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A B S T R A C T

Optical coated elements are mainly optimized for their optical char-
acteristics, such as transparency or reflectivity in a desired spectral
region. However, for the space missions of the very next future, it
will be fundamental to ensure the sustainability of these optical el-
ements at the harsh conditions of the relevant space environment,
preventing the occurrence of any critical optical degradation of their
performance.
We present a study on optical coating degradation according to the
ESA project Radiation testing of optical coating in space, lead by the Na-
tional Research Council of Italy, Institute for Photonics and Nanotech-
nology. A mathematical model is developed to predict the coatings
behaviour prior and after irradiation of different particles. A large
number of samples including single and bi-layers are optically char-
acterized in transmittance or (absolute) reflectance with a double grat-
ing spectrometer Cary 5000 and a Cary 630 FTIR spectrometer.
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1
I N T R O D U C T I O N

In recent years, space agencies have carried out qualification activities
finalized to validate novel optical components for space applications.
Future space missions will operate in very hostile environments in
terms of particles irradiation and thermal excursion, such as those
close to the Sun or to the Jupiter magnetosphere ([1]-[3]). For this
reason, it will be fundamental to develop robust optical elements ca-
pable to operate in harsh conditions and to prevent the occurrence of
any critical optical degradation of their performance. It is known, in-
deed, that optical performance of the components strongly affects the
data outcomes, and their degradation can lead to a misinterpretation
of the scientific data due to an uncontrolled change of the instrument
response; in a more dramatic scenario, the failure of a component can
affect the operational capacity of the whole instrument.
According to the state of the art, the studies on the effect of ions irra-
diation on coatings ([4]-[7]) and glasses ([8]-[9]) are limited to specific
ions species, values of energy and doses, and they generally have the
character of a qualification of a specific component in its space oper-
ational environment. In addition to this very few results have been
published on scientific journals.
The European Space Agency (ESA) has funded the project Radiation
testing of optical coating in space, lead by the National Research Council
of Italy, Institute for Photonics and Nanotechnology, to systematically
study the optical components performance degradation due to ex-
posure to protons, alpha particles and electrons. Within this project,
several samples including glasses, single-, bi- and multi-layer coat-
ings were properly designed by CNR-IFN Padova and fabricated by
Leonardo company. The samples are tested prior and after a huge
campaign of irradiation with different particles species and parame-
ters. The project results will then be useful in the development of the
JUICE instrumentation.

This thesis is organized as follows:

• The first chapter presents the rationale of the project and the
global aspects.

• The second chapter introduces the concept of light, how it prop-
agates and how it interacts with matter.

• The third chapter provides a mathematical model to describe
how light interacts with optical thin films.
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2 introduction

• The fourth chapter describes the optical degradation of coat-
ings due to ions implantation and provides a predictive model
software.

• The fifth chapter presents all the experimental results.

• The sixth chapter summarizes the thesis results, future researches
and general perspectives.



T H E E L E C T R O M A G N E T I C M O D E L
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2.1 maxwell’s equations

We have a complete model that describes the propagation of light
through Maxwell’s equations [10]. The general form of time-dependent
or integral form can be written as:

∇ · D̄ = ρ (1)

∇ · B̄ = 0 (2)

∇× Ē = −
∂B̄

∂t
(3)

∇× H̄ =
∂D̄

∂t
+ J̄ (4)

where Ē [V/m] and H̄ [A/m] are the electric and magnetic fields, D̄
[Coul/m2] and B̄ [Wb/m2] are the electric and magnetic flux densi-
ties, and ρ and J̄ are the electric charge and electric current densities
respectively. The sources of the electromagnetic field are the current J̄
and the electric charge density ρ. In free space, the following simple
relations hold between the electric and magnetic field intensities and
flux densities:

B̄ = µ0H̄ (5)

D̄ = ε0Ē (6)

where µ0 = 4π× 10−7 [henry/m] is the permeability of free space and
ε0 = 8.854× 10−12 [farad/m] is the permittivity of free space.

5



6 the electromagnetic model

Equations (1)-(4) are not independent one each other. For instance, if
we take the divergence of (3), we have:

∇ ·∇× Ē ≡ 0 = −
∂

∂t
(∇ · B̄) (7)

which leads to ∇ · B̄ = 0, that is, (2). The continuity condition can be
similarly derived by taking the divergence of (4), giving:

∇ · J̄+ ∂ρ
∂t

= 0 (8)

This equation states that charge is conserved, or that current is con-
tinuous, since ∇ · J̄ represents the outflow of current at a given point
and ∂ρ

∂t the charge variation with time at the same point.

The above differential equations can be converted to integral form
through the use of various vector integral theorems. Applying the
divergence theorem to (1) and (2) yields:∮

S

D̄ · ds̄ =
∫
V

ρ dv = Q (9)∮
S

B̄ · ds̄ = 0 (10)

where Q represents the total charge contained in the closed volume
V (enclosed by a closed surface S). In addiction, applying Stoke’s
theorem to (3) and (4) gives:

∮
C

Ē · dl̄ = −
∂

∂t

∫
S

B̄ · ds̄ (11)∮
C

H̄ · dl̄ = ∂

∂t

∫
S

D̄ · ds̄+
∫
S

J̄ · ds̄ = ∂

∂t

∫
S

D̄ · ds̄+ I (12)

where C represents a closed contour around the surface S and I =∫
S J̄ · ds̄ is the total electric current flow through the surface S.

The above equations are valid for arbitrary time dependence. How-
ever, when dealing with electromagnetic theory, the involved fields
typically have the form of sinusoidal or harmonic functions. In this
case the phasor notation is very convenient, and all field quantities
can be assumed to be complex vectors with an implied eiωt time
dependence. Maxwell’s equation in phasor forms can the be written
as:

∇ · D̄ = ρ (13)

∇ · B̄ = 0 (14)

∇× Ē = −iωB̄ (15)

∇× H̄ = iωD̄+ J̄ (16)



2.2 constitutive relations 7

The Fourier transform can be used to convert a solution to Maxwell’s
equations for an arbitrary frequency ω into a solution for arbitrary
time dependence.

2.2 constitutive relations

In the preceding section it was assumed that the electric and magnetic
fields where in free-space but, in practice, material bodies are often
present. When electromagnetic fields exist in media, the field vectors
are related to each other by the constitutive relations.
For a dielectric material, an applied electric field Ē causes the polariza-
tion of the constituent atoms and molecules to create electric dipole
moments that augment the total displacement flux D̄. This additional
polarization vector is named electric polarization P̄e, with:

D̄ = ε0Ē+ P̄e (17)

In a linear medium the electric polarization is linearly related to the
applied electric field such that:

P̄e = ε0χeĒ (18)

where χe is named electric susceptibility and can be a complex quantity.
This gives:

D̄ = ε0Ē+ ε0χeĒ = ε0(1+ χe)Ē = εĒ (19)

where

ε = ε0(1+ χe) = ε
′ − iε ′′ (20)

is the (complex) permittivity of the medium. The imaginary part ε ′′

accounts for losses due to damping of the vibrating dipole moments.
In this case we implicitly assumed that P̄e was a vector parallel to Ē,
but this only holds for isotropic materials. In the most general case of
an anisotropic medium, ε takes the form of a tensor of rank two and
it can be written in matrix form as:

DxDy
Dz

 =

εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 =

ExEy
Ez

 (21)

For a linear isotropic material, the matrix of (21) reduces to a diago-
nal matrix with elements ε.
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The same reasoning can be applied for the magnetic field, in particu-
lar:

B̄ = µ0(1+ χm)H̄ = µH̄ (22)

where

µ = µ0(1+ χm) = µ ′ − iµ ′′ (23)

is the (complex) permeability of the medium. In the most general case
of anisotropic materials, then:

BxBy
Bz

 =

µxx µxy µxz

µyx µyy µyz

µzx µzy µzz

 =

HxHy
Hz

 (24)

If linear media are assumed, then Maxwell’s equations can be rewrit-
ten as:

∇ · D̄ = ρ (25)

∇ · B̄ = 0 (26)

∇× Ē = −iωµH̄ (27)

∇× H̄ = iωεĒ+ J̄ (28)

and the constitutive relations are

D̄ = εĒ (29)

B̄ = µH̄ (30)

J̄ = σĒ (31)

where σ is the conductivity of the considered material.
Maxwell’s equations (25)-(28) in differential form require known bound-
ary values for a complete and unique solution.
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2.3 boundary conditions

Maxwell’s equations in integral form can be used to deduce condi-
tions involving the normal and tangential fields at a plane interface
between two media.

Figure 1: Closed surface S for equation (32).

We can consider a Gaussian pillbox that intersects the interface be-
tween two media (Figure [1]). As the cylinder is made smaller and
smaller the surface integrals containing the transverse field compo-
nents vanish and the total contribution of D̄ results:

∮
S

D̄ · ds̄ =
∮
V

ρ dv (32)

In particular, in the limit h→ 0, the contribution of Dtan through the
lateral surface goes to zero, giving:

Dn2 −Dn1 = ρs (33)

or equivalently

n̂ · (D̄2 − D̄1) = ρs (34)

where ρs is the surface charge density on the interface. A similar
result is obtained for the magnetic flux density B̄ with the difference
that there is no free magnetic charge, respectively:

n̂ · B̄2 = n̂ · B̄1 (35)

For the tangential components of the electric field we can use the
Stokes theorem in connection to the closes contour C shown in Figure
[2] and compute:

∮
C

Ē · dl̄ = −iω

∮
S

S̄ · ds̄ (36)
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Figure 2: Closed contour C for equation (2).

In the limit h→ 0, the surface integral of B̄ vanishes (because S = h∆l

vanishes), giving:

Et1 − Et2 = 0 (37)

or equivalently

(Ē2 − Ē1)× n̂ = 0 (38)

Similarly, for the magnetic fields we find:

n̂× (H̄2 − H̄1) = J̄s (39)

where J̄s is an electric surface current density that exist at the inter-
face. Equations (34), (35), (38) and (39) are the most general expres-
sions for the boundary conditions at an arbitrary interface of materi-
als and/or surface currents.
In case of a source-free material, these rewrites as:

n̂ · D̄2 = n̂ · D̄2 (40)

n̂ · B̄2 = n̂ · B̄1 (41)

Ē2 × n̂ = Ē1 × n̂ (42)

n̂× H̄2 = n̂× H̄2 (43)

In other words, at the interface between source-free materials, the
tangential components of Ē and H̄ and the normal components of D̄
and B̄ are continuous across it.
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2.4 helmholtz equation

In a source-free, isotropic and homogeneous region, Maxwell’s equa-
tions in phasor form can be written as:

∇ · D̄ = 0 (44)

∇ · B̄ = 0 (45)

∇× Ē = −iωµH̄ (46)

∇× H̄ = iωεĒ (47)

These can be solved either for Ē or H̄. For example, taking the curl of
(46) and using (47) we obtain:

∇×∇× Ē = −iωµ
(
∇× H̄

)
= ω2µεĒ (48)

This result can be simplified through the use of vector identity ∇×
∇× Ā = ∇(∇ · Ā) −∇2Ā. Then we obtain:

∇2Ē+ω2µεĒ = 0 (49)

because of (29) and (44). Equation (49) is the (homogeneous) Helmholtz
equation for Ē. Since it will be widely used in what follows, we de-
fine the wavenumber (or propagation constant, or phase constant) as the
quantity:

k = ω
√
µε =

2π

λ0
n =

2πν0
c
n (50)

where λ0 (ν0) is the wavelength (frequency) in vacuum, and n is the
refractive index of the medium.
An identical equation for H̄ can be derived, respectively:

∇2H̄+ k2H̄ = 0 (51)
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2.5 plane wave solution

It is convenient to study a particular family of waves named plane
waves because they are a mathematical base of the solutions of Maxwell’s
equations. Using the method of separation of variables (see appendix
A), the solution for the electric field component is:

Ē = Ē+0 e
−i(kxx+kyy+kzz) + Ē−0 e

i(kxx+kyy+kzz)

= Ē+0 e
−ik̄·r̄ + Ē−0 e

ik̄·r̄
(52)

where we have defined a wavenumber vector as:

k̄ = kxx̂+ kyŷ+ kzẑ = kŝ (53)

where k is the wavenumber and ŝ is a unit vector in the direction of
propagation defined by:

ŝ = αx̂+βŷ+ γẑ (54)

Equation (52) states that the mathematical solution of (49) includes
the contribution of a forward and a backward propagating fields, re-
spectively Ē−0 and Ē+0 . In the following analysis, however, we only
consider the first component for simplicity of notation. The expres-
sion of the magnetic field is retrieved from (46), respectively:

H̄ =
i

ωµ
∇× Ē = y(ŝ× Ē) (55)

where we used ∇ = −ik̄ = −ikŝ and where y = k
ωµ is the optical

admittance. Notice that, from (44), we obtain:

∇ · Ē = ∇ ·
(
Ē0e

−ik̄·r̄
)
= Ē0 · ∇e−ik̄·r̄ = 0 (56)

that is:

k̄ · Ē0 = 0 (57)

This result suggests that the electric field amplitude vector Ē0 must
be perpendicular to the direction of propagation ŝ. Moreover, from
(55), we find that the magnetic field vector H̄ lies in a plane normal
to k̄ and that it is perpendicular to Ē.

The time domain expression for the electric field can be found as:

Ē(r̄, t) = <{Ēeiωt}

= <{Ē0e
−ik̄·r̄eiωt}

= Ē0 cos(ωt− k̄ · r̄)
(58)
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This term represents a wave travelling in the direction of k̄ because to
maintain a fixed point on the wave (ωt− k̄ · r̄ = cost) one must move
in the k̄ direction as time increases. Given the amplitude Ē0 (typically
constant), Ē(r̄, t) is a cosinusoidal function that propagates with phase
velocity:

vp =
ω

k
(59)

This behaviour is pictured in Figure [3].

x

y ‖ s

z

~E

~H

Figure 3: Propagation of an electromagnetic wave

In all previous calculation we have considered an (ideal) lossless
medium, for which ε and µ are real numbers and so it is for k. This is
actually an approximation since there exist no material in nature that
exhibits no absorption. To account for this phenomenon, we have to
solve the general form of Maxwell’s equations:

∇× Ē = −iωµH̄ (60)

∇× H̄ = iωεĒ+ σĒ (61)

or the corresponding Helmholtz equation:

∇2Ē+ω2µε
(
1− i

σ

ωε

)
Ē = 0 (62)

Note that the structure is the same as (49), with the difference that
the wavenumber is now complex:

K2 = ω2µε− iωµσ (63)

For equation (59) to be verified it is necessary that:

v2p =
ω2

ω2µε
(
1− i σωε

) (64)
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Using the identity c2 = 1
µ0ε0

and rearranging (64) we obtain:

N2 = εrµr − i
µrσ

ωε0
(65)

where we have defined the dimensionless parameter N = c
v and used

the relative permittivity εr and permeability µr of the considered
material. This result implies that N is of the form:

N =
c

v
= n− iβ (66)

The term N is the complex refractive index and β is named extinction
coefficient.
With this results, equation (58) becomes:

Ē(r̄, t) = <{Ē0e
−i(k̄ ′−ik̄")·r̄eiωt}

= Ē0e
−k̄"·r̄ cos(ωt− k̄ ′ · r̄)

(67)

We see that in the equation (67) the term e−k̄"·r̄ takes into account the
material absorption, which appears in the form of an exponential de-
cay, while the term cos(−k̄ ′ · r̄+ωt) describes the wave propagation
in the medium.
In conclusion, we can define the most general expression of wave-
length and phase velocity for a plane wave in a lossy medium, respec-
tively, as:

vp =
ω

|K|
(68)

λ =
2π

|K|
(69)

2.6 polarization

The polarization of a plane wave refers to the orientation of the elec-
tric field vector, which can either be fixed or time-varying. In the most
simple case this is pointing in a fixed direction and the plane wave is
said to be linearly polarized.
Consider now the superposition of an x̂ and ŷ linearly polarized
plane waves propagating in free-space in the z direction and with
amplitudes E1 and E2 respectively. The total electric field can be ex-
pressed as:

Ē = (E1x̂+ E2ŷ)e
−ik0z (70)

Three possible scenarios are described.



2.6 polarization 15

2.6.1 Linear polarization

If E1 6= 0 and E2 = 0 then the resulting plane wave is linearly polar-
ized in the x̂ direction. Similarly, if E1 = 0 and E2 6= 0 it is linearly
polarized in the ŷ direction. If both amplitudes E1 and E2 are differ-
ent from zero (and real), we obtain a plane wave linearly polarized at
the general angle formed with the x-axis.:

φ = tan−1E2
E1

(71)

2.6.2 Circular polarization

If E1 = iE2 = E0, with E0 real, we obtain:

Ē = E0(x̂− iŷ)e
−ik0z (72)

The time domain expression of this field is:

Ē(z, t) = E0 [x̂ cos(ωt− k0z) + ŷ cos(ωt− k0z− π/2)]

= E0 [x̂ cos(ωt− k0z) + ŷ sin(ωt− k0z)]
(73)

This expression shows that the electric field vector varies in time
along the z-axis. For example, at z = 0, (73) reduces to:

Ē(0, t) = E0 [x̂ cos(ωt) + ŷ sin(ωt)] (74)

Givenω, when t increases, Ē rotates counterclockwise from the x-axis
with modulus:

ρ =

√
E20(cos2(ωt) + sin2(ωt)) = E0 (75)

and forming an angle which increases linearly with time:

φ = tan−1 sin(ωt)
cos(ωt)

= ωt (76)

This type of plane wave is referred to as a right hand circularly polarized
(RHCP) wave. Similarly, when E1 = −iE2 = E0, the resulting electric
field vector rotates clockwise and the wave is left hand circularly polar-
ized (LHCP).
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Figure 4: RHCP (left) and LHCP (right) plane wave propagation.

2.6.3 Elliptical polarization

The remaining case requires both amplitudes to be nonzero and dif-
ferent one each other, respectively E1 and E2eiϕ. The term ϕ refers
to the difference in phase between the two components. The resulting
electric field vector is:

Ē = (E1x̂+ E2e
iϕŷ)e−ik0z (77)

and the corresponding time-dependent expression at z = 0 is:

Ē(0, t) = x̂E1 cos(ωt) + ŷE2 cos(ωt+ϕ) (78)

In this case, the modulus and phase of Ē(0, t) cannot be expressed in
closed form. However, it can be shown that the tip of the electric field
vector rotates in the xy-plane describing an ellipse with equation:

E2x
E1

+
E2y

E2
− 2 cosϕ

ExEy

E1E2
= sin2ϕ (79)

where we used the notation Ex = E1 cos(ωt) and Ey = E2 cos(ωt+
ϕ). Note that the rotation can be either clockwise or counterclockwise
depending on ϕ. This type of plane wave is the more general, and
from this the other cases of linear and circular polarizations can be
derived as particular solutions.
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2.7 the poynting vector

An important feature of electromagnetic radiation is that it can store
electric and magnetic energy and carry power that may be transmit-
ted or dissipated as loss. The Poynting’s theorem provides a power
balance equation, and its derivation is here proposed.
If we have an electric source current J̄s and a conduction current σĒ,
as defined in (31), then the total electric current density is J̄ = J̄s+σĒ.
Multiplying (27) by H̄∗ and multiplying the conjugate of (28) by Ē
yields:

H̄∗ · (∇× Ē) = −iωµ|H̄|2

Ē · (∇× H̄∗) = Ē · J̄∗s + σ|Ē|2 − iωε∗|Ē|2

Using the vector identity ∇ · (Ā× B̄) = (∇× Ā)B̄− (∇× B̄)Ā we find:

∇ · (Ē× H̄∗) = H̄∗ · (∇× Ē) − Ē · (∇× H̄∗)
= −σ|Ē|2 + iω(ε∗|Ē|2 − µ|H̄|2) − Ē · J̄∗s

We can now integrate over a volume V and apply the divergence
theorem:

∫
V

∇ · (Ē× H̄∗)dv =
∮
S

Ē× H̄∗ · ds

= −σ

∫
V

|Ē|2dv+ iω

∫
V

(ε∗|Ē|2 − µ|H̄|2)dv−

∫
V

Ē · J̄∗sdv

where S is an arbitrary closed surface enclosing the volume V . Allow-
ing ε = ε ′− iε ′′ and µ = µ ′− iµ ′′ to be complex quantities to account
for losses, we can rewrite the previous equation as:

−
1

2

∫
V

Ē · J̄∗sdv =
1

2

∮
S

Ē× H̄∗ · ds̄+ σ
2

∫
V

|Ē|2dv

+
ω

2

∫
V

(ε ′′|Ē|2 + µ ′′|H̄|2)dv+ i
ω

2

∫
V

(µ ′|H̄|2 − ε ′|Ē|2)dv

(80)

This result is known as Poynting’s theorem, after the physicist J. H.
Poynting (1852-1914). The integral on the left-hand side represents
the complex power Ps delivered by the source J̄s inside S. The first
integral on the right-hand side represents complex power P0 flow out
of the closed surface S. If we define a quantity S̄, called the Poynting
vector, as:

S̄ = Ē× H̄∗ (81)
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then this power can be expressed as:

P0 =
1

2

∮
S

Ē× H̄∗ · ds̄ = 1

2

∮
S

S̄ · ds̄ (82)

The second and third integrals are real quantities representing the
time-average power Pl dissipated in the volume V due to conductiv-
ity, dielectric, and magnetic losses. Finally, the last integral can be
seen to be related to the stored electric and magnetic energies, and it
can be shown to be equal to 2iω(Wm −We) where We and Wm are
the time-average stored electric and magnetic energies in a volume V.
In other words, this complex power balance equation states that the
power delivered by the sources (Ps) is equal to the sum of the power
transmitted through the surface (P0), the power lost to heat in the vol-
ume (Pl), and 2ω times the net reactive energy stored in the volume.
Mathematically, this expresses as:

Ps = P0 + Pl + 2iω(Wm −We) (83)

The mean value of the Poynting vector is defined as the irradiance.
For a plane wave propagating in a homogeneous, isotropic and lossy
medium, the Poyinting vector has the same direction of the wavevec-
tor k̄. In addiction, from equation (55), we have a precise relation
between the electric and magnetic fields. The irradiance can then be
computed as:

Ī(r̄) = <[S̄] =
1

2
<[Ē× H̄∗] = 1

2
<[y∗]|Ē|2e−2k

′′·r̄ŝ (84)

The lossless case is retrieved by (84) by imposing k ′′ = 0 and y to be
real, respectively:

Ī =
1

2
y|Ē|2ŝ (85)

Since we will often deal with the amplitude values rather then the
vector expression of irradiance, we introduce the following notation:

I =
1

2
y|Ē|2 =

1

2
ny0|Ē|

2 (86)

where y0 is the optical admittance of vacuum.
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3.1 the simple boundary : lossless case

We now move the first step toward a more optical perspective [11].
In optics, thin films typically consist of a number of boundaries be-
tween various homogeneous media. The knowledge of the processes
that govern the interaction between the electromagnetic radiation and
these boundaries is fundamental to correctly manage the optical prop-
erties of the whole structures. In this regards, a single boundary is the
simplest case.

We firstly consider the lossless case. For any general direction of the
vector amplitude of the incident wave (Ei) we quickly find that the
application of the boundary conditions leads into complicated expres-
sions for the vector amplitudes of reflected and transmitted waves.
This problem can be overcome by defining two independent configu-
rations in which the electric filed vector is either aligned or transverse
in the plane of incidence. In the first case we refer to the wave as p-
polarized (or TM), while in the second one the wave is said to be
s-polarizes (or TE).
Any incident wave of arbitrary polarization can therefore be split into
two components having these simple orientations. The transmitted
and reflected components can be calculated for each orientation sep-
arately and then combined to obtain the resultant.

21
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3.1.1 s-polarized incident wave

n0

n1

ẑ

ŷ

x̂

θt

θiθi

ki

Ei
Hi

krEr

Hr

kt

Et

Ht

Figure 5: Reflection and Transmission at an interface for an impinging s-
polarized plane wave.

The case of study is pictured in Figure [5]. The electric and magnetic
fields of the three principal components are:

Ēi(x, z) = ŷEie−iki(sinθi·x̂+cosθi·ẑ)

Ēr(x, z) = ŷEre−ikr(sinθi·x̂−cosθi·ẑ)

Ēt(x, z) = ŷEte−ikt(sinθt·x̂+cosθt·ẑ)

(87)

and

H̄i(x, z) = y0Ei[sin θi · ẑ− cos θi · x̂]e−iki(sinθi·x̂+cosθi·ẑ)

H̄r(x, z) = y0Er[sin θi · ẑ+ cos θi · x̂]e−ikr(sinθi·x̂−cosθi·ẑ)

H̄t(x, z) = y1Et[sin θt · ẑ− cos θt · x̂]e−ikt(sinθt·x̂+cosθt·ẑ)

(88)

From section 2.3 we know that the tangential components of Ē and
H̄ must be continuous across the boundary. However, given the refer-
ence system of Figure [5], it seems worthwhile to operate with ampli-
tude components rather than vectors. Since the Snell’s law is implicitly
verified, indeed, we only need to consider the vector amplitudes.
We can now impose the parallel components of Ē and H̄ to be contin-
uous across the interface:

1. Parallel component of the electric fields:

Ei + Er = Et (89)
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2. Parallel component of the magnetic fields:

y0 cos θiEi − y0 cos θiEr = y1 cos θtEt (90)

We can eliminate Et to give:

y0 cos θi(Ei + Er) = y1 cos θt(Ei + Er) (91)

from which:

Er

Ei
=
y0 cos θi − y1 cos θt
y0 cos θi − y1 cos θt

(92)

Similarly, eliminating Er:

y0 cos θ0(2Ei − Et) = y1 cos θ1Et (93)

from which:

Et

Ei
=

2y0 cos θi
y0 cos θi − y1 cos θt

(94)

Equations (92) and (94) are the reflection and transmission coefficients
for s-polarized light, respectively:

ρs =
Er

Ei
=
y0 cos θi − y1 cos θt
y0 cos θi + y1 cos θt

=
n0 cos θi −n1 cos θt
n0 cos θi +n1 cos θt

(95)

τs =
Et

Ei
=

2y0 cos θi
y0 cos θi + y1 cos θt

=
2n0 cos θi

n0 cos θi +n1 cos θt
(96)

We now examine the energy balance at the boundary. The parallel
components of the irradiances of the three principal waves are:

Ii =
1

2
<[EiH

∗
i ] =

1

2
<[Ei(y0Ei cos θi)∗] =

1

2
y0 cos θi|Ei|2 (97)

Ir =
1

2
<[ErH

∗
r] =

1

2
y0 cos θiρ2s |Ei|

2 = ρ2sIi (98)

It =
1

2
<[EtH

∗
t ] =

1

2
y1 cos θtτ2s |Ei|

2 =
y1 cos θt
y0 cos θi

τ2sIi (99)

where we used the just computed reflection and transmission coeffi-
cients for which Er = ρsEi and Et = τsEi. We define the reflectance
R as the ratio of the reflected and incident irradiances and the trans-
mittance T as the ratio of the transmitted and incident irradiances,
respectively:
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Rs =
Ir

Ii
= ρ2s =

(
y0 cos θi − y1 cos θt
y0 cos θi + y1 cos θt

)2
(100)

Ts =
It

Ii
=
y1 cos θt
y0 cos θi

τ2s =
4y0 cos θiy1 cos θt

(y0 cos θi + y1 cos θt)2
(101)

or equivalently:

Rs =

(
n0 cos θi −n1 cos θt
n0 cos θi +n1 cos θt

)2
(102)

Ts =
4n0 cos θin1 cos θt

(n0 cos θi +n1 cos θt)2
(103)

Since the boundary is of zero thickness, it can only transfer energy
from one medium to the other without supplying or extracting energy
from the various waves. Because of that the Poynting vector will be
continuous across the boundary:

1

2
<[(Ei + Er)(y0 cos θiEi − y0 cos θiEr)∗] =

1

2
<[Et(y1 cos θtEt)]

1

2
y0 cos θi|Ei|2(1− ρ2s) =

1

2
y0 cos θi|Ei|2τ2s

Ii(1− Rs) = ItT

from which we find that the total energy flow is conserved.

R+ T = 1 (104)

3.1.2 p-polarized incident wave

A similar procedure can be applied in the case of a p-polarized plane
wave. The boundary conditions are:

1. Parallel component of the electric fields:

Ei cos θ0 + Er cos θ0 = Et cos θt (105)

2. Parallel component of the magnetic fields:

y0Ei + y0Er = y1Et (106)

We can eliminate Et to give:

y0(Ei − Et) = y1
cos θi
cos θt

(Ei + Et) (107)
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Figure 6: Reflection and Transmission at an interface for an impinging p-
polarized plane wave.

from which:

Er

Ei
=
y0 cos θt − y1 cos θi
y0 cos θt + y1 cos θi

(108)

Similarly, eliminating Er:

cos θi

(
2Ei −

y1
y0
Et

)
= Et cos θt (109)

from which:

Et

Ei
=

2y0 cos θi
y0 cos θt + y1 cos θi

(110)

Equations (108) and (110) are the reflection and transmission coeffi-
cients for p-polarized light, respectively:

ρp =
Er

Ei
=
y0 cos θt − y1 cos θi
y0 cos θt + y1 cos θi

(111)

τp =
Et

Ei
=

2y0 cos θi
y0 cos θt + y1 cos θi

(112)

Reflectance and transmittance for p-polarized incident light are then
computed as in (100) and (101):

Rp =
Ir

Ii
= ρ2p =

(
y0 cos θt − y1 cos θi
y0 cos θt + y1 cos θi

)2
=

=

(
n0 cos θt −n1 cos θi
n0 cos θt +n1 cos θi

)2 (113)
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Tp =
It

Ii
=
y1 cos θt
y0 cos θi

τ2p =
4y0 cos θiy1 cos θt

(y0 cos θt + y1 cos θi)2
=

=
4n0 cos θin1 cos θt

(n0 cos θt +n1 cos θi)2

(114)

Note that also in this case the R+ T + 1 rule is preserved.

3.1.3 The tilted optical admittance

In what follows we introduce a notation that will simplify the mathe-
matical analysis of thin films. From equation (55) we have a relation-
ship that links the vectors H̄ and (ŝ× Ē) by the optical admittance
y, respectively H̄ = y(ŝ× Ē). However, we find it convenient to deal
with E and H, i.e., the components of the electric and magnetic field
vectors that are parallel to the boundary. We can therefore introduce
a "tilted" optical admittance which connects E and H as:

η =
H

E
(115)

At normal incidence, η = y = ny0 (do not confuse general expression
for the optical admittance of vacuum y0 with the optical admittance
in a medium with refractive index n0, which is still y0). At oblique
incidence we find:

ηs =
y

cos θ
=
ny0
cos θ

(116)

ηp = y cos θ = ny0 cos θ (117)

where θ and y are those appropriate to the particular medium. With
this notation, for both cases, we have a single expression for each
parameter that does not depend on the polarization but only on the
materials characteristics, respectively:

ρ =
η0 − η1
η0 − η1

R =

(
η0 − η1
η0 − η1

)2
τ =

2η0
η0 + η1

T =
4η0η1

(η0 + η1)2

(118)

These expressions can be used to compute the variation of reflectance
of simple boundaries between extended lossless media.
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3.2 the simple boundary : lossy case

We now proceed our analysis in a more general lossy scenario. It can
be shown that the equations for the reflection and transmission coef-
ficients are formally the same as those we already computed for the
lossless case, the only difference given by the use of complex refrac-
tive indexes, namely N0 = n0 − iβ0 and N1 = n1 − iβ1. In order to
compute irradiance and transmittance, however, we have to redefine
the coupling between the incident and reflected fields that occurs in
absorbing media, and from this compute the energy transport accord-
ing to the Poyinting’s theorem.

In what follows we will assume the incident medium to be sufficiently
free of absorption. This is reasonable for any experiment to be carried
out since this is typically not heavily absorbing, but does not mean
that absorbing media in thin-film stacks would not be considered at
all. With this being said, we start by considering the phase factors of
the three principal waves in the scheme of Figure [7]:

exp{−i(k̄i · r̄)} = exp{−iki(sin θix+ cos θiz)}

exp{−i(k̄r · r̄)} = exp{−ikr(sin θix− cos θiz)}

exp{−i(k̄t · r̄)} = exp{−ikt(αx+ γz)}

(119)

where α and γ are the only unknown and follows by how we have
defined k̄ (equations (53) and (54)).

n0

N1

ẑ

x̂

θt

θiθi

ki kr

kt

Figure 7: Wavevector decomposition at an interface for an impinging plane
wave.

The phase factors must be equal for all x at the boundary z = 0, that
is:

ktα =
2πN1
λ

α = ki sin θi =
2πn0
λ

sin θi



28 optical thin films theory

which gives:

α =
n0 sin θi
N1

=
n0 sin θi
n1 − iβ1

(120)

Then, since α2 + γ2 = 1, we can write:

γ = (1−α2)
1
2 =

[
1−

(
n0 sin θi
n1 − iβ1

)2] 12

=

(
n21 −β

2
1 − i2n1β1 −n0 sin θi

) 1
2

n1 − iβ1

(121)

The quantity within the square root is either in the third (n21 − β
2
i −

n0 sin θi < 0) or in the fourth quadrant (n21−β
2
i −n0 sin θi > 0) since

the −2n1β1 is strictly negative. In both cases the square roots are in
the fourth quadrant, and the solution is of the form (a − ib). The
expression for γ becomes:

γ =
a− ib

n1 − iβ1
(122)

If we substitute this value in the phase factor of the transmitted wave
we find:

exp{−i(k̄t · r̄)} = exp{−ikt(αx+ γz)}

= exp
{
−i
2π(n1 − iβ1)

λ

(
n0 sin θi
n1 − iβ1

x+
a− ib

n1 − iβ1
z

)}
= exp

{
−
2π

λ
bz

}
exp
{
−i

[
(· · · ) + 2π

λ
az

]}
(123)

This result suggests that the wave is attenuated in the z direction
while the propagation direction is determined by direction cosines
that can be extracted from:

2πn0 sin θi
λ

x+
2πa

λ
z (124)

Such a wave is known as inhomogeneous.
At this point we have to calculate the tilted admittance connected to
such a wave.
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3.2.1 p-polarized light

For a p-polarized wave the H̄ vector is parallel to the boundary in
the x-direction and so H̄ = Hyŷ. The component of Ē parallel to the
boundary will then be in the x-direction, respectively Exx̂. Starting
from equation (16) and using (29),(31) and (65) we can write:

∇× H̄ = iωεĒ+ σĒ

= (iωε+ σ)Ē

= i
ωN2

c2µ
Ē

The tangential component of ∇× H̄ is in the x-direction such that

−i
2πN

λ
γ(ẑ× ŷ) = iωN

2

c2µ
Exx̂

i
2πN

λ
γx̂Hy = i

ωN2

c2µ
Exx̂

where we used the property −(ẑ× ŷ) = x̂. The tilted admittance for
p-polarized light is then:

ηp =
Hy

Ex
=

ωNλ

2πc2µγ
=
y

γ
(125)

3.2.2 s-polarized light

For a s-polarized wave we can start from equation (15) and follow a
similar analysis, knowing that Ē is now along the y-axis. The tilted
admittance in this case results:

ηs =
Hx

Ey
= yγ (126)

We should note at this stage that, provided we include the possibility
of complex angles, the formulation of the absorption-free case applies
equally well to absorbing media in the case:

α = sin θt
γ = cos θt

Because of that γ can be identified with cos θ. Consequently, equa-
tions (125) and (126) rewrites as:

ηp =
y

cos θ
(127)

ηs = y cos θ (128)
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The calculation of reflectance and transmittance follows the same pat-
tern as before, in particular:

R =

(
η0 − η1
η0 + η1

)(
η0 − η1
η0 + η1

)∗
T =

4η0<[η1]

(η0 + η1)(η0 + η1)∗

(129)

These two equations can be used to evaluate reflectance and trans-
mittance at an interface in case of a transparent incident medium (η0
real). Notice that the absorption-free case follows by assuming also
the second medium to be transparent.

3.3 thin film on a substrate

A simple extension of the above analysis occurs in the case of a thin,
plane, parallel film of material covering the surface of a substrate. We
say that the film is thin when interference effects can be detected in
the reflected or transmitted light. The same film can appear thin or
thick depending entirely on the illumination conditions. The thick
case can be shown to be identical with the thin case integrated over
a sufficiently wide wavelength range or a sufficiently large range of
angles of incidence. Normally, we find that the films on the substrates
can be treated as thin while the substrates supporting the films can
be considered thick.

Consider a layer of thickness d "sandwiched" between two (homo-
geneous) layers of different refractive indexes as pictured in Fig. [8].
The presence of two (or more) interfaces means that a number of
waves will be produced by successive reflections and the properties
of the film will be determined by the superposition of these waves.
We denote the waves in the direction of incidence by the symbol +
(positive-going) and those in the opposite direction by − (negative-
going). This turns out to be very useful as the waves in the film can
then be summed into one resultant positive-going wave and one re-
sultant negative-going wave.

To apply the boundary conditions, we consider the tangential com-
ponents of the fields. By neglecting the common phase factors, the
resultants at the last interface, b, are:

Eb = E+1b + E
−
1b

Hb = H+
1b +H

−
1b = η1E

+
1b − η1E

−
1b

With few simple calculations these rewrites as:
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n0

N1

N2

d

a

b

θi θi

θt

Figure 8: Thin film on a substrate.

E+1b =
1

2

(
Eb +

Hb
η1

)
H+
1b =

1

2
(Hb + η1Eb)

E−1b =
1

2

(
Eb −

Hb
η1

)
H−
1b =

1

2
(Hb − η1Eb)

The fields at the fist interface, a, at the same instant and at a point
with identical x and y coordinates can be determined by applying a
face shift δ in the z coordinate from 0 to −d, respectively:

±δ = ±K1 ·OPD = ±2π
λ0
N1 · (d cos θt) = ±

2πdN1
λ0

cos θt (130)

where the sign is + for a positive-going wave (a forward propagat-
ing field accumulates a negative phase shift, thus we have to take a
positive phase shift according to our reference system) and − for a
negative-going one. The values of E and H at the new interface are
then:

E+1a = E+1be
iδ =

1

2

(
Eb +

Hb
η1

)
eiδ

E−1a = E−1be
−iδ =

1

2

(
Eb −

Hb
η1

)
e−iδ

H+
1a = H+

1be
iδ =

1

2
(Hb + η1Eb) e

iδ

H−
1a = H−

1be
−iδ =

1

2
(Hb − η1Eb) e

−iδ
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We can now compute the tangential components of E and H as:

Ea = E+1a + E
−
1a = Eb

(
eiδ + e−iδ

2

)
+
Hb
η1

(
eiδ − e−iδ

2

)
= Eb cos δ+Hb

i sin δ
η1

Ha = H+
1a +H

−
1a = Ebη1

(
eiδ − e−iδ

2

)
+Hb

(
eiδ + e−iδ

2

)
= Ebiη1 sin δ+Hb cos δ

Using matrix notation we obtain:

[
Ea

Ha

]
=

[
cos δ i sinδ

η1

iη1 sin δ cos δ

][
Eb

Hb

]
=M1

[
Eb

Hb

]
(131)

where M2×2
1 is the characteristic matrix of the film.

Since the tangential components of E and H must be continuous
across the boundary, and since there is only a positive-going wave
in the substrate, this relationship connects the tangential components
of the fields at the incident interface (a) with those which are trans-
mitted through the thin films until the final interface (b).

The normalized expression of (131) is obtained by dividing by Eb:[
Ea/Eb

Ha/Eb

]
=

[
Ẽ

H̃

]
=

[
cos δ i sinδ

η1

iη1 sin δ cos δ

][
1

η1

]
(132)

where Ẽ and H̃ are the normalized electric and magnetic fields at the
front of the interface. The matrix [Ẽ H̃]T is known as the characteristic
matrix of the assembly.

3.4 assembly of thin films on a substrate

Let another film (N2) to be added to the single film of the previous
section so that the final interface is now denoted by c. The character-
istic matrix of the film near the substrate is:

M2 =

[
cos δ2 i sinδ2

η2

iη2 sin δ2 cos δ2

]

and from equation (131):

[
Eb

Hb

]
=M2

[
Ec

Hc

]
(133)
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We can then apply the same procedure recursively to give the param-
eters at the initial interface:

[
Ea

Ha

]
=M1

[
Eb

Hb

]
=M1M2

[
Ec

Hc

]
It is now straightforward to see that this result can be extended to
the general case of an assembly of q layers, where the characteristic
matrix of the assembly M is simply the product of the individual
matrices:

M =

q∏
k=1

[
cos δk i sinδk

ηk

iηk sin δk cos δk

]
(134)

and where the tilted optical admittance is that computed in the pre-
vious sections:

ηk =

y0Nk cos θk for s-polarization

y0Nk/ cos θk for p-polarization

In case of δk, it avoids difficulties over signs and quadrants if, in the
case of absorbing media, the arrangement used for computing phase
thicknesses and admittance is:

δk =
2π

λ0
dk

√
n2k −β

2
k −n

2
0 sin θ2i − 2inkβk (135)

the correct solution being in the fourth quadrant. Then we obtain:

ηk,s = y0

√
n2k −β

2
k −n

2
0 sin θ2i − 2inkβk (136)

and, consequently:

ηk,p =
y2k
ηk,s

=
y20N

2
k

ηk,s
(137)

The normalized electric and magnetic fields follows:

[
Ẽ

H̃

]
=M

[
1

ηm

]
(138)

where we have now used the suffix m to denote the substrate. A use-
ful property of the characteristic matrix of thin film is that the deter-
minant is unity. As a consequence, also the determinant of a product
of any number of this matrices must also be unity.
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3.5 reflectance , transmittance and absorbance

We define the input optical admittance of the assembly in analogy with
equation (115), that is Y = Ha

Ea
. Taking advantage of the characteristic

matrix of an assembly of films we can write:

Y =
Ha/Eb
Ea/Eb

=
H̃

Ẽ
(139)

In this way, using previous results, we can compute the reflection
coefficient and the reflectance of the multilayer as:

ρ =
η0 − Y

η0 + Y
(140)

R =

(
η0 − Y

η0 + Y

)(
η0 − Y

η0 + Y

)∗
(141)

In addiction, enough information is included in equation (138) to al-
low the transmittance and absorbance of a thin-film assembly to be
calculated. For this to have a physical meaning we require the inci-
dent medium to be transparent, that is, η0 to be real.
First of all, we calculate the net irradiance at the exit side of the as-
sembly, which we take as the k−th interface: This is given by:

Ik =
1

2
<[EkH

∗
k] =

1

2
<[Ekη

∗
mE
∗
k] =

1

2
<[ηm]|Ek|

2 (142)

where, once again, we consider the component of irradiance normal
to the interfaces. Given the normalized fields Ẽ and H̃, the net irradi-
ance at the input of the assembly is:

Ia =
1

2
<[ẼH̃∗]|Ek|

2 (143)

Let the incident irradiance be denoted by Ii, then equation (143) repre-
sents the irradiance actually entering the assembly, which is (1−R)Ii:

(1− R)Ii =
1

2
<[ẼH̃∗]|Ek|

2

Ii =
<[ẼH̃∗]|Ek|

2

2(1− R)

Equation (142) represents the irradiance leaving the assembly and
entering the substrate, which is by definition the transmittance (of
the assembly itself):

T =
Ik
Ii

=
Re[ηm](1− R)

<[ẼH̃∗]
(144)
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The absorbance A in the multilayer is connected with R and T by the
relationship:

R+ T +A = 1 (145)

so that

A = 1− R− T = (1− R)

(
1−

Re[ηm]

<[ẼH̃∗]

)
(146)

In absence of absorption in any of the layers it can readily be shown
that the above expressions are consistent with A = 0 and T + R = 1.
Since the individual film matrices will have determinants of unity,
indeed, the characteristic matrix of the assembly will also have the
determinant of unity with:

|M| =

∣∣∣∣∣M11 iM12

iM21 M22

∣∣∣∣∣ =M11M22 +M12M21 = 1

where M11,M12,M21 and M22 are all real quantities. Then we can
use equation (138) to obtain:

[
Ẽ

H̃

]
=

[
M11 iM12

iM21 M22

][
1

ηm

]
=

[
M11 + iM12ηm

M22ηm + iM21

]

and finally compute:

<[ẼH̃∗] = <[(M11 + iM12ηm)(M22ηm − iM21)]

= (M11M22 +M12M21)<[ηm]

= <[ηm]

(147)

Substituting (147) in (146) we find R+ T = 1 as expected.
In conclusion, we can manipulate equations (141),(144) and (146) into
slightly better forms. From (139) and (141):

R =

(
η0Ẽ− H̃

η0Ẽ+ H̃

)(
η0Ẽ− H̃

η0Ẽ+ H̃

)∗
(148)

so that

1− R =
2η0(ẼH̃

∗ + Ẽ∗H̃)

(η0Ẽ+ H̃)(η0Ẽ+ H̃)∗
(149)
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Substituting this result into equation (144) we obtain:

T =
4η0<[ηm]

(η0Ẽ+ H̃)(η0Ẽ+ H̃)∗
(150)

and

A =
4η0<[ẼH̃∗ − ηm]

(η0Ẽ+ H̃)(η0Ẽ+ H̃)∗
(151)

Equations (148),(150) and (151) are the most useful forms for the ex-
pression of R, T and A.

3.6 potential transmittance

The last parameter we must take into consideration in this chapter is
the potential transmittance. Given a multilayer structure, the potential
transmittance is defined as the ratio of the irradiance leaving the exit
interface to that entering by the front interface:

ψ =
Iexit
Ienter

=
T

1− R
(152)

or, equivalently, the ratio between the irradiance leaving the assembly
and the net irradiance actually entering. For the entire system, the net
irradiance actually entering is the difference between the incident and
reflected irradiances.
The potential transmittance of a series of sub-assemblies of layers is
simply the product of the individual potential transmittances. For
example, in the case of three sub-assemblies with interfaces a,b,c and
d, we can write:

ψ =
Ie

Ii
=
Ib
Ia

Ic

Ib

Id
Ic

(153)

The potential transmittance is fixed by the parameters of the con-
stituent layers and by the characteristics of the structure at the exit
interface, and it represents the transmittance which this particular
combination would give if there were no reflection losses. Because
of that it provides a measure of the maximum transmittance which
could be expected from the arrangement.
By definition, it is unaffected by any transparent structure deposited
over the front surface - which can affect the transmittance as distinct
from the potential transmittance - and to ensure that the transmit-
tance is equal to the potential transmittance the layers added to the
front surface must maximise the irradiance actually entering the as-
sembly. This implies reducing the reflectance of the complete assem-
bly to zero or, in other words, adding an antireflection coating. The
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potential transmittance,however, is affected by any changes in the
structure at the exit interface and it is possible to maximise the po-
tential transmittance of a sub-assembly in this way.

We now show that the parameters of the layer, or sub-assembly of
layers, together with the optical admittance at the rear surface, are
sufficient to define the potential transmittance. Let the complete mul-
tilayer performance be given by:

[
Ẽ

H̃

]
=M1M2M3 · · ·MaMbMc · · ·Mn

[
1

ηm

]

where we want to calculate the potential transmittance of the sub-
assembly MaMbMc. Let the product of the matrices to the right of
the sub-assembly be given by

[
Ẽe

H̃e

]

Now, if we denote:

[
Ẽi

H̃i

]
=MaMbMc

[
Ẽe

H̃e

]
(154)

then:

ψ =
<[ẼeH̃

∗
e]

<[ẼiH̃
∗
i ]

(155)

By dividing equation (154) by Ẽe we obtain:

[
Ẽ ′i

H̃ ′i

]
=MaMbMc

[
1

Ye

]

where Ye = H̃e/Ẽe, Ẽ ′i = Ẽi/Ẽe and H̃ ′i = H̃i/Ẽe. The potential trans-
mittance is:

ψ =
<[Ye]

<[Ẽ ′iH̃
′∗
i ]

=
<[H̃e/Ẽe]

<[(Ẽi/Ẽe)(H̃
∗
i/Ẽ
∗
e)]

=
ẼeẼ

∗
e<[H̃e/Ẽe]

<[ẼiH̃
∗
i ]

=
<[Ẽ∗eH̃e]

<[ẼiH̃
∗
i ]

=
<[ẼeH̃

∗
e]

<[ẼiH̃
∗
i ]

(156)
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which is identical to equation (155). Thus the potential transmittance
of any sub-assembly is determined solely by the characteristics of the
layer or layers of the sub-assembly together with the optical admit-
tance of the structure at the exit interface.
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The damage effects on coatings and their substrates depend on the
ion species, their energy, the flux and the total fluence (dose) [12].
Once these parameters are defined, laboratory tests can be used to
qualify the components. In particular, particles accelerators are com-
monly used to irradiate such components. Although valuable experi-
ments on the interaction of ions with glasses and coatings have been
carried out, these last are not always systematic: in particular, stud-
ies on coatings are limited to specific values of energy and dose of
selected ions species and they generally have the character of a qual-
ification of a specific component with respect to its particular space
operational environment. Some scientific information come from ex-
periments carried out in other disciplines, such as plasma and matter
physics [13]-[15], even though the ion irradiation parameters do not
correspond to those in space. Therefore, a systematic study on the
effects of ions in optical materials and coatings for space application
is needed.
For this reason, in this project different types of simple coatings (mono-
layer and bi-layers) comprising different materials (Al,Au, SiO2, TiO2
etc.) will be experimentally irradiated with different ions species (pro-
ton, electrons, He+) at various energies and fluences (doses) in order
to experimentally study the degradation on their optical, structural
and morphological properties.

41
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4.1 damage model

When a coating of a given material and thickness is irradiated by an
ion beam of a selected specie and energy, three situations can occur:

1. the sample is fully passed through and no ion is implanted;

2. the sample is fully implanted (i.e. all the ions stop inside the
material);

3. A third situation foresees a partial implantation.

The implantation profile of the particles can be simulated using the
TRIM/SRIM software [16]. As an example, in Figure. [9] the implan-
tation profile of 1 keV and 40 keV protons in an Au film is reported.
Notice that, depending on the energy of the implanted particles, the
implantation profile distributes over different film depths.

Figure 9: 1keV (left) and 40 keV (right) protons distribution inside 300 nm
gold layer

Previous studies with protons having energies 1-100 keV range have
demonstrated that implantation into materials for space application
can cause refraction index changes [17], delamination [18], surface
nanobubbles formation and blistering [6]. Regarding He irradiation
to simulate space conditions, the literature is rather limited [19]. Ex-
amples are here reported.

4.1.1 Example 1: No degradation

A single layer of Au irradiated with 3 MeV protons of flux 6.5 · 1011
[cm2/s] and fluence 10

14 [cm−2] shows no variations in reflectance
(Figure [10])

4.1.2 Example 2: Drop in efficiency

The same Au sample irradiated with different parameters (Table [1])
shows a drop in efficiency (reflectance). This drop depends on fluence
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Figure 10: No degradation (left) and drop in efficiency (right) examples [12].

and flux values and is associated with a degradation of the surface
morphology (Figure [10]).

Flux [cm2/s] Fluence [cm−2]

H 1.6·10
13 4·10

16

L 1.6·10
12

4·10
17

Table 1: Parameters of 4 KeV He+ irradiation fot example 2.

4.1.3 Example 3: Delamination

Delamination of the coatings is observed (Figure [11]) at the inter-
face corresponding to the peak of the implantation profile, probably
due to bubbles accumulation. In general, inter-diffusion of atoms at
interfaces must be expected due to scattering with incident particles.
In case of electrons, the potential optical performance degradations
occurring on coatings can be due to many physical processes, includ-
ing local thermal release, surface micro-protrusions and activation of
color centres, which correspond to changes in morphology and re-
fraction index of materials. Based on the presented results we can
define a first list of potential damages induced by protons, electrons
and He+:

1. Surface morphology changes;

2. Refraction index changes;

3. Structural changes as:

a) Inter-diffusion at interfaces;

b) Delamination.
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Figure 11: Degradation example. Irradiation with 50 keV He+ on Al/SiO2
(Optical Microscope image, top) and with 1 keV protons on
Mo/Si (Transmission Electron Microscope image, bottom). The
images to the right shows the effects observed after irradiation.

4.2 predictive model

A mathematical model was developed to predict the coatings be-
haviour under different irradiation conditions. Such model takes into
consideration all the damages listed by combining them using weight-
ing factors which depend on experimental outcomes. Damages 1, 2

and 3-a) affect the efficiency of the coatings, while 3-b) is considered
a fatal damage.
In case of ions, the Predictive Model is based on a combination of
simulations and experimental outcomes, while in case of electrons it
is based on experimental outcomes only. The Predictive Model logical
flow is reported in Figure. [12]. Within the project, I had the opportu-
nity to refine the code in terms of debug and optimization, and I was
directly responsible for the design of the software interface.
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Figure 12: Logical workflow of the Predictive Model.

4.2.1 Optical properties of materials

Currently, the following materials are available in the software: SiO2,
TiO2, ZrO2, MgF2, Au, Al, Pd, Pt, Ag, SiO2 (fused silica). For each
of these the software is provided with the optical constants (n and
β) and with others useful parameters such as density (ρ) and molar
mass (M).

4.2.2 Matrix model for R and T calculation

The optical behaviour of a coating deposited on a substrate (reflectance,
transmittance) is calculated by using the transfer matrix method which
is computationally fast and easy to implement. The mathematical de-
tails of this method are exhaustively described in previous chapters,
so that only the most important results are here reported.
Given a coating of N layers deposited on a substrate, its optical prop-
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erties can be computed by using the characteristic matrix of the struc-
ture:

M =

N∏
k=1

Mk =

N∏
k=1

[
cos δk i sinδk

ηk

iηk sin δk cos δk

]
(157)

where the two quantities δk and ηk depend on the angle of incidence
of light with respect to the normal incidence (θi), the refractive index
of the first medium (hereafter called environment, n0, and assumed
to be lossless), the complex optical constant Nk and the thickness
dk of the layer. In particular, δk takes into account the phase delay
induced by the layer and it is expressed as:

δk =
2π

λ0
dk

√
n2k −β

2
k −n

2
0 sin θ2i − 2inkβk (158)

while ηk is linked to the electric field amplitude of the beam reflect-
ed/transmitted by the layer and it changes with the polarization ori-
entation:

ηk =

y0
√
n2k −β

2
k −n

2
0 sin θ2i − 2inkβk for s-polarization

y20N
2
k

ηk,s
for p-polarization

(159)

Once the equivalent matrix of the whole coating is known, its re-
flectance Rcoat and transmittance Tcoat can be easily computed. Note
that Tcoat is the coating transmittance considering a semi-infinite
substrate. In order to properly simulate the transmittance of a real
component, the effect of the second interface of the substrate (which
is considered uncoated) has to be taken into account. Calling Rcoat
the reflectance of a single surface of the uncoated substrate, the total
transmittance is given by:

T =
Tcoat(1− Rcoat)

1− (RcoatR2sub)
(160)

4.2.3 Implanted particles profile

Simulations of the Stopping Range and collision dynamics of pro-
tons and He are performed with TRIM(TRends & Indices for Monitor-
ing data)/SRIM(Stopping and Range of Ions in Matter) software. The
software performs Montecarlo simulations of elastic scattering inter-
actions between the incident ions and the target atoms and provides
the profile of the implanted atoms, the damage depth distributions,
as well as the amount of surface sputtering. A typical output is shown
in Figure [13], where the He ions distribution in a gold (Au) film is
simulated for different energy values [12].
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Figure 13: Distribution of He+ ions implanted in gold (density of 19.3
[g/cm3]) as simulated by TRIM [12].

4.2.4 Matrix model modification for R and T calculation (irradiated coat-
ing)

The irradiated coating is modelled by the effective medium approxima-
tion (EMA) [20][12]. The effects produced by the vacancies and in-
clusions can be suitably modelled considering that they induced a
change of the complex dielectric function of the material medium
which depends on the fractional volume vf:

vf =
ρp

ρm
(161)

where ρp is the density of the vacancies and inclusions and ρm is the
density of atoms in the considered film. In particular, if the vf is suffi-
ciently small (i.e. vf < 0.2), the changes in the optical constants can be
modelled by using the Maxwell-Garnett (MG) formula which allows
the calculation of the effective dielectric function εf of the intermixed
system corresponding to the implanted film volume. According to
the MG formula, the effective dielectric function, εf, depends on the
matrix medium, εm, the dielectric function of the inclusions, εp, and
the volume fraction vf of the inclusions with respect to the matrix
medium:

εf =
2(1− vf)εm + (1+ 2vf)εp
(2+ vf)εm + (1− vf)εp

(162)

The fractional volume vf changes with the depth of the film propor-
tionally to the implantation profile; correspondingly, the irradiated
region of the film is characterized by a complex dielectric function
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which varies continually in depth. In this case, the reflectance/trans-
mittance of the coating can be computed by using the standard trans-
fer matrix formalism by discretizing into layers the irradiated area
and assuming each one as characterized by its local average fractional
volume vf(d) =W(d)ṽf, where W(d) is the normalized depth profile
and ṽf is the maximum fraction volume of the distribution (Figure
[14]).

Figure 14: Sketch of the irradiated films area discretized in layers with the
superimposition of the fractional volume distributions adopted
for the reflectance computation [12].

4.3 software architecture

The architecture of the software is shown in Figure [15].

4.3.1 Class objects description

4.3.1.1 The class “layer”

The class “layer” describes the behavior of a single layer. It requires
the following parameters:

1. thickness: it specifies the thickness in nm of the layer (positive
real number);

2. material: it specifies the material constituting the layer (string
indicating the name of the material file where the optical con-
stants, the density and the molar mass are stored);

The object has only the method

1 function M=get_matrix(n_0, theta_0)
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Figure 15: Predictive Model Software Architecture.

which returns the transfer matrix of the layer reported in equation
(157); in addition to the parameters used to define the object, the
method needs the optical constants of the environment n0 and the
incidence angle θ0.

4.3.1.2 The subclass of class “layer”

The object-oriented approach allows to define classes that implement
the behaviour of a layer but with more properties (and methods) with
respect to the simple class layer. Every layer subclass has to report in
the material property the string "special". The subclass layer_EMA im-
plements a Maxwell-Garnet effective medium approximation for mod-
elling a layer in which inclusions of a different material have been
added. The subclass has the constructor

1 function obj = layer_EMA (d, mat1, mat2, vf)

where d is the thickness, mat1 is the principal material, mat2 is the
material of the inclusions and vf is the fractional volume of these
inclusions.

4.3.1.3 The class “coating”

The class “coating” models the optical behaviour of the real coating.
It requires the following parameters:
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• substrate: it specifies the material of the substrate (SiO2, Si, BK7,
etc..); it is a string indicating the name of the material file where
the optical constants, the density and the molar mass are stored;

• environment: it specifies the material of the environment (Vac-
uum, air, water, etc.); it is a string indicating the name of the
material file where the optical constants, the density and the
molar mass are stored;

• layers: it is a vector of objects “layer” which compose the multi-
layer film.

With these properties, the coating is fully defined. The following list
reports the methods of this class:

• R: compute the reflectance for the wavelength reported in the
vector w considering the incidence angle θ0. Thus, this method
retrieves the characteristic matrix of the structure and then com-
putes the reflectance Rs and Rp.

1 function [Rs, Rp]=R(w, theta0)

• T_coat: compute the transmittance (considering a coating semi-
infinite substrate) for the wavelength reported in the vector w
considering the incidence angle θ0. Thus, this method retrieves
the characteristic matrix of the structure then computes the re-
flectance Ts and Tp.

1 function [Ts, Tp]=T _coat(w, theta0)

• T: compute the transmittance (considering a coating semi-infinite
substrate) for the wavelength reported in the vector w consid-
ering the incidence angle θ0. Thus, this method retrieves the
characteristic matrix of the structure and then computes the re-
flectance Ts and Tp.

1 function [Ts, Tp]=T (w, theta0)

• irradiate: this method applies to the topmost layers of the coat-
ings the Maxwell-Garnet approximation by following the input
implanted ion distribution and discretizing such layers for the
number given in input. The irradiated coating is defined as new
object.

1 function [A, vf]=irradiate(dist, N, mat)

where dist (vector with 2 columns, the first is the depth, the sec-
ond is the distribution) is the fractional volume distribution of
the inclusions, mat (string) specifies the materials of the inclu-
sions and N (positive integer) is the number of layers after the
discretization.
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4.4 software user manual

The software is designed to be as intuitive as possible. An overview
on the App is given in Figure [16].

Figure 16: Predictive Model Software App.

To start the simulation, the user is required to specify the Environment
and the Substrate material. A list of materials is specified by the app.
Before the initializations, the other three main functions Add Layer,
Simulate and Update Plot are disabled. These unlocks when the Initial-
ize button is pushed. Once the button is pushed, the red lamp on the
right turns into green colour confirming the operation has completed
correctly:

The user can specify the structure of the sample to be analysed by
adding layers of different materials and thicknesses. These are re-
ported in the right table where the bottom layer, the one on the top
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of the substrate, is indicated as layer 1.
To start the simulation, the user is required to push the Simulate but-
ton. The program computes the Reflectance and Transmittance curves
at the specified angle of incidence and plots them as function of the
wavelength. The wavelength range can be modified in the correspond-
ing fields:

To see the variations in Reflectance and Transmittance curves after the
implantation profile, the software requires to specify five parameters:

1. the type of particle (incident ions): at the moment this function
only allows to select vacuum, but it will be implemented soon
to offer a wider choice;

2. the Fluence;

3. the number of layers in which the film has to be discretized (de-
fault value corresponds to the number of layers);

4. the Flux: this value must be lower than or equal to the default
value 1 · 1012 [1/cm2/s] in order to guarantee reliable results.
For this reason, if the input value is lower, the lamp next to the
Irradiate button turns into red colour as a warning signal;

5. the Implantation Profile: this must be specified by copying the
file’s directory in the corresponding Edit Text Field.

After the Irradiate button is pushed, both curves are plotted in the cor-
responding area, as well as the Implantation profile and the fractional
volume. These can be easily selected in the Menu Bar:
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Other functions included are:

• Update plot: Update the plot;

• Reset: Bring the software to initial condition;

• TE/TM: Specify if plotted curves refers to p- or s- polarization;

• Export: is it possible to export a number of different results us-
ing the export functions from the File option in the Menu Bar.
The selected data will appear in MATLAB’s Workspace. NB: Re-
flectance and Transmittance curves are exported accordingly to
the specified polarization (TE/TM).
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All samples have been characterized using a double grating spec-
trophotometer Cary 5000 in transmittance or (absolute) reflectance
respectively. In order to be able to repeat the measurements with the
same conditions after the irradiation process, samples have been posi-
tioned taking notes on both the illuminated face and the orientation.
The wavelength range is 200-2500 nm. In case of Au samples, the
range has been extended up to 15000 nm using a Cary 630 FTIR spec-
trometer.

5.1 spectrometers

5.1.1 Cary 5000

Cary 5000 by Agilent [21] is a double grating spectrometer that is
able to perform different spectroscopic measurements in the UV-VIS-
NIR spectrum range. For our purpose, we used two different setup to
characterize each sample either in transmittance or reflectance respec-
tively. In particular, for the last one, measurements were performed
by employing a VW-scheme which allows to obtain the absolute re-
flectance with an incidence angle of 7◦ and an accuracy better than
2%. A picture of the device is shown in Figure [17].
A schematic representation of the Cary 5000 spectrometer is given in
Figure [18]. As previously mentioned, it performs measurements at
different wavelengths by exploiting two different diffraction gratings.
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Figure 17: Cary 5000 spectrometer.

Figure 18: Schematic representation of Cary 5000 spectrometer.
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The VW accssory

The VW SRA (specular reflectance accessory) is designed to measure
the direct (specular) reflectance of light from smooth solid materials
at near normal incidence. The term “VW” describes the light path
through the accessory in the reference and measurement positions.
The VW design features a kinematically mounted spherical mirror,
which is used for both calibration and sample measurement. With
the exception of the sample, the same optical elements are always in
the light path, providing a truly absolute refl ectance measurement.
Absolute measurements remove any need to correct results against
standard reference materials.

Figure 19: The VW SRA by agilent (left) and a schematic representation of a
(blazed) diffraction grating used in reflection.

Diffraction grating principle

In optics, a diffraction grating is an optical component with a periodic
structure that splits and diffracts light into several beams travelling in
different angular directions. It can reflect or transmit the light and is
an essential part of a monochromator. Monochromators are, in turn,
optical devices that work as narrowband wavelength filters with me-
chanically adjustable transmission wavelength.
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5.1.2 Cary 630 FTIR

The second spectrometer is based on a total different technique, that
is Fourier-Transform infrared spectroscopy.

Figure 20: Cary 630 FTIR spectrometer.

This technique is commonly used to obtain the (infrared) spectrum
of absorption or emission of a solid, liquid or gas. A FTIR spectrome-
ter simultaneously collects high-spectral-resolution data over a wide
spectral range. This confers a significant advantage over a dispersive
spectrometer (monochromator), which measures intensity over a nar-
row range of wavelengths at a time.
The term Fourier-transform infrared spectroscopy originates from the
fact that a Fourier transform (FFT) is required to convert the collected
interferogram into the actual spectrum.

Figure 21: Schematic representation of a FTIR spectrometer.
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5.2 optical coatings

Table [2] contains the list of the samples to be characterized. The list
was realized considering contributions from CNR and Leonardo, and
agreed together. The list resumes also the parameters and the number
of samples needed.

Table 2: Samples list, structure and number.

Simple coating samples

Samples dimensions: 2.5 cm2 diameter

N Sample type Structure Parameters Substrates Ref p He+ e Tot

1 S1W Au single layer 240 nm Si wafer 5 29 22 9 65

2 S1G Au single layer 240 nm Suprasil 5 5 2 9 21

3 S2W Al single layer 200 nm Si wafer 5 29 22 9 65

4 S2G Al single layer 200 nm Suprasil 5 7 4 9 25

5 S3GUV SiO2 single layer 520 nm Sapphire 5 29 22 9 65

6 S3W SiO2 single layer 520 nm Si wafer 5 13 10 9 37

7 S4G TiO2 single layer 360 nm Suprasil 5 29 22 9 65

8 S4W TiO2 single layer 360 nm Si wafer 5 13 10 9 37

9 S5G ZrO2 single layer 340 nm Suprasil 5 27 20 9 61

10 S5W ZrO2 single layer 340 nm Si wafer 5 10 7 9 31

11 S6W Al/SiO2 bi-layer 200/80 nm Si wafer 5 15 13 9 42

12 S7W Al/SiO2 bi-layer 210/80 nm Si wafer 5 15 13 9 42

13 S8G SiO2/TiO2 bi-layer 230/83.4 nm Suprasil 5 15 13 9 42

14 S8W SiO2/TiO2 bi-layer 230/83.4 nm Si wafer 5 17 14 9 45

15 S9G SiO2/ZrO2 bi-layer 230/104.2 nm Suprasil 5 15 13 9 42

16 S9W SiO2/ZrO2 bi-layer 230/104.2 nm Si wafer 5 12 10 9 36

17 S10G Au/MgF2 bi-layer 200/80 nm Suprasil 5 16 13 9 43

18 S10W Au/MgF2 bi-layer 200/80 nm Si wafer 5 17 14 9 48

19 S11W Pt single layer 220 nm Si wafer 5 29 22 9

20 W Si wafer 5 0 0 0

21 G Suprasil 5 18 11 9 40

22 GUV Sapphire 5 12 5 9 33

23 G1 S-FPL51 5 8 5 9

24 G2 N-KZFS11 5 8 5 9

25 G3 S-FTM16 5 8 5 9
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5.3 samples characterization

Sample 1: S1W Au

All the samples show similar performances.

Figure 22: Reflectance of S1W Au samples.

Figure 23: Reflectance of S1W Au samples.
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Sample 2: S1G Au

All the samples show similar performances.

Figure 24: Reflectance of S1G Au samples.

Figure 25: Reflectance of S1G Au samples.
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Sample 3: S2W Al

All the samples show similar performances.

Figure 26: Reflectance of S2W Al samples.

Sample 4: S2G Al

All the samples show similar performances.

Figure 27: Reflectance of S2G Al samples.
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Sample 5: S3GUV SiO2

The samples show different responses. This behaviour must be at-
tributed to the performances of the GUV substrate, which varies a lot
(see sample 22). We were able to distinguish three main classes which
show some similarities in terms of amplitude and peak location (Fig-
ure [29])

Figure 28: Transmittance of S3GUV SiO2 samples.

Figure 29: Different types of S3GUV SiO2 samples response.
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Sample 6: S3W SiO2

All the samples show similar performances, with the only exceptions
given by S3W06, S3W15, S3W21. The difference must be attributed to
a poor satin finish on the back of the speciment that allows a diffusion
of the incident radiation towards the first surface. This hypothesis is
supported by the fact that at wavelengths lower than 1000 nm the
performances are homogeneous, which can be related to the Si be-
haviour that is intrinsically absorbent and no contributions deriving
from the reflection of the second surface are present in that spectral
region.

Figure 30: Reflectance of S3W SiO2 samples.
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Sample 7: S4G TiO2

All the samples show similar performances.

Figure 31: Transmittance of S4G TiO2 samples.

Sample 8: S4W TiO2

All the samples show similar performances. Sample S4W13 got bro-
ken so that the measure is not reported.

Figure 32: Reflectance of S4W TiO2 samples.
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Sample 9: S5G ZrO2

All the samples show similar performances.

Figure 33: Transmittance of S5G ZrO2 samples.

Sample 10: S5W ZrO2

All the samples show similar performances.

Figure 34: Reflectance of S5W ZrO2 samples.
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Sample 11: S6W Al/SiO2

All the samples show similar performances.

Figure 35: Reflectance of S6W Al/SiO2 samples.

Sample 12: S7W Ag/SiO2

All the samples show similar performances.

Figure 36: Reflectance of S7W Ag/SiO2 samples.
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Sample 13: S8G SiO2/TiO2

All the samples show similar performances.

Figure 37: Transmittance of S8G SiO2/TiO2 samples.

Sample 14: S8W SiO2/TiO2

All the samples show similar performances, with the only exceptions
given by S8W20, S8W29 and S8W32.

Figure 38: Reflectance of S8W SiO2/TiO2 samples.
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Sample 15: S9G SiO2/ZrO2

All the samples show similar performances.

Figure 39: Transmittance of S9G SiO2/ZrO2 samples.

Sample 16: S9W SiO2/ZrO2

All the samples show similar performances.

Figure 40: Reflectance of S9W SiO2/ZrO2 samples.
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Sample 17: S10G Au/MgF2

All the samples show similar performances.

Figure 41: Reflectance of S10G Au/MgF2 samples.

Figure 42: Reflectance of S10G Au/MgF2 samples.
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Sample 18: S10W Au/MgF2

All the samples show similar performances.

Figure 43: Reflectance of S10W Au/MgF2 samples.

Figure 44: Reflectance of S10W Au/MgF2 samples.
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Sample 19: S11W Pt

All the samples show similar performances. Sample S11W31 got bro-
ken so that the measure is not reported.

Figure 45: Reflectance of S11W Pt samples.

Sample 20: W

All the samples show similar performances.

Figure 46: Reflectance of W samples.
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Sample 21: G

All the samples show similar performances.

Figure 47: Transmittance of G samples.

Sample 22: GUV

In this case we obtained very different results in terms of reflectance
shape, with local maxima and minima varying in a wide range.

Figure 48: Transmittance of GUV samples.
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As for S3GUV , we were able to distinguish three different types of
samples which show similar characteristics (Figure [49]).

Figure 49: Different types of GUV samples response.

Sample 23: G1

All the samples show similar performances.

Figure 50: Transmittance of G1 samples.
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Sample 24: G2

All the samples show similar performances. Sample G229 has been
discarded because it got damaged.

Figure 51: Transmittance of G2 samples.

Sample 25: G3

All the samples show similar performances. Sample G301 has been
discarded because it got damaged.

Figure 52: Transmittance of G3 samples.
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5.4 simulation and fitting

In addiction to the optical characterization reported in previous pages,
some simulations were performed to verify whether the samples struc-
ture was that of Table [2]. When possible, measurement data were fit-
ted using the layer thicknesses as free parameters in order to retrieve
the real structure to be compared with the nominal one.
In case of single layers, fittings were performed by initializing a new
structure with the nominal thickness and iteratively computing a
function of merit given by the least-square difference between the sim-
ulated curve and the average of the measured ones. The thickness
increment was set to be always positive (increasing thickness) since,
from a visual comparison, the simulated curve never appeared to
be broader but rather compressed with respect to the measurements,
which is associated to a thicker coating. In case of bi-layers, the Mat-
lab function nlinfit was used.

In this analysis we had to exclude metal coatings since electromag-
netic radiation do not penetrate into the layers, thus it was not pos-
sible to retrieve the real thicknesses from fitting. As a consequence,
for metal single layers, fitting is not reported. Moreover, fittings with
dielectric coatings were performed considering only data of samples
with glass substrates (coatings on wafers have been deposited in the
same run and are more difficult to simulate due to a insufficient
knowledge of Si optical constants).
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Samples 1 and 2: S1W Au & S1G Au

Nominal thicknesses seem to be coherent with the measurements.
The discrepancy for wavelengths lower than 500 nm must be related
to a difference between the optical constants used for the simulation
and those of the real material.

Figure 53: Simulation with nominal thickness (blue curve) and measured
reflectance (red curve) of S1W Au samples.

Figure 54: Simulation with nominal thickness (blue curve) and measured
reflectance (red curve) of S1G Au samples.
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Sample 3 and 4: S2W Al & S2G Al

Nominal thicknesses seem to be coherent with the measurements.

Figure 55: Simulation with nominal thickness (blue curve) and measured
reflectance (red curve) of S2W Al samples.

Figure 56: Simulation with nominal thickness (blue curve) and measured
reflectance (red curve) of S2G Al samples.
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Sample 5: S3GUV SiO2

The fitting analysis revealed a real thickness of 511.6 nm of SiO2. The
differences must be related to optical constants of the GUV substrate.

Figure 57: Simulation with nominal thickness (blue curve), estimated thick-
ness (green curve) and measured reflectance (red curve) of
S3GUV SiO2 samples.

Sample 7: S4G TiO2

The fitting analysis revealed a real thickness of 375.4 nm of TiO2.

Figure 58: Simulation with nominal thickness (blue curve), estimated thick-
ness (green curve) and measured reflectance (red curve) of S4G
TiO2 samples.
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Sample 9: S5G ZrO2

The fitting analysis revealed a real thickness of 346 nm of ZrO2.

Figure 59: Simulation with nominal thickness (blue curve), estimated thick-
ness (green curve) and measured reflectance (red curve) of S5G
ZrO2 samples.

Sample 11: S6W Al/SiO2

The fitting analysis revealed a real thickness of 207.1 nm of the SiO2
top layer. In this case the difference between the real and theoretical
structure is not negligible.

Figure 60: Simulation with nominal thickness (blue curve), estimated thick-
ness (green curve) and measured reflectance (red curve) of S6W
Al/SiO2 samples.
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Sample 12: S7W Ag/SiO2

In this case, the fitting was not possible because the optical constants
of Ag were unclear. Further investigation is programmed.

Figure 61: Simulation with nominal thickness (blue curve) and measured
reflectance (red curve) of S7W Ag/SiO2 samples.

Sample 13: S8G SiO2/TiO2

The fitting analysis revealed a real thickness of 232.7 nm of the SiO2
top layer and 84.9 nm for the TiO2 one.

Figure 62: Simulation with nominal thickness (blue curve), estimated thick-
ness (green curve) and measured reflectance (red curve) of S9G
SiO2/TiO2 samples.
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Sample 15: S9G SiO2/ZrO2

The fitting analysis revealed a real thickness of 232.7 nm of the SiO2
top layer and 104.2 nm for the ZrO2 one.

Figure 63: Simulation with nominal thickness (blue curve), estimated thick-
ness (green curve) and measured reflectance (red curve) of S8G
SiO2/ZrO2 samples.

Sample 18: S10W Au/MgF2

The discrepancy must be related to a difference between the optical
constants of Au and MgF2 used for the simulation and those of the
real material.

Figure 64: Simulation with nominal thickness (blue curve), estimated thick-
ness (green curve) and measured reflectance (red curve) of S10W
Au/MgF2 samples.



5.4 simulation and fitting 85

Sample 19: S11W Pt

In this case, the two curves show a similar shapes. The difference
between these must be related only to the optical constants of Pt
used for the simulation and those of the real material.

Figure 65: Simulation with nominal thickness (blue curve), estimated thick-
ness (green curve) and measured reflectance (red curve) of S11W
Pt samples.
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C O N C L U S I O N S

In this master thesis we provided a mathematical model to simulate
the optical response of a multilayer structure prior and after different
particles implantation. This was implemented in Matlab to create a
simple but effective software that will be used until the conclusion of
the ESA project and definitely for other future works. The model pro-
vided a starting point to design the samples discussed and to study
the variation in optical performance due to ions implantation.
In order to associate theoretical and experimental results, a huge num-
ber of samples were optically characterized in terms of (absolute) re-
flectance or transmittance. This process was needed since the totality
of the samples will eventually be characterized for a second time af-
ter the irradiation process, and a comparison between the two curves
will provide results for the damaging model. Moreover, to improve
our knowledge of the samples, measured data were fitted (when pos-
sible) to retrieve informations about the real thicknesses.
This analysis pointed out a series of problems in terms of differences
between ideal and real structures. This could be related either to the
thicknesses or to the optical constants of different material, for which
our knowledge is limited to the literature or to the samples provider.
For this reason further investigations are planned, especially for the
optical constants of gold (Au), titanium dioxide (TiO2), silver (Ag),
magnesium fluoride (MgF2) and palladium (Pt).
The following step would be the irradiation itself. The protons and He
ions irradiation will be performed at Helmholtz-Zentrum Dresden-
Rossendorf, Institute of Ion Beam Physics and Materials Research Ion
Beam Center, while the electrons irradiation at low energy will be per-
formed at Technical University of Denmark, Center for Nuclear Tech-
nologies. The electron irradiation at high energy will be performed
at Istituto Nazionale per la Fisica Nucleare – Laboratori Nazionali di
Frascati (INFN-LNF, Italy) at the DAFNE Beam Test Facility (BTF).
The improved knowledge in understanding the effects of electrons,
protons and ions on coatings and the definition of tests procedure will
be applied to develop and test optical components in view of their po-
tential application to the ESA JUICE mission. The ESA project results
will then be useful in the development of the JUICE instrumentation.
More in general, the skills acquired within the project will be useful
in the development and qualification of optical coatings for future
space mission instrumentation, even when materials, structures and
experimental conditions are different from those considered in the
present project.
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G E N E R A L P L A N E WAV E S O L U T I O N

In this section, the general solution of the homogeneous Helmolthz is
computed with the method of separation of variables. In free-space,
this can be written as

∇2Ē+ k20Ē =
∂2Ē

∂x2
+
∂2Ē

∂y2
+
∂2Ē

∂z2
++k20Ē = 0

and this vector wave equation holds for each rectangular component
of Ē:

∂2Ei
∂x2

+
∂2Ei
∂y2

+
∂2Ei
∂z2

++k20Ei = 0 (163)

where the index i = x, y, or z. This equation can be solved by the
method of separation of variables, a standard technique for treating
such partial differential equations. The method begins by assuming
that the solution to (163) for, say, Ex , can be written as a product of
three functions for each of the three coordinates:

Ex(x,y, z) = f(x)g(y)h(z) (164)

Substituting (164) into (163) and dividing by fgh gives

f ′′

f
+
g ′′

g
+
h ′′

h
+ k20 = 0 (165)

where the double primes denote the second derivative. The key step
in the argument is to recognize that each of the terms in (165) must be
equal to a constant because they are independent of each other. That
is, f

′′

f is only a function of x, and the remaining terms do not depend
on x, so f ′′

f must be a constant, and similarly for the other terms in
(165). Thus, we define three separation constants, kx, ky, and kz, such
that

f ′′

f
= −k2x

g ′′

g
= −k2y

h ′′

h
= −k2z

or equivalently

∂2f

∂x2
+ k2xf = 0

∂2g

∂y2
+ k2yg = 0

∂2h

∂z2
+ k2zg = 0 (166)
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Combining (164) and (166) shows that

k2x + k
2
y + k

2
z = 0 (167)

The partial differential equation of (165) has now been reduced to
three separate ordinary differential equations in (166). These are found
to be classical expression of harmonic oscillators, thus solutions are
of the form:

∂2f

∂x2
+ k2xf = 0 ⇒ f(x) = F−e−ikxx + F+e+ikxx

As we saw in the previous section, the terms with + signs result in
waves travelling in the negative x, y, or z direction, while the terms
with − signs result in waves travelling in the positive direction. Both
solutions are possible and are valid; the amount to which these var-
ious terms are excited is dependent on the source of the fields and
the boundary conditions. For our present discussion we will select
a plane wave travelling in the positive direction for each coordinate
and write the complete solution for Ex as

Ex(x,y, z) = Fe−i(kxx+kyy+kzz) (168)

where F is an arbitrary amplitude constant. Now define the wavevec-
tor k̄ as

k̄ = kxx̂+ kyŷ+ kzẑ = k0ŝ (169)

where |k̄| = k0 is the wavenumber and

ŝ = αx̂+βŷ+ γẑ (170)

is a unit vector in the direction of propagation. Moreover, by defining
a position vector as

r̂ = xx̂+ yŷ+ zẑ (171)

equation (168) can be written as

Ex(x,y, z) = Ae−ik̄·r̄ (172)

Solutions to (163) for Ey and Ez are, of course, similar in form to Ex
of but with different amplitude constants:
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Ey(x,y, z) = Be−ik̄·r̄ (173)

Ez(x,y, z) = Ce−ik̄·r̄ (174)

The x, y, and z dependences of the three components of Ē in (172)-
(174) must be the same (same kx , ky , kz), because the divergence
condition

∇ · Ē =
∂2Ex

∂x2
+
∂2Ey

∂y2
+
∂2Ez

∂z2
= 0 (175)

must also be applied in order to satisfy Maxwell’s equations, and this
implies that Ex, Ey, and Ez must each have the same variation in x, y,
and z. This condition also imposes a constraint on the amplitudes A,
B, and C because if

Ē0 = Ax̂+Bŷ+Cẑ

we have

Ē = Ē0e
−ik̄·r̄ (176)
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