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Abstract

In this thesis we study maximally symmetric vacua for maximal supergravity in 4D. We
will begin by showing that the structure of those vacua is determined by the gauging
procedure. The consistency of the gauging, together with the extremization of the scalar
potential, allows us to parameterize a system of equations that describes the vacua struc-
ture.
We also examine various approaches from the literature that utilize machine learning
techniques to solve these equations. In particular, we present a novel approach based
on a neural network architecture that improves the efficiency of those machine learning
methods.
Finally, we will present an efficient algorithm for analytically solving systems of polyno-
mial equations. This algorithm has been improved and implemented in a Python library,
PyXLTensor. This library facilitates the writing, manipulation and solving of tensor ex-
pressions. Given its versatility it offers wide applicability in other fields where tensor
equations need to be solved.
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1 Introduction

The Standard Model of particle physics has been very successful in describing the electro-
magnetic, weak and strong interactions among particles. However, incorporating gravi-
tational interactions in a consistent manner presents a significant challenge. One way to
accommodate gravity in this picture can be achieved with supersymmetry. This provides
an elegant solution, as supergravity naturally emerges when transitioning from global to
local supersymmetry, analogous to how the other force-carrying fields in the Standard
Model arise from localizing their respective symmetries.
Supergravity can be realized in various forms and each of them has its peculiarity. Of
particular interest are the theories with the maximum possible amount of supersymmetry,
known as maximal supergravity. These theories are particularly interesting because the
stringent constraints imposed by maximal supersymmetry fully determine the structure
of the theory through its gauging.
However, extended supersymmetric theories are non-chiral and therefore incompatible
with a chiral theory such as the Standard Model. Despite this, maximal supergravity
theories remain of physical interest due to the structure of their vacua and the emergence
of residual symmetries. Concepts from these theories could provide crucial insights into
open problems such as supersymmetry breaking, the dynamical selection of the vacuum
state, the cosmological constant problem and the mechanisms for cosmic inflation.

To this day, there is no complete classification of vacua for maximal supergravity in
four dimensions. This is due to the large number of degrees of freedom involved in
the gauging procedure and the fact that the scalar potential of the theory depends on
numerous scalar fields. Over the years, various techniques have been developed to address
this challenge. These include theoretical developments, such as restricting the potential
to specific families of scalar fields or describing the vacuum solely in terms of the gauging,
as well as more efficient algorithms for solving the resulting system of equations.

In this thesis, we present some algorithms designed to find vacua solutions in maximal
supergravity. Two distinct techniques will be discussed: one new approach is based
on machine learning, specifically utilizing neural networks, and the other is derived from
traditional algorithms in cryptography, which appears to be the more promising of the two
approaches. The latter technique has led to the development of an open-source Python
library, PyXLTensor, which facilitates the writing and solving of polynomial equations
using tensors.
This library was build with the goals of being user-friendly and capable of solving quickly
polynomial equations involving multiple variables, making it a useful tool not only within
the field of quantum gravity but also for a wide range of applications.

First, we will review the essential theoretical aspects of maximal supergravity, focusing on
how the scalar potential arises from the gauging procedure and the relative constraints.
Next, we will introduce the computational techniques based on machine learning, dis-
cussing existing approaches and a novel method proposed in this thesis. Finally we will
discuss how system of polynomial equations can be effectively solved. We will argue that
with adequate hardware, a complete classification of the gaugings of the groups SU(4)
and SU(3) can be done.
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2 Maximal supergravity and its vacua

In this chapter we review maximal supergravity in 4D focusing on the necessary details
to show how the vacua are related with the gauging procedure. We analyze the struc-
ture of the scalar manifold and the embedding tensor and show how they enter in the
lagrangian, in particular in the scalar potential of the theory. Furthermore we show how
the minimization problem of the potential with respect to the scalar fields can be related
to a set of quadratic conditions on the embedding tensor. In the end we report the known
solution for maximally symmetric vacua for maximal supergravity in 4D.

2.1 Maximal supergravity in 4D

In 4 space-time dimensions the maximum number of supersymmetric generators allowed
in order to not have particles with spin grater than 2 is N = 8. The field theoretic
counterpart of such multiplet contains:

• 1 spin-2 graviton: eaµ;

• 8 spin-3/2 gravitinos: ψi
µ;

• 28 spin-1 vector fields: Aij
µ ;

• 56 spin-1/2 matter fields: χijk;

• 70 spin-0 scalars: ϕijkl.

Here the indices i, j, k, l belong to the fundamental representation of SU(8) (the R-
symmetry group) and are totally antisymmetrized.
Since in this thesis we are interested in classifying maximally symmetric vacua, the only
objects that can get a v.e.v. are the scalar fields and the metric and the latter will take
the form corresponding to Anti-de Sitter, Minkowski or de Sitter spacetimes.
In extended supergravity the scalar potential can only be generated through a gauging
procedure, so in order to have a non trivial vacuum we need to introduce local gauge
symmetries [1]. Before discussing the gauging procedure it is important to know what
groups Gg can be gauged. The symmetries of the lagrangian are closely related to the
structure of the scalar manifold Mscalar so we will briefly review the property of this
space.
For N ≥ 3 supersymmetries and dualities constrainMscalar to be an homogeneous space,
i.e. a space where all the points can be connected by the action of an element of the
isometry group G. Calling H the subgroup of G whose action leaves a chosen point
(x) of the manifold unchanged we obtain that a generic point (x′) is invariant under a
transformation isomorphic to H

x′ = gx = gHx = gHg−1 x′, (1)
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soMscalar can be identified with the coset space G/H.
In 4D the Hodge dual of a vector field is still a vector field. This implies the existence of a
generalized electric-magnetic duality for their system of Bianchi identities and equations
of motion [2]. For N = 8 supergravity this group of dualities is realized by Sp(56,R)
transformations acting linearly on the vectors and their duals. When the vector fields are
coupled to other matter fields the Sp(56,R) duality group gets reduced to a subgroup G.
For N = 8 supergravity G =E7(7), a non-compact version of the E7 exceptional group,
with 70 non compact generators and 63 compact generators. The 28 vector fields of the
supergravity multiplet and their duals transform altogether in the fundamental represen-
tation of E7(7), which is 56-dimensional.
The scalar fields of the supergravity multiplet are coordinates of the coset manifold ob-
tained by the quotient of G =E7(7) with its maximal compact subgroup H =SU(8)/Z2,
and therefore we have a correspondence between the 70 scalar fields and the 70 non-
compact generators acting non-trivially on any point of the scalar manifold Mscalar =
G/H.
A detailed discussion of the structure of E7(7) is given in the appendix. We will however
give here some results that are useful to describe the structure ofMscalar. We can use the
basis of E7(7) in which the compact and noncompact generators are evident to isolate the
noncompact generators simply by identifying the scalar fields ϕijkl with the coefficients
σijkl that define this basis.
In this way the coset representatives L can be identified with

L(ϕ) N
M = exp

(
0 ϕijkl

ϕijkl 0

)
. (2)

Since vector fields are real, it is natural to use a basis where the action of the duality
group is also real and therefore it is convenient to consider the real section of SU(8)C
provided by SL(8,R), rather than SU(8)R. For this reason we will often employ a change
of basis by means of the matrix S interpolating between the two real forms. In detail, in
order to relate the scalar and vector fields, the coset representatives can be written using
the constant tensor S N

M , whose explicit form is given in the appendix,

L(ϕ) N
M = S† P

M L(ϕ) N
P , (3)

so that M is an index in the fundamental representation of SL(8,R) and N is an index
in the fundamental representation of SU(8). The plain indices will be used to represent
electric and magnetic indices in the SL(8,R) representation, for example V M =

(
V Λ, VΛ

)
,

with Λ = 1, . . . , 28. The underline indices will be used to represent electric and magnetic
indices in the SU(8) representation, for example V M =

(
V ij, Vij

)
, with i, j = 1, . . . , 8 and

ij are a couple of antisymmetric indices associated with the fundamental representation
of the R-symmetry group SU(8).

This S tensor is used to pass between the explicit form of the generators of E7(7) de-
composed under SU(8) and SL(8). The eq. (3) allows for a more natural integration of
the scalar fields in the lagrangian with respect to eq. (2). Since the vector fields will be
defined using SL(8) covariant indices, this tensor allows us to relate the scalar manifold
with the gauging through the T -tensor as we will see later.
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For completeness we report the ungauged lagrangian, without giving its derivation, which
can be found in [1].
It is useful to define the the field strengths as a sum of selfdual and antiselfdual fields as
follows

FΛ
µν = F+ Λ

µν + F− Λ
µν , F̃± Λ

µν = ±F± Λ
µν . (4)

Here we will use Greek uppercase indices, Λ,Σ = 1, . . . , 28, to represent electric vector
fields, with an upper index, and magnetic vector fields, with a lower index, for example
the coset representative in the SL(8) basis is

L N
M =

(
L ij
Λ LΛkl

LΣij LΣ
kl

)
. (5)

Up to 4-fermi interaction, the lagrangian reads:

L =− 1

2
eR− 1

2
εµνρσ(ψ̄ i

µ γνDρψσi − ψ̄ i
µ

←−
Dργνψσi)

− i

4
e
(
NΛΣF

+ Λ
µν F+µνΣ − N̄ΛΣF

− Λ
µν F−µνΣ

)
− 1

12
e(χ̄ijkγµDµχijk − χ̄ijk←−Dµγ

µχijk)−
1

12
e
∣∣P ijkl

µ

∣∣2
−
√
2

6
e
(
χ̄ijkγ

νγµψνlP ijkl
µ + h.c.

)
+ eF+ Λ

µν O
+µν
Λ + eF− Λ

µν O
−µν
Λ .

(6)

The first three lines contain the kinetic terms for the fields. The first line contains the
kinetic term for the graviton and the gravitini; the second line contains the kinetic term
for the vector fields, where the field-dependent tensor NΛΣ comprises the field dependent
generalized theta angles and coupling constants; the third line contains the kinetic term
for the matter fields and the scalar field. The gauge kinetic matrix N is determined by
the equation

LΣijNΣΛ = −L ij
Λ . (7)

The P tensor is the vielbein on the scalar manifold

Pµ ijkl = iΩMNLMijDµLNkl = i(LΛijDµL
Λ
kl − LΛ

ijDµLΛkl),

P ijkl
µ =

1

24
εijklmnqpPµ mnpq,

(8)

where Ω is the symplectic invariant 56× 56 matrix.
The fourth line describe couplings between scalars and fermions, with the fermionic bi-
linear O given by

O+ ij
µν =

1

2

√
2ψ̄i

ργ
[ργµνγ

σ]ψj
σ −

1

2
ψ̄ρkγµνγ

ρχijk − 1

144

√
2εijklmnpqχ̄klmγµνχnpq (9)

Finally the fifth line collects the Pauli-like terms.
In the above expressions all the derivatives Dµ are covariant with respect to diffeomor-
phisms, Lorentz and SU(8) transformations.
As expected, the lagrangian is invariant under a N = 8 supersymmetric transformation
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and the corresponding variations of the fields are:

δψ i
µ =2Dµϵ

i +

√
2

4
F̂−ij
ρσ γρσγµϵj +

1

4
χ̄iklγaχjklγaγµϵ

j

+

√
2

2
ψ̄µkγ

aχijkγaϵj −
1

576
εijklmnpqχ̄klmγ

abχnpqγµγabϵj,

δχijk =− 2
√
2P̂ ijkl

µ γµϵl +
3

2
F̂−[ij
µ νγµνϵk] −

√
2

24
εijklmnpqχ̄lmnχpqrϵ

r,

δe a
µ =ϵ̄iγaψµi + ϵ̄iγ

aψ i
µ ,

δL ij
M =2

√
2LMkl

(
ϵ̄[iχjkl] +

1

24
εijklnmpq ϵ̄mχnpq

)
,

δA M
µ =− iΩMNL ij

N

(
ϵ̄kγµχijk + 2

√
2ϵ̄iψµj

)
+ h.c.,

(10)

where the ϵi are the infinitesimal spinorial parameters of the supersymmetry transforma-
tion.

2.2 Gaugings and the scalar potential

In order to obtain a consistent gauging procedure, it is not enough to specify the gauge
group Gg ⊂E7(7), but one also needs its symplectic embedding. This requirement follows
from the fact that, already at the ungauged level, we can differentiate equivalent and
non-equivalent lagrangians by means of symplectic transformations. In fact, while the
Bianchi identities and the equations of motion of the vector fields are invariant under
Sp(2nv,R), where nv is the number of vector fields in the lagrangian, the rest of the
equations of motion are only invariant under a smaller group G ⊂Sp(2nv,R) (G =E7(7)

for N = 8, where nv = 28). We will therefore obtain different theories if we act with
Sp(2nv,R) transformations that are not contained in G and hence we will obtain different
gauge models is such theories allow for the gauging of the same Gg.
Moreover, once a lagrangian is fixed, one can always use local fields redefinition of the
nv vectors in the lagrangian given by SL(nv,R) transformations. Altogether, this implies
that the set of inequivalent lagrangians is identified with the quotient

GL(28,R)\Sp(56)/E7(7). (11)

In order to keep track of all the possible inequivalent theories a useful technique is the
embedding tensor formalism [1,3], which we now briefly review.
The local symmetries of the ungauged theory are the abelian transformations U(1)28 of
the vector fields. In order to chose which vectors will be gauged using the generators
tα ∈ e(7) we will define the gauge generators as

XM = Θ α
M tα (12)

and use them to write the covariant derivatives

Dµ = ∂µ − AM
µ XM = ∂µ − AM

µ Θ α
M tα. (13)
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The embedding tensor Θ is therefore, in our case, a 56× 133 matrix with rank equal to
the dimension of the gauge group. This tensor allow us to define every possible gauging
without needing it to be specified at priori. However the embedding tensor can not be
chosen arbitrarily and must respect some constraints.

The first constraint follows from the requirement that the action of the gauge symmetry
must not transform the embedding tensor because we want the lagrangian to remain
invariant under the action of Gg, hence,

0 = δMΘ α
N = Θ β

M δβΘ
α

N = Θ β
M [tβ]

P
N Θ α

P +Θ β
M [tadj.β ] α

γ Θ γ
N . (14)

Contracting the above expression with the generator tα, the result is

Θ β
M

(
[tadj.β ] α

γ tα

)
Θ γ

N = −
(
Θ β

M t P
βN

)
Θ α

P tα. (15)

Defining X P
MN = Θ β

M t P
βN , the above expression can be rewritten as

[XM , XN ] = −X P
MN XP (16)

which resembles the standard closure of the gauge algebra, though we notice that while
X P

MN is like a structure constant for the gauging, X P
(MN) can be non zero.

The second constraint is necessary in order to have 28 vector fields that are mutually
local. This implies that the embedding tensor should satisfy

Θ α
M Θ β

N ΩMN = 0. (17)

This guarantees that there exists a field redefinition such that the gauging is done using
only electric vector fields.

Finally we have a supersymmetry constraint. The embedding tensor a priori belongs to
the E7(7) representations

56⊗ 133 = 56⊕ 912⊕ 6480, (18)

but only the 912 representation is compatible with supersymmetry. As we will see shortly,
this is related to the supersymmetric variations of the fermionic fields after the gauging
procedure. Such variations are modified to ensure that supersymmetric invariance is
preserved. Calling P(912) the projector operator on the 912 representation, we need to
impose P(912)Θ = Θ. This constraint can be written as [2]:

t N
αM Θ α

N = 0,

(tβt
α) N

M Θ β
N = −1

2
Θ α

M .
(19)

Here the indices are raised and lowered through the Cartan metric ηαβ = Tr
(
tadj.α tadj.β

)
.

In the lagrangian the embedding tensor will appear as a modification of the variation of
the fermionic fields under a supersymmetric transformation and through contractions of
the so called T -tensor,

T P
MN [Θ, ϕ] = L−1Q

M L−1R
N X S

QR L P
S . (20)
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When gauging a supergravity theory, the introduction of covariant derivatives of order
O(g) leads to the introduction of new terms of order O(g) and O(g2) to the ungauged
lagrangian. In order to restore supersymmetry the transformation rule for the fermions
must be modified adding a term of order O(g), the so called “fermionic shift”:

δ′ψi
µ =
√
2gAij

1 γµϵj,

δ′χijk = −2gA ijk
2l ϵl.

(21)

With Aij
1 = A

(ij)
1 , A jkl

2i = A
{jkl}

2i , A ijk
2i = 0. Those new terms must be added to the

respective transformation rules in eq. (10) and the derivative in δψ must be substituted
with the covariant derivative eq. (13). The tensors A1 and A2 uniquely determine the
T -tensor, in fact we can notice that under SU(8) the 912 representation of 56 ⊗ 133 is
broken into

36⊕ 36⊕ 420⊕ 420 (22)

which precisely match the 36 and 420 complex degrees of freedom ofA1 andA2. Explicitly:

T P
MN =

(
T P
ijN , T kl P

N

)
, (23)

Tij =

(
−2

3
δ

[p
[k T

q]
l]ij

1
24
ϵklrstuvwT

tuvw
ij

Tmnpq
ij

2
3
δ

[m
[r T

n]
s]ij

)
,

T ij =

(
2
3
δ

[p
[k T

q]ij
l] T ij

klrs
1
24
ϵmnpqtuvwT ij

tuvw −2
3
δ

[m
[r T

n]ij
s]

)
,

(24)

with T lij
k = −3

4
A lij

2k − 3
2
A

l[i
1 δ

j]
k and T ij

klmn = −4
3
δ
[i
[kT

j]
lmn].

The modification of the fermionic supersymmetric transformation forces us to introduce
a Yukawa-like term in the lagrangian,

LY = eg

(√
2

2
A1ijψ

i

µ γ
µνψ j

ν +
1

6
A jkl

2i ψ
i

µ γ
µχjkl +

√
2

144
ϵijkpqr[lmA

n]
2 pqrχijkχlmn

)
+ h.c. .

(25)
Substituting the vacuum expectation value for the scalar fields in this expression we
obtain the mass terms for the fermionic fields.
In order to cancel the variations of this new term a scalar potential of order O(g2) must
be added,

V = g2
(

1

24
A jkl

2i A i
2 jkl −

3

4
Aij

1 A1il

)
,

V =
g2

672

(
X R

MN X S
PQ MMPMNQMRS + 7X Q

MN X N
PQ MMP

)
,

(26)

whereMMN = L P
M LNP .

Once this is done the theory is consistent and no other terms of order O(g3) are needed
to restore supersymmetry.
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2.3 “Going to the origin” and vacua

In order to find the possible maximally symmetric vacua one needs to evaluate the scalar
fields for which V is a critical points. This however is a nontrivial task. Another possibility
to find all possible vacua lies in the properties of Mscalar. Since any two point on this
manifold can be mapped into each other via the action of a E7(7) element, we can map
any point to ϕ = 0. Crucially, the scalar potential is invariant under this transformation.
Doing so we can focus on a fixed point of the scalar manifold and consider variations of
the potential with respect to the embedding tensor, as we will now show. This analysis
and results are discussed in detail in [3].
The representative L(ϕU) of a point ϕU of E7(7)/SU(8) is related to the representative
L(0) of the point ϕ = 0 by

L(ϕU)
N

M = h(U) P
M L(0) Q

P U N
Q , U ∈ E7(7), h ∈ SU(8), (27)

this is always possible because the scalar manifold is an homogeneous space. The same
kind of shift can be done for the T -tensor associated with those scalar fields and, up to
SU(8) transformations, is

T P
MN [ϕU ] = (L[0]U)−1Q

M (L[0]U)−1R
N X S

QR (L[0]U) P
S

= L[0]−1Q
M L[0]−1R

N X
′ S
QR L[0] P

S = T
′ P
MN [0],

(28)

where X
′ S
QR = U−1M

Q U−1N
R X P

MN U S
P and we can ignore the SU(8) transformations of

the indices of the T -tensor since this is a symmetry of our lagrangian. In this way we can
study all the possible vacua by focusing on the origin ofMscalar. Finding the minima of
the potential for ϕ = 0 is much easier than solving the minimization for ϕ because, as we
will see shortly, those condition will be quadratic in terms of the embedding tensor. This
allow us to study the vacua not only for a fixed embedding but for a family of them in
one go.

The derivative of the coset representative for ϕ = 0 can be simply evaluated using its
definition eq. (2)

∂ijklL(ϕ)
N

M

∣∣∣
ϕ=0

= L(0) P
M [tρ]

N
P , (29)

where instead of the indices ijkl the ρ index is used to represent the non-compact gen-
erator of E7(7). If we now consider a contraction between a coset representative and
the embedding tensor, the action of the derivative of the scalar field can be seen as the
variation of the embedding tensor, explicitly:

∂ijklL(ϕ)
N

M Θ α
N

∣∣∣
ϕ=0

= L(0) P
M

(
[tρ]

N
P Θ α

N

)
∝ L(0) P

M δρΘ
α

N . (30)

This means that the derivative of the potential at the origin of the scalar manifold can
be evaluated by using the variation of the embedding tensor. Furthermore, taking ϕ = 0
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makesM = 1. Combining all of the above results we obtain

V (0,Θ) = Θ α
M ΘMβ(δαβ + 7ηαβ),

∂ρV (ϕ,Θ)
∣∣∣
ϕ=0
∝ δV

δΘ

[
[tρ]

P
N Θ α

P + [tadj.ρ ] α
γ Θ γ

N

]
∝ Θ α

M [tρ]
MNΘ β

N (δαβ + 7ηαβ) + Θ α
M ΘMβ[tadj.ρ ]αβ,

Mχ
ρ = ∂ρ∂

χV (ϕ,Θ)
∣∣∣
ϕ=0
∝ Θ α

M [tρt
χ]MNΘ β

N (δαβ + 7ηαβ) + Θ α
M ΘMβ[tadj.ρ tχadj.]βα

+Θ α
M [tρ]

MNΘ β
N [tχadj.]βα +Θ α

M [tχ]MNΘ β
N [tadj.ρ ]βα.

(31)

The mass matrix Mχ
ρ is useful in order to discuss perturbative stability of the vacua.

2.4 Known solutions

The search for vacua before the introduction of the embedding tensor and the idea of
shifting the scalar fields at ϕ = 0 has been very slow. Solution were found analytically
or numerically for particular cases [4–19]. In particular, the first progress towards a
better classification of multiple vacua was made in [19]. In this paper, machine learning
techniques were used for the first time, making it possible to find multiple vacua at once.
In [3] was introduced the shift of the scalar fields at ϕ = 0 and this allowed to more easily
search for solutions. With this technique a plethora of new (and old) vacua have been
found [20–35].

The known vacua that have a residual non abelian gauge group can be found in

• De Sitter:
[3, 21,25]

• Minkowski:
[3, 23–25]

• Anti-de Sitter:
[3–5,7, 13–15,18–25,27,28,30,31,33–35]



3 MACHINE LEARNING SUPERGRAVITY VACUA 14

3 Machine learning supergravity vacua

In this chapter we will introduce machine learning and discuss how it can be used to find
vacua in maximal supergravity. We begin by explaining the fundamental concepts of ML,
using concrete examples to clarify these ideas. Next, we review existing implementations
of ML in the context of supergravity vacua. Finally, we present a novel approach that
leverages ML techniques to improve the search for supergravity vacua.

3.1 Learning machine learning

Machine learning (ML) is a subset of artificial intelligence where algorithms learn directly
from data without explicit programming. Initially applied to fields like text, speech, and
image recognition, ML has recently seen increased use in physics, from track recon-
struction [36] to identifying phase transitions in many-body systems [37] and generating
gauge-field configurations on the lattice [38].

The strength and versatility of ML stems from a very simple idea: the parameters of the
model are not fixed at priori but are adjusted during iterations based on the seen data.
This enables the model to optimize for specific tasks by searching the best parameters
for it.
This can generally be done through a definition of a loss function and an update pro-
cedure. The loss function quantifies how good the model performed on a single data,
the lower the value of the loss function, the better. The update procedure changes the
free parameters of the model such that, given a single data (or a set of data), the model
performs slightly better on that single data (or a set of data) than it did before the
update. The loss function is used to perform this update. Given a data point, we can
evaluate the loss function for that input, keeping the dependence of the result on the
model parameters explicit. We can change the parameters slightly in such a way that the
value of the loss function decreases. Generally this can be achieved with a small step in
the opposite direction of the gradient in the parameter space of the loss function.
Concretely, let’s consider the following example. Take y = f(x), a multivariable function
and a dataset D containing pairs of variables (x, y). If the function f(x) is parametrized
by a set of values P = {pi}, we aim to fit f(x) to the data by minimizing the loss function,
often defined as the mean squared error:

L =

Ndata∑
k=0

∣∣∣∣yk − f(xk)∣∣∣∣2. (32)

Minimizing the loss means that the distance between the data and the interpolating
function is as low as possible. In order to perform this minimization we can first evaluate
the gradient, since the gradient in the parameter space points in the steepest direction of
the function L[P ]. We can then lower the value of the loss with the update

pi → pi − η∂iL, (33)

where ∂i is the derivative with respect to pi, and η is a small, fixed constant (often
η = 0.01). The above update makes sure that, if η is nor to small nor to big, the loss



3 MACHINE LEARNING SUPERGRAVITY VACUA 15

function decreases. Proper initialization of parameters allows convergence towards the
global minimum of L, yielding the best fit.
This method, known as gradient descent [39], is one of the many different algorithms
used in ML.

While the optimization technique used in the above example works in theory, in practice
it may be slow or fail to converge. To address these issues, various techniques have been
developed over the years.
A crucial factor is the learning rate η, which must be carefully chosen. If η is too large,
the parameters may overshoot the minimum or diverge. If too small, convergence may
be excessively slow, as illustrated in fig. 1.

Figure 1: Effect of different learning rates: Left - learning rate too small, slow conver-
gence; Center - optimal learning rate; Right - learning rate too large, no convergence.
Figure taken from [40].

Beyond choosing a good initial learning rate, it is often advantageous to adjust η dy-
namically during training [41]. This can be achieved by decaying the learning rate over
iterations or adapting it based on the loss function’s value. The variation of the learning
rate over the iterations can be implemented in various ways, for example the learning rate
can be proportional to the inverse of the number of iteration or in each iteration it can
be multiplied by a fixed constant smaller than 1. In the former the model takes larger
steps at the beginning and gradually finer steps going on. For the latter the learning rate
decreases at an exponential rate, this can guarantee quick convergence but the model can
potentially converge before reaching the minimum.

Techniques like momentum, which incorporates past updates into the current step, can
further accelerate convergence and avoid local minima by enabling the model to “escape”
shallow basins in the loss landscape [42]. Momentum-enhanced gradient descent modifies
the update rule:

w
(n)
i → w

(n+1)
i = w

(n)
i −∆w

(n)
i , (34)

where the superscript of the parameter wi represent the number of the iteration. Without
momentum we have

∆w
(n)
i = η∂iL, (35)
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while with momentum the expression becomes

∆w
(n)
i = η∂iL+ γ∆w

(n−1)
i , (36)

where γ is a constant between 0 and 1, allowing the algorithm to retain a fraction of the
previous update’s direction, which can smooth the path towards the global minimum.

Based on the ideas above, a lot of optimization strategies came over the years that involve
adjusting simultaneously the learning rate and momentum. Some popular examples are:

• AdaGrad (Adaptive Gradient) [43]
The learning rate is different at each iteration for each variable. The learning rate
at the nth iteration for the ith parameter is

η
(n)
i =

η√
n∑

m=1

(
∆w

(m)
i

)2 . (37)

This allows the model to quickly escape saddle points.

• RMSprop (Root Mean-Square propagation) [44]
Analogous to AdaGrad but with the difference that the sum of the square of the
gradients include a exponential decay factor. This allows the model to retain in-
formation about only a few previous steps rather than the entire path. This also
helps us avoid the potential problem of a vanishing learning rate.

• Adam (Adaptive moment estimation) [45]
Similar to RMSprop but using momentum too. However, some corrections need to
be made in the implementation, since this is a biased estimator, which we will not
discuss here. This update procedure generally is the best performing one, it allows
the model to quickly navigate the common saddle points of the higher dimensional
loss function and it gives the possibility to escape its local minima.

In this thesis we attempted a novel approach to finding supergravity vacua by using ML
techniques. Since this approach involves deep learning and particularly neural networks
(NNs) [46], we will now introduce what a NN is with all the necessary concepts.
The structure of a NN takes inspiration by biological brains, hence the name. The building
block of a NN is the neuron. Each neuron is connected with edges, like the synapses in a
brain. The neurons are organised in layers. Each neuron receives inputs from neurons in
the previous layer, processes these inputs, and transmits outputs to neurons in the next
layer, as shown in the figure below.
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Figure 2: Structure of a feed-forward neural network (FFNN) with input, hidden, and
output layers. The FFNN in this picture has three inputs, each neuron in the hidden
layer has as an input from each neuron in the input layer. Similarly the outputs are
obtained from the hidden layer. Figure taken from [47]

The output yi of the i
th neuron in a layer is obtained from the outputs {xj}i=j,...,d of the

previous layer by

yi = f(ai), ai = bi +
d∑

j=0

wijxj, (38)

where f is a non-linear function, called activation function and wij and bi are a set of
parameters called respectively weight and biases. The choice of activation functions is not
a trivial task, a good activation function in general must balance various properties, such
as ease of evaluation, along with its derivative, the absence of flat regions or the output
range. A detailed list of various activation functions can be found in [48]. Generally
the two most common activation function are ReLUs

(
f(x) = (x+ |x|)/2

)
and sigmoids(

f(x) = 1/(1 + e−x)
)
.

A FFNN is essentially a sequence of layers, each consisting of an affine transformation
followed by an activation function. There are no universal guidelines for determining
the optimal structure of a neural network, selecting activation functions, or choosing the
appropriate loss function. These decisions are typically made through a process of trial
and error, with intuition and expertise developing over time.
The free parameters that the model must learn include the weights and biases at each
layer, as well as any parameters associated with the activation functions, if present.
Once the structure of a FFNN is defined, the next step is to select an appropriate loss
function for the specific task. The training process then proceeds similarly to the methods
discussed in section 3.1. The phase of evaluating the derivative of the loss with respect to
the parameters is known in the context of neural networks as backpropagation. During
the “forward” evaluation, intermediate outputs are temporarily stored, which facilitates
efficient computation of derivatives through automatic differentiation [49]. Furthermore,
the use of affine transformations and differentiable activation functions ensures rapid
evaluation of these derivatives.

Despite its simple structure, a neural network is a powerful tool due to its ability to
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model complex, non-linear relationships in data. As demonstrated in [50], FFNNs are
universal approximators, meaning they can approximate any Borel measurable function
to any desired degree of accuracy, provided that a sufficient number of hidden neurons
are available.

3.2 Old attempts

Numerical algorithms used to find vacua of maximal supergravity are generally based on
optimization techniques, often variants of gradient descent algorithms. Extensive search
for solutions using stochastic gradient descent (SGD) was performed in [19,31,35,51,52].
In those paper, several sectors of extended supergravity in 4D or 5D were analyzed. The
problem was approached in two different ways. Before [3], for a choice of the desired gauge
group, a possible embedding of this group in E7(7) was chosen. However the potential for
this theory still depend on 70 scalar fields and therefore a complete search for the minima
was not possible. The idea was to evaluate the potential on a submanifold ofMscalar such
that the critical points on the submanifold are critical points on Mscalar too. The other
technique was to search for minima using eq. (31) and parameterizing the embedding
tensor so that the total number of degrees of freedom were manageable.
Either way the problem were reduced to find the critical points of the potential, given a
certain parametrization. Since the critical points, by definition, have vanishing gradient,
the technique used is a minimization of the loss function

L =
∣∣∣∣∣∣∂V (x)

∣∣∣∣∣∣2, (39)

with x the parameter that belong to the respective space, based on the approach chosen.
The point is a critical point of the manifold only if, with a reasonable precision, L = 0.

A more recent approach was tested in [53, 54], analyzing maximally symmetric vacua in
5D and 7D supergravity, employing the shift of the scalar field as in section 2.3, using
both SGD and genetic algorithms [55]. The most notable technique was the Covariance
Matrix Adaptation - Evolutionary Strategy [56] (CMA-ES). For this algorithm an initial
population (in the case of the papers, set of points that parameterize a particular sector
of the embedding tensor) is sampled at random from a multivariate normal distribution.
Each generation the mean and covariant matrix of the population is updated following
a maximum-likelihood principle for the minimization of the loss function (in the case of
the papers, the scalar potential) and then the population is resampled. With careful
initialization the algorithm can find global minimum of the potential. An example of the
process is given in fig. 3.
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Figure 3: Illustration of the CMA-ES algorithm. The population’s loss decreases with
each generation, eventually converging to the minimum. Figure taken from [57].

The population at any given step is composed by λ points generated from the multivariate
normal distribution

x
(g+1)
i ∼ N

(
m(g),

(
σ(g)
)2
C(g)

)
, (40)

where the superscripts indicate the generation, m and C are the mean and covariant
matrix at a certain iteration and σ is an effective “step size” used to reduce the spread of
the population step after step. To generate the next samples from a population, we need
to select the best-performing points to evaluate the new mean and covariance matrix.
This can be done in several ways. In the papers [53, 54] the strategy was to rank the
points from lowest value of the loss function to highest and select the first µ of them.
The new mean is then defined through the the weights

wi ∝ µ− i+ 1,

µ∑
i=1

wi = 1, (41)

as:

m(g+1) =

µ∑
i=1

wix
(g+1)
i , (42)

where the indexing of the points is such that if i < j then L
(
x
(g+1)
i

)
< L

(
x
(g+1)
j

)
.

The covariant matrix can be define again employing the weights eq. (41) as

C(g+1) =

µ∑
i=1

wi

(
x
(g+1)
i −m(g)

)(
x
(g+1)
i −m(g)

)T
. (43)

This covariant matrix however is a good estimator only if the population is big enough.
Empirically this condition is fulfilled when

10n ≲

 µ∑
i=1

w2
i

−1

, (44)
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where n is the dimension of x, [53, 54].
In order to have a robust minimization the authors of [53, 54] utilized a similar imple-
mentation of Adam for the update of the covariant matrix, where the role of the learning
rate was played by the step size σ.

Those papers reported that the CMA-ES strategies resulted to be the most promising
optimization algorithm among the ones tested.

3.3 New attempts

In this thesis the “shift” of the fermion previously described was employed. Specifically,
let x ∈ Rd denote the vector that parameterizes the degrees of freedom of the tensors
A1 and A2 described in eq. (24). This allows the conditions in eq. (31) to be written as
quadratic equations in x. Since there are no terms linear in x, the conditions ∂V = 0 can
be reformulated as

x · Tix = 0, ∀i = 1, . . . , N , (45)

where Ti are known symmetric Rd×Rd matrices. The loss function can be defined as the
squared norm of the gradient,

L(x) =
N∑
i=1

(x · Tix)2 . (46)

During the update procedure however we want to normalize the output to avoid the
convergence at the trivial solution x = 0. This is the standard SGD approach already
discussed in the previous section, which has proven to be effective by papers. How-
ever, a significant challenge arises from the presence of local minima in eq. (46). The
method proposed here aims to achieve a good initialization x̄, increasing the likelihood of
convergence to an absolute minimum. To achieve this initialization, two algorithms are
introduced. The first algorithm, referred to as the cluster algorithm, is designed to search
for “clusters” of points, where each point is a solution to a single equation. The second
algorithm, named NS (Near Solution), will be described in a subsequent subsection. The
NS algorithm plays a central role in this clustering procedure.

3.3.1 Cluster algorithm

The aim of this algorithm is to identify regions within the parameter space where multiple
solutions of the single equations are likely to be found. If we have a small region where
there is at least a solution for every equation there is a higher probability to be near a
solution respect to a random point, thereby providing a favorable initialization for the
SGD algorithm.
If a point xsol is a global minimum of eq. (46), it implies the existence of points x̄i, near
xsol, such that x̄i · Tix̄i = 0. Each of these points solves at least one of the constraints.
The objective is to identify a set of points, all close to each other, where each individual
point satisfies the constraint x̄i ·Tix̄i = 0. The good initialization x̄ for the SGD algorithm
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is thus defined as the (normalized) average of the points x̄i.
To find these points, the NS algorithm was developed. The objective of the NS algorithm
is, given a point x, to find the nearest solution x̄i such that x̄i ·Tix̄i = 0. The application of
NS is crucial in order to cluster different points near a possible solution. Before explaining
the NS algorithm, it is necessary to discuss the procedure that allows for a more accurate
estimation of the points x̄i.
Starting from a random guess x, we can use NS to generate the set of points {x̄i}. This
however does not guarantee proximity to a solution. The idea is to make these points
“cluster” as close as possible to a common central point. The procedure begins with a
random value x(0) and generate the normalized vectors {x̄i}. The mean x(1) of the set
{x̄i} is then evaluated, and the most distant element x̄j from x(1) is identified. Once
the element is found we can apply again the algorithm aforementioned to find the vector
x̄′j that is a solution of the corresponding equation and is as close as possible to x(1);

this vector is then substituted with x̄j. The mean x(2) of the new set is calculated, and
the procedure is iterated as shown in fig. 4. If the mean distance between the vectors
decreases significantly over a few iterations, the proposed good initialization is the mean
of the set {x̄i}. If this is not the case, the procedure is repeated with another random
initial value. The testing was done with five clustering steps, where a point was accepted
only if the average scalar product between all the x̄i at the last step were greater than
0.9. These conditions were chosen empirically with little testing, so there is a significant
possibility of more effective clustering procedures.

Figure 4: The cyan sphere represents the space of all possible solutions in the simplified
case of d = 3. The black point represents the normalized average of all the other points,
with the green point being the furthest from the average. The red point in the second
image is the new value for the green point from the first image.

Data: x
Result: x̄
begin

for i = 1, . . . , N do
x̄i = NS(Ti, x)

end
for icluster = 1, . . . , 5 do

x̄ =
∑
x̄i/
∣∣∣∣∑xi

∣∣∣∣ find j such that x̄j · x̄ is minimum x̄j = NS(Tj, x̄)
end
if x̄j · x̄ > 0.9 then x̄ is returned;
else repeat the algorithm with a new x;

end
Algorithm 1: Cluster algorithm implementation
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3.3.2 NS algorithm

The NS algorithm generates the point x̄i, solution of its respective equation and as close
as possible to the initial input x.
The discussion will start with the simplified case where Ti = D is a diagonal matrix, and
then extend to the general case. The vectors composed of the positive, zero, and negative
eigenvalues of D are denoted as σ+, σ0, and σ−, respectively. This allows the equation
x̄′ ·Dx̄′ = 0 to be written as

x+ · Σ+x+ + x0 · Σ0x0 + x− · Σ−x− = x+ · Σ+x+ + x− · Σ−x− = 0, (47)

where Σ = diag(σ) and x+, x0, and x− are truncations of x̄′. Furthermore, d+, d0, and
d− denote the dimensions of the vectors x+, x0, and x−.
Let’s consider the following redefinition of the vectors x+ and x−,{

x+,a →
√
σ+,ax+,a

x−,a →
√−σ−,ax−,a

, (48)

where the index a refers to the component of the respective vector. The eq. (47) can now
be rewritten as

||x+||2 − ||x−||2 = 0. (49)

The vectors x+ and x− can be chosen to have norm 1, while x0 can have an arbitrarily
large or small norm. This parameterizes all the (normalized) solutions of the equation
in the space Sd+−1 ⊕ Rd0 ⊕ Sd−−1 for d+, d− ≥ 1 (when this condition is not met, the
number of variables can be reduced, yielding a new system where the condition is met.
See the appendix for the discussion of this case).
Concretely we can parameterize the solutions with the vector u′ ∈ Rd in the following
way. We divide the vector u′ in three vector u′+, u

′
0 and u′− with dimensions d+, d0 and

d−. We define the new vectors in the following way
u+,a =

1√
σ+,a

u′
+,a

||u′
+||

u−,a =
1√−σ−,a

u′
−,a

||u′
−||

u0 = u′0

, (50)

and recombine the vectors u+, u0 and u− as u, in a way analogous to the previous de-
composition. The solutions of x̄′ ·Dx̄′ = 0 can then be written as x̄′ = u/||u||.
To meet the algorithm’s requirement that the input vector x′ be as close as possible to
the output vector x̄′, a neural network will be employed, as discussed shortly. Before this,
the general case of a non-diagonal Ti matrix will be briefly examined.
Given that the Ti matrices are symmetric, they can always be diagonalized using orthog-
onal matrices O. This allows the following transformation:

x̄ · Tix̄ = x̄ ·ODOT x̄ = (OT x̄) ·D(OT x̄) = x̄′ ·Dx̄′ (51)

Thus, passing from the original basis to the diagonal basis requires applying the matrix
OT to the vector, while passing back requires applying the matrix O.

The steps described are summarized in the following diagram.
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Figure 5: Those are the schematic steps of the NS algorithm to get the vector x̄ such
that x̄ · T x̄ = 0 and the distance between x and x̄ is as low as possible.

Data: O, σ, (σ+, σ−), x
Result: x̄
begin

x′ = OTx
u′ = FFNN(σ, x)
u′ → (u′+, u

′
0, u

′
−)

u+,a =
1√
σ+,a

u′
+,a

||u′
+||

u−,a =
1√−σ−,a

u′
−,a

||u′
−||

u0 = u′0
(u+, u0, u−)→ u
x̄′ = u/||u||
x̄ = Ox̄′

end
Algorithm 2: NS algorithm implementation

To approximate the unknown function, a standard standard FFNN is sufficient for this
purpose.
Since the goal is to minimize the distance between x and x̄, a natural choice for the loss
function is

L = −x · x̄ = −
(
OTx′

)
·
(
OT x̄′[u′]

)
= −x′ · x̄′[u′] (52)

where x̄′[u′] denotes the vector x̄′ parametrized by u′.
The network has as input two d-dimensional vectors, σ and x′, and has as output a d-
dimensional vector, u′.
Before discussing the layout tested, a comment on the activation functions used is neces-
sary. For the output layer we used the identity function to ensure proper parametrization
of the output space. Each layout was tested with different activation functions, with the
best performing networks generally using ReLUs exclusively. An exception was a specific
layout that used the sigmoid function in one layer, which will be discussed shortly.

The first kind of layouts tested had 2d input neurons, fully connected to a certain number
of hidden layers, finishing with d output neurons. These layouts were tested with a
number of hidden layers ranging from 0 to 4. Among these, the best performance was
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observed with 3 hidden layers, containing 2d, 1.5d, and d neurons per layer, respectively.
Another family of layouts that was tested had a more articulated structure. The first
few layers were not fully connected, whereas σ and x′ were processed separately. Each
input was condensed into an intermediate output using a single hidden layer, with the last
neurons employing a sigmoid activation function. These intermediate outputs, along with
the vectors σ and x′, were then processed through fully connected layers. This architecture
proved to be slightly more effective than the previous one, with the idea being that the
intermediate outputs could provide additional information useful for better parametrizing
the subsequent fully connected layers. The best layout found used an initial hidden layer
with d/2 neurons per input, condensed into 2 sigmoid outputs. These 4 outputs, together
with σ and x′, were processed by a single fully connected hidden layer with d neurons
before reaching the output layer. The figure below illustrates the two best-performing
layouts.

Figure 6: Examples of the best performing layout with d = 6. The input neuron are
represented with a square bracket, σ in red and x′ in blue. All the white neurons, except
the output ones, use a ReLU as activation function. The orange neurons use a sigmoid
as activation function.

The network training incorporated some simple yet effective techniques to achieve faster
and more efficient training. First, while it is possible to develop a network that works
with any matrix, during training, only the Ti matrices were used. Although this practice
generally risks overfitting, in this context, it is not problematic because these are the only
matrices that will serve as input. However, it is worth noting that if another network
with the same number of inputs needs to be trained, the initial network would not be
suitable for the new task. It is possible, but it was not tested in this thesis, that using
the original network as an initialization for the new one could lead to rapid convergence.
Another obvious optimization was to evaluate a priori the eigenvalues and orthogonal
matrices, since they are the same. This is crucial since their evaluation is considerably
slower compared to a forward and backward pass through the network.
For the update procedure, the Adam optimizer was employed, along with an exponential
decay of the learning rate.
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The described procedure was tested on a system composed by approximately 70 equations
with 13 unknowns. Although some solutions were found, the results appeared similar to
those obtained using the standard SGD method. The main issue was that, even if it
was faster to find the vacua once the network was trained compared to SGD, the overall
time was slower. Furthermore for a system with so few variables machine learning imple-
mentation were a order of magnitude slower than standard algorithms which produced
analytical solutions.
For this reason, the procedure described above was discarded, and non-machine learning
approaches were tested. This does not imply, however, that the procedure is invalid in
all contexts. As the number of variables increases, traditional algorithms quickly become
unfeasible, while machine learning approaches seem to scale better with the number of
variables. Additionally, in systems with many solutions, it might be worthwhile to set up
the algorithm for initialization instead of proceeding directly with SGD.

The number of parameters in the best-performing network is approximately 4d2, so the
time complexity of a forward and backward pass is O(d2). This implies that the appli-
cation of this algorithm will scale similarly to the SGD algorithm. However, it is unclear
how the network’s training time will scale with the number of dimensions. It is likely
to scale as O(ed), since the entire parameter space for x′ needs to be explored. It is
worth considering that the transformation to be learned could be relatively simple, such
as scaling the x′ components based on the eigenvalues σ. Furthermore, in the context
of maximal supergravity, most of the eigenvalues are 0. These factors could potentially
facilitate the scalability of the training time.
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4 Relinearization and new algorithms

In this chapter we will discuss how a system of polynomial equations with many variables
and finite solutions can be solved analytically, with the goal of finding every solution.
In order to do so, we will first introduce the relinearization algorithm and then a more
sophisticated algorithm that builds on it, the XL algorithm. Finally we will present
some improvements to the XL algorithm and briefly discuss their implementation in the
PyXLTensor library.

4.1 Algebraic approaches

4.1.1 Relinearization algorithm

Finding solutions to multivariate quadratic equations is a problem that appears fre-
quently in many different fields. In cryptography, for instance, a technique known as
“relinearization” has been employed to attack data encrypted with the Hidden Field
Equations (HFE) scheme [58]. This method was used to solve equations over finite fields
but the same algorithm can be used in the case of real parameters. The procedure can
be described as follows:
The objective is to solve a set of equations of the form

d∑
i,j=1

ak,ijxixj = bk, k = 1, . . . , N , (53)

where ak,ij and bk are known coefficients and x ∈ Rd are the unknowns variables. We
can introduce the variables yij = xixj, transforming the original system into a set of
linear equations. This system however is usually underdetermined and we need to add
a constraints on the values of yij. This additional equations generally are of the form
yijykl = yikyjl = yilyjk, or higher degree. The new system can then be solved trough
standard linearization techniques or applying again the relinearization step. We can
show this procedure with the following toy example:

x21 + x2x3 = 7

x1x2 + x23 = 7

x1x2 + x2x3 = 1

. (54)

Introducing y1 = x21, y2 = x1x2, y3 = x2x3 and y4 = x23 the above system becomes
y1 + y3 = 7

y2 + y4 = 7

y2 + y3 = 1

y1y
2
3 = y22y4

, (55)

where the last condition is derived by expressing x21x
2
2x

2
3 in two different ways using the y

variables. Using the first three equations, the last can be expressed using only y3, yielding
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(7− y3)y23 = (1− y3)2(6 + y3). The solutions to this equation are y3 = −2, y3 = 1/2 or
y3 = 3. Substituting the solutions found for y3 back in the system we obtain that the
possible values for (y1, y2, y3) are (9, 3,−2), (13/2, 1/2, 1/2) or (4,−2, 3). Finally we can
solve for the original variables x and get that (x1, x2, x3) is ±(3, 1, 2), ±

√
13/2(1, 1/13, 1)

or ±(2,−1,−3).

4.1.2 XL algorithm

When the system has a small number of variable (N ≲ 15) the procedure described
above is an efficient method for finding the solutions. Unfortunately supergravity vacua
are usually described by some thousand equations in 912 variables and hence one needs
more efficient algorithms to handle bigger systems, like the “XL Algorithm” (eXtended
Linearizations) [59]. We will now closely follow the approach presented in the original pa-
per, providing the necessary definitions, explaining the algorithm in detail, and applying
it to solve the same example as before using the XL method.

Let K be a field and let A be a system of multivariate quadratic equations in the form
lk = 0 with k = 1, . . . , N .
The equations of the form li

∏k
j=1 xij = 0 are said to be of the type xkl. For example,

the initial equations are of the type l.
xk denotes the set of all terms of degree k,

∏k
j=1 xij .

Let’s call ID the set of all the polynomials of the type xkl with total degree less or equal
to D (0 ≤ k ≤ D − 2).
The four steps of the algorithm are:

1. Multiply: Generate all the terms in ID.

2. Linearize: Consider each monomial of the type xk as a new variable and perform
Gaussian elimination on the equations obtained in 1. The ordering of the monomials
must be such that all the terms containing one variable are eliminated last.

3. Solve: Assume that step 2 yields at least one univariate equation in the powers of
a single variable of x. Solve this equations over K.

4. Repeat: Simplify the equations and repeat the process to find the values of the
other variables.

Notice the following things. When generating the equations there is no need to consider
more general terms such as l2i = 0 since they can be obtained as linear combination of
elements in I4. Furthermore it is possible in certain occasions to work only with a subset
of all the possible monomials. For example, when all the equations have even (odd)
degree terms we can ignore the odd (even) degree monomials.
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Let’s again consider the system
x21 + x2x3 − 7 = 0

x1x2 + x23 − 7 = 0

x1x2 + x2x3 − 1 = 0

(56)

and see how the XL algorithm works. For the sake of clarity we will report only the
relevant equations.
When performing gaussian elimination on the initial set of equation I2 we will obtain the
first equation in 2 variables, x21 + x23 − 13 = 0. In the next iteration, D = 3, we obtain
another equation involving only x1 and x3, namely x31−x33−7x1+7x3 = 0. This equation
is obtained from x1l1 = 0 and x3l2 = 0. The first of this two equations will generate the
even powers of x3 using x1, for example

x21x
2
3 + x43 − 13x23 = 0

x41 + x21x
2
3 − 13x21 = 0

x21 + x23 − 13 = 0

, (57)

that during gaussian elimination gives us x43−x41+26x21−169 = 0. During the next steps
we will leave the even powers of x3 explicit even if during the gaussian elimination they
could be simplified.
At the step D = 4 some of the equations are

x31x3 − x43 − 7x1x3 + 7x23 = 0

x41 − x1x33 − 7x21 + 7x1x3 = 0

x31x3 + x1x
3
3 − 13x1x3 = 0

. (58)

At D = 6 those equations generates

x51x3 − x21x43 − 7x31x3 + 7x21x
2
3 = 0

x41x
2
3 − x1x53 − 7x21x

2
3 + 7x1x

3
3 = 0

x61 − x31x33 − 7x41 + 7x31x3 = 0

x41x3 − x21x43 − 7x31x3 + 7x21x
2
3 = 0

x51x3 + x31x
3
3 − 13x31x3 = 0

. (59)

After performing gaussian elimination at the step D = 6 we obtain one equation that
involves only x1,

−12x61 + 234x41 − 1446x21 + 2808 = 0. (60)

By solving this equation and substituting back in the system the result, we obtain all the
solutions, like in the previous example.
Although this algorithm may appear more computationally expensive, it is expected to
perform with polynomial complexity in n when dealing with overdefined systems. In
particular, as discussed in [59], the algorithm is likely to succeed when D ≈ ⌈1/

√
ε⌉, with

N = εd2 and a total complexity of O(nω/
√
ε), where ω is a constant approximately in the

range of 2÷3, depending on the efficiency of the algorithm used for gaussian elimination.
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4.2 Improvements on the XL algorithm

The XL algorithm is a very efficient algorithm for solving systems of quadratic equation,
however, its performance decreases as the number of variables and equations increases.
In the context of supergravity, empirically, the algorithm generally becomes impractical
on standard machines when the number of variables reaches the magnitude of 30. In
this section, we will discuss various improvements that could increase the efficiency of
the algorithm. The algorithm is implemented in Python and is available as open-source
under the PyXLTensor library [60] (a detailed technical discussion is provided in the
appendix). This library allows users to define known and unknown tensors, specify high
and low indices, and establish the relative metrics. Tensors can be summed, contracted,
or generated based on their block structure, all in a physicist-friendly manner. Once the
equations are set up, the library can be used to solve for the unknown parameters using
the enhanced version of the XL algorithm, which we will now discuss.

The first difference from the previously discussed implementation of XL is that we are
interested in finding all possible solutions to a system. Each time an equation is solved,
a new system is created for each equation, and the solutions are substituted into these
systems.
The other, more substantial, difference lies in the reduction process. In the standard
implementation of XL, a gaussian elimination is carried out. However, this reduction
does not account for the goal of obtaining equations with the fewest number of variables.
In order to introduce a ranking system for comparing equations, we first need to define the
concept of “priority” among monomials. The terminology used from this point forward
is propaedeutic for understanding the code, with square brackets [...] referring to the
common name of various objects or the names of implemented functions.

We will say that a monomial [var] has priority [System. has priority(var1, var2)]
over another monomial if:

• The degree of the first monomial is greater than the degree of the second monomial.

• If the degrees are the same, the powers of the variables of the monomials are com-
pared in order (from x1 to xd). The monomial with the larger exponent is said to
have priority.

The leading variable [leading var] of an equation [eq] is the monomial with the biggest
priority.
An equation will rank higher than another one if:

• The first equation contains fewer distinct variables than the second one.

• If they contain the same number of distinct variables, the equation with fewer terms
will rank higher.

• If they have the same number of terms, the equation with the highest priority will
rank higher.
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The priority condition is essential to avoid stalling situations. This can be demonstrated
with a simple example: 

x2 + y2 = 1

x2 + z2 = 2

y2 + z2 = 3

(61)

Without the priority condition, this system would not simplify, as any combination of
two equations will always involve at least two equations and three monomials.

To simplify two equations, we check all possible linear combinations that cancel at least
one monomial. If the linear combination with the highest priority outranks one of the
two starting equations, it substitutes the equation with the lower priority.
The reduction process [System.reduce(self)] can be made efficient by sorting the equa-
tions by priority [System. sort(self)]. We begin with an empty list of equations.
Starting with the equation of the highest priority in the original set, we attempt to re-
duce it using every other equation in the new list. Every time a reduction occurs, the
equation with the highest priority is inserted into the new list, while the equation with
the second-highest priority is used for further comparisons. By filling the new list in this
way, we maintain a sorted set and avoiding redundant comparisons.

We now describe how a step [Solver. step(self)] of the algorithm is executed in this
implementation.
From the set containing all systems that need to be processed [Solver.list systems],
the system with the fewest equations is selected.
If the degree of the system exceeds a predetermined value, the current solution is saved
among the undetermined solutions [Solver.Undetermined Solutions]. If this is not the
case, the system is analyzed to find new (partial) solutions [System.find new Sol(self)].
If the system does not yield any new solutions [to reduce], it will be reduced. If new
solutions are found, the new system will undergo the procedure just described until no
further solutions are identified. At this point, all systems will be reduced as previously
discussed.
If a system undergoes reduction without any changes to its equations, it implies that a
step up in degree [System.step up(self)] is necessary, as in the standard XL imple-
mentation. However, if the system’s equations change, the step-up procedure may not
be required, and it is therefore avoided. All the new systems, if present, are added to
the initial list of systems to be processed and the step procedure can be done again, as
shown in the following diagram.
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Figure 7: Flow chart of the enhanced XL algorithm.

The full algorithm consists of repeating the step procedure until no systems remain,
either because the solutions have been found or because the maximum allowed degree
[max order] is reached. This final condition can occur in two scenarios: either the degree
required to solve the system exceeds the maximum degree that has been set, or the
system has parametric solutions. In either case, the partial solutions are saved and can
be substituted back into the original system for further analysis by other means.

4.3 Examples

As already shown in eq. (24), the T -tensor can be expressed using the tensors A1 and
A2. Furthermore these tensors can be chosen to be invariant under the action of the
elements of a group Gg, ensuring that the resulting theory has Gg as the gauge group.
The consistency equations and can be written as follows:

0 =Ak
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mij
n − A kil

l Am
nij − 4A

(k
lniA

m)i − 4A mki
(n Al)i
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k
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εmnpqrstu
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A ikr
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stu
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ijkA

mnp
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Additionally, the extremization of the scalar potential, given in eq. (31), is expressed as:

0 =Cijkl +
1

24
εijklmnpqCmnpq,

Cijkl =Am
[ijkAl]m +

3

4
Am

n[ijA
n
kl]m,

(63)

as shown in [27]. Here the normalizations are such that ε12345678 = −1 and δ1,...,n1,...,n = 1
n!
.

Before solving for new parametrizations of the tensors A1 and A2, the PyXLTensor library
was tested on families of A1 and A2 for which all solutions were known. In particular the
G2 truncation, SU(4) truncation and SU(3) truncation reported on [23] were tested and
all the solutions were successfully found.

The systems of equations generated for the SU(4) and SU(3) cases were processed using
the PyXLTensor library. Unfortunately, the limitations of the current hardware prevented
these systems from being solved. A supercomputer could be employed to solve these
equations, as similar-sized systems have been solved using the standard implementation
of the XL algorithm.
Solving these systems is particularly interesting, as there currently exists no complete
classification of the vacua associated with these gaugings.
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5 Summary and outlooks

In this thesis we discussed maximally symmetric vacua for maximal supergravity in 4D.
We summarized the procedure that allows us to study the properties of a vacua through
the embedding tensor and its parametrizations. Two promising algorithms were pre-
sented: one based on machine learning techniques and the other based on more traditional
computational methods. Additionally we introduced modifications to these algorithms
that allows them to be more effective. Lastly we used the new implementation of the XL
algorithm in an attempt to completely classify the vacua generated by the gaugings of
SU(4) and SU(3).
Unfortunately, due to limitations in computational resources we were not able to per-
form those calculations. The classification of vacua for even smaller gauge groups, such
as SU(2), or the most general cases with no a priori structure, is not feasible given our
current understanding of maximal supergravity and the available computing power.
Beyond solving the systems of equations for the gaugings of SU(4) and SU(3) on more
powerful hardware, there are other improvements that can be done, both algorithmically
and mathematically. The PyXLTensor library can be improved in various way, including a
potential shift to more efficient programming languages like C++. One interesting prob-
lem, highlighted in Appendix B, is that currently we do not know any efficient method
to linearly combine indefinite matrices to produce, if possible, a positive definite matrix.
If this problem could be solved, it would allow for the reduction of the number of vari-
ables in systems of quadratic equations, such as those arising in the context of maximal
supergravity.
Although we were unable to compute these new vacua, the algorithmic contributions of
this thesis can still be relevant in their respective fields. In particular, the PyXLTensor
library can be an effective tool for solving systems of polynomial equations, derived by
tensor expressions, that are parametrized by many variables.
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A The group E7(7)

The group E7(7) is a 133−dimensional group with 63 compact generators and 70 non-
compact generators. The main representations that will be used in this thesis are the
fundamental 56 and the adjoint 133 representations, in the following we will discuss two
different choices for the generators in the 56 representation.
The most simple way to define the elements of e7(7) in the fundamental representation is
by imposing constraints on the elements of sp(56,R),(

Λ CD
AB ΣABEF

⋆ΣGHCD Λ′GH
EF

)
(64)

with
λ B
A = −λ′BA, λ A

A = 0,

Λ CD
AB = 2λ

[C
[A δ

D]
B] ,

⋆ΣABCD =
1

4!
εABCDEFGHΣEFGH .

(65)

Here the indices are pair wise antisymmetrized and Λ and Σ are 28 × 28 matrices. The
matrices λ B

A and λ′BA belong respectively to the 8 and 8’ representations of SL(8) and
therefore Λ CD

AB and Λ′AB
CD belong respectively to the 28 and 28’ representations of

SL(8). This base makes manifest the decomposition under SL(8)

56→ 28⊕ 28’. (66)

The maximal compact subgroup of E7(7) is H =SU(8)/Z2. In maximal supergravity,
the coset group E7(7)/H is of particular importance, for this reason we are interested in
finding a basis where the SU(8) generators are evident.
Imposing on top of the previous relations

λ B
A = −λ A

B ,

ΣABCD = − ⋆ ΣABCD,
(67)

The total number of parameters is equal to
(
8
2

)
+ 1

2

(
8
4

)
= 63 and since imposing this

constraint give us that the generators of eq. (64) are compact, those are the generators
of SU(8).
In order to better see the SU(8) generators we can introduce complex coordinates, i.e.
we can represent the vector (xAB, y

CD) as xAB ± iyAB, the infinitesimal transformation
can then be written as

δ(xAB ± iyAB) = (Λ CD
AB ± i ⋆ ΣABCD)(xCD ± iyCD) =

= (Λ CD
AB xCD + ΣABCDy

CD)± i(⋆ΣABCDxCD − Λ AB
CD yCD).

(68)

The elements in the coset E7(7)/H are not generated by matrices that belong to the base
obtained with eq. (67), so we must impose the following conditions on eq. (64)

λ B
A = λ A

B ,

ΣABCD = ⋆ΣABCD.
(69)
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As before, we can represent the vector (xAB, y
CD) using complex coordinates and the

infinitesimal transformation for this generators can be written as

δ(xAB ± iyAB) = (Λ CD
AB ± i ⋆ ΣABCD)(xCD ∓ iyCD) =

= (Λ CD
AB xCD + ΣABCDy

CD)± i(⋆ΣABCDxCD − Λ AB
CD yCD).

(70)

The action of compact and noncompact generators can be written using a single formula
introducing the vector (z, z̄), with z = x+ iy and defining the matrices

λ = Λ̂ CD
AB + i ⋆ Σ̂ABCD,

σ = Λ̃ CD
AB + i ⋆ Σ̃ABCD,

(71)

where .̂ refers to the matrices used for the compact generators in eq. (67) while .̃ refers
to the matrices used for the noncompact generators in eq. (69); the infinitesimal trans-
formation of an element under E7(7) is(

δz
δz̄

)
=

(
λ σ
σ̄ λ̄

)(
z
z̄

)
. (72)

In order to exchange between the two bases that we discussed we can introduce the matrix

S N
M =

√
2

8

(
Γ CD
AB iΓABCD

ΓABCD −iΓAB
CD

)
. (73)

Here the matrices Γ are defined starting from the Clifford algebra Cliff(8)

{ΓA,ΓB} = −2δAB
1, (74)

and antisymmetrizing them
ΓABCD = Γ[AΓBΓCΓD]. (75)

The underline index is used for SU(8) covariant index and the index without the underline
is used for SL(8) covariant index instead. More concretely the transformation between
the SL(8) and SU(8) bases is

[tα]
N

M = S P
M [tα]

Q
P S† N

Q . (76)

B How to deal with matrices with 0 positive(negative)

eigenvalue

In section 3.3 we presented a particular initialization for SGD algorithms to solve a system
of equations of the form

x · Tix = 0, ∀i = 1, . . . , N . (77)

In the section we present an algorithm that works for matrices with at least 1 positive
and 1 negative eigenvalue, we will now discuss how to proceed if this is not the case.
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Let suppose that the matrix T has not negative eigenvalues (the other case is analo-
gous). As before we can rotate x and go in a base where the matrix T assumes the form
D = diag(0, . . . , 0, σ+), where σ+ is the vector of positive eigenvalues. If we truncate x
in x0 and x+ as we done before, the equation to solve becomes

x+ · diag(σ+)x+ = 0, (78)

that has x+ = 0 has its only solutions.
This means that each time a matrix T has only positive or negative eigenvalues we can
rotate all the matricides in the diagonal base for this particular matrix. Eliminate all
the rows and columns corresponding to the non zero eigenvalues of D for each matrix.
This will give us a system with a number of parameter equal to the initial one minus the
number of positive eigenvalues of T . This new system could contain redundant equation
or even more matricides with only positive or negative eigenvalues, in the latter case the
procedure described can be repeated.
Once a solution for this system is found it sufficient to add 0 in the spots that were
previously removed an rotate back the vector in order to be a solution of the original
system.

One could try to find a linear combination of matrices that results in a matrix with only
positive or negative eigenvalues. Although this is possible, We have not been able to find,
either in the literature or through calculations, methods to find such combinations. This
is something that could be further studied because it is a great opportunity to quickly
reduce the complexity of the system.

C How to use PyXLTensor

The library PyXLTensor can be found here [60].

C.1 Initialization of the tensors

Tensors can be initialized in two different ways, by directly specifying all elements or by
defining the tensor shape. The other parameters necessary to the initialization are the
tensor name, its indices and the metrics related to the various indices, if they are different
from the identity.
tensor name (string): Name of the tensor
indices string (string): String containing all the indices in order, if an index name is
preceded by ˆ is an upper index, if it is preceded by is a lower index.
tensor=None (list, tuple or numpy.array): If given, specifies the values of the tensor.
shape=None (list, tuple or numpy.array): If no tensor is given, specifies the dimensions
of the tensor.
metrics=None (list, tuple or numpy.array): Lists the metric tensors associated with
each index. If unspecified, the identity metric is assumed for each index.
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import PyXLTensor as xlt

"""

the tensor t1 has two indices , alpha (up) and beta (down), the value of

the tensor is known and all the metrics are the identity.

the tensor t2 has two indices , beta (up) and gamma (down), the value of

the tensor is unknown and the metric associated with gamma is not

the identity.

"""

t1 = xlt.Tensor(’t1’, ’^alpha_beta ’, tensor =[[1, 2], [0, -1]])

t2 = xlt.Tensor(’t2’, ’^beta_gamma ’, shape=(2, 2), metrics =[[[1, 0],

[0, 1]], [[-1, 0], [0, 1]]])

The tensor name is important to keep track of the unknown tensors. It’s fundamental
that unknown tensors do not share the same name.

C.2 Basic operations

The PyXLTensor library allows for tensor arithmetic using the standard symbols. For
example additions and subtractions can be performed directly with + and -. These
operations require that the indices of the tensors are consistent with each other. They
can be in different orders as long as there are indices that share the same name, size,
metric and are both up or both down.

import PyXLTensor as xlt

"""

Correct:

Even if the indices are not in the same order they have the same name ,

size , positioning an metrics.

"""

t1 = xlt.Tensor(’t1’, ’^alpha_beta ’, tensor =[[1, 2], [0, -1]])

t2 = xlt.Tensor(’t2’, ’_beta^alpha’, shape=(2, 2))

t3 = -t2 + t1

import PyXLTensor as xlt

"""

Wrong , respectively:

(t1) Mismatch of the name of the indices.

(t2) Mismatch of the position of the indices.

(t3) Mismatch of the dimention of the indices.

(t4) Mismatch of the metrics of the indices.

"""

t = xlt.Tensor(’t’, ’^alpha_beta ’, tensor =[[1, 2], [0, -1]])

t1 = xlt.Tensor(’t2’, ’^gamma_beta ’, shape=(2, 2))

t_sum = t + t1

t2 = xlt.Tensor(’t2’, ’^alpha^beta’, shape=(2, 2))

t_sum = t + t2
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t3 = xlt.Tensor(’t2’, ’^alpha_beta ’, shape=(2, 3))

t_sum = t + t3

t4 = xlt.Tensor(’t2’, ’^alpha_beta ’, shape=(2, 2), metrics =[[[1, 0],

[0, 1]], [[-1, 0], [0, 1]]])

t_sum = t + t4

PyXLTensor also supports multiplication and division by a scalar using * and /, respec-
tively, and tensor contractions via @. When contracting tensors one has to make sure
that the contracted indices are one up and the other down and share the same properties.

import PyXLTensor as xlt

t1 = xlt.Tensor(’t1’, ’^alpha_beta ’, tensor =[[1, 2], [0, -1]])

t2 = xlt.Tensor(’t2’, ’^beta_gamma ’, shape=(2, 2), metrics =[[[1, 0],

[0, 1]], [[-1, 0], [0, 1]]])

t3 = 2 * t1 @ t2

The library includes methods for summing and contracting lists of tensors, respectively
Tensor.sum all and Tensor.contract all. All tensor rules of these operations must
be respected like if those operations were performed one by one. If a string is provided
after the list of tensors, the string will be the tensor name of the new tensor.

import PyXLTensor as xlt

"""

Sum of tensors

"""

t1 = xlt.Tensor(’t1’, ’^alpha_beta ’, tensor =[[1, 2], [0, -1]])

t2 = xlt.Tensor(’t2’, ’^alpha_beta ’, tensor =[[3, -1], [1, 1]])

t3 = xlt.Tensor(’t3’, ’^alpha_beta ’, tensor =[[2, 1], [-4, 3]])

t4 = xlt.Tensor.sum_all ([t1 , t2 , t3], ’t4’)

"""

Contraction of tensors

"""

t1 = xlt.Tensor(’t1’, ’^alpha_beta ’, tensor =[[1, 2], [0, -1]])

t2 = xlt.Tensor(’t2’, ’^beta_gamma^i’, tensor =[[[3, -1], [1, 1]], [[0,

-2], [3, 2]]])

t3 = xlt.Tensor(’t3’, ’^gamma_alpha ’, tensor =[[2, 1], [-4, 3]])

t4 = xlt.Tensor.contract_all ([t1 , t2 , t3], ’t4’)

C.3 Block tensors

PyXLTensor supports the combination of tensor lists into a single block tensor by speci-
fying the indices to be grouped. In order to specify which indices will be combined and
how, we will give a list, grouping of indices. The elements of this list will be another
list, with two elements, the first one is the name for the new index in the block tensor, the
other is the list of the indices name that will be grouped together. All the other indices
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will be untouched and must coincide. Consider the following example:

T I K
J L =

(
ai1 K

j1 L bi1 K
j2 L ci1 K

j3 L

di2 K
j1 L ei2 K

j2 L f i2 K
j3 L

)
(79)

with I = (i1, i2) and J = (j1, j2, j3). As always indices with the same names must have
the same proprieties (size, up or down, metric) but the order of them does not matter.
We can implement this tensor in the following way

import PyXLTensor as xlt

"""

Block tensor

This is an 8x8x8x8 tensor , even if the indices are not in the same

order the sizes are consistent among the tensors

"""

a = xlt.Tensor(’a’, ’^i1^K_j1_L ’, shape =(2, 8, 1, 8))

b = xlt.Tensor(’b’, ’^i1_L^K_j2’, shape =(2, 8, 8, 3))

c = xlt.Tensor(’c’, ’^K_L_j3^i1’, shape =(8, 8, 4, 2))

d = xlt.Tensor(’d’, ’^i2_j1^K_L’, shape =(6, 1, 8, 8))

e = xlt.Tensor(’e’, ’^K^i2_L_j2 ’, shape =(8, 6, 8, 3))

f = xlt.Tensor(’f’, ’^K^i2_L_j3 ’, shape =(8, 6, 8, 4))

grouping_of_indices = [[’I’, [’i1’, ’i2’]],

[’J’, [’j1’, ’j2’, ’j3’]]]

T = xlt.Tensor.block_tensor ([a, b, c, d, e, f], grouping_of_indices)

The order of the tensor in the list is not important and he name of the grouped index
can be arbitrary and it doesn’t have to be of the type [name1, name2, . . . , name#n].

C.4 Symmetrization, anti-symmetrization, duality, δ and ϵ

Given a tensor it is possible to perform the (anti-)symmetrization of some indices. Those
indices must be all upper indices or all lower indices, have the same size and the same
metric. The normalization is such that the (anti-)symmetrization of (anti-)symmetric
indices will result in the same tensor.
If a tensor is entered manually the code will not check if there are (anti-)symmetric in-
dices. In general imposing the symmetrization on those tensors can help the code run
faster when dealing with big tensors.

import PyXLTensor as xlt

"""

(Anti -) Symmetrization

"""

t = xlt.Tensor(’t’, ’^alpha^beta’, tensor =[[1, 2], [0, -1]])

t_sym = t.symmetrize(’alpha ’, ’beta’)

t_asym = t.anti_symmetrize(’alpha’, ’beta’)
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Another operation that can be done is the duality operation. Given a set of indices
the duality operation is equivalent to the contraction with a Levi-Civita tensor with
the given indices and the division by the factorial of the number of contracted indices.
The indices of the epsilon tensor are all lower (upper) if the contracted indices are all up
(down). The convention used for the sign of the Levi-Civita tensor is ϵ1,...,n = ϵ1,...,n = +1.

import PyXLTensor as xlt

"""

Duality

"""

t = xlt.Tensor(’t’, ’^c’, tensor =[1, -1, 0])

star_t = t.dual(’a’, ’b’, ’c’)

The Kronecker delta δ and Levi-Civita ϵ tensors are in-build functions and can be defined
as expected, the delta takes as input the indices, given with the same form for the
initialization of a normal tensor and the dimension of the two indices, while the epsilon
only needs the indices.

import PyXLTensor as xlt

"""

Delta and epsilon tensors

"""

d8 = xlt.Tensor.delta(’^i_j’, 8)

epsilon = xlt.Tensor.epsilon(’_a_b^c’)

C.5 Managing the indices

Indices can be raised (lowered) using the method .to raise (.to lower) giving the
indices to be raised (lowered). The operation of raising and lowering the indices is done
through the metric. The metric is the tensor used to lower the indices, the inverse metric
is calculated to raise the indices.
This method will return another tensor with the new indices, while the original tensor is
left untouched.

import PyXLTensor as xlt

"""

Raising and lowering indices

"""

t = xlt.Tensor(’t’, ’^i_j_k^l’, shape =(2, 2, 2, 2), metrics =[[[-1, 0],

[0, 1]], ] * 4)

t_all_up = t.to_raise(’j’, ’k’)

t_all_down = t.to_lower(’i’, ’l’)
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There are two different ways to change the name of some indices.
The first one makes use of the method Tensor.change indices name, this method will
have two lists as inputs, the first list will have the old names of the indices and the second
one will have the corresponding new names.
The second one needs you to specify all the (old and) new names of the indices in order.
It can be done by simply putting square brackets after the tensor and specifying all the
new names in the correct order.
The internal order of the indices of the tensor can be seen by calling the attribute
.indices. This ordering can be changed by simply using the method Tensor.set order indices

and giving the new desired order. Notice that while all the other methods always give
you a new tensor, independent from the original one, this method simply modifies the
attributes of the object without returning anything.

import PyXLTensor as xlt

"""

Changing the indexing

"""

t = xlt.Tensor(’t’, ’^a^j^c^l’, shape =(2, 2, 2, 2))

print(t.indices) # [’a’, ’j’, ’c’, ’l ’]

t1 = t.change_indices_name ([’j’, ’l’], [’b’, ’d’])

print(t1.indices) # [’a’, ’b’, ’c’, ’d’]

t2 = t[’a’, ’b’, ’c’, ’d’]

print(t2.indices) # [’a’, ’b’, ’c’, ’d’]

t2.set_order_indices(’d’, ’c’, ’b’, ’a’)

print(t2.indices) # [’d’, ’c’, ’b’, ’a’]

t1 and t2 are the same tensor, even if we change the order of the indices of t2, so while
after those operation t1 + t2 is still a valid operation t+ t1 is not.

When relabeling the indices, if an upper index and a lower index happens to have the
same name, a trace will be automatically performed.

C.6 Elements of the tensors

In order to keep track of the unknown variables in the tensors the class Poly Expression

is used, the elements of the tensor are instances of this class.
Poly Expression objects support standard operations with the symbols +, -, * and /
(notice however that the division can be used only to divide by a scalar). The expression
of a Poly Expression object is determined by its only attribute, .sum variables.
Poly Expression.sum variables is a list that contains all the summed monomials of an
expression, a empty list is associated with the value 0. The monomials are a list of two
elements, a overall constant that multiplies the unknowns and the list of the product of
the single variables. A variable is itself a list of two objects, the name of the tensor from
which it is taken and a tuple with the indices values associated with that variable.
The Poly Expression objects are handled entirely by the Tensor class so it is not nec-
essary to create or modify instances of this class directly.
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We can clarify better the structure of Poly Expression.sum variables with the follow-
ing example:
If we define the two by two tensor x and we took the trace, the resulting element (of the
0-dimensional Tensor) is x00 + x11, written as:[[

1, [[’x’, (0, 0)]]
]
,
[
1, [[’x’, (1, 1)]]

]]
.

The square of the previous expression is x 2
00 + 2x00x11 + x 2

11, written as:[[
1, [[’x’, (0, 0)], [’x’, (0, 0)]]

]
,
[
2, [[’x’, (0, 0)], [’x’, (1, 1)]]

]
,
[
1, [[’x’, (1, 1)], [’x’, (1, 1)]]

]]
.

C.7 Reading the tensors

One way to get the elements of the tensor is to use the square brackets like it is done to
change the indices name. When using the square bracket every numerical element will
be taken as the value of the respective index (the index can range from 0 to the size of
the index minus one). If all the entries given are numeric, the respective element of the
tensor will be returned, if the elements are both numeric and strings the corresponding
subtensor will be returned.
Tensor can be shown by simply printing the object, the printing follows the same rules
of a numpy.array.
The tensor can be obtained by calling the attribute .tensor, however this is a numpy.array
of Poly Expression and thus can be impractical to use. In the case of fully determined
tensors the numpy.array composed by all the numerical entries of the tensor can be
obtained by the method .get numeric tensor.

import PyXLTensor as xlt

"""

Getting the elements of the tensor

"""

t = xlt.Tensor(’t’, ’^a^b’, tensor =[[1, 2], [0, -1]])

print(t[0, 1]) # 2 (Poly_Expression)

print(t[’a’, 0]) # t^{a0} = (1, 0)^{a0} (Tensor)

print(t[1, ’c’]) # t^{1c} = (0, -1)^{1c} (Tensor)

print(t.get_numeric_tensor ()) # [[1, 2], [0, -1]] (numpy.array)

C.8 Initializing a system of equations

PyXLTensor is intended for writing equations of the type T = 0, where T is a tensor. To
generate a list of equations, first of all it is necessary a list containing all the unknown
tensors. If the complete system of equation is generated by different tensor expression,
the list of the unknown tensors must be the same for every set of equations (the order
of the tensors mus be the same too). The method that returns this set of equations is
Tensor.get equations(unknown tensors).
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The Solver class is used to read and process the systems equations. It can be initialized
by simply giving the list of equations and the maximum degree of the polynomial that
will be processed.

import PyXLTensor as xlt

"""

Write the equations and initialize the System.

"""

v = xlt.Tensor(’v’, ’_a’, shape =(3, ))

t = xlt.Tensor(’t’, ’_a’, shape =(3, ))

M = xlt.Tensor(’M’, ’^a^b’, tensor =[[0, 1, 0], [1, 0, 0], [0, 0, -1]])

u = xlt.Tensor(’u’, ’_b’, tensor =[0, 1, 1])

one = xlt.Tensor(’’, ’’, tensor =1)

Cond1 = M @ v[’b’] + t.to_raise(’a’)

Cond2 = v @ M @ u

Cond3 = v @ t.to_raise(’a’) - one

Cond4 = v.to_raise(’a’) @ v - one

unknown_tensors = [v, t]

list_equations = []

list_equations += Cond1.get_equations(unknown_tensors)

list_equations += Cond2.get_equations(unknown_tensors)

list_equations += Cond3.get_equations(unknown_tensors)

list_equations += Cond4.get_equations(unknown_tensors)

system = xlt.System(list_equations , 4)

C.9 Obtaining and reading the solutions

In order to avoid floating-point errors when dealing with expressions that should be zero,
there is the possibility to set the tolerance for the value 0. Each value whose magnitude
is less than this threshold will be considered zero.
To obtain the solutions is sufficient to run System.get Solutions(). This method can
take as input the maximum number of step tried, this can be used as a safe measure if
the systems take to long to be processed. By default, if no argument is given there will
me no maximum number of steps.
This method will return two list, the first one will contain all the complete solutions
while the second will contain all the partial solutions. The solutions can be turned back
in tensor form by using the method Tensor.get tensors from Sol(unknown tensors,

Sol). This method takes as input the unknown tensors, with the same order used when
generating the equations, and a solution from one of the two list. The method will return
the unknown tensors where all the known entries are substituted with their respective
values.
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# continuation of the previous code

xlt.zero_tolerance = 1e-8 # default value 1e-12

Complete_Solutions , Undetermined_Solutions = system.get_Solutions ()

C_Tensor_Solutions = [xlt.Tensor.get_tensors_from_Sol(unknown_tensors ,

Sol) for Sol in Complete_Solutions]

U_Tensor_Solutions = [xlt.Tensor.get_tensors_from_Sol(unknown_tensors ,

Sol) for Sol in Undetermined_Solutions]

print(’Solutions to tensor equations ’)

for i, Tensor_Sol in enumerate(C_Tensor_Solutions + U_Tensor_Solutions)

:

print(f’Solution {i + 1}:\n’)

for tensor in Tensor_Sol:

print(tensor)
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