
UNIVERSITY OF PADOVA

MASTER DEGREE in
ICT FOR INTERNET AND MULTIMEDIA

Optimization and scalability of
tiled code generation

October 7, 2019
A.A. 2018/2019

Candidate:
Gabriella BETTONTE

Supervisors:
Corinne ANCOURT

Leonardo BADIA

i

“The worst thing you can do to a problem is solve it completely.”

Daniel Kleitman

iii

UNIVERSITY OF PADOVA

Abstract

Optimization and scalability of tiled code generation

by Gabriella BETTONTE

Nowadays, scientific research needs to model complex systems and pro-
cess big data, which requires high computational power, usually provided
by massive parallel super-computers. However, a powerful hardware alone
is not enough to ensure high parallel computing performance: to make good
use of parallel infrastructure capabilities, the code must be optimized as well.
Hence, tools like source-to-source compilers have a primary role.

The CRI1 research team is developing PIPS, a source-to-source compiler
that performs code optimization to enforce locality for the cache memory
usage and parallelism for a balanced computational load among threads.

Since programs spend most of their execution time inside loops, a critical
optimization performed by PIPS takes place on loop tiling, i.e., partitioning
the iteration space into smaller blocks (tiles) of iterations, which fit the avail-
able cache and can be executed in parallel.

Tiled code generated by PIPS showed a lack of scalability, that is, increas-
ing the number of threads does not lead to any advantage in terms of execu-
tion time. This thesis work aims to present the procedure we designed to in-
vestigate this scalability issue and show an invariant code optimization and
parallel directive selection performed on the tiled code generated by PIPS.

As a result, we will show how the implementation of a new PIPS phase,
including such optimizations, leads to a scalable tiled code and to the min-
imization of the parallel directive overhead. We will present how the code
generated by the current version of PIPS outperforms the previous one and
achieves comparable results to other state-of-the-art code optimizers in terms
of speed-up.

1Centre de Recherche en Informatique Mines ParisTech

v

Acknowledgements
I would like to express my gratitude to Dr. Corinne Ancourt for guiding
me with patience through the internship, for participating with passion to
my effort, for supporting me beyond her supervisor duties and for being an
inspiration to me as researcher and as human being.

My sincere thanks also goes to Dr. Leonardo Badia for supporting me
during my master degree with precious advices and insights and for helping
me to believe in my possibilities. Without his contribution, I would have
missed the precious work experience with CRI team.

I would also like to thank all the CRI team for welcoming me with kind-
ness and making me feel welcome. I developed an invaluable friendship with
my colleagues Patryk, Bruno, Lucas, Monika, Maksim, Justyna and Maryna.
Speaking, working and traveling with them enriched me with wonderful
memories and fascinating new points of view that will accompany me in
the future.

My colleagues from the University of Padova, Elena, Davide, Mattia,
Thomas, Gabriele and Nicola, made me feel among friend since I first met
them: thank to you all!

My gratitude goes also to my family for pushing me to reach my highest
objectives during my academic life and, at the same time, for reassuring me
during the hard moments.

Finally, I would like to thank my beloved Piercarlo for brightening my
life, being my companion of adventures and inspiring me to express myself
to the best.

vii

Contents

Abstract iii

Acknowledgements v

Introduction 1

1 PIPS - Parallelization Infrastructure for Parallel Systems. 5
1.1 Compilers . 5

1.1.1 Source-to-source compilers 5
1.1.2 Principles of compilation theory 6
1.1.3 Compiler structure overview 7
1.1.4 Phases of a compiler . 7

1.2 Optimization for locality and parallelism 9
1.2.1 Locality . 9
1.2.2 Parallelism . 11

1.3 Polyhedral compilation . 13
1.3.1 Loop tiling . 15

2 Experiments 19
2.1 Test procedure . 19

2.1.1 Setting PIPS parameters 19
2.1.2 First phase . 19
2.1.3 Second phase . 19
2.1.4 Third phase . 20

2.2 Preliminary work . 20
2.2.1 Environment definition 20
2.2.2 Input code . 21
2.2.3 Tiling matrix selection 25
2.2.4 Parallel code versions 26

2.3 Optimization work . 28
2.3.1 Generation of sequential code 29
2.3.2 Scalability . 33

3 Results 35
3.1 Considerations on PIPS’s improvements 35

3.1.1 Speed-up improvement 35
3.1.2 Parallel directive overhead 37
3.1.3 Scalability . 38

3.2 Comparison with Pluto . 39
3.3 Intel compiler . 45

viii

Conclusion 47

Bibliography 49

Appendices 51

A Test procedure 53

B Pseudocode new PIPS’s phase 63

C Minimum and maximum function script 69

ix

To my mother Anna Maria

1

Introduction

My thesis work, developed at MINES ParisTech, aimed to study in detail
some issues related to the generation of optimized parallel code by PIPS, a
source-to-source compiler for Fortran and C code, developed by the mem-
bers of the Centre de Recherche en Informatique team based in Fontainebleau.

Over the many functionalities of PIPS, the one on which I focused was
the generation of efficient code, which means that when run under the same
conditions, both the memory usage and execution time of such code are ap-
preciably lower than the original code’s.

While some years ago to improve code execution performances the most
common approach was increase the clock frequency of the machines, nowa-
days this perspective, also due to the reaching of hardware improvement
limits, has mostly been abandoned in favor of adding more cores to the ma-
chine and software-side optimizations for locality and parallelism.

"Because the clock frequency of processors fails to continue to grow (end
of Dennard scaling), the only way in which the execution of programs
can be accelerated is by increasing their throughput with a compiler: by
increasing parallelism and improving data locality" [12].

Those optimizations have the additional requirements of being portable
and machine independent. To better study how to fulfill those requirements,
the best choice is a source-to-source compiler, such as PIPS.

"[A source to source compiler] eases the programmability of heteroge-
neous architectures, to apply different optimization techniques and let
the programmer have access [to code] during the optimization process"
[15].

One of the most common linear transformations meant to improve data lo-
cality and parallelism is tiling. It even allows programs dealing with huge
vectors to reuse the data stored inside the cache and contextually exploits the
potential parallelism of the code, greatly improving the performances of its
execution both memory - and time - wise. Considering that commonly pro-
grams spend a great percentage of their execution time inside loops, applying
tiling to loops offers very noticeable advantages in terms of speed up.

Loop tiling consists in partitioning the iteration space into smaller blocks
(i.e., tiles) of iterations, fitting the available cache memory provided by the
environment while also evaluating the dependencies among variables.

While this could seem a pretty neat problem, it is important to point out
that the term optimization could lead to a misconception while related to the
work we will expose: being in fact an undecidable problem, it is not possible
to individuate in a deterministic way an algorithm that can solve it. In other

2 Introduction

words, since we have no defined way to prove our generated code is the best
possible, our goal cannot be the true optimal, but rather a good performing
generated code.

Loop tiling optimization is fundamental for modern applications involv-
ing parallelism. One example of those are DNN-based application popular
for computer vision.

"DNN-based applications, especially in convolutional layers and fully
connected layers, are compute-intensive, as they typically apply a series
of matrix computations iteratively to a massive amount of data. For this
reason, loop tiling turns out to be the most significant compiler opti-
mization" [25].

Loop tiling optimizations are also known to improve computer perfor-
mance in biology research.

"Current research in the field of computational biology often involves
simulations on high-performance computer clusters. It is crucial that the
code of such simulations is efficient and correctly reflects the model spec-
ifications.[...] These optimizations [such as loop tiling for locality and
parallelism] allow simulating various biological mechanisms, in partic-
ular the simulation of millions of cells, their proliferation, movements
and interactions in 3D space"[11].

Loop tiling optimization is also exploited to achieve faster program exe-
cution in other applications related to Geo-science.

"High-performance computing [performed by parallel computers] is an
important driver in the development of seismic exploration technol-
ogy"[16].

The necessity of optimizing the loop tiling process was pointed out by
the CRI team itself, which noticed that PIPS, transforming specific types of
input code such as, for example, the 3D heat equation code, was not able
to generate an efficient parallel code output, meaning that run it on a larger
number of threads would not produce any appreciable benefit in terms of
execution time.

Initially, those scalability issues of the output code were attributed to
some defect on the part of PIPS dedicated to the generation of parallel code.
If confirmed, that issue would have required a deep and expensive revision
of PIPS code related to loop tiling transformation to be resolved. Eventu-
ally, a deeper observation allowed us to discard that hypothesis, suggesting
that a different approach should have been taken to identify the root of that
behaviour.

With that objective in mind, we designed and implemented an automa-
tized procedure (see Appendix A) which aimed to test every aspect of the
optimization process that PIPS follows on C code involving loops, in order
to identify where the inefficiencies were hidden.

This approach allowed us to highlight some criticality. For some identi-
fied issues, as the invariant code motion of some loop bounds and the se-
lection of the most suitable parallel directive, we already implemented a fix

3

(see Appendix B). For some others, such as the in-lining of the minimum and
maximum functions, a possible solution has been suggested during my in-
ternship (see Appendix C) but we do not have an actual implementation yet.
Finally some other issues, as the choice of the most adequate tiling matrix
and version of PIPS, represent a new interesting working direction to inves-
tigate further.

Anyway, even if more work has to be done, the current version of PIPS,
which implements the new PIPS phase we developed, shows very promis-
ing results on the parallel code optimization respect the previous version,
for a comparison see Chapter 3. In particular in comparison with Pluto [21],
another well-known source-to-source compiler that relies on a similar proce-
dure for optimizing parallel code, we noticed comparable or better results in
terms of speed-up of output code.

5

Chapter 1

PIPS - Parallelization
Infrastructure for Parallel Systems.

PIPS is a source-to-source compiler that takes C programs as its input and
re-turns C programs performing semantic analyses, applying loop transfor-
mations and generating parallel code using polyhedral methods. It is based
on linear algebra techniques for analyses, e.g. dependence testing, as well as
for code generation, e.g. loop interchange or tiling [20].

Over the next paragraphs we will analyze each of those PIPS aspect in
order to introduce the contribution of this thesis to its optimization.

1.1 Compilers

"A compiler is a program that can read a program in one language - the source lan-
guage -, and translate it into an equivalent program in another language - the target
language" [1].

The input programs are generally written in high level programming lan-
guages which, while still being understandable from humans, translate the
formal language into a series of precise instructions that a machine can pro-
cess. A compiler proceeds further, acting as a bridge between the input pro-
gram and the target machine. To achieve that goal, it must be able to under-
stand and to extract information from the input programming language, and
to build an output program understandable by the destination machine.

The compiler can therefore be defined as a set of analyses and transfor-
mations aimed to obtain from a sequence of abstract instructions, contained
inside a program, a flow of smaller machine operations understandable by a
processor. The picture in fig. 1.1 shows the above concept.

1.1.1 Source-to-source compilers

While a traditional compiler transforms the source code in a lower level code
that can be processed by the computer (the machine-code), a source-to-source
compiler takes as input a program and translates it into another program in
the same language or another language, which has the same level of abstrac-
tion [13].

6 Chapter 1. PIPS - Parallelization Infrastructure for Parallel Systems.

FIGURE 1.1: A compiler [7].

Figure 1.2 shows the difference between a traditional compiler and a
source-to-source compiler.

FIGURE 1.2: Comparison between traditional and source-to-
source compilers [13].

Source-to-source compilers are mostly used in the field of research about
compilers, while in industry classical compilers are the rule.
The reason to prefer source-to-source compilers in research is they offer some
advantages over the traditional ones. First of all, they return human read-
able code, so it is easier to understand which transformations the compiler
applied to the code. Then, researchers have the possibility to insert directives
for parallel code, such as OpenMP directives which we will discuss later.

1.1.2 Principles of compilation theory

While accomplishing its tasks, a compiler has to respect some primary prin-
ciples of compilation theory [7]:

• The output must be correct: the compiler must preserve the semantics
of the input program.

• The compiler must improve the input program. This improvement
must be noticeable. Generally a compiler improves the input code by

1.1. Compilers 7

making it directly executable on the target machine, but some compil-
ers perform other improvements in addition to that.

1.1.3 Compiler structure overview

The compilation process is divided in two fundamental steps: front-end and
back-end.
The front-end phase aims to understand the original code and to perform
some analyses in order to construct the intermediate representation (IR).
An intermediate representation is an abstract representation of the original
program internal to the compiler. There are many types of IRs, and choosing
the right one is critical for the efficiency of the compiler, but all share some
common properties, such as being independent from the source and target
languages, being easy to produce and to be understood by the back-end. The
back-end phase, in fact, will map the intermediate representation to the target
machine.
Producing an IR allows to easily re-target the compiler changing the back-
end phase in order to return a target code in another language or for another
processor, while keeping the same language as input (see Fig. 1.3).

FIGURE 1.3: A two-phase compiler.[7]

Multi-pass compilers take advantage of generating an intermediate rep-
resentation by performing structural optimizations on the code inside the
process of compilation, such as for example dead-code elimination, constant
propagation, code motion and reachability analysis. In that case, the opti-
mization phase takes as input the IR generated by the front-end phase and
returns another version of the program in the IR form that will be the input
for the back-end phase [7]. Fig. 1.4 shows the three phase of a multi-pass
compiler.

1.1.4 Phases of a compiler

Each of those three main phases of the compiler can be broken into smaller
steps, see Fig. 1.5.

8 Chapter 1. PIPS - Parallelization Infrastructure for Parallel Systems.

FIGURE 1.4: A three-phase multi-pass compiler.[7]

Front-end phase

This phase basically performs lexical, syntactic and semantic analysis on the
input code. The lexical analysis consists in scanning the program and break-
ing each instruction into tokens. The syntactic analysis involves grouping the
tokens of the original code into grammatical phrases that the compiler will
use to create the IR. Those phrases are defined by a grammar: a finite set of
rules necessary to decide if a sequence of characters is valid or illegal [7]. The
grammatical phrase of a compiler usually is a parse tree (see fig. 1.6).
The semantic analysis is meant to check semantic errors that could be in the
original code and to keep the information about the type of variables. In
that phase the compiler forces the programmer to be consistent with the con-
straints of the input language, such as for example to only perform oper-
ations between variables of the same type and having integer indexes for
arrays [1].

Optimization phase

The optimizer analyzes the IR to rewrite the original program taking into
account the efficiency requirements. Those requirements could be a minor
use of memory, a minor execution time or minor consumption of energy for
the processor when running the output program.

"Myriad transformations have been invented to improve the time or space re-
quirements of executable code. Some, such as discovering loop-invariant computa-
tions and moving them to less frequently executed locations, improve the running
time of the program. Others make the code more compact. Transformations vary in
their effect, the scope over which they operate, and the analysis required to support
them" [7].

Back-end phase

The back-end phase takes as input the IR returned by the optimization phase
to construct the target program. The compiler chooses the order of execution
of the instructions given by the previous phase and the management of cache
and memory in the more efficient way. All the intermediate instructions are
transformed in machine code operations.

1.2. Optimization for locality and parallelism 9

FIGURE 1.5: Phases of a compilers.[1]

Error detection

Each phase can encounter some errors, the compiler should be able to pro-
ceed when it finds one error in order to detect other errors, a compiler that
stops at every little error is not efficient. The syntactic and semantic analysis
handle the most part of the errors that the compiler detects. [1]

1.2 Optimization for locality and parallelism

"A compiler can enhance parallelism and locality in computationally intensive pro-
grams involving arrays to speed up target programs running on multiprocessor sys-
tem" [1].

1.2.1 Locality

The memory stores data that programs need when executing and generally
retrieving data from memory is the most time-consuming operation a pro-
gram performs. In order to have an high computational speed engineers
would need a fast memory big enough to store all the data required for pro-
gram execution. The memory to be fast should be inserted directly inside the
CPU but this would be very expensive and would also mean increasing the

10 Chapter 1. PIPS - Parallelization Infrastructure for Parallel Systems.

FIGURE 1.6: Parse tree for position:=initial+rate*60 [1].

dimension of the CPU, which leads to heat dispersion issues. The most com-
mon solution adopted by architects is the combination of a fast little memory
(cache) and a bigger and slower (but cheaper) main memory. When the CPU
needs data for a computation it searches into the cache, if the data is available
it is immediately used ("cache hit"). In the case the request to the cache fails,
CPU looks for the data inside the main memory ("cache miss"). See Fig. 1.7.

This model allows to drastically decrease the time spent by accessing
memory, because cache hits are much less expensive than calls to normal
memory - they can be a hundred time faster [1].

FIGURE 1.7: Cache is logically between CPU and memory [24].

Programs do not access the memory in a random way: if at some point it
asks for the content in the address A, with high probability the next request
to the memory will be near the address A [24]. The "locality principle", on

1.2. Optimization for locality and parallelism 11

which caches are built, states programs, in a little amount of time, tend to
access neighboring areas of memory. The idea is that, when the CPU refers
a data inside the memory, the data on its neighborhood will be loaded into
the cache for the next use [24]. Memories and caches are divided into fixed
size blocks, or cache lines, to take advantage of the locality principle. When
a cache miss happens, the entire line containing the required data is loaded
from the central memory into the cache, thus making neighboring data avail-
able for the next operations. In general the cache is organized in two or three
nested levels: L1, L2, L3 which are hierarchically queried for data by pro-
grams from top to bottom.

A multiprocessor is a system of many CPUs sharing the same memory.
To avoid conflicts between the processors one possible solution is to have an
architecture providing a local memory for each processor, not accessible by
others [24], see Fig. 1.8.

FIGURE 1.8: A multiprocessor [24].

Increasing the locality allows to minimize the communication between
processors that can affect the performances making the running time of a
program executed in parallel bigger than the sequential ones. A good data
locality is achieved if the processor access the same data used recently [1].
So, in order to exploit in the optimal way the principle of cache, compilers
should assign to each processor all related operations.

1.2.2 Parallelism

PIPS is an automatic parallelizer for scientific programs: it transforms the
sequential input code into an equivalent parallel code, executable on many
threads.

As described by the Intel User’s Guide [14], threads are small tasks that
can run independently inside the scope of a process. In other words, each

12 Chapter 1. PIPS - Parallelization Infrastructure for Parallel Systems.

thread is a basic unit of a CPU that shares the resources and the data access
with other threads belonging to the same processor.

An automatic parallelizer computes dependencies among variables to
identify the tasks that can be distributed among threads without errors and,
during the code generation phase, the compiler inserts the appropriate par-
allel instructions inside the IR of the code. PIPS automatically marks the por-
tions of code it identifies as "parallel regions" using the parallel instructions
implemented by the OpenMP library.

OpenMP

"OpenMP is a set of compiler directives as well as an API for programs written in
C, C++, or FORTRAN that provides support for parallel programming in shared-
memory environments" [23].

1 #pragma omp parallel.

Consider this example, taken from the book [23].
1 #include <omp.h>
2 #include <stdio.h>
3 int main(int argc , char *argv [])
4 {
5 /* sequential code */
6 #pragma omp parallel
7 {
8 printf("I am a parallel region.");
9 }

10 /* sequential code */
11 return 0;
12 }

OpenMP follows the Fork/Join model. At first, the execution of the pro-
gram is serial, meaning that it is performed inside just one thread, the master
thread. When OpenMP encounters the directive

1 #pragma omp parallel

it creates as many threads as the number of processing cores in the system
or the number specified by the developers (fork). Those threads are called
slave threads. Then, every thread executes simultaneously the parallel por-
tion of code. When the execution of every slave thread ends the program ex-
ecution comes back to the master thread (join). Fig. 1.9 shows the Fork/Join
model.

OpenMP allows running loop in parallel with the directive
1 #pragma omp parallel for.

This feature is particularly useful for parallelizing loops. It is also possible
to set the variables as private, meaning that threads cannot share them avoid-
ing computational mistakes. Additionally, OpenMP handles the creation and
management of threads, which is a major advantage for the programmers
that will not need to take care of those issues.

1.3. Polyhedral compilation 13

FIGURE 1.9: Fork/join model.

Criteria of performance of an automatic parallelizer

Aditi Athavale, Priti Randive and Abhishek Kambale [3] give some criteria
useful to understand the quality of automatic parallelizers.

• Performance and scalability. The point of performing automatic par-
allelization is that the execution time of the output parallel program
should be lower than serial time. The scalability property implies that
the execution time of parallel code on n+1 processors should be less
than or equal to the execution time on n processors.

• Memory and time complexity. The output program should have a mi-
nor memory usage and run time respect to the initial one.

• Parallelization overhead. The insertion of new lines containing the par-
allel directives should not impact too much on the performances. As
good rule, the execution time of the parallel code on one core should be
almost the same as serial time.

• User interaction. An automatic parallelizer should ask to the user the
less effort and interaction possible.

1.3 Polyhedral compilation

After considering the dependencies among variables, but before mark-
ing parallel instructions, PIPS applies transformations based on polyhedral
methods on the code. Without that phase, parallelizing instructions would
just verify the legitimacy of splitting the instructions between the available
logical threads, without taking into account the amount of work assigned to
each of them. Without a clever reorganization of the instructions the work-
load could vary significantly between different tasks, thus wasting hardware
resources.

14 Chapter 1. PIPS - Parallelization Infrastructure for Parallel Systems.

The polyhedral model provides an abstraction to perform high-level
transformations such as loop-nest optimization (loop tiling) and paralleliza-
tion on loops. Those compilation techniques rely on the representation of
programs thanks to parametric polyhedra. Polyhedral techiniques used in
compilation exploits combinatorial and geometrical optimizations on those
polyhedra to analyze and optimize programs [22].

This method is largely used in the context of automatic parallelization
because it makes it possible to optimize programs which involve huge size
arrays and nested loops with huge iteration spaces.

The iteration space is the set of values of the iteration vector for which
the statement has to be executed. In the majority of cases, we can express the
iteration space with a set of linear inequalities defining a polyhedron [4]. A
polyhedron is a convex set of points in a lattice i.e. a set of points in a Zn

vector space bounded by affine inequalities: D = {x|x ∈ Zn, A · x ≥ c}
where x is the iteration vector, A is a constant matrix and c is a constant

vector [4].
Consider this example, taken from [4] :

1 do i=1, n
2 x = a(i,i)
3 do j=1, i-1
4 x = x - a(i,j)**2

Fig.1.10 shows the iteration space for the example and the corresponding
polyhedron. The polyhedron (see Fig. 1.11) is the set of inequalities defined
by the bounds of the loops in the example.

FIGURE 1.10: Iteration space of example code [4].

In conclusion, optimization algorithms based on polyhedral information
focus on their geometrical structure and not on the amount of elements be-
longing to them. To avoid dealing with potentially huge loop iteration spaces
we consider them as a lattice of points wrapped into a polyhedral structure.
That approach allows us to exploit the geometrical properties of the polyhe-
dra by performing some affine transformations, such as loop tiling, on those
mathematical objects.

1.3. Polyhedral compilation 15

FIGURE 1.11: Polyhedron Ax ≥ c [4].

1.3.1 Loop tiling

"Loop tiling [..] transforms the iteration space of the loop nest by structuring the
execution of the loop into blocks/tiles of iterations of the original loop" [6].

Examples of loop tiling

Consider the loop tiling applied to matrix multiplication proposed by Pedro
C. Diniz and João M.P. Cardosov [6].

The classic implementation of matrix multiplication is the following one:
1 ...
2 for (i = 0; i < N; i++)
3 for (j = 0; j < N; j++)
4 for (k = 0; k < N; k++)
5 C[i][j]= A[i][k] * B[k][j];
6 ...

By dividing the iteration space into smaller chunks we obtained a tiled
loop, structured as two loops. The outermost loop scans the blocks in which
the iteration set is divided while the innermost loop scans the elements in
each tile. Here the block size is B1 x B2 x B3.

1 ...
2 for (ii = 0; ii < N; ii+=B1)
3 for (jj = 0; jj < N; jj+=B2)
4 for (kk = 0; kk < N; kk+=B3)
5 for (i = ii; i < min(ii+B1 ,N); i++)
6 for (j = jj; j < min(jj+B2 , N); j++)
7 for (k = kk; j < min(kk+B3 ,N); j++)
8 C[i][j]= A[i][k] * B[k][j];
9 ...

In Fig. 1.12 we can see the graphical representation of the code analyzed
above. The tiled code generates far fewer cache misses than the non-tiled
version, mainly because the accesses to matrix elements of B are local.

Tiles can have a regular or not regular shape, depending on the depen-
dencies in the code. In the following example [2] we have hexagonal tiles.

16 Chapter 1. PIPS - Parallelization Infrastructure for Parallel Systems.

(A) Original source code

(B) Tiled code

FIGURE 1.12: Layout of data being read/write using using the
original (A) and tiled (B) code [6]

FIGURE 1.13: Example code [2].

The iteration space is tiled with hexagonal tiles, see fig 1.14. The hexago-
nal tiles are defined by a system of inequalities:

−3 ≤ j < 3
0 ≤ i + j < 6
0 ≤ i < 6

In fig 1.15 the iteration set of one tile is shown.

Choice of tiling matrix

Loop tiling is characterized by tile shape and tile size, but they are hard to
choose. Primarily, tiling has to respect the correctness principle: the output
of the code must not vary after tiling procedure. In order to preserve cor-
rectness, dependencies among variables must be evaluated. In other words,
the tile shape should not cut the cone of dependencies but be inscribed in
it. Otherwise, we could have mistakes on computations, that would be split
in an illegal way. The cone of dependencies is the fraction of iteration do-
main bounded by the most external dependencies. To clarify this concept
refer Fig. 1.16: the dependencies among variables inside the iteration space
are represented with arrows, in particular the most external dependencies (in

1.3. Polyhedral compilation 17

FIGURE 1.14: Hexagonal tiling [2].

FIGURE 1.15: Hexagonal tile [2].

red) define the dependencies cone. Any tile chosen in the dependencies cone
(light red area) is allowed.

Correctness is not the only issue we must consider when we decide the
shape of the tiles. Choosing a regular shape, such as a square or rhomboid,
allows to simplify the computation of loops bounds at the moment of com-
pilation of the generated code by a traditional compiler.

The size of tiles is another element of primary importance to maximize
locality and improve parallelism. Assuming that the iteration space is cut
in a regular way, tile size is inversely proportional to their number. To avoid
wastes of computational resources we have to keep all cores busy, and choos-
ing the right number of tiles is a way to do that.

Unfortunately, there are not precise procedures to tile the iteration space
but there are some considerations that can help.

The tile size should be small enough to exploit the fastest memories i.e.
registers, L1 cache or L2 cache. If tiles are too small we are wasting some

18 Chapter 1. PIPS - Parallelization Infrastructure for Parallel Systems.

FIGURE 1.16: Cone of dependencies.

potential because more data could be stored into the cache. On the other
hand, having tiles too big leads to inefficiency because tiles go beyond the
size of the cache and they are stored inside the main memory.

A good tiling also helps parallelism by making the innermost dimension
(i.e. the innermost loop) have enough iterations, especially if it is vectorial.
This leverages execution on many threads by balancing the computational
load.

19

Chapter 2

Experiments

2.1 Test procedure

Since several measurements were necessary to identify the inefficiencies in-
side the PIPS code generation phase, we designed an automated testing pro-
cedure. It allowed us to better organize the results and to significantly speed
up the experimental phase.

The automated procedure for testing PIPS code generation is composed
of three bash scripts in Appendix A.

The first script makes PIPS generate tiled code from the input code.
The second script compiles the output of the first script using a traditional

compiler (gcc).
The third script executes the input of the second script to measure the

performances of the codes.

2.1.1 Setting PIPS parameters

Initially, it is necessary to set the PIPS parameters, which means modifing the
.tpips file. Inside the .tpips file resides the tiling matrix, thus by changing it
one can specify the tiles shape and size and the scanning directions of tiles
and elements inside each tile.

2.1.2 First phase

Run the command
1 sh first_phase.sh

to apply the tiling specified in the file my_program.tpips. It creates all the
PIPS versions obtained by scanning tiles and elements inside each tile in ev-
ery possible direction, see 3.2.4. The code resulting from the first phase is
where code generation optimizations can be performed. Initially, those ex-
perimental optimizations were implemented manually on the code.

2.1.3 Second phase

Run the command
1 sh second_phase.sh

20 Chapter 2. Experiments

to compile all the different versions of the code with gcc compiler [9]. By
adding the flag -fopenmp during the compilation phase the gcc compiler will
consider the parallel OpenMP directives. By default, the gcc compiler would
just ignore the directives, as they are comments. Notice that we compile with
the flag -O3, meaning that the compiler gcc performs three level of optimiza-
tions [10].

2.1.4 Third phase

Run the command
1 sh third_phase_average.sh

to execute the compiled code from the second phase.
This script prints on the terminal the average of ten execution times for

each version. The execution of the compiled code was done on a different
number of threads: 1, 2, 4, 8, 12, 16. It is separated by the second phase
because it can be run several times to check the stability of time execution
measurements. It is not necessary to repeat the other phases, it is sufficient
to have the compiled codes and this script.

2.2 Preliminary work

To be able to obtain meaningful results from our automated procedure of
testing, defining appropriate starting conditions was critical. To achieve that,
a significant preliminary work has been made to determine the environment,
the implementation of the input code and the tiling matrix to use for the tests.

2.2.1 Environment definition

Optimizations, in general, can be machine-dependent and machine-
independent. One of the reasons we want machine-dependent optimizations
is when we seek excellent performance on a specific hardware [18]. Generally
speaking, the optimizations we want to search for are machine-independent
optimizations. These in fact allow for greater versatility.

Anyway, the optimization process, although we have in mind the objec-
tive that our optimization should be machine-independent, is strongly influ-
enced by the target machine.

As an example, at the beginning of my internship I was conducting the
experiments on my personal laptop. Below the machine specifications are
reported:

Personal laptop:

• CPU: Intel R© CoreTM i7-8550U Processor @ 1.80GHz

– Microarchitecture: Kaby Lake R

– Physical cores: 4

– Logical cores: 8

2.2. Preliminary work 21

– Architecture: x86_64

• RAM: 8GB

The results showed a constant and increasing overhead at each consecu-
tive run for no apparent reason - the input code and the parameters of the
compilation were in fact the same - making the results not reliable at all.

Eventually, we found that this behaviour was due to the overclocking on
my personal computer. Modern laptops often have an already integrated
overclocking mechanism. So, when required, they increase the clock rate to
obtain much better performance in terms of speed. Increasing the clock rate
artificially alters the number of operations the CPU can perform in a unit of
time. Those increased performances put the system under a stress that goes
beyond the actual physical capability of the machine and cannot be sustained
for a long time. In our specific case my machine started to overheat so much
that the system was substantially decreasing the performance in order to cool
down and avoid irreparable damage to the CPU. That mechanism, present
in laptops, is not easy (and safe) to work around, so we decided to conduct
the experiments on a more stable environment. For that purpose Sienne, a
computer belonging to the research center with good features, was a perfect
choice. Below the machine specifications are reported:

Sienne:

• CPU: Intel R© CoreTM i7-8700 Processor @ 3.20GHz

– Microarchitecture: Coffee Lake
– Physical cores: 6
– Logical cores: 12
– Architecture: x86_64
– Frequency (min/base/max): 0.8/3.2/4.6 GHz
– D-Caches (L1/L2/L3): 32/256/12288 KB (L1/L2 per cores; L3

shared among cores)
– SIMD: mmx, sse, sse2, ssse3, sse4_1, sse4_2, avx, avx2

• RAM: DDR4 DIMM 32GB @ 2666Mhz

Thanks to that stable and high performance machine, I was able to obtain
reliable and comparable results from my tests and to concentrate on machine
independent optimization. Additionally, the high number of threads of Si-
enne allowed us to do some interesting exploration into the parallelization
process.

2.2.2 Input code

Before proceeding it should be emphasized that the type of code we focus on
in this thesis is code involving nested loops. A nested loop is a loop in a loop,
an inner loop within the body of an outer one. There are two kinds of nested
loops:

22 Chapter 2. Experiments

• Perfectly nested loops, see Algorithm 1

• Multiple nested loops, see Algorithm 2

Algorithm 1 Perfectly nested loops

1: // Outer loop.
2: for a in 1 2 3 4 5 do
3: print "Pass %a in outer loop."
4: // Inner loop.
5: for b in 1 2 3 4 5 do
6: print "Pass %b in inner loop."
7: // Innermost loop.
8: for c in 1 2 3 4 5 do
9: print "Pass %c in innermost loop."

10: end for
11: end for
12: end for

Algorithm 2 Multiple nested loops

1: // Outer loop.
2: for a in 1 2 3 4 5 do
3: print "Pass %a in outer loop."
4: // First inner loop.
5: for b in 1 2 3 4 5 do
6: print "Pass %b in inner loop."
7: end for
8: // Second inner loop.
9: for c in 1 2 3 4 5 do

10: print "Pass %c in inner loop."
11: end for
12: end for

Since our work was primarily focused on improving the tiling transfor-
mation, the loops contained in the input code have to involve vectors big
enough to greatly exceed the caching capabilities. In fact, if the size of the
arrays is too small the data would all be stored inside the cache, and tiling
would not produce beneficial results.

In addition, the implementation of the input code has a major impact on
the observability of optimization effect. For that purpose, I selected the Jacobi
method of Pluto’s benchmarks [21] as a case study and implemented it in
different ways (see the codes below).

To show what guided the final choice on what code to test on, we did
some profiling of code performances with Intel VTune. The insight it offers
is not perfectly accurate because profiling tools do not really execute the pro-
gram but just sample the program providing some approximate information
about the memory usage, the execution time...etc

2.2. Preliminary work 23

I chose to use different implementations of Jacobi code as starting point
because there are enough dependencies among variables to observe the im-
pact of tiling on the parallelization but not so many to make impossible to
identify them by hand.

Jacobi method - copy versions

1 ...
2 #define N 2000
3 #define T 1000
4

5 double a[N][N]; //We will use two matrices
6 double b[N][N];
7 ...
8 int main()
9 {

10 int t, i, j, t2 , i2, j2;
11 double t_start , t_end;
12 init_array ();
13 t_start = rtclock ();
14

15 l0:
16 for (t = 0; t<T; t++) {
17 for (i = 2; i<N - 1; i++) {
18 for (j = 2; j<N - 1; j++) {
19 b[i][j] = 0.2*(a[i][j] + a[i][j - 1] +
20 a[i][1 + j] + a[1 + i][j] +
21 a[i - 1][j]);
22 }
23 }
24

25 for (i2 = 2; i2 <N - 1; i2++) {
26 for (j2 = 2; j2 <N - 1; j2++) {
27 a[i2][j2] = b[i2][j2];
28 }
29 }
30 }
31 t_end = rtclock ();
32 fprintf(stdout , "%0.6 lfs\n", t_end - t_start);
33 return 0;
34 }

Fig. 2.1 shows the profiling of Jacobi code (copy version) on a single
thread. The memory bound percentage is noticeably high. More than 62%
of CPU resources are wasted waiting for memory operations to complete.
This behaviour is mainly due to an inefficient management of the cache, that
is filled and overwritten before the data stored can be reused. The average
execution time is about 6 seconds.

Jacobi method - modulo version

1 ...
2 #define N 2000
3 #define T 1000

24 Chapter 2. Experiments

FIGURE 2.1: Profiling of the code Jacobi.

4 double a[2][N][N];
5 double b[2][N][N];
6 ...
7 int main()
8 {
9 int t, i, j;

10 double t_start , t_end;
11 init_array (); // initialization of the array
12 t_start = rtclock ();
13

14 //The loop on which I want to apply tiling
15 l0:
16 for (t = 0; t<T; t++) {
17 for (i = 2; i<N - 1; i++) {
18 for (j = 2; j<N - 1; j++) {
19 a[(t + 1) % 2][i][j] = 0.2*(a[(t) % 2][i][j] +
20 a[(t) % 2][i][j - 1] +
21 a[(t) % 2][i][1 + j] +
22 a[(t) % 2][1 + i][j] +
23 a[(t) % 2][i - 1][j]);
24 }
25 }
26 }
27 t_end = rtclock ();
28 fprintf(stdout , "%0.6 lfs\n", t_end - t_start);
29

30 return 0;
31 }

2.2. Preliminary work 25

Fig. 2.2 shows the profiling of Jacobi code (modulo version) on a single
thread.

Here the memory bound shows an impact on CPU resources of 37% spent
waiting for memory operations. It is still high, meaning this is probably not
the best implementation of Jacobi method. Still it shows a drastic improve-
ment respect to the preceding version.

The execution time, on average, of this code is 3.05 seconds.

FIGURE 2.2: Profiling of the code Jacobi, in the modulo version.

That memory access issue is not limited to performance on mono-thread
execution, but has an important impact on execution time improvements af-
ter tiling and optimization on multi-thread runs. In fact, as we can see on
the Jacobi tables in [19], the copy version shows very weak improvements
on parallel executions compared to the modulo version. In conclusion, it is
important to be able to appreciate the effects of loop tiling optimization, to
work with a appropriate version of our code that takes into account the mi-
nor memory usage and the least possible dependencies between variables.

2.2.3 Tiling matrix selection

When we select the tiling matrix we have to take into consideration the shape
and the size of the tiles.

26 Chapter 2. Experiments

Tile shape

We had to perform manual calculations to determine the cone of dependen-
cies within the confines of we are allowed to choose the tiling matrix. Gen-
erally we preferred to use simple, regular shapes as tiling matrix, in order
to make the subsequent loop bound computation by the compiler easier to
manage.

Tile size

Experimentally we found that a good size for tiling our pieces of code was
16 or 32. That choice is confirmed by other groups of researchers working on
compilers, see reference [21]. In fact, having too many tiles would congestion
the twelve threads of Sienne, because the large number of tiles to support
does not allow a simultaneous computation by threads. On the other hand
too large tiles would go beyond cache capacity, thus deteriorating the locality.

While this approach is clearly not precise in finding the most suitable
tiling matrix, it gave us good results. Anyway, finding the best possible tiling
matrix is not a trivial task. The CRI team itself is dedicating resources to ex-
plore that interesting topic with new approaches, like for example by using
machine learning to find the best option. They also collaborate with the Uni-
versity of Urbana-Champaign where a tool has been developed to test tiling
with all possible matrices.

2.2.4 Parallel code versions

PIPS, starting from the same tiling matrix, is able to generate seven different
versions of parallel code. Having so many different versions makes not so
obvious the choice of the best version.

There are two different ways to scan the tiles, either following the "TP"
direction (i.e. orthogonal direction respect to the hyperplan sequential direc-
tion) or following the partitioning vector direction "TS". Fig. 2.3 shows that
the hyperplan sequential direction is parallel to the sum of the dependency
vectors. The sequential direction holds all the dependencies, while along the
"TP" direction the data are independent and so computable in parallel. The
"TS" direction instead is parallel to the partitioning vector direction, see fig.
2.4

Furthermore there are three different ways to scan the elements inside
each tile, following:

• LI - the initial layout of the data

• LS - partitioning vector direction

• LP - orthogonal vector respect to hyperplan sequential direction.

2.2. Preliminary work 27

FIGURE 2.3: Tiles scanning direction TP.

FIGURE 2.4: Tiles scanning direction TS.

Fig. 2.5 shows the scanning directions of the elements in each tile.
From the experiments emerges that in the vast majority of cases, the best

option was the TS-LI, that means scanning the tiles following the partitioning
vector direction and scanning the elements in each tile following the initial
order of the elements. One possible explanation could be that following this
order we respect the order in which data are stored into the cache, the “array
layout”. To understand if there is a preferential scanning direction and if we
can discard some directions is not the scope of this thesis and many other
experiments are required for this purpose.

28 Chapter 2. Experiments

FIGURE 2.5: Scanning directions of elements inside each tile.

2.3 Optimization work

At this point we have all we need to find the inefficiencies inside PIPS code
generation phase. Every choice we made in order to optimize the PIPS loop
tiling process was evaluated in terms of speed-up. The speed-up measures
the improvement of performances from the old version of code to the new
one.

Speed-up =
execution time previous version
execution time current version

(2.1)

2.3. Optimization work 29

2.3.1 Generation of sequential code

This section is dedicated to the evaluation of the generation of sequential
code. The sequential code is the code generated by PIPS, compiled with gcc
ignoring the OpenMP directives and executed on a single thread. Every com-
parison will be made in terms of speed-up of the optimized sequential gen-
erated code compared to the input code.

Invariant code motion

We noticed that some loop bounds were computed several times. While that
behaviour is not efficient, saving every invariant loop bound inside memory
would not be optimal as well. Saving the loop bounds of the outermost par-
allel loop and of the innermost loop (if vectorial) into variables resulted to be
the solution showing the best results. Consider the example below to clar-
ify what we mean with "invariant code motion". The loop bounds that have
been moved are highlighted.

1 int lbp , ubp , lbv , ubv;
2 for (t_t = 0; t_t <= 12; t_t += 1) {
1 lbp = t_t / 2;
2 ubp = (t_t + 16) / 2;
1 #pragma omp parallel for private (lbv , ubv ,j_t ,k_t ,t_l ,i_l ,

j_l ,k_l)
1 for (i_t = lbp; i_t <= ubp; i_t += 1)
1 for (j_t = t_t / 2; j_t <= (t_t + 16) / 2; j_t += 1)
2 for (k_t = t_t / 2; k_t <= (t_t + 16) / 2; k_t += 1)
3

4

5 for (t_l = pips_max_4 (32 * i_t - 255, 32 * j_t -
255, 32 * k_t - 255, 16 * t_t); t_l <= pips_min_2 (198, 16
* t_t + 15); t_l += 1)

6 for (i_l = pips_max_2 (1, 32 * i_t - t_l + 1); i_l
<= pips_min_2 (256, 32 * i_t - t_l + 32); i_l += 1)

7 for (j_l = pips_max_2 (1, 32 * j_t - t_l + 1);
j_l <= pips_min_2 (256, 32 * j_t - t_l + 32); j_l += 1) {

1 lbv = pips_max_2 (1, 32 * k_t - t_l + 1);
2 ubv = pips_min_2 (256, 32 * k_t - t_l + 32);
1 #pragma ivdep
2 #pragma vector always
1 for (k_l = lbv; k_l <= ubv; k_l += 1)
1 A[(t_l + 1) % 2][i_l][j_l][k_l] = alpha * A[

t_l % 2][i_l][j_l][k_l] +
2 beta * (A[t_l % 2][i_l - 1][j_l][k_l] + A[

t_l % 2][i_l][j_l - 1][k_l] +
3 A[t_l % 2][i_l][j_l][k_l - 1] + A[t_l %

2][i_l + 1][j_l][k_l] +
4 A[t_l % 2][i_l][j_l + 1][k_l] + A[t_l %

2][i_l][j_l][k_l + 1]);
5

6 }
7 }

30 Chapter 2. Experiments

The experiments showed very promising results in some cases. With Ja-
cobi method, for example, we saw a speed-up improvement of 2, see Table
2.1 and Table 2.2.

Jacobi modulo - parallel tiling TS-LI

Execution time Speed-up

Before ICM 4.57 s 0.67

After ICM 2.50 s 1.22

TABLE 2.1: The speed-up is doubled after ICM

.

Jacobi copy - parallel tiling TS-LI

Execution time Speed-up

Before ICM 5.94 s 1.00

After ICM 2.78 s 2.18

TABLE 2.2: The speed-up is doubled after ICM.

Although we obtained substantial improvements in terms of speed up in
some cases, we noticed that applying ICM to other kinds of code showed
minor or negligeable changes. Let’s consider Table 2.3 and Table 2.4.

3dheat modulo- parallel tiling TS-LI

Execution time Speed-up

Before ICM 6.31 s 0.54

After ICM 4.90 s 0.71

TABLE 2.3: The speed-up improvement after ICM is modest.

2.3. Optimization work 31

Advect3d modulo- parallel tiling TS-LI

Execution time Speed-up

Before ICM 0.44 s 0.97

After ICM 0.44 s 0.96

TABLE 2.4: The speed-up improvement after ICM is neglige-
able.

The ICM performed by default by gcc could explain that erratic be-
haviour. Consider this code, generated by PIPS, as it was, from the Jacobi-
copy version method.

1 ...
1 lb = pips_max_4 (3 * i_l - 32 * i_t + 32 * j_t - 33,

i_l - 1998, -2 * i_l + 32 * j_t + t_l + 32 * t_t + 2, t_l
+ 2);

2 ub = pips_min_4 (3 * i_l - 32 * i_t + 32 * j_t - 2, i_l -
2, -2 * i_l + 32 * j_t + t_l + 32 * t_t + 33, t_l +

1998);
1 for (j_l = lb; j_l <= ub; j_l += 1)
2 b[i_l - j_l][j_l - t_l] = 0.2*(a[i_l - j_l][j_l - t_l]

+ a[i_l - j_l][j_l - t_l - 1] + a[i_l - j_l][j_l - t_l +
1] + a[i_l - j_l + 1][j_l - t_l] + a[i_l - j_l - 1][j_l

- t_l]);
3 ...

Performing tiling here leaded to complex loop bounds, so complex that
even gcc is not able to isolate ad move them to variables. The complexity
of those loop bounds makes the ICM operation even more necessary, since
recalculating them is an heavy operation both resources and time wise.

Now, consider this other code. It is the code generated by PIPS, as it was,
by performing tiling on advect3d code.

1 ...
1 lb = 4 * k_t_t + 4;
2 ub = pips_min_2 (306, 4 * k_t_t + 7);
1 for (k_l_l = lb; k_l_l <= ub; k_l_l += 1)
2 al[j_l_l][i_l_l][k_l_l] = (0.2*(a[j_l_l][i_l_l - 1][

k_l_l] + a[j_l_l][i_l_l][k_l_l]) + 0.5*(a[j_l_l][i_l_l -
2][k_l_l] + a[j_l_l][i_l_l + 1][k_l_l]) + 0.3*(a[j_l_l][
i_l_l - 3][k_l_l] + a[j_l_l][i_l_l + 2][k_l_l]))*0.3* uxl[
j_l_l][i_l_l][k_l_l];

3 ...

As we can see, the loop bounds are simple and that explains why the in-
variant code motion we performed on the generated code does not change
substantially the performances (gcc was already doing it). Since we relied on
gcc to perform the invariant code motion on the code, and since this issue

32 Chapter 2. Experiments

did not manifest systematically on all codes, it was not obvious to identify
this inefficiency. At that point, we made a lot of experiments and trials to
understand if ICM should be performed and in which cases. Finally we de-
cided to apply the invariant code motion to all the code. That transformation
in fact is safe: it never worsens the speed-up and it removes a critical risk
for performances. For that reason we decided to implement a new compila-
tion phase to preemptively apply ICM on the parallel tiled code generated
by PIPS. The pseudo code for this new phase, now implemented in PIPS, can
be found into the Appendix B.

Minimum and maximum inline function

We substituted the calls to functions for the computation of the PIPS maxi-
mum and minimum with references to an external script, where we defined
them recursively, see Appendix C.

1 #include "define_script.h"

That allows the C preprocessor to include them directly on the code,
avoiding the calls to functions during the compilation.

In Table 2.5 and Table 2.6 there are two examples of code on which this
operation leads on a slightly better speed-up.

Jacobi modulo- parallel tiling TS-LI

Execution time Speed-up

Before in-lining 2.50 s 1.22

After in-lining 2.44 s 1.25

TABLE 2.5: Speed-up improvement.

Jacobi copy - parallel tiling TS-LI

Execution time Speed-up

Before in-lining 2.78 s 2.18

After in-lining 2.78 s 2.19

TABLE 2.6: Speed-up improvement.

2.3. Optimization work 33

2.3.2 Scalability

Selection of the OpenMP parallel directions

PIPS is able to detect the parallel loops in the code, but simply marking with
OpenMP directives all the parallel loops is not efficient because on nested
parallel loops it leads to a quasi-sequential execution due to the overhead
of OpenMP thread creation. Marking only the outermost parallel loop as
parallel for OpenMP is the best choice to efficiently exploit the computational
resources of each thread in the machine.

Any innermost parallel loop which does not contain nested loops should
be marked as vectorial. The OpenMP directives for vectorial loops are:

1 #pragma always
2 #pragma ivdep

Consider the example below to clarify the concept of OpenMP directive
selection.

1 ...
2 #pragma omp parallel for private(i_t_t_t)
3 for(j_t_t_t = 0; j_t_t_t <= 25; j_t_t_t += 1)
4 #pragma omp parallel for private(k_t_t_t)
5 for(i_t_t_t = 0; i_t_t_t <= 25; i_t_t_t += 1)
6 #pragma omp parallel for private(j)
7 for(k_t_t_t = 0; k_t_t_t <= 75; k_t_t_t += 1)
8 #pragma omp parallel for private(i)
9 for(j = 12* j_t_t_t +4; j <= pips_min(2, 306, 12* j_t_t_t

+15); j += 1)
10 #pragma omp parallel for private(k)
11 for(i = 12* i_t_t_t +4; i <= pips_min(2, 306, 12*

i_t_t_t +15); i +=1)
12 #pragma omp parallel for
13 for(k = 4* k_t_t_t +4; k <= 4* k_t_t_t +7; k += 1)
14 af[j][i][k]=(0.2*(a[j][i][k-1]+a[j][i][k]) +0.5*(

a[j][i][k-2]+a[j][i][k+1]) +0.3*(a[j][i][k-3]+a[j][i][k
+2]))*0.3* uzf[j][i][k];

15

16 ...

In order to maintain correctness the threads should not share the variables
that were marked as parallel. So, we mark them as private variables for the
parallel loop we keep.

The changes for the above example are highlighted in orange for the mod-
ified lines and in gray for the deleted lines.

1 ...
1 #pragma omp parallel for private(i_t_t_t ,k_t_t_t ,j,i,k)
1 for(j_t_t_t = 0; j_t_t_t <= 25; j_t_t_t += 1)

34 Chapter 2. Experiments

1 #pragma omp parallel for private(k_t_t_t)
1 for(i_t_t_t = 0; i_t_t_t <= 25; i_t_t_t += 1)
1 #pragma omp parallel for private(j)
1 for(k_t_t_t = 0; k_t_t_t <= 75; k_t_t_t += 1)
1 #pragma omp parallel for private(i)
1 for(j = 12* j_t_t_t +4; j <= pips_min(2, 306, 12* j_t_t_t

+15); j += 1)
1 #pragma omp parallel for private(k)
1 for(i = 12* i_t_t_t +4; i <= pips_min(2, 306, 12*

i_t_t_t +15); i +=1)
1 #pragma omp parallel for
1 #pragma ivdep
2 #pragma always
1 for(k = 4* k_t_t_t +4; k <= 4* k_t_t_t +7; k += 1)
2

3 af[j][i][k] = (0.2*(a[j][i][k-1]+a[j][i][k])
+0.5*(a[j][i][k-2]+a[j][i][k+1]) +0.3*(a[j][i]

[k-3]+a[j][i][k+2]))*0.3* uzf[j][i][k];
4

5 ...

This operation is already implemented in the new PIPS phase which pseudo
code is in Appendix B.

Number of threads

When run in parallel a scalable code execution time decreases linearly. So, if
we double the number of cores the execution time should halve. We executed
all our codes on a various number of threads, see Appendix A. One of the
issues I focused on was to understand the best number of threads for our
target machine Sienne. Tests were conducted on 1, 2, 4, 8, 12, 16 threads.

Executing the code on a single thread is useful to understand if an high
overhead has been introduced by the parallel directives.

Testing the code on more than 12 threads (the maximum for Sienne), had
the purpose to confirm that performances worsen due to the presence of tasks
assigned to exceeding threads and forced to wait.

35

Chapter 3

Results

In this chapter we consider the data gathered during our tests on PIPS code
generation before and after the optimizations described on Chapter 2. Tables
summarizing the experiments results can be found in [19].

A comparison will be made between PIPS former and actual version; sub-
sequently PIPS will be compared with Pluto [21], a well known source-to-
source compiler.

Finally some words will be spent about the Intel compiler [14] as an alter-
native to gcc [9].

3.1 Considerations on PIPS’s improvements

To evaluate if the optimization work led to significant results, without com-
promising data locality and parallelism, we will consider the speed-up im-
provements, the parallel directives overhead and the scalability of generated
code compared to PIPS former version.

3.1.1 Speed-up improvement

As shown on the following graphs, the speed-up of the new version of PIPS
presents improvements over the former on every version of generated code.
On the sequential tiled code of Jacobi modulo version the speed-up improve-
ment is greater than 2.

On the x-axis:

• 1: PIPS as it was before optimization

• 2: PIPS after invariant code motion and OpenMP directive selection

• 3: PIPS final version i.e. the version at point 2 with the in-lined mini-
mum and maximum function

36 Chapter 3. Results

(A) Jacobi modulo

(B) Jacobi copy

FIGURE 3.1: Speed-up improvement

3.1. Considerations on PIPS’s improvements 37

3.1.2 Parallel directive overhead

To be sure that data locality has not been compromised by the insertion of
parallel OpenMP directives, we must compare the execution time of the se-
quential version (on which gcc ignores OpenMP directives) and the parallel
version (with OpenMP directives) executed on a single thread.

If data locality has been preserved, the values should be similar, see Chap-
ter 1.

Table 3.1 shows as, for our example codes, the overhead introduced by
OpenMP directives is modest.

TABLE 3.1: Parallel directives overhead is small

Jacobi modulo Jacobi copy

PIPS
parallel
tiling

sequential parallel
on 1
thread

sequential parallel
on 1
thread

tiling 3.69 3.92 2.83 2.56

TS-LP 2.44 2.56 15.93 17.25

TS-LI 2.44 2.58 2.78 2.57

TS-LS 2.44 2.58 26.80 29.49

TP-LP 2.82 2.62 16.02 16.95

TP-LI 2.82 2.97 3.03 2.85

TP-LS 2.81 2.98 30.29 34.90

3dheat advect3d

PIPS
parallel
tiling

sequential parallel
on 1
thread

sequential parallel
on 1
thread

tiling 4.78 4.83 0.65 0.63

TS-LP 5.13 4.90 0.93 0.93

TS-LI 4.90 4.92 0.44 0.45

TS-LS 5.20 4.95 0.61 0.62

TP-LP 6.85 6.70 - -

TP-LI 6.80 6.62 - -

TP-LS 6.57 6.68 - -

38 Chapter 3. Results

3.1.3 Scalability

To evaluate scalability we compare the execution time of the generated code
on different number of threads; as a general rule the speed-up of a scalable
code increases depending on the number of threads (with the caveats illus-
trated on Chapter 2).

On Jacobi modulo code we notice worst performances on 16 threads com-
pared to 12. That is not unexpected, considering the maximum number of
threads on Sienne is 12. Avect3d and 3dheat codes show a different be-
haviour, with a better speed-up on 8 and 16 threads compared to 12. but
that behaviour is probabily to ascribe to peculiar features of the code, which
appears to be more optimized on 8 (and multiples) threads.

As shown on the following graph (Fig 3.2), every version of code is scal-
able, and the improvements are particularly noticeable on TS-LI version,
which we will use as reference version for comparisons. See Table 3.2 for
scalability data on TS-LI versions.

FIGURE 3.2: TS-LI is the best direction.

3.2. Comparison with Pluto 39

Speed-up improvement - parallel tiling TS-LI compiled with -fopenmp

Threads
number

advect3d Jacobi
modulo

Jacobi
copy

3dheat

1 0.95 1.18 2.09 0.70

2 1.77 2.27 4.02 1.16

4 3.08 4.26 7.48 1.74

8 4.73 4.50 6.93 1.71

12 4.53 5.55 7.20 1.66

16 4.90 4.86 6.57 1.70

TABLE 3.2: Scalability of TS-LI direction.

3.2 Comparison with Pluto

"[Pluto is] an automatic polyhedral source-to-source transformation
framework that can optimize regular programs (sequences of possibly
imperfectly nested loops) for parallelism and locality simultaneously.
[...][Pluto’s approach is] driven by an integer linear optimization frame-
work that takes an explicit view of finding good ways of tiling for paral-
lelism and locality using affine transformations.[...] [Pluto is able] to au-
tomatically generate OpenMP parallel code from C program sections."
[5]

In order to evaluate the quality of PIPS performances in terms of scala-
bility we chose to compare it to Pluto, because both tools perform optimiza-
tions, making use of polyhedral methods and OpenMP library, for locality
and parallelism.

The following graphs show the comparison between PIPS (after the op-
timization) and Pluto generated codes speed-up on different numbers of
threads. Pluto’s tiled generated codes were compiled with the gcc compiler
and executed on Sienne, the usual machine.

We can observe from the data regarding execution on one thread how the
additional overhead is similar for both tools in every example code.

40 Chapter 3. Results

The similarities between the two tools are particularly noticeable on the
generated code, that is almost the same, for Jacobi method (modulo version)
which performances are illustrated in Fig. 3.3.

FIGURE 3.3: Comparison PIPS-Pluto performances on Jacobi
modulo code.

3.2. Comparison with Pluto 41

Advec3d generated code reflects the choice PIPS developers made of con-
serving only non-redundant inequalities of the polyhedron representing the
iteration space of loops. The result of that simplification will be a polyhe-
dron with less faces but describing a larger iteration space for some cuts and
projections.

On advec3d code the simplification of loop bounds leads to major advan-
tages on PIPS compared to Pluto, see Fig. 3.4.

FIGURE 3.4: Comparison PIPS-Pluto performances on ad-
vect3d modulo code.

42 Chapter 3. Results

That simplifies loop constraints but, as a drawback, the number of itera-
tions is greater.

The drawback of having a larger than necessary iteration space for loops
becomes evident on heat3d generated code. On highlighted lines of the fol-
lowing PIPS code, the bounds are simple.

1 ...
2 int lbp , ubp , lbv ,ubv;
3 for(t_t = 0; t_t <= 12; t_t += 1){
4 lbp=t_t /2;
5 ubp=(t_t +16) /2;
6 #pragma omp parallel for private (lbv ,ubv ,j_t ,k_t ,t_l ,i_l ,

j_l ,k_l)
7 for(i_t =lbp ; i_t <=ubp; i_t += 1)
8 for(j_t = t_t/2; j_t <= (t_t +16) /2; j_t += 1)
9 for(k_t = t_t/2; k_t <= (t_t +16) /2; k_t += 1)

10 for(t_l = pips_max_4(32*i_t -255, 32*j_t -255, 32*
k_t -255, 16*t_t); t_l <= pips_min_2(198, 16*t_t +15); t_l
+= 1)

11 for(i_l = pips_max_2(1, 32*i_t -t_l+1); i_l <=
pips_min_2(256, 32*i_t -t_l +32); i_l += 1)

12 for(j_l = pips_max_2(1, 32*j_t -t_l+1);
j_l <= pips_min_2(256, 32*j_t -t_l +32); j_l += 1){

13 lbv= pips_max_2(1, 32*k_t -t_l+1);
14 ubv= pips_min_2(256, 32*k_t -t_l +32);
15 #pragma ivdep
16 #pragma vector always
17 for(k_l =lbv ; k_l <= ubv ; k_l += 1)
18 A[(t_l+1) %2][i_l][j_l][k_l] = ...
19 }
20 }
21 ...
1 for(k_t = t_t/2; k_t <= (t_t +16) /2; k_t += 1)
2 for(t_l = pips_max_4(32*i_t -255, 32*j_t -255, 32*

k_t -255, 16*t_t); t_l <= pips_min_2(198, 16*t_t +15); t_l
+= 1)

3 for(i_l = pips_max_2(1, 32*i_t -t_l+1); i_l <=
pips_min_2(256, 32*i_t -t_l +32); i_l += 1)

1 .lastline.lastline
2 for(j_l = pips_max_2(1, 32*j_t -t_l+1);

j_l <= pips_min_2(256, 32*j_t -t_l +32); j_l += 1){
3 lbv= pips_max_2(1, 32*k_t -t_l+1);
4 ubv= pips_min_2(256, 32*k_t -t_l +32);
5 #pragma ivdep
6 #pragma vector always
7 for(k_l =lbv ; k_l <= ubv ; k_l += 1)
8 A[(t_l+1) %2][i_l][j_l][k_l] = ...
9 }

10 }
11 ...

Noticeably, Pluto more complex generated code has a finer tuning on the
highlighted loops bounds.

1 ...

3.2. Comparison with Pluto 43

2 int t1, t2, t3 , t4 , t5, t6, t7 , t8;
3 int lb, ub, lbp , ubp , lb2 , ub2;
4 for (t1=-1;t1 <=12;t1++) {
5 lbp=ceild(t1 ,2);
6 ubp=floord(t1+16,2);
7 #pragma omp parallel for private(lbv ,ubv ,t3 ,t4,t5,t6,t7,t8)
8 for (t2=lbp;t2 <=ubp;t2++) {
9 for (t3=max(0,ceild(t1 -1,2));t3 <= floord(t1+17 ,2);t3++) {

10 for (t4=max(max(0,ceild(t1 -1,2)),t3 -8);t4 <=min(floord(
t1+17 ,2),t3+8);t4++) {

11 for (t5=max(max(max(max (0,16*t1) ,32*t3 -256) ,32*t4
-256) ,32*t1 -32*t2+1);t5 <=min(min(min(min (198 ,16*t1+31)
,32*t2+30) ,32*t3+30) ,32*t4+30);t5++) {

12 for (t6=max(max (32*t2 ,t5+1) ,-32*t1+32*t2+2*t5 -31);
t6 <=min(min (32*t2+31,t5+256) ,-32*t1+32*t2+2*t5);t6++) {

13 for (t7=max (32*t3 ,t5+1);t7 <=min (32*t3+31,t5 +256)
;t7++) {

14 lbv=max (32*t4,t5+1);
15 ubv=min (32*t4+31,t5 +256);
16 #pragma ivdep
17 #pragma vector always
18 for (t8=lbv;t8 <=ubv;t8++) {
19 A[(t5 + 1) % 2][(-t5+t6)][(-t5+t7)][(-t5+t8)

] = ...
20 }
21 }
22 }
23 }
24 }
25 }
26 }
27 }
1 for (t4=max(max(0,ceild(t1 -1,2)),t3 -8);t4 <=min(floord(

t1+17 ,2),t3+8);t4++) {
2 for (t5=max(max(max(max (0,16*t1) ,32*t3 -256) ,32*t4

-256) ,32*t1 -32*t2+1);t5 <=min(min(min(min (198 ,16*t1+31)
,32*t2+30) ,32*t3+30) ,32*t4+30);t5++) {

3 for (t6=max(max (32*t2 ,t5+1) ,-32*t1+32*t2+2*t5 -31);
t6 <=min(min (32*t2+31,t5+256) ,-32*t1+32*t2+2*t5);t6++) {

1 for (t7=max (32*t3 ,t5+1);t7 <=min (32*t3+31,t5 +256)
;t7++) {

2 lbv=max (32*t4,t5+1);
3 ubv=min (32*t4+31,t5 +256);
4 #pragma ivdep
5 #pragma vector always
6 for (t8=lbv;t8 <=ubv;t8++) {
7 A[(t5 + 1) % 2][(-t5+t6)][(-t5+t7)][(-t5+t8)

] = ...
8 }
9 }

10 }
11 }
12 }
13 }

44 Chapter 3. Results

Fig. 3.5 shows how the simplification of loop bounds affects the perfor-
mances of PIPS on heat3d code in comparison to Pluto.

FIGURE 3.5: Comparison PIPS-Pluto performances on 3dheat
modulo code.

3.3. Intel compiler 45

3.3 Intel compiler

The Intel compiler represent the state of art for compilers optimized for Intel
architecture.

"Intel C++ compiler is generally able to provide the best performance
because it has a better picture of the target machine architecture, i.e.,
it knows how to exploit all available registers, minimize memory oper-
ations, etc. Intel C++ compiler also has good support [...] OpenMP
standards." [8]

Furthermore, Intel compiler can automatically vectorize a higher number
of loops compared to the GNU compiler. [17]

Being Sienne a machine based on Intel architecture, we decided to test
the speed-up of code generated by PIPS prior to our optimization effort com-
piled with icc, comparing it with the same code compiled with gcc and opti-
mized code compiled with gcc. The results confirmed that when compiling
unoptimized code, Intel compiler produces a better performing (on our Intel
based-machine) output than GNU compiler. When compared to the perfor-
mances of the output produced by GNU compiler from PIPS optimized code,
anyway, Intel compiler’s output is slower, even on an Intel architecture.

For the comparison on sequential code see Table 3.3.
Table 3.4 shows the comparison on parallel code on 12 threads.

previous
PIPS gcc

icc optimized
PIPS gcc

TS-LP 0.67 0.88 1.25

TS-LI 0.67 0.88 1.25

TS-LS 0.68 0.88 1.25

TP-LP 0.60 0.78 1.08

TP-LI 0.62 0.78 1.08

TP-LS 0.62 0.78 1.08

TABLE 3.3: Speed-up of Jacobi modulo - sequential code

46 Chapter 3. Results

unoptimized
PIPS gcc

unoptimized
PIPS icc

optimized
PIPS gcc

TS-LP 3.38 4.04 5.66

TS-LI 3.39 4.00 5.55

TS-LS 3.38 4.00 5.56

TP-LP 0.24 0.27 2.09

TP-LI 0.62 1.65 2.09

TP-LS 1.51 1.79 2.09

TABLE 3.4: Speed-up of Jacobi modulo - parallel code 12
threads

47

Conclusion

This research aimed to find an explanation to the lack of scalability of the
tiled code generated by PIPS. Based on theoretical background and quanti-
tative experience it can be concluded that performing invariant code motion
on some specific loop bounds and in-lining the function of maximum and
minimum used on loop bounds can diminish the tiled code execution time.
This thesis also provided a rule to insert parallel OpenMP directives inside
the tiled code to efficiently distribute the computational load amongst avail-
able threads. In essence, we were able to identify the inefficiencies we were
looking for, their causes and to propose solutions.

The optimization we performed led to an overall better execution time of
the code generated by PIPS, compared both with the previous version of PIPS
and with Pluto, without impacting on machine independence, locality and
parallelism. This work will contribute to the collective effort of the research
aiming to optimize loop tiling performed by machine-independent compil-
ers, nowadays fundamentals to exploit parallelism on super computers used
in computational costly scientific fields.

Furthermore, some directions of work on loop tiling have already been
identified for future consideration. For example, selecting the best tiling ma-
trix, exploiting machine learning techniques. Understanding the correlation
between the tiled code and the PIPS scanning direction of tiles and of el-
ements inside tiles in order to select the best one or at least discard some
inefficient directions would be another interesting topic to study. It would be
necessary to implement the minimum and maximum function inline inside
PIPS. This optimization requires a revision of the exiting PIPS code genera-
tion phase so it is still a project for the CRI team. Another critical point to
confront is the improvement of PIPS dependence accuracy for codes contain-
ing modulo operation. For the moment, these dependencies are correct but
remain an approximation.

In conclusion, besides having successfully pursued the objective of my
internship, the procedure we designed to study this issue can be reused to
extend these first experiments to other benchmarks, to validate the different
stages of this new code generation process implemented in PIPS.

49

Bibliography

[1] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques,
and Tools (1st ed.) Addison-Wesley, 1986.

[2] C. Ancourt and F. Irigoin. “Scanning polyhedra with DO loops”. In:
Principles and Pratice of Parallel Programming (1991), pp. 39–50.

[3] A. Athavale, P. Randive, and A. Kambale. Automatic Parallelization of
Sequential Codes Using S2P Tool and Benchmarking of the Generated Par-
allel Codes. 2011. URL: https://pdfs.semanticscholar.org/ccf4/
351a9f86a06d94cfc370d81872874a56722f.pdf.

[4] C. Bastoul. “Code Generation in the Polyhedral Model Is Easier Than
You Think”. In: Proceedings of the 13th International Conference on Parallel
Architecture and Compilation Techniques (2004).

[5] U. Bondhugula et al. “A Practical Automatic Polyhedral Parallelizer
and Locality Optimizer”. In: ACM SIGPLAN Programming Languages
Design and Implementation (PLDI) (2008).

[6] J.M.P Cardoso and P.C. Diniz. Compilation Techniques for Reconfigurable
Architectures. Springer US, 2009.

[7] K. D. D. Cooper and L. Torczon. Engineering a Compiler (2nd ed.) Morgan
Kaufmann, 2001.

[8] Colfax research department. A Practical Automatic Polyhedral Parallelizer
and Locality Optimizer. 2017. URL: https : / / colfaxresearch . com /
compiler-comparison/.

[9] GCC documentation. URL: https://gcc.gnu.org/.

[10] GCC optimize options. URL: https://gcc.gnu.org/onlinedocs/gcc/
Optimize-Options.html.

[11] P. Gonzalez-de-Aledo et al. “An optimization approach for agent-
based computational models of biological development”. In: Advances
in Engineering Software 121 (2018), pp. 262–275.

[12] S. Hack, P. Kelly, and C. Lengauer. “Loop Optimization (Dagstuhl Sem-
inar 18111)”. In: Dagstuhl Reports (2018), pp. 39–59.

[13] E. Ilyushin and D. Namiot. “On source-to-source compilers”. In: Inter-
national Journal of Open Information Technologies (2016).

[14] Intel Hyper-Threading Technology, Technical User’s Guide. URL: https://
web.archive.org/web/20100821074918/http://cache-www.intel.
com/cd/00/00/01/77/17705_htt_user_guide.pdf.

https://pdfs.semanticscholar.org/ccf4/351a9f86a06d94cfc370d81872874a56722f.pdf
https://pdfs.semanticscholar.org/ccf4/351a9f86a06d94cfc370d81872874a56722f.pdf
https://colfaxresearch.com/compiler-comparison/
https://colfaxresearch.com/compiler-comparison/
https://gcc.gnu.org/
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://web.archive.org/web/20100821074918/http://cache-www.intel.com/cd/00/00/01/77/17705_htt_user_guide.pdf
https://web.archive.org/web/20100821074918/http://cache-www.intel.com/cd/00/00/01/77/17705_htt_user_guide.pdf
https://web.archive.org/web/20100821074918/http://cache-www.intel.com/cd/00/00/01/77/17705_htt_user_guide.pdf

50 BIBLIOGRAPHY

[15] L. Kalms, T. Hebbeler, and D. Göhringer. “Automatic OpenCL
Code Generation from LLVM-IR Using Polyhedral Optimization”. In:
PARMA-DITAM ’18 (2018), pp. 45–50.

[16] W. Liu, F. Wang, and H. Zhou. “Parallel Seismic Modeling Based on
OpenMP+AVX and Optimization Strategy”. In: Journal of Earth Science
30.4 (2019), pp. 843–848.

[17] S. Maleki et al. “An Evaluation of Vectorizing Compilers”. In: Inter-
national Conference on Parallel Architectures and Compilation Techniques
(2011).

[18] J. Nithyashri. System Software. Tata McGraw-Hill Education, 2010.

[19] Numerical results of experiments. URL: https://drive.google.com/
drive/folders/125xMkidVHoGg5ASA5mjERN2T1LU1fWva?usp=sharing.

[20] PIPS: Automatic Parallelizer and Code Transformation Framework. URL:
https://pips4u.org/.

[21] Pluto GitHub documentation. URL: https://github.com/bondhugula/
pluto/blob/master/doc/DOC.txt.

[22] Polyhedral Compilation. URL: http://polyhedral.info/.

[23] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating system concepts
(9th ed.) Wiley, 2012.

[24] A. S. Tanenbaum. Structured computer organization. Prentice Hall, 1976.

[25] J. Zhao et al. “Revisiting Loop Tiling for Datacenters: Live and Let
Live”. In: Proceedings of the 2018 International Conference on Supercom-
puting (2018), pp. 328–340.

https://drive.google.com/drive/folders/125xMkidVHoGg5ASA5mjERN2T1LU1fWva?usp=sharing
https://drive.google.com/drive/folders/125xMkidVHoGg5ASA5mjERN2T1LU1fWva?usp=sharing
https://pips4u.org/
https://github.com/bondhugula/pluto/blob/master/doc/DOC.txt
https://github.com/bondhugula/pluto/blob/master/doc/DOC.txt
http://polyhedral.info/

51

Appendices

53

Appendix A

Test procedure

Setting PIPS parameters

• Change "my_program" with the name of the input code.c

• Change the tiling matrix as discussed in Chapter 2

1 delete my_program
2

3 setproperty ABORT_ON_USER_ERROR TRUE
4

5 create my_program my_program.c
6

7 setproperty PRETTYPRINT_LANGUAGE "C"
8 setproperty PRETTYPRINT_STATEMENT_NUMBER FALSE
9 setproperty FOR_TO_DO_LOOP_IN_CONTROLIZER TRUE

10

11 apply LOOP_TILING[main]
12

13 apply PARALLEL_LOOP_TILING[main]
14

15 l0
16 32 0 0
17 -64 32 0
18 -64 0 32
19

20 display PRINTED_FILE[main]
21

22 apply PRIVATIZE_MODULE[main]
23

24 activate PRINT_PARALLELIZEDOMP_CODE
25

26 apply COARSE_GRAIN_PARALLELIZATION[main]
27

28 display PRINTED_FILE[main]
29

30 apply UNSPLIT
31

32 close
33 quit

54 Appendix A. Test procedure

First phase

1 #in this phase the shell prepares the files for the
compilation:

2 # 1) change the option in the file ’my_program ’. tpips
3 # 2) apply pips on the c code
4 # 3) copy the the generated files form the folder database/

src/ into the main folder
5 # 4) substitute pips_max($j, with pips_max_$j(to avoid

problems with macros
6

7

8

9 #echo Insert the name of the program to be executed
10 #read my_program
11

12 cp ${my_program }. tpips ${my_program }0. tpips
13

14 # STANDARD TILED VERSION
15 tpips ${my_program }.tpips > temp 2>&1
16

17 cp ${my_program }. database/Src/${my_program }.c ${my_program}
_tiled.c

18

19 for j in 2 3 4 5 6 7 8 9 10
20 do
21 sed -i ’s/pips_max(’$j ’, /pips_max_ ’$j ’(/g’ ${

my_program}_tiled.c
22 sed -i ’s/pips_min(’$j ’, /pips_min_ ’$j ’(/g’ ${

my_program}_tiled.c
23 done
24

25

26 #VERSION PARALLEL TILING TS - LP
27

28 sed -i ’s/LOOP_TILING/PARALLEL_LOOP_TILING/g’ ${my_program }.
tpips

29 sed -i ’/LOOP_TILING/ i\ setproperty TILE_DIRECTION "TS"’
${my_program }.tpips

30 sed -i ’/LOOP_TILING/ i\ setproperty LOCAL_TILE_DIRECTION "
LP"’ ${my_program }.tpips

31

32 tpips ${my_program }.tpips > temp 2>&1
33

34 cp ${my_program }. database/Src/${my_program }.c ${my_program}
_parall_tiled_TS_LP.c

35

36 for j in 2 3 4 5 6 7 8 9 10
37 do
38 sed -i ’s/pips_max(’$j ’, /pips_max_ ’$j ’(/g’ ${

my_program}_parall_tiled_TS_LP.c
39 sed -i ’s/pips_min(’$j ’, /pips_min_ ’$j ’(/g’ ${

my_program}_parall_tiled_TS_LP.c
40 done
41

42

43

Appendix A. Test procedure 55

44

45 #echo EXECUTION PARALLEL TILING TS - LI
46

47

48 sed -i ’s/"LP"/"LI"/g’ ${my_program }. tpips
49

50

51

52 tpips ${my_program }.tpips > temp 2>&1
53

54 cp ${my_program }. database/Src/${my_program }.c ${my_program}
_parall_tiled_TS_LI.c

55

56 for j in 2 3 4 5 6
57 do
58 sed -i ’s/pips_max(’$j ’, /pips_max_ ’$j ’(/g’ ${

my_program}_parall_tiled_TS_LI.c
59 sed -i ’s/pips_min(’$j ’, /pips_min_ ’$j ’(/g’ ${

my_program}_parall_tiled_TS_LI.c
60 done
61

62

63

64

65 #VERSIO PARALLEL TILING TS - LS
66

67

68 sed -i ’s/"LI"/"LS"/g’ ${my_program }. tpips
69

70

71

72 tpips ${my_program }.tpips > temp 2>&1
73

74 cp ${my_program }. database/Src/${my_program }.c ${my_program}
_parall_tiled_TS_LS.c

75

76 for j in 2 3 4 5 6
77 do
78 sed -i ’s/pips_max(’$j ’, /pips_max_ ’$j ’(/g’ ${

my_program}_parall_tiled_TS_LS.c
79 sed -i ’s/pips_min(’$j ’, /pips_min_ ’$j ’(/g’ ${

my_program}_parall_tiled_TS_LS.c
80 done
81

82

83

84 # VERSION PARALLEL TILING TP - LP
85

86 sed -i ’s/"TS"/"TP"/g’ ${my_program }. tpips
87

88 sed -i ’s/"LS"/"LP"/g’ ${my_program }. tpips
89

90

91 tpips ${my_program }.tpips > temp 2>&1
92

93 cp ${my_program }. database/Src/${my_program }.c ${my_program}
_parall_tiled_TP_LP.c

56 Appendix A. Test procedure

94

95 for j in 2 3 4 5 6
96 do
97 sed -i ’s/pips_max(’$j ’, /pips_max_ ’$j ’(/g’ ${

my_program}_parall_tiled_TP_LP.c
98 sed -i ’s/pips_min(’$j ’, /pips_min_ ’$j ’(/g’ ${

my_program}_parall_tiled_TP_LP.c
99 done

100

101

102 #VERSION PARALLEL TILING TP - LI
103

104

105

106 sed -i ’s/"LP"/"LI"/g’ ${my_program }. tpips
107

108

109 tpips ${my_program }.tpips > temp 2>&1
110

111 cp ${my_program }. database/Src/${my_program }.c ${my_program}
_parall_tiled_TP_LI.c

112

113 for j in 2 3 4 5 6
114 do
115 sed -i ’s/pips_max(’$j ’, /pips_max_ ’$j ’(/g’ ${

my_program}_parall_tiled_TP_LI.c
116 sed -i ’s/pips_min(’$j ’, /pips_min_ ’$j ’(/g’ ${

my_program}_parall_tiled_TP_LI.c
117 done
118

119

120

121

122 #VERSION PARALLEL TILING TP - LS
123

124

125

126 sed -i ’s/"LI"/"LS"/g’ ${my_program }. tpips
127

128

129 tpips ${my_program }.tpips > temp 2>&1
130

131 cp ${my_program }. database/Src/${my_program }.c ${my_program}
_parall_tiled_TP_LS.c

132

133 for j in 2 3 4 5 6
134 do
135 sed -i ’s/pips_max(’$j ’, /pips_max_ ’$j ’(/g’ ${

my_program}_parall_tiled_TP_LS.c
136 sed -i ’s/pips_min(’$j ’, /pips_min_ ’$j ’(/g’ ${

my_program}_parall_tiled_TP_LS.c
137 done
138

139 cp ${my_program }0. tpips ${my_program }. tpips #get the initial
version of ${my_program }.tpips

140

141

Appendix A. Test procedure 57

142 #CREATION OF THE PLUTO TILED FILE
143

144 /home/gabriella/pluto/polycc ${my_program}_pluto.c --
parallel --tile --pet -o ${my_program}_pluto_tiled.c

Second phase

1

2 #echo Insert the name of the program to be executed
3 #read my_program
4

5

6 #compile the program in the standard way
7

8

9 gcc -O3 ${my_program }.c -o ${my_program}_init
10

11 #compile the program with PIPS
12

13 gcc -O3 ${my_program}_tiled.c -o ${my_program}_tiled #one
thread

14 gcc -O3 -fopenmp ${my_program}_tiled.c -o ${my_program}
_tiled_omp #with openmp

15

16 #compile the program with PIPS parallel tiling TS LP
17 gcc -O3 ${my_program}_parall_tiled_TS_LP.c -o ${my_program}

_parall_tiled_TS_LP #one thread
18 gcc -O3 -fopenmp ${my_program}_parall_tiled_TS_LP.c -o ${

my_program}_parall_tiled_TS_LP_omp #with openmp
19

20 #compile the program with PIPS parallel tiling TS LI
21 gcc -O3 ${my_program}_parall_tiled_TS_LI.c -o ${my_program}

_parall_tiled_TS_LI #one thread
22 gcc -O3 -fopenmp ${my_program}_parall_tiled_TS_LI.c -o ${

my_program}_parall_tiled_TS_LI_omp #with openmp
23

24 #compile the program with PIPS parallel tiling TS LP
25 gcc -O3 ${my_program}_parall_tiled_TS_LS.c -o ${my_program}

_parall_tiled_TS_LS #one thread
26 gcc -O3 -fopenmp ${my_program}_parall_tiled_TS_LS.c -o ${

my_program}_parall_tiled_TS_LS_omp #with openmp
27

28

29

30 gcc -O3 ${my_program}_pluto_tiled.c -o ${my_program}
_pluto_tiled #one thread

31

32 gcc -O3 -fopenmp ${my_program}_pluto_tiled.c -o ${my_program
}_pluto_tiled_omp #with openmp

58 Appendix A. Test procedure

Third phase

1

2

3

4

5 rm initial_version.txt
6 rm tiling.txt
7 rm parallel_tiling_TS_LP.txt
8 rm parallel_tiling_TS_LI.txt
9 rm parallel_tiling_TS_LS.txt

10

11 rm pluto_tiling.txt
12

13

14 #INITIAL VERSION
15 for i in 1 2 3 4 5 6 7 8 9 10
16 do
17

18 ./${my_program}_init >> initial_version.txt
19

20 done
21

22 export init=$(numaverage initial_version.txt)
23 echo the average execution time for initial version is:

$init
24

25 #STANDARD TILED VERSION
26 for i in 1 2 3 4 5 6 7 8 9 10
27 do
28

29 ./${my_program}_tiled >> tiling.txt
30

31 done
32

33 echo the average execution time with tiling is: $(
numaverage tiling.txt) and the speed up is

34 echo "scale=4 ; $init/ $(numaverage tiling.txt) " |
bc

35

36

37 #PARALLEL TILED VERSION TS LP
38 for i in 1 2 3 4 5 6 7 8 9 10
39 do
40

41 ./${my_program}_parall_tiled_TS_LP >>
parallel_tiling_TS_LP.txt

42 done
43

44 echo the average execution time with parallel tiling TS
-LP is: $(numaverage parallel_tiling_TS_LP.txt) and
the speedup is

45 echo "scale=4 ; $init /$(numaverage
parallel_tiling_TS_LP.txt)" | bc

46

47

48 #PARALLEL TILED VERSION TS LI

Appendix A. Test procedure 59

49 for i in 1 2 3 4 5 6 7 8 9 10
50 do
51 ./${my_program}_parall_tiled_TS_LI >>

parallel_tiling_TS_LI.txt
52 done
53

54 echo the average execution time with parallel tiling TS
-LI is: $(numaverage parallel_tiling_TS_LI.txt) and
the speedup is

55 echo "scale=4 ; $init/$(numaverage
parallel_tiling_TS_LI.txt)" | bc

56

57

58 #PARALLEL TILED VERSION TS LS
59 for i in 1 2 3 4 5 6 7 8 9 10
60 do
61 ./${my_program}_parall_tiled_TS_LS >>

parallel_tiling_TS_LS.txt
62 done
63

64 echo the average execution time with parallel tiling TS
-LS is: $(numaverage parallel_tiling_TS_LS.txt) and
the speedup is

65 echo "scale=4 ; $init/$(numaverage
parallel_tiling_TS_LS.txt) " | bc

66

67

68

69

70 #PLUTO TILED VERSION
71

72 for i in 1 2 3 4 5 6 7 8 9 10
73 do
74 ./${my_program}_pluto_tiled >> pluto_tiling.txt
75 done
76

77 echo the average execution time of the tiled pluto
version is: $(numaverage pluto_tiling.txt) and the
speedup is

78 echo "scale=4 ; $init/ $(numaverage pluto_tiling.txt) "
| bc

79

80

81

82

83

84

85 for nt in 1 2 4 8 12 16
86 do
87 export OMP_NUM_THREADS=$nt
88 echo nombres de threads = $nt
89

90 rm parallel_tiling_TS_LP_omp_${nt}.txt
91

92 rm parallel_tiling_TS_LI_omp_${nt}.txt
93

94 rm parallel_tiling_TS_LS_omp_${nt}.txt

60 Appendix A. Test procedure

95

96

97

98 rm pluto_tiling_omp_${nt}.txt
99

100

101

102 #STANDARD TILED VERSION WITH OPENMP
103 for i in 1 2 3 4 5 6 7 8 9 10
104 do
105

106 ./${my_program}_tiled_omp >> tiling_omp_${nt}.txt
107 done
108

109 echo the average execution time with tiling with openmp
is: $(numaverage tiling_omp_${nt}.txt) and the

speedup is
110 echo "scale=4 ; $init/ $(numaverage tiling_omp_${nt}.

txt)" | bc
111

112

113 #PARALLEL TILED VERSION TS LP WITH OPENMP
114 for i in 1 2 3 4 5 6 7 8 9 10
115 do
116

117 ./${my_program}_parall_tiled_TS_LP_omp >>
parallel_tiling_TS_LP_omp_${nt}.txt

118 done
119

120 echo the average execution time with parallel tiling
with openmp TS -LP is: $(numaverage
parallel_tiling_TS_LP_omp_${nt}.txt) and the speedup is

121 echo "scale=4 ; $init/ $(numaverage
parallel_tiling_TS_LP_omp_${nt}.txt) " | bc

122

123 #PARALLEL TILED VERSION TS LI WITH OPENMP
124 for i in 1 2 3 4 5 6 7 8 9 10
125 do
126 ./${my_program}_parall_tiled_TS_LI_omp >>

parallel_tiling_TS_LI_omp_${nt}.txt
127 done
128

129 echo the average execution time with parallel tiling TS
-LI with openmp is: $(numaverage
parallel_tiling_TS_LI_omp_${nt}.txt) and the speedup is

130 echo "scale=4 ;$init/ $(numaverage
parallel_tiling_TS_LI_omp_${nt}.txt) " | bc

131

132

133 #PARALLEL TILED VERSION TS LS WITH OPENMP
134 for i in 1 2 3 4 5 6 7 8 9 10
135 do
136 ./${my_program}_parall_tiled_TS_LS_omp >>

parallel_tiling_TS_LS_omp_${nt}.txt
137 done
138

Appendix A. Test procedure 61

139 echo the average execution time with parallel tiling TS
-LS with openmp is: $(numaverage
parallel_tiling_TS_LS_omp_${nt}.txt) and the speedup is

140 echo "scale=4 ; $init/$(numaverage
parallel_tiling_TS_LS_omp_${nt}.txt)" | bc

141

142

143

144

145

146

147 #PLUTO TILED VERSION WITH OPENMP
148 for i in 1 2 3 4 5 6 7 8 9 10
149 do
150 ./${my_program}_pluto_tiled_omp >> pluto_tiling_omp_${nt}.

txt
151

152 done
153

154 echo the average execution time of the tiled pluto
version with openmp is: $(numaverage
pluto_tiling_omp_${nt}.txt) and the speedup is

155 echo "scale=4 ;$init/ $(numaverage pluto_tiling_omp_${
nt}.txt) " | bc

156 done

63

Appendix B

Pseudocode new PIPS’s phase

1 /* Pseudo code of the optimization of the parallelization
phase.

2 *We apply this phase after that the parallelization has been
performed.

3 *We have as input a parallel code.
4 Loops in PIPS can be be sequential , parallel or vectorial
5 */
6

7 list <String > PRIV_VAR=new list();//this global variable
keeps the list of private variables in the code

8

9 static void main(){
10 statement stm= <--from database;
11 tree T=extract_tree(stm); %the tree containing only loops

and statements
12

13

14 arrayList result=new arrayList [2];
15

16 /*
17 *here we have gen_recurse that applies the function down

going down on the branch ,
18 *and the function up going up.
19 *N.B gen_recurse starts to scan the tree from the leftmost

branch until the rightest one ,
20 *it is able to analyze the next branch when it meets a

switch
21 */
22

23

24 gen_recurse(
25 // ---------------------------------
26 //GOING DOWN
27 arrayList A=down(T);
28 list P=A[0]; //list of parallel loops
29 list C=A[1]; //list of the containers of teh

corresponding parallel loop
30

31 // --------------------------------
32 //GOING UP
33 up(P, C, T);
34 stm innermost_parallel_loop=P.get(P.length -1); //

here we catch the innermost parallel

64 Appendix B. Pseudocode new PIPS’s phase

35 //
loop that is the last one in the list of parallel loops
that we built going down in the branch

36 stm container_of_innermost_parallel_loop
=C.get(C.length -1), //it’s the last element of the list
of containers

37

38 if (innermost_parallel_loop is vectorial){
39 move_bounds(innermost_parallel_loop ,

container_of_innermost_parallel_loop , PRIV_VAR);
40 }
41 // -----------------------------
42)
43

44

45

46

47

48 //now we just move the bounds of the first loop
49 move_bounds(result.get [0]. get(0),result.get [1]. get(0),

PRIV_VAR);
50

51

52 }
53 // --
54 /*
55 *This function takes in input one tree and returns the same

tree
56 *but only keeping the loop and the statement nodes
57

58 *@param stm - the initial tree
59 *@return only loop and statement nodes
60 */
61 static void extract_tree(statement stm){
62

63 //here code to extract the desired nodes
64

65 }
66

67 // --
68

69 /*
70 *This function is the one applied to the nodes going down on

the tree
71

72 *@param T- the tree that we process
73 *@param stm - the initial node of the tree T
74 *@param result -this array list contains two lists: the list

of
75 * parallel loops and the list of the their

respectives containers
76 *@return the modified arrayList that we gave as input
77 */
78 static arrayList down(tree T, statement stm , arrayList

result){
79 statement previous=null;

Appendix B. Pseudocode new PIPS’s phase 65

80 statement current=stm;// current is initialized at the
first stm

81 list par_loops=new list();
82 list containers =new list();
83

84

85 /*we iterate on the tree until we reach the last
level of leaves

86 *we take also in consideration the case in which
previous is null that corresponds

87 *at the situation in which we have a loop as first
node of the tree

88 */
89 while(current has children OR previous !=null) {
90 if(current.type==loop){
91 if(current.loop_is_parallel ==true){
92 par_loops.push(current); //save the parallel loop in

the list
93 containers.push(previous); //save the previus

statement in the list
94 }
95 }
96 previous=current;
97 }
98

99 /* update the arrayList result , saving the paralle loop in
the

100 *first position and the containers in the second
position

101 */
102 result [0]= par_loops;
103 result [1]= containers;
104

105 return result;
106 }
107

108 // --
109

110 /*
111 *This function is the one applied to the nodes going up on

the tree.
112 *It checks if the body of the innermost parallel loops

contain sequential loops ,
113 *if not it marks the innermost loops as vectorial.
114 *After that it keeps only the first element in the list "

par_loops" as parallel
115 *and it marks all the other parallel loops as sequential.
116 *
117 *@param T- the tree that we process
118 *@param par_loops - list of parallel loops
119 *@param containers -list of the containers of the loops
120 *
121 */
122

123 static void up (list par_loops , list containers ,tree T){
124 boolean VECT=true;//this boolean keeps note of the

fact that the last parallel loop is vectorial

66 Appendix B. Pseudocode new PIPS’s phase

125 statement current= last_children; // I assume that is
possible to recognize the last level of the tree

126 while(current has a father){
127 if(current.type==loop){
128 if(current.loop_is_sequential ==true){
129 VECT=false; //i note that the uinnermost paralell

loop is not vectorial
130 }
131 elseif(current.loop_is_parallel ==true AND current != P.

get [0]){
132 if(VECT==true){
133 current.loop_is_vectiorial=true;
134 VECT=false; // i need to clean the variable in

order to not enter in this if
135 //in the next iteration
136 }
137 else{
138 current.loop_is_sequential=true;
139 //I recover the index of the loop and I save it in

the list of
140 // private variables
141 concatenate_private(l.getIndexVariable (), PRIV_VAR

);
142 }
143

144

145 }
146 // remove current from the list of parallel loop

and remove also the corresponding container
147 par_loops.remove(current);
148 //here with par_loops.getIndex(current) I find out the

index on the
149 // parallel loops of the loop (current) that we are

considering.
150 int index=par_loops.getIndex(current);
151 //After that i remove the corresponding container: it

is in the list "containers"
152 //at the place "index"
153 containers.remove(containers[index]);
154 }
155 }
156 }
157

158 // --
159 /*
160 *This function saves the bounds of the loop that it takes as

input in variables declared in
161 *the statement that is the father of the considered loop
162 *@param l- the loop of which we move the bounds
163 *@param previous - the statement that contains l
164 *@param PRIV_VAR -the list of private variables
165 */
166 static void move_bounds(loop l, statement previous ,PRIV_VAR)

{
167

168 //I assume that there is a function able to create a new
variable never used before in the program

Appendix B. Pseudocode new PIPS’s phase 67

169

170 //The function addDeclaration adds the declaration of a
new variable , passed as input , to the statement ’previous
’

171 // passed as input to the function move_bounds
172 previous.addDeclaration(int var1=new variable ());
173 previous.addDeclaration(int var2=new variable ());
174

175

176 //The function addInstructions adds the instruction ,
passed as input , to the statement ’previous ’

177 // passed as input to the function move_bounds
178

179 previous.addInstructions(var1=l.get_lower_bound ());
180 previous.addInstructions(var2=l.get_upper_bound ());
181

182 // change the bounds into the loop
183 l.get_lower_bound ()="var1";
184 l.get_upper_bound ()="var2";
185

186 //add the generated variables to the list of private
variables

187 concatenate_private("var1", PRIV_VAR);
188 concatenate_private("var2", PRIV_VAR);
189 }
190 // --
191 /*
192 *This function add the variable var to the list of private

variable
193 *@param var -variable to add to the list
194 *@param PRIV_VAR -list of private variables
195 */
196

197 static void concatenate_private(String var , list PRIV_VAR){
198 //here concatenate the string that we pass as first

argument in the function to the second one that is the
list of private variables

199 }

69

Appendix C

Minimum and maximum function
script

1 #define min(a,b) ((a<b)?a:b)
2 #define max(a,b) ((a>b)?a:b)
3 #define pips_min_2(a,b) min(a,b)
4 #define pips_max_2(a,b) max(a,b)
5 #define pips_min_3(a,b,c) min(pips_min_2(a,b),c)
6 #define pips_max_3(a,b,c) max(pips_max_2(a,b),c)
7 #define pips_min_4(a,b,c,d) min(pips_min_3(a,b,c),d)
8 #define pips_max_4(a,b,c,d) max(pips_max_3(a,b,c),d)
9 #define pips_min_5(a,b,c,d,e) min(pips_min_4(a,b,c,d),e)

10 #define pips_max_5(a,b,c,d,e) max(pips_max_4(a,b,c,d),e)
11 #define pips_min_6(a,b,c,d,e,f) min(pips_min_5(a,b,c,d,e),

f)
12 #define pips_max_6(a,b,c,d,e,f) max(pips_max_5(a,b,c,d,e),f

)
13 #define pips_min_7(a,b,c,d,e,f,g) min(pips_min_6(a,b,c,d,e,f

),g)
14 #define pips_max_7(a,b,c,d,e,f,g) max(pips_max_6(a,b,c,d,e,f

),g)
15 #define pips_min_8(a,b,c,d,e,f,g,h) min(pips_min_7(a,b,c,d,e

,f,g),h)
16 #define pips_max_8(a,b,c,d,e,f,g,h) max(pips_max_7(a,b,c,d,e

,f,g),h)
17 #define pips_min_9(a,b,c,d,e,f,g,h,i) min(pips_min_8(a,b,c,d

,e,f,g,h),i)
18 #define pips_max_9(a,b,c,d,e,f,g,h,i) max(pips_max_8(a,b,c,d

,e,f,g,h),i)
19 #define pips_min_10(a,b,c,d,e,f,g,h,i, j) min(pips_min_9(a,

b,c,d,e,f,g,h,i),j)
20 #define pips_max_10(a,b,c,d,e,f,g,h,i, j) max(pips_max_9(a,

b,c,d,e,f,g,h,i),j)

	Abstract
	Acknowledgements
	Introduction
	PIPS - Parallelization Infrastructure for Parallel Systems.
	Compilers
	Source-to-source compilers
	Principles of compilation theory
	Compiler structure overview
	Phases of a compiler

	Optimization for locality and parallelism
	Locality
	Parallelism

	Polyhedral compilation
	Loop tiling

	Experiments
	Test procedure
	Setting PIPS parameters
	First phase
	Second phase
	Third phase

	Preliminary work
	Environment definition
	Input code
	Tiling matrix selection
	Parallel code versions

	Optimization work
	Generation of sequential code
	Scalability

	Results
	Considerations on PIPS's improvements
	Speed-up improvement
	Parallel directive overhead
	Scalability

	Comparison with Pluto
	Intel compiler

	Conclusion
	Bibliography
	Appendices
	Test procedure
	Pseudocode new PIPS's phase
	Minimum and maximum function script

