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Abstract

In this thesis, I propose a robust and easy to implement method to cal-
ibrate an IMU without any external equipment. The procedure is based on
a multi-position scheme, providing scale and misalignments factors for both
the accelerometers and gyroscopes triads, while estimating the sensor biases.
The method only requires the sensor to be moved by hand and placed in a
set of different, static positions (attitudes). I describe a robust and quick
calibration protocol that exploits an effective parameterless static filter to
reliably detect the static intervals in the sensor measurements, where local
stability of the gravity’s magnitude is assumed. First the accelerometers
triad is calibrated taking measurement samples in the static intervals. Then
these results are exploited to calibrate the gyroscopes, employing a robust
numerical integration technique.
The performances of the proposed calibration technique has been successfully
evaluated via extensive simulations and real experiments with a commercial
IMU provided with a calibration certificate as reference data.
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Abstract - Italian Version

In questa tesi propongo un metodo robusto e facile da implementare per
calibrare un IMU senza apparecchiature esterne. La procedura si basa su
uno schema a più posizioni, fornendo fattori di scala e di disallineamento
sia per la triade di accelerometri che per quella di giroscopi, stimando con-
temporaneamente i bias dei sensori. Il metodo richiede solo che il sensore
venga spostato a mano e posto in una serie di diverse posizioni statiche (or-
eintato i diversi modi). Si descrive un protocollo di calibrazione robusta e
veloce che sfrutta un efficace filtro statico per rilevare in modo affidabile gli
intervalli statici nelle misure dei sensori e dove si assume un alta stabilità
locale dell’intensità della forza di gravità. Dapprima si calibra la triade di ac-
celerometri prendendo campioni di misura negli intervalli statici, sfruttando
poi questi risultati per calibrare i giroscopi, impiegando una robusta tecnica di
integrazione numerica. Le prestazioni della tecnica di calibrazione proposta
sono state valutate con successo attraverso vaste simulazioni ed esperimenti
reali con un IMU commerciale fornito con un certificato di calibrazione come
dati di riferimento.
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Chapter 1

Introduction

"Accidere ex una scintilla
incendia passim."

"Sometimes,
from a single spark,
a fire breaks out."

Lucrezio

1.1 Motivation
IMUs (Inertial Measurement Units) are very popular sensors in robotics:

among others, they have been exploited for inertial-only navigation [1], atti-
tude estimation [2], and visual-inertial navigation [3, 4], also using a smart-
phone device [5]. IMUs used in robotics are usually based on MEMS (micro
electro mechanical systems) technology. They are composed by a set of tri-
axial clusters: an accelerometers, a gyros and often a magnetometer cluster.
In an ideal IMU, the tri-axial clusters should share the same 3D orthogonal
sensitivity axes that span a three dimensional space, while the scale factor
should convert the digital quantity measured by each sensor into the real
physical quantity (e.g, accelerations and gyro rates). Unfortunately, low cost
MEMS based IMU are usually affected by non accurate scaling, sensor axis
misalignments, cross-axis sensitivities, and non zero biases. The IMU cali-
bration refers to the process of identify these quantities.

Many commercial IMU in the cost range form 1000 $ to 2000 $, such as the
Xsens MTi [6] exploited in the experiments (Sec. 4), are factory calibrated1.

1Often they are also compensated over temperature
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CHAPTER 1. INTRODUCTION

Each sensor is sold with its own calibration parameters set stored into the
firmware or inside a non-volatile memory, providing accurate measurements
off the shelf. Unfortunately, the overhead cost for the factory calibration
is predominant: usually the sensor hardware (sensors, chips, embodiment,
. . . ) is likely to be only a fraction of the final device cost. Actually, the
factory calibration is usually performed using standard but effective meth-
ods, where the device outputs are compared with known references: this
process requires time for each sensor and a high cost equipment. On the
other hand, low-cost IMUs (20-100 $) and the IMU sensors that equip cur-
rent smartphones are usually poorly calibrated, resulting in measurements
coupled with not negligible systematic errors. For instance, state-of-the-art
visual-inertial navigation systems such the one presented in [5], that exploits
a smartphone as experimental platform, while performing so well in forward,
almost regular, motion2, shows lower performances in more "exciting” mo-
tions, i.e. in motions that quickly change linear acceleration and rotational
axes.
In this thesis, it is propose an effective and easy to implement calibration
scheme, that only requires to collect IMU data with the simple procedure
described in the flow chart reported in Fig. 1.1. After an initial initialization
period with no motion, the operator should move the IMU in different posi-
tions, in order to generate a set of distinct, temporarily stable, rotations. The
collected dataset is used to calibrate the scale and misalignments factors for
both the accelerometers and gyroscopes triads, while estimating the sensor
biases. As other calibration technique, the effect of the cross-axis sensitivities
is neglected, since for minor misalignments and minor cross-axis sensitivities
errors it is usually difficult to distinguish between them.
The presented procedure exploits the basic idea of the multi-position method,
firstly presented in [7] for accelerometers calibration: in a static position, the
norms of the measured accelerations is equal to the magnitudes of the grav-
ity plus a multi-source error factor (i.e., it includes biases, misalignment,
noise,...). All these quantities can be estimated via minimization over a set
of static attitudes. After the calibration of the accelerometer triad, we can
use the gravity vector positions measured by the accelerometers as a reference
to calibrate the gyroscope triad. Integrating the angular velocities between
two consecutive static positions, we can estimate the gravity positions in the
new orientation. The gyroscopes calibration is finally obtained minimizing
the errors between these estimates and the gravity references given by the
calibrated accelerometers.

2Actually, during an almost regular motion miscalibration errors may easily be assim-
ilated by the biases included in the system state
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1.2. RELETED WORKS

In this procedure the gyroscopes calibration accuracy strongly depends on the
accuracy of the accelerometers calibration, being used as a reference. More-
over, signal noise and biases should negatively affect both the calibration
accuracy and the reliability of the algorithms used to detect the actual static
intervals used in the calibration. Finally, a consistent numerical integration
process is essential to mitigate the effect of the signal discretization, usually
sampled at 100 Hz. In this approach, these problems are faced introducing
the following modifications to the standard multi-position method:

• The proposed calibration protocol exploits a larger number of static
states with reduced periods, in order to increase the cardinality of the
dataset while preserving the assumption of local stability of the sensors
biases

• As proposed in [8], we characterize the gyroscope bias drifts in a period
estimated using the Allan variance

• A simple but effective static detector is introduced, it exploits the sensor
noise magnitude, a fixed-time sampling window and a cutting thresh-
old, automatically estimated inside the optimization framework

• The Runge-Kutta numerical integration method id employed to im-
prove the accuracy of the gyroscope calibration.

The system is extensively tested using synthetic data affected by variable
biases, misalignments, scale factor errors, and noise. In all of the cases, stable
and accurate results are obtained. Moreover, the calibration of a commercial,
factory calibrated Xsens MTi IMU, is performed using its raw, uncalibrated,
data as input. Calibration results are comparable to the factory parameters
reported by the device’s calibration certificate.

1.2 Releted Works
Traditionally the calibration of an IMU has been done by using spe-

cial mechanical platforms such as a robotic manipulator, moving the IMU
with known rotational velocities in a set of precisely controlled orientations
[9, 10, 11]. At each orientation, the output of the accelerometers are com-
pared with the precomputed gravity vector while during the rotations the
output of gyroscopes are compared with the precomputed rotational veloc-
ity. However, the mechanical platforms used for calibration are usually very
expensive, resulting in a calibration cost that often exceeds the cost of the
IMU’s hardware.

3



CHAPTER 1. INTRODUCTION

Figure 1.1: Calibration protocol.

In [12] a calibration procedure that exploits a marker-based optical tracking
system has been presented, while in [13], the GPS readings are used to cali-
brate initial biases and misalignments. Clearly, the accuracy of these method
strongly depends on the accuracy of the employed kinematic reference (i.e.,
the motion capture system or the GPS). The multi-position method was
firstly introduced by Lotters et al. [7]: authors proposed to calibrate the
biases and the scale factor of the accelerometers using the fact that the mag-
nitude of the static acceleration must equal to the gravity’s magnitude. This
technique has been extended in [14] and [15] to include the accelerometer
axis misalignment. The error model they proposed for the gyroscopes is sim-
ilar to the one used for the accelerometers, but the calibration procedure in
this case requires a single axis turntable to provide a strong rotation rate
signal, providing high calibration accuracy. Unfortunately, these approaches
not only requires a mechanical equipment, but the two triads are indepen-
dently calibrated, and the misalignment between them can’t be detected. In
[8] and [16] authors presented two calibration schemes that don’t require any
external mechanical equipment. Similarly to the approach exposed in this
thesis, in the first work authors calibrate the accelerometers exploiting the
high local stability of the gravity vector’s magnitude, and then gyroscopes
calibration is obtained comparing the gravity vector sensed by the calibrated
accelerometer with the gravity vector obtained by integrating the angular
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velocities. In the second work authors also exploit the local stability of the
magnetic field.
Hwangbo et al. [17] recently proposed a self-calibration technique based on
an iterative matrix factorization: using gravity as accelerometers reference
and a camera as gyroscopes reference.

1.3 Goals
This study’s aim is to provide the basis for developing algorithm for a

easy to perform cheap-IMU calibration without external equipment, thus
obtaining smartphone’s IMU calibrated by the user himself, making possible
high quality visual-inertial navigation and Structure form Motion3 (SfM ) in
smartphones.

We devolop an algorithm based on the latest works on this field, especially
on [8] , and we define some simple rules that a potential user should follow to
calibrate well an IMU. In this work, we test the validity of the algorithm with
a large set of simulations, and thus we give the results about the accurancy
of the calibration. We also provide the results of a real experimentation
done using an MTi IMU [18] by Xsens [6] comparing our calibration to the
component’s datasheet.

1.4 Structure of the Thesis
First the description of an IMU, the description of the uncalibrated state

problems and the concept of a calibration is discussed in Chapter Two, in-
cluding mathematical models. In Chapter Three, the algorithm treaty is de-
scribed including the theoretical background. In Chapter Four is described
in detail the experiments carried out, simulations and real experiment, and
all results are reported and commented. Finally, in chapter five conclusions
are drawn on the work done and future work are exposed.

3SfM refers to the process of estimating three-dimensional structures from two-
dimensional image sequences which may be coupled with local motion signals.
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Chapter 2

Theoretical Background

"Das Studium und allgemein das Streben nach Wahrheit
und Schönheit ist ein Gebiet,

auf dem wir das ganze Leben lang Kinder bleiben dürfen."

"The study as the pursuit of truth and beauty
is a sphere of activity in which

we are permitted to remain children all our lives."

Albert Einstein

2.1 Inertial Measurement Unit
An Inertial measurement unit (IMU ) is used in order to know the attitude

of the body where it is assembled on. It consists on clusters of accelerome-
ters and gyroscopes, sometimes also magnetometers. It works by detecting
the current rate of acceleration using the acceleromters’ cluster, and detects
changes in rotational attributes like pitch, roll and yaw using the gyroscopes’s
cluster. The magnetometer, which serves to measure the magnetic field, it is
used mostly to assist the calibration against orientation’s drift.
In this work, like in [12] and in [8, 14], only accelerometer and gyroscope are
considered, and so the model which is used is like the one pictured in Fig. 2.1.
How it is possible to see in Fig. 2.1, the Inertial measurement unit consists
of two clusters of sensors, the accelerometers’ one and the gyroscopes’ one.
Each cluster has three elements, one for each axis of the orthogonal reference
system.

There are many types of accelerometers and gyroscopes but for what
concerns this thesis, the IMU’s components are MEMS technology based.
This kind of components are particularly suitable for robotics application

7
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Accelerometers

Gyroscopes

x

y

z

Figure 2.1: Simplified Scheme of an IMU

because of their small size and inexpensive nature. MEMS, acronym for
Micro Electro Mechanical Systems, is the integration of mechanical elements,
sensors, actuators, and electronics on a common silicon substrate through
the utilization of microfabrication technology [19]. The fondamental idea
behind MEMS is to combining together silicon-based microelectronics with
micromachining technology to form the so called systems-on-a-chip [20].

2.2 Uncalibrated State

It was said that MEMS based IMU are very interesting, because of their
small size, they are cheap and they have a very low power consumption too,
but it is needed to calibrate them to make their output useful in practice.
Infact there are lots of imperfections due to sensors themselfs, to the solder-
ing of the sensor on the chip, and to other reasons that cause data distortion
so that the unit’s output become useless.
The sensor model describes the process of measurement from the actual phys-
ical quantity to the sensor voltage output. The same linear model is used
for accelerometers as gyroscopes. It accounts for scale, misalignment, non-
orthogonality and bias errors. Similar models are used also in [8, 14, 16] and
in [21, 22].

8



2.2. UNCALIBRATED STATE

2.2.1 Misalignment and Non-Orthogonality Errors

For an ideal IMU, the 3 axes of the accelerometers triad and the 3 axes
of the gyroscopes triad define a single, shared, orthogonal 3D frame. Each
accelerometer senses the acceleration along one of the distinct axis, while
each gyroscope measures the angular velocity around one of the same axes.
Unfortunately in real IMUs, due to assembly inaccuracy, the two triads form
two distinct (i.e., misaligned), non-orthogonal, frames.

As introduced above, both the accelerometers frame (AF) and the gyro-
scopes frame (GF) are usually non-orthogonal. Two associated orthogonal,
ideal frames (AOF and GOF, respectively) are defined in the following way:

• The x-axis of the AOF and the one of the AF coincide

• The y-axis of the AOF lies in the plan spanned by the x and y axes of
the AF.

For the gyroscopes case, it is sufficient to substitute the AF and AOF acronyms
with GF and GOF, respectively. Finally, a body frame (BF) is defined, this
is an orthogonal frame that represents, for example, the coordinate frame
of the IMU’s chassis. The body frame usually differs from the AF and GF
frames by small angles but, in general, there is no direct relation between
them.
For small angles, a measurements sS in a non-orthogonal frame (AF or GF)
can be transformed in the orthogonal body frame as:

sB = TsS, T =

 1 −βyz βzy
βxz 1 −βzx
−βxy βyx 1

 (2.1)

where sB and sS denote the specific force (acceleration), or equivalently the
rotational velocity, in the body frame coordinates and accelerometers (or
gyroscopes) coordinates, respectively. Here βij is the rotation of the i-th
accelerometer or gyroscope axis around the j-th BF axis, see Fig. 2.2.

On the other hand, the two orthogonal frames BF and AOF (and, equiv-
alently, BF and GOF) are relate by a pure rotation.
In the presented calibration method, it is assumed that the body frame BF
coincides with the accelerometers orthogonal frame AOF: in such case, the
angles βxz, βxy, βyx become zero, so in the accelerometers case Eq. 2.1 be-
comes:

aO = TaaS, Ta =

1 −αyz αzy
0 1 −αzx
0 0 1

 (2.2)
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Figure 2.2: Sensor (acceleromter or gyroscopes) sensitivity axes xS, yS, zS,
and body frame coordinates axes xB, yB, zB.

where letter β, referring to the general case, are changed with the letter α,
referring to the accelerometer case, while aO and aS denote the specific ac-
celeration in AOF and AF, respectively1.
It is possible to see this simplification from an other point of view: we are
just orthogonalizing the sensitivity coordinates frame of the accelerometer,
without aligning it with the real body coordinates frame, the one we should
know. Acting in such a way obviously it is lost the information about the
real orientation of what it will be the calibrated coordinate frame.
Since in the practical situations where the proposed calibration is thought to
be used it is impossible to fix with sufficient precision any component, with
known orientation and absolute position, here the goal is just to calibrate as
precisely as possible the IMU, meaning that it is obtained an orthogonal, uni-
tary scaling factor aligned system, leaving the "absolute position-oreintation"
problem to the solver of the specific problem in wich the IMU is used.

For example in [23] they investigate the visual inertial structure from mo-
tion problem with special focus on its observability properties. They math-
ematically demonstrate that considering a system consisting of a monocular
camera and IMU, the extrinsic camera-IMU calibration is observable. In
[3, 24] they describe an ego-motion estimation system based on aforemen-
tioned system, in which they are able to identify the rotation matrix, R, and

1To relate the obtained calibration with a different body frame (e.g. BF’), it is suf-
ficient to estimate the rotation matrix that relate AOF to BF’, for instance using the
accelerometers outputs in three different orthogonal orientations.

10



2.2. UNCALIBRATED STATE

the translational one, T, between the camera and the IMU.
Talking about the gyroscopes sensitivity coordinates frame we can not

do the same simplification. This is because we want to obtain calibrated
measurement coherent between the gyroscopes and the accelerometers. Thus
we have to orthogonalize the gyroscopes’ sensitivity coordinate frame and
we also have to align it to the accelerometers’ sensitivity coordinate frame,
rotating it. Then, for the gyroscopes, we have

ωO = TgωS, Tg =

 1 −γyz γzy
γxz 1 −γzx
−γxy γyx 1

 (2.3)

where ωO and ωS denote the specific angualr velocities in the orthogo-
nal coordinates frame and IMU’s gyroscopes sensitivity coordinates frame,
respectively. Tg is the matrix that permit to orthogonalize the gyroscopes
sensitivity axis, and aligne it to the accelerometers’ sensitivity axis.

In the ideal case both Ta and Tg are the identity matrix.

2.2.2 Scaling Error and bias

Talking about the scaling error and the presence of bias, both the ac-
celerometers and the gyroscopes are treated in the same way. Two scaling
matrix are introduced

Ka =

sax 0 0
0 say 0
0 0 saz

 , Kg =

sgx 0 0
0 sgy 0
0 0 sgz

 . (2.4)

In the ideal case both Ka and Kg are the identity matrix. Also two bias
vector are introduced

ba =

baxbay
baz

 , bg =

bgxbgy
bgz

 . (2.5)

In the ideal case both ba and bg are a 3×1 null vector.

2.2.3 Complete Sensor Error Model

To complete the sensor error model the measurement noise is considered
too. Thus the complete models are

aO = TaKa(aS + ba + νa) (2.6)

11
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for the accelerometers, and

ωO = TgKg(ωS + bg + νg) (2.7)

for the gyroscopes. Where νg and νg are the accelerometer measurement
noise and the gyroscope measurement noise, respectively.

2.3 Calibration
There are several different kind of methods for calibrating the IMU. In

this section we give a look at these methods starting from the calibration
based entirely on mechanical equipment, continuing with the first attempt
to ease the procedures reducing the equipment needed then finishing with
the approach we based our study on.

2.3.1 Mechanical Equipment based Calibration

In [10] they say: "Calibration is the process of comparing instrument out-
puts with known reference information and determining coefficients that force
the output to agree with the reference information over a range of output val-
ues".
Having the opportunity to compare data collected from IMU to data coming
from highly controlled movements the unknown parameters of the consid-
ered sensor error model can be identified using simply linear least squares
algorithm.

In [21] they present a device that simplifies and speeds up the calibration
process of the accelerometers and gyroscopes removing the need to reposi-
tion the IMU manually during the calibration process. They designed and
realize the device to calibrate a specific Inertial Measurement Unit, but the
same idea could be potentially implemented to calibrate other IMUs. The
device consist on a mechanical gimbal system with three actuated degrees of
freedom. For the accelerometers, the calibration is done by positioning the
IMU to known orientations and for the gyroscopes by rotating the IMU at
several constant speeds around specified axis. Based on these measurements,
the optimal parameters for the sensor error model are calculated using linear
least squares.

2.3.2 Semi-Mechanical Calibration

In [14] Skog and Händel propose an approach for calibrating a low-cost
IMU requiring no mechanical platform for the accelerometer calibration and

12
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only a rotating table for the gyro calibration. The proposed calibration
methods utilize the fact that ideally the norm of the measured output of the
accelerometers and gyroscopes clusters are equal to the magnitude of applied
force and rotational velocity, respectively.
Obviously the norm of the gyroscopes output is compared to the known mag-
nitude of the rotational velocity of the rotating table. For what concerns the
acceleromters the norm of the cluster output is compared to the magnitude
of the apparent gravity force.

2.3.3 Calibration Without External Equipment

The basic principle of this type of calibration, proposed in [8] and then re-
tracted and extended to the calibration of the magnetometer in [16], consists
of calibrating the accelerometers as in the calibration viewed in Sec. 2.3.2,
and then calibrate the gyroscopes comparing the outputs of the accelerome-
ter and the IMU orientation integration algorithm, after arbitrary motions.
The properties used and proposed cost function allow the gyroscopes to be
calibrated without external equipment, such as a turntable, or requiring pre-
cise maneuvers. We discuss and analyze this approach further in Ch. 3 while
explaining the procedure proposed in this thesis.

2.4 Quaternions
Now we introduce quaternions because they are a powerful tool to parametrize

rotation matrices. There are many sources to draw upon information on
quaternions so we will introduce them very briefly and speak directly on how
they are used to describe rotations in three dimensions [28, 29].

The set of complex numbers, C, can be simply defined as

C = R + Ri, with i2 = −1. (2.8)

In this sense, complex number generalize real numbers. In a similar way
quaternions ( or Hamilton’s Numbers) generalize complex number. The set
of quaternions, H, is defined as

H = C + Cj, with j2 = −1 and i · j = −j · i. (2.9)

Sometimes for semplicity of notationij is denoted by k. And so we have that
an element content in H is in the form

q = q0 + q1i+ (q2 + q3i)j = q0 + q1i+ q2j+ q3ij = q0 + q1i+ q2j+ q3k (2.10)

13



CHAPTER 2. THEORETICAL BACKGROUND

where q0, q1, q2, q3 ∈ R. From Eq. 2.9 we can see that the product of i and j
is anticommutative, thus in general the product between two quaternions is
not commutative. Now we consider a particular subset of quaternions: the
unit quaternions, that is

S3 = {q ∈ H | q20 + q21 + q22 + q23 = 1}. (2.11)

The set of unit quaternions is simply the unit-radius origin-centered
sphere in R4. Any rotation in three dimensions can be represented as a
combination of an axis and a rotation angle. Quaternions represent a simple
way to encode this axis-angle representation in four numbers and apply the
rotation corresponding to a position vector that represents a point relative
to the origin in R3. Through the euloero formula we can represent a rotation
as

q = e
1
2
θ(vxi+vyj+vzk) = cos

1

2
θ + sin

1

2
θ(vxi+ vyj + vzk) (2.12)

where θ is the rotation angle and v = (vx, vy, vz) is a versor which rap-
resents the rotation axis. Now consider q = (a, b, c, d) a unit quaternion
rapresenting a rotation, we can get the rotation matrix as follows

Rq =

a2 + b2 − c2 − d2 2bc− 2ad 2bd+ 2ac
2bc+ 2ad a2 − b2 + c2 − d2 2cd− 2ab
2bd− 2ac 2cd+ 2ab a2 − b2 − c2 + d2

 (2.13)

Finally we give the definition of the product between to quaternions, but
before we introduce a new notation. Given a quaternion q = a+ bi+ cj+dk,
we divide it into two different parts, a scalar one (a) and a vectorial one
(v = bi+ cj + dk). So we have q = a+ v.
Given this new notation we can express the product between quaternions
using the usual vectorial and scalar product we are familiar with. Considered
that i2 = j2 = k2 = ijk = −1 the product can be written as

(s+ v)(t+ w) = (st− vw)(sw + tv + v×w) (2.14)

where it is clear that the product is not commutative for the presence of
the vectorial product.

2.4.1 Integration Algorithm

It is possibile to consider each gyriscope’s sample as constant over period
of time equal to the sampling period. This first order approximation permits
to compute the overall rotation associated to a set of gyroscope’s samples

14



2.4. QUATERNIONS

just using a moltiplication chain of matrices. In general this approximation
does not give sufficiently precise results and for the proposed method we use
the a fourth order numerical integration algorithm we further discussed in
Sec. 3.4.2. In spite of it is unused we explain how this first order algorithm
works, because it permits to understand more intuitively the higher order
algorithm.

If there is a series of rotations in a certain order, it is possible to compute
the total rotation by properly multiplying the quaternions associated with
each rotation. Let (r1, r2, ..., rn) be an ordered set of rotations parametrized
by matrices (R1,R2, ...,Rn) and, (q1,q2, ...,qn) the corrispondent ordered
set of quaternions, thus the total rotation rtot is

rtot ↔ Rtot ↔ qtot = qnqn−1 · ... · q2q1 (2.15)

where we used Eq. 2.13 to obtain Rtot from qtot.
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Chapter 3

Algorithm

"Quando le cose diventano troppo complicate, qualche volta
ha un senso fermarsi e chiedersi:

ho posto la domanda giusta?"

"When things get too complicated, sometimes
it makes sense to stop and ask:

I asked the right question?"

Enrico Bombieri

The magnetometer’s data are not used because in the context we are
considering, the smarphone’s IMU calibration, distortions due to metallic
structures and antennas could be excessive to be properly considered by a
linear model.

3.1 Fundamentals Properties
The two fundamental hypothesis which permit to set up the calibration

method are taken from [8]. They impose physical and mathematical con-
straints on the sensor outputs, thus the two properties are used to calibrate
the sensors instead of relying on values coming from high physical precision
mechanical equipments. In this way the IMU can be easily calibrated by the
users in the field.

The first property permits to calibrate the accelerometer cluster, and it is
Property-1 : the magnitude of the static acceleration measured must equal
that of the gravity.
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This is the constraint applied to the triaxial accelerometer which imposes a
correlation between the axis, or in other words the values measured on each
axis are not indipendent.

The second property, the one we use to calibrate the gyroscope cluster, is
Property-2 : the gravity vector measured using a static triaxial accelerom-
eter must equal the gravity vector computed using the IMU orientation inte-
gration algorithm, which in turn uses the angular velocities measured using
the gyroscopes, and it starts the orientation integration from a direction given
by the static triaxial accelerometer itself.
This property must hold whenever the IMU is static after any arbitrary mo-
tion.

3.2 Acceleromter Cost Function
The accelerometer calibration consists on the estimation of all the 9 un-

known parameters of the sensor error model presented in Sec. 2.2.3. That
is

aO =

1 −αyz αzy
0 1 −αzx
0 0 1

sax 0 0
0 say 0
0 0 saz

aS +

baxbay
baz

 . (3.1)

Thus the unknown parameter vector for the accelerometer (θacc) which
is estimated is

θacc =
[
αyz, αzy, αzx, s

a
x, s

a
y, s

a
z , b

a
x, b

a
y, b

a
z

]
. (3.2)

So we can define the funtion

aO = h(aS,θacc) = TaKa(aS + ba). (3.3)

||g|| is defined as the actual magnitude of the local gravity vector that can be
easily recovered from specific public tables (e.g., knowing latitude, longitude
and altitude of the location where we are performing the calibration). Then
the cost function which is minimized is

L(θacc) =
N∑
k=1

(||g||2 − ||h(aSk ,θ
acc)||2)2 (3.4)

where N is the number of sets of measurement from which they are extracted
acceleration vectors aSk (measured in the non-orthogonal AF), averaging the
accelerometers readings in a temporal window inside each static interval. In
order to minimize Eq. 3.4 the Levenberg-Marquardt (LM) algorithm is used
with initial guess θacc0 =

[
0, 0, 0, 1, 1, 1, 0, 0, 0

]
, which rapresents the ideal

case.
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3.3 Gyroscope Cost Function

For what concerns gyroscopes we bring back the system to a new bias-free
system simply averaging the static gyroscope signals (this sentence is further
discussed in Sec. 3.4.3). And so 9 parameters have to be estimated like in
the accelerometer case. That is

ωO =

 1 −γyz γzy
γxz 1 −γzx
−γxy γyx 1

sgx 0 0
0 sgy 0
0 0 sgz

(ωS) . (3.5)

Thus the unknown parameter vector for the gyroscope (θgyro) which is esti-
mated is

θgyro =
[
γyz, γzy, γxz, γzx, γxy, γyx, s

g
x, s

g
y, s

g
z

]
. (3.6)

Ψ is the operator that converts a sequence of ωSi , from i = 0 to i = n, for
some n, and the initial gravity vector u0, to the gyroscope computed gravity
vector ug

ug = Ψ
[
ωSi ,u0

]
(3.7)

where Ψ can be any algorithm that computes the orientation through inte-
grating the angular velocities ωSi (we describe more precisely Ψ in Sec. 3.4.2).

Having given all these definitions we can define the cost function we min-
imize

L(θgyro) =
N∑
k=1

||ua,k − ug,k||2 (3.8)

where N is the number of sets of measurement, ua,k and ua,k are the k-
th acceleration vector measured in the calibrated accelerometer frame and
the k-th acceleration vector computed using gyroscope frame respectively.
To minimize Eq. 3.8 the LM algorithm is used with initial guess θgyro0 =[
0, 0, 0, 0, 0, 0, 1, 1, 1

]
, which rapresents the ideal case.

3.4 Calibration Procedure

As introduced in Sec. 1, the proposed calibration framework requires to
collect a dataset with the stream of raw accelerometers and gyroscopes read-
ings, taken while the operator moves the IMU in different static positions,
in order to generate a set of distinct, temporarily stable, rotations. A simple
diagram of our calibration protocol is reported in Fig. 1.1. As mentioned in
Sec. 3.2, to mitigate the noise effect in the minimization of Eq. 3.4, so it is
needed to average the signals over a suitable time interval. This impose a
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lower bound in the lengths of the static interval (twait in Fig. 1.1). A initial-
ization period (Tinit in Fig. 1.1) with no motion is essential as well: this will
be exploited to characterize the gyroscopes biases (Sec. 3.4.3) and the static
detector operator (Sec. 3.4.1).

3.4.1 Static Detector

Figure 3.1: An example of the static detector applied to the real raw ac-
celerometers’ data: the static detector is represented by the black square
wave, its high level classify an interval as static.

The accuracy of the calibration strongly depends on the reliability in the
classification between static and motion intervals: to calibrate the accelerom-
eters static intervals are used, while for gyroscopes calibration they are also
included the motion intervals between two consecutive static intervals. In
my experience, band-pass filter based operators, like the quasi-static detector
used in [8], perform poorly with real datasets: detected static intervals fre-
quently includes some small portion of motion. Moreover, they require a fine
tuning, since they depend on three parameters. The parameters are the two
frequecy caracterizing the pass-band based filter and the threshold used to
cut the signal. Actually this latter parameter is automaticcaly estimated by
their calibration algorithm, but the other two must be tuned by the operator.
Here it is proposed instead to use a variance based static detector operator,
that exploits the lower bound in the lengths of the static interval introduced
above. This detector is based on the accelerometer signals: given a time
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3.4. CALIBRATION PROCEDURE

interval of length twait seconds (see Fig. 1.1), for each accelerometers sample
(aty, aty, aty) at time t, the variance magnitude is computed as:

ς(t) =
√

[vartw(atx)]2 + [vartw(aty)]2 + [vartw(atz)]2 (3.9)

where vartw(at) is an operator that compute the variance of a general signal at
in a time interval of length tw seconds centered in t. We classify between static
and motion intervals simply checking if the square of ς(t) is lower or greater
then a threshold. As a threshold, we consider an integer multiple of the square
of the variance magnitude ςinit, computed over all the initialization period
Tinit. In all the experiments, we use tw = 1 s, while Tinit is estimated using
the Allan variance (see Sec. 3.4.3). It is important to note that the proposed
static detector does not require any parameter tuning: the integer multiplier
used classify the signal, which is the unique parameter, is automatically
estimated by our calibration algorithm (see Sec. 3.5). In Fig. 3.1 is reported
an example of how our static filter works on real data: in this case the
estimated integer multiplier is 6.

3.4.2 Runge-Kutta Integration

As reported in Eq. 3.7, in the gyroscopes calibration we need to perform
a discrete time angular velocity integration: a robust and stable numerical
integration method is desirable since it can improve the calibration accu-
racy. Given a common instruments rate of 100 Hz (like the Xsens MTi IMU
used in the experiments) and since we represent rotations using quaternion
arithmetic, with this setup a proper integration algorithm choice [25] is the
Runge-Kutta 4th order normalized method (RK4n).
Let Eq. 3.10 be the differential equation describing the quaternion kinemat-
ics:

f(q, t) = q̇ =
1

2
Ω(ω(t))q (3.10)

where Ω(ω) is the operator which turns the considered tri-dimensional an-
gular velocity into the real skew symmetric matrix representation, that is:

Ω(ω) =


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0

 . (3.11)
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It is possible to compute the overall rotation associated to a set of gyroscope’s
samples using RK4n integration algorithm in this way:

qk+1 = qk + ∆t
1

6
(k1 + 2k2 + 2k3 + k4) , (3.12)

ki = f(q(i), tk + ci∆t), (3.13)
q(i) = qk, for i = 1, (3.14)

q(i) = qk + ∆t
i−1∑
j=1

aijkj, for i > 1. (3.15)

Where qk is the quaternion parametrization of the rotation associated to the
first k samples of the gyro’s measurement set. All the coefficients needed, ci
and aij, are

c1 = 0, c2 = 1
2
, c3 = 1

2
, c4 = 1,

a21 = 1
2
, a31 = 0, a41 = 0,

a32 = 1
2
, a42 = 0, a43 = 1.

Finally, for each step, we also need to normalize the (k + 1)-th quaternion.

qk+1 →
qk+1

||qk+1||
. (3.16)

3.4.3 Allan Variance

The random gyroscope bias drifts are characterized using the Allan vari-
ance ([26], [8]), which measures the variance of the difference between con-
secutive interval averages. The Allan variance σ2

a is defined as:

σ2
a =

1

2

〈
(x(t̃, k)− x(t̃, k − 1))2

〉
=

1

2K

K∑
k=1

(x(t̃, k)− x(t̃, k − 1))2 (3.17)

where x(t̃, k) is the k-th interval average which spans t̃ seconds, and K is
the number of interval which the total considered time is segmented in. We
compute the Allan variance for each gyroscope axis, with t0 ≤ t̃ ≤ tn. We fix
t0 = 1s, tn = 225s. The time in which the Allan variances of the three axis
converge to a small value represents a good choice for initialization period
Tinit (Fig. 1.1). In this initialization period, we compute the average of the
static gyroscope signals to correctly determine the gyroscopes biases used in
the calibration.
In the case of the Xsens MTi IMU, a good value for Tinit is 50 seconds (see
Fig. 3.2).
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Figure 3.2: Allan Variance computed for the Xsens MTi gyroscopes triad.

3.5 Complete Procedure
To avoid unobservability in the calibration parameters estimation, a min-

imum of nine different attitudes [15] has to be collected (e.g., Fig. 3.3). In
our experience, a higher number N of distinct attitudes are required to get
better calibration results, while keeping reduced the duration of each static
interval in order to preserve the assumption of temporal stability of the gy-
roscopes biases. With 36 ≤ N ≤ 50 and 1 s ≤ twait ≤ 4 s, we obtain a good
trade-off between calibration accuracy, biases stability, and noise reduction.
The duration of the initialization period Tinit is given by the Allan variance
analysis (see Sec. 3.4.3). The calibration protocol is summarized in Fig. 1.1,
while in Algorithm 1 the pseudo-code of the calibration algorithm is reported.
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Algorithm 1 IMU Calibration
Require: Tinit, twait; aS and ωS (accelromter’s and gyroscope’s dataset
collected according to the protocol summarized in Fig. 1.1).

bg ← average gyroscope signals over Tinit;
ωSbiasfree ← ωS - bg;
Minf ← empty matrix;
ςinit ← Eq. 3.9, with tw = Tinit;
for i = 1 : k
threshold ← i ∗ ς2init;
static_intervals ← static detector computed using twait and threshold;
[Residual, Params] ← optimize Eq. 3.4, using static_intervals and aS

averaging with twait;
Minf (i) ← [Residual, Params, threshold, static_intervals];

end
indexopt ← index of the minimum residual in Minf ;
Paramsacc ← from Minf using indexopt;
static_intervalsopt ← from Minf using indexopt;
aO ← calibrate aS using Paramsacc;
Parametersgyro ← optimize Eq. 3.8, using static_intervalsopt, ωSbiasfree

and aO averaging with twait.
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3.5. COMPLETE PROCEDURE

Figure 3.3: Calibration protocol: Some examples of the Xsens MTi IMU, at-
tached to a Point Grey Bumblebee 2 stereo camera, [32], disposed in different
attitudes as required by the proposed method.
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Chapter 4

Experimentation

"Life is an experiment
in large part

I have not yet tried."

Henry David Thoreau

4.1 Simulations

To test our method we first do simulations. These have the advantage
that the results are comparable with a perfect ground truth, the unnoisy
undestorted signal and the calibration matrices we know since we generate
them.
We first generate a set of ideal, nuisance free signals. The accelerometers
readings are generated starting from a three-dimensional signal based on
three different-pulsation sinusoids randomly modulated. At the beginning
we add 5000 zero samples (the initialization period) and every time the three
signals are simultaneously zero we introduce 400 zero samples (the static
intervals). The three dimensional gravity vector projected onto the three
axis has been added as well.
For the angular velocities sensed by the gyroscope, the idea is to consider
a tri-dimensional angular velocity vector ω, which describes the perceived
rotation of the aforementioned gravity vector, and then project ω onto the
three axis of the gyroscope. In this way we correlate the measurement of the
two different clusters of sensors. For each motion interval different randomly
zenith and azimuth velocities are chosen while for the rest of the time these
velocities are considered to be equal to zero. The sampling frequency of the
whole synthetic data has been fixed to 100 Hz.

27



CHAPTER 4. EXPERIMENTATION

For each ideal signal, we add a white gaussian noise and finally we distort
the data with random generated distortion parameters, i.e.:

aSsynth = (TaKa)−1 aOsynth − ba (4.1)

for the accelerations, and:

ωSsynth = (TgKg)−1ωOsynth − bg (4.2)

for the angular velocities. aSsynth and aOsynth are the synthetic acceleration
in the non-orthogonal sensor frame and in the associated orthogonal frame,
respectively. ωSsynth and ωOsynth are the synthetic angular velocities in the non-
orthogonal sensor frame and in the associated orthogonal frame, respectively.
Eq. 4.1 and Eq. 4.2 are obtained from models proposed in Eq. 2.6 and in
Eq. 2.7 respectively.

In next pages we have some examples that show how much sundry can
be the genereted signals. Some osservations are necessary:

• Fig. 4.1 is paired with Fig. 4.5, as Fig. 4.2 is paired with Fig. 4.6 and
so on;

• the four pairs of distorted signals are genereted using four different
parameters’ sets of distortion. This can be easily seen in figures pic-
turing angular velocities, where bias are very different from a instance
to an other;

• the noise seems to be much bigger in angular velocities then in accel-
rations, but it is not properly the truth. Actually, in the real cases,
the accelerometers are ususally less noisy then gyroscpes, but the dif-
ference in the figures depicting accelerations and angular velocities is
due to the ordinate axis’ scale.
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Figure 4.1: First example of acceleromter’s synthetic signals.

Figure 4.2: Second example of acceleromter’s synthetic signals.
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Figure 4.3: Third example of acceleromter’s synthetic signals.

Figure 4.4: Fourth example of acceleromter’s synthetic signals.
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Figure 4.5: First example of gyroscope’s synthetic signals.

Figure 4.6: Second example of gyroscope’s synthetic signals.
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Figure 4.7: Third example of gyroscope’s synthetic signals.

Figure 4.8: Fourth example of gyroscope’s synthetic signals.
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It shown in Fig. 4.9 how the static detector can appear. The static detec-
tor is superimposed to the tri-dimensional synthetic accelration signal over
which it is computed.

Figure 4.9: Static detector superimposed on accelerometer synthetic signals.

4.1.1 Evaluation Metrics

We need some metrics that allow us to evaluate the quality of our results.
In the case of the simulation, as we said before, there is the ground truth

of the perfect, unnoisy, undistorted signals and the matrices and vectors we
used to distort the signal. Thus the considered metrics are:

1. Comparing the estimated values to the real ones;

2. Comparing the average difference between the perfect, noise-free and
undistorted signal with the noisy signal before and after calibration;

3. For the accelerometers only we give the difference between the magni-
tude of the gravity vector and the magnitude of the sensed acceleration
as the magnitude of divergence between the sensed acceleration and
the applied one. Since the magnitude of the gravity vector is assumed
to be the only quantity known, the angular error here is calculated for
the worst case, where the full error appears on a single accelerometer
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axis which is perfectly horizontal, i.e. perpendicular to the gravity vec-
tor. An error of g · sin(θaccdiv) will result in the pitch or roll angle being
measured as θaccdiv radiants instead of zero;

4. For the gyroscopes only: we consider the magnitude and the angular
error between the acceleration sensed by the calibrated accelerometer
and the acceleration computed integrating the angular velocities given
by the gyroscope.

4.1.2 Simulation Results

To obtain significant results from simulations, fourty different distortion
parameter sets are generated. Each distortion parameter set is estimated
using the proposed algorithm applied to a set of thirty randomly genereated
signals which are distorted using the considered distortion parameter set.
It is computed for each distortion parameter set the mean and the variance of
estimated parameters, the mean and the varience of error committed on each
parameter, followed by the metrics aforementioned in Sec. 4.1.1 averaged on
the thirty different results. Then the worst case is given, considered the worst
since it has the biggest error on the accelerometer divergence. In fact if the
accelerometer’s calibration has big errors, the gyroscope’s one, that is based
on it, will have big errors too.
Here only one case is reported.

Table 4.1: Accelerometers Parameters. Set:1.

Real Mean RSM Mean Erorr RSM Worst
Value x10−3 x10−3 x10−3 case

αyz 0.0049 0.0049 0.0481 0.0398 0.0275 0.0049
αzy -0.0055 -0.0055 0.0401 0.0334 0.0214 -0.0055
αzx 0.0079 0.0079 0.0296 0.0248 0.0190 0.0079
sax 0.9908 0.9908 0.0327 0.0265 0.0191 0.9908
say 1.0068 1.0068 0.0304 0.0258 0.0199 1.0068
saz 1.0066 1.0066 0.0215 0.0178 0.0151 1.0066
bax 0.0793 0.0793 0.1369 0.1163 0.0819 0.0792
bay -0.0024 -0.0024 0.2138 0.1760 0.1178 -0.0026
baz 0.0636 0.0636 0.1332 0.0953 0.0919 0.0636
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Table 4.2: Gyroscope Parameters. Set:1.

Real Mean RSM Mean Erorr RSM Worst
Value x10−3 x10−3 x10−3 case

γyz 0.0112 0.0110 0.8547 0.6392 0.5920 0.0099
γzy -0.0211 -0.0210 0.4419 0.3468 0.2669 -0.0207
γxz 0.0040 0.0039 1.0630 0.9080 0.5266 0.0030
γzx -0.0010 -0.0011 0.4102 0.3386 0.2302 -0.0011
γxy 0.0270 0.0270 0.8154 0.6375 0.4944 0.0252
γyx 0.0151 0.0155 0.7250 0.7315 0.3958 0.0166
sgx 0.8786 0.8785 0.4121 0.3366 0.2299 0.8790
sgy 0.9703 0.9704 0.4059 0.3353 0.2237 0.9701
sgz 1.0460 1.0460 0.4216 0.3410 0.2397 1.0460

Table 4.3: Absolute errors along the axis. Set:1.

(a) Accelerometer

x-axis y-axis z-axis
m/s2 m/s2 m/s2

Uncalibrated 0.0842 0.0564 0.0635
Calibrated 0.0055 0.0056 0.0056

(b) Gyroscope

x-axis y-axis z-axis
(rad/s) (rad/s) (rad/s)

Uncalibrated 0.1043 0.1097 0.0345
Calibrated 0.0035 0.0039 0.0042

Table 4.4: Accelerometer divergence error. Set:1.

Average Max observed Worst case Worst case
error error average error max error

m/s2(rad) m/s2(rad) m/s2(rad) m/s2(rad)
Uncalibrated 0.0665 0.2133 0.0623 0.2098

( 0.0114) ( 0.0226) ( 0.0115) ( 0.0240)
Calibrated 0.0056 0.0299 0.0056 0.0298

( 0.0009) ( 0.0035) ( 0.0009) ( 0.0038)
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Table 4.5: Gyroscope divergence error. Set:1.

Average Max observed Worst case Worst case
error error average error max error

m/s2(rad) m/s2(rad) m/s2(rad) m/s2(rad)
Uncalibrated 4.7125 9.2930 5.2859 8.5822

( 0.5494) ( 0.5494) ( 0.6029) ( 0.6029)
Calibrated 0.2208 0.4469 0.5102 0.8597

( 0.0256) ( 0.0256) ( 0.0569) ( 0.0569)

Starting from Tab. 4.1 and Tab. 4.2 it is possible to see that the aver-
age error commited estimating misalignment and scaling parameters of the
accelerometer is of the order of 10−5 while all the others parameters are esti-
mated under a error of the order of 10−4. From Tab. 4.3, the absolute error
commited along each axis of the accelerometer is improved of a factror 12.6
in mean, and for the gyroscope’s axis the improvement is of a factor of 22.5
in mean. Finally from Tab. 4.4 and Tab. 4.5 it is possible to see that for what
concrens accelerometer the divergence’s magnitude is improved by a factor
of 11.9 and the angular error by a factor of 12.7 while for the gyroscope the
magnitude of the considered divergence is improved of a factor of 21.4 and
the angular error of a factor of 21.9.

All these results refers to the first generetad set of distortion parameters,
but very similar results are obtained in all the other thirtynine sets.

Finaly, in Fig. 4.10, 4.11, 4.12 and in Fig. 4.13, 4.14, 4.15 it is shown
how the improvement due to calibration is significative. In this pictures are
depicted six different rondomly choosen intervals referring to the six different
sensors but referring to the same synthetic signal.

For what concerns accelerometer it is almost impossible to distinguish
the real signal from the calibrated one. For the gyroscope we have very good
results too but not so tight as for the accelerometer. This is due to the
fact that, calibrating the accelerometer, an error is obviously made, how-
ever small, and as the results of this calibration are used to calibrate the
gyroscopes, the error commited for the accelerometer is propagated to the
calibration of the gyroscopes being added to the error inherently contained
in the calibration of this latter sensor.
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Figure 4.10: Calibration Improvement - Accelerometer x-axis.

Figure 4.11: Calibration Improvement - Accelerometer y-axis.

Figure 4.12: Calibration Improvement - Accelerometer z-axis.
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Figure 4.13: Calibration Improvement - Gyroscope x-axis.

Figure 4.14: Calibration Improvement - Gyroscope y-axis.

Figure 4.15: Calibration Improvement - Gyroscope z-axis.
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4.2 Real Data Test
It is used an inertial measurement unit which can output raw unclibrated

data and whose datasheet contains the calibration matrices we are estimating
with our method. We compare the matrices we obtain by the uncalibrated
data to the calibration matrices given by the datasheet. The real IMU we
use to test the proposed algorithm is MTi by Xsens (the orange component
in Fig. 3.3).

All specifications are given in Tab. 4.6, taken from [31]

Table 4.6: MTi specifications.

where magnetometer noise density can be susceptible to electro-magnetic
radiation and the alignment error is given after compensation for non-orthogonality,
i.e. the error in the table is the error we have in the calibrated output.

4.2.1 Evaluation Metrics

As said before, we do not have any mechanical equipment capable of
extremely precise maneuver so we consider as a ground truth the calibration
matrices given in the MTi’s datasheet.
Comparing the estimated matrices to the ones in the documentation is not
properly an evaluation metric, but it permits us to evaluate if the calibration
process is correct or not. We do not use the same matrics, the ones that
does not require any external knowledge except the magnitude of the gravity
vector, because using raw data, whose values has no fisical meaning, it has
no sense evaluate the calibration results comparing data before and after
calibration. In the next tables we have the calibration matrices as they give
them in the datasheet.

Scaling factors are so big because they rapresent the factor that permit
to reduce the quantized raw value given by the output, output ∈ [0, 216 − 1]
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(a) Scaling - Accelerometer

415 0.00 0.00
0.00 413 0.00
0.00 0.00 415

(b) Scaling - Gyroscope

4778 0.00 0.00
0.00 4758 0.00
0.00 0.00 4766

(c) Misalignment - Accelerometer

1.00 0.00 -0.01
0.01 1.00 0.01
0.02 0.01 1.00

(d) Misalignment - Gyroscope

1.00 -0.01 -0.02
0.00 1.00 0.04
-0.01 0.01 1.00

(e) Offset - Accelerometer

33123 33276 32360

(f) Offset - Gyroscope

32768 32466 32485

Table 4.7: MTi calibration parameters and offset.

to a fisical quantity. All the matrices are the inverse of the matrices we are
actually estimating, so to compare our results we have to invert the estimated
matrices. Actually, for the scale inverting the estimated matrices is correct
but, for the misalignment, it is not sufficient. The device datasheet provides
the factory calibrated misalignment matrices that align the accelerometers
(AF) and gyroscopes (GF) frames to the body frame BF, while the estimated
matrices align AF and GF to AOF. In order to compare our results with the
results of the factory calibration, we need to know the matrix Rb that relates
AOF to BF. Given Rb, we can express our calibration vectors in BF. Rb is
the composition of three rotation, each one around one of the three axis of
the chassis, and having each one a magnitude which we can recover from the
misalignment matrix given in the datasheet (see section 2.2.1 for the reading
of the misalignment matrix). Clearly, we have to multiply both the estimated
misalignment matrices, the accelerometer one and the gyroscope one, by the
same rotation matrix, because they both refers to the same orthogonal frame
(AOF) which is misaligned to the chassis frame by angles just discussed.

From the datasheet we take and use only the data about the sensors
offset. These values refer to the zero values of the sensors, and they do not
refer to bias.

Finally we do not have anything to compare to the estimated bias for the
accelerometer.
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4.2.2 Real Data Test Results

Just to show an example of the trend of real signals, parts of them are
pictured in Fig. 4.16 and in Fig. 4.17.

Figure 4.16: Example of real accelerometer raw signals.

Figure 4.17: Example of real gyroscope raw signals.

First of all we demonstrate how the giroscope’s signals changes after the
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bias estimation via averaging of the signals themselves during the first long
quasi static interval, Fig. 4.18.

(a)

(b)

Figure 4.18: Bias remuval improvement. Before, a), and after, b), bias remu-
val.

The real dataset was acquired as described in Fig. 1.1, with an initial
static period of about 50 seconds, followed by a set of 37 rotations separated
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by static intervals of 2-4 seconds. As initial guess for the optimization the
ideal values are used for the accelerometer, that are (see Eq. 3.2):[

0 0 0 1 1 1 0 0 0
]
. (4.3)

While for the gyroscope are used (see Eq. 3.6):

[
0 0 0 0 0 0 1

r
1
r

1
r

]
, r =

(2n − 1)

2y
(4.4)

where n is the numbers of bit of the A/D converter, and the gyroscope full-
scale from datasheet is [-y, +y] rad/s.

(a) Estimated Scaling - Acc

414.41 0 0
0 412.05 0
0 0 414.61

(b) Estimated Scaling - Gyro

4778.0 0 0
0 4764.8 0
0 0 4772.6

(c) Estimated Misalignment - Acc

1.0000 -0.0066 -0.0110
0.0102 1.0001 0.0114
0.0201 0.0098 0.9998

(d) Estimated Misalignment - Gyro

0.9998 -0.0149 -0.0218
0.0003 1.0007 0.0433
-0.0048 0.0121 1.0004

Table 4.8: MTi estimated calibration parameters.

The calibration obtained, Tab. 4.8, is absolutely comparable to the cal-
ibration parameters given in the datasheet, see Tab. 4.7. Moreover, it is
important to point out that in the results it is implicitly included an error
that can’t be attributed to the calibration method. This is the propagated
error caused by the IMU’s datasheet rounded values (Tab. 4.7c) used when
Rp is computed. In spite of this problem, the results obtained are very close
to datasheet’s parameters.
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Chapter 5

Conclusions

"Take risks:
if you win, you will be happy;
if you lose you will be wise."

Peter Kreeft

This thesis presents a calibration method for a IMU that requires neither
any specially designed equipments nor the long and laborious procedures for
data sampling. The procedure for the collection of data allows the sensor to
be moved by hand, and only requires a few minutes of arbitrary rotations
with intermittent pauses. Also a protocol is given, which a user should follow
in order to calibrate his IMU. A robust integration tecnique is used while
exposed procedure does not require any parameter tuning. Simulations gives
excellent results, while the calibration of the real IMU is very good too. The
most significative part of the errors in the real IMU calibration comes from
the rounded values of the angle we extract from datasheet.

A scientific paper based on this work has been submitted to ICRA 2014:
the most important robotics conference in the world.

5.1 Future Works
More robust tests can be done on real IMUs, also testing the method on

different kinds of IMU, e.g. IMUs working at different sampling rates. Test-
ing uncalibrated IMUs that gives in output wrong fisical quantities instead
of quantized values, permits to employ the metrics used in this thesis for the
evaluation of simulations’ results (i.e. the divergence between the magnitude
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of the gravity vector and the acceleration sensed by the IMU standing static
and so on).

After these studies, the protocol and the algorithm can be optimized
specifically for particular IMUs, such as a defined smartphone’s IMU (e.g.
defining a specified protocol and implementing an optimized algorithm in
Objectice-C, [33], to calibrate the specific IMU contained in the iPhone 5s,
[34]).

Finally considering that are already aviable smartphones with build-in
thermometer (like the Galaxy S4, [35]) some studies can be perfomed to take
into account temperature effects on the calibration parameters and in such
a way improve the reliability of the obtained calibration.
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