
UNIVERSITÀ DEGLI STUDI DI PADOVA

Dipartimento di Fisica e Astronomia “Galileo Galilei”

Corso di Laurea in Fisica

Tesi di Laurea

Quantum computing on the IBM processor

Relatore Laureando

Prof. Simone Montangero Marco Ballarin

Anno Accademico 2018/2019

ii

To my parents.

iv

Contents

Abstract 1

Introduction 3

1 An introduction to Quantum Information 5
1.1 Classical Computation in a nutshell . 5
1.2 The Qubit . 7
1.3 Quantum states representation . 9
1.4 Composite systems and entanglement . 10
1.5 State Evolution . 11
1.6 Quantum Gates . 12
1.7 Quantum Channels . 17

2 The IBM quantum processor 21
2.1 Qubit implementation . 21
2.2 Specifics of the quantum processor . 23
2.3 The Qiskit software . 25

3 Characterization of the quantum processor 29
3.1 The relaxation time T1 . 29
3.2 The decoherence time T2 and T2* . 32

3.2.1 Ramsey experiment: T2 . 32
3.2.2 Echo experiment: T2* . 34

3.3 Comparison between IBM value and measured time 35

4 Quantum Cellular Automata 37
4.1 Classical Cellular Automata . 37
4.2 Quantum Elementary Cellular Automata 39
4.3 Implementation on the IBM quantum processor 40

Conclusions 49

References 50

v

Abstract

We analyze the basic aspects of the quantum information theory, namely the quantum ver-
sion of the theory that is behind all the classical implementations like computers and com-
munications. We focus on quantum computation, defining its fundamental unit: the qubit,
namely a quantum two-level system that will be described in detail in this thesis. We then
concentrate on the possible transformations gates that can be applied to qubits, both unitary
and non-unitary ones.

The challenges in the construction of qubits are impressive: in particular, it is difficult to
isolate the system from the environment. This interaction is modeled by non-unitary trans-
formations. The characteristic times connected to these processes are the relaxation time, the
time in which a state decays in another state, and the decoherence time, the time in which
quantum coherence is lost. These times are fundamental in quantum computing since they
quantify how many operations can be performed on qubits and still obtain reliable results.
Wemeasure these characteristic times on the IBMquantumprocessor ’ibmq_16_melbourne’
performing three different experiments: one for the relaxation time and two for the decoher-
ence time, namely Ramsey and Echo experiments.

Finally, we implement a quantum algorithm, an algorithm that uses the resources of quan-
tum mechanics, like entanglement. We focus on finding a protocol to define the quantum
version of the elementary cellular automata, the quantum elementary cellular automata, and
run it on the IBM processor. They are dynamical systems defined on a lattice in which the
evolution is defined using simple local update rules.

Comparing the physical results with theoretical expectations and noise-affected simula-
tions we show the performance of the IBM processor.

1

2

Introduction

Quantum mechanics revolutionized every aspect of physics, and in particular information
theory[1]. The products of classical information theory permeate every-day life: communi-
cations, computers, cryptography. A quantum version of these classical implementations
exists, but it is really difficult to develop experimentally. The improvement that could be ob-
tained by implementing quantum technology is great. It is simple to understand its possible
impact in scientific research: a good example is the quantum algorithmdeveloped to find the
eigenvalues of a given Hamiltonian, the variational eigensolver[2].

Wewill focus on the area of theQuantum Information Theory that deals withQuantum
Computers, the quantum version of the classical computers. Their fundamental unit is the
qubit, a quantum two-level system. The research in this field obtained a great boost in 1994
when Shor demonstrated the existence of a polynomial quantum algorithm for the factor-
ization of prime numbers[3]. The importance of this demonstration is that the difficulty of
factorizing the product of prime numbers with lots of digits that is at the base of the security
of one of the most used cryptography protocols, the RSA[4]. Indeed, in the public key dis-
tributed freely and used to encode the message there is the numberN , which is the product
of two prime numbers. The private key, namely the key used to decode the message, is easily
obtained by the public key and the two factors onN .

One of the most advanced companies in this topic is IBM, namely the ”International
Business Machine Corporation”. IBM quantum computers, like any other quantum com-
puter currently available, are noisy and have a limited number of qubits: at the moment we
achieved at most around 50 qubits. IBM makes quantum computers available on the cloud
so that all the scientific community could run experiments on the real quantum computer
from everywhere in the world.

The purpose of this thesis is to characterize the ibmq_16_melbourne, the IBM processor
with 14 qubits bymeasuring the relaxation time, namely the time of decay of the excited state
of qubits, and the decoherence time, the time in which quantum coherences are lost. We
will understand the current limit of this particular machine and the main source of errors
and noise that afflict the computer. Then we will focus on the quantization of one inter-
esting classical application of computers: cellular automata. From simple starting condition

3

and simple evolutions, they create complex structures and are used in various areas for sim-
ulations. Their quantum version should be even more interesting: the simplest elementary
systems of our world are quantum, so from the evolutions of even the simplest quantum
automata we could learn fascinating developments. Using the results obtained in the charac-
terization we will try to understand if it is possible to run a quantum cellular automaton on
the IBM quantum computer, or if the various noise sources makes the experiment meaning-
less.

In the first chapter, we introduce quantum computation, showing how its fundamental
ingredients are related to the classical one. We define in detail the fundamental unit of quan-
tum computation, the qubit, and how to handlemany-qubits systems. We then focus on the
evolution of quantum systemswith particular attention to the distinction of the unitary evo-
lution, through quantum gates, and the non-unitary evolution, through quantum channels.
We will stretch the importance of quantum channels, introducing them rigorously.

In the second chapter, we present the IBM quantum processor, describing qualitatively
the physical implementation of the IBM qubit, an improvement of the charge qubit, made
using a superconducting circuit. Wewill then define all the important quantities that charac-
terize the ibmq_16_melbourne quantum processor. They are the coupling map, namely the
possible two-qubits connections, the set of fundamental quantum gates, their application
times and the qubit gate error, namely the probability that a gate applied to a determined
qubit fails. In the end, we will introduce the programming language used to communicate
to the quantum processor, showing some of its basic commands and two examples of code.

In the third chapter, we measure the characteristic qubits times through experiments run
on the real IBM processor. We will see if they follow the theory introduced in Chapter One.
In the end, we will compare the results obtained in the experiments to the values presented
by IBM on their site.

In the fourth chapter, we introduce the concept of cellular automata, namely systems de-
fined on a lattice which evolve using simple local update rules. We then introduce their quan-
tum counterpart, defining quantum cellular automata, andwe focus on the simplest of those
systems: the quantum elementary cellular automata. In the end, we run the automata on the
IBM processor, comparing the experimental results with theoretical expectations and noise-
affected simulations.

4

We can’t solve problems by using the same kind of thinking
we used when we created them.

Albert Einstein

1
An introduction to Quantum Information

In this chapter, we introduce quantum information, showing how its fundamental ingredi-
ents are related to their classical counterparts. First, we recall the difference between pure
and mixed states in quantum mechanics[5]; in particular, we focus on the qubit, a two-level
system, which constitutes the fundamental information unit in a quantum computer. Then
we show how quantum states can be transformed: this is done via quantum gates, namely
particular unitary evolution protocols, or via non-unitary transformations called quantum
channels.

1.1 Classical Computation in a nutshell

Calculators, mobile phones, computers and lots of other electronic devices are based on clas-
sical information theory and computation.

The fundamental unit of classical computation is the bit, a variablewhich can assume only
two values: {0, 1}. Every task of a classical computer is translated, in fact, into operations,
called gates, applied to bits: these operations aremodeled by binary functions f : {0, 1}n →
{0, 1}, which take the state of n bits as an input and return 0 or 1 as an output.

Computers cannot directly implement all possible functions f : complex operations need
to be decomposed in simpler operations, the ones implemented in the construction of the
machine. This is possible since it has been demonstrated that each binary function intro-
duced above is modular in a set of elementary logic gates, namely can be obtained through a

5

proper sequence of fundamental gates.
In the following we list some examples of logic gates, distinguishing between those which

take one or two bits as an input, but we need first to understand how the results of a gate
are shown, namely how to read a truth table. We consider a Table: in the left n columns are
listed all the possible input configurations: we obtain 2n combination of 0 and 1, since the
gates are modeled by binary functions. In the right columns instead are listed the outputs:
they are generated by applying the gate to its relative input state, namely the one on the same
row. We see some examples of truth tables in Table 1.1. Now that we know how to read a
truth table we can list some example:

• Gates that takes 1 bit as an input (Truth table is in Table 2.1a):
identity, which do nothing on the bit.
negation(NOT), which flips the bit state and turns 0 into 1 and vice-versa;

• Gates that takes 2 bits as an input (Truth table is in table 2.1b):
AND, which gives 1 if and only if both bits are in 1;
OR, which gives 1 if at least a bit is in 1;
XOR, which gives 1 if a bit is in 1 and the other in 0;
COPY, which copy the state of the bit on another bit;
SWAP, which swaps the state of the bit a with the state of the bit b.

The only gates needed to codify all the f described above are AND, OR, NOT, COPY,
and this are called universal gates[6].
Now that we now the fundamentals of classical computation we are ready to go on and ana-
lyze its quantum counterpart.

a I ā

0 0 1
1 1 0

(a) Truth table of gates that takes 1 bit as an input.

a b AND OR XOR
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

(b) Truth table of gates that takes 1 bit as an input.

Table 1.1: Truth tables of gates. On the Ćrst rowwe have the name of the bit and of the gate applied and on the right

columns the input state. On the right columns we have the outputs relative to the input on the same row after the gate

on the column’s top has been applied.

6

1.2 The Qubit

In order to perform a quantum counterpart of classical computation first of all we need to
define a quantum fundamental information unit. To this purpose we introduce the quan-
tum version of a bit, the qubit. It is a two level system and, due to its quantumnature, it does
not admit only the states {|0⟩ , |1⟩}, but each linear combination of these two, as shown in
Equation 1.1.

There are several physical two-level system that can be modeled by a qubit: an example is
the spin state of a particle, that can be 1,−1 or each linear combination of these states. The
most general state can be written as:

|ψ⟩ = α0 |0⟩+ α1 |1⟩ with |α0|2 + |α1|2 = 1, α0, α1 ∈ C. (1.1)

A way to represent single-qubit states is the Bloch sphere (Figure 1.1). It is a 2-dimensional

Figure 1.1: The Bloch Sphere. It is a sphere with the radius bound to one. The angles θ andϕ identify every pure state

as shown in Equation 1.2. The ẑ unit vector represent the |0⟩ state and−ẑ the |1⟩ state. Image from:
https://upload.wikimedia.org/wikipedia/commons/6/6b/Bloch_sphere.svg.

manyfold, a sphere with the radius bound to be one, immersed in a 3-dimensional space.
Each point on the surface of the sphere is a state and can be described by using the angles θ

7

https://upload.wikimedia.org/wikipedia/commons/6/6b/Bloch_sphere.svg

and phiwith the boundaries 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π as shown by the equation:

|ψ⟩ = cos
θ

2
|0⟩+ sin

θ

2
eiϕ |1⟩ . (1.2)

A state ψ can be described also by introducing the density matrix, namely:

ρ(θ, ϕ) = |ψ⟩ ⟨ψ| =

(
cos2 (θ/2) cos (θ/2) sin (θ/2)e−iϕ

cos (θ/2) sin (θ/2)eiϕ sin2 (θ/2)

)
. (1.3)

It has some important properties, but to enunciate them we need to introduce the trace of
an arbitrary matrixA asTr(A) =

∑n
k ⟨k|A |k⟩ with {|k⟩}k=1,··· ,n is a basis of the Hilbert

space.
These properties are:

1. ρ is hermitian;

2. ρ is a non-negative operator: ∀ |ψ⟩ ⟨ψ| ρ |ψ⟩ ≥ 0;

3. Tr(ρ) = 1. This property is really important: it ensures that the sum of the proba-
bilities over a set of basis vectors is equal to one.

If now we use the spherical coordinates {x = sin θ cosϕ, y = sin θ sinϕ, z = cos θ}
and the basis formed by the Pauli matrices and the identity matrix, we can write the density
matrix as:

ρ =
1

2
(I+ xσ̂x + yσ̂y + zσ̂z) =

1

2

(
1 + z x− iy

x+ iy 1− z

)
, (1.4)

where σ̂x =

(
0 1

1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0

0 −1

)
are the Pauli matrixes.

It is important to stress that a qubit can encode more info then a classical bit: despite the
fact that, after a measurement, an arbitrary state |ψ⟩ collapses in either |0⟩ or |1⟩, as in the
classical case. We can however use quantum mechanics during the calculus: the possibilities
of using the coherent superposition of quantum states gives us the ability to implement pro-
tocols impossible with the classical computation, as Grover [7] or Shor [3] algorithms.
The qubit analyzed in this section is an example of a isolated quantum state: in the next sec-
tion we extend the definition of quantum states to the case in which they are coupled to an
external environment.

8

1.3 Quantum states representation

The state |ψ⟩ defined in the previous section is completely characterized and it is said to be
a pure state: as shown before it is represented by a ray vector in a Hilbert space over the
complex numbers with unitary length.

In some cases nevertheless, we do not have access to all the state, but only a portion of
it; Our state is not therefor completely characterized and it is called mixed state. An exam-
ple when is the state interacts with the environment, where the environment is meant to be
everything outside our system and that we cannot control.

A state ρ is mixed if we only know the probability pi associated to each state |ψi⟩. Its
density matrix ρ has the form:

ρ =
∑
i

pi |ψi⟩ ⟨ψi| . (1.5)

It is possible to describe a pure state with a mixed state: it is the particular case when there
is a basis such that pi = 0 ∀i ̸= ĩ and pi = 1 for i = ĩ, so ρ = |ψ⟩ ⟨ψ|. The possibility
of describing a pure state with a mixed state makes important to know how to distinguish
between mixed and pure states once we have access to its density matrix. For example we
have that:

• A state described by a density matrix is pure if it is invariant by squaring ρ2 = ρ;

• A state described by a densitymatrix is pure if the trace of ρ2 isTr(ρ2) = 1 andmixed
ifTr(ρ2) < 1.

As an example we will show how to quantify the purity of a qubit state given a ρ in the
form of Equation 1.4. By taking the determinant of the matrix in Equation 1.4 and remem-
bering that in polar coordinates r2 = x2+ y2+ z2 we obtain: det(ρ) = 1

4
(1− |r|2). By re-

calling that a pure state has a probability p1 = 1 and p2 = 0, we deduce det(ρ) = p1p2 = 0,
therefore for a pure state |r| = 1.

A mixed state has instead |r| ≤ 1. As an example we analyze the so called maximally
mixed state: the one in which each state is equiprobable:

ρ =
1

2
(|0⟩ ⟨0|+ |1⟩ ⟨1|) =

(
1
2

0

0 1
2

)
.

9

In this case det(ρ) = 1
4
, that means r⃗ = (0, 0, 0), the origin of the axis and the most distant

from the surface of the sphere.
Finally, we enunciate how it is defined the expectation value of an observable Â relative a

state ρ:
⟨A⟩ρ = Tr

(
ρÂ
)
. (1.6)

1.4 Composite systems and entanglement

We illustrate now some properties of quantum-manybody systems which will be necessary
to describe systems made up of many qubits interacting among each other or with the en-
vironment. A quantum many body system lives in an Hilbert space which is given by the
tensor product of theHilbert spaces of the singles bodiesHi, so for a system of n interacting
objects we have:

H = H1 ⊗H2 ⊗ · · · ⊗ Hn. (1.7)

An arbitrary pure state |ψ⟩ ∈ H can be written using a linear combination of the tensor
product of the orthonormal basis of {Hi}i=1,··· ,n, namely {|j⟩i}i=1,··· ,n into the form:

|ψ⟩ =
∑
j⃗

c⃗j |j⟩1 |j⟩2 · · · |j⟩n , with
∑
j⃗

∣∣∣c⃗j∣∣∣2 = 1. (1.8)

According to the definition of density matrix given in Equation 1.5, for a general state in H
we have:

ρ = |ψ⟩ ⟨ψ| =
∑

j⃗

∑
k⃗ c⃗jc

∗
k⃗
|j⟩1 · · · |j⟩n ⟨k|1 · · · ⟨k|n ⇒

ρ =
∑

j⃗

∑
k⃗ ρk⃗j⃗ |j1 · · · jn⟩ ⟨k1 · · · kn| .

(1.9)

We move into the computation of observables expectation value in quantum many body
systems. In particular, we focus on local observables represented by operators that can be
written as ÂTOT = (I ⊗ · · · ⊗ Â ⊗ · · · ⊗ I). According to the definition we may take
the trace Tr

(
ρÂTOT

)
, but there is a much simpler method. To this purpose we define the

reduced density matrix relative to the i-th body as the trace over the h ̸= i-th spaces of the
entire density matrix:

ρi = Trh̸=i(ρ). (1.10)

It can be shown that Tr
(
ρiÂ
)

coincides with the expectation value Tr
(
ρ ˆATOT

)
. It is im-

portant to observe that ρi is a density matrix if ρ is a density matrix itself, but it doesn’t

10

conserve purity: if ρ is pure, then ρi can be mixed.
Let us define now entanglement, one of the most powerful resources in quantum compu-

tation. A quantum state that is classically correlated is defined separable. A separable state
can be written as the tensor product of the single states, so that perform an operation on a
state, like a measurement, doesn’t influence the other. An example with a 2-qubit state is
|00⟩ = |0⟩ ⊗ |0⟩. The definition above can be generalized to any number of states as:

ρSAB =
∑
i

pi(ρ
A
i ⊗ ρBi). (1.11)

A state that cannot bewritten as a separable state is entangled and an example of a 2-qubits
entangled state is the Bell couple: |ϕ+⟩ = 1√

2
(|00⟩ + |11⟩). An entangled state has no clas-

sical comparison and it is one of the most important and innovative concepts in quantum
mechanics: an example of how entanglement can be quantified is the violation of the Bell in-
equalities, related to the existence of a set of local hidden variables which describe quantum
mechanics [8]. The evidence that an entangled state is the only one able to violate the Bell
inequalities lends to the solution of the EPR paradox [9] and the incompatibility of locality
and realism in quantum mechanics.

1.5 State Evolution

Now that we know how to write the state of a many-qubit system, we want to understand
how to compute their time evolution. The evolution of pure states is obtained by solving
the Schrödinger differential equation:

iℏ
∂ψ

∂t
= Ĥψ, (1.12)

where Ĥ is the Hamiltonian of the system. We define the eigenfunction |n⟩ and the eigen-
value ϵn of theoperatorH as those that respects the following equation, called theSchrödinger
eigenvalue equation:

H |n⟩ = ϵn |n⟩ . (1.13)

The solution of Eq 1.12 for the eigenfunction ofH gives the state |n(t)⟩ = U(t) |n⟩ where
we define the time evolution operator as U(t) = e−

i
ℏ ϵnt. If we use the basis formed by the

11

eigenfunction ofH {|n⟩} to write the general state we obtain, at time t, the state:

|ψ(t)⟩ =
∑
n

e−
i
ℏ ϵntcn |n⟩ . (1.14)

We show now how to compute the evolution of a density matrix. If we define |ψ(t)⟩ =

U(t) |ψ(t0)⟩ then:

ρ(t) =
∑
k

pk |ψk(t)⟩ ⟨ψk(t)| = Uρ0U
†, (1.15)

where we define ρ0 as the density matrix at t = 0 and U † as the adjoint of U .
Nowwe describe how a subsystem evolves: to this purpose we focus on a 2-bodies system

and we define ρ = ρ1 ⊗ ρ2 where ρ1 is the state of the subsystem 1, ρ2 is the state of the
subsystem 2 and ρ(t) is the evolution of the state ρ as defined in Equation 1.15. In order to
compute the evolution of the subsystem 1weneed to introduce theKraus representation[10]
which is defined as follows:

ρ′1 = Tr2(ρ(t)) =
∑
k

Ekρ1E
†
k with

∑
k

E†
kEk = 1, (1.16)

whereEk are operators called Kraus operators. In general, we introduce a map S : ρ1 → ρ′1
with the following properties:

• S preserves the Hermitianity, the Trace and the non-negativity;

• If ρ′ = S1(ρ) and ρ′′ = S2(ρ
′) then ρ′′ = S2(S1(ρ));

• Its inverse exists if and only if S is unitary.

The operators S are also called superoperators.

1.6 Quantum Gates

After having shown the time evolution of quantum states we focus on the evolution of a
qubit. We have described in Section 1.1 how bits are manipulated, namely by applying gates:
in analogywith the classical case, wenowdefinequantumgates. They aremodeledbyunitary

12

operations because these are the protocols that conserve coherence; they are implemented by
applying a properly chosen Hamiltonian.

The systemsmadebyqubits andquantumgates are calledquantum circuits. In their graph-
ical representation qubits are represented by lines and gates by boxes with the gate’s name
inside. In the following we list themost important quantum gates; thenwewill focus on the
X-gate, showing the Hamiltonian which can implement it.

One qubit’s gates are unitary 2× 2matrix since they act on a 2-dimensional Hilbert space.
They are:

• the Hadamard gate (Figure 1.3a).
We can visualize it on the Bloch sphere as a π

2
rotation of the state vector in the (x,z)

plane around the y-axis.
It acts on the computational basis as follows: {|0⟩ , |1⟩} H−→ { |0⟩+|1⟩√

2
, |0⟩−|1⟩√

2
}.

H =
1√
2

(
1 1
1 −1

)
.

• The phase shift (Figure 1.3b).
We can visualize it on the Bloch sphere as aΦ rotation of the state around the z axis.
It adds a relative phase to the qubit’s state: |0⟩+|1⟩√

2

Rz(Φ)−→ |0⟩+eiΦ|1⟩√
2

.

Rz(Φ) =

(
1 0
0 eiΦ

)
.

• The NOT or X gate (Figure 1.3c).
We can visualize it on the Bloch sphere as a π rotation of the state on the x axis.
It flips the qubit’s state: {|0⟩ , |1⟩} X→ {|1⟩ , |0⟩}.

X =

(
0 1
1 0

)
.

We show now in detail an example of how the quantum gates can be implemented by
evolving a qubit with a proper Hamiltonian. The gate that we choose is the X gate and the
Hamiltonian that we consider is:

H = −µ(B0σ̂z +B1[cos(ωt)σ̂x + sin(ωt)σ̂y]), (1.17)

with B0, B1 magnetic fields, {σ̂i} the Pauli matrices. If we call the generic state |ψ(t)⟩ =

13

α(t) |0⟩+β(t) |1⟩ = (α(t), β(t)) andperformthe variables change (α(t), β(t)) → (a(t)e−iω t
2 , b(t)eiω

t
2)

we obtain the time indipendentHamiltonianH1 =
ℏ
2
(ω1σ̂x+(ω0−ω)σ̂z)withω0 andω1

defined below. Solving the Schrödinger equation with the HamiltonianH1, and calling:

ω0 = −2µB0/ℏ, ω1 = −2µB1/ℏ, ∆ω0 = ω0 − ω,

tan θ = ω1/∆ω0, E1 =
ℏ
2

√
∆ω2

0 + ω2
1, E2 = −ℏ

2

√
∆ω2

0 − ω2
1,

wewrite the evolved state |ψ(t)⟩ = cos θ
2
e−

i
ℏE1t |E1⟩−sin θ

2
e−

i
ℏE2t |E2⟩. So theprobability

of being in the excited state |1⟩ is:

p|1⟩(t) =
ω2
1

∆ω2
0 + ω2

1

sin2

(√
(ω0 − ω1)2 + ω2

1

t

2

)
. (1.18)

This above is the Rabi formula(fig 1.2), where we define the angular speed
Ω =

√
(ω0 − ω1)2 + ω2

1 , the amplitudeA =
ω2
1

∆ω2
0+ω2

1
and the period T = 2π

Ω
. If we define

the frequencyω in resonance with the energy difference between levels |0⟩ and |1⟩, such that
∆ω0 = 0, and stopping the evolution at t = T

2
, we obtain the NOT gate as we see in Figure

1.2.

0 T 2T 3T
 Time

0

A

1

 P
ro

ba
bi

lit
y

of
 b

ei
ng

 in
 |1

>

Figure 1.2: The probability of being in the state |1⟩ is plotted as described in Equation 1.18. We can see that if the

coefĆcient A tend towards 1 by stopping the evolution at T
2 we can perform an X gate on a given qubit.

Before the introduction of two-qubits gates we need to underline a fundamental differ-

14

(a) TheH in the boxmeans that an Hadamard gate is

applied to the qubit. The line identify the qubit to

which the H is applied to.

(b) TheRΦ in the boxmeans that a Phase Shift ofΦ
is applied to the qubit. The line identify the qubit to

which the Phase Shift is applied to.

(c) The X in the boxmeans that a NOT gate is applied

to the qubit. The line identify the qubit towhich the X

is applied to.

Figure 1.3: Gates that are applied to a single qubit

ence between them and their classic counterparts: in the quantum case there isn’t an output
qubit, while in the classical case an output bit exists. The state of the first qubit, called tar-
get, undergoes a certain transformation if the state of the second qubit, called control, satisfy
some determined conditions. Two-qubits gates are represented by unitary 4 × 4matrix; in
particular, we will see that they allow us to create entangled states, starting from separable
ones. They are:

• Control Not (Figure 1.4a), also named as CNOT or CX. It applies a NOT gate on the
target qubit if and only if the control qubit is in the |1⟩ state.

CX =

(
I2×2 O2×2

O2×2 X

)
.

We used the block notation, so that I2×2 is the 2× 2 identity matrix andO2×2 is the
2× 2 0 matrix.

• Control Phase Shift (Figure 1.4b), it applies a phase shift represented byRz(θ) to the
target qubit if and only if the control qubit is in the |1⟩ state.

CPHASE(θ) =

(
I2×2 O2×2

O2×2 Rz(θ).

)
It has been shown that a universal set of qubits gates is formed by the Hadamard gate H,

the π/4 phase shift T = Rz(π/4) and the control NOT CX. In particular, it is possible to
build each classical gate with the universal quantum gates. We will show this building the
Toffoli gate(fig 1.6), a three-qubits gate equivalent to the classical AND: it flips the target
qubit if and only if both controls are |1⟩ (Fig 1.5). The qubit c is equivalent to the output

15

(a) This is the CNOT graphical representation: a X

gate, represented by a cross inside a circle, is applied

to the target qubit if the control is in |1⟩

(b) This is the Control Phase Shift graphical

representation: aRz(θ) gate, represented by a θz
inside the box, is applied to the target qubit if the

control is in |1⟩

Figure 1.4: Gates that are applied to two qubits. The black dot indicates the target qubit.

qubit in the classical circuit, anda and b are the input. TheToffoli gate leavesa and bunvaried
and apply a NOT to c.

Figure 1.5: The truth table of the Toffoli gates is shown above. In the graphical representation the black dots

represents the target and the ’ is omitted to underline thata and b are unvaried. The⊕ represent the addiction

module 2, a mathematical representation of a Control Control NOT.

Figure 1.6: Composition of toffoli gate using only the fundamentals ones: H, CNOT andT = Rz(π/4). Image from:
https://upload.wikimedia.org/wikipedia/commons/9/9d/Toffoli_decomposition.svg.

16

https://upload.wikimedia.org/wikipedia/commons/9/9d/Toffoli_decomposition.svg

1.7 Quantum Channels

Isolated systems are ideal: it is impossible to build a system that doesn’t interact with the en-
vironment. As a consequence non-unitary effects are involved in the dynamics of the system,
which alter the state of the system as we show here after. It is important to take these effects
into account since, as we will see in Chapter 3, they limit the efficiency of a quantum com-
puter. Sincewe cannot express such processes as a unitary evolution, we adopt the formalism
of Kraus operators, according to which the evolution is obtained by applying a superopera-
tor: ρS → ρ′S =

∑
k EkρSE

†
k. We want to show that the action of the superoperator S on

ρ can be interpreted as an affine transformation. Using the representation in polar coordi-
nates in Eq 2.6 we can write an arbitrary qubit state as ρ = 1

2
(I+ r⃗ · σ⃗). The transformation

has the following form:
r⃗ → r⃗′ =Mr⃗ + c⃗. (1.19)

The related Kraus operatorsEk = γkI+
∑3

l=1 aklσ̂l are defined as:

Mjk =
3∑

l=1

[
alja

∗
lk + a∗ljalk +

(
|γl|2 −

3∑
p=1

|alp|2
)
δjk + i

3∑
p=1

ϵjkl(γla
∗
lp − γ∗l alp)

]
,

(1.20)

cj = 2i
∑
k,l,m

ϵjlmakla
∗
km, (1.21)

where ϵijk is thepseudotensor ofLevi-Civita. This transformation is in general non-invertible.
It is also possible to visualize the action of a quantum channel on a qubit by considering its
Bloch sphere: indeed, a transformation as the one in Equation 1.19 transforms the Bloch
sphere in a translated ellipsoid with a volumeminor or equal than the sphere’s volume, as we
can see in Fig 1.7. We analyze now three one-qubit quantum channels which are related to
three different processes, the amplitude dunmping, the phase dumping, and the depolariz-
ing channel.

• Amplitude damping.
It is the process that makes the excited state |1⟩ decaying into the ground state |0⟩.
Given a density matrix ρ, it is defined as the process ρ → ρ′ = E0ρE

†
0 + E1ρE

†
1,

17

Figure 1.7: Graphical representation of the application of the afĆnemap in Equation 1.19 to the Bloch sphere: it

transforms the sphere in a translated ellipsoid.

where the Kraus operatorsE0 andE1 are defined as follows:

E0 =

(
1 0
0

√
1− p

)
, E1 =

(
0

√
p

0 0

)
. (1.22)

We obtain:
ρ′ =

(
ρ00 + (p)ρ11 (

√
1− p)ρ01

(
√
1− p)ρ10 (1− p)ρ11

)
, (1.23)

where ρij are the elements of the density matrix ρ. By recalling that ρ = 1
2
(I + r⃗ ·

σ⃗) with r⃗ = (x, y, z) and calling ρ′ = 1
2
(I + r⃗′ · σ⃗) we see that the Bloch-sphere

coordinates transform as follows:

x′ =
√
1− px, y′ =

√
1− py, z′ = p+ (1− p)z. (1.24)

The sphere becomes an ellipsoid centered in (0, 0, p), where p is the damping prob-
ability, namely the probability that the state |1⟩ decays in the fundamental state |0⟩.
By applying this channeln times we observe that the probability of being in |1⟩ drops
exponentially:

p
(n)
1 = (1− p)np

(0)
1 = en ln (1−p)p

(0)
1 . (1.25)

This means that for n→ ∞ the system is driven to the pure state ρ(∞) = |0⟩ ⟨0|.
We can write a continuous time version of this discrete process by defining p = Γ∆t
and t = n∆t, with∆t→ 0:

p1(t) = lim
∆t→0

(1− Γ∆t)
t
∆t p1(0) = e−Γtp1(0). (1.26)

We obtain the transition rate Γ, and we call its inverse the relaxation time of a qubit.
We indicate it with T1 and we will see that it plays an important role in quantum
computing.

18

• Phase damping.
It is the process that eliminates the coherence: it trasforms the state 1

2
(|0⟩+ |1⟩)(⟨0|+

⟨1|) into the state 1
2
(|0⟩ ⟨0|+ |1⟩ ⟨1|) Let us start by noting that an arbitrary state of

a qubit can be written as :

ρ =

(
p α
α∗ 1− p

)
, (1.27)

with p ∈ [0, 1] and |α| =
√
p(1− p). We model the decoherence process by using

a phase kick: namely we replace the interaction with the environment with a set of
rotations around the z-axis of the Bloch sphere Rz(θ), where θ is drawn from the
random distribution:

p(θ) =
1√
4πλ

e−
θ2

4λ . (1.28)

By applying this process we can compute the new density matrix ρ′, obtained averag-
ing over θ:

ρ′ =

∫ +∞

−∞
dθp(θ)Rz(θ)ρR

†
z(θ) =

(
p αe−λ

α∗e−λ 1− p

)
. (1.29)

The Bloch-sphere coordinates of ρ′ are, in this case:

x′ = e−λx, y′ = e−λy, z′ = z. (1.30)

Note that also in this case we obtain a prolate ellipsoid. As expected, we see that coher-
ence drops exponentially to zero when we apply the channel n times, since we obtain
α(n) = e−λnα. We can give a continuous time version of the coherence decay, simi-
larly to the damping amplitude case. If we call λ = Θ∆f and t = n∆twith∆t→ 0
we obtain:

α(t) = e−Θtα(0), (1.31)

whereΘ represents the decoherence rate. We define the decoherence timeT2 = 1
Θ

the
time in which the coherent state |0⟩+ |1⟩ decays in the classical state |0⟩ ⟨0|+ |1⟩ ⟨1|.

• Depolarizing channel.
It is the process that depolarize the qubit, diminishing the projections of the state over
the axis x,y and z. Over the time the arbitrary state decays in the state |0⟩ ⟨0|+ |1⟩ ⟨1|.
It can be also defined by using the decomposition of the density matrix in polar coor-
dinate of Equation 1.4, namely ρ = 1

2
(I+ r⃗ · σ⃗), with r = (0, 0, 0).

The Kraus operators associated with this channel are:

Ek = {
√

1− pI,
√
p

3
σx,

√
p

3
σy,

√
p

3
σz}, (1.32)

19

where p is the depolarizing probability.
The transformation is such that:

ρ′ =
1

3
p(σxρσ

†
x + σyρσ

†
y + σzρσ

†
z) + (1− p)ρ. (1.33)

If we use the notation with polar coordinates reminded above we can note a simpler
way to characterize this channel:

r⃗′ =

(
1− 4

3
p

)
r⃗, (1.34)

and in this notation it is clear that the repeatedly application of this channel lends the
state to ρ = 1

2
I, the one with r⃗ = 0.

20

2
The IBM quantum processor

In this chapter we will discuss the hardware and software specifics of the quantum computer
on which we are focusing on this thesis, namely the ’ibmq_16_melbourne’. First, we will
briefly explain how the qubits of the processor are realized; then, we will discuss in detail
which operations can be implemented on the real quantum computer. In the end, we will
focus on the programming language which allows users to interface with themachine, show-
ing some examples of codes.

2.1 Qubit implementation

Thephysical qubits usedby the IBMare fixed-frequency superconducting transmonqubits[11].
A transmon qubit is a type of charge qubit designed to have reduced sensitivity to charge
noise. In the following we briefly illustrate how a charge qubit works, but a deep analysis is
beyond the aim of this thesis.

A charge qubit is a Josephon-junction-based qubit[12] [10]. A josephon junction consists
of two superconducting regions separated by aweak link, usually an insulator. The low dissi-
pationwhich characterize to superconductorsmakes possible, in principle, long decoherence
times. The fundamental ingredient for a material to behave as a superconductors is the pres-
ence of Coopers Pairs: they are pairs of bounded electrons which form a system of integer
spin and thus behave like bosons. In particular they can tunnel through the insulator foil.

Let us now explain in detail the circuit in Figure 2.1, which contains a Josephon junction:

21

there are an insulator with intrinsic capacity Cj , a capacitor with capacity Cg and tension
applied V. The superconductor between the insulator and the capacity is called island.

Figure 2.1: Circuit of a charge qubit. The S is for superconductive,Cj is the capacity related to the insulator,Cg is a

capacity and V the voltage applied. The superconductor between the insulator and the capacity is called island.

There are two quantum numbers which allows to describe the junction: n and ϕ, where
n is the number of cooper pairs in the island and ϕ is called superconductive phase. We can
now show the Hamiltonian related to this system:

H = Ec(n− ng)
2 − Ej cosϕ, (2.1)

where ng = Cg
V
2e

is the number of cooper pairs present in the system with e the electron
charge,Ec =

(2e)2

2(Cj+Cg)
is the term related to the energy that a difference between the effective

and aspected cooper pairs creates, Ej is related to the state of the island and cosϕ is the
tunneling term. We can write this Hamiltonian in the basis of the cooper pairs |n⟩, namely:

H = Ec

∑
n

(n− ng)
2 |n⟩ ⟨n| − 1

2
Ej

∑
n

|n+ 1⟩ ⟨n|+ |n⟩ ⟨n+ 1| , (2.2)

where we can see in a clearer way that the second term is a coupling term, that connects the
state |n+ 1⟩ with the state |n⟩. The two levels of the qubit are made using the interaction
between the state |n = 0⟩ and |n = 1⟩. After having explained how a single qubit is imple-

22

mented, we move to the description of the quantum processor ”ibmq_16_melbourne”.

2.2 Specifics of the quantum processor

In an ideal quantum processor all the qubits are connected between each other, in fact it is
not possible due to the spatial arrangement of the qubits: indeed a coupling map is defined,
namely a graph that shows the allowed connections among the qubits (Figure 2.2). Notice
that the connections are also characterized by arrows: they indicate the default direction of
the two-qubit operation which can be applied, the CNOT: the arrow goes from the control
to the target qubit.

Figure 2.2: Couplingmap of the ”ibmq_melbourne_16” processor. The arrow showswhich is the default direction of

the CNOT applied.

Image from: https://github.com/Qiskit/ibmq-device-information/blob/master/backends/
melbourne/images/melbourne-connections.png

In order to ask the processor to execute a general operation we need to know which are
the fundamental gates built into the machine. They are:

• u1, which implements a phase shift with angle λ:

u1(λ) =

(
1 0
0 eiλ

)
.

• u2, which allows us to create superpositions :

u2(ϕ, λ) =
1√
2

(
1 −eiλ
eiϕ ei(ϕ+λ)

)
.

An example of a gates which is realized by the u2 is theHadamard gate: we haveH =
u2(0, π).

• u3, which is the most general unitary transformation implemented:

u3(θ, ϕ, λ) =

(
cos (θ/2) −eiλ sin (θ/2)
eiϕ sin (θ/2) ei(ϕ+λ) cos (θ/2)

)
.

23

https://github.com/Qiskit/ibmq-device-information/blob/master/backends/melbourne/images/melbourne-connections.png
https://github.com/Qiskit/ibmq-device-information/blob/master/backends/melbourne/images/melbourne-connections.png

An example of a gate which can be realized by the u3 gate is the NOT gate X, since
X = u3(π, 0, π).

• The CNOT, the two-qubit gate defined in Section 1.6.

It is important to know that each qubit has a different gate failure probability, namely the
probability that the gate is not applied correctly. It is defined as nf

g

ns
g
with nf

g the number of
gate failed and ns

g the number of gates successed. The one-qubit gate errors are reported in
Table 2.1 and the two-qubit gate errors in Table 2.2.

Qubit Gate Error Qubit Gate Error
0 0.004 1 0.01
2 0.006 3 0.003
4 0.004 5 0.006
6 0.003 7 0.004
8 0.004 9 0.006
10 0.003 11 0.3
12 0.008 13 0.01

Table 2.1: The gate error, namely the probability of failure of a gate applied to the qubit. It is deĆned asnf
g/n

s
g , with

nf
g the number of gate failed, andns

g the number of gate successed.

Each gate is realized by applying some pulses to the qubits: in Figure 2.3 we show the
decomposition of the gates in pulses[13]. They are the physical operations, namely the oper-
ations that are performed on physical qubit. The analysis of the steps which compose a gate
is beyond the aim of this thesis, but we mention them to define the gate application time,
since the IBM defines only their times. The pulse called FC has an application time of 0ns,
the pulse GD takes 100ns and the pulse GF times are listed in Table 2.2. After each GD or
GF there is a buffer time of 20ns. In Chapter 3 we will take into account that each gate has
an an effective time of gate application, teffgate, given by the sum of the gate time and of the
buffer. It is important to underline the application time of the identity gate, because it will
be used extensively in the next chapter: it is 100ns.

24

Figure 2.3: The composition of the fundamental gates in pulses. The Frame Change (FC) has an application time of

0ns, the GaussianDerivative (GD) of 100ns and theGaussian Flattop (GF) times are listed in Table 2.2. After eachGD
or GF there is an additional buffer of 20ns.

Image from: https://github.com/Qiskit/ibmq-device-information/blob/master/backends/
melbourne/images/gatedef_U1U2U3_CNOT.png

CX Gate GF Gate Time [ns] Gate Error CX Gate GF Gate Time [ns] Gate Error
CX1_0 239 0.04 CX1_2 174 0.07
CX2_3 261 0.05 CX4_3 266 0.04
CX5_4 300 0.05 CX5_6 300 0.07
CX7_8 220 0.04 CX9_8 400 0.04
CX9_10 300 0.05 CX11_10 261 0.18
CX11_12 217 0.13 CX13_12 300 0.04
CX13_1 652 0.17 CX12_2 1086 0.07
CX11_3 286 0.12 CX4_10 261 0.04
CX5_9 348 0.07 CX6_8 300 0.03

Table 2.2: CNOT application time and Gate error, namely the probability of failure of the gate.

2.3 The Qiskit software

Qiskit[14] is the software interface, written as a python librar, developed to run experiment
and simulations by the IBM community. It is divided in four macroareas of interest, called
”elements”:

1. Terra: its scope is to provide a bedrock for composing quantum programs at level of
circuits and pulses, to optimize them for the constraints of the device andmanage the
execution of experiment on the real remote-access devices;

2. Aer, namely the part build to performnumerical simulations. We canuseAer to verify
that the real processors work properly, simulating the theoretical evolution of the sys-

25

https://github.com/Qiskit/ibmq-device-information/blob/master/backends/melbourne/images/gatedef_U1U2U3_CNOT.png
https://github.com/Qiskit/ibmq-device-information/blob/master/backends/melbourne/images/gatedef_U1U2U3_CNOT.png

tem with numerical methods. It can be also used to simulate systems with the effects
of realistic noise;

3. Ignis, which is dedicated to overcome noise and errors. This includes error correction
and computing the presence of noise. For example it gives functions to measure the
decoherence time and the relaxation time, both defined in Section 1.7, and gates errors;

4. Aqua, which is dedicated to some possible real-world applications, for examples in
chemistry, optimization or artificial intelligence. In order to use Aqua, one doesn’t
need to translate from scratch the problem into the language of the quantummachine,
because there are pre-constructed functions.

In this thesis we mainly focused on the application of fundamental gates to the real pro-
cessor, therefore we mainly used the element Qiskit Terra.

We show now some of the basic commands of qiskit Terra, then we illustrate below an
example in which these commands are applied. These examples are representative to under-
stand all the gates which will be discussed in Chapter 3. The first element to define is the
Register, which specifies how many qubits we will use in our circuit and how many bits we
will use to store the outcome of a measure: the command is

q=QuantumRegister('q',n), c=ClassicalRegister('c',m),

where 'q' and 'c' are the name of the registers and n,m are the number of qubits and bits
respectively. Then we use them in a quantum circuit with the command:

qc=QuantumCircuit(q,c),

where qmust be a QuantumRegister and c a ClassicalRegister.
We can build our quantum circuit applying various gates. The sintax is the following:

qc.gate(q[i]) ,

where qc is a quantum circuit, gate is the gate that we want to implement, q is a Quan-
tumRegister and i is the label which represent the qubit to which we want to apply the gate.
In this case, for example, if q is a register with 5 qubits and we write qc.h(q[3]) we are
applying an Hadamard gate to qubit 3.

26

We define now the command needed to launch the experiment, stressing the importance
of some of its parameters:

job = execute(qc, backend, initial_layout, shots),

where qc is a QuantumCircuit, backend is the device on which the job will be run,
initial_layout is the map between virtual qubits (the ones in the register) and physical
qubits andshots is the number of times the experimentwill be repeated in order to perform
a valid statistical analysis.
In the end, we define the commands necessary to read the results:

res=job.result(), counts=res.get_counts().

The counts structure contains the results of the experiment, namely it literally counts the
number of times in which the system has been found in a determined state.

We show now two examples of circuits realized through the qiskit code: in Listing 2.1 we
show how to reverse the target and the control qubits in a CNOT (Figure 2.4). This gate

Figure 2.4: Reversing the direction of a CNOT, namely change the roles between target qubit and control qubit, using 4

Hadamard gate and a CNOT gate. Image from: https:
//dal.objectstorage.open.softlayer.com/v1/AUTH_039c3bf6e6e54d76b8e66152e2f87877/

images-classroom/cnot_reversetvhxy1y40307ldi.png

is very important because, as we have explained before (see Figure 2.2), target and control
qubits are fixed into the device.
q = Quan tumReg i s t e r (’ q ’ , 2) # We d e f i n e t h e quantum
r e g i s t e r a 2 q u b i t .
We won ’ t d e f i n e a c l a s s i c a l r e g i s t e r b e c a u s e i n t h i s
#examp l e we don ’ t n e e d t o make a mea s u r e .
qc = Quan tumCi r cu i t (q)
qc . h (q) # We a p p l y an Hadamard g a t e t o e a c h q u b i t
#o f t h e r e g i s t e r .
qc . cx (q [0] , q [1]) # The f i r s t q u b i t i s t h e c o n t r o l q u b i t ,
#t h e s e c o n d i s t h e t a r g e t q u b i t .

27

https://dal.objectstorage.open.softlayer.com/v1/AUTH_039c3bf6e6e54d76b8e66152e2f87877/images-classroom/cnot_reversetvhxy1y40307ldi.png
https://dal.objectstorage.open.softlayer.com/v1/AUTH_039c3bf6e6e54d76b8e66152e2f87877/images-classroom/cnot_reversetvhxy1y40307ldi.png
https://dal.objectstorage.open.softlayer.com/v1/AUTH_039c3bf6e6e54d76b8e66152e2f87877/images-classroom/cnot_reversetvhxy1y40307ldi.png

qc . h (q)

Listing 2.1: Code to reverse the direction of a CNOT gate.

In Listing 2.2 we show, instead, how to build the Bell Couple |ϕ+⟩ = 1√
2
(|00⟩ + |11⟩)

starting from the state |00⟩, run the experiment on theMelbourne device and take the results.
q= Quan tumReg i s t e r (’ q ’ , 2)
c = C l a s s i c a l R e g i s t e r (’ c ’ , 2)
qc = Quan tumCi r cu i t (q , c)
backend = IBMQ . g e t_ba ck end (’ ibmq_16_melbourne ’)
qc . h (q [0])
qc . cx (q [0] , q [1])
j o b = e x e c u t e (qc , backend , s h o t s = 1 0 2 4)
r e s = j o b . r e s u l t ()
c o u n t s = r e s . g e t _ c o u n t s ()

Listing 2.2: Construction of a Bell Couple.

28

We have to remember that what we observe is not nature
in itself but nature exposed to our method of questioning.

Werner Heisenberg

3
Characterization of the quantum processor

The aim of this chapter is to analyze quantitatively the qubits of the quantum processor
through some apposite experiments. In particular, we measure the relaxation time and the
coherence time, defined in Section 1.7. As discussed before they are fundamental in order to
understand the current limits of a quantum computer. As wee will show in the particular
case we investigate, these times change from qubit to qubit. Moreover, the measure of the
characteristic times isn’t stable over time; the results presented in this chapter are relative to
the calibration of the machine, made on 13/06/2019.

The initial state for all the experiments shown below is |0⟩, and to acquire sufficient data
we acquire 50 points in each experiment, namely we make 50 iteration of the protocol. In
order to compute the expectation value we take the average over 1024 repetition of each
experiment, so each iteration is made of 1024 shots. We have adopted this protocol because
to simulate the time evolution of the system we must prepare the system in the initial state
and then wait the opportune time. It is not possible to make various measure on the same
system at different time steps, due to the nature of quantum mechanics: a measure disrupt
the system.

3.1 The relaxation time T1

The relaxation time is the time inwhich the |1⟩ state decays in the |0⟩ state via thenon-unitary
process described in Section 1.7. In order to measure the former T1we set up an experiment

29

in which an X gate is applied to a single qubit to bring it in the excited state |1⟩.
At the time t0 = 0weapply 45 identity gate for each iteration, namely the time ti corresponds
to45i applicationof the identity gate. The total time isNti, withN thenumber of iterations.
We recall that each identity gate has an effective application time of
teff = 120ns and that the identity gate does nothing. Then we measure the system on the
computational basis σ̂z at each time ti. The corresponding quantum circuit for a single time
step is shown in Figure 3.1.
If no non-unitary effect affects the system we should find the qubit in the state |1⟩ at any

X id id id id id id id id id idq : |0

c0 : 0

Figure 3.1: Quantum circuit used tomeasureT1. We bring the qubit to the |1⟩ state with the X gate and then apply
45i identities gates, whit i the iteration index. The number of identity gates (id) in this Ćgure is indicative.

time because the state should not evolve. Instead, we see in Figure 3.2 that the probability
of measuring the system in the state |1⟩ is disposed on a decreased exponential. This result
is compatible with the theory of the Amplitude dumping quantum channel, described by
Equation 1.26.

Figure 3.2: Decay of qubit 0 from the state |1⟩ to the state |0⟩ over time. Note the agreement with the experimental
Ćtting function.

30

In order to measure the decaying rate with a better precision we linearize it, so we make
the fit using the function:

ln
(
p|1⟩(t)

)
= −mt+ q. (3.1)

The value of the relaxation time T1 is obtained by taking the inverse of the factor m. In
Figure 3.3 we plot two different data-sets corresponding to two qubits in order to make it
visible that all the qubits have similar exponential behavior, while in Table 3.1 we show the
results obtained for all the qubits.

Figure 3.3: Decay of the state from |1⟩ to |0⟩ over time. With ln(p1)we indicates the natural logarithm of the

probability of being in the excited state. We can see the linearization of the exponential decay for qubit 0 and 10,

because these are the qubits with themost differentT1.

Qubit T1 [µs] Qubit T1 [µs]
0 62.49± 0.02 1 56.74± 0.02
2 77.55± 0.03 3 57.45± 0.02
4 76.41± 0.02 5 77.50± 0.02
6 90.61± 0.03 7 78.51± 0.02
8 78.38± 0.02 9 80.18± 0.03
10 118.18± 0.03 11 84.13± 0.02
12 75.75± 0.03 13 76.38± 0.02

Table 3.1:Measured relaxation time (T1), namely the time in which the excited state |1⟩ decays in the ground state
|0⟩, with errors. These values are obtained from the Ćt.

31

3.2 The decoherence time T2 and T2*

The decoherence time is the time in which the coherent state |+⟩ ⟨+| decays in the mixed
state |0⟩ ⟨0|+ |1⟩ ⟨1|, where we remind that {|+⟩ , |−⟩} are the eigenstates of σx. There are
two different experiments, presented below, that allow to measure the qubit decoherence
time, and so two different exstimates, that we indicate with T2 and T2*. We expect the
decoherence time to be small in relation to T1, so we will work in the approximation that
the amplitude dumping effects are negligible. The results are in Table 3.2.

Qubit T2 [µs] T2* [µs]
0 24.35± 0.03 21.60± 0.05
1 20.94± 0.03 21.70± 0.05
2 19.82± 0.03 21.02± 0.04
3 23.51± 0.03 22.04± 0.04
4 22.60± 0.03 22.06± 0.04
5 23.46± 0.02 21.93± 0.05
6 20.77± 0.04 22.57± 0.04
7 22.96± 0.03 23.89± 0.05
8 24.52± 0.03 21.87± 0.04
9 23.00± 0.03 21.91± 0.05
10 22.51± 0.03 21.21± 0.05
11 23.05± 0.03 21.60± 0.05
12 22.87± 0.04 21.83± 0.05
13 24.95± 0.03 21.73± 0.05

Table 3.2:Measured decoherence time, namely the time in which the coherent state |+⟩ ⟨+| decays in themixed
state |0⟩ ⟨0|+ |1⟩ ⟨1|, with errors. These values are obtained from the Ćt.

3.2.1 Ramsey experiment: T2

In this experiment, wewant tomeasure the decoherence timeT2by simulating the evolution
of the qubit under a two-level Hamiltonian. We choose to analyze a time interval which
covers three periods of the system. By recalling that we divide the evolution time into 50

iterations, we have that the period needs to be equal toT = 50/3; in order to to simulate the
dynamics of the system we will use a pulsation ω = 2π

T
= 6π

50
. The expected behavior of the

system is a cosine, preciselyP|+⟩ ∝ cos(ωj)where j is the time discretization. The behavior
that we observe by applying the decoherence quantum channel is, instead, an exponentially
dumped cosine. Now we explain how we experimentally simulate this system.

32

First, we apply a Hadamard gate to put the state in the initial state |ψ0⟩ = 1√
2
(|0⟩+ |1⟩).

Then we apply a phase shift Rz(
6πj
50

) where j is the index of the j-th iteration. Then 5j

identities are applied to recreate the time evolution. This is very important: we first create
the state that we expect at the time j and then we let it evolve until the time j applying
only identity gates. This method is preferable compared to applying j times a fixed phase
shift because, as we have seen in Table 2.1, single-qubit gates have an error probability: it is
more convenient to apply one phase shift Rz(

6πj
50

) than j phase shift Rz(
6π
50
). We are now

interested in the population of the |+⟩ state, so in the endwe perform ameasure along the X
axis, that we achieve by applying anH before measuring the state in the computational basis
σz (Fig 3.4). In the following we show the steps necessary to compute the probability p+ of
the time j:

|ψ0⟩ = H |0⟩ = 1√
2
(|0⟩+ |1⟩), (3.2)

|ψ1⟩ = Rz |ψ0⟩ =
1√
2
(|0⟩+ ei

6πj
50 |1⟩), (3.3)

|ψ2⟩ = (Id)5j |ψ1⟩ = |ψ1⟩ , (3.4)

|ψ3⟩ = H |ψ2⟩ = cos

(
3πj

50

)
|+⟩+ sin

(
3πj

50

)
|−⟩ , (3.5)

p+ = |⟨ψ3|+⟩|2 = cos2(
3πj

50
) =

1

2
+

1

2
cos

(
6πj

50

)
, (3.6)

where it is evident that the population of the state |+⟩ should follow a cosine.

H U1
0.38

id id id id id Hq : |0

c0 : 0

Figure 3.4: Quantum circuit to calculateT2. The u1 gate is the one deĆned in Chapter 2 and it is equivalent to a phase
shift. The number in the relative box is the phase expressed in radiants.

InFig 3.5we see that datas are disposedon an exponentially dumped cosine, as predictedby
the theory in Section 1.7. The inverse of the coefficient of the exponential is the decoherence
time T2. The fitting function is:

p|+⟩ = Ae−Γt cos (ωt+ δ) +B. (3.7)

33

In Fig 3.5 we show the results obtained for two qubits, there labeledwith 2 and 13; the others
exhibit similar results.

Figure 3.5: Decay of the |+⟩ state on the |0⟩ ⟨0|+ |1⟩ ⟨1| state over timewith Ramsey experiment for qubits 2 and
13.

3.2.2 Echo experiment: T2*

In this experiment we want to measure the decoherence time T2* by observing how the
coherent state 1√

2
(|0⟩+|1⟩)decays in themixed state 1

2
I, butwewant tomakeour estimation

independent by any possible effects that may effect only the state |0⟩ or |1⟩. We achieve these
hypothesis through the experimental setup described below.

We start from the same state of the other experiment, namely |ψ0⟩ = 1√
2
(|0⟩+|1⟩). Then

we apply15i identities, anXgate to flip the population of |0⟩ and |1⟩ states and15i identities
again, with i the index of the i-th iteration of the experiment.

The application of the X gate is fundamental: in this way, we eliminate all sorts of non-
symmetrical effects that are applied only to the state |1⟩, like the amplitude dumping channel,
or vice-versa. The application of the same number of identity gates, guarantees that the state
and its inversion evolve for the same time: in this way the non-symmetrical effects are even.
We are interested in the population of the |+⟩ state so, at the end, we perform anX-measure,
that we achieve applying an H before the measure on the computational basis σz (Fig 3.6).

In Fig 3.7 we see how the evolution of the probability of measuring the state |+⟩ follows
a decreasing exponential curve, as expected fromwhat we explained in Section 1.7 and Equa-

34

H id id id id id X id id id id id Hq : |0

c0 : 0

Figure 3.6: Quantum circuit to calculate T2*. The number of identity gates is indicative: in the real experiment there

are 15 identity before the X gate and 15 after.

tion 1.31. The exponential fitting function is:

p|+⟩(t) = Ae−Γt +B. (3.8)

In Fig 3.7 there are only two qubits data-set because the other are analogous.

Figure 3.7: Decay of the |+⟩ state on the |0⟩ ⟨0|+ |1⟩ ⟨1| state over timewith Echo experiment for qubits 2 and 7.

3.3 Comparison between IBM value and measured time

Now that we have discussed the experiments with which we have measured the relaxation
and decoherence time, we can check if the times presented on the IBM site are compatible
with the ones measured. The IBM presented only the mean values of these quantities, so we
will use the mean weighted with the errors of our results to make the comparison.

35

We define the compatibility z[15] between two quantities x± σx and y ± σy as follows:

z =
|x− y|√
σ2
x + σ2

y

. (3.9)

This quantity z is an estimator of how much probable is that x and y belong to the same
Gaussian distribution. We define an optimal compatibility if z < 1, a good compatibility
if 1 < z < 2 and an awful compatibility if 2 < z < 3. If z > 3 the two quantities are
incompatible.

IBM values are given without an error estimation, so we apply Equation 3.9 with σy = 0.
The result are shown in Table 3.3. All the quantities are incompatible: this is caused by the
really small error and by the great fluctuations of these values over time: the IBM makes a
calibration each week, and the values change each week, so we can assume that they aren’t
even stable over the day.

Quantity Measured [µs] IBM value [µs] Compatibility
T1 75.120± 0.006 62.90 2036⇒Incompatible
T2 22.769± 0.008 22.70 8⇒ Incompatible
T2* 21.94± 0.01 22.70 75⇒Incompatible

Table 3.3: In this table the weightedmean values of themeasurement, the IBM values, namely the ones reported on

the IBM site, and their compatibility are presented. They are incompatible, due to their ćuctuations over time.

The quantumprocessor is now characterized, andwe are ready to use it for the simulation
of a specific model, a quantum elementary cellular automata. This is the object of the next
chapter.

36

4
Quantum Cellular Automata

In this chapter, we use the IBM quantum processor to investigate the dynamics of a pecu-
liar quantum system called Quantum Cellular Automata. We start from a brief overview of
classical cellular automata to better understand the quantumone. Thenwe showhow to sim-
ulate a quantum cellular automaton on the IBM processor, and try to understand whether
the results are reliable.

4.1 Classical Cellular Automata

Cellular automata are dynamical systems that evolve on a discrete lattice[16]. Their global
dynamics is controlled by simple local transition functions. Each spatial discrete unit of the
lattice, called site, can be in one of a finite number of states. The evolved state of a site can
be updated by using only local information relative to the site’s neighborhood and the local
transition function. A single evolution step of a Cellular Automata, called an iteration, is
complete once the evolved state of each site has been computed and all sites have been up-
dated simultaneously.

We define now the quantities involved in the Automata: we consider a 1-dimensional
lattice of L sites, enumerated from 0 to L− 1 and we denote the state of the i-th site at the
iteration t as xti. Each site can be found in one of k possible states in a given local spaceQ,
whereQ is the k-member local state space.

We suppose that each site has a contiguous neighborhood ofN sites, namely the sites that

37

will be taken as an input for the evolution function. Also, the evolving state himself is in the
neighborhood. In the following, we will assume N to be odd, but it isn’t necessary to the
theory.
The state of the i-th site is updated using theNi = {i− N−1

2
, · · · , i, · · · , i + N−1

2
} set of

sites. This means that the state space of a neighborhood is an N -fold product space of the
local state spaces QN = Q⊗N . The local transition function is a map f : QN → Q. A
complete iteration consists of applying f simultaneously to all the sites in the lattice:

xt+1
i = f(xtNi

) ∀i. (4.1)

It is important to note that updating all the sites simultaneously means that we implicitly
need to make a copy of the state at the time t in order to compute the evolved state at the
time t+ 1.

We will work only with homogenous Cellular Automata, namely Automata in which the
same local transition function is uniform along the lattice. There are kNk possible functions,
and it is conventional to enumerate all the possible f with integersR ∈ [0, kN

k − 1]which
can be used used to define the map: first we expand R into kN digits of a base-k number.
Then we enumerate the digits of this expansion from the least significant to the most signif-
icant with integers r ∈ [0, kN − 1]. Then we have to expand r intoN digits of base-k, and
interpret the expansion of r as the neighborhood state which results in site i transitioning to
the state given by the r-th bit of theR expansion.

We consider as an example the elementary cellular automata with k = 2, N = 3 on a
1-dimensional lattice of L sites. In this case there are 223 = 256 possible evolving functions.
If we choose the rule R = 6 we must write 6 in the binary base using 7 bits, namely 6 =

00000110 corresponding to the rule presented in Table 4.1. Now that we have understood

bit significance, xtNi
111 110 101 100 011 010 001 000

rule number, xt+1
i 0 0 0 0 0 1 1 0

Table 4.1: The update for rule R=6, an irreversible Elementary Cellular Automata. Notice that the bits in the second

row are the number 6 in binary. Only themiddle neighborhood is changed in the transformation, ćipping the bit.

the base of classical cellular automata we can define its quantum counterpart.

38

4.2 Quantum Elementary Cellular Automata

It has been recently formulated a quantum formulation of the cellular automata called quan-
tum cellular automata[16]. The difficulties in defining a QuantumAutomata which adhere
to the postulates of quantum mechanics. In this thesis, we will focus on the simplest quan-
tum counterpart of the example defined in Section 4.1: the Quantum Elementary Cellular
Automata (QECA).We define our system as a 1-dimensional lattice ofL qubits. If |ψ(0)⟩ is
the initial state, then the state of the lattice at the time t is |ψ(t)⟩. We are assuming that the
system is isolated and the state remains coherent and pure, nevertheless, this hypothesis isn’t
satisfied. Aswewill see later the real quantumcomputerswhich are now available can’tmain-
tain a state pure for long times. Wewill show inwhich conditions the approximation of pure
state can be done. The task now is to define the local transition function for QECA, namely
adapting the numbering scheme of Cellular Automata to the quantum version. It must be
a unitary operation, and therefore a reversible protocol. This requirement suggests that our
QECA evolution scheme has to be based on what action we perform on the center site and
that our numbering scheme needs only to consider the right and the left neighborhood, ex-
cluding the center site itself becausewe can’tmake a copy of it and then apply a Controlled-V
operation due to the No cloning theorem[17]. We haveN = 2, k = 2 resulting in 222 = 16

possible update rules.

As we did for the classical case, we list all the possible input configurations and then we
assign to 1 the application of a single qubit operator V to the qubit i, and a 0 to the identity.
Note that in the quantum case we can choose the function to apply to the bit among all
the unitary gates, so we generally call it V . Table 4.2 gives an example of an update rule for
S = 6. From the update table we can build a corresponding three qubits operator US(V).
The construction of US(V) relies on expanding S into four digits of binary as S = s112

3 +

|i− 1, i+ 1⟩ 11 10 01 00
Rule numbering smn 0 1 1 0
Operator applied I V V I

Table 4.2: The update for rule R=6. We apply the operatorV if the rule numbering is 1, and the identity in the other
case. Note that the number in the second row are the binary representation of the number 6.

s102
2 + s012

1 + s002
0: all the information in S is encoded in a 2× 2matrix with elements

39

smn. So we can write US(V) as:

US(V) =
1∑

m,n=0

|m⟩ ⟨m| ⊗ V mn ⊗ |n⟩ ⟨n| , (4.2)

where V mn = smnV + (1− smn)I.
Now we must define the iteration protocol. In the classical case all the local operators are

applied at the same time, but in the quantum case it isn’t possible. Due to the No Cloning
Theorem it isn’t possible to copy an arbitrary quantum state, so we must relax the require-
ment of a simultaneous update for each iteration. Thismeans that we have to do the updates
in a specific order. In our case, due to the experimental layout and the necessity of minimiz-
ing the application time, we will divide each iteration into three layers: we will first the oper-
ations to the sites which number i in such that imod 3 = 0, than imod 3 = 1 and at last i
mod 3 = 2

The last element that we need to define is the boundary conditions. We will use two dif-
ferent sets of conditions: the first is periodic boundary conditions, showed in Figure 4.1, so
that the site 0 and the site L − 1 are neighborhood. The second consider open boundary
conditions, showed in Figure 4.2, so we add two auxiliary qubits with the state open to |0⟩ at
the ends of the lattice. Now that we have defined the QECA we can set up a protocol and
run it on the real quantum processor in order to test whether this quantum computer is able
to reproduce the dynamics of a given model.

4.3 Implementation on the IBM quantum processor

We have defined the QECA from a theoretical point of view: now we must define in detail
the automata that we will run on the real processor. We will use the rule number 6, defined
inTable 4.2. First of all, we need to decide the operatorV to apply, if the rule numbering is 6.
We must note that the rule 6 is easily achieved by eachControlled− V operator such that
V 2 = Iwith the circuit shown in Figure 4.3 as we see in Table 4.3. We choose V to be theX
operator, which is the quantum counterpart of the classical NOT, and satisfyX2 = I. The
CNOT has a mean application time, as reported in from Table 2.2 of 676ns: applying V mn

requires 1352ns and a complete iteration, which requires 3 layers of V mn, takes 4.056µs.
This means that, for example, n = 15 iterations require a total application time of 60.84µs,
which is far beyond the decoherence time presented in Table 3.3. We nevertheless consider

40

Figure 4.1: Quantum circuit with L=12 qubits whereV mn is the update rule. The boundary condition are perioc, so

the qubit0 is controlled by qubits1 and11 and qubit11 is controlled by qubit10 and0. The update rule is applied Ćrst
to the qubit which number i is such that imod 3 = 0, then imod 3 = 1 and at last imod 3 = 2.

Figure 4.2: Quantum circuit with L=12 qubits whereV mn is the update rule. The boundary condition are open, so the

qubit 0 is controlled only by qubits 1 and qubit 11 is controlled only by qubit 10. The update rule is applied Ćrst to the
qubit which number i is such that imod 3 = 0, thenimod 3 = 1 and at last imod 3 = 2.

41

|i− 1, i+ 1⟩ 11 10 01 00
Rule numbering smn 0 1 1 0
C-V 1 application yes yes no no
C-V 2 application yes no yes no
Operator applied V V = I IV = V V I = V II = I

Table 4.3: In this table we show how two Controlled-V operator such thatV 2 = I disposed as shown in Figure 4.3 can
implement a rule 6QECA.

Figure 4.3: Composition of the gateV ms that fulĆlls the rule 6 in Table 4.3. Two Controlled-V gates are used.

n = 15 iterations in order to observe the effects of the decoherence: nevertheless it is impor-
tant to remember that only the first 5 iterations which require up to 20.28µs. We have to
define the length of the qubits lattice, and we will use three different lengths L = 12, 6, 3.
The last element to define is the initial state: we will choose the simplest, a qubit in the mid-
dle of the lattice in the state |1⟩ and all the other in the state |0⟩. All this informations are
summarized in Table 4.4.

Quantities Definitions
Lattice length L = 12, 6, 3

Number of iterations n = 15
Update rule R = 6

Update operator X
Initial state |ψ⟩ = |0⟩0 · · · |0⟩i−1|1⟩i|0⟩i+1 · · · |0⟩L−1

Boundary conditions Periodic conditions, open conditions

Table 4.4: Recap of the parameters of theQECA that will be run on the real processor.

We show now the way to read the graph in Figure 4.4, 4.5 and 4.6. On the y-axis there
is the iteration, and on the x-axis there is the qubit number. The color code is linked to the
expectation value of σz: the state |0⟩ is linked to the value−1 and the state |1⟩ to the value

42

1. For example the state |0⟩ blu and the state |1⟩ red.
We compute the dynamics pf the QECA in three different ways for each configuration:

1. The real experiment performed on the quantum processor;

2. A numerical simulation of the experiment, which uses the noise model provided by
the IBM, it takes into account the polarization, relaxation and decoherence effects de-
scribed in Section 1.7;

3. The numerical simulation of the isolated model, namely the results obtained by run-
ning the circuit on the simulator without any noise model, which corresponds the
evolution of the pure state.

43

(a) Theoretical results for a 12 qubits lattice with periodic

boundary conditions.

(b) Theoretical results for a 12 qubits lattice with open

boundary conditions.

(c) Simulated experiment on a 12 qubits lattice with

periodic boundary conditions.

(d) Simulated experiment on a 12 qubits lattice with open

boundary conditions.

(e)Real experiment on a 12 qubits lattice with periodic

boundary conditions.

(f)Real experiment on a 12 qubits lattice with open

boundary conditions.

Figure 4.4: In the left column there are QECAwith the periodic condition, on the right side theQECAwith the open

condition. On the y-axis there are the iterations, on the x-axis the qubit number and the color code is to indicates the

expectation values ofσz . It is important to remember that only the Ćrst Ćve iteration have an application time lesser

then the decoherence time.

44

(a) Theoretical results for a 6 qubits lattice with periodic

boundary conditions.

(b) Theoretical results for a 6 qubits lattice with open

boundary conditions.

(c) Simulated experiment on a 6 qubits lattice with periodic

boundary conditions.

(d) Simulated experiment on a 6 qubits lattice with open

boundary conditions.

(e)Real experiment on a 6 qubits lattice with periodic

boundary conditions.

(f)Real experiment on a 6 qubits lattice with open

boundary conditions.

Figure 4.5: This is the lattice with 6 qubits. In the left column there are QECAwith the periodic condition, on the right

side theQECAwith the open condition. On the y-axis there are the iterations, on the x-axis the qubit number and the

color code is to indicates the expectation values ofσz . It is important to remember that only the Ćrst Ćve iteration

have an application time lesser then the decoherence time.

45

(a) Theoretical results for a 3 qubits lattice with open

boundary conditions.

(b) Simulated experiment on a 3 qubits lattice with open

boundary conditions.

(c)Real experiment on a 3 qubits lattice with open

boundary conditions.

Figure 4.6: This is the lattice with 3 qubits. There is only the conĆguration with open boundary conditions because the

couplingmap of the real device doesn’t support such circuit. On the y-axis there are the iterations, on the x-axis the

qubit number and the color code is to indicates the expectation values ofσz . It is important to remember that only the

Ćrst Ćve iteration have a application time lesser then the decoherence time.

We start by considering the case with L = 12: as we can see in Figure 4.4 there isn’t
any similarity between the real and the simulated results, apart what can be observed during
the first two iterations. We do proceed with the L = 6 qubits lattice, in order to check
whether that with a minor number of qubits errors would be less overwhelming, but as we
see in Figure 4.5 no better results than the previous case is achieved. In the end, we try to the
simplest system possible: a L = 3 qubits lattice, with open boundary conditions. As we see
in Figure 4.6, in this case, the agreement between the simulations and the experiment until
iteration 3 is slightly better than the other cases.

Another useful instrument thatwe can use to understand the actual limit of this quantum
computer is to plot the time evolution of the expectation value of σz for single qubit: noting

46

the differences in the slope of the curve between the theoretical, the simulated and the real
case. For each automata we choose to show the plot of the expectation value< σz > relative
to the only qubit excited in the initial state of the automata, as we see in Figure 4.7. We can
see how the experimental curves rapidly decays towards the expectation value< σz >= 0.
Figure 4.7d is particularly explicative: the theoretical curve is constant on< σz >= 1, the
simulated curve slowly decays towards < σz >= 0 and the experimental curve drops to
< σz >= 0 at the first iteration and after that remains almost constant. It shows the inability
of the qubit of remaining in a coherent state, due to the difficulty of being isolated it from
the environment.

We can then deduce that the IBM quantum computer isn’t able to run QECA properly.

47

(a) 12 qubit lattice with periodic boundary conditions. (b) 12 qubit lattice with open boundary conditions.

(c) 6 qubit lattice with periodic boundary conditions. (d) 6 qubit lattice with open boundary conditions.

(e) 3 qubit lattice with open boundary conditions.

Figure 4.7: Curves relative to the only excited state qubit in the initial state of the automata. We indicates with

< σ̂z > the expectation value of σ̂z . We can notice how the real curve decays rapidly towards the state
1
2 (|0⟩ ⟨0|+ |1⟩ ⟨1|).

48

Conclusions

In this thesis, we have reviewed the basis of quantum computation, with particular attention
to its fundamental unit: the qubit. We have shown how to describe a many-qubits system
and their time evolution, both unitary and non-unitary. We focused on the non-unitary
effects generated by the interactions with the environment, described by quantum channels.

We have then characterized the IBM quantum processor, describing the qubit physical
implementation and its fundamental elements, namely the coupling map, the set of funda-
mental gates, their implementation time and the qubit gate error. We have presented the
programming language developed by IBM to communicate with the quantum processor,
Qiskit, and showed two examples of working programs.

After that,wemeasured the relaxation and thedecoherence timeof the ’ibmq_16_melbourne’.
We compared them with the ones presented by the IBM on their site: the results are incom-
patible with the IBM values, due to the great fluctuations of these values over time.

In the end, we have defined the classical and quantum cellular automata. We found a pro-
tocol to implement the Quantum Elementary Cellular Automata with rule 6 on the quan-
tum computer and ran it with different lattice length L and boundary conditions (open or
periodic). We have seen that in all but the case of L = 3 the results of the experiments are
incompatible with the theory after the second total application of the evolution rule. We
showed the evolution of a single qubit of the lattice, understanding how fast the experimen-
tal evolution moves away from the theoretical and simulated ones.

In conclusion,wehave characterized the current limits of IBMquantumcomputer, through
the analysis of its characteristic times and the application of a quantum elementary cellular
automata. This quantum computers avaiable is still too noisy to be usable for complex task:
the operations that can be applied before the lost of coherence are not enough. Researchers
and private companies, like IBM or Google[18], are however investing great quantities of
money and effort in the improvement of quantum computers and so there is the possibility
that they could become very powerful tools in not too many years.

49

50

References

[1] Nielsen, M. A. and Chuang, I. (2002), Quantum computation and quantum infor-
mation.

[2] Higgott, O., Wang, D., and Brierley, S. (2018) Variational quantum computation of
excited states. arXiv preprint arXiv:1805.08138.

[3] Shor, P. W. (1994) Algorithms for quantum computation: Discrete logarithms and
factoring. Proceedings 35th annual symposium on foundations of computer science, pp.
124–134, Ieee.

[4] Rivest, R. L., Shamir, A., and Adleman, L. (1978) A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM , 21, 120–126.

[5] Fano, U. (1957) Description of states in quantum mechanics by density matrix and
operator techniques. Reviews of Modern Physics, 29, 74.

[6] Sheffer, H. M. (1913) A set of five independent postulates for boolean algebras, with
application to logical constants. Transactions of the American mathematical society,
14, 481–488.

[7] Grover, L. K. (1996) A fast quantummechanical algorithm for database search. arXiv
preprint quant-ph/9605043.

[8] Tittel,W., Brendel, J., Zbinden,H., andGisin, N. (1998) Violation of bell inequalities
by photons more than 10 km apart. Physical Review Letters, 81, 3563.

[9] Einstein,A., Podolsky, B., andRosen,N. (1935)Canquantum-mechanical description
of physical reality be considered complete? Physical review, 47, 777.

[10] Benenti, G., Casati, G., and Strini, G. (2007) Principles of quantum computation and
information: Volume II: Basic Tools and Special Topics. World Scientific Publishing
Company.

51

[11] Koch, J., Terri, M. Y., Gambetta, J., Houck, A. A., Schuster, D., Majer, J., Blais, A.,
Devoret, M. H., Girvin, S. M., and Schoelkopf, R. J. (2007) Charge-insensitive qubit
design derived from the cooper pair box. Physical Review A, 76, 042319.

[12] Martinis, J. M. and Osborne, K. (2004) Superconducting qubits and the physics of
josephson junctions. arXiv preprint cond-mat/0402415.

[13] (2011), IBM Q 16 Melbourne.

[14] Qiskit Documentation.

[15] Maltoni, M. and Schwetz, T. (2003) Testing the statistical compatibility of indepen-
dent data sets. Physical Review D, 68, 033020.

[16] Hillberry, L. E. (2016) Entanglement and complexity in quantum elementary cellular
automata. Ph.D. thesis, Colorado School of Mines. Arthur Lakes Library.

[17] Wootters,W.K. andZurek,W.H. (1982)A single quantum cannot be cloned.Nature,
299, 802–803.

[18] Mohseni, M., Read, P., Neven, H., Boixo, S., Denchev, V., Babbush, R., Fowler, A.,
Smelyanskiy, V., and Martinis, J. (2017) Commercialize quantum technologies in five
years.Nature, 543, 171?174.

52

	Frontespizio_Laurea
	dissertation
	Abstract
	Introduction
	An introduction to Quantum Information
	Classical Computation in a nutshell
	The Qubit
	Quantum states representation
	Composite systems and entanglement
	State Evolution
	Quantum Gates
	Quantum Channels

	The IBM quantum processor
	Qubit implementation
	Specifics of the quantum processor
	The Qiskit software

	Characterization of the quantum processor
	The relaxation time T1
	The decoherence time T2 and T2*
	Ramsey experiment: T2
	Echo experiment: T2*

	 Comparison between IBM value and measured time

	Quantum Cellular Automata
	 Classical Cellular Automata
	Quantum Elementary Cellular Automata
	Implementation on the IBM quantum processor

	Conclusions
	References

