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Abstract

The main aim of this thesis is to address a question, recently raised in the literature, whether
the existence of particles carrying a magnetic charge (instead of an electric one) is consistent
with physical laws of Nature. Such particles are called monopoles. The possibility that they
may exist in Nature was suggested by Dirac. The Dirac showed that for the monopoles to obey
the laws of electrodynamics, to each of them there should be attached a magnetic flux string,
called the Dirac string. This string must be invisible, i.e. un-physical. This requirement lead to
the famous Dirac quantization condition for the electric and magnetic charges. There however
appeared claims in a recent literature that the Dirac string cannot be invisible and therefore,
according to the authors, the Dirac monopoles cannot exist as elementary particles.

In this thesis the classical theory of magnetic monopoles is studied in both Lagrangian and
Hamiltonian formulation of electrodynamics, and its extension to quantum mechanics is also
considered. This investigation ultimately confirms that the Dirac string is an auxiliary non-
physical tool and the Dirac theory of monopoles provides a consistent description of these exotic
particles.

Translation

L’obiettivo principale di questa tesi è esaminare una questione recentemente sollevata nella
letteratura scientifica, ovvero se l’esistenza di particelle portatrici di carica magnetica (invece
che elettrica) sia conforme alle leggi fisiche della Natura. Tali particelle vengono denominate
monopoli. Dirac suggerì la possibilità che potessero esistere in Natura, dimostrando che, affinché
i monopoli rispettino le leggi dell’elettrodinamica, a ciascuno di essi deve essere associata una
stringa magnetica, detta stringa di Dirac. Questa stringa deve essere invisibile, ovvero non
fisica. Questo requisito porta alla famosa condizione di quantizzazione di Dirac per le cariche
elettriche e magnetiche. Tuttavia, in articoli più recenti sono emerse affermazioni secondo le
quali la stringa di Dirac non può essere invisibile e, quindi, secondo gli autori, i monopoli di
Dirac non possono esistere come particelle elementari.

In questa tesi verrà studiata la teoria classica dei monopoli magnetici sia nella formulazione
Lagrangiana che Hamiltoniana dell’elettrodinamica, considerandone anche l’estensione alla mec-
canica quantistica. Questa indagine confermerà in ultima analisi che la stringa di Dirac è uno
strumento ausiliario non fisico e che la teoria di Dirac dei monopoli offre una descrizione coerente
di queste particelle esotiche.
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Introduction
In his 1931 groundbreaking work [1] Dirac aimed to find an explanation why electric charge
is always observed in integral multiples of the electron charge e. He believed there must be
fundamental reasons in nature for these observations, as well as a specific cause for the exact
value of the electric charge e.

Dirac inadvertently laid the foundations for the theoretical existence of magnetic monopoles
suggesting that their existence could naturally explain the quantized nature of electric charge.
This idea not only provided a theoretical justification for the quantization of electric charge
but also hinted at a profound symmetry between electricity and magnetism, suggesting a more
unified view of fundamental forces. This idea is reinforced by his second work [2], in which he
formulated a relativistic extension of the monopole theory.

The core of this discussion centers on how an electric charge interacts with the vector poten-
tial generated by a magnetic monopole, which is connected to an infinitely long and thin solenoid
known as the "Dirac string". This string’s undetectability hinges on the assumption that the
wave function of the electric charge is single-valued under gauge transformations, leading to the
necessity of the Dirac quantization condition, qg = 2πN . If this condition holds then having
even a single monopole located anywhere in the universe would justify the quantization observed
in electric charges.

Despite the absence of direct experimental evidence for magnetic monopoles, Dirac’s theory
remains a cornerstone in the field of theoretical physics. It challenges physicists to reconsider the
symmetries of nature and continues to inspire searches for magnetic monopoles in high-energy
physics experiments and astrophysical observations.

In this work I will study the theory of magnetic monopole as originally formulated by Dirac.
The first chapter is dedicated to exploring the electrodynamics of electric charge alone, setting
the stage for the natural introduction of magnetic charge to restore the symmetry of duality.
First, I will present the fundamental equations of electrodynamics for electric charge in covariant
form. Subsequently, I will introduce the Lagrangian and its invariance under gauge transforma-
tions, followed by defining the action and formulating the action principle, through which the
equations of motion can be derived. From there, I will present the transition to Hamiltonian
mechanics using Dirac’s constraint theory.

In Chapter 2, the inclusion of magnetic charge will restore electric-magnetic duality. The
approach will mirror that of Chapter 1, starting with the presentation of the fundamental
equations of this revised electrodynamics, highlighting the challenges presented by the variational
principle. Indeed the natural incorporation of a vector potential is non-trivial, necessitating the
introduction of the so-called Dirac string. The Lagrangian for the system will be presented, and
the action principle defined, from which the equations of motion will be deduced. The transition
to Hamiltonian mechanics will also be made through Dirac’s theory of constraints. Ultimately,
moving to quantum theory will yield the renowned Dirac quantization condition.

In the final chapter, I will focus on the Dirac string. Specifically, I will demonstrate that
two vector potentials of the same monopole, but associated with different strings, differ by a
gauge transformation. The gauge function in question will be presented and studied, providing
an intuitive geometric interpretation. To conclude, I will comment on the article [3] that claims
that the string generates a non-zero field momentum, thus suggesting it could be physically
detectable. However, I will elucidate how this approach misunderstands Dirac’s theory.
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Conventions

• Natural Units: the system employs natural units, setting c = ! = 1.

• Space-Time Metric: the Minkowski space-time metric with the signature (−, +, +, +)
is used.

• Index Notation: Greek indices (µ, ν, λ, . . . ) represent space-time dimensions (0, 1, 2, 3),
while Latin lower case indices (i, j, k, . . . ) denote three-dimensional spatial dimensions (1,
2, 3).

• World Line Parameterization: The motion of particles is described through world lines
in space-time, parameterized as y

µ(τ) = (y0(τ), y(τ)).
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Electrodynamics of electric charge
1.1 Equations of electrodynamics

The fundamental equations of electrodynamics for an electric charge under the presence of an
electromagnetic field are

dp

dt
= e(E + v × B) ,

dε

dt
= ev · E , (1.1)

∇ · E = ρ , ∇ × B − ∂E

∂t
= j , (1.2)

∇ · B = 0 , ∇ × E + ∂B

∂t
= 0 . (1.3)

These equations are respectively Lorentz equations, the work-energy theorem (1.1) and Maxwell
equations (1.2)-(1.3).

In these equation ρ, j and v are the density, the current and the velocity of the charged
particle, and p is its momentum, ε is the energy of the particle. These may be written in a
covariant form introducing the electromagnetic anti-symmetric tensor F

µν = −F
µν and its dual

∗ F
µν = 1

2εµνρσ
Fρσ , (1.4)

such that

F
i0 = −F

0i = E
i
, ∗ F

i0 = B
i
, (1.5)

F
ij = −εijk

B
k

, ∗ F
ij = εijk

E
k

. (1.6)

So the fundamental equations of electrodynamics in the manifestly covariant form become

dp
µ

dτ
= eF

µν(y)uν , (1.7)

εµνρσ∂νFρσ = 0, (1.8)
∂µF

µν = j
ν
. (1.9)

In (1.7)-(1.8)-(1.9) τ is the proper time along the world line of a charged particle, y
µ(τ) represents

the space-time coordinates of the particle, parameterized by τ , uν is the four-velocity of the
particle, defined as the derivative of y

µ with respect to τ and p
µ is the relativistic four-momentum

of the particle.
The set (1.7)-(1.8)-(1.9) are known as Lorentz equations, Bianchi identity and Maxwell equa-

tion respectively. Using this more elegant and compact formulation one must introduce the
four-current j

µ = (ρ, j). Equation (1.8) admit a canonical basis of solutions which are con-
structed by introducing an arbitrary vector field Aµ(x), called vector potential, and by setting

Fµν = ∂µAν − ∂νAµ . (1.10)
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1.1.1 Gauge invariance

Different vector potentials can give rise to the same field strength. Given an arbitrary scalar
field Λ(x), called gauge function, one can introduce a new vector potential by setting

A
′
µ = Aµ + ∂µΛ . (1.11)

Gauge transformation constitutes a one-parameter group, with parameter Λ(x) depending on a
space-time point. Maxwell’s equations are invariant under the gauge transformation.

1.2 Lagrangian formulation

The Lagrangian provides a concise and elegant description of the dynamics of a physical system,
encapsulating the essential features of system’s behavior. In the context of electrodynamics,
the Lagrangian not only offers a systematic and mathematically elegant framework for deriving
the equations of motion but also lays the foundation for exploring symmetries, conservation
laws, and the quantization of fields. By adopting the principle of least action, we may unify
the description of particles and fields, allowing us to seamlessly integrate classical and quantum
concepts.

I will introduce the principle of least action, first for a classical theory of point particles and
then extended to a field theory. I will then analyze the application of the Lagrangian formulation
to electrodynamics. As we will see. the set of equations (1.1)-(1.3) and (1.9) can be deduced
from the principle of least action.

1.2.1 Principle of least action

Consider first a non-relativistic particle of mass m with kinetic energy 1
2mu

i
ui in a potential

V (xi). The Lagrangian is
L = T − V = 1

2mu
i
ui − V (xi), (1.12)

where this quantity is defined for any path of x
i(τ) and u

i(τ) = dx
i
/dτ . In general this is true

for all the Lagrangian coordinates q = {qn(t)} of a system with N degrees of freedom where
n = 1, ..., N .

L = L[q(t), q̇(t)] . (1.13)
We can now define the action for any path of q(t) connecting two points q(t1) and q(t2), with
t1 < t2.

I =
! t2

t1
L[q(t), q̇(t)]dt . (1.14)

The principle of least action states that the action is stationary under variation of the path about
the actual path followed by the particle in motion from q(t1) to q(t2). The action is stationary
when

δI = d

dα
I [q + αδq]

""""
α=0

= 0 , (1.15)

or alternatively
δI = I [q + δq] − I [q] = 0, (1.16)

where we consider only the linear term in δq, neglecting second order or higher terms. With
this procedure one obtains the Euler-Lagrange equations

d

dt

∂L

∂q̇
− ∂L

∂q
= 0. (1.17)
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which are equivalent to Newtonian equations of motion. For the Lagrangian (1.12) these are

mẍ
i = −∂V (xi)

∂xi
. (1.18)

In order to extend this procedure to field theories, and in particular to relativistic ones, we
must substitute the Lagrangian coordinates with the Lagrangian fields ϕ = {ϕr(t, x)}, where
r = 1, ..., N . Using Lorentz-covariant formulation we have

ϕr(t, x) = ϕr(xµ) . (1.19)

These fields are supposed to describe the system from kinematical point of view, every observ-
able physical quantity can be expressed in terms of the fields ϕ, even though in general the
fields themselves are not observables. The fields ϕ and their derivatives are required to vanish
sufficiently fast at spatial infinity

lim
|x|→∞

ϕ(t, x) = 0 . (1.20)

In field theory the Lagrangian L is the space integral of a Lagrangian density so that the
action integral is

I =
!

dtL =
!

dt

!
d

3
xL =

!
d

4
xL. (1.21)

In (1.21) the integration domain is not invariant since the time variable is integrated over a finite
interval. To overcome this we should substitute in (1.14) the space-like hyperplanes t = t1 and
t = t2 with two infinitely extended and non-intersecting space-like hyper-surfaces Γ1 and Γ2. So
the generalized action is

I[ϕ] =
! Γ2

Γ1
L(ϕ(x), ∂ϕ(x))d4

x . (1.22)

By construction this is a Lorentz invariant integral. The Lagrangian fields ϕ satisfies the Euler-
Lagrange equation

∂µ
∂L

∂(∂µϕr) − ∂L

∂ϕr
= 0 , (1.23)

in the region between the hyper-surfaces Γ1 and Γ2 under arbitrary variations δϕ, vanishing on
the hyper-surfaces Γ1 and Γ2

δϕr|Γ1
= 0 = δϕr|Γ2

. (1.24)

So the general scheme to follow for the formulation of a physical theory via the principle of least
action is first identify the expression for the action, then derive the equations of motion with
the action principle and finally apply Noether’s theorem to

1.2.2 Action of electrodynamics

In the case of electrodynamics the Lagrangian fields are the four components of the vector
potential Aµ. The connection between the electric and magnetic field and the potential vector
arises from the resolution of the Bianchi identity which is solved as

Fµν = ∂µAν − ∂νAµ . (1.10)
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From this relation it follows that, modulo the U(1) gauge invariance A
′
µ = Aµ + ∂µΛ(x), the

vector field Aµ should be regarded as an independent physical field of Maxwell’s theory, rather
than Fµν .

The action we are searching for must lead to Maxwell’s equations of motion. The symmetries
of the action are a direct reflection of the symmetries inherent in the system’s dynamics. This
means that in order to have manifestly covariant equations of motion for a relativistic system
we must have an action invariant under Poincaré transformations.

Other conditions we want to have in electromagnetic field theory is that the Lagrangian must
preserve locality, signifying that it should be a function of the fields and their time derivatives
at the same space-time point x

µ. Consequently, the evolution of a field ϕ should be determined
by the values of the field and its time derivative evaluated at the same space-time point x

µ.
In addition, for the action of a relativistic particle we require reparameterization invariance,

which means that the action does not depend on how the particle worldline is parameterized.
If the parameterization is changed by regarding the old parameter τ as a function of a new
parameter τ ′, then I[τ ] should remain invariant.

The first step to add these features to the action is to choose L dt in (1.14) be proportional
to the proper-time measure, which is invariant under Poincaré transformation as well as under
reparameterizations

ds =

#
dyµ

dτ

dyµ

dτ
dτ . (1.25)

The total action of electrodynamics, used to describe a charged particle subjected to an
electromagnetic field, is made of three parts

ITOT = IP + IA + II . (1.26)

The first one takes in to account the action of the free particle, the second one is the action of
the electromagnetic field and the last one is the interaction term between the electromagnetic
field and the particle. Explicitly the action is

ITOT = −m

!
ds − 1

4

!
F

µν
Fµνd

4
x − e

!
dτ

!
dy

µ

dτ
δ(4)(x − y(τ))Aµ(x)d4

x . (1.27)

Where m is the mass and e is the electric charge of the particle. All the terms are Lorentz
invariant. Using the principle of least action we get Maxwell’s equations (1.2)-(1.3) from IA + II
and the Lorentz equation (1.1) from IP + II.

A condition that the action must fulfill is gauge invariance, in particular we require that
vector potentials which differ by a gauge transformation yield identical dynamics.

Focusing on the total action (1.27), the vector potential appears in IA through the field
strength, where gauge transformations are nullified in the computation thanks to the Schwartz
theorem, and also in II. The variation of the coupling term under gauge transformations of the
form (1.11) is

δ

$
−e

!
dy

µ
Aµ(y)

%
= −e

!
dy

µ∂µΛ(y) = e(Λ(τi) − Λ(τf )) , (1.28)

where τi and τf are initial and final points of the particle trajectory. So, the gauge variation of
this term is just a number. Moreover the variation vanishes if one assumes that Λ(τi) = Λ(τf ).
So, the action (1.27) is gauge invariant modulo a constant which does not affect the dynamics
of the system.
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1.3 Hamiltonian formulation

The transition from Lagrangian to Hamiltonian formulation, through the Legendre transforma-
tion, is a useful procedure for unraveling the dynamics of physical systems. This transformation
introduces canonical coordinates and momenta, providing an alternative perspective on the sys-
tem’s evolution and the ground for the canonical quantization of the system.

However, the assumption of independent momenta and velocities proves too restrictive for
many physical systems. This leads to the concept of primary constraints. These constraints
are inherent conditions that arise when the momenta cannot be uniquely determined by the
velocities due to system’s physical properties. Incorporating these primary constraints into the
Hamiltonian is not straightforward and requires the use of Lagrange multipliers.

I will define then secondary constraints which adds an additional layer of complexity to the
Hamiltonian framework of classical electrodynamics. General techniques of the Hamiltonian
description of constrained physical systems was developed by Dirac [13].

1.3.1 Poisson Brackets

In the Hamiltonian approach, the dynamics of a system is formulated with the use of Poisson
brackets, which provide a powerful tool for studying the evolution of physical quantities. The
canonical Poisson brackets are defined for the phase space variables qj and pj , and are expressed
as

{qj , pk} = δjk , (1.29)

where δjk is the Kronecker delta. This relation establishes that the position coordinates qj

and the corresponding momenta pj are canonically conjugate pairs. Furthermore, the Poisson
bracket of any phase space function with itself is zero

{qj , qj} = {pj , pj} = 0 . (1.30)

The Poisson bracket of two functions f and g, defined on the phase space with coordinates
(qi, pi), is given by:

{f, g} =
&

i

$
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

%
. (1.31)

This bracket has several important properties, such as antisymmetry, linearity, and the Leibniz
rule for products. Most notably, it satisfies the Jacobi identity:

{f, {g, h}} + {g, {h, f}} + {h, {f, g}} = 0, (1.32)

for any three functions f, g, and h on the phase space. These properties make the Poisson
brackets a fundamental aspect of the Hamiltonian mechanics, providing a framework to ana-
lyze the time evolution of dynamical variables and to establish relationships between conserved
quantities and symmetries. The time evolution of any dynamical variable A(qi, pi, t) is governed
by its Poisson bracket with the Hamiltonian H(qi, pi, t) of the system. Mathematically, this is
expressed as:

dA

dt
= {A, H} + ∂A

∂t
, (1.33)

where the first term on the right-hand side represents the evolution due to the system’s dynamics,
while the second term accounts for any explicit time dependence of the variable A.
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Furthermore, this formulation connects to Noether’s theorem. If a system has a symmetry,
the associated conserved quantity can be identified through a Poisson bracket relation with the
Hamiltonian.

{A, H} = 0 . (1.34)

This implies that A is a constant of motion. Thus, the explicit relationship between sym-
metries and conserved quantities in Hamiltonian mechanics is given by the vanishing Poisson
bracket of the symmetry generator with the Hamiltonian.

1.3.2 Primary constraints

The departing point for the Hamiltonian formalism is to define canonical momenta for La-
grangian coordinates and fields respectively

pn = ∂L

∂q̇n
, n = 1, ..., N ; (1.35)

πr = ∂L

∂(∂0ϕr) , r = 1, ..., N . (1.36)

Usually in dynamical theory one assumes that the momenta are independent functions of ve-
locities, however this is too restrictive. In general, when computing the transition from the
Lagrangian formulation to the Hamiltonian one, via Legendre transformation, one obtains an
equation that is identically zero, then the momenta cannot be expressed in terms of velocities or
vice versa. In such cases there exists the following kind of relations that do not involve velocities

Φm(q, p, ϕ, π) = 0 , m = 1, ..., M. (1.37)

Equations (1.37) are called primary constraints and they do not vary in time, i.e. their Pois-
son bracket with the Hamiltonian must be zero. These constraints emerge when the Legendre
transform from the Lagrangian to the Hamiltonian formulation does not lead to a unique def-
inition of conjugate momenta for all generalized coordinates. This situation may, for instance,
arise due to gauge symmetries present in the system.

The primary constraints are equations that define a constrained subspace within the full
phase space. Specifically, if the system has N degrees of freedom, its phase space is a 2N -
dimensional manifold. However, the presence of primary constraints restricts the system to a
lower-dimensional submanifold.

The non-uniqueness in the inverse transformation from Hamiltonian variables (q, p) to La-
grangian variables (q, q̇) is due to these constraints. This non-uniqueness can be thought of as
the transformation mapping a larger manifold (the 2N -dimensional phase space) onto a smaller
constrained subspace.

To properly formulate the Hamiltonian dynamics within this constrained subspace, the con-
straints themselves are added to the Hamiltonian with the help of Lagrange multipliers. These
multipliers serve as coefficients that adjust the Hamiltonian to ensure adherence to the primary
constraints in order to maintain the consistency of the system’s description within the reduced
phase space.
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1.3.3 Total Hamiltonian

The canonical Hamiltonian is define by the Legendre transformation

HC = q̇ · p + ϕ̇ · π − L , (1.38)

this is a function of the positions and velocities. However this Hamiltonian is not uniquely deter-
mined as a function of the p’s and the q’s, in fact the canonical Hamiltonian is well define only
in the submanifold defined by the primary constraints (1.37). The formalism is thus generalized
by defining the so called total Hamiltonian HT incorporating all constraints into the canonical
Hamiltonian, weighted by arbitrary multipliers λm, usually referred as Lagrange multipliers:

HT = HC + λmΦm(q, p, ϕ, π) . (1.39)

Since equation (1.37) holds one may think that HT is just HC, actually this is not true.
A crucial matter in developing this theory is when to impose the constraints. To make this
point more clear we should introduce weak equalities denoted by ≈. Weak equality between two
quantities means that these quantities are equal modulo the constraints. That is they become
"strongly" equal when the constraints are satisfied. So we can write

HT ≈ HC . (1.40)

Hamiltonian of the electromagnetic field

Considering the Lagrangian density for the electromagnetic field alone

LA = −1
4F

µν
Fµν . (1.41)

We can separate the time and space directions and obtain

LA = 1
2

$
F0iF0i − 1

2FijFij

%
= 1

2

'(
Ȧi(t, x)−∂iA0(t, x)

)2
− 1

2(∂iAj(t, x) − ∂jAi(t, x))2
*

. (1.42)

The canonical momenta are

πµ ≡ ∂L

∂Ȧµ(t, x)
=

+
0 (µ = 0)
Ȧi(t, x) − ∂iA0(t, x) = Ei(t, x) (µ = i)

(1.43)

Thus at any fixed time t we find the primary constraint for the first equation

π0(t, x) ≈ 0 . (1.44)

The Hamiltonian constructed via the Legendre transform is

HA =
&

ϕ

ϕ̇ · πϕ − LA = (1.45)

= 1
2

!
d

3
x

(
E

2 + B
2
)

+
!

d
3
x (E · ∇A0(t, x)) . (1.46)

We can add the primary constraint to the total Hamiltonian where λ0 with the use of the
Lagrangian multiplier λ0(t, x)

H
A
T = 1

2

!
d

3
x

(
E

2 + B
2
)

+
!

d
3
x (E · ∇A0(t, x)) +

!
d

3
xλ0(t, x)π0(t, x) . (1.47)

Comparing to (1.46) I set Ȧ0 = λ0 since Ȧ0 is undefined by its equation of motion Ȧ0 =
{A0, H

A
T } = λ0. The primary constraint π0 ≈ 0 leads to a new constraint which is called

secondary constraint
dπ0(t, x)

dt
= {π0, H

A
T } = ∇ · E ≈ 0 , (1.48)

Which is the Gauss law in the vacuum.
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Hamiltonian of the free particle

For the case of a relativistic free particle we have

Lfree = −m

#

−dyµ

dτ

dyµ

dτ
≡ −m

,
−ẏµẏµ . (1.49)

The transition to the Hamiltonian formulation via Legendre transform leads to

pµ = ∂L

∂ẏµ
= m

ẏµ-
−ẏµẏµ

, (1.50)

HC = pµẏ
µ − L ≡ 0 . (1.51)

Since this expression is identically zero the system must have a constraint

p
µ
pµ + m

2 ≈ 0, (1.52)

and the total Hamiltonian is

HT = HC + λ(pµ
pµ + m

2) = λ(pµ
pµ + m

2),

where λ is the Lagrangian multiplier.
Another way to evaluate the Hamiltonian is fixing the reparametrization gauge: y

µ(τ) =
(τ, y(τ)), consequently ẏ

0 = 1, then we have

Lfree = −m

,
1 − ẏ2 , (1.53)

p ≡ ∂Lfree
∂ẏ

= m
ẏ

-
1 − ẏ2 . (1.54)

Performing Legendre transform we find the Hamiltonian for the system of the free relativistic
particle:

Hfree = p · ẏ − Lfree =

= m
ẏ

2
-

1 − ẏ2 + m

,
1 − ẏ2 =

= m
1

-
1 − ẏ2 ≡ p0 =

,
p2 + m2 .

(1.55)

Note that the relation p0 =
-

p2 + m2 solves the constraint (1.52) of the manifestly reparametriza-
tion invariant formulation.

Hamiltonian of the charged particle

Introducing the electromagnetic field through the potential vector A
µ and assigning the particle

the charge e in the Lagrangian

Lcharge = −m

,
−ẏµẏµ − jµA

µ
, (1.56)

by inserting the explicit expression of the current we can write

Lcharge = −m

,
−ẏµẏµ − eA

µ(y)ẏµ . (1.57)
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the conjugate momenta of y
µ are

pµ ≡ ∂L

∂ẏµ
=

.
/0

/1

m
−ẏ0√

ẏ0−ẏiẏi
+ eA0(t, y) (µ = 0)

m
ẏi√

ẏ0−ẏiẏi
− eAi(t, y) (µ = i)

(1.58)

Performing Legendre transform we find an identically null Hamiltonian which leads to the con-
straint

ϕ1 ≡ (pµ + eA
µ)2 + m

2 ≈ 0 . (1.59)

If we fix the gauge y
µ = (τ, y) like we did for the free particle we find

Lagrangian: Lcharge = −m

,
1 − ẏ2 − e(−A0(t, y) + A(t, y) · ẏ) . (1.60)

Conjugate momenta: p ≡ ∂L

∂ẏ
= m

ẏ√
1 − ẏ

− eA(t, y) . (1.61)

The Hamiltonian via Legendre transformation is then

Hcharge = p · ẏ − Lcharge =

= m
1

-
1 − ẏ2 − eA0(t, y) = p0 =

,
m2 + (p + eA(t, y))2 − eA0(t, y) .

(1.62)

Introducing k, the kinetic momenta of the particle, as k
µ = (k0

, k) = (p0+eA
0(t, y), p+eA(t, y)),

we can rewrite (1.62)
Hcharge =

-
m2 + k2 − eA0(t, y) . (1.63)

Hamiltonian of electrodynamics

The Lagrangian of electrodynamics, imposing the gauge yµ = (τ, y) and separating time and
space directions, is

L = 1
2

!
d

3
x

$
F0iF0i − 1

2FijFij

%
− m

-
1 − ẏ − e(−A0(t, y) + A(t, y) · ẏ) . (1.64)

Here A
µ(xµ) is shorthand notation for

2
d

3
xAµ(t, x)δ(3)(x − y). Evaluating now the momenta

conjugate to the Lagrangian velocities {Ȧµ(x); ẏ
i} of the action (1.27) we find respectively

(1.43) and (1.61) which I report again for clarity

πµ ≡ ∂L

∂Ȧµ(t, x)
=

+
0 (µ = 0)
Ei(t, x) (µ = i)

(1.43)

p ≡ ∂L

∂ẏ
= m

ẏ√
1 − ẏ

− eA(t, y) . (1.61)

The momenta are to be considered as independent variables, and the full phase space has coordi-
nates Aµ, πµ with fundamental equal-time Poisson brackets {Ȧµ(t, x2), πν(t, x1)} = δν

µδ(x2−x1).
The canonical Hamiltonian (avoiding the constraints) is then the result of the Legendre trans-
form (1.38) of the Lagrangian (1.64). Its explicit form is

HEM = HA + Hcharge =

= 1
2

!
d

3
x(E2 + B

2) +
!

d
3
x eA0(t, x)

(
eδ(3)(x − y(t)) − ∇ · E

)
+

-
m2 + k2 .

(1.65)

9



However the total Hamiltonian with the primary constraint (1.44) is

HT = HC +
!

d
3
xλ0(t, x)π0(t, x) . (1.66)

To accurately describe the system’s dynamics, the constraints must remain null throughout their
evolution in time. By requiring π̇0 = {π0, HT} ≈ 0 we find the new constraint, which differs
from (1.48) by the contribution of the electric charge density of the particle

χ(t, x) ≡ dπ0(t, x)
dt

= ∇ · E − eδ(3)(x − y(τ)) ≈ 0 , (1.67)

which is the Gauss law. So the total Hamiltonian is now

HT = HC +
!

d
3
xλ0(t, x)π0(t, x) +

!
d

3
xλ1(t, x)χ(t, x) . (1.68)
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Adding the magnetic charge
In empty space Maxwell’s equation possess a symmetry under the exchange of the electric and
magnetic field, called electromagnetic duality. This symmetry is broken in the presence of the
electrically charged particles as can be seen looking at the form of the equations (1.2) and (1.3).

In this chapter I will introduce the theory of electrodynamics in which the magnetic charge,
monopole, is also present which restores the electric-magnetic duality symmetry. I will present
two consecutives Dirac’s approaches: firstly, modifying the vector potential to take in account the
monopole, which results in the emergence of the Dirac string as a singularity within the vector
potential. Secondly, its relativistic extension. I will specifically focus on the latter approach,
exploring its implications for the dynamics of electromagnetic fields through the action principle
for magnetic charges.

2.1 Electromagnetic duality

As I mentioned, Maxwell’s equations in empty space are symmetric under the replacement

E → B , B → −E . (2.1)

If we want Maxwell’s equations to remain invariant under duality not only in empty space but
also in presence of non-vanishing sources, we should introduce a magnetic four-vector current j

µ
g ,

to which we assign the same property of the electric one j
µ
e . The generalized Maxwell equations

are then

∇ · E = ρe , ∇ × B − ∂E

∂t
= je ; (2.2)

∇ · B = ρg , ∇ × E + ∂B

∂t
= jg . (2.3)

To formulate these equations in a covariant formalism we use the electromagnetic dual of the
Maxwell tensor F

µν , or equivalently its Hodge dual. So in terms of electromagnetic tensor the
transformation (2.1) can be express as

F
µν → ∗F

µν
, ∗F

µν → −F
µν

. (2.4)

Consequently the generalized Maxwell equations in manifestly covariant form are

∂µF
µν = j

ν
e , ∂µ ∗ F

µν = j
ν
g . (2.5)

Here jg and je are point-like currents related to the motion of charges and poles

j
ν
e = e

!
δ(4)(x − y(τ))ẏν

dτ , j
ν
g = g

!
δ(4)(x − z(τ))żν

dτ . (2.6)

2.2 Failure of variational principle

In this section, we examine the theoretical consequences of incorporating magnetic monopoles
into the electromagnetic framework, focusing on the emergence of the Dirac string.

The introduction of a non-vanishing magnetic current at the right hand side of what was
originally the Bianchi identity (2.5-b) raises a series of problems.
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In the absence of a magnetic current, the Bianchi identity implies the existence of a vector
potential, essential for constructing the dynamics of the electromagnetic field and its coupling to
sources in both Lagrangian and Hamiltonian formulations. However, when the magnetic current
is non-zero, this identity is violated, posing an obstacle in introducing a vector potential in a
natural way.

2.2.1 Singular vector potential, the 1931 approach

In his first work [1] Dirac introduce the magnetic monopole by choosing a specific form of the
vector potential, this strategy is necessary to be able to use Poincaré lemma. The magnetic field
in the presence of a monopole lies along the radial direction and is of magnitude g/r

2 which
means the domain we are working on is IR3\{0} and it is not contractible, as instead required
by the Poincaré lemma. Restricting the domain to Vγ = IR3\γ it becomes contractible, here γ
is a curve called Dirac string and in [1] is referred as nodal line.

In his paper Dirac presented a formula for the vector potential in spherical coordinates as
A = (g/r) tan(θ/2)φ̂ observing that its curl yields the radial field gr̂/r

2 in all space except at
r = 0 (where the charge is located) and along the negative semi-axis. He pointed out that
"this solution is valid at all points except along the line θ = π where A becomes infinite". This
solution can be expressed equivalently as

A = g
1 − cos θ

r sin θ
φ̂ . (2.7)

Jackson [7] proposes an interpretation for this result: the magnetic monopole is imagined either
as a particle situated at the end of a sequence of dipoles or at the extremity of a closely coiled
solenoid or string extending indefinitely. He presents an integral form for the total vector
potential for a solenoid lying on the curve γ

A = −g

!

γ
dγ ′ × ∇

$ 1
|x − x′|

%
. (2.8)

This results in (2.7) when we analyze the scenario where the string is aligned along the
negative z-axis, with the magnetic monopole at the origin, so dγ ′ = dx

′
ẑ. It’s important to note

that integration along this trajectory requires the condition sin θ ∕= 0 so Dirac potential (2.7) is
singular for all x ∈ γ. Consequently, across the entire domain, the curl of the vector potential
yields

∇ × A = g

r2 r̂ + Bstring . (2.9)

The field of the string can be modeled using distributions, with explicit derivation provided in
Appendix II.

Bstring = 4πgδ(x)δ(y)Θ(−z)ẑ , (2.10)
Bmon = ∇ × A − Bstring . (2.11)

In conclusion, the magnetic field generated by a static monopole admits, locally and in a
restricted domain Vγ a vector potential. A is singular along the curve γ, which connects the
magnetic charge to infinity, while it’s regular for all x ∈ Vγ .

12



= +

Magnetic Monopole Monopole and String String

Figure 1: Representation of the monopole field Bmon defined by equation (2.11).

2.2.2 The 1948 relativistic extension

In his second approach [2] Dirac proposed a more general description of magnetic monopole
physics providing a complete dynamical theory by bringing a four-dimensional extension of his
1931 work.

In detail, the Bianchi identity demands the total magnetic flux crossing any closed surface
to be zero. So equation

Fµν = ∂νAµ − ∂µAν . (1.10)

must fail somewhere on the surface, since it fails in any closed surface surrounding the pole,
equation (1.10) fails on a line of points, a string extending outward the pole. The string may
be any curved line, extending from the pole to infinity or another pole of equal and opposite
strength. The string then sweeps a two dimensional sheet in space-time, with parametrization

w
µ = w

µ(τ, σ) . (2.12)

Since one extremity of the string must always coincide with the magnetic pole, it is suitable to
introduce a proper string coordinate u(τ, σ) such that

w
µ(τ, σ) = z

µ(τ) + u
µ(τ, σ), u

µ(τ, 0) = 0. (2.13)

In the presence of magnetic monopoles equation (1.10) is not valid, since (1.10) leads to (1.3-
a) and thus contradicts (2.5-b). The form of electromagnetic tensor should be replace by an
expression of the form

Fµν = ∂νAµ − ∂µAν + ∗Cµν , (2.14)

where C is a tensor whose support is on the string worldsheet w(τ, σ). So C vanishes everywhere
except on the string. C is determined in such a way that (2.5-b) holds

∂µC
µν = j

ν
g . (2.15)

A solution for (2.15) has been proposed by Dirac in [2]

Cµν(x) = −g

! ! $
∂wµ

∂τ

∂wν

∂σ
− ∂wν

∂τ

∂wµ

∂σ

%
δ(4)(x − w(τ, σ))dτdσ . (2.16)
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It is possible to show that the string term contained in the new definition of the field strength
(2.14) leads also to (2.10)

B
i
string(t, x) = C

i0(t, x) = g

!

γ
dσ

∂w
i(τ, σ)
∂σ

δ(τ − t)δ(3)(x − u(τ, σ)) =

= g

!

γ
dσ

∂u
i(t, σ)
∂σ

δ(3)(x − u(t, σ)) =

= g

!

γ
du

i(t, σ)δ(3)(x − u(t, σ)) .

(2.17)

And if we consider the stationary case the time dependence disappear. Fixing the string position
to the negative semi-axis z we get (2.10) (Explicit derivation in Appendix III). From (2.17) we
can also obtain (2.3-a)

∇x · Bstring = g

!

γ
du(σ) · ∇xδ(3)(x − u(σ)) = −

!

γ
du(σ) · ∇uδ(3)(x − u(σ)) . (2.18)

Let u0 and uf be the points where the string γ originates and terminates so (2.18) is equal to

∇x · Bstring = gδ(x − u0) − gδ(x − uf ) . (2.19)

The right hand side is equal to the magnetic density of the charge g located at u0 and a magnetic
charge −g located at uf .

2.3 Lagrangian formulation

In this section I will present the Lagrangian of the system involving both electric and magnetic
charge, derived through the principle of least action. The procedure is analogous to the system
exclusively featuring the electric charge. This formulation will, in turn, yield the equation of
motion of the magnetic charge.

2.3.1 Principle of least action for the magnetic charge

The action of a system with electric and magnetic charge is composed of three parts, analogously
to the electrodynamics of electrically charged particles, namely I = IP + IA + II.

ITOT = IP + IA + II , (2.20)

IP = −me

!
dτ

,
ẏµẏµ − mg

!
dτ

,
żµżµ , (2.21)

IA = −1
4

!
FµνF

µν
d

4
x , (2.22)

II = −e

! !
dyµ

dτ
δ(4)(x − y(τ))Aµ(x)d4

xdτ . (2.23)

Where IP is the kinetic action for the (electric and magnetic) particles, IA is the action for the
electromagnetic field, where the presence of the monopole is taken into account in the field F

µν

as defined in (2.14). II describes the interaction of the electrically charged particle with the
electromagnetic field.

The Lagrangian ‘coordinates’ here are y
µ(τ), z

µ(τ), u
µ(τ, σ) and Aµ(x). Varying the action

with respect to Aµ(x) we get Equation (2.5-a). Equation (2.5-b) is automatically satisfied from
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the definition of C. Varying instead the monopole and the charged particle trajectories y
µ and

z
µ respectively we obtain

me
dp

µ
e

dτ
= e[∂µ

A
ν − ∂ν

A
µ]uν , mg

dp
µ
g

dτ
= g ∗ F

µν(z)uν . (2.24)

The first of the above equations is equal to the standard Lorentz force induced by the field
strength (2.14) everywhere except on the string. So one can replace ∂µ

A
ν − ∂ν

A
µ with Fµν if

the electric particle never passes through the string. So we impose the condition

y(τ) ∕= w(τ, σ) , (2.25)

which is known as Dirac’s veto. This implies that on the string the electric current is zero and
(2.24-a) becomes

me
dp

µ
e

dτ
= eF

µν(y)uν . (2.26)

The variation of the action with respect to the string coordinates produce

∂

∂zµ
F

νµ(y) = 0 → ∂

∂wµ
F

νµ(w) = 0 , (2.27)

holding at all points on the string worldsheet. (2.27) is not a new equation, since imposing
Dirac’s veto we get je(w) = 0, and (2.27) is a consequence of (2.5). By imposing the Dirac’s
veto we have obtained the generalized Maxwell-Lorentz equations from the variation of the
action (2.20). In this treatment the position of the string has remained undetermined.

2.4 Hamiltonian formulation

In order to derive the Hamiltonian of the system by performing the Legendre transformation we
should first of all derive the canonically conjugated momenta. The Lagrangian coordinates are
the electric charge and magnetic pole coordinates, the four-potential A

µ and the coordinate of
the string. Choosing a parametrization that singles out the time: t = y

0 = z
0 = w

0 = τ we find
the following momenta

p
i
e ≡ ∂L

∂ẏi
= me

ẏ
i

-
1 − ẏ2 + eA

i(t, y) , (1.58)

p
i
g ≡ ∂L

∂żi
= mg

ż
i

√
1 − ż2 + g

! ∞

0
dσ

$
π(w(σ)) × ∂u

∂σ

%i

, (2.28)

πµ ≡ ∂L

∂Ȧµ(t, x)
=

+
0 (µ = 0)
Ȧi(t, x) − ∂iA0(t, x) = Ei(t, x) (µ = i)

, (1.43)

p
i
u ≡ ∂L

∂u̇i(σ) = g

$
E(w(σ)) × ∂u

∂σ

%i

. (2.29)

The canonical Hamiltonian is then

HC = 1
2

!
d

3
x(E2+B

2)+
,

m2
e + k2

e+
,

m2
g + k2

g+
!

d
3
x eA0(t, x)

(
eδ(3)(x − y) −∇ ·E

)
. (2.30)

Where ke and kg are the kinetic momenta of the particles

k
i
e = p

i
e − eA

i(y) = meẏ
i
, k

µ
g = p

i
g − g

! ∞

0
dσ

$
E(w(σ)) × ∂u

∂σ

%i

= mż
i
. (2.31)
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Since in the canonical momenta not all the velocities q̇ can be expressed as function of the
q

′
s and the p

′
s the total Hamiltonian must be of the form of (1.66). The two primary constraints

which follow from (1.43) and (2.29) are

π0(x) ≈ 0 , (1.44)

ϕi(σ) ≡ p
i
u(σ) − g

$
E(w(σ)) × ∂u

∂σ

%i

≈ 0 . (2.32)

The Hamiltonian plus primary constraints is

H
∗ = HC +

!
d

3
xλ0(t, x)π0(t, x) +

!
d

3
x λ(σ) · ϕ(x) , (2.33)

where λ0 and λ are Lagrange multipliers.
To make a consistent description we need to verify if the constraints are conserved during the

time evolution of the system as we did in Section 1.3.3 via the Poisson bracket. First consistency
condition χ(x) = {π0

, H} is (1.67) which we discussed in the previous chapter, the second one
{ϕ(σ), H} is

χ(σ) ≡ dϕ(σ)
dt

=

= eg
ke-

m2
e + k2

e

× ∂u

∂σ
δ(w(σ) − y) − g

3

4

5

6 kg,
m2

g + k2
g

+ v0

7

8 × ∂u

∂σ

9

: ∇ · E(w(σ)) ≈ 0D .

(2.34)

The symbol 0D denotes a quantity which is zero if Dirac’s veto (2.25) holds, in fact equation
(2.34) actually vanishes independently of the multiplier λ(σ) in (2.33) after imposing (2.25).
So, by requiring π̇0(x) ≈ 0 and ϕ̇(σ) ≈ 0 we find two secondary constraints one of which is the
Gauss law. In order to have a correct formulation we should also check also the Poisson bracket
algebra for the constraints. All the brackets vanish identically and independently of the veto
except

{ξr
, ξs} = −egεrks ∂u

k

∂σ
δ(σ − σ′)δ(3)(y − y(σ)) = 0D . (2.35)

Then all our constraints are first class constraints when the veto holds. The total Hamiltonian
is thus

HTOT = H
∗ +

!
d

3
xλ1(t, x)χ(t, x) . (2.36)
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2.5 Quantization condition

This chapter will focus on the Dirac quantization condition. The first study of the quantization
of electric charge, first discussed in 1931 [1], led him to hypothesize the existence of magnetic
monopoles. Dirac had two objectives, firstly he wanted to explain the electric charge quantization
and, secondly, he wanted to find the reason for the observed experimental value of the elementary
electric charge. Dirac explicitly expressed these goals in [10]: “I was not searching for anything
like monopoles at the time. What I was concerned with was the fact that electric charge is
always observed in integral multiples of the electronic charge e, and I wanted some explanation
for it. There must be some fundamental reason in nature why that should be so, and also there
must be some reason why the charge e should have just the value that it does have. It has the
value that makes !c/e

2 approximately 137. And I was looking for some explanation of this 137.”
In his paper Dirac introduced the concept of semi-infinite magnetized lines (strings) terminating
in a monopole, which he used to establish the quantization condition eg = 1

2n!c, where n is an
integer.

The theoretical studies before Dirac’s proposal largely dismissed the existence of magnetic
monopoles. Maxwell’s equations, foundational to classical electrodynamics, were formulated
under the assumption of the nonexistence of free magnetic charges. Quantum mechanics, in its
early development, reinforced this point, with the necessity of incorporating the vector potential
in its formulation.

However, Dirac’s approach ingeniously reconciled these theoretical frameworks, as I showed
reporting his formulation in the previous sections. He succeeded in demonstrating that mag-
netic monopoles could indeed be integrated into the formulation of both classical and quantum
electrodynamics.

Following Dirac’s proposal, numerous derivations and interpretations have emerged, further
exploring and validating the quantization condition. These include semi-classical derivations by
Saha [11] and Wilson [12], and contributions by Fierz and Schwinger [9], which underscore the
robustness of Dirac’s theory within the broader spectrum of theoretical physics.

In this chapter, we delve into a detailed analysis of the Dirac quantization condition, ex-
ploring its mathematical support. The focus will be on how Dirac’s hypothesis of magnetic
monopoles serves not merely as a theoretical curiosity but as a fundamental element in under-
standing the nature of electric charge quantization.

Formulating an appropriate quantization condition

The integer coefficient N in Dirac’s quantization rule eg = 2πN is derived from the trigonometric
property that cos(2πN) equals one for N being an integer. This can also be represented as:

ei2πN = 1, (2.37)

which follows from Euler’s relation. In spherical coordinates, the azimuthal angle ϕ and ϕ + 2π
denote the same spatial point, which allows for the definition of function F (ϕ) that is single-
valued under 2π periodicity, i.e. F (ϕ) = F (ϕ + 2π). However, a function like F (ϕ) = ϕ does
not satisfy this periodicity condition.

For the complex function F (ϕ) = ei2kϕ, k must be confined to half-integer values to maintain
the function to be single-valued, leading to:

k = N

2 , N ∈ Z. (2.38)
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2.5.1 Transition to Quantum Mechanics

The transition to quantum mechanical theory is made by promoting the dynamical coordinates
and momenta to operators and their Poisson bracket to i times the corresponding commutators.
First class constraints (2.32) become now subsidiary conditions imposed on the state vector ψ,
explicitly

ϕj(σ)ψ = 0 , (2.39)

which in the space of coordinates corresponds to
;

−i
∂

∂uj(σ) − g

$
E(w(σ)) × ∂u

∂σ

%j
<

ψ(u) = 0. (2.40)

This can be integrated to give

ψ(u) = exp
$

−ig

!

S
dS · E(x)

%
ψ(u0), dS = ∂u

∂σ
dσ × du(σ) . (2.41)

where u0 corresponds to some fixed string position, S is a surface spanned by the string w0 =
z + u0 to w and dS is the infinitesimal surface element. If we rotate the string u back to
u0 position, S is a closed surface. Since the argument of the exponential in (2.41) is purely
imaginary, we can use the condition that the wave function must be a single-valued (2.38)
function of the string position to obtain

g

!

S
dS · E(x) = 2πN , (2.42)

with N an integer. The integral (2.42) can be solved thanks to the Gauss law, indicating with
V the volume enclosed by S we can write

g

!

V
d

3
x∇ · E(x) = eg = 2πN ⇒ eg

2π
= N (2.43)

Which is known as Dirac quantization condition.
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Reality of the string
In this chapter, I will show that the Dirac string is non-physical when the quantization condition
(2.43) is satisfied. The inability to detect the string arises from the irrelevance of its spatial
location and the principle of gauge invariance. Indeed, two vector potentials associated with
different strings originating from the same point differ by a gauge transformation.

3.1 Fields generated by the monopole

We should first calculate the electric and magnetic fields for the system including the magnetic
charge alone in order to show that the string term does not contribute in the result. Using (1.5)
for the field strength (2.14) and considering only the string contribution we find

E
i
string = ∗C

i0 = 0 , B
i
string = C

i0
. (3.1)

So for the total system we have

E = 0 , B̂ = ∇ × A = Bmon + Bstring . (3.2)

The curl of A is (2.9), substituting it into the expression for the magnetic field we find Bmon =
g/r

2
r̂. So, the electric and magnetic fields do not depend on the location of the string, therefore

the trajectory of a magnetic or electric charged particle will not be affected by the Dirac string.
However, the string is present in the vector potential as can be seen from the Figure 1. In the
next section I will show how a transformation of the string position affects this quantity and its
consequences.

3.2 Moving the string

As I mentioned in the previous chapter, Section 2.3.1, in both Lagrangian and Hamiltonian
formulation the position of the string is indeterminate. However when we change the Maxwell
equation in order to include the magnetic charge we are forced to introduce a vector potential
which is singular along the string. The vector potential (2.7), hence, takes in account the
position of the string through its form. We should then verify if two different strings, γ1 and γ2,
intersecting only at the origin lead to equivalent vector potentials which, for instance, differs by
a gauge transformation. According to Equation (2.8), in [8] it is shown that the Dirac’s vector
potential is defined in the domain Vγ = IR3\γ, considering two strings we can use a common
domain V0 = V1 ∩ V2 = IR3\Γ where Γ = γ1 ∪ γ2 is a curve extending from minus infinity to
infinity passing through the position of the monopole, this can be parameterized as

Γ = γ1 ∪ γ2 ↔ y(σ) =
+

y1(−σ) −∞ < σ < 0
y2(σ) 0 ≤ σ < ∞

(3.3)

Since both potentials A1 and A2, in V0, lead to the same magnetic and electric field as argued
in the previous section they fulfill the identities

∇ × A1 = B = ∇ × A2 ⇒ ∇ × (A2 − A1) ≡ 0 . (3.4)

Hence in V0 the form A2−A1 is closed, however it is not exact since the domain is not contractible
so it’s not possible to use the Poincaré lemma. To restore this feature it is possible to restrict the
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domain introducing an infinitely extended surface Σ whose boundary is the curve Γ. A possible
parametrization of the surface Σ is

y(σ, u) −∞ < σ < ∞ 0 ≤ u <∞ (3.5)

And the boundary condition reads y(σ, 0) = y(σ). With this restriction we obtain a contractible
domain, Σ corresponds in fact to an infinitely extended half-plane, so the Poincaré lemma ensures
that in IR3\Σ the form A2 − A1 is exact, there exists then a scalar function Λ(x) such that

A2 − A1 = ∇Λ for all x ∈ IR3\Σ . (3.6)

In the restricted domain IR3\Σ the Dirac potentials A1 and A2, differs by a gauge transforma-
tion, so the change of the Dirac string is equivalent to a gauge transformation.

3.3 Gauge function

A possible gauge function for (3.6) is given by Lechner [8] and it is the result of the two integrals
of the form (2.8) over the surface Σ

Λ(x) = g

!

Σ

x
k − x

′k

|x − x′|3 dΣk
. (3.7)

This function is regular in domain IR3\Σ and it is singular for x ∈ Σ, in particular the singularity
of the gauge function corresponds to a finite discontinuity when x crosses the surface Σ. In order
to determine this discontinuity we should consider an arbitrary closed loop G passing through
x and intersecting Σ only at one point x. In this way, the loop G circles the curve Γ just once.
The discontinuity can be therefore evaluated through the integral

∆Λ(x) =
!

G
dΛ =

!

G
∇Λ · dx =

!

G
(A2 − A1) · dx . (3.8)

Since A1 and A2 are well defined in IR3\Γ, the integral can be considered as the integral along
the whole loop G and therefore can be evaluated by Stokes’ theorem. By the way there exists
no surface S with boundary G such that on S both A1 and A2 are well defined, S necessarily
intersects at least one of the Dirac strings γ1 and γ2. However it is possible to defined two
distinct surfaces S1 and S2, such that ∂S1 = G = ∂S2, in which, respectively, A1 and A2 are
regular. Under these hypothesis it is possible to apply Stokes’ theorem

∆Λ(x) =
!

G
A2 · dx −

!

G
A1 · dx =

!

S2
∇ × A2 · dΣ −

!

S1
∇ × A1 · dΣ =

=
!

S2
B · dΣ −

!

S1
B · dΣ =

!

S1∪S2
B · dΣ = g .

(3.9)

Where in the last step the Gauss theorem for the magnetic charge has been used. We can
conclude that the discontinuity of the gauge function Λ(x) is independent of the transition point
x ∈ Σ and is equal to the charge of the monopole.

3.3.1 General case

If we do not restrict the domain to IR3\Σ the difference of the two vector potentials referred
respectively to γ1 and γ2 strings is different, namely

A2 − A1 = ∇Λ − 4πg

!

Σ
δ(3)(x − x

′) dΣ′
. (3.10)
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If we momentarily neglect the δ term, so basically we stick for a moment to the restriction of the
domain IR3\Σ, and we focus on the first term ∇Λ we notice that equation (3.7) can be written
as

Λ(x) = gΩΣ(x). (3.11)

In (3.11) ΩΣ is the solid angle subtended by the surface Σ, the complete derivation of the solid
angle is done in Appendix V, this allows us to give a geometrical interpretation to the gauge
function (3.7)

Figure 2: Representation of a magnetic monopole g as the end of a line of dipoles or as the end
of a tightly wound solenoid that stretches off to infinity. The potentials A1 and A2 correspond
to the strings γ1 and γ2

Comparing now Equation (3.10) and Equation (3.6), in addition to interpreting Λ with the
solid angle Ω, a new term involving the delta function appears due to the choice of the domain.
Jackson [7] notes that, when the observation point crosses the surface Σ the solid angle ΩΣ
suddenly changes by 4π. This discontinuity of ΩΣ at the surface Σ gives rise to a δ-function of
magnitude 4π whenever ∇ΩΣ is evaluated at a point x located on the surface Σ. Nevertheless,
the resulting δ-function within ∇ΩΣ is effectively cancelled out by the δ term in eq. (3.10). This
means that A2 − A1 is a well-defined, continuous function across all x except along the closed
loop Γ. Thus the inclusion of δ term is essential in (3.10).

3.3.2 Connection to the quantization condition

A strong point of the theory is that we can connect this result to the quantization condition
(2.43). Considering the Schrödinger equation in natural units for a non-relativistic particle of
mass m and electric charge q coupled to a time-independent Dirac potential A(x) given by (2.8)

i
∂Ψ
∂t

= 1
2m

(−i∇ − qA)2 Ψ. (3.12)

This equation is known to be invariant under the gauge transformations of the form A
′ = A+∇Λ

with a corresponding change of the phase of the state vector

Ψ′ = eiqΛ Ψ, (3.13)
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where Λ(x) is a time-independent gauge function. Considering the case in which the gauge
function represents the change of the string location from γ1 and γ2 we can substitute the gauge
function with equation (3.11). Consider now the value Ω1 corresponding to one side of the
surface S and the value Ω2 corresponding to the other side. They are related by Ω1 = Ω2 + 4π.
It follows that eiqgΩ1 = eiqg(Ω2+4π)

. This means that the wave function of the charge q differs
by the quantity eiqg, and this would make the Dirac string observable as the charge crosses the
surface, unless we impose the quantization condition (2.43), i.e, to ensure the un-observability
of the string we are force to impose the Dirac quantization condition.

3.4 Field momentum

This chapter delves into the examination of "Field momentum and the reality of the Dirac
String" by Singleton and Gonuguntla [3]. Their work, through the analysis of electromagnetic
field momentum in a system involving magnetic monopoles and the Dirac string, aimed to show
the reality of the Dirac string. However, through an accurate analysis, I aim to uncover some
fundamental inaccuracies in their interpretation that invalidate their conclusions.

The two authors claim that even if, thanks to the Dirac quantization condition, the string
is unobservable as I discussed in the previous sections, it is instead detectable when an electric
field is present. The definition of the field momentum given in [3] is

PEM = 1
4π

!
(E × B̂)d3

x , (3.14)

where B̂ = ∇ × A is defined in (2.9). The system under consideration is an electric charge
at the location r0 plus a magnetic monopole in the origin. The form of the electric field is
E = q(r − r0)/r

3 and the form of the physical magnetic field of the monopole was assumed by
Singleton and Gonuguntla to be given by Equation (2.9), so it can be divided into the monopole
contribution and the string contribution.

The field momentum, considering only the contribution of Bmon is

PEM = 1
4π

!
(E × Bmon)d3

x = qg

4π

! $
r − r0

r3 × r̂

r2

%
d

3
x = 0 . (3.15)

As expected it is zero. The discussion of the two authors continues showing that the string
term (2.10) in Equation (3.14) does contribute a non-zero part to the field momentum. This is
actually true, in fact the integral

P
string
EM = 1

4π

!
(E × Bstring)d3

x = qg

4π

! $
r − r0

r3 × 4πgδ(x)δ(y)Θ(−z)ẑ
%

d
3
x (3.16)

is not zero. This does not mean that the center-of-energy theorem from special relativity is
violated nor that there is some hidden momentum in the system [3] that balances the electro-
magnetic field momentum from (3.16). The total field momentum of the system is (3.15) because
as remarked in Section 3.1, the physical magnetic field of the system involving a magnetic charge
is (2.11) (in accordance with the definition of the field strength (2.14)) and not (2.9), so the
string contribution does not appear.

This becomes more evident when we consider the presence of the magnetic charge in the
classical Maxwell equations where the vector potential never appears. Thus, we can construct
the dynamical theory simply by employing the modified Maxwell equations (2.3), which alone
are sufficient for determining the field momentum. The difficulty emerges when employing the
Lagrangian and Hamiltonian formalisms, which account for the vector potential. As reported
in this work, the method to incorporate the vector potential, reconciling thus ∇ · B ∕= 0 and
B̂ = ∇ × A, is to introduce a singularity in the form of A associated with the Dirac string that
bears no physical significance.
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Conclusion
In this work we have studied magnetic monopoles in the electrodynamics theory. At first we have
introduced the theory for only the electric charge, then we add the magnetic charge according
to Dirac works [1] and [2].

In this derivation, the magnetic monopole is attached to a Dirac string for which we have
presented a complete dynamical theory via the Lagrangian and Hamiltonian formalism. By
considering an appropriate quantum mechanics description of monopoles we obtained the quan-
tization condition for the electric and magnetic charge.

Moreover requiring the location of the string to be irrelevant, it is shown that the two
arbitrary positions of the string are connected with two gauge potentials, implying that the
change of a string to another string is equivalent to a gauge transformation involving a multi-
valued gauge function.

At the end we have analyzed an assertion that the string could be detected by an experiment.
A recent paper [3] claimed that there should be a non-zero contribution to the field momentum
of the system of an electric and magnetic charge. However, this is incorrect since the Dirac
string contribution does not appear in the expressions of the physical magnetic and electric field
of the system.
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Appendix
A. Aharanov-Bohm effect

According to the Aharanov-Bohm effect [16] the vector potential can affect the motion of charged
particle in regions where the B field vanishes. Since we can interpret the Dirac string as a tightly
wound solenoid that stretches off to infinity it is interesting to study whether an Aharanov-Bohm
experiment would eventually detect the string.

Considering a double-slit AB experiment with a Dirac string placed between the slits, when
charged particles are emitted and passed through the slits, we should be able to detect the
presence of the vector potential through the phase introduced in the wave function. This phase
manifests as an interference pattern on a screen positioned in front of the slits.

Path 1

Path 2

A B Dirac string C

In a region where there is no vector potential the wave function is just the sum of the wave
functions of the charges passing through the slits 1 and 2, so Ψ = Ψ1 + Ψ2. Since the Dirac
string is situated between the two slits, it becomes evident that the wave functions acquire a
phase shift due to the string potential

Ψ = eiq
2

1 As·dl1 Ψ1 + eiq
2

2 As·dl2 Ψ2 =

=
$

Ψ1 + eiq
=

C
As·dlC Ψ2

%
eiq

2
1 As·dl1 =

=
$

Ψ1 + eiqg Ψ2

%
eiq

2
1 As·dl1

.

(A.1)

Where we used
>

C
As · dlC =

!

2
As · dl2 −

!

1
As · dl1 (A.2)

and (3.9) to set the first integral equal to g. In (A.1), the relative phase between Ψ1 and Ψ2 is
of interest, as it is what would be detectable by the experiment. The effect of the Dirac string
would be unobservable if eiqg = 1 and this implies the Dirac quantization condition qg = 2πN.

Under this condition, the probability density becomes P = |Ψ1 + Ψ2|2, meaning that no change
in the interference pattern would be observed due to the Dirac string.
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B. Avoiding Dirac string

The implementation of the magnetic charge and the derivation of the Dirac quantization condi-
tion involves some unpleasant features like singular gauge transformations and singular poten-
tials. Wu and Yang [17] propose a theory that includes magnetic monopoles without necessitat-
ing these singularities, thereby maintaining the symmetry of Maxwell’s equations.

The approach used by Wu and Yang is to use different vector potentials in different regions of
space. By adopting this method, magnetic monopoles can be incorporated into electrodynamics
without the need to introduce the Dirac string into the vector potential. This approach is
compatible with the observations made from the Aharonov-Bohm effect, as the vector potential
is not visible in the experiment and resolves the issue of non-integrable phase factors in (A.1).

The vector potential (2.7) is non-singular if it is defined in different domains as follows

AN = g
1 − cos θ

r sin θ
φ̂ RN : 0 ≤ θ ≤ π

2 + δ , r > 0 , 0 ≤ φ ≤ 2π , all t (B.1)

AS = −g
1 − cos θ

r sin θ
φ̂ RS : π

2 − δ ≤ θ ≤ 0, r > 0 , 0 ≤ φ ≤ 2π , all t (B.2)

with an overlap extending throughout π/2− δ <θ< π/2+δ and assuming 0 ≤δ ≤ π/2. Further-
more AN and AS are non-global functions since they are defined in their respective domain. The
region RN removes the negative semi-axis θ = π, viceversa, RS removes the positive semi-axis
θ=0, the total domain IR3 is then divided into the two overlapping hemispheres, north RN and
south RS.

In general the four-potentials A
N
µ and A

S
µ are well-defined, and the field strength is

∂µA
N
ν − ∂νA

N
µ = Fµν = ∂µA

S
ν − ∂νA

S
µ . (B.3)

In the overlapping region R ∩ := RN ∩ RS , the potentials can only differ by a gauge transforma-
tion, implying:

A
N
µ − A

S
µ = αµ ⇒ ∂µαν − ∂ναµ = 0 in R ∩. (B.4)

Moreover, when considering a closed surface surrounding the monopole and performing a line
integral over a loop Γ on this surface within R ∩, we find:

>

Γ
αµdγµ = g , (B.5)

Since the line integral is equal to the outward magnetic flux across R = RN ∪ RS. This integral
serves as a consistency condition for αµ. A consequence of this formalism is the equation

∂µ ∗ F
µν = j

ν
g , (B.6)

which mirrors the analogous characteristic in Dirac’s formulation.
It is crucial to emphasize that within the Wu and Yang monopole framework, we deal with

two distinct vector potentials, AN and AS which are defined in two separate regions RN and RS.
These regions are subjected to condition (B.1-b) and (B.2-b).

As argued in [18], by the same authors of [3], there is an assertion that these two vector
potentials can be unified into a single expression. This assumption leads to the calculus of
non-zero field momentum analogously to the argument in [3] for the Dirac string. However, as
explained in [19], this assertion is incorrect. According to [17] the vector potential can only
be properly defined in each of many overlapping regions of spacetime. In (B.1-b)-(B.2-b) it
is essential that δ > 0; hence taking the limit δ → 0 is not possible. Therefore defining a
non-singular vector potential for the domain R = RN ∪ RS is not feasible.

25



C. Calculations

I Derivation of Equation 1.62

(i) Lagrangian

L = −m

,
−ẏµẏµ − eAµẏ

µ (I.1)

(ii) Conjugate momenta pµ

pµ ≡ ∂L

∂ẏµ
=

.
/0

/1

m
ẏ0√

ẏ0ẏ0−ẏiẏi
− eA0 (µ = 0)

m
ẏi√

ẏ0ẏ0−ẏiẏi
− eAi (µ = i)

(I.2)

(iii) Hamiltonian via Legendre transformation

H = pµẏ
µ − L =

= m
ẏµẏ

µ

-
−ẏµẏµ

− eAµẏ
µ + m

,
−ẏµẏµ + eAµẏ

µ = 0
(I.3)

(iv) Primary constraint from the definition of conjugate momenta

pµ + eAµ = m
ẏµ-

−ẏµẏµ

squaring both sides
(pµ + eAµ)(pµ + eA

µ) = −m
2

(pµ + eAµ)(pµ + eA
µ) + m

2 = 0
(p0 + eA0)2 = m

2 + (p + eA)2

(I.4)

(v) Gauge fixing yµ = (τ, y)

Lagrangian: L = −m

,
1 − ẏ2 − e(−A0 + A · ẏ) (I.5)

Conjugate momenta: p ≡ ∂L

∂ẏ
= m

ẏ√
1 − ẏ

− eA (I.6)

(vi) Hamiltonian via Legendre transformation

H = p · ẏ − L =

= m
ẏ

2
√

1 − ẏ
− eA · ẏ + m

,
1 − ẏ2 − eA0 + eA · ẏ =

= m
ẏ

2
√

1 − ẏ
− eA · ẏ + m

(1 − ẏ
2)

-
1 − ẏ2 − eA0 + eA · ẏ =

= m
1

-
1 − ẏ2 − eA0 = p0 = +

−

,
m2 + (p + eA)2 − eA0

(I.7)

Where I choose + because the Hamiltonian must be positive defined.
(vii) Introduction of kinetic moneta kµ = (k0, k)

Hcharge =
-

m2 + k2 − eA0 (I.8)
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II Derivation of Equation (2.10)

The curl of Equation (2.7) gives

∇ × Aγ = ∇ ×
$

∇ ×
? !

γ

g dγ ′

|x − x′|

@%

= ∇
$

∇ ·
? !

γ

g dγ ′

|x − x′|

@%
− ∇2

? !

γ

g dγ ′

|x − x′|

@

= g∇
!

γ
∇ ·

$
dγ ′

|x − x′|

%
− g

!

γ
∇2

$ 1
|x − x′|

%
dγ ′

(II.1)

Using the result ∇ · (dγ ′
/|x − x

′|) = dγ ′ · ∇(1/|x − x
′|), the first integral becomes

!

γ
∇ ·

$
dγ ′

|x − x′|

%
=

!

γ
∇

$ 1
|x − x′|

%
· dγ ′

= −
!

γ
∇′

$ 1
|x − x′|

%
· dγ ′

= − 1
|x − x′|

(II.2)

Considering Equation (II.2), the first term of Equation (II.1), yields the field of the magnetic
monopole

g∇
!

γ
∇ ·

$
dγ ′

|x − x′|

%
= g∇

$
− 1

|x − x′|

%
= g

r2 r̂, (II.3)

where we have used ∇(1/|x − x
′|) = −r̂/r

2
. The second term of Equation (II.1) yields the

magnetic field of the Dirac string

−g

!

γ
∇2

$ 1
|x − x′|

%
dγ ′ = 4πg

!

γ
δ(x − x

′) dγ ′
, (II.4)

where we have used ∇2(1/|x − x
′|) = −4πδ(x − x

′). To derive Equation (2.11), we first take the
curl of Equation (2.7) written in rectangular coordinates,

∇ × Aγ =∇ ×
$

∇ ×
?

ẑ

! 0

−∞

g dz
′

|x − z′ẑ|

@%

= ∇
$

∇ ·
?

ẑ

! 0

−∞

g dz
′

|x − z′ẑ|

@%
− ∇2

?
ẑ

! 0

−∞

g dz
′

|x − z′ẑ|

@

=∇
! 0

−∞

∂

∂z

$
dz

′

|x − z′ẑ|

%
− g ẑ

! 0

−∞
∇2

$
dz

′

|x − z′ẑ|

%
(II.5)

To simplify the first term we may write

∂

∂z

$ 1
|x − z′ẑ|

%
= − z − z

′

A
x2 + y2 + (z − z′)2B3/2 , (II.6)

so that
! 0

−∞

∂

∂z

$
dz

′

|x − z′ẑ|

%
= −

! 0

−∞

z − z
′

A
x2 + y2 + (z − z′)2B3/2 dz

′
. (II.7)
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Consider the substitution u(z′) = x
2 + y

2 + (z − z
′)2. Hence, du = −2(z − z

′)dz
′
, and the

right-hand side of the integral in Equation (II.7) takes the form

1
2 lim

β→∞

! u(z′=0)

u(z′=−β)

du

u3/2 = lim
β→∞

−1√
u

""""
u(z′=0)

u(z′=−β)
= − 1

|x| + lim
z′→−∞

1
|x − z′ẑ| = −1

r
. (II.8)

Using this result in the first term in Equation (II.5) we obtain the monopole field

g∇
! 0

−∞

∂

∂z

$
dz

′

|x − z′ẑ|

%
= g∇

$
− 1

r

%
= g

r2 r̂. (II.9)

To simplify the second term in Equation (II.5) consider

∇2
$ 1

|x − z′ẑ|

%
= − 4πδ(x − z

′
ẑ) (II.10)

= − 4πδ(x)δ(y)δ(z − z
′). (II.11)

Using this equation in the second term of Equation (II.5) we obtain the string field

−gẑ

! 0

−∞
∇2

$
dz

′

|x − z′ẑ|

%
=4πgδ(x)δ(y)

? ! 0

−∞
δ(z − z

′)dz
′
@

ẑ (II.12)

=4πgδ(x)δ(y)Θ(−z)ẑ (II.13)

where in the last step we have used the integral representation of the step function Θ(ξ −
α) =

2 ξ
−∞ δ(τ − α)dτ to identify the quantity within the brackets { } in Equation (II.13) as

Θ(−z) =
2 0

−∞ δ(z − z
′)dz

′
.

III Derivation of Equation (2.17)

B
i
string(x) = C

i0(x) = −g

! ! C
∂w

i

∂τ

∂w
0

∂σ
− ∂w

0

∂τ

∂w
i

∂σ

D

δ(4)(x − w(τ, σ))dτdσ (III.1)

Choosing a parametrization for the string that singles out the time w
µ = (τ, w(τ, σ)) we have

∂w0

∂τ = 1 and ∂w0

∂σ = 0. In addition, since w
µ(τ, σ) = z

µ(τ) + u
µ(τ, σ), ∂wi

∂σ = ∂ui

∂σ

Bstring(t, x) = g

! !
∂u(τ, σ)

∂σ
δ(t − τ)δ(3)(x − u(τ, σ))dτdσ = (III.2)

= g

!
∂u(t, σ)

∂σ
δ(3)(x − u(t, σ))dσ (III.3)

We can drop the time dependence assuming the system to be stationary. If we require that the
string lies along the negative z-axis an easy parametrization is u(σ) = (0, 0, σ) with σ ∈ (0, −∞),
whoose derivatives respect to σ is ẑ. Then

Bstring(x) = g

! 0

−∞
ẑδ(x)δ(y)δ(z − σ)dσ = gẑδ(x)δ(y)Θ(−z) (III.4)
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IV Derivation of Equation (2.24-a)

The action regarding the electric charge is

Ie = −
!

j
ν
Aνd

4
x − me

!
dτ (IV.1)

Varying the action with respect y
µ

δy

$!
j

µ
Aµd

4
x − me

!
dτ

%

=
! $

dp
µ
e

dτ
− e(∂µ

A
ν − ∂ν

A
µ)vν

%
δyµdτ =

=
! $

dp
µ
e

dτ
− e(∂µ

A
ν − ∂ν

A
µ + ∗C

µν)vν

%
δyµdτ + e

!
∗C

µν
vνδyµdτ

=
! $

dp
µ
e

dτ
− eF

µν
vν

%
δyµdτ + δy

$1
2

!
d

4
x ∗ CµνC

µν
e

%

(IV.2)

Where C
µν
e is associated with a formal Dirac string worldsheet attached to the electric current.

The last term is eg times the number of intersections between the Dirac string worldsheet of
the electric particle and the monopole. Under infinitesimal variations of the electric particle
worldline it is zero. So the the variation of the action (IV.1) leads to the standard Lorentz force
(2.24-a)

me
dp

µ
e

dτ
= eF

µν(y)uν (IV.3)

V Derivation of Equation (3.10)

Starting from (2.8)

A2−A1 = g∇ ×
>

Γ

dγ ′

|x − x′| . (V.1)

Using Stoke’s theorem and ∇(1/|x − x
′|) = −∇′(1/|x − x

′|),

A2 − A1 = − g∇ ×
!

Σ
∇′

$ 1
|x − x′|

%
× dΣ′

= ∇ ×
$

∇ ×
? !

Σ

g dΣ′

|x − x′|

@%

= ∇
$

∇ ·
? !

Σ

g dΣ′

|x − x′|

@%
− ∇2

? !

Σ

g dΣ′

|x − x′|

@
(V.2)

Making use of ∇ · (dΣ′
/|x − x

′|) = dΣ′ · ∇(1/|x − x
′|) Equation (V.2) reads

A2 − A1 = g∇
!

Σ
∇

$ 1
|x − x′|

%
· dΣ′ − g

!

Σ
∇2

$ 1
|x − x′|

%
dΣ′

= g∇
!

Σ

(x′ − x) · dΣ′

|x − x′|3 + 4πg

!

Σ
δ(3)(x − x

′) dΣ′
(V.3)

where we have used ∇(1/|x − x
′|) = −(x − x

′)/|x − x
′|3 and ∇2(1/|x − x

′|) = −4πδ(3)(x − x
′).

The integral in the first term is the solid angle

ΩΣ(x) =
!

Σ

(x′ − x) · dΣ′

|x − x′|3 , (V.4)

and therefore we obtain (3.10).
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