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ABSTRACT 
 
Somatic copy number alterations (sCNAs) are a type of genomic variation 
that affects the dosage of DNA sequences promoting tumorigenesis such as 
in High grade serous ovarian cancer. Their complexity prevents the 
unravelling of the mechanisms generating them and the molecular 
stratification of the patients. Here we propose the implementation of a 
highly sensitive pipeline for their detection based on structural variant 
calling and a signature analysis for the extraction of recurrent patterns. The 
precise calling allowed the recovery of small segments missed from the 
previous pipeline and in turn the clear distinction of patients with 
Homologous Recombination Deficiency (HRD), which resulted extremely 
segmented. Although the signature analysis, based on COSMIC copy 
number signatures, did not provide results consistent with the clinical data, 
the de novo signature extraction provided 15 new signatures able to 
proficiently explain the dataset. Two of them were positively associated 
with HRD, possibly representing a test for the identification of the HRD 
phenotype. Further insights on these signatures may provide the discovery 
of their etiology and give the possibility to shed light on association with 
single nucleotide variations. 
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CHAPTER 1 INTRODUCTION 
THE HIGH GRADE SEROUS OVARIAN CANCER 
Ovarian cancer is a type of tumor originating in the female reproductive 
organ and besides the common name, it denotes a multiplicity of distinct 
malignancies that share the anatomical site upon presentation. 
Since it is the most lethal form of gynecological malignancies, it constitutes 
an impelling public health concern (8th cause of cancer-related death among 
women worldwide with a survival <30%). 
One of the reasons for its high mortality is the late stage of the tumor at the 
moment of diagnosis and the lack of precise localization. Indeed, only 13% 
of diagnosed ovarian carcinomas are at stage I or II, the high majority have 
already metastasized.  
There are currently no effective screening strategies for the early detection 
of ovarian cancer [1]. 

Ovarian Cancer Subdivision  
The first classification dates back to 1930 WHO guidelines, which was based 
on histopathological differences. The 90% of ovarian tumors is estimated to 
derive from the transformation of epithelial cells and called Epithelial 
Ovarian Cancers (EOCs), as opposed to those originating from germ cells 
or sex-cord-stromal tissues. EOCs include four main histological subtypes 
determined according to morphology and tissue architecture: mucinous, 
serous, clear-cell and endometrioid. 
Serous ovarian cancer has been further classified by the introduction of 
grading systems for a more accurate prognosis. The 2-tier grading system 
is the most famous and based on two histological assessments, nuclear 
atypia (how much tumor cells differ from normal tissue) and mitotic rate. 
The classes defined are:  

1. Low-grade serous carcinoma (LGSC): low-grade nuclei (look almost 
like normal cells) with infrequent mitotic figures (tend to grow 
slowly). It evolves from adenofibromas or borderline tumors. The 
progression to an invasive type is slow and stepwise. It is indolent 
and has a better outcome than high-grade. 

2. High-grade serous carcinoma (HGSC): high-grade nuclei and 
numerous mitotic figures. It is an aggressive malignant neoplasm 
without obvious precursor lesions.  

More recently, EOC has been characterized according to genetic and 
molecular features and the new classification has been recognized by WHO 
in 2014. The first division is in two broad categories, Type 1 and Type 2.  
Type 1 neoplasms are characterized by a stepwise development mainly 
from pre-malignant or borderline lesions as other epithelial cancers and 
typically present a large cystic neoplasm. From the genetic point of view, 
they are stable, P53 wild type and expose alterations in RAS-MAPK and 
PI3K-AKT signaling pathways. Type I includes low-grade serous, clear-cell 
and mucinous subtypes.  
Type II malignancies develop more rapidly, are usually widely 
disseminated at the time of presentation and are more aggressive. They 
share P53 mutations and genomic instability because of DNA repair 
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pathway defects. The dominant subtype of this category is the high-grade 
serous ovarian cancer, which accounts for 70-80% of deaths from all forms 
of ovarian cancer [2]. 
   
This project focuses in particular on the study of HGSC, therefore further 
descriptions will be all related to this subtype.  

Origin and development of HGSC 
Ovarian cancer is a heterogeneous group of neoplastic diseases. According 
to the latest revisited and revised model of ovarian carcinogenesis, serous 
tubal intraepithelial carcinoma (STIC) is thought to be a potential precursor 
of HGSC. STIC is most probably the earliest morphologically recognizable 
precursor lesion of many (not all) pelvic HGSC. The exact mechanism, how 
the STIC develops into invasive pelvic serous carcinoma is not well 
understood [1].  
HGSC does not require blood or lymphatic systems to disseminate and 
metastasize since it extends to adjacent organs within the peritoneal cavity 
or through detachment of cells from primary tumor. The exfoliated cells, 
singles or in clusters, are suspended in the peritoneal fluid, spread, catch on 
distant organs or tissues and grow.  
The peritoneum is a membrane lining the abdominal cavity, covering the 
inside wall of the cavity and every organ contained in it. The peritoneal 
cavity in normal situation contains 50-75 ml of serous peritoneal fluid. Its 
functions are mainly support of the viscera, insulation, lubrification, blood, 
lymph and nerve supply, and immunity (barrier to pathogens). To fulfill its 
functions, it is developed into a highly folded, complex structure.  
The folds of the peritoneum divide the abdominal cavity in several 
compartments, among which there is the omentum. The omenta are folds 
enclosing nerves, blood vessels, lymph channels and fatty and connective 
tissues.  
The favorite metastatic site of HGSC is the omentum, most commonly 
without affection of the underlined organs and with colonization only of 
the mesothelial cell layer. Patients usually are diagnosed with a late-stage 
disease, which also presents ascites (abnormal accumulation of fluid within 
the abdomen) and in the fluid the presence of spheroids or aggregates have 
been proposed to represent a unit of metastatic spread [2].  

Genomic context of HGSC 
The Cancer Genome Atlas (TCGA) is a project begun in 2006 from the joint 
collaboration of the National Cancer Institute (NCI) and the National 
Human Research Institute. It is a cancer genomics program whose aim is 
the molecular characterization of primary cancer and matched normal 
samples spanning 33 cancer types. 
TCGA studies allowed to shed light on the genomic and transcriptomic 
landscape of many tumors, including EOC. The vast majority of EOC TCGA 
samples are HGSC [3]. Starting from these data, it has been increasingly 
clear that:  

1. the most prevalent somatic mutation across patients affects TP53 
gene with a missense mutation producing a truncated protein, 
indicating that most likely it is required for the initiation of the 
disease and enables the copy number pattern;  
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2. other important mutations include BRCA1/2 (role in DNA repair, 
recombination, and transcription), CSMD3 (regulation of dendrite 
development), NFI (Nuclear Factor), CDK12 (transcription regulator 
of DNA repair genes);  

3. genomic instability characterizes this cancer type which is reflected 
in high number of copy number alterations, the result of which is the 
amplification of deletion of many genes; such as CCNE1 (cyclin, 
regulatory subunit of CDK2 for G1/S transition), MYC (nuclear 
phosphoprotein that plays a role in cell cycle progression, apoptosis, 
and cellular transformation) and MECOM (transcriptional regulator 
and oncoprotein that may be involved in hematopoiesis, apoptosis, 
development, and cell differentiation and proliferation); 

4. considering pathway analysis for HGSC pathogenesis, it is possible 
to notice that the homologous recombination repair (HRR) pathway 
is highly defective in most patients, involving mutations in BRCA1/2 
and other genes (RAD15, PTEN, RAD51C, ATM, ATR). It represents 
a central high-fidelity DNA damage-repair system responsible for 
reparation of DNA double-strand breaks and interstrand crosslinks 
in a slow, specific, complex, and accurate fashion. The mutation of 
this pathway allows the distinction of two classes of patients: 
homologous recombination deficient (HRD) and homologous 
recombination proficient (HRP). In HRD patients, the repair of DSB 
is given by non-homologous end-joining, single-strand annealing or 
microhomology-mediated end joining pathways, which are not as 
effective and exact as HRR [4].  
Additional mutated pathways comprise Notch, PI3K, RAS-MEK and 
FOXM1 signaling. 

HGSC Treatment 
The paradigm for newly diagnosed HGSC is that they are treated by 
primary surgical cytoreduction followed by platinum-based chemotherapy 
or in case of a too large dissemination of the tumor or tumor mass located 
in a wrong site the patient undergoes a primary neoadjuvant chemotherapy 
(NACT) before the cytoreduction and additional chemotherapy [2].  
The primary surgical cytoreduction or “debulking” aims to remove all 
tumor masses in the peritoneal cavity. The more advanced the disease stage, 
the more complex the operation and the less likelihood of success. When 
NACT is required, it consists of three cycles of carboplatin and paclitaxel 
followed by interval, surgical cytoreduction and additional chemotherapy. 
It is used especially when the patients are too ill to undergo surgery or when 
the cancer burden is too extensive. 
Recommendations for the use of adjuvant chemotherapy using platinum-
based chemotherapy for patients with early-stage ovarian cancer depend 
on the stage, grade and histology (patients with grade I are not treated with 
chemotherapy post-surgery, but higher grades do). Its effectiveness has 
been improved by combining cisplatin and carboplatin with taxanes, anti-
angiogenic agents (bevacizumab) and other drugs.  
Cisplatin and carboplatin belong to the class of alkylating agents, which 
cause DNA damage adding bulky alkyl to guanine nucleotide bases and 
therefore inhibiting proper DNA synthesis. Taxanes were first isolated from 
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the cortex of Taxus brevifolia, inhibit tubulin depolymerization and cause 
dysregulation of the cell cycle with mitotic failure [1]. 

Relapse and Platinum resistance 
Although there is a good response for platinum-based chemotherapy, more 
than 80% of patients will relapse (platinum resistant patients). For these 
patients, alternative or second-line drug combinations are utilized and then 
followed-up for 2-4 months with physical examination or radiographic 
imaging [2].  
The time between last platinum chemotherapy and recurrence, known as 
the platinum-free interval (PFI), represents one of the most important 
prognostic factors. Traditionally, patients recurring six months or more 
after last platinum are labeled platinum sensitive and most of them respond 
positively with a rate between 30-90% to further platinum-based 
chemotherapy. Patients recurring <6 months from last platinum are 
considered platinum resistant and typically have low response rates to 
additional chemotherapy. Nevertheless, in general patients retreated with 
platinum-based chemotherapy manifest response rates of almost 50% but 
the efficacy decreases, together with life expectancy  [1].  
Platinum resistance is one of the main causes of the high mortality of this 
disease, but the mechanisms are still poorly understood. Some hypotheses 
involve drug influx and efflux pathways, intracellular redox balance and 
drug modification, tumor microenvironment, DNA damage repair 
machinery, epigenetic mechanisms. For example, mutations in BRCA1/2, 
genes of the homologous recombination (HR) process, have been shown to 
be associated with sensitivity to platinum therapy and reversion mutations 
which restore their function confer resistance to platinum-based drugs and 
PARP inhibitors [5].  
Germline mutations in BRCA1/2 seem to favor a longer survival rate and 
high responsiveness to platinum-based therapies. In these patients targeted 
therapies are used and one of the most common approaches relates to PARP 
inhibitors. When HR deficiency is present, the repair is over-reliant on the 
poly (ADP-Ribose) polymerase (PARP) mediated base excision repair 
(BER). Drugs targeting PARP are very effective in this case because the cell 
fails completely to repair DNA breaks[2]. 
Whitin platinum resistant patients, a part will positively respond to further 
platinum-based chemotherapy but the prediction of who will benefit from 
it is still an unsolved problem. Moreover, the establishment of different 
treatment lines and the choice of which of them to use is different from 
individual to individual and is dependent on the history of prior treatment, 
residual toxicities and the availability, cost and convenience of treatments 
[6]. 
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THE COPY NUMBER VARIATIONS 

Structural Variants 
One of the most important mutational processes in cancer are the structural 
variations (SVs). SVs are defined as sequence variants >50bp in size but they 
can vary a lot in type and size (from 50 to Mbp) they comprise a lot of 
subclasses consisting of unbalanced Copy Number Variants (CNVs), which 
include deletions, duplications, and insertions of genetic material, balanced 
rearrangements such as inversions, interchromosomal and 
intrachromosomal translocation, but also include mobile elements 
insertion, multi allelic CNVs, segmental duplication, complex 
rearrangements.  
One SV is identified as a junction between two breakpoints in the genome 
and usually there is also a change in copy number across the breakpoint if 
only one side of the break is rescued by a structural variant, otherwise it 
results in a balanced structural variant [7]. 
 
Among all classes of structural variants, the current project is focused on 
Copy Number Variations since they largely affect HGSC tumor genomes 
and are caused by genomic instability. 

sCNAs: what are them?  
Copy Number Variations are regions of the genome that vary in integer 
copy number, meaning that there is a different number of copies of that 
region from 2n (human normal ploidy) [8].  
Nevertheless, some lexical formalities have been proposed that distinguish 
them depending on the size of the event [9]:  

-       Aneuploidy is defined as a CNV event affecting entire chromosome 
arms, whole chromosomes or even whole genome;  

-       CNVs describe all sub-arm gains or losses larger than 10kb; 
-       Indels describe all other CNVs (shorter than 10kb). 

 
CN events can be further classified into germline and somatic events. 
Moderate and physiological germinal CNVs can be detected in all healthy 
individuals. They are particularly important in the evolutionary context, in 
which they can generate biodiversity over long time scales, driving rapid 
adaptations in response to stress and change in the environment. Although 
somatic CNV, also called somatic Copy Number Alterations (sCNAs), are 
the CNVs occurring in somatic cells that can occur because of not-detected 
defects in DNA replication of recombination. Determining the CNV 
functional consequences in both germline and somatic cells is challenging 
because they result in alleles of large effect that impact more genes and 
regulatory regions at the same time [8].  

sCNA in cancer 
In cancer, high levels of sCNA occur whenever the transformed cell 
accumulates mutations in genes of DNA replication and repair pathways in 
HR pathways. Somatic CNA can be both the cause or the consequence of 
cell transformation [8]. sCNAs represent the type of mutation that affects 
the largest part of the genome in cancers. 



 
9 

Two main challenges in understanding sCNAs in cancer are recognized: 
1. Distinction between driver events (responsible for oncogenesis) and 

passenger mutations (acquired secondarily). Driver mutations 
confer clonal growth advantage and are positively selected. One 
possibility is assuming that passenger mutations are randomly 
distributed but it is not always correct. A cluster of somatic 
mutations may also be attributable to a local increase in mutation 
rate. Moreover, most copy number alterations involve loss or gain of 
broad chromosomal regions. For example, CN loss targeting a tumor 
suppressor gene can also involve multiple neighboring genes not 
involved in cancer development. The loss of the neighbors can 
render cancer cells vulnerable to further suppression or inhibition of 
those genes. To shed light on this point, the mechanistic point of view 
must be considered.  

2. Identification of target genes (oncogenes or tumor suppressors) of 
driver sCNAs and determination of their functional role. The context 
is examined in this case because positive correlations of sCNAs with 
other genetic events may indicate functional synergies, while 
anticorrelations functional redundancies [10]. 

It is clear that sCNAs are pervasive across human cancers and 
characterize certain tumor types. They can carry prognostic information 
and they can reflect the level and type of genomic instability. What is still 
not known is how they form in the first place and how or if they evolve 
during tumor progression.  
Another challenging question is whether sCNAs affect the spatial 
arrangement of the genome in the nucleus changing the gene expression 
and cell fitness. Genomic rearrangements are likely to cause a repositioning 
of the genes and regulatory regions at a local level or affecting the overall 
architecture. Understanding this point would allow us to gain a deeper 
knowledge of mechanisms conferring higher fitness to tumor cells. 
Lastly, sCNAs must be studied because they could represent a novel 
therapeutic target [10].  

sCNA Detection 
The research in SVs field in cancer encounters difficulties due to biological 
factors among which are tumor heterogeneity, purity, and polyploidy.  
Tumor biological samples are never composed of only tumor cells but there 
is always contamination of normal cells. Purity represents the percentage of 
cancer cells over the total and is an important parameter to understand if a 
variant is germline or somatic.  
Moreover, a tumor mass is composed of different types of cancer cells that 
derive from the acquisition of a progressive level of mutation because of 
genomic instability. This leads to high heterogeneity between cancer cells 
forming subclones. Subclonality is a problem because the presence of 
variants that are present only in a small number of cells in the samples 
decreases the power of detection.  
Polyploidy also represents an obstacle because the overall tumor ploidy 
influences the calculation of alleles values [7].  
  
High-throughput sequencing (HTS) techniques are nowadays applied for 
copy number variations detection. Many of the prevalent tools and 
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algorithms are SV callers which use short reads to infer the presence of SVs 
compared with a reference genome.  
Although short-read approaches are highly effective at resolving single 
nucleotide variants (SNVs), SV detection is unable to completely overcome 
the read sequence and insert sizes of standard short-read HTS.  
The methods are several but in general all consist in the identification of 
mapping discordance between the HTS read and the expectations given by 
reference genome. The features considered are:  

• Read depth (RD): changes are associated with sCNAs causing 
genomic rearrangements. Genomic fusion partners cannot be 
identified, and breakpoint position is not precise.  

• Discordant aligned read Pairs (DP): pair read aligned with 
unexpected orientation or separation, or to different chromosomes.  

• Split Reads (SR): the sequenced reads span the breakpoints. Methods 
using them find breakpoints by identifying split alignments in which 
part of the read aligns to either side of a genomic rearrangement in 
three possible ways: direct split read mapping, realignment of Soft-
Clipped (SC) bases (unaligned bases in partially mapped reads), split 
alignment of the unmapped read in One-Ended Anchored (OEA) 
read pairs 

• Local assembly: assembly of reads obtained from clusters of SCs or 
OEAs pairs to form break-end contigs (extend and span out the 
breakpoint).  

Not all these features are used by all SV callers but the integration of more 
of them can significantly increase the power and sensibility of detection 
[11].  
  
Focusing on CN, the calling algorithms rely mainly on the segmentation of 
the genome, that is the partition into regions with a distinct copy number 
profile. The approaches are generally three, among which the last one is the 
most used: Hidden Markov Model (HMM), Circular binary segmentation 
(CBS) and rank segmentation. 
After the segmentation two parameters important for sCNAs evaluation are 
calculated: purity and ploidy. Purity represents the percentage of the tumor 
cells over the total amount (each sample is prone to contamination of 
normal cells in the tissue) while ploidy is the number of chromosomes 
occurring in the nucleus of a cell (it can be altered in tumor condition). They 
are fundamental for the calculation and correction of B Allele Frequency 
(BAF) and Log R ratio (logR).  
BAF and logR metrics allow calculation of the final CN for both alleles and 
the visualization of the CN pattern in the genome.  
BAF is the measure of the minor allele and its % at each position in the 
normal condition (diploidy) has three possibilities: 0 (AA homozygous), 100 
(BB homozygous) and 50 (AB heterozygous). If there is a copy number 
variation (gain or loss) or the sample is not pure, the values change. It is a 
measure of the allelic contrast and is also useful for the visualization of Loss 
of Heterozygosity (LOH) cases.  
Log R ratio instead, is a metric that represents the signal intensity for CNV 
analysis. This parameter originates from a polar coordinate transformation 
used in microarrays of two-channel intensity data. This transformation 
generates a normalized intensity value called R and an allelic intensity ratio. 
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The intensity comparison is done by looking at the observed normalized 
intensity of the subject sample (Rsubject) compared to the expected 
intensity (Rexpected) and computing the base two logarithm of their ratio 
[12].  
In the copy number case, for each position, the expected number of calls is 
calculated and compared to the observed one. The result is the logarithm of 
the ratio between the two amounts. If it is >0 the number of calls observed 
is higher than the expected one, meaning a gain in the number of copies, 
while if <0 the opposite (loss of copies). This measurement must be taken 
into account to confirm CNVs, especially LOH cases (B allele alteration can 
be due to other reasons) [13].  

MUTATIONAL SIGNATURES 

Mutations in cancer genomes are caused by mutational processes 
(exogenous or endogenous origin) that impact on cell lineages between 
zygote and the formed cancer cell. Every mutational process involves the 
modification of specific pathways in the cell and therefore, when it activates 
the repair mechanisms, these generates characteristic patterns of mutations 
in the genome [14]. From the point of view of genomic architecture, 
locations of somatic mutations are modified by replication timing, 
transcriptional activity, eu- and hetero-chromatin presence, histone 
modifications, transcription factor binding site presence; while from 
sequence perspective mutational processes differ in biophysical and 
biochemical characteristics, resulting in a specific preference for the 
sequence context of the somatic mutations. The combination of these two 
aspects affects the accumulation of mutations leading to a characteristic 
pattern [15]. These patterns are called mutational signatures and can 
involve Single Base Substitutions (SBSs), Double Base Substitutions (DBSs), 
small insertions and deletions (IDs), genomic rearrangements and copy 
number changes (CN).  
Identification of these signatures and their cause is an arduous task and 
requires mathematical modeling because each cancer genome might have 
been generated from a combination of mutational processes that have to be 
discerned [14]. 
The main repository of officially accepted mutational signatures is the 
COSMIC (Catalog Of Somatic Mutations In Cancer) database, divided into 
several projects among which there is the signatures part 
(https://cancer.sanger.ac.uk/cosmic) [16]. Provided signatures aren’t 
definitive but represent a reference set of high confidence. They have been 
identified from the analysis of PCAWG dataset and curation of specific 
papers and consist in four variant classes for which mutational profile, 
proposed etiology and tissue distribution are provided: SBS, DBS, ID 
(indels) and CN.  
The clinical utility of signatures derives from the possibility to understand 
the mutational processes shaping and modifying cancer genomes and 
therefore identifying a number of environmental mutagens. As a 
consequence, these findings allowed the development of strategies for 
decreasing the exposure to such mutagens. 
They also helped to understand the impact of therapies which lead to 
selection of resistant clones that can cause secondary or recurrent cancers 
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and, in the end, allow us to understand tumor mass evolution processes 
[15]. 

Copy Number signatures in HGSC 
Copy Number signatures have been proposed only recently because 
mutational processes that drive copy number changes are not readily 
identifiable from genome-sequencing data. One of the first studies showing 
the utility of CN signatures focuses on HGSC. Shallow Whole Genome 
Sequencing (WGS) data are used in a mixture modeling approach to 
separate copy number features distributions and then non-negative matrix 
factorization (NMF), being able to extract seven signatures. Mutational 
processes have been associated with each signature and it has been shown 
that they are also able to predict the overall survival [17]. 
In June 2022 two pan-cancer studies focusing on copy number signatures 
were published. The first one focuses on chromosomal instability in human 
cancer, looking at characteristic genomic patterns and using data from 
TCGA obtained with the Affymetrix SNP Array 6.0 platform (microarray 
technology). 17 signatures have been identified and associated with 
probable causes, but they were also able to predict drug response and 
platinum sensitivity. One problem with this study is clearly the use of an 
old technology and the fact that the method doesn’t show concordance in 
the identification of the same signatures in WGS data [18]. 
The second study produces the actual 21 copy number signatures in 
COSMIC, identifying some associated with LOH, HRD, chromothripsis or 
driver genes. WGS and Whole Exome Sequencing data have been used and 
decomposed with the same method used for substitutional and ID 
signatures. The approach enables the identification of both shared patterns 
of copy number across all examined samples and the quantification of the 
number of segments attributed to each copy number signature in each 
sample [19].  
Given the data type used and the reliability of the paper, COSMIC 
signatures have been chosen for the quantification of segmentation data and 
successive analysis. 
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GOAL OF THE PROJECT 
The study of Copy number alteration in cancer through NGS technique is 
extremely important because it supports precision oncology clinical 
research. Indeed, sCNAs can be used for the diagnosis, prognosis and 
treatment of HGSOV.  
To accomplish this task, improving the detection of these variants is 
necessary. One of the objectives is the implementation of a pipeline for the 
identification of the somatic copy-number variations in ovarian tumor 
samples maximizing the sensibility and specificity of the tools used.  
The following step aims to find common patterns in the distribution of 
sCNAs in tumor samples, that is a signature quantification analysis. This 
passage is important because it helps in finding shared alterations that can 
describe subgroups of patients (HRD/HRP, high LOH ..) and can be 
targeted for a possible treatment.  
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CHAPTER 2 METHODS 
Cohort description 
The cohort consists of 233 patients suspected of ovarian cancer, of which 
195 confirmed in HGSC mainly at the III-IV stage (95%). All patients 
participating in the study provided written informed consent. The study 
and the use of all clinical materials have been approved by the Ethics 
Committee of the Hospital District of Southwest Finland (ETMK) under 
decision number EMTK: 145/1801/2015. 
The clinical specimens used in the study represent several understudied 
aspects of HGSC that are poorly represented in existing cohorts of clinical 
specimens, such as TCGA. The Cancer Genome Atlas (TCGA) is a cancer 
genomics project which molecularly characterized over 20,000 primary 
cancers and matched normal samples spanning 33 cancer types 
(https://www.cancer.gov/about-nci/organization/ 
ccg/research/structural-genomics/tcga). Cancers for study have been 
chosen based on specific criteria that include poor prognosis, overall public 
health impact, availability of samples meeting standards for patient 
consent, primary, untreated tumor with a source of matched normal tissue 
or blood sample, frozen, sufficiently sized, resection samples, and samples 
composed of at least 80% tumor nuclei (threshold later lowered to 60% with 
improved sequencing technology and computational methods). 
Contrary to TCGA data, all samples were collected from intra-abdominal, 
peritoneal, and omental metastases, thus representing cancer cell 
populations with proven metastatic potential. The cohort also included low 
purity tumors that may represent a distinct, poor prognosis phenotype of 
HGSC, which are missing from most genomic analyses. 
 
Purity in samples has been determined in most part of the sets only 
computationally and not assessed initially by a pathologist. This choice 
comes because sequenced samples are fresh-frozen, and the matching 
formalin fixed with paraffin embedding (FFPE) have not been produced. 
The sequencing of FFPE samples is not optimal because of short inserts and 
artificial base alterations which lead to overestimation of certain variables 
[20]. The last set has also been provided of hematoxylin and eosin images 
of the samples, permitting to estimate the purity. 
Nevertheless, the low purity samples are retained and considered for the 
analysis because most of them represent the interval phase after the 
treatment which implies that also in poor responders there is a decrease of 
the purity of the sample. Moreover, purity also depends on the site of origin 
of the samples: in ovary, obtaining high purity samples is relatively easy, 
while in metastatic sites like peritoneum the samples are more often 
characterized by a low purity.  
 
The age at diagnosis ranges from 38 to 88 years old with a mean of 68. Half 
of the patients have been treated with primary debulking surgery (PDS) and 
platinum-taxane chemotherapy and the other half with NACT therapy. 
Moreover, half of the patients have been associated with SBS3 mutational 
signature, associated with HRD, and half without it (HRP).  
The medium platinum-free interval (PFI) is 362 days.  
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Data pre-processing 
Fresh tumor samples are collected from surgeries (primary tumor, 
metastases, ascites) and plasma samples during 1st line treatment and 
disease relapse in Turku University Central Hospital (Tyks). The samples 
are first processed at the University of Turku, where DNA, RNA, circulating 
tumor DNA (ctDNA) extraction and quality control are performed. 
Sequencing is entrusted to the Novogene sequencing center which executes 
a further step of quality control, library preparation and sequencing. 
Samples are sent and divided in batches called “sets” and the sequencing 
characteristics can vary. 
WGS data sequenced before mostly 30x coverage (BGISEQ and HiSeq), now 
primarily 50x (Novaseq) with Illumina HiSeq X Ten, BGISEQ-500 or 
MGISEQ-2000, or Illumina NovaSeq 6000. The data are paired-end reads at 
150 (HiSeq, NovaSeq, BGISEQ) or 100 bp (set 6 BGISEQ) in FASTQ format.  
 
Table 1: Summary of sequencing features used for the samples.  

Platform Number 
samples 

Set SAM 
platform 

Instrument 

HiSeq 204 3,4,5,6 Illumina HiSeq X Ten 

BGISEQ 399 6,7,8,9 DNBseq BGISEQ-500, MGISEQ-
500 

NovaSeq 540 9,10,11,12 Illumina NovaSeq 6000 
 
Bulk WGS data are preprocessed by quality control and trimming (QCFasta, 
using FastQC, trimmomatic 0.3), alignment to the reference genome 
(GRCh3.8.d1.vd1) with BWA-MEM version 0-7.12-r1039, duplicate marking 
(Picard MarkDuplicate version 2.6), base quality score recalibration (GATK 
BaseRecalibrator version 3.7) and cross-sample contamination estimation 
(GATK version 4.1.9.0). There isn’t a proper normalization for correcting the 
possible batch effect, arising because of the different technologies used, but 
a manual control is done, and some statistics are calculated and controlled 
for consistency for each technology used (e.g. number of mutations and 
indels). 
Downstream analysis performed involve germline and somatic short 
variant detection (GATK version 4.1.9.0), copy-number alterations and 
tumor purity estimation (GATK version 4.1.4.1 with ASCAT algorithm) and 
attribution of mutational signatures (COSMIC v3.1). 
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CURRENT PIPELINE 

GATK: segmentation 
The currently used workflow for the sCNAs analysis consists in three steps: 
(i) segmentation of WGS data using GATK, (ii) ploidy and purity estimation 
using ASCAT algorithm and (iii) visualization of the results with Genome 
Spy. 
  
Genome Analysis ToolKit (GATK) is a collection of command-line tools for 
analyzing high-throughput sequencing data with a primary focus on 
variant discovery. The tools can be used individually or chained together 
into complete workflows [18].. Main steps:  

1. Data preprocessing: each individual read-pair is mapped to the 
reference genome producing a SAM/BAM format sorted by 
coordinate, read pairs that are likely to have originated from 
duplicates of the same original DNA fragments are marked and 
samples are corrected for patterns of systematic errors in the base 
quality scores.  

2. Variant discovery: starting from the BAM file variants are called per-
sample. Depending on the target type of variant different tools can 
be used. The genomic VCF intermediate files are combined per 
sample into a multi-sample genomic VCF file and after a final step of 
refinement the VCF result is produced.  
For sCNAs the key is looking at the coverage profile to determine 
whether the variation occurred or not. The main step is the coverage 
normalization and then the segmentation, where the boundaries of 
the events (segments having the same uniform copy number) are 
determined. In somatic variants the task is more difficult because the 
size of the events is very small.  

3. Variant filtering: since variant callers are sensitive, identifying 
potential false positives and applying filters to remove those less likely to 
be real variants is necessary. The steps include variant quality score 
recalibration, hard filtering on quality criteria and using annotation features 
[21].  
 
For a sCNA analysis, before collecting coverage counts, the resolution of the 
analysis is defined with a genomic intervals list. Preparing a genomic 
intervals list is necessary whether an analysis is on targeted exome data or 
whole genome data. In the case of whole genome data, the reference 
genome is divided into equally sized intervals or bins and raw integer 
counts data are then collected.  
BAFs are collected using all filtered biallelic germline SNPs with 
heterozygous calls from each patient. Read-count collection used one 
kilobase intervals. Both read and allelic count collection excluded regions 
listed in the ENCODE blacklist [22] and internal DECIDER blacklist. The 
DECIDER blacklist includes regions that have abs(logR) > 0.2 in at least 
three of the available normal samples. The 136 regions in the DECIDER 
blacklist represent poorly aligned regions and population-level copy-
number variance.  
A Panel of Normals (PoN) is also required. The normal samples in a PoN 
should match the sequencing approach of the case sample under scrutiny. 



 
17 

The PoN stores information that, when applied, will standardize case 
sample counts to PoN median counts and remove systematic noise in the 
case sample. The read counts are standardized and denoised against the 
PoN producing the standardized copy ratios.  
The workflow creates a somatic Panel of Normals from the WGS normal 
blood samples of patients given a list of BAMs. Only samples with less than 
5% contamination are included. Interval-specific and platform-specific 
Panels of normal are created first and then concatenated in the final one. 
In segmentation, contiguous copy ratios are grouped together into 
segments. The tool performs segmentation for both copy ratios and for 
allelic copy ratios, given allelic counts. Counts of the reference allele and 
counts of the dominant alternate allele are tabulated for each site in a given 
genomic intervals list and the collection for the case and the matched-
control alignments is done independently with the same interval. In the 
somatic case, the matched-control is the germline normal sample and the 
case is the tumor sample from the same individual. 
Copy and allelic ratios that are contiguous on the same segment are then 
grouped together. 
The Gaussian-kernel binary-segmentation algorithm enables efficient 
segmentation of dense data, like that of whole genome sequencing. The 
algorithm performs segmentation for both copy ratios and for allelic copy 
ratios jointly when given both data types together. Systematic calling of 
copy-neutral, amplified and deleted segments is finally performed [21]. 

ASCAT: purity and ploidy 
The ploidy and purity estimation are performed with ASCAT (Allele 
Specific Copy number Analysis of Tumors). The idea is the automation of 
the discovery of ploidy and contamination of samples for sCNA analysis. 
ASCAT procedure involves both segmentation, variant calling and 
estimation of purity and ploidy. Nevertheless, since the segmentation is 
performed with GATK, ASCAT algorithm has been modified and adapted 
to perform only the calculation of the parameters [23].  
Purity and ploidy (𝜌 and 𝜓t) are looked so that the allele-specific copy 
number estimates are as close as possible to a non-negative whole number 
for germline heterozygous single nucleotide polymorphisms (SNPs). 
Allele-specific copy number profiles are calculated for a grid of purity and 
ploidy values, for each one the distance to a positive integer number is 
calculated and local minima are established. Goodness of fit is calculated as 
a linear rescaling of the total distance to nonnegative whole numbers to a 
percentage and used to choose the most likely solution.  
At the end, with the solution of purity and ploidy provided by the 
calculations, it is possible to calculate the corrected BAF and LogR and the 
estimates for the allele-specific copy numbers [21]. 

Defects of GATK-ASCAT pipeline  
There are two main reasons for the implementation of a new workflow for 
sCNA calling.  
First, GATK estimates the segmentation singularly for every sample, even 
if more samples belong to the same patient, thus they have the same genetic 
background and clonal origin. When the samples of a single patient are 
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compared the call of the breakpoint is often not precise and can slightly vary 
between one sample and another even if they are most likely the same 
breakpoint. The consequence is a generation of noise in the visualization 
and estimation of the boundaries of the segments. 
Moreover, because of tumor heterogeneity and contamination from normal 
cells, it is possible to find in the same sample only a few cells that contain a 
specific variant. The inspection of the BAM file allows its recognition, but 
GATK tool is not able to detect it because of the low number of supporting 
reads. All these problems could be solved by applying a joint calling for the 
breakpoints determined by SV detection, read depth and BAF. Joint calling 
consists in considering all reads coming from the samples of the same 
patient together to call the structural breakpoints (as they come from a 
single sample). It ensures that a common variant near the single-sample 
threshold of detection will be reliably reported as a shared variant. Joint 
calling allows for sensitivity detection of variants that are present 
subclonally (or at low coverage) that would not be detected if called 
individually. Joint calling has higher coverage of shared variants thus 
resulting in more reliable assembly of that variant. 

IMPLEMENTED PIPELINE 
The attempt to improve the GATK-ASCAT pipeline has been accomplished 
by the use of tools implemented by Hartwig Medical Foundation (HMF), a 
project born in the Netherlands in 2015 with the aim of performing DNA 
analysis of cancer patients. They were able to generate a database storing 
the clinical and genetic information of thousands of patients with metastatic 
cancer. They also developed a state-of-the-art IT pipeline for the 
bioinformatic data analysis together with various software tools to call, 
analyze and annotate the WGS data. All code used (including all relevant 
documentation) can be accessed on Github: 
https://github.com/hartwigmedical/. 
 
HMF tools range from identification of viral integration to detection of 
structural variations, to single-nucleotide variations and more. For sCNA 
analysis the tools used (Fig.1) and their main functions are:  

• GRIDSS: call of SVs between tumor/reference pairs (not developed 
by HMF); 

• GRIPSS: provide a somatic filter for the extraction of only somatic 
variants, also removing low quality calls; 

• Amber: determines the BAF of heterozygous germline variants in the 
tumor samples; 

• Cobalt: extracts read depth ratio; 
• Purple: combines output from all other tools to produce the somatic 

output  
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Fig 1: Schematic representation of the HMF pipeline. The input of all tools is represented by the BAM file. 
Processes are parallelized and divided in two branches, one identifying structural variants and one calculating 
the WGS metrices. SVs are called by GRIDSS using also the ENSEMBL blacklist and its output is passed to 
GRIPSS which, using a PON, carries out the somatic filtering. At the same time Amber takes as input the 
heterozygous loci and calculates the BAF while Cobalt uses the GC profile of each sample for normalization and 
calculation of the read depth. The outputs of GRIPSS, Amber and Cobalt are used by Purple, together with 
SNV data for the segmentation and the estimation of purity and ploidy. Segmentation is then visualized in 
GenomeSpy.   

GRIDSS 
GRIDSS (Genomic Rearrangement IDentification Software Suite) is a 
module software suite containing tools useful for the detection of genomic 
rearrangements. It provides a multithreaded variant calling from a 
combination of assembly, split read and read pair support. It maximizes the 
sensitivity and prioritizes calls into high or low confidence, thereby 
maintaining specificity in the high-confidence call set.  
It takes a three-step approach:  

1. Filtering out reads that align properly: all reads providing any 
evidence for underlying genomic rearrangements are extracted 

2. Assembly of the extracted reads (genome-wide break-end assembly): 
each contig formed corresponds to a break-end and only after 
assembly, the underlying breakpoint and the partner break-end are 
identified. It assembles all SC, SR, DP, OEA and indel-containing 
reads. Breakpoints are identified by realignment of break-end 
contigs.  

3. Variant calling: a probabilistic model that combines break-end 
contigs from each side with SR and DP evidence to score and call 
variants 

 
To perform the genome-wide break-end assembly, a positional de Bruijn 
graph data structure has been extended. Positional de Bruijn graphs were 
first developed for small indel and base calling error correction of de novo 
assembly contigs. The main advantage of these graphs is the inclusion of 
positional information in the nodes of classic graphs.  
Joint calling is suggested to be always used for related samples (tumor-
normal matched samples). Indeed, GRIDSS performs joint assembly using 
all related samples as they are one for the calling of SVs, but then reports 
the extracted variants per-sample. 
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The output consists mainly in a VCF file with break-ends reported, 
accompanied by a quality score file. Each call is a breakpoint consisting of 
two break-ends, one from location A to location B, and a reciprocal record 
from location B back to A [24].  

HMF tools 
GRIDSS Post Somatic Software (GRIPSS) is a tool which applies a set of 
filtering and post processing steps on GRIDSS paired tumor-normal output 
to produce a high-confidence set of somatic SVs for a tumor sample. It 
processes GRIDSS output and produces a somatic VCF. 
The filters applied are hard filters (exclusion of no mates, set a tumor 
minimum quality, set a minimum support for a variant). GRIPSS realigns 
the variant to the earliest possible base in the uncertainty window which is 
the most likely base for the soft clipping. Soft filters are then applied [25].  
 
Amber is designed to generate a tumor BAF file for use in PURPLE from a 
provided VCF of likely heterozygous SNP sites (WGS heterozygous sites 
determined using GATK). When using paired reference/tumor BAMs, 
AMBER confirms these sites as heterozygous in the reference sample BAM, 
then calculates the allelic frequency of corresponding sites in the tumor 
BAM. To do that, it performs a segmentation step using the Piecewise 
Constant Fitting algorithm (PCF) [25].  
 
Cobalt (Count bam lines) tool determines the read depth ratios of the 
supplied tumor and reference genomes. It starts with the raw read counts 
per 1000 base window for both normal and tumor samples by counting the 
number of alignments starting in the respective BAM files with a mapping 
quality score of at least 10. It then applies a GC normalization to calculate 
the read ratios. 
The reference sample ratios have a further ‘diploid’ normalization applied 
to them to remove megabase scale GC biases. This normalization assumes 
that the median ratio of each 10Mb window (minimum 1Mb readable) 
should be diploid for autosomes and haploid for male sex chromosomes.  
It also performs a segmentation step using the PCF algorithm exactly like 
Amber [25].  
 
Purple (Purity and ploidy estimator) combines B allele frequency (BAF) 
from Amber, read depth ratios from Cobalt, somatic variants and structural 
variants to estimate the purity and CN profile of a tumor sample (final 
segmentation). To run, it also requires the same GC profile as used in Cobalt 
and a reference genome.  
Providing the GRIDSS SVs set as input allows the exact base resolution of 
copy number changes and a high set of somatic SNV and indel calls can also 
improve the accuracy.  
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It functions in 12 steps, among which the most important are:  
1. Segmentation: it combines segments of read ratios from Cobalt and 

BAF points from Amber with SV breakpoints using specific rules. 
Every SV starts a new segment and ratio or BAF breaks are included 
only if they are at least one mappable window away from an existing 
segment. Once segments have been identified, in each one median 
tumor BAF, median read ratio and number of BAF points are 
recorded. A reference CN status is also determined as diploid, 
heterozygous deletion, homozygous deletion, amplification or noise. 

2. Sample purity and ploidy: it considers a matrix of all possible 
combinations and scores each one on a segment-by-segment basis. 
The aim is finding the most parsimonious solution for the fit. The 
penalties used include sub-clonality, solutions which deviate from 
diploid heterozygous CN, solutions with implausible somatic SNV 
copy number, weight by count of BAF observations and giving more 
weight on segments with higher observed BAF. A fit score is 
calculated and the solutions within 10% or 0.0005 of the best are 
retained as candidates.  

3. Copy number smoothing: initial segmentation is very sensitive and 
the read depth from WGS is noisy. Therefore, many adjacent 
segments will have similar BAF and CN profiles but they unlikely 
represent a real change. For these reasons, a smoothing algorithm is 
applied to decide for segment merging or not.  

4. Allele specific copy number: it is possible that some regions lack BAF 
points and result in an unknown allele-specific CN (since BAF 
coverage is limited). BAF and allele CN are inferred from 
neighboring regions with known values and from observed copy 
number changes to the unknown regions.  

Other steps are also present such as structural variant recovery, 
identification of germline gene deletions, QC status for the tumor. 
  
The final output consists in a number of tab-separated files containing 
values for the summary purity, best fit purities sorted by score, copy 
number profile of all contiguous segments of the tumor sample, significant 
amplification and deletions that occur in the HMF gene panel…  
It also provides a list of VCF files if structural or somatic VCF files have 
been supplied to PURPLE. Corresponding VCF are written to the output 
directory enriched with purity information [25].  

Comparison: GenomeSpy visualization and ploidy differences  
The first comparison implied the estimation of the ploidies coming from the 
different tools. By a ggplot (R package) scatterplot it has been possible to 
visualize all data points with respect to the ploidies and see the ones which 
differ most.  
 
The second comparison involved the visualization of the segmentation by 
using GenomeSpy. GenomeSpy is a visualization toolkit for genomic and 
other data developed in the Systems Oncology group at the University of 
Helsinki. It has a Vega-lite inspired visualization grammar and high-
performance graphics rendering.  
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It is split into five packages but the most important are the core and the app. 
The core library provides the visualization grammar and the JavaScript 
programming interface. The app extends the visualization grammar with 
support for faceting many patient samples. It provides a user interface for 
interactive analysis of the samples, which can be filtered, sorted, and 
grouped. It supports data in CSV, TSV, JSON and FASTA format.  
For the purpose of the project, it has been used for visualizing and 
comparing the segmentation of all samples thus it is possible to catch the 
differences in the results of the two pipelines. Moreover, it has also been 
exploited to create a more detailed view of the segmentation of a single 
sample by showing all data points as a function of the LogR and the 
segments from both the pipelines.  

COPY NUMBER SIGNATURE ANALYSIS  
COSMIC copy number signatures have been extracted in three steps:  

• Copy number profile summarization 
• Copy number signature identification 
• Assignment of the signature to single samples 

Copy Number profiles summarization 
Segments are classified hierarchically according to three features:  

• Heterozygosity state: if the copy number of the alleles is A>0 (major 
allele) and B>0 (minor allele) the segments is heterozygous, if A>0 
and B=0 the segment has LOH, if A=B=0 the segment is 
characterized by homozygous deletion; 

• Sum of major and minor allele (TCN): TCN=0 homozygous deletion, 
TCN=1 deletion leading to LOH, TCN=2 wild type and copy neutral 
LOH, TCN=3/4 minor gain, TCN=5-8 moderate gain, TCN≥9 high-
level amplification; 

• Segment size: 0–100kb, 100kb–1Mb, 1Mb–10Mb, 10Mb–40Mb and 
>40Mb. 

Using this categorization, copy-number profiles are described as counts of 
48 combined copy number features defined by heterozygosity, copy 
number and size[19].  
The copy number profiles of the dataset are thus summarized as a non-
negative matrix with S x 48 dimensions (where S is the number of samples) 
using SigProfilerMatrixGenerator.  
SigProfileMatrixGenerator is a computational package written in Python 
with an R wrapper package that allows the efficient exploration and 
visualization of mutational patterns 
(https://github.com/AlexandrovLab/SigProfilerMatrixGenerator). It is 
able to read somatic mutational data in most commonly used data formats 
such as Variant Calling Format (VCF) and Comma-Separated Values (CSV). 
It was first created for the classification and analysis of SBS, DBS and ID, 
but then adapted to create a matrix also for CNs. Indeed, given as input the 
signatures table downloaded from COSMIC, the mutational profiles and 
the reference genome, it transforms the mutational catalogs of the samples 
into the mutational matrices called M, and outputs them as text files [26]. 
To avoid wrongly estimating the signatures, samples with a purity lower 
than 0.2 have been filtered out because the segmentation is not reliable.  
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Copy number signature identification 
Given the mutational matrix, the global reference set of copy number 
signatures was used to assign an activity for each signature to each sample 
of the dataset. For this purpose, three different methods have been used:  

• Decomposition module of SigProfilerExtractor; 
• Poisson model: selection of the signatures based on BIC (Bayesian 

Information Criterion) using Poisson likelihood; 
• Non-Poisson model: selection based on the cosine similarity. 

The assumption of all methods is that the mutational spectrum of a tumor 
can be represented as a linear combination of signatures. 
 
SigProfilerExtractor is a method based on nonnegative matrix factorization 
(NMF) (https://github.com/AlexandrovLab/SigProfilerExtractor). NMF 
is the approximate representation of a nonnegative matrix M, in this case 
the observed mutational profiles of a set of samples, as the product of two 
usually smaller nonnegative matrices, 𝑊 and 𝐻, which are the signatures 
and the attributions respectively. NMF is calculated from 256 to 1024 times 
with different random initial conditions because the profiles of the 
signatures can vary substantially depending on the input samples and 
because with multiple similar signatures operating, there are multiple 
possible reconstructions [14].  
SigProfilerExtractor implementation can be separated into seven modules 
packaged together into a single tool: 

• Module 1: input processing 
• Module 2: resampling and normalization of the mutational matrix 
• Module 3: multiple NMF replicates 
• Module 4: hierarchical clustering to perform model selection 
• Module 5: decomposition of de novo signatures into COSMIC 

signatures 
• Module 6: calculation of activities in individual samples 
• Module 7: outputting and plotting [27] 

For signatures attribution and quantification, only module 6 is used with 
COSMIC derived signatures. The combination of Module 5 and 6 has been 
recently detached, forming a separate tool called SigProfilerAssignment 
(https://github.com/AlexandrovLab/SigProfilerAssignment). It 
attributes a known set of mutational signatures to an individual sample or 
multiple samples, decomposes de novo signatures to COSMIC database 
and attributes COSMIC database or a custom signature database to given 
samples. It identifies the activity of each signature in the sample and assigns 
the probability for each signature to cause a specific mutation type in the 
sample [27].  

Dataset with short segments 
The COSMIC signatures are estimated from the classification of the 
segments as previously described. As far as segment length concerns, the 
category with the shortest segments range collects segments from 0 to 100kb 
because the categories have been created as respect to ASCAT results [19]. 
As explained, the new implemented pipeline allows to increase the power 
of detection and the sensibility of the variant calling, meaning that also very 
short segments are identified [24]. Given this, it is possible that the 
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categories established for the copy number signatures do not correctly 
represent these segmentation data. To verify it, a new segmentation dataset 
has been created in which segments shorter than 10kb are removed and the 
neighboring segments are merged. The new logR and BAF are calculated 
by weighted average of the merged segments. 
The signature analysis is repeated also in this dataset.  

Comparison and visualization 
The exposures calculated from the different methods are then compared 
and quantified for how much they explain the provided data. To 
accomplish this task, the cosine similarity is calculated for each sample 
comparing the vector of the exposures and the vector derived from the 
multiplication of the signature matrix and the feature matrix (M). The 
average of the cosine similarity of all samples is then calculated. The result 
is a number between 0 and 1 that represents how much the exposures 
represent initial data.  
This metrics is calculated for all the three methods used and also for the 
dataset with the short segments.  
 
Visualization of the signatures attributions is then provided with bar plots 
(ggplot R package) that for each sample show the present signatures and its 
amount and with a GenomeSpy visualization.  

De novo extraction 
To properly fit data coming from the used cohort, extraction of new 
signatures has been performed. For signatures building, the initial dataset 
of samples has been filtered, selecting for each patient one sample per 
phase; if more samples are present within the same phase, the one with the 
highest purity is chosen. This selection is necessary to eliminate the bias 
caused by the different number of samples per patient, but maintaining the 
biological variation introduced by the treatment phases. 
Before proceeding with the extraction, a new category has been added to 
the previously described used to extract COSMIC signatures. The first class 
of segment size has been split in two distinct classes: 0-10kb and 10kb-
100kb. The final number of categories at this point is 58. The purpose of this 
operation is to better fit Purple segmentation.  
Copy number profiles are summarized in a matrix with the same technique 
described but using the modified version of SigProfilerMatrixGenerator.  
Signatures are extracted using all seven modules of SigProfilerExtractor 
(v.1.0.17). It first performs independent Poisson resampling of the input 
matrix for each replicate to ensure that fluctuations of the matrix do not 
impact the stability of the factorization results. A step of normalization is 
also applied to overcome potential skewing of the factorization from any 
hypermutator. The second phase involves the matrix factorization which 
factorizes the matrix given as input with different ranks, searching for an 
optimal solution between k=1 and k=40 signatures. For each value of k it 
runs 500 independent NMFs of the normalized Poisson resampled input 
matrix by minimizing an objective function based on the Kullback-Leibler 
divergence measure. The result consists in k sets of matrices, each one 
containing 500 different matrices H, each reflecting the patterns of de novo 
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mutational signatures and 500 matrices W, each reflecting the activities of 
the de novo signatures.  
At this point, hierarchical clustering is applied to the 500 factorizations to 
identify the stability of decomposition (whether solutions from different 
initial conditions converge to similar signatures). It selects the centroids of 
stable clusters as optimal solutions, making these solutions resistant to 
fluctuations in the input data [27].  
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CHAPTER 3 RESULTS 
SEGMENTATION 

Pipeline output 
Purple, from the implemented pipeline, produces for each sample eight 
files. The purity file, called TUMOR.purple.purity.tsv, contains a single row 
with a summary of the purity fit: purity, score of fit, the average ploidy of 
the tumor sample after correction for purity and other features. The purity 
range file (TUMOR.purple.purity.range.tsv) instead summarizes the best fit 
per purity sorted by score, meaning that it reports all grid possibilities 
analyzed by the algorithm.  
From these files the pipeline builds a sunrise plot for each patient, which 
shows the range of scores of all examined solutions for purity and ploidy. 
Ploidy is represented as a function of the purity and for each combination, 
the score is represented in a color scale. The best solution corresponds to the 
point with the lowest score and is indicated by the cross of the dashed lines 
(Fig2). 
The possible patterns that can be present are typically three:  

• The purity is very low, meaning that the sample is composed almost 
totally of normal tissue. As a consequence, the sunrise plot is 
characterized by many stripes with low score values in 
correspondence of 2, 4, 6 values of ploidy (Fig2a). Normal samples 
and samples with a whole genome duplication (WGD) have a ploidy 
corresponding to one of these values and it is not possible to identify 
which is the correct one because they all fit equally. This is the case 
also of cancer cells that have not copy number aberrations but 
present only SNVs. 

• The sample presents multiple solutions for the ploidies and thus 
there are many blue spots in the plot (Fig2b). The solution with the 
lowest score is chosen by the algorithm but the other options are still 
probable. 

• The plot shows only one minimum, corresponding to the optimal 
solution and the best score (Fig2c). In this case, the estimation of the 
solution is easier.   

 
Together with these files, Purple also produces a copy number file for each 
sample named TUMOR.purple.cnv.somatic.tsv. It contains the copy 
number profile of all contiguous segments of the tumor sample, thus the 
chromosome, start and end of the segment, BAF, GC content, copy number 
of major and minor alleles adjusted for purity and the type of structural 
variant support for the copy number breakpoint at start and end region.  
Other important output files consist in the structural variant VCF and 
somatic variant VCF which contain all entries from the input structural 
variant VCF (GRIPSS output) and somatic VCF (somatic SNV data) 
enriched with some fields for the purity adjusted allele frequency, copy 
number and change in copy number and others.  
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Fig 2: Purple sunrise plots. Sunrise plots represent the scores for each ploidy-purity combination of the grid 
used by the algorithm. Axes represent the ploidy, expressed as integer numbers, and purity, expressed as 
percentage. The color scale indicates the value of the score transformed as a percentage. The lower the score, the 
better the estimation. Values under 10% are all represented with the same color. The vertical and horizontal 
dotted lines indicate the position and the valued for the best estimate. A) Low purity samples display this 
pattern, which mimics the situation of a normal sample with vertical stripes in correspondence of ploidies equal 
to 2 or multiples. B) Multiple-ploidy sample. More than one solution result to be an optimal estimate, thus 
there are more blue areas. C) One-ploidy sample. There is only one plausible solution indicated by the blue area.  

Fig 3: Multiploidy plots. Patients for which samples present a different estimation of the ploidy are extracted 
and the best solutions for the ploidy are reported. In the main plot all samples are represented, and each dot 
represents a solution, the color scale indicates the score (the lighter, the better). In the zoom the plot for the 
single patient is shown. For each sample (y axis) the best ploidies are shown (x axis), the color represents the 
score, and the larger dot is the best solution chosen by the algorithm.   
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An important analysis of the patients with multiple possible ploidies has 
also been conducted. Patients which have samples presenting different 
estimated ploidies are extracted and the most plausible ploidy solutions for 
each sample have been represented. Functions to build the plots and find 
the minimas of the scores have been taken from the ASCAT algorithm. One 
plot for each multiploidy patient is provided (Fig3 zoom) together with a 
general one (Fig3).  
 
The plot for the single patient shows all its samples (y axes) and the minima 
of the ploidy found by Purple algorithm (x axes, psi). The chosen solutions 
are highlighted by a bigger dot, while the color represents the range of the 
score (the lower the better, meaning the lighter the better).  
The plot with all patients represents a summary of all chosen ploidies. The 
color scale for the score is maintained and the dots represent the first 
solution of all samples in each patient.  
These graphical representations consent to determine if the estimation of 
the ploidy is plausible or not according to the values of all samples in the 
same patients, the tissue site of the sample and its phase. For example, in 
Fig4a the sample in the first row has an estimated ploidy of about 2 but the 
score is not very reliable. The samples coming from omentum and ovary 
(pOme1 and pOvaL1) show a ploidy closer to 3 and, considering that these 
are the most likely sites where the tumor originated, it is more probable that 
the ploidy of the peritoneum (preferred site of metastasis) is the same. This 
is also supported by the fact that the range of the score is similar between 
the two points. It is also possible to check it from the related sunrise (Fig4b) 
which shows in the two red circles that both the points are quite reliable (it 
isn’t possible to clearly see it because with a score lower than 10% the color 
is blue with no gradient). The manually curated ploidy is shown in green in 
Fig4a. 
Overall, analyzing all created multiploidy and sunrise plots, there are just 
few samples that necessitated a manual curation and estimates seem 
plausible. 

 
Fig 4: Ploidy correction. A) Multiploidy plot for patient H091: peritoneum and mesothelium samples result in 
a ploidy of 2 while ovary and omentum of about 4. The peritoneum sample has a high score and has been chosen 
to be corrected to a ploidy of about 4 and it is indicated by the green square. B) Sunrise plot for sample pPer1 
of H091 patient: red circles highlight the chosen ploidy (blue dot) and the corrected ploidy (green minimum).  
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Fig 5: ASCAT sunrise plot and multiploidy. A) Sunrise plot for pPer1 sample of D333 patient: all grid 
combinations of ploidy/purity are plotted as function of ploidy and purity. The color scale represents the 
goodness of fit transformed as percentage (the higher the better). Red values represent low scores while dark 
blue values represent high scores. The best solutions are indicated with a cross together with the ranking, the 
goodness of fit and the penalized goodness of fit. Error bars are also reported for these three solutions. B) 
Multiploidy plot: Each patient for which samples have different ploidy estimates are extracted and plotted. Each 
section represents a patient and inside it all best solutions for the samples belonging to that patient are shown 
as circles. The color represents the goodness of fit while the outline of the dots indicates in black if the solution 
is the default one (calculated by ASCAT), in green if adjusted (manually curated) and in red if discarded. 

 
Fig 6: D333 pPer1 CN and BAF plots. A) Distribution of the denoised value of copy number for each segment 
along the genome. The colored shadows represent the single values and the color change represent the shift from 
a segment to its adjacent. The mean copy ratio for each segment is shown as a black line. B) BAF (alternate-
allele fraction) values for each segment along the genome. The shadows and color shift have the same meaning 
as the LogR.  

GATK-ASCAT results, not produced by this project, are produced in a 
similar way as Purple but organized in different files. The segmentation of 
all samples is supplied in a unique file called combinedAscatSegments.csv 
while all the possible candidates for the estimation of purity and ploidy are 
stored in combinedAscatEstimates.  
As far as plots concern, ASCAT returns in a similar way to Purple, sunrise 
plots for each sample that allow checking the purity ploidy values (Fig5a). 
The plots work in a similar way, the only difference in the color scale and 
the score used for the estimation: in Purple the best score is the lowest, in 
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ASCAT the best goodness of fit is the highest. The top three estimates are 
reported together with the error bars and the value of the goodness of fit.  
The multiploidy patients analysis have also been performed and the plots 
produced are built exactly in the same way (Fig5b). The only difference is 
that manual curated ploidies have been highlighted in green while the 
discarded ones in red. The color scale used for the ploidy points is the same 
but since the score goes in opposite directions, in the ASCAT case the darker 
means the best. The number of patients for which the sample presents 
multiple values of ploidy is different with respect to Purple but this is 
related to the differences in the overall pipelines and in the estimation of 
purity and ploidy.  
In addition to these images, GATK also provides the representation of the 
distribution of copy ratio and BAF along the genome for each sample (Fig6). 
These plots permit the analysis and description of the segmentation.   
The copy ratio plot (Fig6a) represents the number of copies for each 
segment with respect to the matched-normal sample. A value of 1 
represents the normal situations, meaning a ploidy of 2, while a higher 
value represents an increase in the number of copies (amplification) and a 
lower value a decrease (deletion). The blue and orange shadows are 
composed by the single points (one of each read), for which the copy 
number has been calculated.  
BAF is the frequency of the alternate allele, the allele with the minor 
frequency, with respect to the normal allele. The plot representing it (Fig6b) 
allows to evaluate the presence of a copy number variation in the presence 
of an heterogeneous sample. Since it is a fraction, BAF values can range 
from 0 to 1. Areas of homozygosity have BAF of 0 or 1; normal diploid 
regions have BAF of 0, 0.5, or 1. Homozygous deletions have no detectable 
signal so the calculated BAF appears as noise, but it is not present in the plot 
since it has been denoised. Copy number gains or losses cause the fraction 
to vary from these values, thus these areas of allelic imbalance show 
intermediate values.  

The comparison of GATK-ASCAT and HMF Pipelines for the 
estimation of the purity and the ploidy  
Given the difference of the algorithms used for the estimation of the purity 
and the ploidy (ASCAT and Purple), the first check is the comparison of the 
ploidies.  
Samples are represented as points in a scatter plot (Fig7) where the axes 
stand for Purple and ASCAT ploidies (x and y axis respectively). The blue 
line shows the region where both ploidies are equal, and it is clear from the 
plot that most of the points lie in it. This means that the two algorithms are 
in agreement and consistent as far as ploidies concern. 
Nevertheless, samples with a difference in ploidies is higher than 1.5 are 
highlighted in red and looking to the sunrise plots from both the pipelines 
they fall in three categories: 

• Tools estimate differently the ploidies (ex. H201, H194 and D237) 
• Purple estimate seems to be unreliable (H119)  
• Low purity (ex. H089, OC040, OC038) 
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Fig 7: ploidy comparison between pipelines: best estimates of ploidy for each sample from GATK-ASCAT and 
HMF pipeline are represented in a scatter plot (x axis Purple ploidy, y axis ASCAT ploidy). Samples differing 
in the ploidy estimation for a value higher that 1.5 are highlighted in red with their ID. The blue line represents 
the bisector, thus the region where points have the same value for x and y axes.  

 
Fig 8: GenomeSpy depiction of the segmentation of all samples from HMF and GATK-ASCAT pipelines. In 
the main picture starting from the top the chromosomal cytobands are represented, both ENCODE and 
HERCULES blacklists and the segmentation. In the left part for each sample, patient, purity, ploidy and used 
tool metadata are displayed. The different colors for metadata bars indicate different values. In the segmentation 
part, the different color of the segments specifies the value of the logR (red means amplification, blue means 
deletion). Zoom A) Going with the pointer over a sample, all values for metadata are shown in a window. IDs 
are different for the pipelines: HMF pipeline samples have a “_p” at the end of the ID. Zoom B) Going with the 
pointer over a segment, different values from the segmentation are exhibited: sample name, chromosome, start 
and end position, logR value, start and end support of the segment, detection method of the segment and 
segment length.  
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The next analysis is done on the segmentation provided by the two 
pipelines. The best method for its visualization is a plot built in GenomeSpy 
in json format (Fig8). Starting from the top of the top of the plot there is a 
bar representing the chromosome ideogram with the cytobands given by 
the Giemsa staining. Below it, there are the two blacklists, which are 
comprehensive sets of regions that have anomalous, unstructured or high 
signal in high throughput sequencing experiments independent of cell line 
or experiment. Removal of blacklists is an essential quality measure for 
genomic analysis. ENCODE blacklist is the most used and built by the 
ENCODE project consortium (used by Purple), while the DECIDER 
blacklist has been built by GATK from the samples used. The main plot 
shows the copy number profile for each sample from both GATK-ASCAT 
pipeline (normal sample name) and HMF pipeline (sample name added 
with “_p”). The color of the segments represents the value of the logR and 
positioning the mouse on one segment it is also possible to have more 
information as shown in the Fig6B zoom, like the position of the segment, 
the precise value of the logR, support of star and end point (centromere, 
telomere, inversion, deletion…) and the method used for establishing the 
segment (BAF-weighted, SV…). In the left part different metadata are 
reported for each sample: patient, ploidy estimation, purity estimation and 
the pipeline used.   
 
 

 
Fig 9: Segmentation details. A) Difference in the number of segments in the same samples between GATK-
ASCAT pipeline and HMF pipeline. HMF samples (“_p” IDs) show a clear increase in the number of segments. 
B) Low purity samples segment recovery: in samples with a low value of purity (such as H033_pLN1) HMF 
pipeline is able to recover some segments (light blue and light red) that are missed by GATK-ASCAT pipeline 
(grey bar). C) Short segments detection: HMF pipeline recovers short segments (highlighted red small bar) 
supported by structural variants (SGL start and end support). 
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Looking in detail at the single samples it is possible to see that copy number 
profiles obtained with Purple are much more segmented, especially in very 
small segments as it is shown in Fig9a. These short segments mostly 
recovered thanks to the use of SVs breakpoints and are missed by GATK 
because the window size for detecting changes in the copy ratio is higher 
than the total length of the segments. Fig9c shows one of these cases: the red 
segment is only 20bp long and it is reported to be an inversion (method) 
with both ends supported by a single-breakend SV (SGL). Exploring in 
detail the plot, it is evident that it is not an isolated case, but a lot of 
segments are recovered from Purple and this fact is also confirmed by the 
histogram in Fig10. The distribution of the number of segments shorter than 
100kb is shown both for Purple (bottom plot) and ASCAT (top plot). The 
total number of segments from 0 to 5kb reaches almost 80 thousand in 
Purple while in ASCAT is very low (less than 2500).  
 
GenomeSpy plot also depicts the recovery of some segments in samples 
with a purity close to 0 in Purple data, which ASCAT is not able to do 
(Fig9b). In sample H033_pNL1, whose purity is estimated to be 0.08, the 
ASCAT bar has only very long segments with a logR very close to 0, while 
Purple bar shows some segments that are also present in H033_pOvaR1 
sample which has an higher purity. It means that Purple is more sensible in 
detecting segments also in low purity data, even if some segments are not 
reliable. 
 
A further confirmation of the correctness of segmentation can be obtained 
with another visualization in GenomeSpy in which for a single sample the 
segments from both the pipelines are reported together with the logR of the 
single points (Fig11). The total amount of points has been reduced by 50% 
to not create too much crowding. Orange segments and points represent 
HMF pipeline output while green points and segments represent GATK-
ASCAT pipeline output. In the zoom B it is shown that for each point it is 

Fig 10: Histogram showing segment 
length distribution for GATK-
ASCAT and HMF pipelines. 
Segments shorted than 100kb have 
been extracted for both pipelines and 
plotted in a histogram. In the upper 
plot GATK-ASCAT distribution is 
shown, while in the lower plot HMF 
distribution. Bin width for both 
histograms is 5kb and for each bin the 
height represents the count of the 
segment with a length in the range of 
the bin.    
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possible to  retrieve the purified logR, the position in the genome and the 
pipeline type. The vertical lines represent the structural variants, or the 
breakpoints used by Purple to establish the segments. Gray bars symbolize 
breakpoints inferred from BAF differences while pink lines from structural 
variants. Each line gives the position in the genome of the breakpoint, the 
reference in the GRIDSS output file, the type of breakpoint and the allele 
frequency.  

Looking in detail at sample H110_pOvaR1 segmentation (Fig12), in a zoom 
of the overall plot, it is clear how GATK-ASCAT misses some segments 
which are instead identified by HMF pipeline.   

Fig 11: GenomeSpy representation of the segmentations of a sample from GATK-ASCAT and HMF pipelines. 
Green points and segments denote GATK-ASCAT pipeline while orange points and segments HMF pipeline. 
y axes indicate the logR while x axes the position in the genome. For each position in the genome the logR has 
been calculated and points symbolize it. Zoom B shows that pointing one of them, position, logR, purified logR 
and pipeline type are shown. Segments correspond to the result of the segmentation process. Vertical lines 
stand for the structural variants recognized by GRIDSS. Zoom A shows the details retrieved by pointing to 
one structural variant: SV ID, position, filter (INFERRED from BAF and read depth or PASS from a SV) 
and allele frequency (AF). 



 
35 

 

RESULTS FROM SIGNATURE ANALYSIS 

Quantification of COSMIC signatures 
Cohort sample copy number profiles have been processed using 
SigProfilerMatrixGenerator, which provides their summarization in a S x 48 
matrix, where S is the number of samples and 48 are the classes derived 
from the combination of the heterozygosity state, TCN and segment size 
features. The final matrix is called M.  
COSMIC signatures have been downloaded and quantified in HGSC 
samples using the three mentioned methods: SigProfiler, non-Poisson 
model and Poisson model. The results consist of matrices (H) in which the 
activity related to each signature is calculated for each sample. 
 
SigProfiler decomposition module has been used with its cosmic_fit 
function which fits the provided signatures by using the NNLS (Non-
Negative Least Squares) algorithm, whose generalization is NMF. The goal 
of the algorithm is solving a linear least squares problem with the constraint 
of non-negativity on the solution. It means that the equation Xb = y must be 
fit ensuring that 0. Given the model function 𝑦 = 𝑓(𝑥, 𝛽), where x are 
independent data points and β the parameters, β values are found so that 
they are ≥0 and the equation 

𝑓(𝑥, 𝛽) =- 𝛽!𝜑!(𝑥)
"

!#$
 

is respected. To do this, it is necessary to find the minimal possible value of 
the sum of squares of the residuals:  

𝑟%(𝛽) = 𝑦% − 𝑓(𝑥% , 𝛽) 
𝑆(𝛽) =-𝑟%&(𝛽) 

To select for each sample how many signatures to attribute, a forward-
backward process is performed. For each sample, the maximal signature 
exposure is taken as a starting point and then a second signature exposure 
is added.  
 
 

Fig 12: Detail showing 
discordance between GATK-
ASCAT and HMF pipeline in 
H110 pOvaR1 sample. GATK-
SCAT pipeline (green) misses 
some segments detected by HMF 
pipeline (orange). The evidence 
for the presence of the segments is 
provided by structural variants 
(vertical lines). 
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To decide whether to keep it or not, the cosine similarity is calculated 
between the two vectors:  

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = cos(𝜃) =
𝐴 ∙ 𝐵

‖𝐴‖‖𝐵‖ 
Where A is the vector with only one signature and B the vector with two 
signatures. Cosine similarity is a metric used to measure the similarity 
between two or more vectors and consists in the cosine of the angle between 
two or more vectors (typically non-zero and within an inner product space). 
It is described as the division between the dot product of vectors and the 
product of the euclidean norms (magnitude) of each vector. It is bound by 
a constrained range of 0 and 1. 
The second signature is added if the cosine similarity is higher than an 
arbitrary threshold (in this case 0.1).  
The backward part instead does the opposite process, subtracting one 
signature exposure per time and checking if the cosine similarity decreases. 
If it decreases over a certain threshold (in this case 0.01), the signature is 
removed.  
In the end what is done is assigning the attribution that gives the best cosine 
similarity between the input sample vector and the reconstructed sample 
vector [26]. 
 
The other two methods use the same strategy but apply different functions 
for the calculation of the exposures and the selection of the number of 
signatures. Both have a forward-backward approach like SigProfiler.  
The Poisson model uses the Kulleback-Leibler divergence for the estimation 
of the activities of the signatures in the samples. It measures the information 
lost considering the probability distribution p and the approximating 
distribution q. The sum of the difference of their log values represents the 
divergence:  

𝐷'((𝑝||𝑞) =- 𝑝(𝑥%) ∙ (logp((𝑥%) − 𝑙𝑜𝑔𝑞(𝑥%))	
)

%#$
 

This measure of difference between two distributions can be used, as in this 
case, for an optimization problem. It is possible to choose the values of p(xi) 
so that the KL divergence is minimized to have as little information loss as 
possible. 
This measure is used in the context of NMF for calculating the distance 
between the target matrix and its NMF estimates and minimizing it.  
The number of signatures for each sample in the Poisson model is chosen 
using BIC as the selection function. It is an index used to choose between 
two or more alternative models. It is defined as:  

𝐵𝐼𝐶 = 𝑘𝑙𝑜𝑔(𝑛) − 2log	(𝐿(𝜃)) 
where n is the number of data points, k the number of parameters and L(𝜃) 
the likelihood. The model with the lowest BIC is considered the best. The 
likelihood is calculated as the density of the Poisson distribution.  
 
In the Non-Poisson model, the method for calculating the exposures of the 
activities is the same used by SigProfiler, NNLS, while the function to 
choose the number of signatures is the cosine similarity. 
 
The best method has been evaluated by calculating the cosine similarity 
between the activities of the signatures H and the product of the reference 
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signature matrix W and M. This metrics allows to inspect how much the 
calculated activities explain the data because its multiplication with the 
reference signatures produces a matrix similar to M. This matrix is 
compared to M and if the cosine similarity between each corresponding 
column is similar, it means that the signatures 
are able to properly and fully explain the used 
segmentations.  
The average cosine similarity for the three 
methods is reported in Table2. There is not a 
huge difference between the three methods, 
but it is still possible to notice that the non-
Poisson model offers the best result.  
 
A better inspection of the data is provided by a GenomeSpy visualization 
(Fig13) which reports as metadata all the mutational signatures (SBS, DBS, 
ID) and the copy number signatures. Some signatures are represented as a 
yellow bar because their quantification is 0 in all samples.  
By ordering the samples by SBS3 signature, which is associated with HRD 
[14], and inspecting the distribution of the values of the other signatures, it 
is clearly visible that the highly segmented copy number profiles are 
associated with high levels of SBS3, while there seems not to be a correlation 
with the copy number signatures. In particular, CN17 signature, which has 
been associated with HRD [19], seems to show an opposite trend with 
respect to SBS3.  
The confirmation of these observations comes from the cosine similarity 
calculated between the vector of SBS3 activities and the vector of the 
others copy number signatures.  
 
 

  
Fig 13: COSMIC CN signature quantification and HMF pipeline segmentation. For each sample the 
segmentation is reported in the left part and in the right part the activities of the mutational signatures, copy 
number signatures, ploidy, purity, tissue site and treatment phase. Yellow bars indicate a value of zero for all 
samples while in the other bars the color scale goes from 0 (purple) to 1 (light green). 

 

Table 2: cosine similarity for COSIM CN 
signatures fitting (sig = SigProfiler, 
p=Poisson, no=non-Poisson) 
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Cosine similarity is used as a measure of association between the signatures 
instead of other correlation metrics (Pearson, Spearman or Kendall 
correlation). Correlation metrics are not used because of two main reasons:  

1. Reciprocal dependence: each patient has more samples; thus these 
samples will be correlated because they share the genome. It can be 
demonstrated by calculating the correlation between each couple of 
samples in the H matrix and the p-value of each correlation. The 
result is that each couple shows a positive correlation with a 
significant p-value and as a consequence, each measure of 
correlation between two signature vectors will not work. 

2. Skewness of marginals: activity values range from 0 to 1 but their 
distribution is not normal and there is a high number of samples with 
the activity equal to 0, as seen in the histogram of the signature SBS3 
(Fig14a). For this reason, it is not possible to find any kind of 
correlation between two signatures, even if there is clearly a 
relationship. One example is provided by the scatter plot in Fig14b 
for the signatures SBS3 and ID1 which are negatively correlated [14]. 

Cosine similarity calculated between SBS3 and each copy number 
signatures clearly shows no association with any signature (Table3). NA 
values are generated because all samples have 0 activity for that signature, 
thus the operation cannot be completed. 
 

 

 

 
Fig 14: Analysis of signatures activities. A) SBS3 histogram displaying the number of samples for each range 
of activity estimation (bin width 0.02). B) Scatter plot of all samples for signatures ID1 and SBS3. Black dots 
represent samples as a function of the activity of the two signatures (SBS3 x axis, ID1 y axis).  

 

Table 3: cosine similarity between COSMIC CN signatures and SBS3 mutational signature. 
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Exposure calculation in long-segments dataset 
COSMIC signatures have been extracted from data processed with ASCAT, 
which produces copy number profiles very different from the profiles 
generated with Purple as already seen. Purple profiles have been seen to be 
more sensitive to very short segments (Fig8), thus it is possible that 
COSMIC signatures do not fully explain copy number profiles because of 
the abundance of these small segments. 
To prove this point, Purple copy number 
profiles have been modified by removing all 
small segments (smaller than 10kb) and 
merging the remaining ones. The profiles so 
obtained underwent the same procedure for 
summarization and quantification of 
COSMIC signatures. The amount of 
information explained by these new 
exposures has been evaluated in the same 
manner through cosine similarity.  
As reported in Table4, there are two points of 
difference between each method applied to the original dataset and the 
dataset with long segments., meaning that the situation improved but not 
significantly. Moreover, the problems in the association of copy number 
with mutational signatures still remain.  

De novo extraction of copy number signatures 
COSMIC copy number signatures did not give promising outcomes, as a 
consequence, de novo extraction has been performed directly on Purple 
copy number profiles to obtain signatures that explain as much as possible 
those profiles.  
The method used follows exactly the state-of-the-art procedure as in [19], 
except for the first part, where the code of SigProfilerMatrixGenerator has 
been modified. The feature concerning the segment length has been added 
with one class: the previous first class 0-100kb has been split in 0-25kb and 
25kb-100kb classes. The threshold of 25kb has been arbitrarily chosen 
looking at the histogram in Fig10 so that there is one new class catching all 
small segments missed by ASCAT.  
Not all samples have been used for the de novo extraction because, since 
there are different numbers of samples per patient, patients with a higher 
number of them would have a stronger impact on the extraction to the 
detriment of the others. Nevertheless, the biological variation given by the 
treatment phase must be kept, thus the selection performed included the 
highest purity sample of each treatment phase in each patient.  
Copy number profiles of the selected samples have been summarized using 
the new 58 features and then used for the de novo extraction performed by 
SigProfilerExtractor. All parameters used for COSMIC signatures extraction 
have been maintained.  

Table 4: cosine similarity for COSMIC 
CN signatures in the original dataset 
and dataset with long segments. 
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The resulting 15 signatures have been first decomposed by 
SigProfilerAssignment and then used for the quantification of the exposures 
in the complete dataset of samples. The three methods previously used have 
been repeated also in this case and the amount 
of information explained by each method is 
calculated again with cosine similarity. Table 5 
shows that there is an improvement of four 
points using SigProfiler, three with Poisson 
model and one using non-Poisson model. Even 
if the increase is not so stunning, a more in-
depth analysis has been conducted. 
 
Genome Spy visualization includes all the new signatures (SBS58A-
SBA58O) and some clinical and mutational data like the presence or absence 
of CDK12, MYC family or CCNL mutations, SBS3 signature, PFI, and others 
(Fig13a).  
Ordering the samples according to SBS3 allows to see a similar variation 
also in SBS58B and SBS58D, giving the hint they could be associated with 
HRD (Fig13b).  
The confirmation of this association comes from cosine similarity, which 
has been calculated with all signatures and reported in Table 6. 

In particular, the association with signature SBS58B and SBS58G is quite 
important and could explain HRD phenotype exactly like SBS3.  
 
De novo signatures have been visualized through activity plots (Fig16) in 
which it is possible to see which features each one mainly explains. In 
particular, taking the highest peaks of each one and comparing them with 
the activities of COSMIC signature it is evident that some of them can be 
associated with them and in particular can be explained by the same process 
(Table7). Nevertheless, these associations must be proved with other 
methods.  

 
 
 
 
 
 
 
 

Table 5: cosine similarity for de novo 
extracted copy number signatures. 

Table 6: Cosine similarity between de novo extracted copy number signatures and SBS3. 

Table 7: Description of de 
novo extracted copy 
number signatures with 
main features represented 
and possible explanation of 
the cause.  
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Fig 15: A) de novo extracted signatures values compared to the segmentation. In the left part metadata are 
described: patient, purity, ploidy, tissue, patient, HR status (HRD/HRP), CDK12 mutation, Myc mutation, 
SBS3 signature, SBS58 signatures. In the right part the segmentation for each sample is shown. Samples have 
been ordered according to the value of SBS3 activity. B) Zoom of the metadata bar highlighting the similar 
behavior of SBS3 and SBS58A and SBS58B. 

 
Fig 16: activity plots of each de novo extracted signature. Each bar plot indicates the percentage of contribution 
of each feature to the signature. In the x axis all the CN features are reported (shown in the colored boxes over 
each column of bar plots) including copy number status (LOH, Heterozigous or Homozygous deletion), total 
copy number value and segment length. The color of the bars reflects the belonging category of total copy 
number value (0, 1, 2, 3-4, 5-8, 9+).  
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CHAPTER 4: DISCUSSION 
The presented work shows the implementation of a new pipeline for the 
detection of somatic copy number variations in a cohort of patients 
diagnosed with high-grade serous ovarian cancer. Data extracted from the 
samples and analyzed with it have been then used for the research of 
recurrent patterns of copy number variations by quantifying COSMIC 
signatures first and then extracting a set of 15 de novo signatures which 
better explain used data.  
 
The pipeline produces results that show an improvement in the 
segmentation profiles with respect to GATK-ASCAT as it is demonstrated 
by GenomeSpy representations. GATK fails to catch segments shorter than 
1kb because for detecting variations in read depth, it uses a window size of 
exactly 1kb. Purple instead, exploits GRIDSS detection of the structural 
variants, which are prioritized in the establishment of segments edges. 
Since GRIDSS considers all samples coming from the same patient as a 
unique sample, the power of detection is increased and also variants which 
are present in small amounts are detected. This improvement can be 
observed especially in the low purity samples, where some segments can be 
detected despite the low amount of cancer cells (Fig9b).  
Moreover, it makes use of different read features and local assembly for 
variant detection, which permit the algorithm to identify variants that are 
few bases far away.  
Besides these advantages, one point to be verified remains the ploidy 
estimation, for which the two pipelines differ by more than 1.5 for the 
ploidy value in some samples. The validation of the ploidy of these samples 
should be performed in vitro by a Fluorescent In Situ Hybridization (FISH) 
in specific portions of the genome where there is a detected concordance in 
the segmentation. The technique is a laboratory technique used to detect 
and locate a specific DNA sequence on a chromosome. In this technique, the 
full set of chromosomes from an individual is affixed to a glass slide and 
then exposed to a probe, which is a small piece of purified DNA tagged 
with a fluorescent dye. The fluorescently labeled probe finds and then binds 
to its matching sequence within the set of chromosomes. With the use of a 
special microscope, the chromosome and sub-chromosomal location where 
the fluorescent probe is bound can be seen and quantified in its number of 
copies [28]. 
 
The visualization in Fig15a, in which samples have been ordered second to 
the HRD signature SBS3, displays a clear difference in the segmentation 
profiles of HRD samples (in the top part) which are visibly characterized by 
an highly fragmented genome, and HRP samples (in the bottom part) 
whose genomes are more uniform. This feature was not possible to be 
identified from GATK-ASCAT segmentation, representing a clear 
improvement.  
Other refinements could be obtained by building up a panel of normals 
from samples of the used dataset and not a general panel, improving the 
estimation of the purity using TP53 mutation and adding the position of 
oncogenes, tumor suppressors and point mutations to the GenomeSpy 
visualization.  
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As previously explained, the PoN has the function to normalize all the 
artifacts derived from the sequencing technique or other manipulations to 
improve the variant calling. It must be made of normal tissue to avoid 
normalizing the real variants. As a result, the most important selection 
criteria for choosing normals to include in any PON are the technical 
properties of how the data was generated. It's very important to use 
normals that are as technically similar as possible to the tumor (same exome 
or genome preparation methods, sequencing technology and so on). The 
PoN used comes from a Dutch population and has been created by Hartwig 
Medical Foundation but providing a tailored PoN could ameliorate the 
analysis.  
The BAF of the truncal TP53 mutation can be used for adjusting the purity 
calculated by tools like ASCAT and GRIDSS transforming it into a TP53-
based purity, thus as additional evidence for the optimal ploidy/purity 
selection. By using the total copy number and TP53 BAF, purity can be 
approximated as:  

𝑝𝑢𝑟𝑖𝑡𝑦 =
2

(𝐶𝑁 𝑉𝐴𝐹) − (𝐶𝑁 − 2)⁄  
The gene TP53 encodes the tumor suppressor protein p53 which regulates 
cell division by keeping cells from proliferating too fast or uncontrollably 
through senescence induction, cell cycle arrest, DNA repair or changes in 
metabolism. This mutation is used because HGSC has the highest frequency 
of p53 mutation of any solid cancer, approximately 97% and it has been 
recognized as a truncal mutation, which is a mutation that is present at the 
trunk of the cancer evolutionary tree [29].  The frequency of TP53 mutation, 
together with the inferred copy number of the tumor, can be associated 
directly to the number of cancer cells present in the sample and hence to the 
purity.  
The TP53-based purity can be compared to the calculated purity and if it is 
too different the model for estimation of the purity and ploidy is rejected 
and a better model needs to be selected.  
The last improvement can be done in the visualization by adding the 
position of relevant genes in order to see segmentation differences directly 
in those genes, and by adding the SNVs extracted with additional analysis 
and used also in the HMF pipeline so that it is possible to notice if there are 
recurrences in certain patterns of segmentation and point mutations.  
 
Limitations for this pipeline include the poor use of HMF tools and the 
reliability of low purity samples. Since Purple is still not widely used in the 
state-of-the-art pipelines by the scientific community, a lot of tools do not 
consider it. This implies that the output must be modified to a format 
compatible with these tools like ASCAT, SEQUENZA or ABSOLUTE. 
Something missing for example is the estimation of the LogR and LOH, 
which must be calculated posteriorly. 
As far as low purity samples are concerned, the HMF pipeline is able to 
extract some segments, which is something that the GATK-ASCAT pipeline 
is not able to do. Despite this, it is clear that some segments are totally 
improbable because not matching with samples from the same patient 
(copy number value completely different) or because present in regions 
excluded by DECIDER blacklist (Fig9b). This observation raises the 
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question of how much to trust these segments and if it is necessary to 
provide an additional step of filtering for the most improbable segments.   
 
The progresses that can arise from this new pipeline can be seen especially 
in the field of tumor evolution and in the identification of new targettable 
variations such as structural variants affecting tumorigenic genes.  
One of the main questions regarding HGSC is if patients can be divided into 
groups according to their genomic features and if this stratification allows 
to discover new targets for treatment and diagnosis. One step forward the 
accomplishment of this task consists in the study of the tumor evolution, 
which has been proved to be effective using SNP data, but results 
challenging with sCNAs. The identification of subclones and the 
understanding of the dynamics causing one to evolve in another require the 
signal to be deconvoluted. The deconvolution of the signal coming from 
samples is complicated as both the sCNAs and the proportion of cells 
originating from each clone in the mixture are unknown [30]. The use of the 
joint calling for samples coming from the same patients and thus the 
identification of variants present only in some subclones reasonably can 
help the analysis. Moreover, the extraction and prioritization of structural 
variants for the segmentation instead of considering the differences in read 
depth alone could further enable to unravel the mutational processes at the 
base of the observed copy number patterns.  
Moreover, the deeper resolution in the segmentation can also determine 
and identify with higher precision the position of structural variants. 
Structural variants have a fundamental role as driver events for initiating 
tumorigenesis and to shape the tumor genomes, that’s why their improved 
identification in cancer can lead to more targeted and effective treatment 
options as well as advance our basic understanding of the disease and its 
progression [31]. 
 
The stratification of the patients according to sCNAs has been approached 
by using the copy-number signatures published in COSMIC [19]. The 
activity of the 24 identified signatures have been quantified in each sample 
using different statistical methods, the reference tool and two other 
methods previously used in the extraction of the exposures of COSMIC 
SNV signatures. The implemented methods have been introduced because 
computationally faster and because since the non-Poisson model has been 
used for the extraction, it could have been more efficient also in the 
attribution.  
None of the three procedures produced remarkable results in terms of 
cosine similarity, meaning that they are not able to properly explain the 
data. This is possible because the extraction of the signatures has been done 
in a pan-cancer context, using 33 cancer types that are very different in the 
genomic and cellular characteristics from HGSC [19]. Ovarian cancer 
samples represent 5% of the total but it has not been specified which 
subtype of ovarian cancer samples have been used. It is important to 
include all subtypes and a proper number of samples for each one because, 
as explained in the introduction, ovarian cancer subtypes are very different 
in terms of genetic characteristics, cellular features, progression and 
aggression [1]. Nevertheless, since HGSC is the most represented subtype 
of ovarian cancer, it is improbable the number of samples is not sufficient. 
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By the way, overall, it is possible that ovarian cancer has not been 
represented enough in the cohort used in the COSMIC study, causing a 
minor possibility of correct explanation of the used data.  
In addition to that, it is also important to consider that the genome version 
used for COSMIC signatures extraction is different from the version used 
for preprocessing of the used data, meaning that positions of some features 
could be different. 
Moreover, the type of data used in the COSMIC study come from different 
platforms consisting of WGS, whole-exome sequencing and SNP6-
profiling-deriver copy number profiles but at the same time they claim that 
rearrangement signatures can only be derived exclusively from WGS data 
and cannot capture important prognostic information such as WGD [19]. 
That is possibly another explanation for the poor representation of HGSC 
WGS data by the signatures. Since WGS data have a higher resolution than 
whole-exome sequencing and SNP6 copy-number profiles, probably more 
detailed characteristics have not been caught by the COSMIC method.  
 
One important feature that is looked for in HGSC genomes is the 
HRD/HRP phenotype. Indeed, HGSC is characterized by a high level of 
chromosomal instability which can be caused in most cases by homologous 
recombination repair (HRR) pathway deficiency. Germline BRCA1/2 
mutations and BRCA gene promoter methylation are well known causes of 
HRD, but other genetic abnormalities of the pathway can also cause this 
phenotype. Ovarian cancer with these alterations behaves in a similar way 
and this behavior is termed the “BRCAness” phenotype. Unrepaired DNA 
damage can result in accumulated mutations and unregulated cell division, 
and HRD is thus related to cancer susceptibility. Large amounts of DNA 
damage can lead to cell apoptosis but when only HRR is deficient, the 
activities of other DNA mechanisms can prohibit the accumulation of 
excessive DNA damage and apoptosis [6].  
Indeed, the identification of BRCAness is particularly important because 
poly (ADP-ribose) polymerase (PARP) inhibitors in patients with HRD 
compromise another pathway of the Dna repair, the Base Excision Repair 
(BER).  
Since two pathways involved in the DNA repair are not working, the cells 
cannot survive anymore and the treatment results in lethality for cancer 
cells. In other words, mutations occurring in one of two genes separately do 
not result in apoptosis, but the impairment of both genes simultaneously 
leads to cell death (synthetic lethality) [32]. 
Moreover, less research has been done on HRP patients, who generally have 
poorer outcomes and not that many treatment options. To help the 
development of efficient treatment for them, it is important to identify 
genetic variation in them to enhance drug development. 
The clear identification of the HRD phenotype is thus important because it 
allows to provide an additional therapeutic strategy, but currently there is 
not a method that is clearly able to divide HRD from HRP patients. Some 
databases furnishing HRD scars have been proposed by different 
companies (for example, the Murrai test), but they have been shown to not 
identify proficiently HRD patients.   
SBS3 signature has been clearly shown to be associated with HRD 
phenotype [14] because it is strongly associated with germline and somatic 
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BRCA1/2 mutations and BRCA1 promoter methylation. Similarly, CN17 has 
been proved to be associated with mono- or bi-allelic losses of, BRCA1/2, 
PALB2, FBXW7 and CDK12, and the strongest positive association with 
scarHRD scores (a score of genomic scars of homologous recombination 
deficiency) [19]. Nevertheless, when comparing the quantification of the 
signature in our data and ordering them according to one of the two HRD-
related signatures, they show to be in disagreement (Fig 11).  
 
For these reasons, the following step was the de novo extraction of signatures 
directly from HGSC cohort data with additional parameters for short 
segments. 15 signatures have been identified and quantified for all samples 
showing a cosine similarity slightly higher. When going to the GenomeSpy 
representation and ordering samples according to the signature SBS58B 
(Fig15), there seems to be a high concordance between SBS3 and SBS58B. 
Moreover, looking at the segmentation of the sorted samples, it is evident 
the difference between the samples with high levels of SBS3 and SBS58B, 
which are extremely segmented, and the samples with low levels of SBS3 
and SBS58B, which are straighter. In general, it seems that SBS58 signatures 
can better explain segmentation and copy number characteristics, but 
further proofs need to be provided.  
 
Another important target gene in HGSC is CDK12. Cyclin Dependent 
Kinases (CDKs) are a group of serine/threonine key regulators of many 
cellular processes. CDK12 in particular complexes with cyclin K to regulate 
gene transcription elongation via phosphorylating RNA polymerase II and 
translation. It also plays a role in RNA splicing, cell cycle progression, cell 
proliferation, DNA Damage Response (DDR) and maintenance of genomic 
stability [33]. 
TCGA study of HGSC revealed it as a tumor suppressor and appeared to 
be among the ten most recurrently mutated genes of this type of cancer [34]. 
CDK12 regulates the transcription of long DNA repair genes like BRCA1/2, 
ATR and ATM, genes involved in the HRR pathway. As a consequence, 
alterations in CDK12 generate a non-functional HRR pathway, endogenous 
DNA damage, genome instability and sensitivity to DNA damage agents. 
The phenotype associated with its inactivation is called tandem-duplicator 
phenotype (TDP), a genomic signature characterized by copy number 
gains, Focal Tandem Duplications (FTDs). It is important to notice that 
FTDs are distinct from duplication observed in BRCA1-deficient, cyclin E1-
amplified or other HRD tumors. Indeed, HRD factors were not found in 
ovarian CDK12-inactivated tumor samples, and the tumor gene expression 
profiles have been shown to be different [35].  
CDK12-associated FTDs can result in expressed gene fusions and fusion-
induced neoantigens, raising the possibility of CDK12 loss of function 
alteration as a predictive biomarker for immune checkpoint inhibitor 
sensitivity [33].  
This is another example of a feature that is wanted to be caught with the 
signatures, so that its identification is easier and would consent the 
stratification of patients according to these mutations. As a consequence, 
patients with different genomic features could be treated according to 
them.  
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Moreover, copy number signatures could shed light on other useful and 
targetable characteristics still not identified, as well as identify the features 
already known.  

Future steps  
Extraction and quantification of de novo signatures are not sufficient for a 
complete analysis. Other features must be explored for their 
characterization, in order to associate them to precise phenotypes and 
mutational mechanisms as it has been done in [19].  
One of the first steps will be the analysis of the distribution of each signature 
along the genome so that it would be possible to understand if one signature 
is associated with a focal event or to a global effect such as whole genome 
duplication or chromosomal chromothripsis. Further inspections include 
testing the association with known driver genes such as MYC, BRCA, RB1.  
Validation of the signature is essential and could be done by the application 
of the same procedure to TCGA data including only HGSC as tumor type.  
Once understood and proposed a plausible etiology for identified 
signatures, samples can be clustered to test if there are differences in the 
treatment phase or in the genomic segmentation among different clusters. 
Moreover, it would be also important to check if some of the de novo 
signatures are correlated with the PFI, meaning that these signatures would 
also predict the aggressivity of the cancer present in the patient.  
All these analyses would be useful for the ultimate goal, which is the 
prediction of the platinum-resistance in patients and the identification of 
possible therapeutic targets for resistant patients. The correlation of some 
genomic signature with platinum-resistance would give the possibility to 
predict it in advance in new patients, shifting the treatment strategy from 
platinum-taxane chemotherapy.  
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