branching if it is properly branching in every moment,
so, we could say, if it is a totally-indeterministic �ow of time.
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every s ∈ S, s and b belong to di�erent maximal bridges, so there exists at
least one history passing through s and not through b, or vice versa. Then
Hs 6= Hb, which proves that (S ∪ {b}, <) is a totally branching subtree of
T . Moreover, it is clearly strictly bigger than S, which is a contradiction
because S is maximal.

Corollary 3.2.20. Let T be a tree and let S be a totally branching subtree
of T , ⊂-maximal with respect to this property. Then, S is isomorphic to [T ].

Proof. The isomorphism is the condensation map [·] : s 7→ [s]. The fact that
this map is invertible is a consequence of the result shown in the previous
proposition.

The property of α ◦ ν : T 7→ TOT we state in this remark and in the
following proposition will be useful in the proof of Theorem 3.2.22:

Remark 3.2.11. Let T be a tree and S a subtree of T . At a �st glance,
because of the shortening of the notation, we could think that α◦ν(S) = OS
is a subtree of α◦ν(T ) = OT , but this is not the case. In fact, it is not even a
subset: OS = {Hs(S) | s ∈ S} ⊆ H(S) and OT = {Ht(T ) | t ∈ T} ⊆ H(T ),
and Hs(S) ⊆ Hs(T ), so OS and OT consist of di�erent elements. An example
in which the strict subset relation holds, can be produced considering the tree
of Figure 3.1 and its subtree S = T r {h}: Hg(S) consists of a single history,
Hg(T ) contains two di�erent histories.

However, we can clearly build an injective order morphism fromOS toOT ,
sending Hs(S) to Hs(T ), because if Hs(S) ⊂ Hs′(S), then Hs(T ) ⊂ Hs′(T ),
and if Hs(S) 6= Hs′(S), then Hs(T ) 6= Hs′(T ).

Proposition 3.2.21. Let T be a tree, and S a totally branching subtree of
T ⊂-maximal with respect to this property. Then OS ∼= OT .

Proof. The map considered in the remark above, namely Hs(S) 7→ Hs(T ), is
an injective morphism, so it is an isomorphism if it is surjective. Therefore, we
must show that for every t ∈ T there exists s ∈ S such that Hs(T ) = Ht(T ).
Assume by reductio that such an s does not exist. Then for every s ∈ S,
Hs(T ) 6= Ht(T ), but then (S ∪ {t}, <) is a totally branching subtree of T
and it strictly contains S, which contradicts its maximality.

Theorem 3.2.22. Let T be a tree. Then the condensation ([T ], <) is iso-
morphic to (TOT ,⊃), de�ned in Section 3.2.2.

Proof. We just need to show that (TOT ,⊃) is isomorphic to a totally branch-
ing subtree of T ⊂-maximal with respect to this property. If we prove this
claim, we can apply Corollary 3.2.20 and complete the proof.
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Let S be a totally branching subtree of T ⊂-maximal with respect to this
property. Then, by Proposition 3.2.8, S ∼= SOS . Moreover, by Proposition
3.2.21, OS ∼= OT , thus SOS ∼= TOT . Hence, by transitivity, we conclude that
S ∼= TOT .

As a consequence of this theorem, the map α ◦ ν : T 7→ TOT can be
re-de�ned by using the condensation map [ · ] : T 7→ [T ] for every tree T , up
to isomorphisms.

As announced above, we now give a direct and simpler proof of Theorem
3.2.22.

Proof 2 of Theorem 3.2.22. Let f : [T ]→ TOT the map de�ned by [t] 7→ Ht.
It is an isomorphism. To prove this claim, we must prove that it is a well-
de�ned bijective morphism (which reverses the order).
• Assume that [t] = [s], and consider h ∈ Ht. Then h ∩ [t] = [t] = [s] 3 s,
so h ∈ Hs. Thus, Ht ⊆ Hs. With the same argument we prove the other
inclusion, and conclude that f is well-de�ned.

• Assume that [t] 6= [s]. Then, by Proposition 3.2.13 (¬(2)⇔ ¬(3)), there
exists h ∈ Ht, h /∈ Hs, or viceversa. In particular, Ht 6= Hs, and we can
conclude that f is injective.

• Clearly, every element of OT is of the form Ht, hence f([t]) = Ht for
some [t] ∈ [T ]. So f is surjective.

• If [t] < [s], then t < s, so Ht ⊃ Hs. Moreover, if Ht ⊃ Hs, then t < s
and there exists h ∈ Ht rHs. Then t ∈ h and s /∈ h. Hence, [t] 6= [s],
otherwise h ∩ [t] = [t] 3 s, which is a contradiction. Then t < s and
[t] 6= [s], so, by Proposition 3.2.11 we conclude that [t] < [s]. Therefore,
both f and f−1 are morphisms.

3.3 Topological validity

The results presented in Section 3.2.2 show that presentations of non-Archi-
medean spaces correspond to totally branching bundled trees in a natural
way. This suggests that we can de�ne a new notion of Ockhamist validity
based on our topological construction:

De�nition 3.3.1. An Ockhamist formula φ is topologically valid if for every
presentation of non-Archimedean space (X,O), φ is valid with respect to the
associated bundled tree, which means that (TO,BX) � φ.

An Ockhamist formula φ is topologically weakly valid if, for every pre-
sentation of non-Archimedean space (X,O), φ is valid with respect to the
associated complete bundled tree, which means that

(
TOT , H(TOT )

)
� φ.
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Clearly, from the de�nition above, we have that validity with respect to
bundled trees implies topological validity. We are going to show that the
converse implication holds too, which will be a proof of the following:

Theorem 3.3.1. Validity with respect to bundled trees coincides with topo-
logical validity.

The proof of the claim above is divided into three steps:
• construction of the branching extension of a bundled tree;
• proof of two properties of the branching extension: it is totally branching
and it preserves the completeness of the bundle;

• proof that satis�ability with respect to bundled trees implies satis�abil-
ity with respect to totally branching bundled trees.

Once we have completed these three steps, we can conclude the proof
because, from what we proved in Proposition 3.2.8, totally branching trees
correspond to non-Archimedean spaces.

We will adopt two standard notations in the next construction: 2 will
stand for {0, 1}, and IJ is the set of all functions from I to J .

3.3.1 Branching extension

Let (T ,B) be a bundled tree. In order to simplify our notation, given t ∈ T ,
we will denote by t̂ the past Pt plus t, so t̂ = {u ∈ T | u ≤ t}.

We start our construction of the branching extension de�ning the set T ∗

made with every map from the past of any moment to {0, 1}:

T ∗ =
⋃
{t̂2 | t ∈ T} (3.1)

It is clear that every moment t ∈ T has 2|t̂| representatives in T ∗.

Lemma 3.3.2. T ∗ is a tree with the strict subset relation13: T ∗ = (T ∗,⊂).

Proof. The strict subset relation ⊂ is irre�exive and transitive, so we just
need to prove the tree condition. Let t1, t2 ∈ T and consider f ∈ t̂12, g ∈ t̂22.
f ⊂ g if and only if t1 < t2 and f is the restriction14 g�t̂1 of g to t̂1. Thus,

if h is another element of T ∗ in the past of g (i.e. h ⊂ g), with h ∈ t̂32, we
have that f = h, f ⊂ h, or h ⊂ f . The relation between f and h depends
on the mutual relation between t1 and t3, which are surely compatible since
they both belong to the past of t2.

13We see a function f : A→ B as a subset of the cartesian product A×B, so the subset
relation between functions is well de�ned.

14Given f : A → B and A′ ⊆ A, the restriction of f to A′ is f�A′ : A′ → B de�ned by
f�A′ (a) = f(a) for every a ∈ A′, hence f�A′ = {(a, f(a)) | a ∈ A′}.
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Now, given a history h of T , and any χ ∈ h2, we set

χ∗ = {χ�t̂ | t ∈ h}. (3.2)

Lemma 3.3.3. The set χ∗ is a history on T ∗.

Proof. The set χ∗ is totally ordered by ⊃. In fact, its elements are restrictions
of a function on a subset of a history, hence they are totally ordered as
functions, since t1 < t2 implies t̂1 < t̂2. Then, if f ∈ T ∗ such that χ∗ ∪ {f}
is totally ordered by ⊃, and f ∈ t̂2 for a given t, we have that t ^ s for all
s ∈ h. Then, by maximality of h, t ∈ h, hence f ∈ χ∗. So χ∗ is a totally
ordered subset of T ∗ which is maximal with respect to the inclusion, hence
it is a history of T ∗.

Now, starting from the bundle B, we set

B∗ = {χ∗ | χ ∈ h2, h ∈ B}. (3.3)

Lemma 3.3.4. The set B∗ is a bundle on the tree T ∗.

Proof. Let f be an element of T ∗, in particular f ∈ t̂2 for a suitable t ∈ T .
We can consider a history h of T , h ∈ B and h containing t, since B is a
bundle on T . Then f = χ�t̂ , so f ∈ χ

∗ ∈ B∗. Thus, for every moment f of
T ∗ there is a history χ∗ of B∗ passing through it, hence B∗ is a bundle.

So, with de�nitions (3.1), (3.2) and (3.3), we have constructed the branch-
ing extension (T ∗,B∗) of a given bundled tree (T ,B).

3.3.2 Properties of the branching extension

Now we can show that for every tree T the branching extension T ∗ is totally
branching and it contains an isomorphic copy of T : the name of this new
object is explained with these properties.

Proposition 3.3.5. Let T be a tree. Then (T ∗,⊂) is totally branching.
Moreover, there exists an injective order-morphism from T into T ∗.

Proof. Let f, g be moments of T ∗. If f 6^⊂ g, then clearly Hf (T
∗) 6= Hg(T

∗).
If f ^⊂ g, without loss of generality we may assume that f ⊂ g. Let dom(f)
and dom(g) be the respective domains, and t ∈ dom(g) r dom(f). We
de�ne a new g′ : dom(g) → 2 such that g′(u) = g(u) for every u ∈ Pt, and
g′(t) = 1 − g(t). Then g and g′ are ⊂-uncomparable, and f ⊂ g′. Hence,
g′ ∈ Hf (T

∗)rHg(T
∗). Thus, T ∗ is totally branching.



CHAPTER 3. A topological perspective 56

Finally, we can construct an injective order morphism φ0 : T → T ∗ with
the position φ0 : t 7→ f 0

t , de�ning f
0
t ∈ t̂2 as f 0

t (u) = 0 for every u ∈ t̂. It is
an order morphism, since t < t′ implies f 0

t = (f 0
t′)�t̂ . Moreover, φ0 is injective

for cardinality reasons.

Finally, we can prove that the branching extension operator respects the
completeness of bundles:

Proposition 3.3.6. Let (T ,B) be a bundled tree. If (T ,B) is a complete
bundled tree, then its branching extension (T ∗,B∗) is also a complete bundled
tree.

Proof. We need to prove that for every history h∗ ∈ H(T ∗) there exists
h ∈ H(T ) and χ ∈ h2 such that h∗ = χ∗ de�ned in (3.2). This means that
every history of T ∗ comes from a history of T . Hence, if B is complete, B∗
is complete too.

Consider h∗ ∈ H(T ∗). It is a set of functions totally ordered by ⊂, so⋃
h∗ is a function de�ned on a subset of T onto 2. We set χ =

⋃
h∗, and

D = dom(χ) ⊆ T (hence χ ∈ D2, clearly). If we show that D is a history
of T , we have that χ∗ = {χ�t̂ | t ∈ D} = h∗, by de�nition of h∗ , and this
concludes the proof.

D is totally ordered by <, because it is the union of a collection of linear
subsets of T , one included in the another. Moreover, if u ∈ D and v < u,
v ∈ D: in fact, by maximality of h∗, if f ∈ h∗ and u ∈ dom(f), then f�û ∈ h,
so every v < u belongs to the domain of some function in h∗, hence it belongs
to D. Now, assume as a reductio that D is not <-maximal in T , which means
that there exists t /∈ D such that {t}∪D is totally ordered. Then, by what we
proved above, u < t for every u ∈ D, otherwise t would belong to D. Thus,
we can consider a function f ∈ t̂2 that extends χ properly. Then f /∈ h∗, but
g ⊆ f for all g ∈ h∗, which contradicts the maximality of h∗.

Gathering all the results of the previous section together, we prove the
following:

Theorem 3.3.7. Let (T ,B) be a bundled tree. Then its branching extension
(T ∗,B∗) is a totally branching bundled tree, and it is complete if and only if
(T ,B) is complete.

We end this section with a tangible example of the action of the branching
extension operator.

On the top of Figure 3.4 we have a �nite and not totally branching tree
T , and below its branching extension T ∗. It is the union of two disjoint
connected trees, since the root a of T is mapped into two non-comparable
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a

b c

d

fa0

f b01f b00
f c00
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f c11

fd111fd110

Figure 3.4: A tree T and its branching extension T ∗.

functions: f0 : a 7→ 0 and f1 : a 7→ 1. Nodes in T ∗ have the sequence of their
values on their subscript, and the correspondent moment in the starting tree
T on their superscript.

3.3.3 Satis�ability in the branching extension

Now we need to prove that satis�ability in a bundled tree TB = (T ,B)
implies satis�ability in its branching extension (T ∗,B∗). In order to simplify
the notation, we de�ne the function ϕ : T ∗ → T by

ϕ(f) = max(dom(f)), (3.4)

so, if f ∈ t̂2, then ϕ(f) = t. We denote by ϕ also the natural extension of
this function to a map from B∗ to B, which is

ϕ(χ∗) = {ϕ(f) | f ∈ χ∗}. (3.5)

Now, given a bundled tree valuation V on T̃B = {〈t, h〉 | t ∈ h ∈ B} (see
De�nition 2.3.3), we de�ne a new valuation V ∗ on T̃ ∗B∗ = {〈f, χ∗〉 | f ∈ χ∗ ∈
B∗} by setting, for every propositional variable p,

V ∗(p) =
{
〈f, χ∗〉 ∈ T̃ ∗B∗ | 〈ϕ(f), ϕ(χ∗)〉 ∈ V (p)

}
, (3.6)

and by extending the valuation to any compound formula by means of the
rules of De�nition 2.3.3.
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Proposition 3.3.8. Let (T ∗,B∗) be the branching extension of the bundled
tree (T ,B), and let ϕ be the function de�ned by (3.4) and (3.5). Then, for
every valuation V on T̃B, and for every Ockhamist formula A, and every pair
〈f, χ∗〉 ∈ T̃ ∗B∗, we have

〈f, χ∗〉 ∈ V ∗(A) if and only if 〈ϕ(f), ϕ(χ∗)〉 ∈ V (A) (3.7)

where V ∗ is de�ned by (3.6).

Proof. We now prove the statement with an induction on the complexity of
the formula A 15.
• If A is a propositional variable p0, we have that 〈f, χ∗〉 ∈ V ∗(p0) if
and only if 〈ϕ(f), ϕ(χ∗)〉 ∈ V (p0) by de�nition of V ∗, (3.6). So, we
can inductively assume that the thesis holds for every subformula of
A. We need to analyse only the cases in which A is obtained with the
application of ¬, ∧, F, P and ♦, because ∨,→, �, G and H are de�ned
connectives and operators.

• Assume that A is ¬B. Then 〈f, χ∗〉 ∈ V ∗(¬B) if and only if 〈f, χ∗〉 /∈
V ∗(B), if and only if 〈ϕ(f), ϕ(χ∗)〉 /∈ V (B), and �nally it is true if and
only if 〈ϕ(f), ϕ(χ∗)〉 ∈ V (¬B).

• Assume that A is B ∧ C. Then 〈f, χ∗〉 ∈ V ∗(B ∧ C) if and only if
〈f, χ∗〉 ∈ V ∗(B) ∩ V ∗(C), if and only if 〈ϕ(f), ϕ(χ∗)〉 ∈ V (B) ∩ V (C),
and �nally it is true if and only if 〈ϕ(f), ϕ(χ∗)〉 ∈ V (B ∧ C).

• Assume that A is FB. Let 〈f, χ∗〉 ∈ T̃ ∗B∗ , where χ
∗ comes from χ by

means of (3.2), and assume that f ∈ t̂2 and χ ∈ h2 (with h ∈ B), so we
have ϕ(f) = t, ϕ(χ∗) = h, t ∈ h, and f ⊂ χ. Recall that f ∈ χ∗ if and
only if f = χ�ϕ(f) , which is equivalent to f ⊂ χ.
Then, statements from (iF ) to (viiiF ) below are equivalent to one an-
other: some equivalences are justi�ed below.

(iF ) 〈f, χ∗〉 ∈ V ∗(FB);

(iiF ) there exists a g ⊃ f such that 〈g, χ∗〉 ∈ V ∗(B);

(iiiF ) by inductive hypothesis, there exists g ⊃ f such that 〈ϕ(g), ϕ(χ∗)〉 ∈
V (B);

(ivF ) there exist u ∈ h with u > t, and g ∈ û2 such that g ∈ χ∗, g�t̂ = f
and 〈ϕ(g), ϕ(χ∗)〉 ∈ V (B);

(vF ) by de�nition of ϕ, there exist u ∈ h with u > t, and g ∈ û2 such
that g ∈ χ∗, g�t̂ = f and 〈u, h〉 ∈ V (B);

15In this proof we use upper-case letters for formulae in order to avoid the usage of φ
and its variation ϕ in the same context.
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(viF ) there is u ∈ h with u > t such that 〈u, h〉 ∈ V (B);

(viiF ) 〈t, h〉 ∈ V (FB);

(viiiF ) 〈ϕ(f), χ∗〉 ∈ V (FB).

The equivalences (iF ) ⇔ (iiF ) and (viF ) ⇔ (viiF ) hold by De�nition
2.3.3, Fφ case. The equivalence (iiiF ) ⇔ (ivF ) is the de�nition of ⊃
between functions (see footnote 14). The implication (viF ) ⇒ (vF )
follows by choosing g = χ�û .
Clearly, the equivalence (iF ) ⇔ (viiiF ) completes the proof for the in-
ductive case A = FB.

• Assume that A is PB and let f, χ, χ∗, t, h as above. Then, statements
from (iP ) to (viiiP ) below are equivalent to one another: some equiva-
lences are justi�ed below.

(iP ) 〈f, χ∗〉 ∈ V ∗(PB);

(iiP ) there exists a g ⊂ f such that 〈g, χ∗〉 ∈ V ∗(B);

(iiiP ) by inductive hypothesis, there exists g ⊂ f such that 〈ϕ(g), ϕ(χ∗)〉 ∈
V (B);

(ivP ) there are u ∈ h with u < t, and g ∈ û2 such that g ∈ χ∗, f�û = g
and 〈ϕ(g), ϕ(χ∗)〉 ∈ V (B);

(vP ) by de�nition of ϕ, there are u ∈ h with u < t, and g ∈ û2 such
that g ∈ χ∗, f�û = g and 〈u, h〉 ∈ V (B);

(viP ) there is u ∈ h with u < t such that 〈u, h〉 ∈ V (B);

(viiP ) 〈t, h〉 ∈ V (PB);

(viiiP ) 〈ϕ(f), χ∗〉 ∈ V (PB).

The equivalences (iP ) ⇔ (iiP ) and (viP ) ⇔ (viiP ) hold by De�nition
2.3.3, Pφ case. The equivalence (iiiP ) ⇔ (ivP ) is the de�nition of ⊃
between functions (see footnote 14). The implication (viP ) ⇒ (vP )
follows by choosing g = χ�û .
Clearly, the equivalence (iP ) ⇔ (viiiP ) completes the proof for the in-
ductive case A = PB.

• Assume that A is ♦B and let f, χ, χ∗, t, h as above. Then, statements
from (i♦) to (viii♦) below are equivalent to one another: some equiva-
lences are justi�ed below.

(i♦) 〈f, χ∗〉 ∈ V ∗(♦B);

(ii♦) there exists a ξ∗ ∈ B∗ with f ∈ ξ∗ such that 〈f, ξ∗〉 ∈ V ∗(B);
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(iii♦) by inductive hypothesis, there exists ξ∗ ∈ B∗ with f ∈ ξ∗ such that
〈ϕ(f), ϕ(ξ∗)〉 ∈ V (B);

(iv♦) there are h′ ∈ B with t ∈ h′, and ξ ∈ h′2 such that ξ ⊃ f and
〈ϕ(f), ϕ(ξ∗)〉 ∈ V (B);

(v♦) by de�nition of ϕ, there are h′ ∈ B with t ∈ h′, and ξ ∈ h′2 such
that ξ�t̂ = f and 〈t, h′〉 ∈ V (B);

(vi♦) there is h′ ∈ B with t ∈ h′ such that 〈t, h′〉 ∈ V (B);

(vii♦) 〈t, h〉 ∈ V (♦B);

(viii♦) 〈ϕ(f), χ∗〉 ∈ V (♦B).

The equivalences (i♦)⇔ (ii♦) and (vi♦)⇔ (vii♦) hold by De�nition 2.3.3,
♦φ case (2.6*). The equivalence (iii♦)⇔ (iv♦) is the De�nition 3.2 of χ∗

applied to the function ξ. The implication (vi♦) ⇒ (v♦) holds because
we can always extend f to a ξ ∈ h′2.
Clearly, the equivalence (i♦) ⇔ (viii♦) completes the proof for the last
inductive case A = ♦B.

This result concludes the proof of the equivalence between bundled tree
semantics and topological semantics for Ockhamist logics (Theorem 3.3.1).
The weak topological validity part of that Theorem is a consequence of the
second part of Proposition 3.3.6.

3.3.4 Concluding remarks

In this chapter we have shown that the tree semantics for branching-time log-
ics (in particular the Ockhamist semantics) can be considered from a topologi-
cal perspective, and we have also shown that totally branching bundled trees
correspond to presentations of non-Archimedean spaces in a natural way.
Moreover, this last section showed that the restriction to totally branching
trees does not cause any loss of generality.

In the conclusion of [29] (the main source for the contents of this chapter),
the authors state what follows: �we think that topology really o�ers a deeper
insight into the structure of trees and bundled trees�. This sentence was a
starting point for our work: we are going to develop this idea in the next
chapter, in which we will analyse some properties of trees from this rather
new topological perspective.



Chapter 4

Topological characterization of

properties of trees

In this chapter, we analyse some properties of trees from a topological per-
spective. We will also connect natural topological properties with some (pos-
sibly strange or unnatural) properties of trees.

We will adopt the notation introduced in Sections 3.2.1 and 3.2.2, which
we will now recall here:

• given a tree T = (T,<), the non-Archimedean space associated is(
H(T ),OT

)
;

• given a bundled tree TB = (T ,B), the non-Archimedean space associated
is (B,OB);

• given a non-Archimedean topological space (X,O), the associated tree
is TO = (O,⊃);

• given a non-Archimedean topological space (X,O), the associated bun-
dled tree is (TO,BX).

Moreover, we will occasionally use the condensed tree [T ], whose de�nition
and properties are described in Section 3.2.4.

4.1 Preliminary notions on ordinal numbers

De�nition 4.1.1. A partially ordered set (poset) is a well-ordered set if
every non-empty subset has a least element.

Remark 4.1.1. Every well-ordered poset is totally ordered: if x, y are di�erent
elements of the poset, {x, y} has a least element, hence either x < y or y < x.



CHAPTER 4. Properties of trees 62

De�nition 4.1.2. Given two posets (X,<), (Y,≺), f : X → Y is an order-
preserving map if for all x1, x2 ∈ X, x1 < x2 implies f(x1) ≺ f(x2). If f
is an order-preserving bijection, it is called order-isomorphism. Moreover, if
such a map exists, (X,<) and (Y,≺) are of the same order-type, or they are
order-isomorphic.

Having the same order-type clearly is an equivalence relation, and some
de�nitions of ordinal numbers1 involve exactly this idea: they are equiva-
lence classes of well-ordered sets. This de�nition, however, is abandoned in
Zermelo-Fraenkel Set Theory, because these equivalence classes are too large
to form a set2. J. Von Neumann introduced another approach to this prob-
lem in his Zur Einführung der trans�niten Zahlen in 1923, which leads to
the following de�nition:

De�nition 4.1.3. A set S is an ordinal number (often shortened as ordinal)
if it is well-ordered with respect to set membership relation ∈, and every
element of S is also a subset of S.

For instance, we can construct some ordinals, starting from 0: 0 = {} = ∅,
1 = {∅} = {0}, 2 = {∅, {∅}} = {0, 1}, . . ., ω = {0, 1, 2, . . .} 3, ω + 1 =
{0, 1, 2, . . . , ω}, and so on. In general, for every ordinal α, we set α + 1 =
α ∪ {α}: α + 1 is called the successor of α.

In this way, we de�ne a unique representative of each equivalence class
of well-ordered sets up to order-isomorphism (this fact can be shown by
trans�nite induction).

An equivalent modern de�nition of ordinal number involves the notion of
∈-transitive set:

De�nition 4.1.4. A set S is called ∈-transitive if for all x, y, x ∈ y ∈ S
implies x ∈ S.

De�nition 4.1.5. A set S is an ordinal number (often shortened as ordinal)
if it is ∈-transitive and each element of S is ∈-transitive. We call Ord the
class of all ordinals.

Remark 4.1.2. We do not prove the equivalence of the De�nitions 4.1.3 and
4.1.5. Nonetheless, we want to underline the fact that the condition �each

1For example, the one that can be found in Principia Mathematica written by Alfred
North Whitehead and Bertrand Russell and published in 1910, 1912, and 1913.

2The interested reader may deepen these topics in the Chapter Zermelo-Fraenkel Sys-
tem and von Neumann Ordinals in [8].

3This is the �rst in�nite ordinal: it is order-isomorphic to the set of natural numbers
with the usual order <. It can be obtained as the union of all �nite ordinals.
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element of S is ∈-transitive� and the condition �every element of S is also a
subset of S� are equivalent.

The proof of the following results can be found in any textbook on set-
theory, for example [22], Chapter 2.

Proposition 4.1.1. If S is an ordinal and A ∈ S, then A is an ordinal too.
Moreover, every transitive set of ordinals is an ordinal.

Proposition 4.1.2. If S is a set of ordinals,
⋃
S is an ordinal.

This proposition shows that the �successor� operation is not the only way
for producing new ordinals. If an ordinal is not a successor, it is called limit
ordinal.

Proposition 4.1.3. The class of ordinals Ord is totally ordered by ∈.

Proposition 4.1.4. If A is a non-empty set of ordinals, then
⋂
A is an

ordinal, and in fact
⋂
A ∈ A. Hence, any set of ordinals is well-ordered,

with its intersection as least element.

The proof of this fact can be found in [22], Theorem 9.10 at page 72. This
result leads us to a Corollary which will be used later in this chapter.

Corollary 4.1.5. Every decreasing chain of ordinal numbers is �nite.

Proof. A chain of ordinals is a set of ordinals, hence it is well-ordered, by
the previous proposition. So, it has a least element. Moreover, it is reached
in a �nite number of downward steps. Otherwise, the chain deprived of that
least element (and of its immediate successors until a limit step is reached)
would be a subset of a well-ordered set without a least element.

We conclude this section with two de�nitions that establish a link between
ordinal numbers and well-founded trees.

De�nition 4.1.6. Given a well-founded tree T (i.e. a tree with at least
a minimal element), we denote the set of the roots of the tree with T (0).
Moreover, given an ordinal α, assuming that T (β) has been de�ned for all
β < α, T (α) is the set of minimal members of T r

⋃
β<α T (β). Then T (α) is

the α-level of the tree.

De�nition 4.1.7. The height of a well-founded tree T is the least ordinal
number α, such that T (α) = ∅.
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4.2 Linear trees and properly branching trees

We start with two simple examples in order to point out what the approach
we want to use in the following is.

Proposition 4.2.1. A tree is linear if and only if τT is the trivial topology4

on H(T ).

Proof. Let T be a linear tree. It contains a single history h, which by max-
imality coincides with the whole tree. Then H(T ) = {h}, and Ht = h for
every t ∈ T . Then, the base O = {Ht | t ∈ T} = {{h}} = {H(T )}, so the
generated topology is trivial.

Conversely, ifH(T ) is equipped with the trivial topology, the only possible
base is O = {H(T )} (because we have assumed that no base contains the
empty set). However, the base is the collection of all theHt's, hence, given t, s
in T , Ht = Hs = H(T ). Thus, there can not be t, s ∈ T with t 6^ s, because
any two moments belong to the same histories. So the tree is linear.

Remark 4.2.1. Using the condensation, we have that a tree T is linear if and
only if the condensed tree [T ] consists of just one point: since the unique
maximal bridge of T is the tree T itself, it is clear that it will condense in a
single point.

Corollary 4.2.2. A tree is properly branching or not connected (i.e. there
exist moments t, s ∈ T such that t 6^ s) if and only if the base OT of the
non-Archimedean space contains at least two di�erent elements.

Proof. This is essentially the contrapositive of the previous statement. How-
ever, we can give a direct proof for this statement too.

Consider a properly branching or not connected tree, and let t, s be non-
comparable moments. Then Ht 6= Hs, so the topology τT contains at least
two di�erent open sets.

Conversely, if τT contains two di�erent open sets, they are generated by
di�erent open sets of the base. Then, there exist t, s such that Ht 6= Hs, so
there exists h ∈ Ht such that h /∈ Hs (or vice-versa). Hence, there exists
t′ ∈ h with t′ 6^ s. Thus, T is properly branching, or not connected.

Now we can extend this result by characterizing trees with a �rst rami-
�cation in a moment t0. Having a �rst rami�cation in t0 means that for all
t1, t2 < t0, t1 ^ t2, and that for all t3 > t0 there exists t4 such that t3 6^ t4.
In other words, t0 is the maximum of a totally ordered starting sequence in

4The trivial or indiscrete topology for a set X is τ = {∅, X}: it is the minimal topology
on every set X.
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the tree, which is a chain contained in the tree whose elements are ≤ than
every other element of the tree.

Proposition 4.2.3. If a connected tree T has a �rst rami�cation at a mo-
ment t0, then the base OT of the non-Archimedean space contains the whole
space and other two di�erent elements.

Proof. Since the tree �rstly rami�es at t0, then t0 is the maximum of a totally
ordered starting sequence in the tree. Then, the condensation of this sequence
is the maximal bridge [t0]. Moreover, using the notation of the de�nition
above, t3 6^ t4 implies [t3] 6^ [t4]. So the condensed tree [T ] contains at least
three di�erent points, [t0], [t3], [t4]. Because of the isomorphism of Theorem
3.2.22, they correspond to di�erent elements of the base. Moreover, every
history passes through t0, so Ht0 coincides with the whole space.

Remark 4.2.2. The converse is not true. As a counterexample, we can build
a tree like the one shown in Figure 4.1, with three copies of the natural
numbers Nl,Nr,Nd (left, right, down). The relations between them are easily
understandable from the picture. It does not have a �rst rami�cation (even
if it rami�es), but its condensation is single rooted and di�erent from its
root. Thus, the associated base contains the whole space and two di�erent
elements. The reader should notice that the tree of the example is not jointed
(see De�nition 4.8.1).

0d

1d

2d

2r

1r

0r

2l

1l

0l

Figure 4.1: Example of a tree that rami�es without a �rst rami�cation.
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4.3 Connected trees

Many authors de�ne trees as (our) connected trees (see footnote on 15). So,
it is interesting to characterize them from a topological perspective.

One might naively hope that a tree is connected if and only if the topo-
logical space

(
H(T ),OT

)
is connected, but this is false. In fact, we proved

that
(
H(T ),OT

)
is non-Archimedean, and that every element of the base is

clopen, so in general the space can not be connected (see De�nition 3.1.11).

Proposition 4.3.1. Let T be a tree. Then, it is connected if and only if the
union of any two elements of the base OT is contained in another element of
the base.

Proof. Let T be a connected tree and let Ht1 and Ht2 be two elements of
OT . If Ht1 ⊆ Ht2 or Ht2 ⊆ Ht1 , the thesis is trivially veri�ed. Otherwise,
Ht1 ∩ Ht2 = ∅ and t1 6^ t2. Since T is connected, there exists s such that
s < t1, s < t2, hence Ht1 ⊆ Hs, Ht2 ⊆ Hs. Thus, Ht1 ∪Ht2 ⊆ Hs.

Conversely, consider a tree such that the union of every pair of elements
of the base OT is contained in another element of the base. Consider two
uncomparable moments t 6^ t′. By the hypothesis, there must be s ∈ T such
that Hs ⊇ Ht ∪Ht′ , which implies that Hs ⊇ Ht, and Hs ⊇ Ht′ , hence s < t,
s < t′. Thus, T is connected.

4.4 Minimal bundles

Proposition 4.4.1. A subset K of H(T ) is a bundle in T if and only if K
is dense in

(
H(T ),OT

)
.

Proof. Assume that K is a bundle. Then, by de�nition (2.3.1), for every
moment t ∈ T,∃ht ∈ K such that t ∈ ht. This implies that for every t,
ht ∈ K ∩ Ht, hence K ∩ Ht 6= ∅. Thus, every open set of OT intersects K,
which means that K is dense.

Now, let K be a dense subset of H(T ). Then, for every t, K ∩ Ht 6= ∅,
so there exists h ∈ Ht ∩ K. But h ∈ Ht implies t ∈ h, hence the bundle
condition holds true for K.

Combining this proposition with the Remark 3.1.2 about isolated points,
we obtain the following:

Corollary 4.4.2. The set of isolated histories in
(
H(T ),OT

)
is the set of

all histories belonging to every bundle on T .
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Proof. If h is isolated, then, by Remark 3.1.2, h belongs to every dense
subset of (H(T ),OT ). However by the previous proposition, dense subsets of
(H(T ),OT ) are bundles of T . Hence, h belongs to every bundle. Moreover,
if h is not isolated, then H(T )r{h} is dense (again by Remark 3.1.2), hence
it is a bundle. Thus, h does not belong to every bundle on T .

It is worth noticing that the set of isolated histories considered in the
corollary above arises naturally from this topological perspective: on the
contrary, the notion of minimal bundle may not be that immediate or �nat-
ural� in the algebraic context of bundled trees.

Once more, combining Proposition 4.4.1 with Proposition 3.1.4, we obtain
directly the following:

Corollary 4.4.3. For every bundle B on a tree T , h is isolated in τB if and
only if it is isolated in τT .

Now we can produce another characterization of a speci�c class of bundles,
which comes naturally from this topological perspective, as before:

Proposition 4.4.4. A bundle B on a tree T is minimal (with respect to ⊂)
if and only if τB is the discrete topology on H(T ).

Proof. Consider B a minimal bundle and h ∈ B. Then, by minimality, Br{h}
is not a bundle, hence it is not dense (by Proposition 4.4.1), so there exists
an open Ht (of the base OT ) such that (B r {h}) ∩ Ht = ∅. However, B
is dense, so B ∩ Ht 6= ∅, hence B ∩ Ht = {h}. This implies that {h} is a
�nite intersection of open subsets in τB, so it is open, thus h is isolated. As
a consequence, every point of B is isolated, hence τB is the discrete topology.

Conversely, assume that the topology τB generated by a bundle B is dis-
crete. Then, every h ∈ B is isolated in τBB, hence in τT (by Corollary 4.4.3).
So, by Corollary 4.4.3, for every h ∈ B, B r {h} is not a bundle, hence B is
minimal.

Gathering together all the above results, we obtain the following topolog-
ical characterization for trees with a minimal bundle:

Corollary 4.4.5. A tree T has a minimal bundle if and only if the set I
of isolated points of

(
H(T ), τT

)
is dense. If this is the case, I is the unique

minimal bundle for T .

We want to draw attention once again to the fact that this new perspective
has led us to a new result: a purely algebraic characterization of trees with
a minimal bundle may be di�cult. On the contrary, this result arises in a
very natural way in this topological context.
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4.5 Finitely branching ω-trees

The aim of the next steps is to topologically characterize a subclass of �nitely
branching trees, which are �ows of time that have a �nite number of possible
�immediate futures� for every moment. This section is borrowed from [29].

De�nition 4.5.1. A tree T is an ω-tree if every history h ∈ H(T ) is iso-
morphic to the set of natural numbers.

For an ω-tree T , and for every h history of T , we denote by φh the
isomorphism from ω to h. For any h ∈ H(T ), the moment φh(0) is a root of
the tree: clearly, a tree is connected if and only if it is single-rooted, which
means that it has a unique root.

For any given moment t of an ω-tree, and for every h ∈ Ht, we call the
moment φh

(
φ−1
h (t) + 1

)
the immediate successor5 of t along h. We call the

set S(t) =
{
φh
(
φ−1
h (t) + 1

)
| h ∈ Ht

}
the set of the immediate successors of

t.

De�nition 4.5.2. An ω-tree T is �nitely branching if, for every t ∈ T , the
set S(t) is �nite.

De�nition 4.5.3. We denote by Tn the subtree of T obtained by considering
only the �rst n levels: formally, this set is obtained recursively by setting:
T0 = {φh(0) | h ∈ H(T )} (the set of roots in T ) and Tn+1 = Tn ∪

⋃
t∈Tn S(t).

It is easy to prove that an ω-tree is �nitely branching if and only if every
Tn is �nite.

Theorem 4.5.2 below uses the König's tree lemma: since it is a funda-
mental result about trees and its proof is not so di�cult, we will now state
and prove it.

Theorem 4.5.1 (König's tree lemma). Let T be a �nitely branching rooted
tree with at least countably many moments. Then there exists an in�nite
history through T .

Proof. In order to build an in�nite history h, we start from the root t0.
We have �nitely many choices for the �rst successor of t0 along h, and we
select a moment t1 with in�nitely many successors. Such a moment exists
because otherwise T would be a �nite union of �nite sets of moments, but it
is in�nite. Now we can repeat the process starting from t1 and we can look
for a moment t2 at level 2 with in�nitely many successors. Thus, repeating

5We will give the de�nition of immediate successor of a moment in an arbitrary tree in
Section 4.6.
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the argument for every level n, we have inductively constructed a history
of countable height: the fact that it is a set is granted by the Axiom of
Choice6.

Remark 4.5.1. Clearly, every �nitely branching rooted tree of height ω satis-
�es the hypothesis of the König Lemma, since it has at least countably many
moments.

Theorem 4.5.2. Let T be a connected ω-tree. Then T is �nitely branching
if and only if

(
H(T ), τT

)
is compact.

Proof. Assume by reductio thatH(T ) is compact and that S(t0) has in�nitely
many elements for a certain t0 ∈ T . For every t ∈ T , Ht =

⋃
s∈S(t) Hs, and

for every S ′ $ S(t), Ht %
⋃
s∈S′ Hs, because every history passing through

t contains an immediate successor, and vice-versa. As observed after the
Proposition 3.2.1, Ht0 is closed, hence compact (by Proposition 3.1.5). {Hs |
s ∈ S(t0)} is a cover for Ht0 consisting of in�nitely many open subsets, but
every proper subfamily does not cover Ht0 , hence Ht0 is not compact, which
is a contradiction.

Conversely, assume by reductio that T is �nitely branching and thatH(T )
is not compact. Since every cover of open subsets can be made of elements
of a base OT , the assumption that H(T ) is not compact is equivalent to the
assumption that there exists an in�nite set S ⊆ T such that H(T ) =

⋃
s∈S Hs

and for every �nite subset S ′ ⊆ S, H(T ) %
⋃
s∈S′ Hs.

Now, let Sn be the set S ∩ Tn, the �rst n + 1 levels of S. Since the
tree is �nitely-branching and connected (⇒ single-rooted), then Tn is �nite,
and so is Sn. Thus, H(T ) %

⋃
s∈Sn Hs, then there is h∗ /∈

⋃
s∈Sn Hs. For

every n, let t0 < t1 < . . . < tn be the starting sequence of n moments
of h∗: by construction, it has empty intersection with S. Now, consider
T ′ = {t ∈ T | if s ≤ t then s /∈ S}. Since for every n there exists a
sequence t0 < t1 < . . . < tn with empty intersection with S, T ′ has in�nitely
many moments and (T ′, <) is a single-rooted subtree of T . By König's tree
lemma, T ′ contains an in�nite history which does not intersect with S. Hence,
H(T ) 6=

⋃
s∈S Hs, which is a contradiction.

6The relationship between the König Tree Lemma and the Axiom of Choice is an
interesting topic. It can be shown that it is equivalent to the principle that every countable
set of �nite sets has a choice function, which is sometimes called the axiom of countable
choice for �nite sets. For further reading on this topic, see [33] or [11].
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4.6 Well-founded trees

4.6.1 De�nition and properties

In this section we will �rst consider three equivalent algebraic characteri-
zations and some properties of well-founded trees. Then their topological
characterization will be investigated. They are quite important: a great
number of articles and applications regarding the structure of trees consider
only well-founded trees from the beginning.

De�nition 4.6.1 (Kellerman, [19]). A tree T is well-founded if every non-
empty set of moments contains a minimal moment.

Proposition 4.6.1. A tree is well-founded if and only if every history is
well-ordered.

Proof. A history is a particular totally ordered non-empty set of moments,
so the right to left implication is immediate.

Conversely, suppose that T is not well-founded and let {ai}i∈N be an
in�nite strictly descending chain in T . Then, by Remark 2.2.2, {ai}i∈N can
be extended to a history which is not well ordered.

De�nition 4.6.2 (Nyikos, [23]). A tree T is well-founded if the past Pt of
every moment t is well-ordered.

Proposition 4.6.2. De�nitions 4.6.1 and 4.6.2 of well-ordered trees are
equivalent.

Proof. Call (1) the De�nition 4.6.1, and (2) the De�nition 4.6.2: (1) easily
implies (2). In fact, given t ∈ T , if we consider any subset of Pt, this is a set
of moments, hence it has a minimal element. The past of a given point is
linear (see tree condition, De�nition 2.1.1), so a minimal element is the least
element.

Now, assume (2). We want to show that every history is well-ordered,
and so we deduce (1) using the equivalence of Proposition 4.6.1. Let h be a
history and B ⊆ h. Consider t ∈ B: B ∩ Pt ⊆ Pt, so it has a least element t̄
since Pt is well-ordered. Consider now b ∈ B, b ≤ t̄. b ≤ t̄ ≤ t, so b belongs
to the past of t, hence it must coincide with t̄.

We want to emphasize that the request of well-foundedness is quite strong.
It excludes dense trees (for example no copy of Q or R can be contained in
our tree), and we can not have a quite simple countable linear order either,
in which an in�nite descending chain is involved, as seen in Figure 4.2. In
this example, the subset {nu | n ∈ N} of the past of 0u is not well-ordered.
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0d

1d

1u

0u

Figure 4.2: A tree that is not well-founded.

Remark 4.6.1. Every well-ordered tree is rooted, but not necessarily single
rooted. In fact, if we consider the entire past of a given moment t, it has a
least element, which is a root. Moreover, if we have a non-connected tree, it
is well-founded if and only if every connected component is well-founded. In
this case, we have more than one root.

De�nition 4.6.3. A tree T is upwards discrete if every moment t ∈ T (which
is not a leaf) has an immediate successor along every history passing through
it. With immediate successor of t we mean a moment t′ ∈ T , t < t′, such
that there are no s ∈ T , t < s < t′.

Proposition 4.6.3. A well-founded tree is upwards discrete.

Proof. Let t be a moment of a well-founded tree T , t not a leaf, and h 3 t.
Consider the set B = {x ∈ h | t < x}. It has a least element, which is the
immediate successor of t along h. Hence, T is upwards discrete.

4.6.2 Topological characterization

In [23], Nyikos suggests that if a tree T is well-founded, the base OT is
Nötherian, but he gives no proof of this claim. We give a detailed proof of
this result below

De�nition 4.6.4. A base of a topological space is Nötherian if every strictly
ascending sequence of its elements is �nite.

Remark 4.6.2. The reader may notice that we have not required the whole
space to be Nötherian. This is a stronger condition7, which would �ruin� our
topological space: in fact, every Hausdor� and Nötherian topological space is
�nite, and our non-Archimedean spaces always have the Hausdor� property.

7To be precise, the open sets satisfy the Ascending Chain Condition, often shortened
with ACC : every increasing chain of open sets stabilizes after a �nite number of steps.
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Proposition 4.6.4. Let T be well-founded. Then OT is a Nötherian base8.

Proof. Consider an increasing sequence {Htn | n ∈ N} of elements of the base,
with Htn ⊆ Htn+1 . Then, for all n,m ∈ N with n ≤ m, we have Htn ⊆ Htm , so
the set {t0, t1, . . .} is totally ordered by the �reverse� inclusion, t0 ≥ t1 ≥ . . ..
Then, by Remark 2.2.2, there is a history containing {t0, t1, . . .}. Thus, by
the de�nition of well-founded trees, {t0, t1, . . .} has a least element, which
means that there exists i ∈ N such that ti ≤ tn for every n ∈ N. This implies
that Hti ⊇ Htn for every n ∈ N. Hence, Hti is the greatest element for the
chain {Htn | n ∈ N}, and it is reached after a �nite number i of steps.

Unfortunately, the converse is not true for the usual reason: the tree(
H(T ),OT

)
is the condensation of the tree T , so it �can not see� the bridges

of T . With this idea, we can produce the following counterexample:

Example 4.6.1. Consider the ordinal ω with the reverse order, as in Figure
4.3. It is not well-founded (and not rooted either), but its base is OT = {H0},
which is clearly Nötherian.

0

1

Figure 4.3: Example of a not well-founded tree with a Nötherian base.

This suggests to focus our attention on the class of totally branching trees,
whose subclasses are the only one that can be signi�cantly characterized in
our topological context.

We start by proving that any tree with a Nötherian base is upwards
discrete. We will prove this result by reductio, so we need to understand
what a non-upwards discrete tree is: a tree is non-upwards discrete if there
exist t ∈ T and h ∈ Ht such that t does not have an immediate successor
along h. In other words, for every t′ ∈ h, t < t′, there exists s ∈ h, t < s < t′.

Proposition 4.6.5. Let T be a totally branching tree such that OT is Nöthe-
rian. Then T is upwards discrete.

8From now on, sometimes we will say that a tree has a Nötherian base meaning that
OT is Nötherian.
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Proof. Suppose by reductio that T is not upwards discrete. Then, as we
said above, there exist t ∈ T , and h ∈ Ht such that for all t′ ∈ h, t < t′,
there exists s ∈ h, t < s < t′. So there is an in�nite descending chain of
moments pointing towards t along h. Let t0, t1, . . . , tn, . . . be a subsequence
of this chain (i.e. we must select a countable subset of the chain with the
same �dense near t� property): it exists because the chain above is in�nite
and strictly descending.

Then, Ht0 , Ht1 , . . . , Htn , . . . is a strictly ascending sequence of elements of
the base, whose existence contradicts the Nötherian property requested in
the hypothesis.

Proposition 4.6.6. Let T be a totally branching tree such that OT is a
Nötherian base. Then T is well-founded.

Proof. Let h be a history in T , and A ⊆ h. We want to �nd a least element
of A, which leads us to the conclusion using Proposition 4.6.1.

Let a0 be an element of A, and for every n ∈ N, given an choose an+1

among the predecessors of an, i.e. such that an ≥ an+1. Then (an)n∈N is a
descending sequence of moments coming down along A.

Let Ã = {an | n ∈ N}, the subset of A that collects all the elements of
this sequence. Then the set {Han | an ∈ Ã} is an ascending sequence of
elements of the base, hence it must stabilize after a �nite number of steps
because of the Nötherian property requested. In other words, this sequence
has a greatest element, call it Ht̃. Then, t̃ is the least element of Ã, since the
tree is totally branching and so there can not be a bridge below t̃.

Remark 4.6.3. In the previous proof, we could conclude that t̃ is the least
element of A, even if the history h is isomorphic to an uncountable ordinal
number, by Corollary 4.1.5: there can not be an in�nite descending chain in
an ordinal, hence we can not properly extend the sequence de�ned above.

4.7 ω-co�nal trees

In this section we consider trees in which every history has co�nality ω, which
are called ω-co�nal trees . We start with the de�nition of co�nality.

De�nition 4.7.1. Let (A,<) be a poset and B ⊆ A. B is co�nal in A if for
every a ∈ A, there exists b ∈ B such that a < b.

Remark 4.7.1. The co�nality relation over partially ordered sets is re�exive
and transitive. In fact, every poset is co�nal in itself. Moreover, if B is a
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co�nal subset of a poset A, and C is a co�nal subset of B (with the induced
partial ordering), then C is also a co�nal subset of A.

A co�nal subset contains every maximal element of the poset: otherwise,
a maximal element would fail to be less than some other element of the co�nal
subset. This implies that if there are disjoint co�nal subsets of a poset, then
it does not have maximal elements. If a poset has a greatest element, then
it belongs to every co�nal subset.

De�nition 4.7.2. Let (X,<), (Y,≺) be posets. We say that f : Y → X
is a co�nal embedding if it is an injective order morphism with the property
∀x ∈ X, ∃y ∈ Y such that x < f(y). In other words, the image of the
function f is unbounded from above.

De�nition 4.7.3. Given a cardinal number λ, we say that a poset X has
co�nality λ (cf(X) = λ) if λ is the cardinality of the least ordinal number
such that there exists a co�nal embedding from it into X.

Remark 4.7.2. From Proposition 4.1.4, every non-empty set of cardinal num-
bers has a least member, in fact, every cardinal is an ordinal. This allows
us to give the following equivalent de�nition of co�nality: given a poset A,
the co�nality of A is the least of the cardinalities of the co�nal subsets of
A. Given this result, it is clear that the co�nality of a set with a greatest
element is 1.

4.7.1 Motivation

The main aim of this section is to characterize trees in which every history
has co�nality ω. We are interested in these trees for two main reasons:
• there are de�nability results that hold in the class of ω-co�nal trees. For
example, as stated in [39], no Ockhamist formula is true in a bundled
tree if and only if it is complete, but such a formula exists for bundled
trees in which every history has co�nality ω. We suggest the article
cited above for further results about this topic.

• a generalization of the König tree lemma (Theorem 4.5.1) can be easily
proved for this class of trees (assuming that the tree is rooted too), as
shown in the following remark and theorem, both taken from [42], with
some corrections and extensions.

Remark 4.7.3. In order to extend the validity of the König tree lemma, the
�rst step is to weaken some hypothesis. We start our discussion from the
statement suggested by Remark 4.5.1: a �nitely branching rooted tree of
height ω has an in�nite history.
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We can start by dropping the �nitely branching hypothesis (which is
equivalent to the fact that every level T (α) is �nite), but unfortunately the
lemma does not work anymore. In fact, if we have a tree of countable height
with levels of cardinality ω, it does not necessarily have a history of countable
length. Consider for example the tree of Figure 4.4, where the �rst history
has height two, the second height three, and so on. In this tree every history
has a �nite length.

Figure 4.4: Example of a tree with levels of countable cardinality, and no
countable history.

Another natural way in which we could generalize the König tree lemma
is to extend the height of the tree, and so to consider a tree of uncountable
height with countable levels, and to ask whether they have histories with
uncountably many moments. As said in [1], it is easy to obtain a tree of
uncountable height with no uncountable history: the tree consisting of all
one-to-one countable functions from a countable ordinal into ω1 with the
function extension ordering is such a tree. But, its ω level is already un-
countable (there are continuum many permutations of ω), so this tree clearly
does not satisfy the hypothesis on the size of the levels.

However, and strangely enough, there are trees of height ω1 with no un-
countable history and no uncountable levels: they are called Aronszajn trees9.

As said in [42], the problem we run into with Aronsjazn trees is that the
proof of König's lemma fails at the limit step: we may have collected a set
of comparable moments that have in�nitely many successors, but we cannot
guarantee that there that there are moments above all of them.

9They are named after Nachman Aronszajn, a Polish matematician, who constructed
an Aronszajn tree in 1934; its construction was described in [21]. Since this book was
written in French, we found another construction in [1]: in this article, the author shows
two di�erent approaches: the classical one, due to Aronszajn, and a newer one, due to
S. Todor£evi¢, who uses some of the methods of today's combinatorial set theory. This
second method is employed in the proof of the existence of an Aronszajn tree found in
[15], Lemma 9.16. Further remarks on this topic can be found in Section 4.9 of this thesis.
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However, the proof of König's lemma relies on the fact that the size of
the levels is less than the co�nality of the height, and there are no limit
steps involved. This fact suggests to consider trees with height of co�nality
ω (ω-co�nal trees have this property), and to prove the following generalized
König's Lemma:

Theorem 4.7.1. Let κ be an ordinal with co�nality ω. Then any �nitely
branching rooted tree of height κ has a history of length κ.

Proof. Since κ has co�nality ω, then there exists a co�nal embedding f : ω →
κ, which is an order morphism such that for every α ∈ κ (or, equivalently,
α < κ) there exists i ∈ ω such that f(i) > α. Then for every i, κ > f(i), so
κ ≥

⋃
i∈ω f(i) ≥

⋃
α∈κ α = κ. Thus κ =

⋃
i∈ω f(i).

To build a history of height κ, we start from a root t0 of our tree with
in�nitely many successors: such a moment exists because, otherwise, T would
be a �nite union of �nite sets of moments, but it is in�nite. Then the level
T (f(1)) can not be empty because f(1) < κ, so there is a chain of moments
connecting the root to some moments of T (f(1)). Again, there is a moment of
T (f(1)) with in�nitely many successors, otherwise the tree would have height
f(1) + n for some n ∈ ω, so it would have a leaf at the end of every history,
so the co�nality of the height would be 1. Moreover, the level T (f(2)) can
not be empty, because f(2) < κ, so there is a chain of moments connecting
some moments of T (f(1)) to some other moments of T (f(2)). Again, there
is a moment of T (f(2)) with in�nitely many successors, otherwise the tree
would have height f(2) + m for some m ∈ ω, so it would have a leaf at the
end of every history, so the co�nality of the height would be 1.

Therefore, we can repeat the same argument with the level T (f(n)), for
every n, so we have inductively shown that a history of height greater than
any f(i) exists. However since f is a co�nal embedding, the only ordinal that
is strictly greater than any f(i) (and smaller than or equal to κ), is κ itself.
So such a history has height κ.

Remark 4.7.4. The online source [42] that inspired this section proved this
generalization of the König lemma in this way (in our notation: δi = f(i)):

Let us write κ =
⋃
i∈ω δi where δi is an ordinal. Then starting at the

root of our tree, we can �nd a node on level δ1 with at least κ many
successors. From that node we can �nd one of its successors on δ2 with
at least κmany successors, and so on. Such a node exists since each level
only has �nitely many nodes. Since there is no limit step involved, we
have, after some induction, successfully constructed a history of height
κ.
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However, his proof is not correct, or at least its correctness depends on the
chosen co�nal embedding. As an example, if κ = ω1 +ω, and we set f(0) = 0
and f(i) = δi = ω1 + (i − 1), there is no moment of T (δ1) = T (ω1) with κ
successors, since we have already �jumped above� ω1.

4.7.2 Topological characterization

De�nition 4.7.4. Let (X, τ) be a topological space and x ∈ X a point. A
subset B of τ is a local base at x if, for every open neighbourhood U of x,
there exists B ∈ B such that x ∈ B ⊆ U . A base of the topology can be
localized if there exists a subcollection which is a local base at some point x.

Remark 4.7.5. Let X be an Hausdor� topological space, and B a local base
at a point x ∈ X. Then

⋂
B = x. In fact, assume y ∈ X, y 6= x. Hausdor�

property implies that there exists U neighbourhood of x such that y /∈ U .
Hence, there exists B ∈ B such that x ∈ B ⊆ U , which implies y /∈ B. Thus
y /∈

⋂
B. Moreover, given a base B for the topological space, Bx = {B ∈ B |

x ∈ B} is clearly a local base at x.

De�nition 4.7.5. Let (X, τ) be a topological space and B a base for the
topology. B is a base of countable order if every strictly decreasing sequence
of its elements either has empty intersection or it is a local base at some
point.

Remark 4.7.6. It is worth noticing that, if {Un | n ∈ N} is a countable local
base at a point x, then a new local base {Vn | n ∈ N} can be found with the
additional property Vn ⊃ Vn+1 for each n. The construction is simple: let
Vn =

⋂
k≤n Uk.

Lemma 4.7.2. Let T be any tree, and h a history on T . Then
⋂
t∈hHt =

{h}, which means that the base OT can be localized for every h.

Proof. Let A be
⋂
t∈hHt. Clearly h ∈ A, since h ∈ Ht for all t ∈ h. Consider

h′ ∈ A. For all t ∈ h, h′ ∈ Ht, hence t ∈ h′. Then h ⊆ h′. As a consequence,
we have that h = h′, since histories are maximal chains.

Moreover, the base OT = {Ht | t ∈ T} can be easily localized at a point
h of the space H(T ). The subfamily Oh = {Ht | t ∈ h} is a local base: in
fact, h ∈ Ht for every t ∈ h, and every open set U containing h is union of
open subsets of the base, so U contains Ht for some t ∈ h.

Corollary 4.7.3. Let T be an ω-co�nal tree, and, for every history h, let
fh be the co�nal embedding of N into h. Then, for every history h, {h} =⋂
n∈NHfh(n).
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Proof. Let h be a history in T . Then for all t ∈ h, there is n ∈ N such that
t < fh(n). So Ht ⊇ Hfh(n) and

⋂
t∈hHt ⊇

⋂
n∈NHfh(n). By Lemma 4.7.2,⋂

t∈hHt = {h}. Moreover, h ∈
⋂
n∈NHfh(n) because, for all n ∈ N, fh(n) ∈ h

and hence h ∈ Hfh(n). Thus, {h} =
⋂
t∈hHt ⊇

⋂
n∈NHfh(n) ⊇ {h}, so every

inclusion holds as an equality.

Corollary 4.7.4. Let T be an ω-co�nal tree. Then the base OT is a base of
countable order.

Proof. In the case of trees in which every history has co�nality ω, Corollary
4.7.3 implies that the local base Oh = {Ht | t ∈ h}, as constructed in Lemma
4.7.2, is indeed a countable local base, which means that the base OT is a
base of countable order.

However, the converse implication is not true: the fact that OT is a base
of countable order does not imply that every history in T has co�nality ω.
Consider for instance the following example.

Example 4.7.1. Let T be the tree described in Figure 4.5, in which a branch
isomorphic to ω starts from every natural number included in the ordinal ω+1
(whose greatest element is called M instead of ω, in order to avoid con�icts
in the notation).
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31
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323

M

Figure 4.5: Example of a tree in which a history does not have co�nality ω.

Clearly, every history of the type {0, 1, 2, . . . , n, (n + 1)n, (n + 2)n, . . .}
is isomorphic to ω, thus it has co�nality ω. However the vertical history
{0, 1, 2, 3, . . . ,M} has a greatest element, hence it has co�nality 1. Call this
history hM .

Now we observe that the history h0 = {0, 10, 20, . . .} rami�es only in 0,
so we have that H10 = H20 = H30 = . . . = {h0}. In general, for every n and
for every m > n, the set Hmn is equal to H(n+1)n and it contains the single
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history hn = {0, 1, 2, . . . , n, (n + 1)n, (n + 2)n, . . .}. Moreover, the set HM

consists just of the vertical history hM , and hM belongs to every Hn.
The base of the topology of this tree is

OT = {Hn | n ∈ N} ∪ {H(n+1)n | n ∈ N} ∪ {HM},

and the only in�nite strictly decreasing sequence in this base is {Hn | n ∈ N}.
In fact, Hn = Hn+1 ∪ {hn}, so Hn ⊃ Hn+1. Moreover

⋂
{Hn | n ∈ N} = hM ,

so it is a local base at hM . So this base has the countable order property,
but the tree is not an ω-co�nal tree.

We could think that the problem of the tree above is the presence of the
greatest element of a history, but we can produce a variation of the previous
example in which there is a history of given co�nality, and such that OT still
is a base of countable order. Given an ordinal λ which is the co�nality of
another ordinal α, we draw the tree of Figure 4.6 starting from the tree of
the previous example, using M as the starting point of α. Then the vertical
history hM contains the whole ordinal, hence it has co�nality λ. Moreover,
we have not produced any variation from the topological point of view (in
particular, OT is a base of countable order), since the condensation of this
tree is the same as the condensation of the tree of Figure 4.5.
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Figure 4.6: Example of a tree in which a history has co�nality λ.

This second example suggests that non-totally branching trees can not
be considered in a setting in which co�nality matters. Unfortunately, even
requiring the tree to be totally branching is not enough for our character-
ization of ω-co�nal trees to work. In fact, the condensation of both trees
we considered above is a totally branching tree, in which the usual base is a
base of countable order, and every history has a greatest element and so has
co�nality 1.



CHAPTER 4. Properties of trees 80
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Figure 4.7: Condensation of the previous trees.

As a �nal remark, a tree in which OT is a base of countable order is
not necessarily well-founded (see De�nition 4.6.1). As an example, we can
consider another variation of the tree described above, represented in the
following Figure 4.8: in this case, there are a lot of strictly descending se-
quences of elements of the base ({Hn | n > z} for every chosen z ∈ Z), but
all of them still intersect in {hM}. This is also a totally branching tree.
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−1−2

Figure 4.8: A not well-founded tree with base of countable order.

The examples considered above suggest the following result:

Proposition 4.7.5. Let T be a totally branching well-founded tree in which
the base OT is a base of countable order. Then, every history is isomorphic
to an ordinal number up to ω + 1 included.

Proof. Assume by reductio that there is a history h which is isomorphic to
an ordinal number greater than or equal to ω + 2. This history contains a
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copy of the natural numbers, a moment above all the �natural� moments, t0,
and another one which follows, t1. Since the tree is totally branching, there
must be t2 > t0, t2 6^ t1.

0

1

2

t0

t1 t2

Figure 4.9: Representation of the history considered in the proof.

Then, we have that {Hn | n ∈ N} is a strictly descending chain whose
intersection consists of two histories: one ends with t1 and the other one ends
with t2. Hence, it is not a local base for h (see Remark 4.7.5). Moreover,
it clearly has non-empty intersection, hence OT is not a base of countable
order, which is a contradiction.

So, we have that in a totally branching well-founded tree in which OT is
a base of countable order, every history is either �nite, or countably in�nite
(with or without a greatest element). So, in order to characterize trees in
which every history is isomorphic to ω (which we called ω-trees in Section
4.5: they clearly form a subclass of ω-co�nal trees), we just need to require
that no history has a greatest element.

In our setting, this property can be simply characterized from a topolog-
ical point of view: to do so, we must require the space to be perfect.

De�nition 4.7.6. A topological space (X, τ) is perfect if it has no isolated
points.

Theorem 4.7.6. Let T be a totally branching tree. Then, every history does
not have an ending moment (leaf) if and only if the space H(T ) is perfect.

Proof. Assume that H(T ) is perfect. There is no isolated point, which means
that for every h history in T , {h} is not open in τT , which, again, means
that there is no �nite intersection of elements Ht of the base that is only {h}.
Suppose by reductio that there is a history he with an ending moment (i.e.
a greatest element) te. Then Hte = {he}, which is a contradiction.

Conversely, assume that the space is not perfect. From the hypothesis
we have that there exists h ∈ H(T ) such that {h} is open, which means
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that there is a �nite collection {t0, . . . , tn} of moments of T such that {h} =⋂n
i=0Hti . However, if Ht 3 h, then t ∈ h, so the collection {t0, . . . , tn}

consists of pairwise comparable moments. From the fact that it is �nite we
deduce that there is a greatest moment: tg. Hence, Hti ⊇ Htg for every i,
so {h} =

⋂n
i=0Hti = Htg . Hence, h is the only history passing through tg.

Moreover, since the tree is totally branching, there can not be a linear bridge
above tg along h, hence tg is the ending moment of h.

Gathering together Proposition 4.7.5 and Theorem 4.7.6, we have the
following characterization of ω-trees.

Proposition 4.7.7. Let T be a totally branching well-founded tree in which
the base OT is a base of countable order, and the space H(T ) is perfect. Then
T is a (totally branching) ω-tree.

However, this result is not fully satisfying, since we greatly reduced the
class of trees we were able to characterize: we started from ω-co�nal trees
and ended up with ω-trees.

Can we improve this result? Which property needs to be weakened in
order to characterize the whole class of totally branching ω-co�nal trees?
These questions are left as an open problem.

4.8 Jointed trees

We are interested in the class of jointed trees because the de�nability result
brie�y discussed in the �rst part of Section 4.7.1 holds for this class too10.
Moreover, we used trees that are not jointed as counterexamples for some
statements in the previous sections.

De�nition 4.8.1. A tree T is jointed if the intersection of any two di�erent
histories is either empty or has a greatest element. Formally, if ∀h, h′ ∈
H(T ), h 6= h′, h ∩ h′ = ∅ ∨ ∃t = max{h ∩ h′}.

Clearly, every �nite tree is jointed. Actually, every tree of �nite height is
jointed: in fact, the intersection of two di�erent histories (if not empty) is
linear, and it has cardinality less or equal to the height of the tree.

So, in order to produce a tree that is not jointed, we have to design a tree
with in�nite height: for example, after a in�nite linear starting segment, we
can add two uncomparable moments (l, r), as seen in Figure 4.10. In fact, the

10The authors of the cited article [39] prove that the result we mentioned holds for the
class of co�nally jointed trees, which contains both jointed and ω-co�nal trees.
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�left� history {0, 1, 2, . . . , l} and the �right� history {0, 1, 2, . . . , r} intersect
in a copy of ω, which does not have a greatest element. A variation of this
example is contained in Figure 4.1.

0

1

2

rl

Figure 4.10: Example of a tree that is not jointed: for every n ∈ N, n < l,
n < r, and l 6^ r.

We observe that the tree of Figure 4.10 is well-founded, while the one
of Figure 4.1 is not: this means that well-foundedness and jointedness are
unrelated properties.

Now we will give the topological characterization for jointed trees: we
will start with the easier case of connected jointed trees, then we will extend
the result to the non-connected case, and �nally we will prove a form of the
converse. Like in other cases, the restriction to totally branching trees will
be necessary.

Proposition 4.8.1. Let T be a connected jointed tree. Then, for all h, h′ ∈
H(T ) with h 6= h′, there exists a minimal B ∈ OT such that h, h′ ∈ B: this
means that for every B′ ∈ OT such that h, h′ ∈ B′, B ⊆ B′.11

Proof. Let h, h′ be di�erent histories of T . Since the tree is connected, h ∩
h′ 6= ∅. T is jointed, so there exists m = max(h ∩ h′). Hm clearly contains
both h and h′, since they both pass through m. Moreover, if h, h′ ∈ Ht for
some t, then t ∈ h ∩ h′. Hence t ≤ m, by maximality of m, so Hm ⊆ Ht.
Finally, if s > m, then s /∈ h ∩ h′, hence Hm % Hs, and one of the following
situations happens:
• s ∈ h and s /∈ h′, hence Hs 63 h′;
• s ∈ h′ and s /∈ h, hence Hs 63 h.

11We do not know of a possible standard name of this property in the literature. We
could not �nd any reference to it in classical texts in topology, like [20] or the Hand book
of Set Theoretic Topology edited by K. Kunen and J. E. Vaugan.
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So every element of the base strictly contained in Hm can not contain both
h and h′. Thus, Hm is the minimal element of the base containing both h
and h′.

Proposition 4.8.2. Let T be a jointed tree. Then, for all h, h′ ∈ H(T ) with
h 6= h′, there either exists a minimal B ∈ OT such that h, h′ ∈ B, or there is
not an element of the base containing both h and h′.

Proof. If we consider h1 and h2 in the same connected component of the tree,
we can apply the previous argument. If T1 and T2 are di�erent components
of T and hi ∈ H(Ti), then we can apply the characterization of connected
trees (Proposition 4.3.1) to each of them and conclude that for every t ∈ h,
t′ ∈ h′, Ht ∪Ht′ is not contained in an element of the base, hence there can
not be an element of the base containing both h and h′.

Proposition 4.8.3. Let T be a totally branching connected tree with the
property that for all h, h′ ∈ H(T ) with h 6= h′, there exists a minimal B ∈ OT
such that h, h′ ∈ B. Then it is a (connected) jointed tree.

Proof. Let h1, h2 ∈ H(T ), h1 6= h2. Since the tree is connected, h1 ∩ h2 6= ∅.
We want to show that it has a greatest element.

Since every element of the base is Ht for some t ∈ T , let b ∈ T be a
moment such that Hb = B, the minimal element of the base containing h1

and h2. Clearly, from h1, h2 ∈ Hb, we have b ∈ h1 ∩ h2. Our claim is that b
is the greatest element we are looking for.

Let s ∈ h1 ∩ h2, s ≥ b. Then Hs ⊆ Hb, and h1, h2 ∈ Hs. But Hb is
⊆-minimal, hence Hs = Hb. But T is totally branching, hence Hs = Hb

implies s = b. Thus, b = max(h1, h2), hence T is jointed.

Remark 4.8.1. We conclude this section by observing that the tree of Figure
4.10 has the property of the previous proposition (in fact, its condensation
is {[0], [l], [r]}, which is clearly jointed and connected), but it is not totally
branching and not jointed. This remark shows again that the totally branch-
ing hypothesis is often necessary in order to properly characterize properties
of a tree from a topological perspective.

4.9 Special, Souslin and Aronszajn trees

In this section we will analyse the notions of Souslin tree and of special tree,
which arise from the study of the Souslin's Problem and are also linked to the
extension of the König Tree Lemma discussed in Section 4.7.1. The reasons
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why we are interested in this class of trees will be clari�ed in Subsection
4.9.2.

Moreover, we will not characterize special trees completely, so we will
show a further limit of the topological approach and leave some open prob-
lems.

Many sources are involved in this section. Some of them are [1], [5], [14],
[32], [15], and [11].

4.9.1 Antichains

The notion of antichain is fundamental in the de�nition of special and Souslin
trees, and it is also connected to �nitely branchingness (Theorem 4.5.2) in a
way that we will deepen in this section.

Recall that a chain of a poset (P,<) is a totally ordered subset of the
poset, i.e. a subset whose elements are pairwise comparable (in symbol, ^).

De�nition 4.9.1. Let T be a tree. A set X ⊆ T is an antichain if for all
x1 6= x2 ∈ X, we have x1 6^ x2.

Remark 4.9.1. While chains are �vertical� subsets of the trees, antichains are
non-vertical subsets: they are made by pairwise non-comparable moments.
Notice that there is no request about the cardinality of the antichain, hence
∅ and every singleton {x} are antichains (and chains too).

Using chains and antichains, we can de�ne the height and the width
of a (�nite) poset12: the height of a poset is the cardinality of the greatest
(longest) chain, the width is the cardinality of the greatest (largest) antichain.

These two notions are linked by the important Dilworth Theorem (1948)
and by its dual statement, that we transcribe here to show the relevance
of this connection: for a complete proof of these results and for some other
remarks about chains and antichains, the interested reader can refer to [36].

Theorem 4.9.1 (Dilworth). If A is the largest antichain in a �nite poset
(X,<), then there is a partition of S into chains S = C1∪C2∪ . . .∪Cn such
that n = |A|. Furthermore, each Ci contains exactly one element of A, and
there is no partition of S into less than n chains.

Theorem 4.9.2 (Dual of Dilworth). If C is the largest chain in a �nite poset
(X,<), then there is a partition of S into antichains S = A1 ∪A2 ∪ . . .∪An
such that n = |C|. Furthermore, each Ai contains exactly one element of C,
and there is no partition of S into less than n antichains.

12Notice that the de�nition of height is not equivalent to the one for trees contained in
De�nition 4.1.7, even if trees are particular kind of posets.
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Remark 4.9.2. In the context of trees, we can easily prove the second part of
the dual theorem above: given an antichain X and a history h of a tree T ,
X ∪ h is either empty or a singleton. In fact, antichains are not requested
to intersect every history, and in this case we can get ∅ as intersection.
Moreover, if the intersection is not empty, it must be a singleton, since two
moments belonging to it are simultaneously comparable and uncomparable,
hence equals.

A link between the notion of antichain and the topological perspective of
this thesis is contained in the following Theorem 4.9.6, which is stated in [23]
without proof. We developed the whole proof and we split it in a de�nition
and three preliminary results:

De�nition 4.9.2. An antichain X is said to be maximal if for every t ∈ T ,
X ∪ {t} is not an antichain, i.e. there exists x ∈ X such that t ^ x.

The reader should notice that this has nothing to do with the cardinality
of the antichain (hence, with the width of the tree): in fact, the set of all
minimal moments of the tree is a maximal antichain, and it can be a singleton
if the tree is single-rooted.

Lemma 4.9.3. If X is a maximal antichain of a tree T , then for every
history h ∈ H(T ) there is a unique moment t belonging to X ∩ h. Moreover,⋃
x∈X Hx = H(T ).

Proof. To show existence, let h be a history, and suppose by contradiction
that X ∩ h = ∅. Then for all t ∈ h, and for all x ∈ X, t 6^ x, otherwise
x ∈ h. Thus, X ∪ {t} is an antichain strictly greater than X, against the
maximality of X, which is a contradiction. To show uniqueness, suppose by
contradiction that h ∩X ⊇ {x1, x2}. Then x1 ^ x2, because they belong to
the same history, hence X is not an antichain, which is a contradiction. The
second claim is a straightforward consequence of the �rst one.

Lemma 4.9.4. Let X be an antichain of a tree T . Then the function f :
x 7→ Hx is injective.

Proof. We can prove something more: if x, y ∈ X and x 6= y, then Hx∩Hy =
∅, which clearly implies Hx 6= Hy.

Suppose by contradiction that there exists h ∈ Hx ∩ Hy. Then x ∈ h,
y ∈ h, so x ^ y. Thus, X is not an antichain, which is a contradiction.

Proposition 4.9.5. Let T be a well-founded tree and S ⊆ T . Then there
exists a maximal antichain included in S. Moreover, we can build a maximal
antichain X whose elements are minimal in the following sense: if Y is
another antichain, for every x ∈ X, y ∈ Y such that x ^ y, then x ≤ y.
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Proof. The existence of this antichain can be proved by choosing, in every
history h ∈ H(T ), exactly the minimal element of h ∩ S, so the antichain is
the set {min(S ∩ h) | h ∈ H(T )}.

However, in order to avoid a quanti�cation over the set of histories, we
can explicitly construct this maximal antichain with a trans�nite induction
over the height13 of the tree T .

Set height(T ) = α. In every step, we use the fact that every level T (β)
of a well-founded tree is an antichain, because all moments in it belong to
di�erent histories. In order to simplify the notation, let S(β) = T (β) ∩ S be
the set of the elements of S at level β.
• Set S0 = S

• For every ordinal β < α, set

Sβ+1 =

(
Sβ r

⋃
t∈S(β)

Ht

)
∪ S(β).

Removing every history passing through every moment of level β, and
adding level β back, we just remove every moment at higher levels,
comparable with some moment of S(β).

• For every limit ordinal γ < α, set

Sγ =

(⋂
β<γ

Sβ r
⋃

t∈S(γ)

Ht

)
∪ S(γ).

This inductive step is more complicated than the previous one because
it involves a limit ordinal number, but the idea is the same.

Clearly, the induction terminates because there is a boundary for the ordinal
number, namely the height of the tree. The last step Sα of the induction
gives the maximal antichain we were looking for.

Moreover, its elements are minimal in the way explained in the statement,
since we �started from the bottom�. To be precise, suppose by reductio that
Y was an antichain, y ∈ Y , x ∈ Sα and y < x. Then, there would be ordinal
numbers β1 < β2 such that y ∈ S(β1) and x ∈ S(β2). Then, in an inductive
step ≤ β1, our process would have selected y (or a moment in its past) and
deleted the rest of Hy from S: by doing so, it would have removed x, which
belongs to the future of y. And this is a contradiction.

Example 4.9.1. In order to visualize the inductive process described above,
we apply it to a �nite tree (even if, clearly, it is interesting only when applied

13T is a well-founded tree, hence we can use the notion of height given in De�nition
4.1.7.
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to in�nite trees). Let S be the subset {1, 3, 5, 8, 9, 10, 12} of the tree T ,
highlighted in �gure 4.11. On the �rst inductive step, no moment is removed.
On the second step, we remove the set

⋃
H1 consisting of {1, 3, 4} from S, and

add back 1, so we remove 3. Similarly, in step 3 we remove 8 and 10 (above
5), and in step 4 we remove 12 (above 9). There is nothing left to be removed
in step 5. At the end, the only subset that is left is S5 = {1, 5, 9}, which
clearly is a maximal antichain contained in S whose elements are minimal.
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Figure 4.11: Example of the inductive process of Proposition 4.9.5.

Theorem 4.9.6. Let T be a well-founded tree. H(T ) is compact if and only
if every antichain is �nite.

Proof. We will now prove the two implications separately:
(⇒) Let X be an antichain of T . There are two possibilities: X is either a

maximal antichain, or is not maximal.
In the �rst case, we have that

⋃
x∈X Hx = H(T ), by Lemma 4.9.3.

Moreover, HX = {Hx | x ∈ X} is an open covering of H(T ), thus, by
compactness, it admits a �nite subcovering. However, if we remove any
x0 from X, the set {Hx | x ∈ X r {x0}} is not a cover any more, since
x0 was the only representative moment in X for each history h ∈ Hx0 ,
again by Lemma 4.9.3. Hence, HX is itself its �nite subcovering, so it
is �nite. So X is �nite since the map x 7→ Hx is injective on antichains
by Lemma 4.9.4.
In the second case, we have that

⋃
x∈X Hx 6= H(T ), by Lemma 4.9.3.

Then, we can replace X with X̃, a maximal antichain containing X. It
can be built using the set T (0) of the roots of the tree (it is well de�ned
since the tree is well-founded), by adding to X the set of the roots which
do not already belong to some history passing through some moment of
X. Formally:

X̃ = X∪
[
T (0)r

⋃( ⋃
x∈X

Hx

)]
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Then, X̃ is a maximal antichain because the histories not already be-
longing to HX pass through some root, hence

⋃
x∈X̃ Hx = H(T ) by

Lemma 4.9.3. Now we can repeat the argument used above with X̃,
and so we have that X̃ is �nite. Hence, X is �nite, since it is a proper
subset of X̃.

(⇐) Let C = {Hx | x ∈ I} be an open covering ofH(T ). We need to �reduce�
I to an antichain in order to use the hypothesis of �niteness: to do so,
we consider the maximal antichain included in I, whose existence is
granted by Proposition 4.9.5. Call it J . Then, for every x ∈ IrJ , there
exists a unique y ∈ J , y ^ x. Moreover, by the last part of Proposition
4.9.5, y ≤ x. Hence, Hy ⊇ Hx, so the set {Hy | y ∈ Y } is a subcovering
of C. Moreover, by hypothesis, J is �nite since it is an antichain. Then
C has a �nite subcovering. Thus, H(T ) is compact.

This result generalizes Theorem 4.5.2 to every well-founded tree: in fact,
if every antichain is �nite, then every level (which is an antichain, as shown
in the proof of Proposition 4.9.5) is �nite, which is equivalent to the fact that
the tree is �nitely branching.

4.9.2 Motivation: the Souslin's Problem

This section is an overview on some classical results on this topic. Its aim is to
show how the notion of special tree was �rstly developed, and to investigate
the notion of Souslin tree. Further (and advanced) developments of this topic
can be found in [5] and [32].

The class of special trees is well known and studied in the literature
because it is strictly linked to the Souslin problem, posed by Mikhail Y.
Souslin (1849-1919), and published posthumously in M. Souslin, Probléme
3, Fundamenta Mathematicae, vol. 1 (1920). It investigates whether some
properties of real numbers describe a subset of the real line isomorphic to
the real line itself14. This problem can be �translated� in the topological
language, and it becomes the converse of Proposition 3.1.8. Hence, it states:

Is every topological space satisfying the countable chain condition
(ccc) necessarily separable15?

14The translation in English of the original formulation is �Let P be a complete dense
unbounded linearly ordered set that satis�es the countable chain condition. Is P isomor-
phic to the real line?�. In order to deepen this topic, the interested reader may refer to
[15], pages 114 and following.

15See De�nitions 3.1.18 and 3.1.19.
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A counterexample would be called a Souslin line, while the conjecture
that a Souslin line does not exist is called Souslin's Hypothesis.

D. Kurepa showed in 1935 (in [21]) that this problem can be rephrased in
terms of trees, without any reference to topological considerations: Souslin's
problem is reduced to a problem of combinatorial set theory, as follows.

De�nition 4.9.3. A well-founded tree T is a Souslin tree if it has height ω1,
every chain is countable, and every antichain is countable.

Theorem 4.9.7 (Kurepa). There exists a Souslin line if and only if there
exists a Souslin tree.

The statement of this theorem (in French) can be found in [21], �12.D.2,
with the proof given by the equivalence P2⇔ P5 of the Fundamental The-
orem, contained in the Appendix �C.3. A direct proof (in English), can be
found in [15], Lemma 9.14, or in [11], Lemma 20.9.

Moreover, it can be proved that the Souslin's problem is independent
of ZFC: it is a statement which can not be decided within the standard
Zermelo-Fraenkel axiomatization for Set Theory with the Axiom of Choice.
However, if we weaken the de�nition, we obtain what today is known as an
Aronszajn tree, whose existence can be proved in ZFC, as we said in Section
4.7.1:

De�nition 4.9.4. A well-founded tree is an Aronszajn tree if it has height
ω1, every chain is countable, and every level is countable.

One could ask whether every Aronszajn tree is Souslin, and the answer
is no. This is a straightforward consequence of the independence of the
Souslin problem. However, some particular Aronszajn trees which can be
actually de�ned can be represented as a countable union of antichains, and
an uncountable tree can not be countable union of countable sets, so it can
not be Souslin.

Hence, the property of being decomposable as countable union of an-
tichains seems to be interestingly linked to the Souslin problem, but was
�rstly considered only for Aronszajn trees: the contribution of S. Todor£evi¢
to this �eld of research was to examine this property for generic well-founded
trees. In fact, as Brodsky says in [5], �Being Aronszajn is mainly a condition
on the width of the tree, the cardinality of its levels; being special or non-
special is a distinction in the number of its antichains, in some sense related
to the height of the tree. We can consider one without the other�. Thus, the
approach introduced by Todor£evi¢ leads us to the de�nition and properties
of Subsection 4.9.4.

https://people.math.ethz.ch/~halorenz/4students/Begleitseminar/SuslinLine.pdf
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4.9.3 Topological characterization of Souslin trees

We want to underline the fact that Theorem 4.9.7 by D. Kurepa shares our
general attitude: it essentially suggests a translation from the topological
language into the one of trees. P. J. Niykos states Theorem 4.9.9 below in
[23]: this result is strongly related to the Souslin's Problem, and we will
prove it in detail using the following preliminary Lemma.

Lemma 4.9.8. Let T be a totally branching well-founded tree. Then, it is
countable if and only if H(T ) is separable.

Proof. (⇒) Let T be countable. Then, clearly, OT is countable, hence H(T )
is second countable16. Thus, by Proposition 3.1.7, H(T ) is separable.

(⇐) Assume that H(T ) is separable. Then there exists a dense countable
subset of H(T ): call it D. By Proposition 4.4.1, D is a bundle on T , so
for every t ∈ T there exists h ∈ D such that t ∈ h. In particular, T is a
countable union of histories.
Suppose by contradiction that T is uncountable. Then there exists
h ∈ H(T ) with uncountably many moments17. This implies that there
is a subset of h consisting of di�erent moments indexed by ω1, namely
{tα | α ∈ ω1} ⊆ h, with tα < tβ if α ∈ β. Thus Htβ ⊂ Htα , because
the tree is totally branching. Then, for every α, β ∈ ω1 with α ∈ β,
there exists h′ ∈ Htα r Htβ . Call t′α any moment in the future of tα
along h′ such that t′α 6^ tβ. In particular, t′α and every moment in
the future of tβ are uncomparable. Now, if we select for every α ∈ ω1

a moment t′α as above (in order to visualize this selection, see Figure
4.12), we have an uncountable set of pairwise uncomparable moments,
so every history passing through one of them does not contain all the
others. Then every bundle must be uncountable, and this contradicts
the separability hypothesis. Thus, T is countable.

Theorem 4.9.9. A well-founded totally branching tree is a Souslin tree if
and only if H(T ) is non separable and satis�es the ccc.

Proof. (⇒) Assume that T is a Souslin tree.
Consider a collection U of pairwise disjoint non-empty open subsets of
H(T ). If one of them is a union of elements of the base OT , we replace
it with all of these elements, possibly dropping some of them if they
are contained in some others. By the rank 1 property, an open subset

16See De�nition 3.1.17.
17Otherwise, T would be a countable union of countable sets, which is countable.
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tα

tβ
t′α

t′β

Figure 4.12: Example of the choices for t′α and t
′
β. The vertical line represents

the history h: the remaining parts of the tree are not drawn.

of H(T ) can be always decomposed as a disjoint union of element of
the base OT . Then U = {Ht | t ∈ U} for a suitable subset U of T .
Moreover, U is an antichain: given t, s in U , Ht∩Hs = ∅ by construction,
hence t 6^ s. Then, U is countable because the tree is Souslin. The set
U is countable too, because the tree is totally branching, so Ht 6= Hs

whenever t 6= s. Hence, H(T ) satis�es the ccc.
Moreover, let D be a dense subset of H(T ). Then, by Proposition 4.4.1,
D is a bundle on T , so for every t ∈ T there exists h ∈ D such that
t ∈ h. Then, clearly,

⋃
D =

⋃
h∈D h = T . Assume by contradiction

that D is countable. By hypothesis, every chain is countable, so every
history is countable. Thus, T is a countable union of countable sets,
hence it is countable. This is a contradiction because the height of T is
ω1, so T can not be countable. So H(T ) can not be separable: in fact,
every dense subset is not countable.

(⇐) Suppose that H(T ) is not separable and satis�es the ccc.
Let A be an antichain of T . Then, the set HA = {Ht | t ∈ A} is a
collection of pairwise disjoint non-empty open subsets, so it is countable
by hypothesis. Since T is totally branching, Ht 6= Hs whenever t 6= s,
hence the map t 7→ Ht from A toHA is a bijection. Thus, A is countable.
Let C be a chain of T , and suppose by contradiction that C is uncount-
able. We can proceed as in the proof of Lemma 4.9.8: we index the el-
ements of C with ordinals below ω1, so C = {tα | α ∈ ω1}, with tα < tβ
if α ∈ β. Then, if we select for every α a certain t′α de�ned as above,
we have that {t′α | tα ∈ C} is a set consisting of pairwise uncomparable
moments. Thus, Ht′α ∩Ht′β

= ∅ if α 6= β. Then, U = {Ht′α | tα ∈ C} is
an uncountable collection of pairwise disjoint non-empty open subsets
of H(T ). And this is a contradiction, because H(T ) satis�es the ccc by
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hypothesis.
Finally, we show that the height of T is ω1. We start by observing that
T is uncountable, by Lemma 4.9.8 above, since H(T ) is not separable.
Now, since every history of T is countable, the height of T is at most ω1.
Moreover, since every level of T is an antichain and therefore countable,
and T is uncountable, then the height of T must be at least ω1. Hence,
the height of T is precisely ω1.
Thus, T is a Souslin tree.

This result is really interesting: it is an alternative proof of the fact that
the existence of a Souslin tree implies the existence of a Souslin line, which
is a really important result of Combinatorial Set Theory and Topology. In
fact, if T is Souslin, the space (H(T ),OT ) is non-separable and satis�es the
ccc, hence it is a Souslin line.

4.9.4 De�nition and properties of special trees

De�nition 4.9.5. A well-founded tree T = (T,<) is said to be special if and
only if it is a countable union of antichains, i.e. if there exists a collection
{Ai | i ∈ ω} of antichains such that T =

⋃
i∈ω Ai.

In some works, like [32], there is the de�nition of κ-special tree (and of
κ-Souslin, and of κ-Aronszajn), with κ any cardinal: they are trees that can
be represented as a union of κ antichains. We will not pay further attention
to this generalized de�nition, and just analyse ℵ0-special trees, which are the
special trees de�ned above.

Remark 4.9.3. We collect some easy results and remarks:
• There is no mention of uniqueness of the decomposition in the de�ni-
tion: in general, a special tree has many di�erent decompositions into
antichains.

• The collection of antichains does not form a partition of the tree, a
priori : in general, there can be many common moments between two
di�erent antichains. This will be clari�ed in the examples below.

• If {Ai | i ∈ ω} is a collection of antichains whose union is the whole
special tree, we can build a collection of disjoint (and possibly empty)
antichains by collecting Bi = Ai −

⋃
j>iAj: their union is, again, the

whole tree.

In Lemma 4.9.11 and in Theorem 4.9.12 we give two equivalent charac-
terizations of special trees, both regarding the existence of particular maps
from T to suitable countable sets.
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Lemma 4.9.10. Let T be a special tree, with T =
⋃
i∈ω Ai an antichains

decomposition. Then, the restriction to every chain of the function f : T → ω
sending t 7→ min{i ∈ ω | t ∈ Ai} is injective.

Proof. Let C be a chain of T . Let x, y ∈ X, x 6= y. Clearly, if x ∈ Ai,
y /∈ Ai, otherwise Ai would not be an antichain. Hence, f is injective.

Lemma 4.9.11. A tree T is special if and only if there exists f : T → ω
which is injective on chains.

Proof. Su�ciency is a consequence of the previous lemma. Suppose now
that such an f exists. Then the preimage f−1(i) is an antichain for every i:
in fact, if by contradiction x, y ∈ f−1(i) with x < y, then f would not be
injective on the chain C = {x, y}. Then, T =

⋃
i∈ω f

−1(i) is an antichains
decomposition for T . Then T is special.

De�nition 4.9.6. A poset (P,<) (hence, a tree) is Q-embeddable if there
exists an order morphism from P to Q with the usual strict order18.

Theorem 4.9.12. A tree T is special if and only if it is Q-embeddable.

Proof. This result is a corollary of a more general statement proved in two
di�erent ways in [32], Theorem 9.1 page 284, and in [14], Théorème 1 page
172. It a�rms that a poset (P,<) is Q-embeddable if and only if it is a
countable union of antichains.

The next Lemma is a link between special trees and Aronszajn trees:
every special tree satis�es one of the conditions to be Aronszajn:

Lemma 4.9.13. A special tree has no uncountable history.

Proof. Let T =
⋃
i∈ω Ai be a decomposition of T into antichains. Consider

a history h. For every i ∈ ω, |h ∩ Ai| ≤ 1, by Remark 4.9.2, hence |h| =∣∣⋃
i∈ω Ai ∩ h

∣∣≤∑i∈ω |Ai ∩ h| ≤
∑

i∈ω 1 = ℵ0.

We conclude this section with some examples of special and non special
trees:

Example 4.9.2. Many of the trees we drew in the previous chapters and sec-
tions are special trees: for example, the tree of Figure 4.10 can be represented
as a countable union of antichains by {l, r} and {n} for every n.

Moreover, we have some entire classes which are contained in the class of
special trees, namely:

18As stated in [5], �this is an unfortunate use of the term embeddable, as we do not
require the morphism to be injective, so that it is not an embedding in the usual sense�.
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• Every �nite tree is special: a decomposition that always works is made
by all the singletons, plus in�nitely many copies of the empty antichain.

• Every countable linear tree is special. Let α be the countable ordinal
isomorphic to the tree, φ the isomorphism from α to the tree, and f :
α → ω the invertible map that witnesses the countability of α. Then,
the decomposition of the ordinal (hence, of the tree) into antichains is⋃
i∈ω φ

(
f←(i)

)
. Clearly, every antichain must be a singleton.

• Every well-founded tree which has a countable ordinal number as height
is special, and a decomposition into antichains is made by the collection
of the levels: they are maximal antichains of the tree.

It is interesting to consider examples of trees that are not special. Any
uncountable ordinal number is a trivial example of a tree of this kind. In
fact, the only possible decomposition into antichains is the one made by all
the singletons, since it is a linear tree, but any countable union of singletons
can not be the whole tree.

Two more interesting examples of a special and a non-special tree are
provided by the following maps, which associate a tree to any poset19. Let
(P,<) be a poset, and denote by σP the set of all well-ordered subsets of P
ordered by end-extension, i.e. s ≺ p if and only if s is an initial segment of p.
Moreover, let σ′P = {t ∈ σP | t has a maximal element}, which is the col-
lection of all well-ordered bounded sequences in P , again with end-extension.
Notice that the map max(·) is a strictly increasing function mapping from
σ′P to P . Hence, by Theorem 4.9.12, σ′Q is special: in fact, the map max(·)
shows that σ′Q is Q-embeddable. However, σQ is not special: this fact is
proved in [32], Corollary 9.9 page 286. Moreover, both these trees are of
height ω1 with no uncountable chain. Finally, it can be shown that there is
a subtree of σ′Q which is Aronszajn (and special): this proof can be found
in [32], Theorem 5.2 page 257.

4.9.5 Topological characterization of special trees

Lemma 4.9.14. Let T be a tree and A an antichain of T . Then [A] is an
antichain of [T ].

Proof. By Proposition 3.2.11, a 6^ b implies [a] 6^ [b].

Corollary 4.9.15. Let T be a special tree. Then its condensation [T ] is
special.

19This was originally de�ned by D. Kurepa (in [14], pages 236-237, which refers to the
original work [21]), but we use the notation introduced by S. Todor£evi¢ in [32], page 245.
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Proof. Let T =
⋃
i∈ω Ai be a decomposition of T into antichains. By the

previous Lemma, [Ai] is an antichain for every i, thus [T ] =
⋃
i∈ω[Ai] is a

decomposition of [T ] into a countable collection of antichains.

Clearly, the inverse implication does not hold. In fact, if we consider a
linear tree isomorphic to ω1, its condensation consists of a single moment
(hence, vacuously special), and ω1 is clearly not special. Thus, as we have
already observed many times in this work, we must focus our attention to
the class of totally branching trees.

Let T be a special totally branching tree and T =
⋃
i∈ω Ai be a decom-

position of T into antichains. As observed in Remark 4.9.3, we can always
assume that Ai ∩ Aj = ∅ whenever i 6= j.

If t, s ∈ Ai, then t 6^ s, so Ht ∩ Hs = ∅. In fact, if h ∈ Ht ∩ Hs, both
t and s would belong to h, and they would be comparable. Thus, if we call
HAi = {Ht | t ∈ Ai}, we would have that HAi is a subset of the base OT
consisting of pairwise disjoint open sets.

For any index k and s ∈ T , we have that s /∈ Ak if and only if s ∈ Aj
for some j 6= k, because (T =

⋃
i∈ω Ai and) we are assuming that the Ai's

are pairwise disjoint. Unfortunately, nothing more can be said about the
relationship between s ∈ Aj and any t ∈ Ak for j 6= k: s and t can be either
comparable or uncomparable.

As an example, consider the tree of Figure 4.13: it is totally branching
and �nite, hence we can consider the levels as (pairwise disjoint) antichains
whose union is the whole tree. Clearly b ∈ T (1), d ∈ T (2) and b 6^ d, but
also c ∈ T (1) and c ^ d. Moreover, HT (0) = HT (1) = H(T ), but HT (2) does
not contain the history {a, b}.

a

b c

d e

Figure 4.13

Thus, the property described above is a way to rearrange the elements of
OT , collecting them in a countable number of subfamilies of OT consisting
of pairwise disjoint open sets. This can be done in many topological spaces:
we just need to be able to separate the open sets of the base that have some
common point into a countable number of di�erent subfamilies.
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However this can not be done if the base contains an uncountable subfam-
ily of open subsets with a common point (but we are not sure this is the only
case in which the property above is not veri�ed). As a concrete example,
consider the set ω1 with the base of open subsets {{1, α} | α ∈ ω1}. We can
not �separate� the base into a countable quantity of families of disjoint open
subsets, because there are uncountable many of them which intersect in 1.

Moreover, this last condition is interestingly linked to special trees even in
the other �direction�. In fact, if we start with a tree T such that OT contains
uncountably many open subsets having non empty intersection, then there
exists a history h belonging to uncountably many Ht's, which implies that h
contains uncountably many moments. Then the tree has uncountable height,
so it can not be special, by Lemma 4.9.13.

All the remarks we collected above suggest that this is the right direction
to reach the topological characterization of totally branching special trees:
we leave this as an open problem for further studies on this topic.
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