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Chapter 1

Introduction

Thanks to Fourier analysis, we know that every real-valued periodic func-
tion f can be decomposed into a sum of sines and cosines with integer
period. Furthermore, if we take a complex-valued function f of period 2π
on R, then

f(x) =
∑

m∈Z

f̂(m)eimx

with

f̂(m) =
1

2π

∫ 2π

0

e−imyf(y)dy.

Under certain regularity properties, this series converges absolutely and
this leads to some useful applications: precisely, every function in the series
is orthogonal to the other ones, and they can be studied separately to solve
partial differential equations.
The most famous application is the heat equation, solution of the following
Cauchy problem: for a given (periodic) function f on R,

{
∂
∂tu(x, t) = ∆u(x, t)

u(x, 0) = f(x)

with the Laplace operator ∆ defined as ∆f(x) = − ∂2

∂x2f(x).
The solution, which is unique, is

u(x, t) =
∑

m∈Z

f̂(m)eimxe−m
2t.

This results follows from the observation that the terms of the series are
eigenfunctions of the Laplace operator with eigenvalue −m2 (for more de-
tails see, for example, Elias M. Stein and Rami Shakarchi, [4]).
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The purpose of this thesis is to generalize the problem and, using Fourier
analysis, find a solutions and prove the uniqueness.
Furthermore, in the ”classical” problem we have a periodic function f ,
which can be seen as a function over SO(2) (the circumference), a commu-
tative compact Lie Group. We want to study the equation on SU(2), the
group of complex 2 x 2 matrices with determinant 1.
This is the simplest non-commutative compact Lie group and, in order
to find the eigenspaces of the Laplace operator in L2(SU(2)), we need to
study some results on representation theory and on operators.

Then, there will be a generalization of the Laplace operator: we will define
formally the operator (1 − ∆)−α for certain α ∈ C (and then extend the
definition), in order to find the generalized heat equation, solution of

{
∂
∂t
u(x, t) = (1−∆)−αu(x, t)

u(x, 0) = f(x)

for a given f ∈ SU(2) that should have certain regularity properties.

There are three main steps in this thesis.
The first one is the proof of the Peter−Weyl theorem, holding on for ev-
ery compact Lie groups G, which basically states that L2(G) is the closure
of the sum of some orthogonal functional spaces that are representation
spaces for G.

This lead us to prove a generalized form of the Plancherel′s theorem,
hence to find a formula for the decomposition of every f ∈ L2(G) in orthog-
onal functions. We will find some hypothesis under whom the convergence
is absolute and prove that these functional spaces are eigenspaces of the
Laplace (and find the eigenvalues).

We apply these results on G = SU(2), computing the orthogonal de-
composition of L2(SU(2)) and the eigenvalues of the Laplace operator.
Then we can state and solve the problem, introducing via spectral calculus
the complex powers of the operator (1 − ∆), starting from the function
(1 + s)−α = 1

∆(α)

∫∞

0 τα−1e−(1+s)τdτ .



This is analogous to what is done in the Fourier analysis on the circle,
but more difficoult due to the non-commutativity of the group.

1.1 Prerequisites

A linear Lie Group G is a closed subgoup of GL(n,R).
A Lie Algebra g is a a vector space over R or C on which is defined the
commutator, a linear map

g× g −→ g

(X, Y ) 7→ [X, Y ]

such that

[X, Y ] = −[Y,X] (1.1)

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0. (1.2)

This second property is called the Jacobi identity.
Every linear Lie Group G has an associated Lie algebra g: so many prob-
lems on the group can be studied in the linear settings of the Lie algebra.
In particular,

g = Lie(G) := {X ∈M(n,R)|∀t ∈ R exp(tX) ∈ G} .

A compact Lie group is a manifold and the associated Lie algebra coin-
cides, as a vector space, with the tangent space at the identity of G.

A derivation of g is a linear endomorphism D ∈ End(g) such that the
Leibniz rule holds:

D([X, Y ]) = [DX, Y ] + [X,DY ].

The space Der(g) equipped with the commutator is a Lie algebra itself,
and it is equal to Aut(g).
On g we can define, for every g ∈ G, an automorphism
Ad(g) : X 7→ gXg−1. furthermore, Ad : G→ Aut(g) is a group morphism.
For a matrix A, we define the map ad(A) : X 7→ AX − XA; the map



associating to A ∈ g the operator adA yields a representation of the Lie
algebra. This map is called the adjoint representation and it is a derivation
of g.
These two maps are strictly correlated:

d

dt
Ad(exp tX)

∣∣∣∣
t=0

= adX.

We first describe the theory of representations of compact Lie groups, after
that we will point the attention on the special case of SU(2), that is the
group

SU(2) =

{(
α −β̄
β ᾱ

)
, α, β ∈ C

∣∣∣∣|α|2 + |β|2 = 1

}
.

This is a simply connected Lie group with Lie algebra su(2). A basis for
su(2) is given by

{(
0 i

i 0

)
,

(
0 −1
1 0

)
,

(
i 0
0 −i

)}
.

While studing its representation, we will need to pass to the complexified
Lie algebra: sl(2,C) = su(2) + isu(2). This passage is harmless, since the
representations will be over complex vector spaces. A basis of sl(2,C) is

{(
1 0
0 −1

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)}
.



Chapter 2

Haar measure and Peter-Weyl
theorem

2.1 Haar Measure

A measure µ on a locally compact group G is said to be left invariant
(right invariant) if

∫

G

f(gx)µ(dx) =

∫

G

f(x)µ(dx)

(∫

G

f(xg)µ(dx) =

∫

G

f(x)µ(dx)

)

for every g ∈ G and for every f ∈ Cc(G) (continuous functions on G
with compact support). In particular, for every Borel set E and for every
g ∈ G we have µ(gE) = µ(E) (or µ(Eg) = µ(E)).
It is known that such a (non-zero) measure on a compact group exists and
it is unique up to a positive multiplicative constant (see Edwin Hewitt and
Kenneth A. Ross, [3] for a proof).
Furthermore, from now on we will use only normalised measures:

∫

G

µ(dx) = 1.

2.2 Some results on operators

We recall some definitions and simplie results from functional analysis. Our
aim is to give a structure to the space of the irreducible representations.
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A bounded operator A on a Hilbert spaces H has the norm

∥A∥ = sup
∥u∥f1

∥Au∥.

The adjoint operator A∗ is a linear continuous map such that (Au|v) =
(u|A∗v) (it exist because of the Riesz representation theorem, which states
that, for v fixed, there exist a unique w such that (Au|v) = (u|w)). Fur-
thermore, we know ∥A∥ = ∥A∗∥ and (A∗)∗ = A (see Brezis, [2]).

A is a self -adjoint operator if A∗ = A. The following statements are
valid if A is an operator of this type.
An eigenvalue λ of A is real: (Au|u) = (u|Au) =⇒ λ∥u∥2 = λ̄∥u∥2.
The eigenspaces of two different eigenvalues of A are orthogonal ((Au|v) =
(u|Av) =⇒ (λ− µ)(u|v) = 0).

∥A∥ = sup∥u∥f1|(Au|u)| (Let us call M this number). In fact, while f
is obtained only using the Cauchy-Schwartz inequality, on the other hand
we have that

∥A∥ = sup
∥u∥f1

∥Au∥, ∥w∥ = sup
∥v∥f1

|Re(w|v)|

for every w ∈ H, and so

∥A∥ = sup
∥u∥,∥v∥f1

∥Re(Au|v)∥.

We conclude using the following identity (the so-called polarization identity):

4Re(Au|v) = (A(u+ v)|u+ v)− (A(u− v)|u− v)

=⇒ |Re(Au|v)| f
M

4
(∥u+ v∥2 + ∥u− v∥2) =

M

2
(∥u∥2 + ∥v∥2)

=⇒ |Re(Au|v)| fM.

An operator is compact if the image under it of a bounded set is relatively
compact (has a compact closure). Equivalently:
- the image of the unitary ball is relatively compact;
- a bounded sequence (un) has a subsequence (unk) such that (Aunk

) con-
verges.



It is obvious that a finite rank operator is compact and, if A is compact
and B is bounded, then AB and BA are compact.
We want to state that the set of compact operators is a closed two-sided
ideal in L(H), the group of linear operators of H.
In order to do that, we miss only to demonstrate that if (An) is a sequence
of compact operator and limn→∞∥An − A∥ = 0, than the operator A is
compact.
In fact, Let us take a a sequence (uk) in H in the unit sphere: because of

the compactness of A1, we can take a subsequence (u
(1)
k ) such that (A1u

(1)
k )

converges, and from that a subsequence (u
(2)
k ) such that (A2u

(2)
k ) converges

and so on. From these subsequences we consider (u′k):=(u
(k)
k ) and we can

conclude if (Au
(k)
k ) is a Cauchy sequence since L(H) is a Banach space:

this is true since, for k, l and n large enough and a fixed ε > 0 we have

∥Au′k − Au′l∥ f ∥Au′k − Anu
′
k∥+ ∥Anu

′
k − Anu

′
l∥+ ∥Anu

′
l − Au′l∥ f ε.

In this section our aim is to establish a ”Spectral Theorem” for compact
operators.
We need the existance of a non-zero eigenvalue of A:

Lemma 2.2.1. If A is a compact self-adjoint operator it has ∥A∥ or −∥A∥

as an eigenvalue.

Proof. We already know that ∥A∥ = sup∥u∥f1|(Au|u)| and that these num-
bers are real for every u so, replacing A with -A if needed, we have
λ := ∥A∥ = sup∥u∥f1(Au|u).

There exists a sequence (un) such that

∥un∥ = 1, lim
n→∞

(Aun|un) = λ

and since A is compact there exists a subsequence such that (Aunk
) con-

verges to v. Then we take

lim
k→∞

∥Aunk − λunk
∥2 = lim

k→∞
(∥Aunk

∥2 − 2λ(Aunk
|unk) + λ2) = ∥v∥2 − λ2



and, using that ∥A∥ = λ, ∥unk∥ = 1, we obtain

lim
k→∞

∥Aunk
− λunk

∥2 = 0

=⇒ lim
k→∞

unk = u,Au = λu.

We can finally state

Theorem 2.2.2 (Spectral theorem). Let A be a compact self-adjoint oper-
ator, (λn) the sequence of the non-zero eigenvalues and Pn the orthogonal
projections onto the eigenspaces Hn. Then the Hn are finite-dimensional,
the sequence (λn) is either finite or convergent to zero and

A =
∞∑

n=0

λnPn

where the right hand side converges in the norm topology (the sum is finite
if (λn) is a finite sequence).

Proof. The idea is very simple and, with the properties we have already
shown, similar to the finite-dimensional case.
Let us start stating that every eigenspace of an eigenvalue λ ̸= 0 is finite
dimensional, because A is a compact operator (also if restricted to this
eigenspace) and the sphere of a space is compact if and only if it is finite
dimensional (see Brezis, [2] for the details).
Then we define λ1 = ∥A∥, then A1 := A − λ1P1 is again a compact self-
adjoint operator, hence we can continue this process until AN = 0 or we
obtain an infinite sequence, decreasing in modulo by construction (there
cannot be an eigenvalue of A greater in modulo than ∥A∥ by definition).
Let us suppose, by contradiction, that |λ| g α > 0. Then we take, for every
n, vn ∈ Hn, ∥vn∥ = 1. Since A is compact we can extract a converging
subsequence from (Avn), but this leads to a contradiction since

∥Avp − Avq∥
2 = ∥λpvp − λqvq∥

2 = λ2p + λ2q g 2α2.

Hence

A =
∞∑

n=1

λnPn.



2.3 Representations

Given a normed vector space over R or C, L(V ) denotes the algebra of
bounded linear operators on V (which are the n×n real or complex matrices
if dim(V )= n <∞). A representation of a topological group G is a map

π : G −→ L(V )

such that
a) π(g1g2) = π(g1)π(g2), π(e) = Id

b) for every v ∈ V the map g 7→ π(g)v is continuous on g.

A representation of a Lie algebra g is a map

ρ : g −→ L(V )

which is a Lie algebra morphism:

ρ([X, Y ]) = [ρ(X), ρ(Y )] = ρ(x)ρ(Y )− ρ(Y )ρ(X).

If a subspace W ¢ V satisfies π(g)W = W for every g ∈ G we say that
it is invariant. Those subspaces are crucial in this theory: in particular,
we care about irreducible representation, the ones with 0 and V as only
invariant subspaces.
Instead, if a representation is reducible, we have a quotient representation
π1 of G on the quotient space V /W , where W is an invariant subspace.
Let (π1, V1), (π2, V2) be two representations of G and A : V1 → V2 a con-
tinuous linear map. If

Aπ1(g) = π2(g)A

for every g ∈ G we call A an intertwinning operator for these representa-
tions. If such a map exists, π1 and π2 are said to be equivalent.

An operator T on a Hilbert space H is unitary if T−1 = T ∗. A repre-
sentation π of G on H is unitary if π(g) is a unitary operator for every
g ∈ G (so if ∀g ∈ G, ∀v ∈ H, ∥π(g)v∥ =∥v∥).
Unitary representation are useful while working on reducible representa-
tions: in fact, if π is unitary andW is invariant and close, the quotient rep-
resentation on H/W is equivalent to the subrepresentation on W§ (which



is invariant as well, because of the orthogonality).

We want to decompose V in a direct sum of irreducible invariant sub-
spaces: to show this is possible, we need a proper inner product on V .
If we choose a representation π on a finite-dimensional space V and a
Euclidean inner product (.|.)0 on V we can define, also on V :

(u|v) =

∫

G

(π(g)u|π(g)v)0µ(dg)

where µ is a Haar measure on G (from now on we will always use this
measure).
This is also a Euclidean inner product (the positivity and the Cauchy-
Schwarz equations are true because we select initially a Euclidean inner
product).
The point is that now π is unitary with respect to (.|.):

∥π(g′)v∥ = (π(g′)v|π(g′)v) =

∫

G

(π(g)π(g′)v|π(g)π(g′)v)µ(dg) =

=

∫

G

(π(gg′)v|π(gg′)v)µ(dg) =

∫

G

(π(g)v|π(g)v)µ(dg) = (v|v) = ∥v∥

where we used the properties of the representation and the invariance of
the Haar measure.
Now, if V is finite-dimensional, we can decompose, with this inner product
and with respect to π:

V = V1 ¹ V2 ¹ · · · ¹ VN .

We only need to choose V1 as a non-zero invariant subspace with minimal
dimension, then V §

1 is also invariant (because π is unitary) and we repeat
the process until (V1 ¹ · · · ¹ VN)

§ becomes zero.

Theorem 2.3.1 (Schur’s Lemma). i) If a linear map A : V1 → V2 in-
tertwines two finite dimensional irreducible representations of a topological
group G (π1, V1) and (π2, V2) either A = 0 or A is an isomorphism
ii) If π is a C-linear representation of a topological group G on a finite-
dimensional complex vector space V and commutes with a C-linear map
A : V → V then A = λI for λ in C.



These properties holds also with a Lie algebra.

Proof. i)Ker(A) and Im(A) are invariant subspaces since Aπ1(g) = π2(g)A
and so they should be equal to 0 and V , respectevely, or viceversa.
ii) There exist an eigenvalue λ, so A− λI is not invertible and so is equal
to zero because of the previous point.

We define for our purpose a character as a one-dimensional represen-
tation. By the Schur’s lemma, an irreducible C-linear representation of a
commutative group G is a character.
The simplest example of this is when G = SO(2) ≃ U(1) ≃ R/2πZ and so
the characters are χm(ϑ) = eimϑ, m ∈ Z.

Finally, we want to study the representations of a compact group G and
their link to the function space L2(G).
Given a compact group G, its normalized Haar measure µ and a unitary
representation of G (π,H), we define the operator Kv, for v, w ∈ H:

Kvw :=

∫

G

(w|π(g)v)π(g)vµ(dg)

which implies

(Kvw|w
′) =

∫

G

(w|π(g)v)(w′|π(g)v).

Obviously ∥Kvw∥ f ∥v∥2∥w∥ and so Kv is bounded and Kv is self-adjoint
by the last display. Let now g0 ∈ G:

Kv(π(g0)w) =

∫

G

(w|π(g−1
0 g)v)π(g)vµ(dg) =

=

∫

G

(w|π(g)v)π(g0g)vµ(dg) = π(g0)Kvw,

hence K and π commute. We can also easily show that this operator is
compact, since we have demonstrated that the space of compact operators
is closed for the norm topology and, given the compact and continuous (on
G) operator Pvw := (w|v)v we have

Kv =

∫

G

Pπ(g)vµ(dg).



Let us observe that (Kvv|v) > 0, hence Kv ̸= 0.
With all these information, we can say that these operators have a non-zero
eigenvalue (∥Kv∥ or−∥Kv∥), and the corresponding eigenspace is finite-
dimensional and invariant under the representation π.
To summarise, we have proved the following:

Theorem 2.3.2. i) Every unitary representation of a compact group con-
tains a finite dimensional subrepresentation. ii) Every irreducible unitary
representation of a compact group is finite dimensional.

Now we fix an orthonormal basis {e1, . . . , en} (n=dπ) of H, thus we
can see π as a matrix with entries πij(g) = (π(g)ej|ei). We need another
theorem to find the relations among these functions.

Theorem 2.3.3. Let π be an irreducible unitary C-linear representation of
a compact group G on a complex Euclidean vector space H with dimension
dπ. Then, for u, v, u′, v′ ∈ H,

(Kvu|u) =

∫

G

|(π(g)u|v)|2µ(dg) =
1

dπ
∥u∥2∥v∥2,

∫

G

(π(g)u|v)(π(g)u′|v′)µ(dg) =
1

dπ
∥u∥2∥v∥2.

Proof. For v ∈ H, Kv and π commutes: by Schur’s Lemma Kv = λ(v)I.
Hence ∫

G

|(π(g)u|v)|2µ(dg) = λ(v)∥u∥2.

Interchanging the roles of u and v we get

λ(u)∥v∥2 = λ(v)∥u∥2 =⇒ λ(u) = λ0∥u∥
2

for a constant λ0. Now, for every g ∈ G:

n∑

i=1

|(π(g)u|ei)|
2 = ∥π(g)u∥2 = ∥u∥2;

integrating over G we obtain

∥u∥2 =
n∑

i=1

∫

G

|(π(g)u|ei)|
2µ(dg) = nλ0∥u∥

2



,

=⇒ λ0 =
1

n
=⇒

∫

G

|(π(g)u|v)|2µ(dg) =
1

dπ
∥u∥2∥v∥2.

We have just proved the Schur′s orthogonally relations:
∫

G

πij(g)πkl(g) =
1

dπ
δikδjl,

that can be written alternatively as
∫

G

tr(Aπ(g))tr(Bπ(g))µ(dg) =
1

dπ
tr(AB∗)

with A and B two endomorphisms of H.

2.4 L2(G)

Let Mπ denote the subspace of L2(G) generated by the entries of the
representation π, that is by the functions of the following form:

g 7→ (π(g)u|v), (u, v ∈ H).

Theorem 2.4.1. Let (π,H) and (π′, H ′) be two not equivalent irreducible
unitary representations of a compact group G. Then Mπ and Mπ′ are two
orthogonal subspaces of L2(G): if u, v ∈ H, u′, v′ ∈ H ′, then

∫

G

(π(g)u|v)(π′(g)u′|v′) = 0.

Proof. For a fixed map A : H −→ H ′ we put

Ã :=

∫

G

π′(g−1)Aπ(g)µ(dg).

This operator intertwines the representations π and π′ and so is equal to
zero by the Schur’s lemma. Hence (using the fact that π′ is unitary)

(Ãu|u′) =

∫

G

(Aπ(g)u|π′(g)u′)µ(dg) = 0.



The theorem is proved taking A as the rank 1 operator defined by Au =
(u|v)v′ with v ∈ H, v′ ∈ H ′. In this case

Ãu =

∫

G

π′(g−1)Aπ(g)µ(dg) =

=

∫

G

π′(g−1)(π(g)u|v)v′µ(dg) =

∫

G

π′(g−1)(π(g)u|π′v).

This theorem is crucial: we can now say that 2 representations π1 and
π2 of a compact group G are equivalent if and only if Mπ1 =Mπ2 (the ”⇒”
implication was already known).
Let us now choose H = L2(G) and π = R, the right regular representation:

(R(g)f)(x) = f(xg).

Using the same notation as before, for a generic irreducible representation
π of G, let M

(1)
π be the subspace generated by the entries of the first row,

that is by the functions x 7→ π1j(x), for j = 1, . . . , n = dπ. Let us observe
that, because it is a product of matrices,

π1j(xg) =
n∑

k=1

π1kπkj(g).

This is a linear combination of the first row’s entrances, hence M
(1)
π is

invariant under R. Furthermore, the map from H into M
(1)
π

A :
n∑

j=1

cjej 7→
n∑

j=1

cjπ1j(x)

is an isomorphism that intertwines the representations π and R: if
u =

∑n
j=1 cjej, then

Aπ(g)u = A

n∑

j=1

cjπ(g)ej = A

n∑

j=1

cj

(
n∑

i=1

πij(g)ei

)
=

=
n∑

i=1

(
n∑

j=1

πij(g)cj

)
π1i(x) =

n∑

j=1

cjπ1j(xg) = R(g)Au.



Furthermore ∥Au∥2 = 1
n∥u∥

2. We can now state that

Mπ =M (1)
π · · · · ·M (n)

π ,

with the other subspaces defined in the same way as the first, considering
the other rows. Thus the representation R restricted to Mπ is equivalent
to

π · · · · · π = nπ.

The same statement for the regular left representation ((L(g)f)(x) =
f(g−1x)) can be obtained using columns instead of rows.
We continue this section with the following fundamental results, which
basically justify the use of the Fourier series on compact groups.

Theorem 2.4.2 (Peter-Weyl theorem). Let Λ be the set of equivalence
classes of irreducible unitary representations of the compact group G and,
for each λ ∈ Λ, let Mλ be the space generated by the coefficient of a repre-
sentation in the class λ (they are all the same, as we just saw). Then

L2(G) =
⊕̂

λ∈Λ

Mλ,

which is the closure in L2(G) of the space of finite linear combinations of
coefficients of finite dimensional representations of G.

Proof. We already saw that the subspaces Mλ are two by two orthogonal.
Let us define

H :=
⊕̂

λ∈Λ

Mλ, H0 := H§.

Our aim is to show that H0 = 0. Let us assume the opposite by contrad-
diction.
H0 is invariant under the representation R and closed, thus it contains a
closed, finite-dimensional subspace Y ̸= 0, which is invariant under R and
irreducible. The restriction of R to Y belongs to one of the classes λ. Let
F ∈ Y , f ̸= 0, and put

F (g) :=

∫

G

f(xg)f(x)µ(dx) = (R(g)f |f).



The function F belongs to Mλ. We will see that it is also orthogonal to
Mλ, thus it is equal to zero.
Let us choose a representation (π, V ) of the class λ, and u, v ∈ V . Then

∫

G

F (g)(π(g)u|v)µ(dg) =

∫

G

∫

G

f(xg)f(x)(π(g)u|v),

and putting xg = g′ (change permitted by the Haar measure) we obtain

∫

G

F (g)(π(g)u|v)µ(dg) =

∫

G

f(x)

(∫

G

f(g′)π(g′)u|π(x)vµ(dg′)

)
µ(dx) = 0.

Since

F (e) =

∫

G

|f(x)|2µ(dx) = 0

it follows f = 0, a contraddiction.

Let us now define the Hilbert− Schmidt norm on L(H), where H is a
finite dimensional Hilbert spaces:

|||A|||2 = tr(AA∗) =
n∑

i,j=1

|aij|
2

if we write A as a matrix, with an orthonormal basis on H.
Then, given an integrable function on G and a representative (πλ, Hλ) for
every class λ ∈ Λ, the Fourier coefficient f̂(λ), which action on Hλ is
defined as

f̂(λ) =

∫

G

f(g)πλ(g
−1)µ(dg).

The following theorem is just an application of the previous results:

Theorem 2.4.3 (Plancherel’s theorem). If f ∈ L2(G), then
i) f is equal (in L2(G)) to the sum of its Fourier coefficients

f(g) =
∑

λ∈Λ

dλtr(f̂(λ)πλ(g)).

ii) ∫

G

|f |2µ(dg) =
∑

λ∈Λ

dλ

∣∣∣
∣∣∣
∣∣∣f̂(λ)

∣∣∣
∣∣∣
∣∣∣
2

.



iii) If f1 and f2 ∈ L2(G), then
∫

G

f1(g)f2(g)µ(dg) =
∑

λ∈Λ

dλtr(f̂1(λ)f̂2(λ)
∗).

iv) The map f 7→ f̂ is a unitary isomorphism from L2(G) onto the space
of sequences of operators A = (Aλ) ∈ L(Hλ), for which

∥A∥ =
∑

λ∈Λ

dλ|||Aλ|||
2 <∞.

We want to state another powerful result:

Theorem 2.4.4. i) Given A = (Aλ) ∈ L(Hλ), if

∑

λ∈Λ

d
3/2
λ |||Aλ||| <∞,

then the Fourier series
∑

λ∈Λ

dλtr(A(λ)πλ(g))

converges absolutely and uniformly on G.
ii) Given a continuous function f such that

∑

λ∈Λ

d
3/2
λ

∣∣∣
∣∣∣
∣∣∣f̂(λ)

∣∣∣
∣∣∣
∣∣∣ <∞,

then f(g) is equal to its Fourier series, which converges absolutely and
uniformly on G.

Proof. i) Since

|tr(AB)| f |||A||||||B|||, |||πλ(g)||| =
√
dλ,

we have

dλ|tr(A(λ)πλ(g))| f |||Aλ|||.

ii) We define

h(g) =
∑

λ∈G̃

dλtr(f̂(λ)πλ(g)).



Thanks to i), we know that the convergence is uniform and thus h is con-
tinuous.

ĥ(λ) =

∫

G

h(g)πλ(g
−1)µ(dg) =

∫

G


∑

λ′∈G̃

dλ′tr(f̂(λ
′)πλ′(g))


 πλ(g

−1)µ(dg).

Knowing the Schur’s orthogonality relations and switching the integral and
the series we find

ĥ(λ) = dλ

∫

G

tr(f̂(λ)πλ(g))πλ(g
−1) = f̂(λ).

Thus, by the Plancherel theorem, f = g.

We end this section introducing the Casimir operator and proving some
results on it.
Let us take a Lie algebra g with a basis X1, . . . , Xn and a bilinear form
β on g which is symmetric, non-degenerate and invariant (β([X, Y ], Z) =
−β(Y, [X,Z])). Such a map exists (a proof of this can be found on Faraut,
[1]).
We put gij = β(Xi, Xj), g

ij = (gij)
−1.

If ρ is a representation of g on a vector space V , its Casimir operator is

Ωρ =
n∑

i,j=1

gijρ(Xi)ρ(Xj).

In particular, one can take β as positive definite and an orthonormal basis
in order to have

Ωρ =
n∑

i=1

ρ(Xi)
2.

One can easily show (as in Faraut, [1]) that this operator commute with
ρ, and that this property does not depend on the choice of the basis.
By the Schur’s lemma, this implies that there exists κρ ∈ C such that

Ωρ = −κρI.

If g is the Lie algebra associated to a compact linear Lie Group G, then
for a representation π on G we can define Ωπ as the Casimir operator of
the representation dπ on g.



If π is not trivial, then we saw that exists on V a Euclidean inner product
for which π is unitary, hence

dπ(X)∗ = −dπ(X)

and, if v ̸= 0,

(Ωπv|v) = −

n∑

i=1

∥dπ(Xi)v∥
2 < 0.

We just proved that κπ > 0. That will be crucial while talking about
Fourier analysis on SU(2).





Chapter 3

SU(2)

3.1 Bases and Haar Measure

Now we will focus on a particular compact Lie Group: SU(2), which is the
simplest non-commutative compact linear Lie-groups together with SO(3).
It is known that these two groups are ”almost” the same: there is a surjec-
tive homomorphism which maps two elements of SU(2) into one of SO(3),
so its kernel is ±1 (a proof of this can be found on Faraut, [1]).
Let us start defining SU(2): it consists of the matrices

{
g =

(
α β

−β̄ ᾱ

)
, α, β ∈ C, |α|2 + |β|2 = 1

}
.

The inverse of these matrices is

g−1 =

(
ᾱ −β
β̄ α

)
.

This group is homeomorphic to the unit sphere of C2 and therefore is
compact, connected and simply connected.
Its Lie algebra su has the following matrices as elements of a basis:

X1 =

(
i 0
0 −i

)
, X2 =

(
0 1
−1 0

)
, X3 =

(
0 i

i 0

)
.

The commutation relations are the following:

[X1, X2] = 2X3, [X2, X3] = 2X1, [X3, X1] = 2X2.

Now we need to find the Haar measure. Since SU(2) ≃ S3, the unit sphere
of R4, we just want a measure on S3 which is invariant under SO(4).
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Let ω be the differential form of degree 3 on Rn defined by

ω =
n∑

i=1

(−1)i−1xidx1 ' · · · ' d̂xi ' · · · ' dx4.

At every point x, for vectors ξ1, ξ2, ξ3 ∈ R4,

ωx(ξ1, ξ2, ξ3) = det(x, ξ1ξ2, ξ3).

This differential form is invariant under SL(4,R), thus its restriction to
the unit sphere is invariant under SO(4).
Let µ be the normalised Haar measure on SU(2) ≃ S3, that is

∫

SU(2)

f(x)µ(dx) =
1

ω4

∫

SU(2)

fω,

with

ω4 =

∫

SU(2)

ω.

In order to find this constant, Let us write an element of SU(2) as

x =

(
x1 + ix2 x3 + ix4
−x3 + ix4 x1 − ix2

)
.

Since x21 + x22 + x23 + x24 = 1 we can put x1 = cosϑ, x2 = sinϑ cosϕ,
x3 = sinϑ sinϕ cosψ, x4 = sinϑ sinϕ sinψ.
Let Φ denote the map (ϑ, ϕ, ψ) 7→ x = (x1, x2, x3, x4).

Theorem 3.1.1. If f is an integrable function on SU(2), then

∫

SU(2)

f(x)µ(dx) =
1

2π2

∫ π

0

dϑ

∫ π

0

dϕ

∫ 2π

0

dψf ◦ Φ(ϑ, ϕ, ψ) sin2(ϑ) sin(ψ).

Proof. We just need to prove that Φ∗ω = sin2 ϑ sinϕdϑ ' dϕ ' dψ: if this
is true, then for f = 1 we find ω4 =

∫
SU(2) ω = 2π2.



The differentials in the new coordinates are:



dx1
dx2
dx3
dx4


 =




− sinϑ
cosϑ cosϕ

cosϑ sinϕ cosψ
cosϑ sinϕ sinψ


dϑ+

+




0
− sinϕ

cosϕ cosψ
cosϕ sinψ


 sinϑdϕ+




0
0

− sinψ
cosψ


 sinϑ sinϕdψ.

The vector x = Φ(ϑ, ϕ, ψ) and the three columns of the above right-hand
side are orthogonal unit vectors , hence they form an orthonormal basis.
This basis is positively orientated: if we put ϑ = ϕ = ψ = 0 the 4 vectors
became the canonical basis, which has determinant 1, and since the deter-
minant can only be ±1 and it changes continuously it is equal to 1 in each
point.

Therefore det
(
Φ, ∂Φ

∂ϑ ,
∂Φ
∂ϕ ,

∂Φ
∂ψ

)
= sin2 ϑ sinϕ.

3.2 Irreducible representation of SU(2)

We want to study the irreducible representations of SU(2): in order to do
that, we start considering the irreducible representation of its complex Lie
algebra g = sl(2,C). A basis of g is

H =

(
1 0
0 −1

)
, E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
,

and the commutation relations are

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H.

We introduced this Lie algebra because it is the complexification of the
real Lie algebra su(2): every Z ∈ sl(2,C) can be written uniquely as
Z = X + iY , with X, Y ∈ su(2).
We choose, as a vector space on which are made the representations, the
space Pm of complex polynomials in two variables of degree m. Written



g ∈ SL(2,C) as

(
a b
c d

)
, the representation πm of SL(2,C) on Pm is defined

by

(πm(g)f)(x, y) = f(ax+ cy, bx+ dy) = f

((
x y

)(a b

c d

))
.

Given a representation π of G, it exists the derived representation of g:

dπ(X) =
d

dt
π(exp(tX))|t=0.

The derived representation ρm = dπm of sl(2,C) on Pm can be obtain as
follows:

πm(exp(tH))f(x, y) = f(etu, e−tv) =⇒ ρm(H)f = x
∂f

∂x
− y

∂f

∂y
,

πm(exp(tE))f(x, y) = f(x, tx+ y) =⇒ ρm(E)f = x
∂f

∂y
,

πm(exp(tF ))f(x, y) = f(x, tx+ y) =⇒ ρm(E)f = y
∂f

∂x
.

A basis of Pm, which has dimension m + 1, is given by the monomials
fj(x, y) = xjym−j for j ∈ 0, 1, . . . ,m.
Let us observe how the image of the basis of g under ρm acts on them
(using the relations just found):

ρm(H)fj = (2j −m)fj

ρm(E)fj = (m− j)fj+1

ρm(F )fj = jfj−1.

Hence we can write them as matrices with respect to the basis f0, . . . , fm:

ρm(H) =




−m
−m+ 2

. . .

m− 2
m




ρm(E) =




0
m 0

. . . . . .

2 0
1 0






ρm(F ) =




0 1
0 2

. . . . . .

0 m

0



.

Every representation ρm is irreducible. In fact, if we suppose that exists
an eigenspace W which is non-zero and invariant, then we can find at
least one eigenvalue of the restriction of the operator ρm(H) to W because
this matrix is diagonal. Therefore, since the vectors f0, . . . , fm are the
eigenvectors, one of them belongs to W . But since W is stable, when we
act on the eigenvector with ρm(E) and ρm(F ) we obtain other vectors of
W , so it is clear that we can obtain all the basis using iteratively these two
operators on the first eigenvector. Hence W = Pm. These representations
are perfect for our purpose, since

Theorem 3.2.1. An irriducible finite dimensional C-linear representation
of sl(2,C) is equivalent to ρm for a positive integer m.

Proof. Let ρ be such a representation on V . The aim of this proof is to
find a map that intertwines ρ and ρm (for the correct index m).
Because it is a (non-zero) complex valued matrix, ρ(H) has at least one
non-zero eigenvalue.
We take as λ0 the eigenvalue of ρ(H) with the minimal real part and ϕ0

an associeted eigenvector.
We have to show that ϕ1 := ρ(E)ϕ0 is also an eigenvector of ρ(H), if it is
non-zero:

ρ(H)ϕ1 = ρ(H)ρ(E)ϕ0 = ρ(E)ρ(H)ϕ0 + ρ([H,E])ϕ0 =

= λ0ρ(E)ϕ0 + 2ρ(E)ϕ0 = (λ0 + 2)ϕ1

(we used that [H,E] = HE − EH and the commutation relations showed
at the beginning of the chapter: we will use them again).
Hence we can put ϕk = ρ(E)kϕ0 and find iteratively that

ρ(H)ϕk = (λ0 + 2k)ϕk.

Until these vectors are nonzero, they are aigenvectors of ρ(H) for different
eigenvalues, hence they are linearly independent. This happens until a



certain index k, let us put it equal to m (so ϕi = 0 for i ̸= 0, and non-zero
otherwise).
We call W the space generated by these vector (with dimension m + 1),
and we need to demonstrate that this is invariant. For sure it is invariant
under ρ(H), since the generators are eigenvectors for it, and under ρ(E),
because ρ(E)ϕk = ϕk+1 ∈ V ∀k f m.
We are now interested in the action of ρ(F ) on these vectors,

ρ(H)ρ(F )ϕ0 = ρ(F )ρ(H)ϕ0 + ρ([H,F ])ϕ0

= λ0ρ(F )ϕ0 − 2ρ(F )ϕ0

= (λ0 − 2)ρ(F )ϕ0

and since λ0 was chosen as the eigenvalue of ρ(H) with minimal real part,
it follows that ρ(F )ϕ0 = 0.
Then, for 1 f k f m, ρ(F )ϕk = αkϕk−1 with αk = −k(λ0 + k − 1). We
will show it by induction:
for k=1,

ρ(F )ϕ1 = ρ(F )ρ(E)ϕ0 = ρ(E)ρ(F )ϕ0 + ρ([F,E])ϕ0 = −ρ(H)ϕ0 = −λ0ϕ0.

Then, if the statement is true for k f l, we have

rho(F )ϕl+1 = ρ(F )ρ(E)ϕk = ρ(E)ρ(F )ϕk + ρ([F,E])ϕk =

= −k(λ0 + k − 1)ρ(E)ϕk−1 − ρ(H)ϕk

= (−k(λ0 + k − 1)− (λ0 + 2k))ϕk =

= −(k + 1)(λ0 + k)ϕk.

Now we just need to show λ0 = −m: this is true because on the one hand

trρ(H) = tr[ρ(E), ρ(F )] = tr(ρ(EF )− ρ(FE)) = trO = 0,

and on the other hand

trρ(H) =
m∑

i=0

λ0 + 2i = (m+ 1)λ0 + (m)(m+ 1) = (m+ 1)(λ0 +m).

To summarise, we found out that

ρ(H)ϕk = (2k −m)ϕk

ρ(E)ϕk = ϕk+1

ρ(F )ϕk = k(m− k + 1)ϕk−1.



Hence we can construct a linear map A : V → Pm such that

Aϕ0 = f0

Aϕk = m(m− 1) · · · (m− k + 1)fk

for 1 f k f m.
A intertwines ρ and ρm:

A ◦ ρ(X) = ρm(X) ◦ A

for every X ∈ sl(2,C).
We check this out for the basis we have chosen:

A ◦ ρ(H)ϕk = (2k −m)Aϕk = (2k −m)m. . . . (m− k + 1)fk

ρm(H) ◦ Aϕk = m. . . (m− k + 1)ρm(H)fk = (2k −m)(m) . . . (m− k + 1)fk,

A ◦ ρ(E)ϕk = Aϕk+1 = m. . . (m− k + 1)(m− k)fk+1

ρm(E) ◦ Aϕk = m. . . (m− k + 1)ρm(E)fk = m. . . (m− k + 1)(m− k)fk+1,

A ◦ ρ(F )ϕk = k(m− k + 1)Aϕk−1 = k(m− k + 1)m. . . (m− k + 2)fk−1

ρm(E) ◦ Aϕk = m(m− 1) . . . (m− k + 1)ρm(E)fk = m. . . (m− k + 1)kfk−1.

From now on, when we will talk about a representation πm, we will refer
to its restriction to SU(2).
Let us state (on Faraut, [1] there is a deep study of facts like this) that a
subspace invariant under πm is also invariant under its derived representa-
tion ρm: hence, since these ones are irreducible, so is πm for every index
m ∈ N.
Now we can use the properties of representations and of the Lie algebra:

Theorem 3.2.2. Every irreducible representation π of SU(2) on a finite
dimensional complex vector space V is equivalent to one of the πm.

Proof. We extend the derived representation dπ as a C-linear represen-
tation ρ of sl(2,C) and we prove that this is irreducible. But this is a
consequence of π being irreducible: SU(2) is connected, hence generated
by exp(su(2)), therefore every subspace W of V invariant under ρ, which
is also invariant under Exp(ρ(X)) = π(exp(X)), is invariant under SU(2),
and so W = V .



Then, by the last theorem, ρ is equivalent to one of the ρm: for every
X ∈ su(2)

Aρ(X) = ρm(X)A =⇒ Aπ(exp(X)) = πm(exp(X))A

and again, since SU(2) is generated by exp(su(2)), for every g ∈ SU(2),

Aπ(g) = πm(g)A

where we kept the same index m.

Let us see two easy example. There is a natural representation of SU(2)
on C2, which obviously consist in seeing an element g ∈ SU(2) as a linear
transformation, is clearly equivalent to π1, since the space of the homoge-
neous complex polynomials in two variables of degree one is isomorphic to
C2.
Then there is the adjoint representation on the Lie algebra Ad(g) : X 7→

g−1Xg, X ∈ su(2), g ∈ SU(2). This is equivalent to π2, since the space of
the homogeneous complex polynomials in two variables of degree 2 is gen-
erated by x2, y2, xy and one can find a homomorphism between the linear
endomorphisms of P2 and su(2), generated by the matrices H,E, F .

3.3 Laplace operator

Let us put X1, . . . Xn be an orthonormal basis of g, the Lie algebra of a
compact Lie group G. We define the Laplace operator as

∆f(x) =
n∑

i=1

d2

dt2
f(x exp(tXi))|t=0,

where f is a C2 function on G, and so the operator can be written as

∆ =
n∑

i=1

ρ(Xi)
2.

With respect to the inner product on L2(G), for ϕ, ψ ∈ C2(G),

(ρ(X)ψ|ϕ) = −(ψ|ρ(X)ϕ)



since
∫

G

d

dt
|t=0ψ(g exp(tX))ϕ(g)µ(dg) =

d

dt
|t=0

∫

G

ψ(g exp(tX))ϕ(g)µ(dg) =

=
d

dt
|t=0

∫

G

ψ(g)ϕ(g exp(−tX))µ(dg) =

∫

G

ψ(g)
d

dt
|t=0ϕ(g exp(−tX))µ(dg).

Thus, with the same hypothesis

(∆ψ|ϕ) = (ψ|∆ϕ)

(∆ is symmetric). Moreover, ∆ is negative since

−(∆f |f) =

∫

G

n∑

i=1

|ρ(Xif(g))|µ(dg).

Let us now recall, from the previous chapter, that for an irreducible rep-
resentation π of a connected compact Lie Group G on H, we defined the
Casimir Operator as Ωπ =

∑n
i=1(dπ(Xi))

2 and proved Ωπ = −κπI for a
positive number κπ.

Lemma 3.3.1. If f ∈Mπ, the subspace of L2(G) generated by the entries
of π, then f is an eigenfunction of the Laplace operator ∆, with eigenvalue
−κρ.

Proof. If f ∈ Mπ it can be seen as f(x) = tr(Aπ(x)) with A an endomor-
phism of H, therefore

∆f(x) = tr(ΩπAπ(x)) = −κπf(x).

Let us now focus again on SU(2), where we select the following Eu-
clidean inner product:

(X|Y ) =
1

2
tr(XY ∗) = −

1

2
tr(XY ),

for which an orthonormal basis is

X1 =

(
i 0
0 −i

)
, X2 =

(
0 1
−1 0

)
, X3 =

(
0 i

i 0

)
.



We will find an explicit form of the Casimir Operator of a representation
ρ of su(2), which again extends C-linearly to a representation of sl(2,C).
Using the same notation of the previous section, we have

X1 = iH,X2 = E − F,X3 = i(E + F ),

hence

ρ(X1)
2 = −ρ(H)2,

ρ(X2)
2 = ρ(E)2 + ρ(F )2 − ρ(E)ρ(F )− ρ(F )ρ(E),

ρ(X3)
2 = −ρ(E)2 − ρ(F )2 − ρ(E)ρ(F )− ρ(F )ρ(E),

=⇒ Ωρ = −ρ(H)2 − 2ρ(E)ρ(F )− 2ρ(F )ρ(E).

Finally, recalling that [E,F ] = H we get

−Ωρ = −ρ(H)2 + 2ρ(H) + 4ρ(F )ρ(E).

Furthermore, we again consider the representation ρm in the space of com-
plex polynomials in 2 variables (it is not restrictive, since all the represen-
tations are equivalent to one of these). To simplify the notation, Let us
put Ωm = Ωρm. We want to find κm.
But, since we know Ωρ as a function of H,E, F , we only need to calculate
it against a polynomial, and the easiest one is fm(x, y) = xm.

From the previous analysis we know ρm(H)fm = mfm and ρm(E)fm = 0,

=⇒ −Ωmfm = (m2 + 2m)fm.

To summarise, we know from the Peter-Weyl theorem that

L2(G) =
⊕̂

m∈N

Mm,

where in the right side we got the orthogonal eigenspaces of the Laplace
operator with eigenvalue −m(m+ 2).
The Fourier coefficients f̂(m) of an integrable function f on SU(2) (m ∈
N = Λ, the set of equivalence classes of representations of SU(2)) are

f̂(m) =

∫

SU(2)

f(x)πm(x
−1)µ(dx).



Thus, the Fourier series of f is

∞∑

m=0

(m+ 1)tr(f̂(m)πm(x)),

which is equal to f if it is an L2(SU(2)) function.
Moreover, we have the convergence in L2(SU(2)) and the Plancherel for-
mula: ∫

SU(2)

|f(x)|2µ(dx) =
∞∑

m=0

(m+ 1)
∣∣∣
∣∣∣
∣∣∣f̂(m)

∣∣∣
∣∣∣
∣∣∣
2

.

We want also the uniform convergence.

Lemma 3.3.2. f ∈ C2(SU(2)) =⇒ ∆̂f(m) = −m(m+ 2)f̂(m).

Proof. If we put ϕ(x) = (π(x)v|u), with u, v ∈ Hπm, then

(f̂(m)u|v)Hπm
= (

(∫

SU(2)

f(x)πm(x
−1)µ(dx)

)
u|v) =

=

∫

SU(2)

f(x)(πm(x
−1)u|v)µ(dx) =

=

∫

SU(2)

f(x(u|πm(x)v)µ(dx) =

=

∫

SU(2)

f(x)ϕ(x)µ(dx) = (f |ϕ)L2(SU(2)),

and

(∆̂f(m)u|v)Hπ
= (∆f |ϕ)L2(SU(2)) = (f |∆ϕ)L2(SU(2)) =

= −m(m+ 2)(f |ϕ)L2(SU(2)) = −m(m+ 2)(f̂(m)u|v)Hπm
.

Theorem 3.3.3. If f ∈ C2(SU(2)), then we got uniform and absolute
converges on

f(x) =
∞∑

m=0

(m+ 1)tr(f̂(m)πm(x)).

Proof. By the previous lemma,

f̂(m) = −
1

m(m+ 2)
∆̂f(m),



hence
∞∑

m=1

(m+ 1)3/2
∣∣∣
∣∣∣
∣∣∣f̂(m)

∣∣∣
∣∣∣
∣∣∣ =

∞∑

m=1

(m+ 1)3/2

m(m+ 2)

∣∣∣
∣∣∣
∣∣∣∆̂f(m)

∣∣∣
∣∣∣
∣∣∣ f

f

(
∞∑

m=1

(m+ 1)2

m2(m+ 2)2

)1/2( ∞∑

m=1

(m+ 1)
∣∣∣
∣∣∣
∣∣∣∆̂f(m)

∣∣∣
∣∣∣
∣∣∣
2
)1/2

<∞;

we used the Shwarz inequality and the fact that

∞∑

m=0

(m+ 1)
∣∣∣
∣∣∣
∣∣∣∆̂f(m)

∣∣∣
∣∣∣
∣∣∣
2

=

∫

SU(2)

|∆f(x)|2µ(dx) f ∞.

The statement follows from the theorem of the previous chapter, which
requires exactly this hypothesis to state the uniform and absolute conver-
gence.



Chapter 4

Generalized Heat equation

4.1 Generalized Heat Kernel

The following cauchy problem, usually studied in Rn or in SO(2), is the
Heat equation on SU(2):

{
∂u(x,t)
∂t = ∆u(x, t)

u(x, 0) = f(x)

for a given function f in L2(SU(2)). Firstly, we can note that the functions
like u(x, t) = e−m(m+2)v(x), with v ∈Mm, are solution of the first equation
since ∆v = −m(m+ 2)v as we proved before.
Thus, a solution of the Cauchy problem, if f ∈ C2(SU(2)) and t g 0, is
u(x, t) =

∑
m∈N e

−m(m+2)vm(x), with
∑

m∈N vm(x) = f(x), and this solution
is unique.
These results are proved defining the Heat Kernel, which has the right
properties:

Ht(x) =
∞∑

m0

(m+ 1)e−m(m+2)ttr(πm(x)).

In that way we have

u(t, x) =

∫

SU(2)

Ht(xy
−1)f(y)µ(dy) = Ht ∗ f(x).

The definition of the convolution in a compact group should be done in that
way, since the Haar measure is invariant under the action of an element
g ∈ G as well as the Lebesgue measure is invariant under the sum of
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x ∈ Rn.
Let us now introduce a generalized case.
Suppose we have a function ψ on R such that, for appropriate functions Φ
and ω on R,

ψ(s) =

∫ ∞

0

Φ(τ)e−sω(τ)dτ.

We can define formally

ψ(−∆) :=

∫ ∞

0

Φ(τ)eω(τ)∆,

an operator which act as

ψ(−∆)f(x) =

∫

SU(2)

f(y)Kψ(xy
−1)µ(dy) = f ∗Kψ(x),

with

Kψ(x) =

∫ ∞

0

Φ(τ)Hω(t)(x)dτ.

We want to use this with the function ψ(s) = (1+s)−α = 1
∆(α)

∫∞

0 τα−1e−(1+s)τdτ .

Recalling that we call λm = −m(m+2), in that case we have the generalized
Heat kernel

Kψ(x) = Kα(x) =
1

Γ(α)

∫ ∞

0

τα−1e−τHτ(x)dτ

=
1

Γ(α)

∫ ∞

0

τα−1e−τ
∑

m∈N

(m+ 1)eλmτtr(πm(x))dτ

=
∑

m∈N

(1− λm)
−α(m+ 1)tr(πm(x)).



This diverges if Re(α) f 0.
Furthernmore, applying the Tonelli’s theorem we get

∣∣∣∣∣
1

Γ(α)

∫ ∞

0

τα−1e−τ
∑

m∈N

(m+ 1)eλmτtr(πm(x))dτdτ

∣∣∣∣∣ f

f
1

Γ(α)

∫ ∞

0

τRe(α)−1
∑

m∈N

(m+ 1)eλmτ−τ |tr(πm(x))|dτ

f
1

Γ(α)

∑

m∈N

∫ ∞

0

τRe(α)−1e−m(m+2)τ−τ(m+ 1)2dτ

=
1

Γ(α)Γ(Re(α))

∑

m∈N

(m2 + 2m+ 1)−Re(α)(m+ 1)2

∼
∑

m∈N

(m+ 1)−2Re(α)+2,

hence there is absolute convergence if and only if Re(α) > 3
2 .

We used the fact that |tr(πm(x))| f m+1. If we are in this hypothesis, we
can use Fubini’s theorem in order to compute

K̂α(n) =

∫

SU(2)

Kα(x)πn(x
−1)µ(dx)

=
1

Γ(α)

∫

SU(2)

(∫ ∞

0

τα−1
∑

m∈N

(m+ 1)eλmτ−τtr(πm(x))dτ

)
πn(x

−1)µ(dx)

=
1

Γ(α)

∫ ∞

0

τα−1(n+ 1)eλnτ−τ
(∫

SU(2)

tr(πn(e))µ(dx)

)
dτ

= (n+ 1)2(1− λn)
−α,

where we used the invariance of the Haar measure, the fact that the func-
tions are orthogonal if m ̸= n and, when m = n, πn(xx

−1) = πn(e) = I.
From now on we will assume f ∈ C2(SU(2)) (which implies f ∈ L2(SU(2))
hence we can get the decomposition in the orthogonal spaces).



We are now ready to define (and then rewrite using Tonelli’s theorem):

(1−∆)−αf(x) = f ∗Kα(x) =

∫

SU(2)

f(y)Kα(xy
−1)µ(dy)

=
1

Γ(α)

∫

SU(2)

f(y)

(∫ ∞

0

τα−1
∑

m∈N

eλmτ−τ(m+ 1)tr(πm(xy
−1))dτ

)
µ(dy)

=
1

Γ(α)

∫ ∞

0

τα−1
∑

m∈N

eλmτ−τ(m+ 1)tr

(
πm(x)

∫

SU(2)

f(y)(πm(y
−1))µ(dy)

)
dτ

=
1

Γ(α)

∫ ∞

0

τα−1
∑

m∈N

eλmτ−τ(m+ 1)tr(f̂(m)πm(x))dτ

=
1

Γ(α)

∑

m∈N

(m+ 1)tr(f̂(m)πm(x))

∫ ∞

0

τα−1eλmτ−τdτ

=
∑

m∈N

(1− λm)
−α(m+ 1)tr(f̂(m)πm(x)).

4.2 Analytic extension

Our purpose is now to obtain a meromorphic extension for all α ∈ C \

{0,−1,−2 . . . }. It is sufficient to note that ∂ττ
α = ατα−1 and integrate by

parts (assume Re(α) > 0):

Kα(x) =
1

αΓ(α)

∫ ∞

0

∂ττ
αe−τHτ(x)dτ

=
1

αΓ(α)

[
ταe−τHτ(x)

∣∣∞
0
− αΓ(α)

∫ ∞

0

τα∂τ(e
−τHτ)(x)dτ

]

= −
1

αΓ(α)

∫ ∞

0

τα∂τ(e
−τHτ)(x)dτ

= −
1

αΓ(α)

∫ ∞

0

ταe−τ(−Hτ + ∂τHτ)(x)dτ

=
1

αΓ(α)

∫ ∞

0

ταe−τ(Hτ −∆Hτ)(x)dτ

=
1

αΓ(α)

∫ ∞

0

ταe−τ
∑

m∈N

(1− λm)e
λmτ(m+ 1)tr(πm(x))dτ.



The integral now converges for Re(α) > −1 \ {0} and now we can take

(1−∆)−αf(x) =

∫

SU(2)

f(y)Kα(xy
−1)µ(dy)

=
1

αΓ(α)

∫

SU(2)

f(y)

(∫ ∞

0

ταe−τ
∑

m∈N

(1− λm)e
λmτ(m+ 1)tr(πm(xy

−1))dτ

)
µ(dy)

=
1

αΓ(α)

∫ ∞

0

τα
∑

m∈N

(1− λm)e
λmτ−τ(m+ 1)tr

(
πm(x)

∫

SU(2)

f(y)πm(y)µ(dy)

)
dτ

=
1

Γ(α + 1)

∫ ∞

0

τα
∑

m∈N

(1− λm)e
λmτ−τ(m+ 1)tr((πm(x))f̂(m))dτ.

We just need to repeat this procedure n times to have the operator defined
for Re(α) > −n, except for the values {0,−1, . . . ,−n+ 1}.

4.3 The Cauchy problem

The generalized heat equation is the solution of the following Cauchy
problem, which is the same as the ”usual” one except for the fact that we
use the operator we just defined insted of ∆:

{
∂
∂tu(x, t) = (1−∆)−αu(x, t)

u(x, 0) = f(x)

with given α ∈ C \ {0,−1,−2 . . . } and a C2 function f ∈ L2(SU(2)).
We will first show the uniqueness of the solution using the maximum
principle:

Lemma 4.3.1. If u is a solution of the previous Cauchy problem, we have

min
x∈SU(2)

f(x) = min
x∈SU(2)

u(x, 0) f u(x, t) f max
x∈SU(2)

u(x, 0) = max
x∈SU(2)

f(x)

Proof. Let us define
uε(t, x) := u(t, x) + εt.

Let us take an interval [0, T ] and (x0, t0) ∈ SU(2)× [0, T ] such that

uε(x0, t0) = min {uε(x, t)|(x, t) ∈ SU(2)× [0, T ]} .



Note that a minimum exists since this set, being the product of two com-
pact sets, is compact.
We want to prove that t0 = 0. Suppose by contradiction that t0 ̸= 0.
Hence, we have that

∂

∂t
uε(x0, t0) = 0,

∆uε(x0, t0) g 0

and this gives a contradiction since

∂uε
∂t

−∆uε = ε > 0.

Therefore there is the minimum at t = 0 and, since uε(x, 0) = u(x, 0),

uε(x, t) = u(x, t) + εt g min
x∈SU(2)

u(x, 0)

and, since the inequality holds for every ε > 0, u(x, t) g minx∈SU(2) u(x, 0).
On the other hand, we can replace u with −u and, using the previous
result, get

−uε(x, t) = −u(x, t)− εt g min
x∈SU(2)

(−u(x, 0))

and again, with the limit ε→ 0,

u(x, t) f max
x∈SU(2)

u(x, 0).

Theorem 4.3.2. If there exists a solution to the previous Cauchy problem,
this is unique.

Proof. Suppose that u1 and u2 are two distinct solutions. Then u1 − u2 is
a solution of another Cauchy problem:

{
∂
∂tu(x, t) = (1−∆)−αu(x, t)

u(x, 0) = 0
.

From the previous lemma,

0 = min
x∈SU(2)

f(x) f (u1 − u2)(x, t) f max
x∈SU(2)

f(x) = 0,

hence u1 = u2.



Recalling that

(1−∆)−αu(x) =
∑

m∈N

(1− λm)
−α(m+ 1)tr(û(m)πm(x))

we can note that the functions like

u(x, t) = e
(1−λm)−α

Γ(α) tv(x),

with v(x) ∈Mm, are solutions of the Cauchy problem.
We just have to recall that we can decompose f(x) in those orthogonal
subspaces

f(x) =
∞∑

m=0

(m+ 1)tr(f̂(m)πm(x)),

to state that the solution of the problem is

u(x, t) =
∞∑

m=0

(m+ 1)tr(f̂(m)πm(x))e
(1−λm)−α

Γ(α) t

which converges absolutely and uniformly on G × [0,∞[ and it is a C∞

function because so are the exponential and the functions in Mm for every
m.
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