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Introduction

Congruent numbers are rational numbers which are the area of a right trangle

having rational sides. Recognizing these numbers is a classic, still unsolved,

problem in Number Theory known as the Congruent Number Problem.

In this context, the word “congruent” comes from the Latin word con-

gruum, meaning an arithmetic progression of three square rational numbers.

As we shall see in Chapter 1, congruent numbers are precisely those that

appear as difference in two consecutive terms in these progressions. We will

also see that it suffices to limit our study to squarefree positive integers,

rather than considering all positive rational numbers.

While it is clear that any rational right triangle has rational area, the

converse is false.

Example 0.1. The first squarefree integers that happen to be congruent num-
bers are

• n = 5 is the area of the (3/2, 20/3, 41/6) triangle.

• n = 6 is the area of the (3, 4, 5) triangle.

• n = 7 is the area of the (35/12, 24/5, 337/60) triangle.

At first glance it is not obvious at all whether or not a given integer is a

congruent number. To give an idea, n = 53 is a congruent number, and a

rational right triangle that has area 53 has sides
(

1472112483

202332130
,
21447205780

1472112483
,
4850493897329785961

297855654284978790

)

while n = 1, the simplest squarefree positive integer, is not congruent. We

shall prove it later.
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Contents

The goal of this thesis is to show how the Congruent Number Problem

can be studied using the arithmetic of elliptic curves, which allows us to give

a different and deeper characterization of congruent numbers.

The link between congruent numbers and elliptic curves will be made

clear in Chapter 1, while in Chapter 2 we will introduce the theory of elliptic

functions and elliptic curves defined over C. In Chapter 3 we will consider

elliptic curves defined over finite fields, which we will need in Chapter 4. In

Chapter 4 we will state and prove the main results, namely we show that a

squarefree positive integer n is a congruent number if and only if a specific

elliptic curve over Q has non-torsion rational points.

The study of congruent numbers goes far beyond this last result, and in

Chapter 5 we give a glimpse at how L-functions allow us to go even deeper.
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Chapter 1

Congruent numbers

In this chapter we explain how congruent numbers are related to a particular

family of elliptic curves over Q.

Definition 1.1. A congruent number is a positive rational number that is

the area of a rational-sided right triangle.

If r ∈ Q, then we can find another rational number s ∈ Q such that

s2r is a squarefree positive integer. Indeed, suppose r = a/b and that a
and b are coprime integers and have prime decompositions pe11 p

e2
2 · · · penn and

qf11 q
f2
2 · · · qfmn respectively. Let l = b/a ·C, where C = (

∏

qj) · (
∏

pi) and the

products are taken over all primes having odd exponent. It is easy to check

that l is the square of some rational number s having the desired property.

Now let r ∈ Q be the area of a right triangle with sides X, Y, Z ∈ Q. If

we take s ∈ Q as above then the triangle sX, sY, sZ has area s2r, which is

a squarefree positive integer. Thus we can assume without loss of generality

that congruent numbers are squarefree positive integers.

The condition that n is a congruent number says that the equations

X2 + Y 2 = Z2 and XY/2 = n have a simultaneous rational solution X, Y, Z.

In the following proposition we derive an equivalent condition for n to be a

congruent number.

Proposition 1.2. Let n be be a fixed squarefree positive integer. Let X, Y, Z
denote rational numbers, with X < Y < Z and X2 + Y 2 = Z2. There

is a one-to-one correspondence between right triangles with legs X and Y ,
hypotenuse Z, and area n and rational numbers x for which x, x + n and
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Chapter 1. Congruent numbers

x− n are each the square of a rational number. The correspondence is:

(X, Y, Z) 7→ x = (Z/2)2

x 7→ (
√
x+ n−

√
x− n,

√
x+ n+

√
x− n, 2

√
x)

In particular, n is a congruent number if and only if there exists x such that

x, x+ n, x− n are squares of rational numbers.

Proof. First suppose that X, Y, Z is a triple with the desired properties:

X2 + Y 2 = Z2, XY/2 = n. If we add or subtract four times the second

equation from the first we obtain: (X±Y )2 = Z2±4n. If we then divide both

sides by four, we see that x = (Z/2)2 has the property that the numbers x±n
are the squares of (X±Y )2. Conversely, given x with the desired properties,

it easy to see that the three positive rational numbers X < Y < Z given by

the formulas in the proposition satisfy: XY = 2n, and X2 + Y 2 = 4x = Z2.

Finally, to establish the one-to-one correspondence, it only remains to verify

that this map is injective. Assume, for the sake of contradiction, that two

different triples (X1, Y1, Z1) and (X2, Y2, Z2) lead to the same x, this forces

Z1 = Z2 and X1 ̸= X2, Y1 ̸= Y2. We still have that X1Y1 = X2Y2 = 2n,

thus X1/X2 = Y2/Y1 = k for some k > 0. Together with the relations

X2
1 + Y 2

1 = Z2
1 and X2

2 + Y 2
2 = Z2

2 , this gives (X2
2 − Y 2

1 )(k
2 − 1) = 0. It

must be X2 = Y1 otherwise we would have X1 = X2 and Y1 = Y2. Now,

if 0 < k < 1 then Y2 < Y1 = X2 contradicting the fact that X2 < Y2. If

instead k > 1 then X1 > X2 = Y1 contradicting X1 < Y1. This proves that

two such different triples cannot exist and the map is injective.

In the proof of the previous proposition we obtained the equations

(X ± Y )2/4 = (Z/2)2 ± n

whenever X, Y, Z are the sides of a triangle with area n. If we multiply

together these two equations, we obtain ((X2 − Y 2)/4)2 = (Z/2)4 − n2.
This shows that the equation u4 − n2 = v2 has a rational solution, namely,

u = Z/2 and v = (X2 − Y 2)/4. We next multiply through by u2 to

obtain u6 − n2u2 = (uv)2. If we set x = u2 = (Z/2)2 and further set

y = uv = (X2 − Y 2)Z/8, then we have a pair of rational numbers (x, y) sat-

isfying the following cubic equation:

y2 = x3 − n2x.

6



Chapter 1. Congruent numbers

Thus, given a right triangle with rational sides X, Y, Z and area n, we obtain

a point (x, y) in the xy-plane having rational coordinates and lying on the

curve y2 = x3 − n2x. Conversely, can we say that any point (x, y) with

x, y ∈ Q which lies on the cubic curve must necessarily come from such a

right triangle ? To answer this question we first give the following lemma.

Lemma 1.3. A Pythagorean triple verifies gcd(X, Y, Z) = 1 if and only if
there exists two relatively prime positive integers a < b, not both odd, and

such that X = a2− b2, Y = 2ab, Z = a2+ b2. We will call these Pythagorean
triples primitive.

Proof. (⇒) Suppose that X, Y, Z is a primitive Pythagorean triple. Observe

thatX and Y cannot both be odd, otherwise Z would not be divisible by four

and hence would not be the square of an even integer. Suppose without loss

of generality that Y is even, then we have (Y/2)2 = (Z +X)/2 · (Z −X)/2,
and since gcd(X,Z) = 1 then gcd((Z + X)/2, (Z − X)/2) = 1. Since

we have an equality between a square integer the product of two coprime

integers this implies that (Z + X)/2 and (Z − X)/2 are both squares. If

we put a2 = (Z + X)/2, b2 = (Z − X)/2 then we have that X = a2 − b2,

Y = 2ab and Z = a2 + b2.
(⇐) Let a < b be two positive coprime integers, not both odd. Let

X = a2− b2, Y = 2ab, Z = a2+ b2. It is immediate to check that X, Y, Z is

a Pythagorean triple, we only need to prove that it is primitive. Suppose, for

the sake of contradiction, that gcd(X, Y, Z) > 1, then there exists a prime

integer p such that p | (a2 − b2), p | 2ab, p | (a2 + b2). If p = 2 then

p | (a + b), so a and b have the same parity, contradicting the hypothesis.

If intead p > 2 then from p | (a + b)(a − b) follows that p | gcd(a, b), again

contradicting the hypothesis. This proves the lemma.

We are now ready to give a necessary and sufficient condition for a rational
point on the curve y2 = x3 − n2x to come from a right triangle X, Y, Z with

rational sides and area n.

Proposition 1.4. Let (x, y) be a point with rational coordinates on the curve
given by the equation y2 = x3 − n2x. Then there exists a right triangle with
rational sides and area n which corresponds to x (under the correspondence

in Proposition 1.2) if and only if x satisfies the two conditions: (i) it is the
square of a rational number and (ii) its denominator is even.
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Chapter 1. Congruent numbers

Proof. (⇒) Suppose that X, Y, Z is a right triangle with rational sides and

area n such that x = (Z/2)2. Obviously x is the square of a rational num-

ber. To see why is must have denominator divisible by 2 notice that the

triangle X, Y, Z can be obtained strting with a primitive Pythagorean triple

X ′, Y ′, Z ′ corresponding to a right triangle with integral sides X ′, Y ′, Z ′ and

area s2n, and then dividing the sides by s to get X, Y, Z. But in a primitive

Pythagorean triple X ′ and Y ′ have different parity, and Z ′ is odd. We con-

clude that (1) x = (Z/2)2 = (Z ′/2s)2 has denominator divisible by 2 and

(2) the power of 2 dividing the denominator of Z is equal to the power of 2

dividing the denominator of one of the other two sides, while a strictly lower

power of 2 divides the denominator of the third side.

(⇐) Let u =
√
x ∈ Q+. We work backwards through the sequence of

steps that brought us to the cubic equation. That is, set v = y/u so that

v2 = y2/x = x2 − n2, i.e. v2 + n2 = x2. Now let t be the denominator of

u, i.e. the smallest positive integer such that tu ∈ Z. By assumption, t is

even. Notice that the denominators of v2 and x2 are both equal to t4. Thus

t2v, t2n, t2x is a primitive Pythagorean triple, with t2n even. By Lemma 1.3,
there exist integers a and b such that: t2n = 2ab, t2v = a2−b2, t2x = a2+b2.
Then the right triangle with sides 2a/t, 2b/t, 2u has area 2ab/t2 = n, as

desired. The image of this triangle X = 2a/t, Y = 2b/t, Z = 2u under

the correspondence in Proposition 1.2 is x = (Z/2)2 = u2. This proves the

proposition.

Remark 1.5. Proposition 1.4 implies that if we restrict the codomain of the

map described in Proposition 1.2 to rational numbers x with even denomi-

nator such that x, x+ n, x− n are all squares of rational numbers then the

correspondence is also surjective.

Now we prove that n = 1 is not a congruent number.

Theorem 1.6. 1 is not a congruent number.

Proof. Suppose, for the sake of contradiction, that n = 1 is a congruent

number and let X, Y, Z ∈ Q be the sides of the associated rational right

triangle. It is easy to show that there exists a rational number s ∈ Q+ such

that sX, sY, sZ are relatively prime integers. Rename the sides as X ′, Y ′, Z ′.
Thus X ′2 + Y ′2 = Z ′2 is a primitive Pythagorean triple whose triangle has

area s2. By the above lemma there exist a > b relatively prime positive

8



Chapter 1. Congruent numbers

integers of opposite parity such that

X ′ = a2 − b2 Y ′ = 2ab Z ′ = a2 + b2.

The (X ′, Y ′, Z ′) triangle has area X ′Y ′/2 = ab(a + b)(a − b) = s2. This

means that s is an integer, and since a and b are coprime a + b and a − b
also are. So s2 is a square which is a product of coprime integers, thus

a, b, a+ b, a− b are all squares. Call a = α2, b = β2, so

α2β2(α4 − β4) = s2 =⇒ α4 − β4 =

(

s

αβ

)2

.

Thus (α, β, s/αβ) is an integer primitive solution to the equation x4−y4 = u2

with x and u odd, and y even (because α and β have opposite parity and so

s/αβ is odd, and (u)2 + (y2)2 = (x2)2 is a primitive Pythagorean triple).

For the next step we are using Fermat’s descent method. Let x be the

smallest odd integer for which there exists a solution to x4−y4 = u2. By the

above lemma there exist r > s positive coprime integers of opposite parity

such that

u2 = r2 − s2 y2 = 2rs x2 = r2 + s2.

Observe that the third equality identifies another primitive Pythagorean

triple, so we repeat the last step:

r = l2 −m2 s = 2lm x = l2 +m2

where l and m have the same properties as a and b and we suppose, without

loss of generality, that s is even. This means that

y2 = 4lm(l2 −m2)

and since l and m are coprime then l, m, l2 − m2 are all squares. If we

rename l = γ2, m = δ2, l2 −m2 = t2 we get γ4 − δ4 = t2. Thus γ is odd

and in conclusion we observe that

γ ≤ γ2 = l ≤ l2 ⪇ x

contradicting the minimality of x. This shows that the equation x4−y4 = u2

cannot have integer solutions and thus concludes the proof.

We shall see that the cubic equation y2 = x3 − n2x defines an object

called elliptic curve. In the next chapters we will study elliptic curves in

more detail.

9



Chapter 1. Congruent numbers

1.1 Finding congruent numbers

In Lemma 1.3 we saw three equations that parametrize all primitive

Pythagorean triples. These equations can be used to “generate” congruent

numbers: if a and b are as in Lemma 1.3 (we will say that these pairs are ad-
missible), then X = a2−b2, Y = 2ab, Z = a2+b2 is a primitive Pythagorean

triple and the triangle X, Y, Z has area XY/2. Let n be the squarefree part

of the area, and let s be an integer such that XY/2 = s2n. Then the new

right triangle with rational sides X ′ = X/s, Y ′ = Y/s, Z ′ = Z/s has area n.

Table 1 illustrates this process for all admissible pairs (a, b) such that

a+ b ≤ 13.

(a, b) (X, Y, Z) Area (X ′, Y ′, Z ′) n

(2, 1) (3, 4, 5) 2 · 3 (3, 4, 5) 6
(4, 1) (15, 8, 17) 22 · 3 · 5 (15/2, 4, 17/2) 15
(3, 2) (5, 12, 13) 2 · 3 · 5 (5, 12, 13) 30
(6, 1) (35, 12, 37) 2 · 3 · 5 · 7 (35, 12, 37) 210
(5, 2) (21, 20, 29) 2 · 3 · 5 · 7 (21, 20, 29) 210
(4, 3) (7, 24, 25) 22 · 3 · 7 (7/2, 12, 25/2) 21
(8, 1) (63, 16, 65) 23 · 32 · 7 (21/2, 8/3, 65/6) 14
(7, 2) (45, 28, 53) 2 · 32 · 5 · 7 (15, 28/3, 53/3) 70
(5, 4) (9, 40, 41) 22 · 32 · 5 (3/2, 20/3, 41/6) 5
(10, 1) (99, 20, 101) 2 · 32 · 5 · 11 (33, 20/3, 101/3) 110
(9, 2) (77, 36, 85) 2 · 32 · 7 · 11 (77/3, 12, 85/3) 154
(8, 3) (55, 48, 73) 23 · 3 · 5 · 11 (55/2, 24, 73/2) 330
(7, 4) (33, 56, 65) 22 · 3 · 7 · 11 (33/2, 28, 65/2) 231
(6, 5) (11, 60, 61) 2 · 3 · 5 · 11 (11, 60, 61) 330
(12, 1) (143, 24, 145) 22 · 3 · 11 · 13 (143/2, 12, 145/2) 429
(11, 2) (117, 44, 125) 2 · 32 · 11 · 13 (39, 44/3, 125/3) 286
(10, 3) (91, 60, 109) 2 · 3 · 5 · 7 · 13 (91, 60, 109) 2730
(9, 4) (65, 72, 97) 22 · 32 · 5 · 13 (65/6, 12, 97/6) 65
(8, 5) (39, 80, 89) 23 · 3 · 5 · 13 (39/2, 40, 89/2) 390
(7, 6) (13, 84, 85) 2 · 3 · 7 · 13 (13, 84, 85) 546

Table 1

This procedure eventually lists all congruent numbers, but they do not

show up in order and repetitions are possible, such as n = 210 and n = 330.
This means that we cannot use this procedure to determine if a squarefree

integer is not a congruent number.
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Chapter 2

Elliptic curves over C

2.1 Elliptic curves: a brief introduction

Definition 2.1. An elliptic curve E over a field K, written E/K is a nonsin-

gular projective cubic curve, with a specified K-rational point O. If K ′ is an

extension of K then the set of points of E that have homogeneus coordinates

in K ′ are denoted as E(K ′).

The general equation for a cubic curve in P2
K ′ is given by

F̃ (x, y, z) = c1x
3 + c2y

3 + c3z
3 + c4x

2y + c5x
2z+

c6xy
2 + c7y

2z + c8xz
2 + c9yz

2 + c10xyz = 0 (2.1)

however, for nonsingular cubic curves, in any field this equation can be sim-

plified using linear linear changes of variable. This is summarized in the

following proposition.

Proposition 2.2. Let K be a field and E/K an elliptic curve of the form
(2.1), then:

1. E is isomorphic to a curve with equation

y2z + a1xyz + a2yz
2 = x3 + a3x

2z + a4xz
2 + a5z

3

2. If char(K) ̸= 2 then E is isomorphic to a curve with equation

y2z = x3 + a1x
2z + a2xz

2 + a3z
3

3. If char(K) ̸= 2, 3 the E is isomorphic to a curve with equation

y2z = x3 + a1xz
2 + a2z

3

11



Chapter 2. Elliptic curves over C

Either of these equations is called Weierstrass normal form.

Proof. See [8].

Remark 2.3. Throughout this thesis we will work using the affine equations

obtained by dehomogenizing the projective equations with respect to the

third coordinate, i.e., F (x, y) = F̃ (x, y, 1) = 0. We will identifiy points

[x, y, 1] on the projective plane with pairs (x, y) in the affine plane. The

points on the curve with third coordinate equal to zero are the points at

infinity and we will still denote them using projective coordinates.

Example 2.4. It’s easy to check that the cubic curve y2 = x3 − n2x is
nonsingular when char(K) ∤ 2n, and its point at infinty is [0, 1, 0]. From

now on we shall denote the curve y2 = x3 − n2x over Q by En.

Example 2.5. In Table 2 (see at the end of this chapter) there are some
examples of elliptic curves given by a Weierstrass equation y2 = x3+a1x+a2.

2.2 Elliptic functions

To begin our study of elliptic curves defined over C we first need to introduce

the concept of doubly periodic functions.

Definition 2.6. A lattice in the complex plane is the set of all integral linear

combinations of two given R-linearly independent complex numbers ω1 and

ω2. That is

L = {nω1 +mω2 | n,m ∈ Z}
We shall always assume that ω1/ω2 has positive imaginary part. We also

define the fundamental parallelogram for ω1, ω2 as

Π = {aω1 + bω2 | 0 ≤ a, b ≤ 1}

Definition 2.7. Let L be a lattice. An elliptic function relative to L is a

meromorphic function f(z) such that f(z + l) = f(z) for all l ∈ L. The set

of all elliptic functions is denoted by EL.

Remark 2.8. EL is a subfield of the field of all meromorphic functions,

moreover it is closed under differentiation.

12



Chapter 2. Elliptic curves over C

In other words, an elliptic function is doubly periodic with periods ω1 and

ω2. This implies that an elliptic function f(z) is determined by the values

it takes on the fundamental parallelogram Π and that two points on the

boundary of Π that differ by a period have the same image. If we introduce

the quotient topology on C which identifies points modulo L, the result-

ing topological space (which happens to be a complex manifold) is a torus,

written as C/L, thus we can think of an elliptic function as a meromorhic

function defined on the torus. See Miranda [11] for more informations about

meromorphic functions on Riemann surfaces.

Now we study some properties of elliptic functions.

Proposition 2.9. A function f(z) ∈ EL which has no pole in the funda-
mental parallelogram Π must be constant.

Proof. Since Π is compact, any such function must be bounded on Π, say,

by a constant M . By periodicity we have f(z) ≤ M for all z. The result

follows by Liouville’s theorem.

Proposition 2.10. Let α + Π denote the translate of Π by the complex
number α. Suppose that f(z) ∈ EL has no poles on the boundary C of
α +Π. Then the sum of the residues of f(z) in α +Π is zero.

Proof. By the residue theorem, this sum is equal to

1

2πi

∫

C

f(z)dz.

But the integral over opposite sides cancel. Thus the integral is zero, and so

the sum of the residues is zero.

Remark 2.11. Proposition 2.10 immediately implies that a noncostant el-

liptic function f(z) must have at least two simple poles (or a multiple pole),

since if it had a single simple pole, then the sum of the residues would not

be zero.

Proposition 2.12. Under the conditions of Proposition 2.10, suppose that
f(z) has no zeros or poles on the boundary of α+Π. Let {mi} be the orders
of the various zeros in α+Π, and let {nj} be the orders of the various poles.

Then
∑

mi =
∑

nj.

13



Chapter 2. Elliptic curves over C

Proof. Recall that the logarithmic derivative f ′(z)/f(z) has a simple pole

precisely where f(z) has a zero or pole, and the residue there is equal

to the order zero or pole of the original f(z), thus the sum of residues is
∑

mi −
∑

nj. Since f ′(z)/f(z) is an elliptic function we can apply Propo-

sition 2.10 to get the result.

We now construct a special noncostant elliptic function.

Definition 2.13. The Weierstrass ℘-function and ζ-function relative to the

lattice L are defined by the series

℘(z) = ℘(z;L) =
1

z2
+
∑

l∈L
l ̸=0

(

1

(z − l)2
− 1

l2

)

(2.2)

ζ(z) = ζ(z;L) =
1

z
+
∑

l∈L
l ̸=0

(

1

(z − l)
+

1

l
+
z

l2

)

(2.3)

Proposition 2.14. The sums in (2.2) and (2.3) converge absolutely and
uniformly for z in any compact subset of C− L.

Proof. See [9].

Proposition 2.15. ℘(z) ∈ EL, and its only pole is a double pole at each
lattice point.

Proof. From Proposition 2.14 follows that 2.2 defines a holomorphic function

on C− L and from the series expansion is clear that ℘(z) has a double pole

with residue zero at each lattice point. Next, note that ℘(z) = ℘(−z) (to

see why just replace l with −l in the sum). To prove double periodicity we

look at the derivative. Since the series for ℘(z) is uniformly convergent, we

can compute ℘′(z) by termwise differentiation:

℘′(z) = −2
∑

l∈L

1

(z − l)3
.

Now ℘′(z) is clearly doubly periodic, thus ℘′(z) ∈ EL. To prove that

℘(z) ∈ EL we integrate ℘′(z + l) for a fixed l ∈ L: ℘(z + l) = ℘(z) + C(l),
where C(l) is a constant independent of z. Now let z = −l/2 and using the

fact that ℘ is an even function we conclude that C(l) = ℘(l/2)−℘(−l/2) = 0.
This concludes the proof.

14



Chapter 2. Elliptic curves over C

Remark 2.16. Observe that

1. ζ ′(z) = −℘(z).

2. ζ(z) is not an elliptic function as it is not doubly periodic.

3. We can prove in the same way as ℘(z) that ζ(z) defines a holomorphic

function on C − L and that its poles are simple poles at each lattice

point.

Since ℘(z) has exactly one double pole in a fundamental domain of the

form α+Π, by Proposition 2.12 it has exactly simple two zeros or one double

zero there. It is not hard to show that ℘(z) takes every value u ∈ C ∪ {∞}
exactly twice on the torus, counting multiplicity. Indeed if u = ∞ then it

suffices to take z = 0 since that is the only double pole of ℘(z) in Π, whereas

if u ∈ C then f(z) = ℘(z) − u is an elliptic function relative to the same

lattice, with the same poles as ℘(z). Thus f(z) either has two simple zeros

or a double zero in Π. We can also find the values for u such that f(z) has

a double zero. Let l ∈ L be such that l/2 /∈ L, then since ℘′(z) is odd we

have ℘′(l/2) = −℘′(−l/2) = −℘′(l/2), so ℘′(l/2) = 0. In Π the only such

points are ω1/2, ω2/2, (ω1 + ω2)/2. We set e1 = ℘(ω1/2), e2 = ℘(ω2/2),
and e3 = ℘(ω1 + ω2)/2, these are the values of u for which ℘(z) − u has

a double zero. Notice that e1, e2, e3 are all distinct because otherwise ℘′(z)
would have a double zero and ℘(z) − u would have a triple zero, which is

impossible.

This tells us that ℘(z) is a degree 2 meromorphic map from the torus C/L

to the Riemann sphere C ∪ {∞} having branch points. at e1, e2, e3,∞.

2.3 The field of elliptic functions

In the next proposition we explain the structure of the field of elliptic func-

tions EL.

Proposition 2.17. EL = C(℘, ℘′), i.e., any elliptic function for L is a
rational expression in ℘(z;L) and ℘′(z;L). More precisely, given f(z) ∈ EL,
there exist two rational functions g(X), h(X) such that

f(z) = g(℘(z)) + ℘′(z)h(℘(z)).
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Proof. If f(z) is an elliptic function for L, then so are the two even functions

f(z) + f(−z)
2

and
f(z)− f(−z)

2℘′(z)
.

Since f(z) is equal to the first of these functions plus ℘′(z) times the second,

to prove the proposition it suffices to prove that E
+
L , the subfield of EL of

even elliptic functions relative to L, is generated by ℘(z). To do this we are

going to construct a function which has the same zeros and poles as f(z)
using only functions of the form ℘(z) − u with u a costant. The ratio of

f(z) to such a function is an elliptic function with no poles, an so must be

constant by Proposition 2.9.
Let f(z) ∈ E

+
L , then 0 has even order, say 2m, and f(z) = ℘(z)−mg(z),

where g(z) is an even elliptic function with no zeros or poles on the associated

lattice L. If a is a zero of ℘(z) − u, then so is l − a for l ∈ L, and if a is a

zero or pole of g(z), then so is l − a. If 2a ∈ L, then the zero (or pole) is of

order at least 2 since g′(z) = −g′(z) and so g′(a) = g′(−a) = −g′(a). Thus

g(z) = c · Πi(℘(z)− ℘(ai))
mi

Πj(℘(z)− ℘(bj))nj

where {ai, l − ai} are the zeros of g(z) and {bj, l − bj} are the poles of g(z)
in its fundamental domain, and mi, nj are the respective multiplicities. This

proves the theorem.

2.4 The Weierstrass form of an elliptic curve

From the proof of Proposition 2.17 follows that the even function ℘′(z)2 is

equal to a cubic polynomial in ℘(z), since ℘′(z) has a triple pole in 0 and

three simple zeros. More precisely we know that ℘′(z)2 has a double zero at

ω1/2, ω2/2, (ω1 + ω2)/2. Hence we have

℘′(z)2 = C · (℘(z)− ℘(ω1/2)) · (℘(z)− ℘(ω2/2)) · (℘(z)− ℘((ω1 + ω2)/2))

= C · (℘(z)− e1) · (℘(z)− e2) · (℘(z)− e3)

where C is some constant. We can easily find C by comparing the coefficients

of the lowest power of z in the Laurent expansion at the origin. On the left

side the leading term is 4z−6 while at the right side we have C(z−2)3, thus

C = 4. Hence ℘(z) satisfies the differential equation

℘′(z)2 = f(℘(z)), where f(x) = 4(x− e1)(x− e2)(x− e3) ∈ C[x]. (2.4)

16
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We now give an alternative derivation of the differential equation by find-

ing a cubic polynomial f(x) such that the negative powers of the Laurent

expansion of f(℘(z)) at 0 coincide with the one of ℘′(z)2. By Proposition 2.9
f(℘(z)) and ℘′(z)2 differ only by a constant, and that constant is zero if we

suitably choose the constant term in f(x).
In what follows the lattice L = {mω1 + nω2} is fixed. We consider the

Laurent expansion of ζ(z), ℘(z) and ℘′(z) at the origin. From the geometric

series we have

1

z − l
= −1

l

∑

n≥0

(z

l

)n

and
1

z − l
+

1

l
+
z

l2
= −1

l

∑

n≥2

(z

l

)n

which converge for |z| < |l|. Thus

ζ(z) =
1

z
+
∑

l∈L
l ̸=0

(

1

z − l
+

1

l
+
z

l2

)

=
1

z
−
∑

n≥2

zn
∑

l∈L
l ̸=0

1

ln+1
.

Observe that if n is even, then
∑

1
ln+1 is zero, so if we letGk(L) =

∑

l∈L−0 l
−2k,

then

ζ(z) =
1

z
−
∑

k≥2

Gk(L)z
2k−1.

The sum that defines Gk(L) converges for k ≥ 2.
Finally we can derive the Laurent series for ℘(z) and ℘′(z) by differenti-

ating the series for −ζ(z):

℘(z) =
1

z2
+
∑

k≥2

Gk(L)(2k − 1)z2k−2,

℘′(z) =
−2

z3
+
∑

k≥2

Gk(L)(2k − 1)(2k − 2)z2k−3.

In order to derive the differential equation for ℘(z) we write out the first

few terms of the expansion at 0 for the elliptic functions ℘(z), ℘′(z), and

17
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various combinations of these functions:

℘(z) =
1

z2
+ 3G2z

2 + 5G3z
4 + · · · ,

℘′(z) =
−2

z3
+ 6G2z + 20G3z

3 + · · · ,

℘′(z)2 =
4

z6
− 24G2

z2
− 80G3 + · · · ,

4℘(z)3 =
4

z6
+

36G2

z2
+ 60G3 + · · · ,

60G2℘(z) =
60G2

z2
+ 180G2

2z
2 + · · · ,

Hence the following equation

℘′(z)2 = 4℘(z)3 − 60G2℘(z)− 140G3.

It is standard notation to set

g2 = g2(L) = 60G4 = 60
∑

l∈L
l ̸=0

l−4,

g3 = g3(L) = 140G6 = 140
∑

l∈L
l ̸=0

l−6.

We have thereby derived a second form for the differential equation (2.4):

℘′(z) = f(℘(z)), where f(x) = 4x3 − g2x− g3 ∈ C[x]. (2.5)

This last equation has an elegant geometric interpretation. Suppose that we

take the function from the torus C/L to P2
C defined by

{

z 7→ [℘(z), ℘′(z), 1] for z ̸= 0

0 7→ O := [0, 1, 0]
(2.6)

The image of any nonzero point z of C/L is a point in the affine plane

(with complex coordinates) whose x-coordinate and y-coordinate satisfy the

relationship y2 = f(x) because of (2.5). The image of 0 in C/L is the

point at infinty. Thus, every point in C/L maps to a point on the curve

y2 = f(x) in the complex projective plane, which happens to be an el-

liptic curve since its roots, namely e1, e2, e3 are distinct. It’s not hard to

18
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show that this map is a one-to-one correspondence between C/L and the

elliptic curve. Moreover this map is analytic because near nonzero points

the map is given by z 7→ [℘(z), ℘′(z), 1)] and near zero the map is given by

z 7→ [℘(z)/℘′(z), 1, 1℘′(z)]. We have proved the following proposition.

Proposition 2.18. The map (2.6) is an analytic one-to-one correspondence
between the torus C/L and the elliptic curve y2 = 4x3 − g2(L)x − g3(L) in

P2
C.

Remark 2.19. Every elliptic curve En has an associated lattice which is a

multiple of the Gaussian integers Z[i]. In particular we have that ω1 = iω2

and thus L = ω2Z[i]. See Silvermann [7] and Miranda [11] for more details

on periods of Abelian varieties.

2.5 The group law

2.5.1 General definition

Let K be a field, E an elliptic curve defined over K given by a Weierstrass

equation and let O ∈ E be a K-rational point. By Bézout theorem we have

that a line l ⊆ P2
K intersects E in three points (counted with multiplicity).

We define a composition law on E by the following rule.

Definition 2.20 (Composition law). Let P,Q ∈ E and l = P ∨ Q be the

line connecting P and Q (if P = Q then l is the tangent line at E in P ). Let

R ∈ E be the third point of intersection of l with E and let l′ be the line

connecting R and O. We define P + Q to be third point of intersection of

the line l′ with E.

l

l′

Case P ̸= Q

P

Q R

P+Q

l

l′

Case P = Q

P

R

2P
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We now prove that (E,+, O) is an abelian group.

Theorem 2.21. The composition law (2.20) has the following properties:

(a) If a line l intersects E in three points (counted with multiplicity) P,Q,R,
then

(P +Q) +R = O

(b) P +O = P for all P ∈ E.

(c) P +Q = Q+ P for all P,Q ∈ E.

(d) Let P ∈ E. There is a point of E, that we denote as −P , such that
P + (−P ) = O.

(e) Let P,Q,R ∈ E. Then

(P +Q) +R = P + (Q+R).

Proof. (a) Follows immediatley from the definition.

(b) If we take Q = O in Definition 2.20 then the line l coincides with l′. The

former intersects E at P,O, R, and the latter at R,O, P +O, so P +O = P .

(c) Trivial, since the construction in Definition 2.20 is symmetric in P and

Q.

(d) Let the line through P and O also intersect E at R. Then using (a) and

(b) we have

O = (P +O) +R = P +R

(e) See [7].

Example 2.22. Let K be a field with char(K) ̸= 2 and let E be an elliptic

curve over K defined by Weierstrass equation

g(x, y) = y2 − ax3 − bx2 − cx− d = 0.

We calculate the points of order two, i.e., those points P such that 2P = O.
Before proceeding with the calculations observe that the line tangent to E at

P must meet E at −O, but that is O itself.
We first calculate the equation of the line tangent to a point of E and to

do so we use homogeneus coordinates, hence let G(x, y, z) = z3g(x/z, y/z)
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be the homogeneization of g(x, y). If P = [x0, y0, z0] is a point on the curve
then the line tangent to E at P is defined by the equation

tP :
∂G

∂x
(P )x+

∂G

∂y
(P )y +

∂G

∂z
(P )z = 0.

By our previous observation the point O = [0, 1, 0] must lie on tP , this forces

∂G

∂y
(P ) = 0 ⇐⇒ 2y0z0 = 0.

If z0 = 0 we find the point O, whereas if y0 = 0 we find P = [x0, 0, 1]. These
points also lie on the curve if and only if

G(x0, 0, 1) = −(ax30 + bx20 + cx0 + d) = 0.

This shows that the only nontrivial points of order two are precisely those
with y-coordinate equal to zero. Thus for example, on the curves we are
cosindering, namely En : y2 = x3−n2x, the points of order two are the point

at infinity, (0, 0), (n, 0) and (−n, 0).
Remark 2.23. Let K be a field and let K ′/K be an extension. Let E

be an elliptic curve defined over K and consider two K ′-rational points

P1 = (x1, y1) and P2 = (x2, y2). Then the coordinates of the point P1 + P2

are given by rational functions of the coordinates of P1 and P2. This means

that the third point also has coordinates in K ′ and thus we have the following

inclusion of groups: E(K) ≤ E(K ′).

From the arithmetic point of view, the most interesting cases are those

in which K is a number field. If that’s the case then we have the following

theorem, proved by Mordell in the case of elliptic curves defined over Q and

later generalised by Weil to Abelian varieties over any number field.

Theorem 2.24 (Mordell-Weil). Let E be an elliptic curve defined over Q.
Then the group E(Q) is finitely generated.

This theorem tells us that E(Q) ∼= E(Q)tors ⊕ Zr, where E(Q)tors is the

torsion subgroup, and the nonnegative integer r is called the rank of the

curve E. Currently we have at disposition tools to study E(Q)tors, such

as the Nagell-Lutz theorem which provides an effective way to compute it.

Barry Mazur in [10] characterized all the possible isomorphism classes of

E(Q)tors. The study of the elements of infinite order is much more difficult.

The study of the group E(Q), called the Mordell-Weil group of the curve,

turns out to be crucial step in our study of the Congruent Number Problem.
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2.5.2 The group law for elliptic curves over C

When an elliptic curve E is defined over C we can give an alternative defi-

nition for the group law. In fact we have a natural way of adding points in

C/L, that is ordinary addition modulo L. The structure of additive group of

C/L can be carried over the curve y2 = 4x3−g2(L)x−g3(L) through the an-

alytic map defined in (2.6), i.e., given two points P1 = (x1, y1), P2 = (x2, y2)
of E, let z1, z2 be two points of C/L such that P1 = (℘(z1), ℘

′(z1)) and

P2 = (℘(z2), ℘
′(z2)), and then set

P1 + P2 = (℘(z1 + z2), ℘
′(z1 + z2)) = (℘(z3), ℘

′(z3)).

Now we prove that this definition of the group law leads to the same

geometric interpretation. We first prove that the definition of additive inverse

coincide.

The additive identity is ℘(0) = P0 = O since clearly we have that

Pz + P0 = Pz for any z. Now suppose that Pz1 and Pz2 are two distinct

points of E having the same x-coordinate. Observe that this only happens

when z1 = −z2 due to the simmetries of ℘ and ℘′. Thus we have that

Pz1+Pz2 = O and this is totally coherent with the geometric definition given

in Definition 2.20.
Thus we have proved the following proposition.

Proposition 2.25. The additive inverse of (x, y) is (x,−y).

We shall now consider the case where neither P1 = Pz1 nor P2 = Pz2 is the

identity point O and also P1 ̸= −P2. Given two such points there is always

a line joining them. If P1 = P2 we take the tangent line to the elliptic curve

E at P1. We claim that the third point of intersection of l = P1 ∨ P2 with

E is −P3 = (x3,−y3) where P3 = P1 + P2, i.e., the second definition of the

group law again coincides with the geometric one.

Proposition 2.26. If P3 = P1+P2, then −P3 is the third point of intersec-
tion of l = P1 ∨ P2 with the elliptic curve. If P1 = P2 then by P1 ∨ P2 we

mean the tangent line at P1.

Proof. See [9].

We can esily turn this geometric procedure into formulas. Let E be and

elliptic curve over a fieldK with char(K) ̸= 2, then E has Weierstrass normal
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form y2 = f(x) where f(x) = ax3 + bx2 + cx + d. Let P1 = (x1, y1) and

P2 = (x2, y2) be two points on the curve, and P3 = P1 + P2 = (x3, y3). We

already considered the cases in which P1 or P2 is O, and P1 + P2 = O, so

now we suppose that neither P1 nor P2 is the point at infinity and that they

are not opposites. In this case the line through P1 and P2 has equation of

the form y = mx + β, where β = y1 − mx1 and m = (y2 − y1)/(x2 − x1)
if P1 ̸= P2, otherwise m = f ′(x1)/2y1. Let’s do the calculations in the first

case:

y2 = m2x2 + β2 + 2mβx

= m2x2 + (2my1 − 2m2x1)x+ y21 +m2x21 − 2mx1y1.

Knowing that x1 and x2 are two distinct roots of f(x)− (mx+ β)2 and that

the coefficient of x2 is −(x1 + x2 + x3) divided by the leading coefficient we

can calculate x3:

f(x)− (mx+ β)2 = ax3 + (b−m2)x2 + · · · and thus

x3 = −x1 − x2 +
1

a
(m2 − b) = −x1 − x2 −

b

a
+

1

a

(

y2 − y1
x2 − x1

)2

.

While if P1 = P2 we get

x3 = −2x1 −
b

a
+

1

a

(

f ′(x1)

2y1

)2

.

So, to get P3 we only have to reflect the third point of intersection. Thus

P3 = (x3, y3) where y3 = −mx3 − β.

To conclude this section we characterize points of finite order of elliptic

curves over C. These are the points for which there exists a nonnegative

integer N such that NP = O. Let y2 = 4x3 − g2(L)x − g3(L) be an

elliptic curve associated to the lattice L = {mω1 + nω2}. Let z ∈ C/L and

P = (℘(z), ℘′(z)). According to the second interpretation of the group law

we have that

NP = O if and only if Nz ∈ L.

The only such points on the torus are those of the form a
Nω1 +

b
Nω2 with

0 ≤ a, b < N , thus taking their image under (2.6) gives all the points whose

order divides N .
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Table 2

Here some examples of elliptic curves given by Weierstrass equation

y2 = x3 + a1x + a2. Notice that when a1 = 0 and a2 = 0 the curve is not

smooth, hence it is not an elliptic curve.

a2 = −1

a1 = −2

a2 = 0 a2 = 1 a2 = 2

a1 = −1

a1 = 0

a1 = 1
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Chapter 3

Elliptic curves over finite fields

In this chapter we give some notions about elliptic curves defined over a

finite field K = Fq where q = pr for some prime p and positive integer r. For

our purposes we can suppose char(K) ̸= 2, so any elliptic curve over K has

Weierstrass normal form

y2 = f(x) where f(x) = ax3 + bx2 + cx+ d.

The addition law described in Section 2.1 still makes sense since it does

not rely on the field, so for E defined over Fq, the set E(Fqr) of all points with

coordinates in Fqr is still an Abelian group for all r ≥ 1, in particular it is

finte since elliptic curves over Fq have a finite number of points. It is natural

to ask what the size of this group is (recall that char(K) ̸= 2). Intuitively, if

f(x) = 0 then the only solution is y = 0. Otherwise, it is known that among

the nonzero elements of K half of them are quadratic residues and half of

them are not. So each value for x yields either one solution or has a 50%

probability of producing two solutions and 50% probability of producing no

solution. So for q values of x we expect approximately q solutions, and then

include the point at infinty O. This heuristic argument does not costitute

a proof, but it turns out that is not far from the truth. A theorem proved

by Hasse for elliptic curves and later generalized by Weil summarizes this

argument. For a proof see Silvermann [7].

Theorem 3.1 (Hasse-Weil Theorem). Let E/K be an elliptic curve defined
over the finite field with q elements. Then

|#E(K)− q − 1| ≤ 2
√
q.

25



Chapter 3. Elliptic curves over finite fields

3.1 Reduction mod p

Definition 3.2. Let P2
Q be the projective plane over the rational numbers.

We say that a homogeneous coordinate triple (A,B,C) is normalized if

A,B,C are integers with no common divisor.

Let p be a fixed prime number, and for each integer m ∈ Z let m̄ ∈ Fp

denote its residue modulo p. If [l,m, n] is a normalized coordinate triple for a

point P ∈ P2
Q, then the triple [l̄, m̄, n̄] defines a point P̄ in P2

Fp
, since at least

one of the numbers l,m, n is not divisible by p. Since the point P determines

the triple [l,m, n] up to sign, the point P̄ depends only on P , not on the

choice of coordinates for P . Thus P 7→ P̄ gives a well-defined map

rp : P
2
Q −→ P2

Fp
, P 7→ P̄

called the reduction mod p map.

Now let C/Q be a curve defined by an equation F with rational coeffi-

cients. Without loss of generality we can suppose that these coefficients are

integers with no common divisor. Then F̄ , the polynomial that we obtain

by reducing the coefficients of F modulo p, is non-zero and defines a curve

C̄ in characteristic p. Its points are obtained by reducing the points of C as

we saw before.

In the case of elliptic curves E/Q we need to pay attention to whether or

not the reduced curve Ē modulo some prime p is still an elliptic curve (i.e.

is still nonsigular).

Definition 3.3. Let E/Q be a rational elliptic curve. Let p be a fixed prime

and let Ē be the reduced curve. We say that E has good reduction at p if Ē

is nonsingular and thus defines an elliptic curve Ē/Fp, E has bad reduction
at p otherwise.

Checking if a curve E has good or bad reduction at some prime p is easy.

Assuming that all the coefficients of its defining equation are integers with no

common factor, we just need to check if the discriminant of the equation is

divisible by p. If that’s the case then the curve will be singular once reduced,

and nonsigular otherwise.

Example 3.4. Consider the curve En : y2 = x3 − n2x. The discriminant is
equal to 4n6. Thus the curve has good reduction at every prime p that does
not divide 2n.
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Proposition 3.5. The restriction of rp from E(Q) to Ē(Fp) is a group
homomorphism if p is a prime of good reduction.

Proof. Clearly rp([0, 1, 0]) = [0, 1, 0]. Let P,Q be two distinct points of E(Q)
and let lPQ = P ∨Q. We have that l̄ = rp(lPQ) = lP̄ Q̄, thus the third point of

intersection between Ē and l̄ is the reduction of the third point of intersection

between E and l. This means that −(P̄ + Q̄) = −(P +Q) = −(P +Q) and

so P +Q = P̄ + Q̄. The same argument applies if P = Q and l is the line

tangent to E at P .

In the next chapter we will go back to the Congruent Number Problem

apply what we saw in the last chapters.
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Chapter 4

Congruent numbers and the rank of En

In this chapter we show that a squarefree positive n is a congruent number

if and only if the corresponding curve En has positive rank.

We need to compute the torsion subgroup En(Q)tors, and to do so we first

calculate the number of points in Ēn over Fq for some specific prime powers

q = pr.

Lemma 4.1. Suppose that q ≡ 3(mod 4). Then −1 is not a square modulo

q.

Proof. If −1 was a square modulo q then the polynomial f(x) = x4−1 would

split in Fq, in particular there would be a fourth root of unity α in Fq. Thus

the order of the cyclic group generated by α divides the order of F∗
q, i.e.,

4 | (q − 1). This is impossible since q − 1 ≡ 2(mod 4).

Proposition 4.2. Let q = pr, p ∤ 2n. Suppose that q ≡ 3(mod 4). Then

there are q + 1 points over Fq on the elliptic curve y2 = x3 − n2x.

Proof. We saw in Chapter 2 that there are four points of order 2: the

point at infinity, (0, 0) and (±n, 0). We now count all the pairs (x, y)
where x /∈ {0, n,−n}. We arrange these q − 3 x’s in pairs x,−x. Since

f(x) = x3−n2x is an odd function and, by Lemma 4.1, −1 is not a square in

Fq, it follows that exactly one of the two elements f(x) and f(−x) = −f(x)
is a square in Fq. In both cases we obtain exactly two points (x,±

√

f(x)) or

else (−x,±
√

f(−x)). Thus, the (q − 3)/2 pairs give us q − 3 points. Along

with the four points of order two, we have in all q + 1 points over Fq, as

claimed.

Next we compute the torsion subgroup of En. The idea is to show that

the reduction modulo p homomorphism from En(Q)tors to En(Fp) is injective
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for all p sufficiently large primes of good reduction. For such p’s we have

#En(Q)tors | #En(Fp). This forces #En(Q)tors ≤ 4 since #En(Fp) runs

through all prime numbers of the form p+ 1 for p ≡ 3(mod 4).

Proposition 4.3. #En(Q)tors = 4.

The following lemma is needed to prove Proposition 4.3.

Lemma 4.4. Let p be a prime number and let

P1 = [x1, y1, z1] and P2 = [x2, y2, z2]

be two points in P2
Q with normalized coordinates. Denote with P̄1 = [x̄1, ȳ1, z̄1],

P̄2 = [x̄2, ȳ2, z̄2] their reduction modulo p as defined in the previous chapter.
Then P̄1 = P̄2 if and only if p divides the coordinates of the cross-product of
P1 and P2, namely the real vector

(y1z2 − y2z1, x2z1 − x1z2, x1y2 − x2y1).

Proof of Lemma 4.4. First suppose the p divides the cross-product. We con-

sider two cases:

1. p divides x1. Then p divides x2z1 and x2y1, and therefore divides x2,

because it cannot divide x1, y1 and z1. Suppose, for example that p ∤ y1.
Then

P̄2 = [0, ȳ1ȳ2, ȳ1z̄2] = [0, ȳ1ȳ2, ȳ2z̄1] = [0, ȳ1, z̄1] = P̄1

(where we used the fact that p divides y1z2 − y2z1). An analogous

argument will apply if p ∤ z1.

2. p does not divide x1. Then

P̄2 = [x̄1x̄2, x̄1ȳ2, x̄1z̄2] = [x̄1x̄2, x̄2ȳ1, x̄2z̄1] = [x̄1, ȳ1, z̄1] = P̄1.

Conversely, suppose that P̄1 = P̄2 and that p ∤ x1 (an analogous argument

will apply if p ∤ y1 or p ∤ z1). Then since P̄1 = (x̄2, ȳ2, z̄2), we also have p ∤ x2.

Hence,

(x̄1x̄2, x̄1ȳ2, x̄1z̄2) = P̄2 = P̄1 = (x̄1x̄2, x̄2ȳ1, x̄2z̄1).

Since the first coordinate are the same, these two points can be equal only

if the second and third coordinates are equal, i.e., if p divides x1y2 − x2y1
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and x1z2 − x2z1. Finally, we must show that p divides y1z2 − y2z1. If both

y1 and z1 are divisible by p, then this is trivial. Otherwise, the conclusion

will follow by repeating the above argument with x1, x2 replaced by y1, y2 or

z1, z2. This concludes the proof of the lemma.

Proof of Proposition 4.3. We determine when reduction modulo p is not in-

jective. Suppose that the proposition is false, i.e., thatEn(Q) contains a point

of finite order grater than 2. Then either it contains an element of odd order,

or else the group of points of order 4 contains either 8 or 16 elements. In either

case we have a subgroup S = {P1, P2, . . . , Pm} of En(Q)tors wherem = #S is

either 8 or else an odd number. Let us write all of the points Pi, i = 1, . . . ,m
as in Lemma 4.4: Pi = (xi, yi, zi). For each pair of points Pi, Pj, consider

the cross-product vector (yizj − yjzi, xjzi − xizj, xiyj − xjyi) ∈ R3. Since

Pi and Pj are distinct points, as vectors in R3 they are not proportional, and

so their cross-product is not the zero vector. Let nij be the greatest common

divisor of the coordinates of the cross-product. According to Lemma 4.4, the

points Pi and Pj have the same image P̄i = P̄j in En(Fp) if and only if p

divides nij. Thus if p is a prime of good reduction which is greater than all

of the nij, it follows that all the images are distinct, i.e., the map reduction

modulo p gives an injection of S in En(Fp).
This means that for all but finitely many p the number m must divide

#En(Fp), because the image of S is a subgroup of order m. Then for all

but finitely primes congruent to 3 modulo 4, by Proposition 4.2 we must

have p ≡ −1(mod m). But this contradicts Dirichlet’s theorem on primes

in arithmetic progression. Namely, if m = 8 this would mean that there are

only finitely many primes of the form 8k + 3. If m is odd, it would mean

that there are only finitely many primes of the form 4mk + 3 (if 3 ∤ m), and

that there are only finitely many primes of the form 12k + 7 if 3 | m. In

all cases, Dirichlet’s theorem tells us that there are infinitely many primes of

the given type. This concludes the proof of the proposition.

We are now ready to prove the main result.

Lemma 4.5. Let P = (xP , yP ) be a rational point on the curve En. Then
the x-coordinate of 2P is the square of a rational number having even de-

nominator.
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Proof. Using the formulas we saw in section 2.4 we have that

x2P = −2xP +

(

f ′(xP )

2yP

)2

= −2xP +
(3x2P − n2)2

(2yP )2

=

(

x2P + n2

2yP

)2

where we used the relation y2P = x3P − n2xP .

Theorem 4.6. A squarefree positive integer n is a congruent number if and
only if En(Q) has positive rank.

Proof. Suppose that n is a congruent number. Then there exists a rational

right triangle with area n that corresponds to a nontrivial rational point on

the curveEn (in particular the x-coordinate is the square of a nonzero rational

number). By Proposition 4.3 this point must be a point of infinite order and

thus En has nonzero rank. Conversely, suppose that En has positivie rank

and let P = (xP , yP ) be a point of infinite order (in particular P has not order

2). By Lemma 4.5 the x-coordinate of 2P is the square of a rational number

having even denominator, hence we can conclude by Proposition 1.4.

Example 4.7. In Chapter 1 we proved that 1 is not a congruent number.

By the above theorem we have that the curve E1 : y
2 = x3 − x has rank 0.

Denote with 2En(Q) \ {O} the set {2P | P ∈ En(Q), 2P ̸= O}. Now we

explore in more detail the relationship between rational right trangles with

area n and rational points of infinite order on the curve En. We want to show

that there is a one-to-one correspondence between such triangles and pairs

of points (x,±y) ∈ 2En(Q) \ {O}. Observe this set is empty if and only if

En has rank zero, otherwise it is isomorphic to the direct sum of rk(En) (i.e.,

rank of En) copies of Z.

Recall that in Chapter 1 we obtained a rational point on the curve En

starting from a rational right triangle with area n. We prove that this point is

the double of another rational point. Given a rational right triangle X, Y, Z

with area n, let Q = (Z
2

4 ,
Z(X2−Y 2)

8 ) be the point obtained in Chapter 1.

We construct another correspondence between these triangles and rational

points of En. This new correspondence yields a point P and we will show

that Q = 2P .
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Rescale the triangle so that the hypotenuse has unitary length: let

u = X/Z and v = Y/Z. By using the parametrization of the unitary circle

we can find a t ∈ R+ such that u = 1−t2

1+t2 and v = 2t
1+t2 . Given that our initial

triangle has area n we have that

XY

Z2
=

2n

Z2
= uv =

2t(1− t2)

(1 + t2)2
and thus

n

Z2
=
t(1− t2)

(1 + t2)2
. (4.1)

Now set xP = −nt and yP = n2(1+t2)
Z . Using the relation (4.1) it is easy to

show that the point P = (xP , yP ) lies on the curve En, indeed

y2P =
n4(1 + t2)2

Z2
(4.1)
= n3t(1− t2) = −n3t3 + n3t = x3P − n2xP .

At this point we express xP and yP in terms of X, Y, Z. From the definitions

of u and v we obtain that t = 1−u
v = Y

X+Z . Hence, in combination with the

relation X2 + Y 2 = Z2 we obtain

xP = −nt = −
(

XY

2

)(

Y

X + Z

)

=
X(X − Z)

2
,

yP =
n2(1 + t2)

Z
=

(

XY

2

)2

· 1
Z

(

1 +
Y 2

(X + Z)2

)

=
X2(Z −X)

2
.

Thus from the right triangle X, Y, Z we obtain the point

P =

(

X(X − Z)

2
,
X2(Z −X)

2

)

.

Finally, using the formulas from Section 2.5.2 we calculate 2P (we omit the

full calculations, they are carried out by substituting xP , yP , n,m, β with

their respective expression in terms of X, Y, Z):

x2P =

(

x2P + n2

2yP

)2

=

(

Z

2

)2

= xQ,

y2P = −mx2P − β where m =
3x2P − n2

2yP
and β = yP −mxP

=
Z(X2 − Y 2)

8
= yQ.

Thus Q = 2P , as desired.

Now we can give a characterization of the points in 2En(Q).
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Lemma 4.8. Let Q ∈ En(Q)\{O}. Then Q is the double of another rational
point if and only if the x-coordinate is the square of a rational number having

even denominator.

Proof. (⇒) See Lemma 4.5.
(⇐) Let xQ have the desired properties. By Proposition 1.4 there exists

a rational right triangle with area n that corresponds to Q through Proposi-

tion 1.2. By our discussion above we have that Q is the double of some other

rational point.

Lemma 4.9. There is a one to one and onto correspondence between pairs
of points (x,±y) ∈ 2En(Q) \ {O} and rational numbers with even denomi-
nator x such that x, x + n, x − n are all squares of rational numbers. The
correspondence is:

(x,±y) 7→ x

x 7→ (x,±
√

x(x+ n)(x− n))

Proof. Call the two maps ϕ and ψ respectively. First, observe that ϕ and ψ
are well-defined, indeed let P = (xP , yP ) be a point in En(Q) \ {O}, then

x2P , x2P + n, x2P − n are all squares of rational numbers:

x2P =

(

x2P + n2

2yp

)2

,

x2P + n =

(

(xP + n)2 − 2n2

2yP

)2

,

x2P − n =

(

(xP − n)2 − 2n2

2yP

)2

,

so each element of 2En(Q)\{O} gets mapped to a rational number with the

desired property. Now suppose that x is a rational number with the desired

property, then its image is a rational point on En whose x-coordinate is the

square of a rational number having even denominator, hence by Lemma 4.8
it is the double of another rational point.

Now we prove that the map in the statement is a bijection. It is immediate

to check that (ϕ ◦ψ)(x) = x and that (ψ ◦ϕ)(x,±y) = (x,±y). This proves

the lemma.

Finally we can prove the following theorem.
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Theorem 4.10. There is a bijection between rational right triangles with
sides X, Y, Z and area n and pairs of points (x,±y) in 2En(Q) \ {O}. The

correspondence is:

(X, Y, Z) 7−→
(

Z2

4
, ±Z(X

2 − Y 2)

8

)

(x,±y) 7−→ (
√
x+ n−

√
x− n,

√
x+ n+

√
x− n, 2

√
x)

Proof. We just have to compose the bijection we saw in Proposition 1.2 with

the one described in Lemma 4.9.

In Koblitz [9] we find an alternative proof of Theorem 4.10 which is based

on the following proposition.

Proposition 4.11. Let E be the elliptic curve y2 = (x− e1)(x− e2)(x− e3)
with e1, e2, e3 ∈ Q. Let P = (x0, y0) ∈ E(Q)\{O}. Then P ∈ 2E(Q)\{O}
if and only if x0 − e1, x0 − e2, x0 − e3 are all squares of rational numbers.

Proof. We first note that, without loss of generality, we may asssume that

x0 = 0. To see this, make the change of variables x′ = x − x0. The point

P ′ = (0, y0) on the curve E ′ : y2 = (x−e′1)(x−e′2)(x−e′3), where e′i = ei−x0,
is in 2E ′

n(Q) \ {O} if and only if our original P were in 2En(Q) \ {O}. And

trivially, the x0−ei are all squares if and only if the (0−e′i) are. So it suffices

to prove the proposition with x0 = 0.
Next, note that if there exists Q ∈ E(Q) such that 2Q = P , then there

are exacly four points Q,Q1, Q2, Q3 ∈ E(Q) with 2Qi = P . To obtain Qi,

simply add to Q the point of order two (ei, 0) ∈ E(Q).
Choose a point Q = (x, y) such that 2Q = P = (0, y0). We want to

find conditions for the coordinates of one such Q (and hence all four) to be

rational. Now a point Q on the elliptic curve satisfies 2Q = P if and only

if the tangent line the the curve at Q passes through −P = (0,−y0). That

is, the four possible points Q are obtained geometrically by drawing the four

distinct lines emanating from −P which are tangent to the curve.

We readily verify that the coordinates (x, y) are rational if and only if the

slope of the line from −P to Q is rational.

(⇒) Trivial.

(⇐) If the slope m is rational, then the x-coordinate of Q, which is the

double root of the cubic (mx − y0)
2 = (x − e1)(x − e2)(x − e3), must also
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be rational. In this case the y-coordinate of Q is also rational: y = mx− y0.
Thus, we want to know when one (and hence all four) slopes of the lines from

−P which are tangent to E are rational.

A number m ∈ C is the slope of a line from −P which is tangent to E if

and only if the following equation has a double root:

(mx− y0)
2 = (x− e1)(x− e2)(x− e3) = x3 + ax2 + bx+ c, (4.2)

with

a = −e1 − e2 − e3, b = e1e2 + e1e3 + e2e3, c = −e1e2e3 = y20, (4.3)

where the last equality c = y20 comes from the fact that (0, y0) is on the curve

y2 = x3 + ax2 + bx + c. Now if we simplify (4.2) and factor out a x, our

condition becomes: the following quadratic equation has a double root:

x2 + (a−m2)x+ (b+ 2my0) = 0.

This is equivalent to saying that its discriminant must vanish, i.e.,

(a−m2)2 − 4(b+ 2my0) = 0. (4.4)

Thus, our task is to determine when one (and hence all four) roots of this

quadratic polynomial in m are rational.

We want to find a condition in terms of the ei’s (namely, our claim is that

an equivalent condition is: −ei ∈ Q2). In (4.4), the a and the b are sym-

metric polynomials in the ei, but the y0 is not. However, y0, is a symmetric

polynomial in the
√
ei. That is, we introduce fi satisfying f 2i = −ei. There

are two possible choices for fi, unless ei = 0. Choose the fi in any of the

possible ways, subject to the condition that y0 = f1f2f3. If all the ei’s are

nonzero, this meas that the sign of f1 and f2 are arbitrary, and the sign of f3
is chosen so that y0 and f1f2f3 are the same square root of −e1e2e3. If, say,

e3 = 0, then either choice can be made for the sign of f1, f2, and of course

f3 = 0. In all cases there are four possible choices of the fi’s consistent with

the requirements that y0 = f1f2f3. Once we fix one such choice f1, f2, f3, we

can list all the four choices as follows (here we are supposing that e1 and e2
are nonzero):

f1, f2, f3; f1,−f2,−f3 : −f1, f2,−f3; −f1,−f2, f3. (4.5)
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The advantage of going from the ei’s to the fi’s is that now the coefficients

of our equation (4.4) are symmetric functions of f1, f2, f3. More precisely, if

we set s1 = f1+f2+f3, s2 = f1f2+f1f3+f2f3, s3 = f1f2f3, the elementary

symmetric functions, then

a = f 21 + f 22 + f 23 = s21 − 2s2;

b = f 21f
2
2 + f 21f

2
3 + f 22f

2
3 ;

y0 = s3.

Thus, equation (4.4) becomes

0 = (m2 − s21 + 2s2)
2 − 4(s22 − 2s1s3 + 2ms3)

= (m2 − s21)
2 + 4s2(m

2 − s21)− 8s3(m− s1).
(4.6)

We see at first glance that the polynomial in (4.6) is divisible by m− s1, i.e.,

m = s1 = f1+f2+f3 is a root. Since we could have made three other choices

for the signs of the fi, the other roots must correspond to these choices, i.e.,

the four solutions of equation (4.4) are:

m1 = f1 + f2 + f3, m2 = f1 − f2 − f3,

m3 = −f1 + f2 − f3, m4 = −f1 − f2 + f3.
(4.7)

We want to know whether the four values in (4.7) are rational. Clearly, if

all of the fi are rational, then so are the mi. Conversely, suppose the mi

are rational. Then f1 = (m1 +m2)/2,f2 = (m1 +m3)/2,f3 = (m1 +m4)/2
are rational. The conclusion of this string of equivalent conditions is: the

coordinates (x, y) of a point Q for which 2Q = P are rational if and only if

the fi =
√−ei are rational. This proves the proposition.

Second proof of Theorem 4.10. We are considering the case e1 = −n, e2 = 0,
e3 = n. By Proposition 4.11 we have that P ∈ 2E(Q) \ {O} if and only

if x0 + n, x0, x0 − n are all squares of rational numbers. We conclude by

Proposition 1.2.
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An overview of the connection with

L-functions

In the previous chapter we saw that in order to determine whether or not

a squarefree positive integer n is a congruent number we need to study the

rank of the curve En. This task is much more difficult than calculating the

torsion subgroup and more machinery is needed.

Following Koblitz [9], the aim of this chapter is to talk without going too

much into details about the Hasse-Weil L-functions of the elliptic curves En

and how they serve for our purpose. In the context of arithmetic geometry,

L-functions are analytical objects that encode the arithmetic properties of

the object they are related to. In our case we are interested in the information

about the rank of En. Discussing how L-functions are defined in general is

beyond the scope of this thesis, for more details see Husemöller [8], Farmer

et al. [6] and Bruin [3].

5.1 Local zeta-function and L-function of En

We begin fixing a prime of good reduction p, and then we encode the numbers

#En(Fpr) into a generating function called the local zeta-function of E at p:

Z(En/Fp;T ) = exp

( ∞
∑

r=1

#En(Fpr)
T r

r

)

. (5.1)

Using the theory of Dirichlet characters, Gauss sums and Jacobi sums we

can find a closed form for (5.1). In particular there exists a complex number
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α = αn,p in Q(i) such that |α| = √
p and

Z(En/Fp;T ) =
(1− αT )(1− ᾱT )

(1− T )(1− pT )
=

1− 2aT + pT 2

(1− T )(1− pT )
(5.2)

where a = an,p = Reα.

As an example we calculate Z(En/Fp;T ) for a prime of bad reduction p.
We need to count the number of point in En(Fpr). If p = 2 and p ∤ n then

the curve En reduced modulo 2 is defined by the equation y2 = x3+x. Using

the linear change of variables y = v+u and x = u+1 we obtain the equation

v2 = u3. If instead p | n then the curve En reduced modulo p is defined by

the equation y2 = x3. Thus for any prime of bad reduction p we only need to

count the points on the singular curve defined by y2 = x3. Using Theorem

2.5.21 in Cohen [5] we obtain that #{(x, y) ∈ F2
pr | y2 = x3} = pr. There

is only one point at infinity, namely [0, 1, 0], and thus the total number of

points is pr + 1 for all r ≥ 1. Plugging this into (5.1) we get

Z(En/Fp;T ) = exp

( ∞
∑

r=1

(pr + 1)
T r

r

)

= exp

( ∞
∑

r=1

(pT )r

r

)

exp

( ∞
∑

r=1

T r

r

)

= exp(− log(1− pT )) exp(− log(1− T ))

=
1

(1− pT )(1− T )
.

Remark 5.1. In general one can form the local zeta-function for a smooth

projective variety V defined over a finite field as we did above. There is

a series of conjectures due to Weil (and later proved by Weil, Dwork and

Deligne) regarding some properties of these functions. In particular these

conjectures concern the rationality of local zeta-functions, a functional equa-

tion that they saitsfy and how numerator and denominator factor into degree

one polynomials. See Silvermann [7] for more details.

At this point all local zeta-functions, as p varies, are used to build the

Hasse-Weil L-function of the curve En:

L(En; s) =
ζ(s)ζ(s− 1)

ΠpZ(En/Fp; p−s)
.
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The Riemann ζ-function ζ(s) appears in the expression of L(En; s) because

the Euler products of ζ(s) and ζ(s − 1) cancel with the denominator of
∏

p Z(En/Fp;T ), which do not carry any relevant information. All is left is

the Euler product for L(En; s):

L(En; s) =
∏

p ∤ 2n

1

1− 2an,pp−s + p1−2s
. (5.3)

Proposition 5.2. The product (5.3) converges for Re(s) > 3/2.

Proof. We have that

L(En; s) <∞ ⇔ −
∑

p ∤ 2n

log(1− 2an,pp
−s + p1−2s) <∞

⇔
∑

p ∤ 2n

log(1− αn,pp
−s) +

∑

p ∤ 2n

log(1− ᾱn,pp
−s) <∞.

We check for uniform convergence on the first summation using the Weier-

strass M-test:

|log(1− αn,pp
−s)| ≤

∑

k≥1

|αn,pp
−s|

k

≤
∑

k≥1

p1/2−Re(s)

k

= − log(1− p1/2−Re(s)) ≤ 1

pRe(s)−1/2
.

Now fix δ > 0 and suppose that Re(s) ≥ 3/2 + δ. This implies that

1

pRe(s)−1/2
≤ 1

p1+δ
.

Since that the series
∑

p
1

p1+δ converges we have that
∑

p ∤ 2n log(1− αn,pp
−s)

converges uniformly in {z ∈ C | Re(s) ≥ 3/2 + δ}. This is true for all δ > 0
and thus we have proved uniform convergence in {z ∈ C | Re(s) > 3/2}.

Using Fourier analysis a much stronger result can be proved.

Theorem 5.3. The Hasse-Weil L-function L(En; s) defined by (5.3) for
Re(s) > 3/2, extends analytically to an entire function on the whole complex
plane.
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Proof. See Koblitz [9].

One of the main conjectures in the study of L-functions concerns whether

or not any L-function can be analytically extended to a meromorphic function

on C. In the case of L-functions that come from elliptic curves over Q this

is a consequence of the modularity theorem, proved by A. Wiles in [14] for

a large class of elliptic curves, and later fully proved by Breuil et al. [2].

This theorem states that elliptic curves over Q are closely related to another

mathematical object called modular forms. We just say that as for elliptic

curves, we can associate an L-function to a modular form and it was proved

by Hecke that these L-functions admit an analytic extension to an entire

function on C and satisfy a functional equation.

5.2 L-functions and the Congruent Number Problem

For our purpose, the interesting connection between L-functions and the

Congruent Number Problem is another conjecture, which we state in its

weak form.

Conjecture 5.4 (Birch and Swinnteron-Dyer, weak form [1]). Let E be a
rational elliptic curve. Then E has rank r if and only if L(E; s) has a zero

of order r at s = 1.

Observe that thanks to the modularity theorem it makes sense to talk

about L(E; s) at s = 1. As of today only special cases of the cojecture have

been proved. We would like to point the attention to one of these special

cases but first we give a definition.

Definition 5.5. Let E be an elliptic curve over C associated to the lattice L.

The curve E is said to have complex multiplication if there exists a c ∈ C\R
such that cL = L.

A more detailed explanation of complex multiplication and morphisms

between elliptic curves can be found in Tate and Silvermann [12] and Silver-

mann [7].

The curves En all have complex multiplication because as we pointed out

in Remark 2.19, their associated lattice is a square lattice and thus it is

invariant under multiplication by c = i.
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Theorem 5.6 (A. Wiles and J. Coates [4]). Let E be an elliptic curve de-
fined over Q and having complex multiplication. If E has positive rank then

L(E; 1) = 0.

This special case of the Birch and Swinnerton-Dyer conjecture gives us

a sufficient condition for n not to be a congruent number, as L(En; 1) ̸= 0
implies rk(En) = 0, and by Theorem 4.6 we have that n is not a congruent

number.

If instead we just assume this weak form of the conjecture we have a

sufficient condition for n to be a congruent number.

Proposition 5.7. If n ≡ 5, 6, 7(mod 8), and if the weak form of the Birch
and Swinnerton-Dyer conjecture holds for En, then n is a congruent number.

Proof. See Koblitz [9]

To conclude this chapter we state another result proved by J. B. Tunnell

[13]. It is a crucial step towards the solution to the Congruent Number

Problem since, if the weak Birch and Swinnteron Dyer conjecture was true,

we would have a necessary and sufficient condition for a squarefree positive

integer to be a congruent number which has the advantage of being easy to

verify.

Theorem 5.8 (J. B. Tunnell). Let n be a sqaurefree positive integer. For n

odd define the quantities

An = #{x, y, z ∈ Z | n = 2x2 + y2 + 32z2},
Bn = #{x, y, z ∈ Z | n = 2x2 + y2 + 8z2},

while for n even define

Cn = #{x, y, z ∈ Z | n/2 = 4x2 + y2 + 32z2},
Dn = #{x, y, z ∈ Z | n/2 = 4x2 + y2 + 8z2}.

If n is the area of a right triangle with rational sides then we have that
An = 1

2Bn if n is odd and Cn = 1
2Dn is n is even. If the weak Birch and

Swinnerton-Dyer conjecture is true for the elliptic curves En : y2 = x3−n2x,
then, conversely, these equalities imply that n is a congruent number.
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