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Abstract

After the Higgs boson discovery and the end of the first Large Hadron Collider Run, the Standard
Model has reached its complete validation, in the sense that all particles it predicts have been
directly observed, no evidence of new physics has emerged so far. Furthermore, while we know for
sure that the Standard Model is not thte complete theory of Nature because it lacks of a quantistic
description of gravity, and because new physics is needed to describe observed phenonmena such as
neutrino masses and oscillations and the Dark Matter component of the Universe, we can not say
if this new physics will arise at the TeV scale, within the reach of the Large Hadron Collider, or
at much higher energies. The Hierarchy Problem is a theoretical indication that the new Physics
scale should be close to the TeV one, if taken seriously it predicts new relatively light particles to
be discovered at the Large Hadron Collider. In this thesis we will focus on the s-called “Composite
Higgs” scenario, which solves the Hierarchy Problem and predicts a set of new phenomena, such as
the production of vector-like quarks that couples to the top-quark, that could be visible at energies
of the -order of those explored - and to be explored - at the Large Hadron Collider. The model
is based on a global invariance G of a new strong sector, which is spontaneously broken to its H
subgroup. This breaking produces the Goldstone bosons, one of which we interpret as to be the
Higgs. The Goldstone symmetry and the composite nature protect the Higgs mass term from large
radiative correction. The analogy is between the standard description of the pions system. In fact,
the triplet of bound states of up and down-type quarks emerges as massless in the QCD theory
from the breaking of the SU(2)L × SU(2)R down to its vectorial subgroup, that is the standard
“isospin” symmetry. The mass is acquired by the tiny explicit breaking of the isospin symmetry.
This procedure perfectly describes the spectrum of hadron masses, with spin-1 resonances heavier
then the light triplet of pions. Recasting this procedure, enlarging the global symmetry in order
to contain the Standard Model gauge groups, results in a mechanism that generates a composite
Higgs, boson, from a new strong sector, which is naturally lighter than the other resonances (we
have not yet seen). In this framework, new particles transforming in the unbroken global group of
invariance emerge, and couple to the Standard Model fermions and gauge bosons. Among all these
new particles, a major role is played by the Top Partners, because they turn out to be responsable
for the radiative generation of the Higgs mass. Therefore, Naturalness requires them to be light
and indeed in explicit models they are the lightest new states in the spectrum. In this thesis,
after setting the environment, describing the Standard Model and its great success and issues,
we will briefly review the Composite Higgs model in the coset SO(5)/SO(4), and describe the
main features of the phenomenology of the top-partners production and decay. In particular we
focus on the field transforming in the singlet of the SO(4), that we call T̃ . This is a particle with
charge 2/3 and a TeV-scale mass - variable with the parameters set in the model. The theoretical
instruments used to describe this particle are those of the effective field theory. In the second
part of the thesis, from chapter 4 onwards, we discuss the possible experimental manifestation of
the T̃ , singly produced in association with a botto quark and forward jet, in the Compact Muon
Solenoid detector. After a brief desciption of the experimental apparaturs and of the reconstruction
algorithms, we discuss our search strategy. Since the mechanism of production is exactly the same
of that of the top-quark single production, except for the different mass of the particle, that is
heavier, our search elaborates the “singe top” analysis already done rfrom the Compact Muon
Solenoid collaboration1 Five different scenario are discussed, with different mass values between
600 e 1000 GeV - that are the most promising for cross sections. Our search deals with data from
2012 run of the Large Hadron Collider, with center of mass energy and luminosity of respectively

1Thanks go to CMS-Napoli group, in particular Alberto Orso Maria Iorio and Luca Lista for providing the needed
tools for the analysis.
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√
s = 8 TeV and

∫
Ldt = 19.7 fb−1. Bounds on the production of top-quark like partners at the

Large Hadron Collider are already present, coming from pair production analysis, both from CMS
and ATLAS. Those analysis set limits 696 GeV.
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Chapter 1

Standard Model and Beyond

1.1 Standard Model review

The Standard Model is a theory of quarks and leptons and is the most predictive theory of all time
in high energy physics. It describes three of the four fundamental interactions among particles. It
consists of two successful theories formulated during the 60’s and the 70’s of the 20th century: the
electroweak theory (Glashow-Salam-Weinberg model - GSW , [5]) and the Quantum Chromody-
namics (QCD, [6] for a review and applications to collider physics). The Standard Model has been
validatedin an uncredibly wide and accurate way. A recent confirmation comes from the discovery
of the Higgs boson [7] and [8], the Standard Model picture is now complete in the sense that all the
predicted particles have been directly observed. The Standard Model of fundamental interactions
is a relativistic quantum field theory. The keyword for understanding its construction is symmetry.
Another important concept in quantum field theory is renormalizability. We know that divergences
appear everywhere and must be eliminated by suitable redefinitions of couplings and fields. In the
theories we call “renormalizable”, this procedure can be carried on at all orders in perturbation
theory by renormalizing a finite set of comupling, while in the so-called “non-renormalizable” ones
new couplings have to be introduced at each new perturbative oreder. Furthermore, it turns out
that only renormalizable theories have the chance of maintaining predictivity (i.e. perturbativity)
up to very high, practically infinite, energy scales. One must thus focus on renormalizable theories
to obtain a “complete” model, and thus is what we do when we construct the Standard Model
theory.

The interactions and the particle spectrum are classified by a local invariance of the action
under some group of transformation. The complete local symmetry group is

SU(3)C × SU(2)L × U(1)Y (1.1)

and the only (imposed) global group of invariance is the Poincaré group of translations and Lorentz
rotations The second important role in the construction of the Standard Model is played by the
paradigm of spontaneously broken symmetry which is needed to give mass to fermions and gauge
bosonsTo write local invariant Lagrangians we need to define the covariant derivative

Dµ = ∂µ − ig′W a
µ

σa

2
− igY

2
Bµ − igS

λi

2
Aiµ (1.2)

a = 1, 2, 3 and i = 1, ..., 8 run on the dimension of the adjoint representions of the gauge groups (re-
spectively of weak and strong interactions - SU(2)L and SU(3)C). Here σa are the Pauli matrices,
generators of SU(2)L, λi (Gell-Mann matrices) are the generators of the colour group SU(3)C .An
explicit parametrization is given in the appendix. These matrices satisfy the normalization condi-
tions

Tr(λiλj) = 2δij , T r(σaσb) = 2δab . (1.3)

11



12 CHAPTER 1. STANDARD MODEL AND BEYOND

SU(3)C × SU(2)L × U(1)Y

qL =

(
uL
dL

)
(3,2, 1/6)

uR (3,1, 2/3)
dR (3,1,−1/3)

lL =

(
νL
eL

)
(1,2,−1/2)

eR (1,1,−1)

H =

(
H+

H0

)
(1,2, 1/2)

Table 1.1: Standard Model fermion and scalar field content and related quantum numbers. Family
indices are not explicitly written

Aiµ are the eight gluons, mediators of the strong interactions. W a
µ and Bµ mix to give the fields

corresponding to the W± and Z, mediators of the weak interactions, and of Aµ, the photon,
mediator of the electromagnetic force. The electric charge is reproduced by defining

Q = T3L + Y (1.4)

T3L is the third component of the weak isospin (the eigenvalue of T 3), Y is the hypercharge Then
we can write the kinetic part of the entire Standard Model Lagrangian, that is

Lk =
∑
i

iψ̄i /Dψi +
(
DµH†

)
(DµH) (1.5)

where ψi = qL, uR, dR, lL, eR; Feynman notation is introduced /D ≡ Dµγ
µ. The kinetic terms for

the gauge fields are written through the field-strength

Lk,gauge = −1

4
AiµνA

µν,i − 1

4
W a
µνW

µν,a − 1

4
BµνB

µν (1.6)

Aiµν = ∂µA
i
ν − ∂νAiµ + gSf

ijkAjµA
k
ν (1.7)

W a
µν = ∂µW

a
ν − ∂νW a

µ + gW f
abcW b

µW
c
ν (1.8)

Bµν = ∂µBν − ∂νBµ (1.9)

fabc and f ijk are the structure constants, defined in group theory as

1

2

[
λi, λj

]
=
i

2
f ijkλk (1.10)

1

2

[
σa, σb

]
=
i

2
fabcσk (1.11)

fabc = εabc is the standard Levi-Civita complete antisymmetric tensor. Finally, also operators
involving the Higgs and the fermions can be written. The complete Lagrangian reads

L = q̄i /Dq + l̄i /Dl − 1

4

(
W a
µν

)2 − 1

4
(Bµν)2 − 1

4

(
Giµν

)2
+

+|DµH| − V (H)−
−
(
λuūRH ·QL + λdd̄RH

c ·QL + λlēRH
c · LL + h.c.

) , (1.12)

where H denotes the Higgs doublet and Hc = iσ2H
∗ has the same quantum numbers of H but

opposite hypercharge Y = −1/2.
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1.1.1 Higgs mechanism

The Lagrangian of Eq. 1.12 contains no more terms and describes exactly massless particles.
Instead we need masses, but we can not just add gauge bosons and fermion masses, because tese
are not invariant. For the gauge fields, in particular

BµB
µ → BµB

µ +
2

e
Bµ∂µα+

1

e2
∂µα∂

µα . (1.13)

and similarly for the SU(2)L fields W a
µ . The Higgs mechanism provide a method to give mass

to the gauge bosons. The Higgs mechanism has its root in the Goldstone theorem, that gives an
importan result in the case of global symmetries. We can summarize the result of the Goldstone’s
theorem in this enunciate

Theorem. Given a Lagrangian invariant under a global continuous group of symmetry G, with
dim[G] = N , if the vacuum state is not invariant under a transformation of G, but it breakes the
group along M directions, associated to M independent broken generators, then M Nambu-Goldstone
massless bosons broken generators appear in the spectrum.

When the symmetry is local, the massless Nambu-Goldstone bosons are ”eaten” by the longi-
tudinal polarisation of the vector gauge bosons, that become massive. Thus is what we call the
Higgs mechanism. Gauge invariance and renormalizability restricts the scalar potential to be

V (H) = m2|H|2 + λ|H|4 (1.14)

the choice λ > 0 makes the potential bounded from below and m2 < 0 ensures the non-invariance
of the vacuum state. To extremize the action we look for constant configurations which are minima

|〈H〉|2 = −m
2

2λ
≡ v2

2
. (1.15)

The general solution of this equation, up to a gauge transformation, can be set o

〈H〉 =
1√
2

(
0
v

)
(1.16)

with v > 0. This is still invariant under U(1)em, so the spontanous breaking pattern is

SU(2)L × U(1)Y → U(1)em . (1.17)

Accordingly, the photon will remain massless and the W±,Z fields associated with the three bro-
ken generators will acquire a mass. Fluctuations around the Vacuum Expectation Value can be
parametrized, again up to a gauge choice, as

H =
1√
2

(
0

v + h(x)

)
, (1.18)

and the kinetic Lagrangian becomes

LH =
1

2
∂µh∂

µh+
(v + h)2

8

[
g2|Wµ,1 + iWµ,2|2 + (g′Bµ − gWµ,3)2

]
. (1.19)

This gives mass to the gauge fields, the mass eigenstates are

W±µ =
W 1
µ ±W 2

µ√
2

(1.20)(
Aµ
Zµ

)
=

(
cosθw sinθw
−sinθw cosθw

)
·
(
Bµ
Zµ

)
, (1.21)
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the weak mixing angle is defined as tanθw = g′/g. We can rewrite the Lagrangian

LH =
1

2
∂µh∂

µh+
(v + h)2

4
g2Wµ,+Wµ−2 +

(v + h)2

8
(g′2 + g2)ZµZ

µ , (1.22)

from which we deduce the mass terms

M2
W =

1

4
g2v2 (1.23)

M2
Z =

1

4
(g2 + g′2)v2 =

M2
W

cos2θw
. (1.24)

Also the physical Higgs boson particle, h(x), is massive. The scalar potential, up to a constant
reads

V (h) =
1

2
(2λv2)h2 + λvh3 +

λ

4
h4 , (1.25)

from which we find
mh = 2λv2 . (1.26)

Interaction vertices among the fermions and the gauge fields arise from the covariant derivative,
written in the mass eigenstates basis for gauge bosons

Lcc =
g√
22
W+
mu (ν̄Lγ

µeL + ūLγ
µdL) + h.c. , (1.27)

Lnc =
∑
i

[
eAµq

iψ̄iγµψi +
g

cosθw
Zµ
(
T i3L − sin2θwq

i
)
ψ̄iγµψi

]
, (1.28)

Lqg = gS
(
ūγµT iu+ d̄γµT id

)
Aiµ . (1.29)

where ψi = qL, uR, dR, lL, eR and qi are the associated electric charges.From the above equation we
see, first of all, that the correct electromagnetic interactions with the photon are reproduced, with
the electric charge given by e = g′ cos θw = g sin θw. Second, now that we know the couplings of the
W we can spite the Fermi costant GF which controls charged weak interactions at low energy and
is precisely measured in the muon decay process. Knowing that GF = 1√

2v2
, we find v ' 246 GeV.

Finally, from mZ = all the costants g =,g′ =. The Higgs mass, or λ instead can be fixed only by
mH .

1.1.2 Fermion masses

As for the gauge fields, the mass of the fermions cannot be simply introduced by hand in the
Lagrangian because this would break the symmetries, since every quadratic term in fermion fields
break the local gauge invariance. The mechanism relies again on the presence of the Higgs boso
and on the presence of Yukawa interactions , as reported in Eq. 1.12, which we rewrite here in a
long-winded form

LY = −(λu)mnq̄L,mH
∗uR,n − (λd)mnq̄L,mHuR,n − (λe)mn l̄L,mH

∗eR,n + h.c. (1.30)

λi are complex 3 × 3 matrices in the flavour space. After the Higgs takes a Vacuum Expectation
Value LY leads to mass terms for the charged leptons and for the up- and down-type quarks

− (λe)mn
v√
2
ēL,meR,n − (λu)mn

v√
2
ūL,muR,n − (λd)mn

v√
2
d̄L,mdR,nh.c. (1.31)

In order to read the mass eigenstates, the Yukawa matrices must be diagonalized

L†fλfRf = λdf (1.32)
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where f = d, u, e; λdf si diagonal with positive elements. After the rotation, the neutral current
interactions in Eq. 1.30 are unchanged while the charged current one becomes

Lcc =
g√
2
W+
µ

(
ν̄ ′Lγ

µe′L + ū′Lγ
µVCKMd

′
L

)
+ h.c. . (1.33)

where VCKM = R†fLf is the Cabibbo-Kobayashi-Maskawa matrix. Explicitely

VCKM =

|Vud| |Vus| |Vub||Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

 . (1.34)

The non-diagonal entries lead to flavour transition in the quark sector, compatible with present
observations.

1.1.3 The Standard Model as an Effective Field Theory

The Standard Model of course can not be the fundamental theory, because of the lack of a renor-
malizable theory of gravitational interactions. This is one sure reason to regard the Standard
Model as en effective field theory, valid the energies explored so far which loses his validity at some
cut-off ΛSM , where new particles and interactions appear. Above that scale, the Standard Model
is replaced by a more fundamental theory generally called an Ultra Violet completion. An analogy
of this situation could be given by Fermi’s theory of weak interactions: it is valid for energies below
the mass of the Electroweak bosons, E ∼ mZ , at higher energy the Standard Model is the predic-
tive theory we have to use. The dimensional analysis of the operator composing the Lagrangian
is a powerful tool when we want to match the effective theory with the fundamental one. Some
new physics has to exist, even if it might arise at very high energy scales, that we can not access
nowadays. We do not know which is the right Ultra Violet (UV) completion of the Standard Model,
anyway it will give rise to a low-energy effectiv Lagrangian of the form

LSM = Ld=4 +
1

ΛSM
Ld=5 +

1

Λ2
SM

Ld=6 + ... . (1.35)

From this point of view we understand why the effects of operators with d > 4 are not included
in the “canonical” Standard Model Lagrangian of the previous section: they are suppressed by
powers of the cut-off energy so that they give very sal constributions and can be safely neglected.
But not all the d > 4 operators are necessarily irrelevant. As described below, a d = 5 operator
could account for the small observed neutrino masses, provided they are Majorana. In order to
better appreciate the virtues of the Standard Model interpretated as an Effective Field Theory, it
is useful to introduce the concept of accidental symmetries. If truncated at d = 4, the Standard
Model Lagrangian posesses other global symmetries besides the gauge and Poincarè invariance
which we assumed by construction. The fact that those symmetries are not imposed as principles
means that the fundamental theory could badly violate them. Accidental symmetries are a big
phenomenological succes of the theory, so it is remarkable that they could arise at that energy
scale. One such symmetry is baryon number conservation which forbids the proton to decay, if
it was badly violated it would be a serious problem for our life. At the level of d = 4 operators,
baryon number is exact and the proton is exactly stable. However there are d = 6 operators like

1

Λ2
εabc(q̄L)α(qcL)β(q̄L)γ(ecL) (1.36)

which violate baryon number, leading to decays by the Feynman diagrams in Fig. 1.1. We estimate

Γ(p→ e+π0) ' 1/τ ∼ 1

8π

1

Λ4
SM

m5
p . (1.37)
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d

u

u
e+

d̄

Figure 1.1: Feynman diagram for the pion decay

The proton can thus be made arbitrarily long lived, for large energies ΛUV . The Super-Kamiokande
experiment in Japan has set an experimental bound on the decay of the proton τ = 1/Γ(p →
e+π0) > 2.3 × 1033 years, [10], this incredibly long lifetime is very easy to understand in the
Standard Model. Given the present bound we extimate

1 s = 300000× 1018 fm (1.38)

1 = /hc = 197 MeV · fm⇒ fm =
1

197 MeV
∼ 5 GeV−1 (1.39)

Γp .
1

3.2× 1032

1

1.5× 1024
GeV = 2× 10−64 GeV (1.40)

⇒ ΛSM ≥ mp

(
mp

8πΓp

)
' 3.7× 1015 GeV (1.41)

The second important accidental symmetry is lepton flavor conservation. After diagonalizing the
lepton Yukawas by the relations in Eq. 1.32 we find that the d = 4 Lagrangian is invariant under

U(1)Le × U(1)Lµ × U(1)Lτ (1.42)

under which the three leptons families rotate independently. This symmetry forbids any flavor-
changing transition in the lepton sector. Experimentally, processes like flavor-violating decays of
the µ are indeed largely suppressed1

Br(µ→ eγ) ≤ 1.2× 10−11 (1.43)

Br(µ→ eee) ≤ 1.0× 10−12 (1.44)

, (1.45)

as expected in the Standard Model with large ΛSM . However by the observation of neutrino masses
and oscillations we know that lepton flavor is a a good approximate symmetry, but not an exact one.
But this is not a failure of the Standard Model, actually could be a great succes. At d = 4, lepton
flavor is exact and neutrinos are massless, but both these features are violated by a five-dimensional
operator

c

ΛSM
(ētLH)(eLH

∗) (1.46)

which leads, after the Higgs takes a Vacuum Expectation Values, to a Majorana neutrino mass-
matrix

mν ∼
v2

ΛSM
, (1.47)

1As attested by [11]
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this can lead to a neutrino oscillaion and masses. The expected size of mν is of around 0.1 eV,
which could be naturally accounted in this framework if Λ + SM ∼ 6× 1014. Thus we understand
why lepton flavor violation and small ν masses if ΛSM is large enough. It is interesting to note
that the first evidences of new phenomena beyond Standard Model, such as neutrino masses and
oscillations, could come from the first sector with higher dimensionality than Ld=4

SM , that is the less
suppressed by the scale of new physics. What we would need now is to confirm, or disprove this
picture then to establish experimentally whether mν is Majorana or not.

1.2 Open issues in the Standard Model

By the arguments presented up to now, it seems extremely plausible that the Standard Model is
the valid theory of Nautre up to very high energies, far above the current and foreseen experimental
reach, of the order of the so-called Grand Unification Scale, MGUT ∼ 1016 GeV. This is indeed
a plausible picture, which is however contradicted by another argument, the so-called Hierarchy
Problem, which can be formulated as follows. By power-counting, i.e. dimensional analysis, we
estimatd that an operator with d > 4 must be suppressed by the appropiate power of ΛSM , but
exactly the same argument tells us that an operator with d < 4 must instead be enhanced

L = Ld≥4 + Λd
′
SMLd

′<4 (1.48)

The only such operator is the Higgs boson mass term

m2
HH

2 ' cΛ2
SMH

2 (1.49)

Then, comparing with the Large Hadron Collider result mH = 125 GeV

(m2
H)true

(m2
H)estimate

∼ 10−16 (1.50)

Why the power-counting estimate is so badly violated? This is the esseence of the Hierarchy
Problem. This is not a mathematical inconsistency of the thoery. The fact that the Higgs mass
estimated by dimensional analysis as in the previous section is so large does not forbid us to obtain
the correct Higgs pole mass, 125 GeV. Indeed the one above is only the conttribution to the
physical mass, associated with the effect of the UltraViolet particles and iteractions. As made very
clear in the Wilson approach to Quantum Field Theory, m2

phys = m2
UV + δ2m, where δ2m comes

from radiative corrections and it is associated with physics below the cut-off ΛSM . Classifying
Higgs boson as fundamental scalar particle, this is not protected by large radiative correctionsm
so that δm can be very large and compensate for mH,UV . Looking Fig. 1.2a we can see the main
correction at one-loop order g2 , that comes from the largest Yukawa, that is the coupling to the
top quark.The contribution to the Higgs mass 1.2a of course is not the only one, there are others
from gauge bosons, Higgs itself, with different signs, but they are smaller. We compute δm2 by
regularizing the integral with a cut-off, we obtain

δm2
H = 3λ2

t

∫
|k|≤ΛSM

d4k

(2π)4

1

k2
∼ −3λ2

t

2π2

[
Λ2 + ...

]
' 0.1Λ2

SM (1.51)

The correction is quadratically divergent in the energy scales. This suggest that such a term could
account for a cancellation with the first computed in the previous chapter. To quantify the precision
with which the UV and IR term have to cancel, we can define

∆ =
max

[
cΛ2

SM , δm2
H

]
m2
H,pole

≥
(

125 GeV

mH

)2( ΛSM
400 GeV

)2

. (1.52)
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h, k

e, p e, p

γ, k

Figure 1.2: Electron self-energy 1.2a and top quark loop correction to the higgs 1.2a

∆ defines the amount of cancellation we need to reproduce the experimentally observed Higgs mass.
Besides of being a trouble for the Standard Model, it ensures that some new physics has to exist
below MGUT .

The Hierarchy Problem regards only scalar particles, then the Higgs boson in the Standard
Model. For example, let us consider the electron, that is a fermion, and let’s compute its main
radiative correction. Looking to Fig. 1.2b we can see the 1-loop correction to the electron self-
energy, that is given by a photon loop. Using a cut-off regularization as before to renormalize our
theory, we find that

δme =
3αem

4π
me log

Λ

me
(1.53)

In this case the dependence of the correction from the energy scale is logarithmic, than we can
say that the contribution of the self-energy diagram gives a small correction to the electron mass.
This is very simple understood in terms of symmetry: in the limit of vanishing mass me → 0,
the theory acquires a global chiral symmetry, the left-handed and right-handed component of the
electron spinor are decoupled: the action is invariant for phase transformation:

ψ′L → eiθLψL ψ′R → eiθrψR (1.54)

Since me 6= 0, chiral symmetry is not exact, but an approximate one, the correction to the electron
mass is proportional to the fermion mass itself. Small break implies small correction. All fermion
masses are protected from this mechanism, since the Standard Model is a chiral theory. So we may
think that a similar mechanism based on symmetries could preserve the Higgs mass to its right
value.

The existence of new physics beyond the Standard Model is suggested also by other experimental
evidences, in particular the existence of Dark Matter and of neutrino masses as already discussed.
Other problems arise if we try to explain baryogenesis and the existence of flavors. The power
spectrum of Cosmological Microwave Background allows to extimate the density of the various
components of the universe, in particular we have experimental confirm that non-baryonic (i.e.
Dark Matter and Dark Energy). We have Ωnon−baryonich

2 = 0.1272 and Ωbaryonich
2 = 0.0222 (here

h2 is the Hubble parameter) within a very precision range. This shows that the relative abundance
of baryonic constituents compared to that of non-baryonics is low, confirming the fact there has to be
something else in the universe. Experimental evidences for neutrino masses are given by neutrinos
flavor oscillations, measured in the relative abundances of neutrinos coming from the Sun. However
nowadays we have not direct information that such problem are directly related with energy scales
we are going to explore at the Large Hadron Collider, let’s say 4−5 TeV. So which are the possible
scenarios? One is fine-tuning, described above: we choose the parametrizations of the model in
such a way the cancellation happens. But this situation rises the naturalness problem: how is
natural to fine-tune quantities to reach the values we want? If we want to make the cancellation

2Results taken from [12]; Ωi is defined as the ratio between the density of the i− esim component of the universe
and critical density ρc = (3H2

0 )/(8πG) - nowadays we have Ωtot ∼ 1
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accidental, we do not want a large fine-tuning too, and this argument implies that new physics
have to arise at energies explored by the Large Hadron Collider. For example

∆ ≤ 100⇒ ΛSM ∼ 4− 5 Tev (1.55)

The other possibility is that new physics arises and so new particles, new phenomena, something
else that goes beyond what we actually know, could achieve the goal of canceling out these diver-
gences.For example, one of the solution to the Hierarchy problem, studied in the last thirty years, is
Supersymmetry, in which boson masses are related to their fermionic superpartners, then there is a
chiral symmetry protecting from large radiative corrections. The Composite Higgs is another solu-
tion, different from SuperSymmetry. The mechanism that protect the Higgs mass in the composite
scenario is dimensional trasmutation. If the Higgs is a composite state of a new-strongly interacting
sector, the dimensionality of the Higgs mass operator, written in terms of the costituents of the
new strong sector, is not d = 2, but it could be even d > 4, so we have not problems in explaining
why the Higgs mass is relatively light. The mass is also protected by symmetry, so the radiative
corrections do not implies divergences, then for example, if the Higgs is a composite state made of
two fermion ψ of the new strong sector, we could write

dim [H] ∼ dim
[
ψ̄ψ
]
→ dim

[
H2
]

= 6 . (1.56)

From the altered dimension of the field corresponding to the Higgs boson follows that correction
are suppressed by powers of ΛSM , and as it was for the example of the proton decay, the Higgs is
protected by correction from E ∼ MGUT . All the theory so is parametrized in term of the only
scale of this new strong sector, where confinement happens, as it is for the QCD theory. In this
picture, all the resonances (we gloabally call ρ) must have the same mass, within a range of energy
determined by an order of magnitude, for example. Then if the Higgs boson belongs to this picture,
it would be surrounded by other strong resonances (of spin 1/2, 1 , 2), all at the same mass. To
get a Higgs mass of about 125 GeV the energy scale of the new strong sector would be 100 GeV,
and we have of course strong bounds on the production of such particles, since they would be at
an energy range explored so far. For example, a large splitting between the Higgs and other spin-1
resonances is strongly suppressed by comparison with ElectroWeak Precison Test (EWPT), and
such a situation would require (

m2
H

m2
ρ

)
. 1/400 , (1.57)

that is a large fine-tuning. However also in the QCD picture we know of particles lighter than the
other resonances: these are the pions, that we construct as pseudo-Nambu-Goldstone bosons. This
is the same feature we require for the Higgs boson in our Composite Higgs model, it has to be a
pseudo-Nambu Goldstone boson coming from the spontaneous break of the global group G → H. If
the symmetry has been exact, the Higgs would be massless, instead in this way the Higgs acquires
a relatively high mass, that is protected yet by the underlying Goldstone symmetry. This will be
clearer in the next chapter. Small briefing is done showing how Nature behalfs in the QCD case.
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Chapter 2

The Composite Higgs model

2.1 The QCD chiral lagrangian: the pion analogy

Also in QCD we have scalar particles: the pions are the lightest mesons in the mass spectra
with mπ ∼ 100 MeV. How are their masses protected from being close to other composite states
(resonances), with mρ ∼ 1 GeV? The chiral symmetry is the answer to this question. If only the
two lightest quarks, u and d, are considered, the quarl sector of the QCD Lagrangian reads

L =
∑
j=u,d

q̄j
(
i /D +m

)
qj . (2.1)

This Lagrangian is invariant under various global symmetries. The firss one is a phase transforma-
tion of the quark fields. This is the accidental baryon symmetry described above, it leads to the
conservation of baryon number, by which we classify the hadrons in mesons and baryons.

q′i → eiα/3qi B[q] =
1

3
B[q̄] = −1

3
(2.2)

Thus the classification splits in:

• mesons: B[qq̄] = 0;

• baryons: B[qqq] = 1.

Introducing a notation that manifestly shows symmetries that couple different flavours, let’s write:

q =

(
u
d

)
The lagrangian becomes:

L = q̄
(
i /D
)
q . (2.3)

We have neglect the masses of the quarks, that are small compared to the energy scale we are
dealing with. This Lagrangian is invariant under a 2× 2 unitary transformation:

q′ = exp

[
3∑
0

αiσi

]
q (2.4)

σi , (i = 1, 2, 3) are the Pauli matrices and σ0 is the unit matrix. So this U2V is the U(1) phase
transformation mentioned above, composed with a SU(2)V transformation. This is an exact sym-
metry in the case the u and d masses are degenerated. The subscript V stays for vectorial, since
the associated current is vectorial:

J iµ = q̄γµσ
iq (2.5)

21
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Decomposing the quark fields in terms of their chiral components, and negelecting the quark masses,
the Lagrangian becomes

L = q̄Li /DqL + q̄Ri /DqR (2.6)

We can note that two flavours QCD with massless quarks possesses chiral symmetry: SU(2)L ×
SU(2)R. This symmetry does not appear in the observed spectrum of QCD. If it existed, every
hadron must have a symmetric partner with opposite parity (since the chirality is opposite). Colour
condensation (that means the operator q̄q has a non-zero expectation value

〈
0|
(
ūu+ d̄d

)
|0
〉
∼

(250 MeV)3) breaks down the chiral symmetry to SU(2)V × U(1)B. The composite operator q̄q
connects left and chiral components of the quark fields. Three generators broken implies three
Nambu-Goldstone bosons, massless. We do not know something similar, but we can note that in
the QCD spectrum three low-mass hadrons exist: π0,π±. The explanation for such a pattern of the
spectrum is again spontaneous symmetry breaking: u and d are not massless, though their masses
are very small, compared to ΛQCD. In addiction, electromagnetic interactions split moreover the
mass spectrum of the three pions: π± have different mass than π0, because u and d have different
charge with respect to electromagnetic interactions. These pions are particles we call pseudo
Nambu-Goldstone bosons. In fact they do not come from a broken exact symmetry, but from a
broken approximate one. In the appendix, we can see a formal approach for the description of the
pions, the linear Σ model, that we will generalize to the case of the Composite Higgs.

2.1.1 The linear Σ model

The linear Σ model of Gell-Mann and Levy [13] was a first toy model of nuclear forces and it was
subsequently applicated to the pions. We would like to describy the mass spectrum of hadrons,
starting from the lighter resonances. We want to construct an effective theory valid at low energy
scales - compare to the QCD scale. Then we add to the Lagrangian a set of scalar fields, that is a
2× 2, we say Σ (from which the name of the model). This transforms as

Σ→ gL · Σ · g†R . (2.7)

The Lagrangian for Σ, descending from the QCD (massless) theory, must be invariant under the
chiral symmetry, with global group SU(2)L × SU(2)R thus the Lagrangian has the form

L(Σ) =
1

4
Tr
[
∂µΣ†∂µΣ

]
− λ

4

[
1

2
Tr
[
Σ†Σ

]
− F 2

π

]
. (2.8)

Exploiting the spontaneous symmetry breaking paradigm we suppose that Σ takes a Vacuum
Expectation Value, proportional to the identity

〈Σ〉 ≡ Fπ · I . (2.9)

The chiral group now has been broken down to its vectorial subgroup

〈Σ〉 → gL〈Σ〉g†R = Fπ · gLg†R = 〈Σ〉 ⇒ gL = gR . (2.10)

In this simple description, the Σ matrix is a complex 2×2 matrix. We can impose some restrictions
to Σ, provided these are compatible with the symmetry. We impose the constraint

Σ∗ = +σ2 · Σ · σ2 (2.11)

where σ2 stands for the second Pauli matrix. This constraint has been chosen because it is invariant
under the transformation law of the global group

Σ→ Σ(gL,gR) = gLΣg†R , (2.12)(
Σ(gL,gR)

)
= σ2gLσLΣ∗σ2g

†
Rσ2 . (2.13)
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Obviously this works because σ2 is one of the generators of the SU(2) group. This constraint allows
us to rewrite the Σ field in terms of only four scalars

Σ = σ(x) · I + ıσaπa(x) . (2.14)

The matrix representation of SU(2)L × SU(2)R that obeys the condition in Eq. 2.11, we call
it pseudo-reality condition, is referred to as a bidoublet Σ ∈ (2, 2). Under parity, the bidoublet
transformation shows the σ field is a scalar, instead the three π’s are pseudo-scalars. Under the
isospin group, σ is a singlet and the π’s transform in the adjoint. We can see the πa have the right
quantum numbers to describe the pions triplet. We rewrite

π = πaσa =

(
π3 π1 − iπ2

π1 + iπ2 −π3

)
≡
(

π0
√

2π+
√

2π− −π0

)
. (2.15)

Expliciting in terms of the parametrization we give of Σ, and expanding aroung Vacuum Expecta-
tion Value fluctuations, the Lagrangian in Eq. 2.8 becomes

L(Σ) =
1

2
(∂µσ)2 +

1

2
(∂µπ

a)2 − λ

4

[
σ2 − F 2

π + |π|2
]2

(2.16)

thus we have found a massive state mσ =
√
λFπ and three massless states mπ = 0. The great result

of Gell-Mann and Levy was that the pions can be interpreted as the Goldstone bosons associated
with the spontaneous breaking of the chiral group. In this simplified description the pions are
massless yet, but a little mass can be generate by a small breaking of the isospin symmetry. This is
the feature before we refer to as pseudo-Nambu Goldstone nature. A similar approach is exploited
for the construction of the Composite Higgs model.

2.2 Composite Higgs in short

The idea of a composite Higgs boson was first proposed in 1984 by Georgi and Kaplan [14], [15].
The model interpolates between two different paradigms, the higgless scenario, with Technicolour
as reference, and the minimal Higgs mechanism, as embedded in the resent version of the Standard
Model. In this scenario, the Higgs emerges as a composite psuedo Nambu-Goldstone boson, it is a
bound state of a new strongly interacting sector. In this way the Hierarchy Problem is overwelmed,
because the Higgs mass is protected from large Planckian corrections, by the mechanism of dimen-
sional transmutation previously discussed. In comparison with Technicolour theories, Electroweak
Precision Test are easier to satisfy thanks to the presence of the Higgs particle. As we have seen
an analogous phenomenon is at work for the QCD hadrons. The pseudo Nambu-Goldstone nature
of the Higgs allows it to be naturally lighter than other resonances in the strong sector, which arise
at an energy scale of some TeV, compatible with present direct bounds. To make the general idea
more concrete, and following more recent descriptions as [16] and [17], we must first of all define a
global group G, under which the strong sector is invariant.We assume the strong sector to confine,
breaking G to a subgroup H at the scale f , the analog of the fπ constant in QCD. An SU(2)×U(1)
subgroup of H1 is gauge by external vector fields, which will provide the Electroweak vector bosons.
The global symmetry breaking G → H1 implies n = dim(G)− dim(H1) Nambu-Goldstone bosons,
three of them are eaten to give mass to the Electroweak gauge bosons, while the others remain as
physical scalars. Obviously for this programma to work the Standard Model group SU(2)L×U(1)Y
must be embeddable in the unbroken one H. Furthermore, since the presence of at least one phys-
ical Higgs scalar is required, to be identified with the Standard Model Higgs, at least one complex
doublet of Goldstones must emerge from the G → H. The non-linear realization of the symmetry
implies that the Higgs potential vanishes, however the couplings of the Standard Model fields to
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the strong sectorare only invariant under GSM and break the complete G. The Higgs potential
can thus be generated through Standard Model gauge bosons loops, with the Coleman-Weinberg
method, as described for example in [18]. Provided this potential has a non-trivial minimum, the
Electroweak symmetry is broken by the Composite Higgs as in the Standard Model. It’s interesting
to note that in this situation, there is not only one but two scales. On top of the ”Higgs decay
constant” f , we also have the Electroweak Symmetry Breaking scale v. From the ratio among the
two scales we can convenientrly define ξ = (v/f)2. The scale f controls the mass of the other strong
sector resonances, besides the Higgs. By Naive Dimensional Analysis we can estimate the masses
mρ ∼ gρf with 1 ≤ gρ ≤ 4π the coupling constant of the strong sector, while the mass of the Higgs
is set by mH ∼ gSMv, with gSM any of the Standard Model coupling 1. Furthermore, as in the
pion example given above, all the higher dimensional operators involving additional powers of the
Higgs field are suppressed as they appear as H/f . In this way, the limit of f →∞, or ξ → 0 is the
situation in which the Higgs remains lights and the other resonances get infinitely heavy. Moreover
the effects associated with the Goldstone Nature of the Higgs decouple and the theory reduces to
the Standard Model. In this framework the potential itself compares as a function of H/f , then we
would have naturally ξ ∼ 1. Small ξ makes the scenario less plausible, with fine-tuning to restore
the validity of the model. A suitable choice could be ξ ≤ 0.2.

2.3 The minimal coset SO(5)/SO(4)

The minimal coset for the Composite Higgs is defined by a global group

G = SO(5)× U(1)X (2.17)

where the U(1)X factor is needed to reproduce the correct fermion hypercharges. G is broken to

H1 = SO(4)× U(1)X . (2.18)

Any SO(4) vector vâ, transforming as

SO(4) : vâ → Sâb̂vâ |v| ≡ constant (2.19)

is isomorphic to a matrix V ≡ σ̄âvâ with σâ the three standard Pauli matrices and the identity.
We know from the theory of Lie groups that SO(4) ∼ SU(2)L × SU(2)R in the sense that they
have the same algebra. The action of SU(2)L × SU(2)R can be defined on the matrix V as the
left multiplication by L ∈ SU(2)L and right multiplication by R ∈ SU(2)R, so that det(V ) is left
unchanged:

SU(2)L × SU(2)R : V → LV R† det(V ) == |v2| = constant (2.20)

For each element of SO(4) two SU(2)L × SU(2)R transformations act in the same way on V:

S → (L,R), (−L,−R) (2.21)

That implies:

SO(4) =
SU(2)L × SU(2)R

Z2
(2.22)

Up to the discrete Z2 (which identifies the second power of an element with its inverse - it is a
reflection) the two groups has the same algebra. Since H ≡ SO(4) ∼ SU(2)L × SU(2)R × U(1)X ,
the Standard Mode group is embeddable in H by identifying SU(2)L with the Standard Model one
and the hypercharge with Y = T 3

R +X.

1The precise scaling of the Higgs mass with the couplings is actually a model-dependent question. However the
scaling with v is robust
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2.3.1 Some notations

The Standard Model gauge fields are inserted as external sources, they are not part of the strong
sector. They couple to the strong sector by gauging the generators of SO(4) that corresponds to
the Standard Model group. We denote the SO(5) generators as

TA = {T a, T â} , [TA, TB] = ifABCTC , T r[TATB] = δAB (2.23)

where A = 1, ..., 10 is the SO(5) adjoint index , T a and T â are the unbroken and broken generators
respectively, so that

a = 1, ..., dim[SO(4)] = 1, ..., 6 , (2.24)

â = 1, · · · , dim[SO(5)]− dim[SO(4)] = 1, ..., 4 . (2.25)

A suitable basis for the SO(5) generators is

T
a,L,R
A,B = − i

2

[
1

2
εabc(δbAδ

c
B − δbBδcA))± (δaAδ

4
B − δaBδ4

A)

]
(2.26)

T âAB = − i√
2

(δbAδ
5
B − δâBδ5

A) (2.27)

By the Goldstone theorem we know that the representation Rπ in which the Goldstone transform
is obtained from the decomposition

Adj[G] = Adj[G]⊕Rπ (2.28)

In our case

[T a, T b] = ifabcT c + i�
��fabĉT ĉ (2.29)

[T a, T b̂] = ifab̂ĉT ĉ + i�
��fab̂cT c (2.30)

[T a, T b] = i
(
taAdj[SO(4)]

)b
c
T c (2.31)

[T a, T b̂] = i
(
taRπ
)b̂
ĉ
T ĉ (2.32)

where taRπ is the 4˜ representation, π ∈ 4˜. We can see that using the pattern SO(5) → SO(4) we
find exactly one Higgs boson doublet, that is what we would reproduce.

2.3.2 The Callan-Coleman-Wess-Zumino construction

In [19] and [20] Callan Coleman Wess and Zumino studied the general structure of phenomenological
Lagrangian and how they can be constructed for a generic spontaneously broken (non-linearly
realized) symmetry group. The main result was to prove that the transformations induced by
the group on the manifold of the phenomenological fields can be put in a standard forms.The
mathematical problem is equivalent to that of finding all (nonlinear) realizations of a (compact,
connected, semisimple) Lie group which become linear when restricted to a given subgroup. Let us
consider a generic multiplet of the group G(SO(5) in our special case)O, whose Vacuum Expectation
Value 〈O〉 = v breaks the global symmetry group to H (i.e., SO(4) in our case). TH U(1)X factor
is not spontaneously broken, so we can safely ignore it in this discussion. Then

T av = 0 , T âv 6= 0 . (2.33)

The massless particles of the theory must correspond to the fluctuations of O in the direction of
the global symmetry group. This leads to an ansatz

Oansatz(x, t) = U(x, t) · v , U(x, t) ≡ eiαA(x,t)TA) ∈ G . (2.34)
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We exploit the field matrix U to construct the effective Lagrangian, which must respect the G
symmetry like the original one. On U , G acts as

U → U (g) = gU , O→ gO . (2.35)

However, the ansatz in 2.34 also displays a local invariance. It indeed remains unchanged if we
transform

U → U (h(x) = U · h(x) , O→ Uh†(x) · v (2.36)

if h(x) = eiαa(x)Ta is a local translation in the unbroken group H. Therefore, U offers a redoundant
parametrization, U (h(x)) is equivalent to U because it corresponds to the same field fluctuation.
The physical Goldstones are not described by U spanning the entire group, but only by a coset
space

G/H ≡ [g]H; g ∈ G (2.37)

with the equivalence relation given by U ∼ U · h†. In order to describe only the physical degree of
freedom we fix the gauge symmetry of 2.36,restricting U to have the form

U(x, t) ≡ ei
√

2/fπâ(x,t)T â . (2.38)

The matrix U , with this restriction, is called the Goldstone matrix. Its transformation property is
now

U [π] → U (g),[π] = gU [π]h†[π, g] . (2.39)

Using only g to transform the Goldstone matrix would introduce again the unphysical fields αa
this is compenstate by right multiplication with a h element. This particular transformation for
U corresponds in general to a non-homogeneus and extremely complicated transformation rule for
the Goldstone fields π. Using the U matrx, for which the transformation is simpler provides a
considerable simplifiction. After writing the phenomenological L in terms of U we will compute
the Goldstone interactions by expanding the exponential the the aprpropriate order. Although it
is a non-linear realization, h obeys the Ggroup multiplication rule:

h[π, g2 · g1] = h[πg1 , g1] · h[πg2 , g2] , (2.40)

thus it provides a valid (though non-linear) representation. An important (and interesting) feature
of all this construction is the fact that if g ∈ H the transformation law for the π’s returns linear

gh · U = gh · ei
√

2/fπâT
â

= exp
[
i
√

2/fghπâT
âg†h

]
· gh = U

[
π(gh)

]
· gh (2.41)

that is the transformation we called Rπ in the previous section

πâT
â = gh

(
πâT

â
)
g†h . (2.42)

2.3.3 Construction of the effective Lagrangian

We introduce the two symbols eµ and dµ defined by decomposing the Maurer-Cartan form on the
unbroken and broken generators, respectively

iU †∂µU ≡ −dâµT â − eaµT a (2.43)

Under a group symmetry transformation, the Maurer-Cartan form transform

iU †∂µU → ih · U †∂µ[U · h†] (2.44)



2.3. THE MINIMAL COSET SO(5)/SO(4) 27

∼ E2

f2

Figure 2.1: Main prediction of the effective Lagrangian

Applying this equation to our two symbols, we can see that

dâµT
â → hdâµT

âh† (2.45)

instead

eaµT
a → heaµT

ah† − ih∂µh† (2.46)

The transformation of the eµ symbol is the analog of a gauge field transformation property. Because
of this, we can use it to construct field-strenght and covariant derivatives in the Lagrangian. The
transformation of dµ is instead linear in h, with no additional shift. Using only the Goldstones in
our Lagrangian, the lowest dimensional term is

Ld=2
π =

f2

4
dâµ · dâµ (2.47)

The dimension is given by the power counting: the dµ contains one derivative, that is [∂µ] = [1]
in natural units (c = h = 1). The constant is defined to canonically normalize the fields in the
Lagrangian. With this Lagrangian we can construct all the effective vertices with Eπ external legs,
from which we have an extimate of the Goldstones scattering. The expansion of the U matrix gives
infinite terms, then we have infinite interactions, all of them with two derivatives and an arbitrary
number of π external legs. The interesting feature is that the f parameter completely controls
the interactions among the Goldstone, and this is a powerful implication. A general form for the
interaction has the form

f2∂
π

f
· ∂π
f
·
(
π

f

)
· ... ·

(
π

f

)
⇒ P 2f2 ·

(
1

f

)Eπ
(2.48)

where the last implication follows from the Feynman rules; Eπ is the number of external legs in the
diagram we are considering. In Fig. 2.1 there is an exemplification. We have to note that higher
terms are suppressed by powers of the f parameter, since each Goldstone field carries a factor 1/f
from the expansion of the exponential.

2.3.4 Bosonic sector: gauge fields

As we have seen, the coset SO(5)/SO(4) implies four real Nambu-Goldstone bosons transforming as
a fundamental of SO(4), or equivalently as a doublet of SU(2)L. The doublet H is the composite
Higgs. Recalling what we have said in 2.1.1 about the SU(2) representations, we can define a
suitable representation for our Higgs field. Under an SU(2)R rotation it mixes with its conjugate
Hc = iσ2H∗. Thus it forms a bidoublet of SU(2)L×SU(2)R, (H,Hc). This is an important result,
in particular when we have to write the Yukawa’s in the Standard Model Lagrangian, the Higgs is
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already in a suitable form to write the interaction terms. Going to the matrix notation of SO(4),
we can parametrize the fourplet πâ in terms of the complex doublet Higgs H as

π =
1√
2


−i(hu − h†u)

hu + h†u
i(hd − h†d)
hd + h†d

 (2.49)

with H = (hu, hd) the Standard Model Higgs doublet. In the unitary gauge this vector takes a
simple form

hu = 0 hd =
〈H0〉+ h√

2
π =


0
0
0

〈H0〉+ h

 (2.50)

With the generators in Eq. 2.27, the Goldstone matrix reads:

U [π] = exp

[
i

√
2

f
πâT

â

]
=

(
I4 − (1−cos(π/f))

π2 π · πt sin(π/f)
π π

− sin(π/f)
π πt cos(π/f)

)
, (2.51)

where π =
√
π · πt. In the unitary gauge it becomes

U =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 cos(H0/f) −sin(H0/f)
0 0 0 cos(H0/f) cos(H0/f)

 . (2.52)

and the dµ symbol is easiliy computed as

dâµ =

√
2πâ

π2

(
1

f
− sin(π/f)

π

)
π · ∂µπ +

√
2

π
sin(π/f)∂µπ

â . (2.53)

We should now couple the Goldstone to the Standard Model gauge fields, to this end we define the
covariant derivatives

∂µπ
â → Dµπâ = ∂µπ

â − iAaµ (ta)â
b̂
πb̂ (2.54)

where

Aaµt
a =

g√
2
W+
µ (t1L + it2L) +

g√
2
W−µ (t1L − it2L) + g(cWZµ + sWAµ)t3L + g′(cWZµ − sWAµ)t3R (2.55)

Using 2.53 in 2.47, we find

Lπ =
1

2
(∂µH

0∂µH0) +
g2

4
f2 sin2(H0/f)

(
|W |2 +

1

2c2
W

Z2

)
. (2.56)

Using the pole-mass of the Z boson to set the value of the Vacuum Expectation Value, i.e. v =

246 GeV = f sin
(
〈H0〉
f

)
, we can note that f is the unique free parameter that enters the Lagrangian

in Eq. 2.56, completely controling the couplings to the Standard Model gauge fields. The Standard
Model relation, ρ = MW /(MZ cos θW ) = 1 is authomatically satisfied, thanks to the global SO(4)
symmetry, as a result of the spontaneous symmetry break. Fluctuations around the Vacuum
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Figure 2.2: Gauge bosons - Higgs coupling in the Composite Higgs model

Expectation Value of the Composite Higgs give the couplings of the physical Higgs with pair of
gauge bosons V V

f2 sin2

(
〈H0〉+ h

)
f

= f2

[
sin2

(〈H0〉
f

)
+ 2 sin

(〈H0〉
f

)
cos

(〈H0〉
f

)(
h

f

)
+ O(h2)

]
=

= v2 + 2v
√

1− ξh
(2.57)

where ξ ≡ v2

f2
= sin2

(
〈H0〉

)
, thus the modification in the coupling (with respect to the Standard

Model one) is: In the limit f → ∞, that is the situation of a renormalizable Lagrangian with
higher operators suppressed by inverse power of f , we find the Standard Model again. All the
non-linearities are suppressed.

The Electroweak Precision Tests are a powerful tool to study the validation of the Standard
Model and in providing directions for the search of new physics, precision experiments are needed to
compare the deviations from the theoretical Standard Model predictions. Peskin and Takeuchi [21]
construct a set of three observables, S,T and U, with which we can study these deviations. If new
physics exist, we can compute at a radiative order, the deviation of the gauge-boson propagator
terms, i.e. from oblique corrections. We just derive the interaction vertices of the Higgs with the
gauge bosons, and combining the Peskin-Takeuchi parameters with the ElectroWeak Precision Test,
we obtain

∆T̂ = − 3g′2

64π2
ξlog

(
Λ2

m2
H

)
≤ 0.3× 10−3 (2.58)

∆Ŝ =
g2

192π2
ξlog

(
Λ2

m2
H

)
≤ 2× 10−3 , (2.59)

from which we can extimate ξ ≤ 0.05. Anyway this is not a complete extimation, because we
expect contributions to ∆T̂ from other fermionic resonances too, in particular from the partners of
the top quark. From now beyond we will describe a scenario with ξ ∼ 0.2, that is a reasonable one.

2.3.5 Fermionic sector and matter contents

Gauge fields of the Standard Model were introduced as external sources of the new strong sector.
We introduced elementary fields that gauge the weak Standard Model group, this corresponds
to linear interaction of the Standard Model elementary gauge fields with the composite current
operators in the strong sector, as depicted in Fig. 2.3. This is a procedure currently used in the
Standard Model too, for example when we write the interaction among the QCD quarks with the
photon. To couple fermionic matter to the new strong sector we can similarly postulate that the
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SO(5) → SO(4)

H ∈ SO(5)/SO(4)

W 1,2,3
µ , Bµ , SM , fermions

LINT = gWµJ
µ

CompositeSector
ElementarySector

Figure 2.3: Cartoon of the gauging of the Standard Model fields

UV completion of the Standard Model generates linear coupling at ΛSM scale.Therefore we assum
the elementary-composite interaction to take the form

LINT = yLq̄LOL + yRq̄ROR + h.c. . (2.60)

This assumption is called partial compositeness. This mechanism is convenient as it offers a natural
protection against large Flavor Changing Neutral Current (FCNC), see [22] for a review. From
Eq. 2.60 we can predict the Higgs coupling to fermion using the non-linearly realized symmetry,
provided we specify how the OR,L transform under the global group SO(5). Let us write Eq. 2.60
more explicitely as

LINT = yLq̄LOL + yRt̄ROL + y′Rb̄RO
′
R + y′Lq̄LO

′
L , (2.61)

where we coupled the qL doublet to two different operators because this will be needed to give mass
both to the top and to the bottom type quarks. There are different choices for the dimensionality
of the representation of the operators that couple to the elementary fields, OL,OR,O

′
L,O

′
R ∈

1˜, 4˜, 5˜, 10˜ , 14˜ . We will describe the simplest, that is the 5˜. First of all, in order to satisfy the
symmetries of the Standard Model groups, OL must contain a 21/6, to be mixed with qL, OR

instead must contain a 12/3 and so on. The decomposition of the 5˜ of SO(5) under SO(4) and
under SU(2)L × U(1)X reads

5˜ = (2˜, 2˜)⊕ 1˜ = 2˜1/2 ⊕ 2˜−1/2 ⊕ 1˜0 (2.62)

from which we finally understand why we need to consider the extra U(1)X , f Y = T3L we would not
be able to find the correct Standard Model hypercharge. Instead, since Y = T 3

R +X, we can assign
X charge equal to 2/3 to the top-like quarks and −1/3 to bottom-like ones. The decomposition
now reads

OL andOR ∈ 5˜2/3 = 2˜7/6 ⊕ 2˜1/6 ⊕ 1˜2/3 (2.63)

O′L andO′R ∈ 5˜−1/3 = 2˜1/6 ⊕ 2˜−5/6 ⊕ 1˜−1/3 . (2.64)

In order to exploit the implications of the symmetries, we rewrite Eq. 2.61 as

LINT = yQIOI + yT IOI + yBIOI , (2.65)
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where Q, T and B are the “embeddings”, defined as

QL =
1√
2


bL
−ibL
tL
itL
0

 ; TR =


0
0
0
0
tR

 (2.66)

Q′L =
1√
2


tL
itL
−tL
itL
0

 ; BR =


0
0
0
0
bR

 . (2.67)

When integrating out the strong sector, and thus ignoring loop corrections of the elementary fields,
we can treat the embedding fields as non-dynamical external sources, and exploit the fact that
LINT is prefectly invariant under SO(5), which acts as

QIL → gIJQ
I
L ; T IR → gIJT

I
R (2.68)

and analogous for the others. At this point we remind that in our effective Lagrangian the Goldstone
matrix transform as follows

UIĪ → gJI UJJ̄ (h[π, g])J̄Ī . (2.69)

Here the first index of U , I, transforms in the fundamental of SO(5), and it can be contracted with
the embeddings. Instead Ī transforms with h ∈ SO(4), then it is not a SO(5) index. The matrix
h is block-diagonal

h =

(
h4 0
0 1

)
(2.70)

therefore Ī can be splitted in Ī = ī, 5. The matrix U can be decomposed as

• UIī with I on the 5˜ ∈ SO(5) , ī instead to the 4˜ of SO(4);

• UI5 with I ∈ 5˜ and the second index in the singlet of the SO(4).

We can construct invariants starting from the embeddings and the Goldstone matrix. For example
we can contract the index in the fundamental of SO(5)

QILUIī , T
I
RUIī ∈ 4˜ (2.71)

QILUI5 , T
I
RUI5 ∈ 1˜ . (2.72)

This gives two fermion bilinears

B1 = (Q̄L · U )̄i(TR · U )̄i B2 = (Q̄L · U)5(TR · U)5 (2.73)

which however are not indipendent each other

B1 +B2 = Q̄ILUIīU
t
īIT

J
R + Q̄ILUI5U

t
5IT

J
R = Q̄ILT

I
R (2.74)

where we have used the fact that UIĪU
t
ĪJ

= δIJ (orthogonality) and the fact that the two embeddings
are orthogonal. These operators are the most relevant ones at low energy, then for simplicity
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t̄ h

= mt
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Figure 2.4: Fermion couplings in the Composite Higgs model

we consider only them in our classification. Writing the U matrix in the unitary gauge we are
immediately able to compute the non-derivative terms between fermions and Higgs

U =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 cH −sH
0 0 0 sH cH

 cH = cos

(
H0

f

)
. (2.75)

Now we can write the interaction Lagrangian

LINT = yLyR
c

2
sin

(
2H0

f

)
t̄LtR + y′Ly

′
R

c′

2
sin

(
2H0

f

)
b̄LbR . (2.76)

where te estimate of the coefficients is done with the power-counting rule of ref. All the non-
derivative terms are controled by the parameters c and c′ and by the same trigonometric function
in the coupling. So the deviation is universal for all quarks. This is not a generic feature of all the
models. Let’s compute the Higgs coupling to top and bottom quarks. In order to reproduce the
top and bottom mass, we have to fix yL , yR

mt = yLyR
c

2
sin

(
2H0

f

)
= yLyRc

√
ξ
√

1− ξ (2.77)

mb = y′Ly
′
Rc
′√ξ√1− ξ . (2.78)

Next, we have to expand H0 = 〈H0〉+ h obtaining

sin

(
2H0

f

)
= sin

(
2〈H0〉
f

)
+

2

f
cos

(
2〈H0〉
f

)
· h = sin

(
2〈H0〉
f

)
+

2

f
(1− 2ξ) · h . (2.79)

In Fig. 2.4 we can see the interaction vertices. Event though the experimental error is too large for
computing directly the modification in the Higgs coupling to fermions, this could be a powerful tool
to test the Composite Higgs scenario. An experimental study of two Higgs production, is visible
at the Large Hadron Collider could be an interesting process for this purpose.



Chapter 3

Top partners at the Large Hadron
Collider

3.1 The Model

We have just derived the couplings between the Composite Higgs and the Standard Model fermions
and gauge bosons. Now we want to study the particles that arise from the new strong sector. These
fields mix with the elementary one we trated in the previous chapter, giving several phenomena to
be directly exploit to test the Composite Higgs model. We will follow the derivation in [23]. After
the strong sector condenses, the composite operators in eq. 2.61 correspond to particles, whose
quantum numbers can be read from the decomposition in representation of the unbroken SO(4)
group. These are vector-like colored fermions called “partners” of the Standard Model quarks.
In particular, the partners of the top quark, the top partners, play a particularly important role
in the Composite Higgs scenario, because they control the generation of the Higgs potential [18].
These particles, since they couples directly to the Higgs, enter in the computation of the radiative
corrections to the Higgs mass term,so they could help in the resolution of the Hierarchy Problem.
Recalling the fine-tuning definition in Eq. 1.52, we can roughly write

∆ =

(
125 GeV

mH

)2 (mpartner

400 GeV

)2
. (3.1)

In any reasonable model with low fine-tuning, i.e. ∆ ' 10, a first extimation with 3.1 gives
mpartner ∼ 1.3 TeV, that is a mass range visible at the Large Hadron Collider.

Explicitely, we will work on the first row of Eq. 2.64. We have seen that the operator O, that
lives in the fundamental of SO(5), can be decomposed in representation of the unbroken SO(4)
group. The linear coupling in fact breaks the global group invariance SO(5) × U(1), though it
preserves the invariance of the Standard Model groups. As we said, the decomposition is 5˜ = 4˜⊕1˜.
We will focus our considerations on the top partner in the singlet, we will call it T̃ . The model
with the fourplet is more complicated only for the transformation property ψi → h(π, g)jiψj , but it
is absolutely analogous to this we are going to describe. The Lagrangian reads

L1˜ = q̄Li /DqL + t̄Ri /DtR + iψ̄ /Dψ −Mψψ̄ψ +
[
yfQ̄ILUI5ψR + yc2fQ̄

IUI5tR + h.c.
]

(3.2)

33



34 CHAPTER 3. TOP PARTNERS AT THE LARGE HADRON COLLIDER

where the covariant derivatives are defined as

DµqL =

(
∂µ − igW a

µ

σa

2
− i1

6
g′Bµ − igSAµ

)
qL , (3.3)

DµtR =

(
∂µ − i

2

3
g′Bmu − igSAµ

)
tR , (3.4)

Dµψ =

(
∂µ − i

2

3
g′Bµ − igSAµ

)
ψ (3.5)

where sum over QCD indices is understood. The top-partners form a colour triplet. In the La-
grangian in Eq. 3.2 there could be a direct term of interaction among the top-partner field and
the tR, but a simple redefinition of the fields would absorb it, since the two fields have the same
quantum numbers. Apart from f , this model depends only on the three parameters {Mψ, y, c2}. As
we have seen in Eq. 2.78, one of this has to be fixed in order to reproduce the right top mass, then,
for a given top-partner mass, we have only one free parameter to set, i.e. c2. All the parameters
can be made real by chiral rotations, without need of imposing CP symmetry.

The last two terms in Eq. 3.2 can be written in matrix form, obtaining a mass matrix

1√
2

(
t̄L
¯̃
LT

)t( c2yf√
2

√
ξ yf

√
ξ

0 Mψ

)(
tR
T̃R

)
, (3.6)

that can be diagonalized with a chiral rotation of the fields(
cos θL sin θL
− sin θL cos θL

)( c2yf√
2

√
ξ yf

√
ξ

0 Mψ

)(
cos θR − sin θR
sin θR cos θR

)
=

(
mt 0
0 MT̃

)
. (3.7)

that in this way mixes the elementary field t with the composite T̃ . The chiral rotation of the
states in Eq. 3.7 of course implies a modification in the couplings of the Lagrangian, in particular
we can better understand how partial compositeness work. The chiral rotation(

tL
T̃L

)
→
(
cL −sL
sL cL

)(
tL
T̃L

)
(3.8)(

tR
T̃R

)
→
(
cR −sR
sR cR

)(
tR
T̃R

)
(3.9)

modifies the Standard Model doublet mixing the elementary and composite states, thus becoming

qL →
(
cLtL + sLT̃L

bL

)
, (3.10)

tR → cRtR + sLT̃R , (3.11)

T̃L → sLtL + cLT̃L , (3.12)

T̃R → cRtR − sRT̃R . (3.13)

After the rotation, we explicitely write the first term in Eq. 3.2,from which we obtain the interaction
vertex between the W boson and the bottom quark

gq̄LW
a
µ

σa

2
qL , (3.14)

igEW

√
2

2
sin θLT̃LW

+bL + h.c. . (3.15)
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The coupling with the Z boson follows from the mixing of the W 3
µ and Bµ

2

3
g′ ¯̃T /BT̃ =

2

3

g

c2
w

¯̃T /ZT̃ +
2

3
e ¯̃T /AT̃ (3.16)

Since T̃R and tR have the same quantum numbers, the Z vertex is not modified after the chiral
rotation, and it is the Standard Model vertex, with no change. Then we will write explicitely the
only rotation for the left-handed doublet.

Instead the Higgs coupling is given expliciting the term with the Goldstone Matrix

yf
(
Q̄5
L

)
UI5T̃R =

yf√
2

sin
h

f
t̄LT̃R (3.17)

yfc2
(
Q̄5
L

)
UI5tR =

yc2f√
2

sin
h

f
t̄LtR (3.18)

3.2 Decay and production

From this terms we derive the Feynman rules, with which we can computing explicitely the decay
widths we resum here

ΓWb =
g2
EW sin2 θLm

3
T̃

64πm2
W

f(xW , xb)g(xb, xW ) (3.19)

ΓZt =
g2
EW sin2 θL cos2 θLm

3
T̃

128πm2
W

f(xZ , xb)g(xb, xZ) (3.20)

ΓHt =
g2
EW sin2 θL cos2 θLm

3
T̃

(1− ξ)
128πm2

W

f(xZ , xb)[1 + x2
t + x2

H)(1 + x2
t ) + 4x2

t ] , (3.21)

where

f(xi, xj) =
√

(1− (xi + xj)2)(1− (xi − xj)2) (3.22)

g(xi, xj) = 1− x2
i + x2

j (1 + x2
i )− 2x4

j . (3.23)

where xi = mi/MT̃ . From these equations we can observe that in the limit MT̃ →∞ the functions
f , g → 1, then the Standard Model couplings are reproduced (i.e. the coupling that would have
the top-partner if it has been a Standard Model field). We can give a brief estimation noting that
in the limit sin θL � 1⇒ cos θL ∼ 1, and knowing that ξ ≤ 0.2 the Branching ratios divide in

• T̃ →Wb with Br(Wb) ∼ 0.5;

• T̃ → tH with Br(tH) ∼ 0.25;

• T̃ → tZ with Br(tZ) ∼ 0.25.

In this thesis we will consider the Wb decay channel, that has the largest decay width and an
easier final state to detect. The Zt channel with subsequent decay to lepton is an interesting final
state too, but it has a lower branching than that of the W boson, that is Br(W → lν) ∼ 33%
(from [25]). The reconstruction of the Higgs event is more complex, since it has two bottom quarks,
and however is not yet an analysis tool. To exclude the production of such particles at the Large
Hadron Collider we have to determine the cross-sections. The single production of T̃ happens via
electroweak process, instead, since the top-partners ared colore fermions, the pair production is
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q q′

T̃W

b

b̄

g

g

g
g

T̃

T̃

Figure 3.1: Single and pair production Feynman diagrams

through QCD interactions. Then the σpair is parametrized in terms of the mass mT̃ , while we can
write the cross section of the single production in terms of the interaction term

gXtRX̄L /V bL (3.24)

that leads to a parametrization

σsingle(T̃ b) = (gT̃ )2σV b(mT̃ ) . (3.25)

where σV b resums the Electroweak interaction. In table 3.1 there are the values of the electroweak
cross section and Fig. 3.1 shows the two different processes. This is an interesting simplification,
from which we can start in defining our multi-dimensional parameter space of couplings. We
can explicitly note that the coupling, and thus the cross section of the single production with
subsequent decay to Wb, is completely controled by the chiral angle sin θL(y, c2,Mψ). We recall
that two of the free parameters are fixed to reproduce MT̃ and mt. Let’s call hereafter gT̃ =√

2
2 gEW sin θL. Accurate informations about the cross sections can be obtained by MonteCarlo

simulation in association with tree-level diagrams computation. For the present work we have used
MadGraph 5 [24], with model files implemented with FeynRules package (thanks to Matsedonski).
MadGraph 5 is a matrix element generator, that allows to generate MonteCarlo events directly
from the Lagrangian of a model. Some kinematic cuts are needed in the generation of the cross
sections, then we set the transverse momentum of the parton jets to 5 GeV, in order to avoid
infrared divergences. The maximum number of flavor considered as light jets is 4, and the Parton
Distribution Function are the CTEQ6L1. The values of the Leading Order cross section both for
singe and pair production at the Large Hadron Collider with

√
s = 8TeV are reported in Table 3.2.

Five mass points are considered, compatibly with what we have discussed in the previous section.
The values of the coupling used in the model files are resummed in Table 3.3. From consideration
of naturalness, c2 ∼ y ∼ 1. In this scenario, we can see that the single production mode has a
higher rate than the pair one. Then we will focus on this process, in particular, as we said before,
on the Wb channel.

For what concerns the phenomenology of the decay, besides the T̃ production, we have a soft
bottom-quark, that is useless for an analysis. The other important product of the Wb channel is the
emission of a light forward jet, coming from the recoil of the top partner with initial parton states.
This could be a variable that discriminates the signal from the backgrounds with high efficiency,
provided the masses of the Standard Model particles produced are not so heavy as a top-partner,
then the recoil of the forward jet is smaller, with values of the pseudo-rapidity more central. In
Fig. 3.2 we can see the parton level distribution in the η− pT plan of this object. Then, besied the
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T̃ mass (GeV) σsingle(V b)(pb)

600 5.71± 4× 10−4

700 2.24± 4× 10−4

800 1.12± 4× 10−4

900 0.51± 4× 10−4

1000 0.40± 4× 10−4

Table 3.1: Electroweak cross section at the Large Hadron Collider,
√

8 TeV

T̃ mass (GeV) σsingle(Wb)(pb) σpair(Wb)(pb)

600 0.112 0.113

700 0.044 0.037

800 0.022 0.013

900 0.010 0.005

1000 0.008 0.002

Table 3.2: T̃ single and pair production at 8 TeV center of mass energy at LHC. The pair production
information is taken from [23]

T̃ mass y c2 sin θL
600 1 0.90 0.34

700 1 0.89 0.29

800 1 0.89 0.25

900 1 0.89 0.22

1000 1 0.89 0.20

Table 3.3: T̃ single production at 8 TeV center of mass energy at LHC. Decay channel Wb is
considered, with subsequently leptonic decay of the W boson. Values of the couplings used for
the generation in Madgraph. Everywhere the mass of the top quark is set to its PDG value
mt ' 172.5 GeV
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Figure 3.2: Pseudo-rapidity of the forwad jet ηj′ , in the scenario with mT̃ = 800 GeV.

forward jet there are the product of the T̃ decay, W and b, with the W that subsequently decays
to leptons. This signature is very similar, except for the mass of the top-partner, to that of single
top-quark production in the Standard Model. This is an important feature we will exploit in the
subsequent analysis.

3.3 T̃ single production rate

We will now calculate explicitely the relation among the free parameters of the model, in order to
get a suitable formula which allow us to better understand the sensitivity of the cross section in
the parameters space of the model.

M =

(
A B
0 C

)
= −

(
c2

yf√
2

√
ξ yf√

2

√
ξ

0 Mψ

)
= L†

(
mt 0
0 MT̃

)
R (3.26)

when we chiral rotate the basis, we find

M =

(
cL sL
−sL cL

)(
mtcR −mtsR
MT̃ sR mtcR

)
. (3.27)

The 2− 1 entry has to vanish, then

0 = −mtsLcR +MT̃ sRcL (3.28)

and we obtain a relation between the two angles

tan θR
tan θL

=
mt

MT̃

. (3.29)

For the coupling of interest we will next consider only θL; let’s write

M ·M t =

(
A2 +B2 BC
BC C2

)
=

(
cL sL
−sL cL

)(
m2
t cL −m2

t sL
M2
T̃
sL M2

T̃
cL

)
(3.30)
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the 1− 2 entry reads

BC =
M2
T̃
−m2

t

2
sin(2θL) . (3.31)

Another constraint is given by the determinant equation

A · C = mtMT̃ (3.32)

we can safely assume A,B,C > 0, since all the parameters of the Lagrangian can be made positive
by a field redefinitions. The trace gives the following equation

m2
t +M2

T̃
= A2 +B2 + C2 . (3.33)

then combining the two equations, we obtain a suitable formula among the physical parameters
and the angle

1

c2
=
M2
T̃
−m2

t

2mtMT̃

sin 2θL . (3.34)

With this formula we can easily variate the rate of production of T̃ using directly the couplings that
enter in the Lagrangian of the model. From this constraint we have 0 ≤ sin 2θL ≤ 1 and nothing
else. This implies that we have a minimal value for c2 (for which we have the maximal allowed
coupling) that is

1

c2,min
=
M2
T̃
−m2

t

2mtMT̃

. (3.35)

This happens when sin(2θL) = 1 that is θL = π/4. From this discussion we can thus note that the
maximal coupling never reach the Standard Model value, since we have

sin θmaxL =

√
2

2
⇒ gT̃ =

√
2

2
gEW

√
2

2
. (3.36)

(3.37)

We note that the cross section is almost independent of ξ. In Fig. 3.3 we can see how the branching
ratios change with the coupling c2, then we can use directly the results given in Eq. 3.21 to compute
the right cross section with subsequent decay of the top-partner to the Wb channel. Then, as we
have just described, the cross section has a maximum at c2,min and a minimum with c2 →∞, for
which the cross section vanishes. Not considering such extreme scenario in the following analysis,
we have drawn , in Fig. 3.4, a suitable variatons of the above cross sections, with c2 ∈ [c2,min, 3].
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Figure 3.3: Branching ratios of the T̃ production with MT̃ = 800 GeV as a function of the coupling,
with c2 ∈ [c2,min, 3].

Figure 3.4: Cross section with theoric band for the top partner in the singlet at the Large Hadron
Collider

√
s = 8 TeV



Chapter 4

Experimental environment

4.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [26] is a proton-proton and heavy ion accelerator installed at
CERN, in a tunnel about 100 m underground in Geneva, Switzerland. The choice of a non-
elementary particle as the proton for the beams instead of electrons-positrons was mandatory due
to the energy loss by synchrotron radiation, which was the ultimate limitation for the LEP beam
energy. Being proportional to γ4 the synchrotron radiation for protons is (mp/me)

4 ∼ 1013 smaller
than for electrons.

The LHC ring is composed by two parallel adjacent beam pipes at the radial distance of 2.8 cm
from proton beams, one for each pipe (Fig. 4.1b). Along the LHC there are only four interaction
points in correspondence to the four diametrical opposite experiments installed on the ring. The
Compact Muon Solenoid (CMS) and the A Toroidal LHC Apparatus (ATLAS) are multipurpose
detectors, while the LHC bottom Experiment (LHCb) and A Large Ion Collider Experiment (Alice)
are more focused on specific physics studies. In particular LHCb has been designed to study the CP
symmetry violation in b physics, while Alice to analyze the quark-gluon plasma produced mainly
in heavy ion runs.

(a) The LHC accelerator complex (b) Section of a LHC magnet

Figure 4.1: The Large Hadron Collider

The commissioning for the LHC started on December 5th 2009 with a first pilot physical Run
at 900 GeV and 2 · 1010 proton/bunch with 16 × 16 bunches circulating inside LHC. At the end

41
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Energy per nucleon E 7 TeV

Dipole field at 7 TeV B 8.33 T

Design luminosity L 1034cm−2s−1

Bunch separation 25 ns

Number of bunches kB 2808

Number of particles per bunch Np 1.15 · 1011

β value IP β∗ 0.55 m

RMS beam radius at IP σ∗ 16.7 µm

Luminosity lifetime τL 15 hours

Number of collision/crossing nc ≈ 20

Table 4.1: The Large Hadron Collider main features

of December also some 2.36 TeV collisions were done, already making the LHC the most powerful
proton accelerator machine in the world. Consecutively the first real physical Run started on March
30th 2010 with a nominal beam energy of 3.5 TeV and a luminosity goal of at least 1 fb−1 already
achieved in the first months of 2011.

The usage of two proton beams instead of having one composed by anti-protons (like at the
Tevatron or at the Spp̄S) is not a disadvantage from the physics point of view, given the higher
center of mass energy; on the contrary, it allows an easy and fast population of both beams with a
high number of particles. The fact that the two partons involved in the interaction have unknown
momentum has two fundamental consequences. First of all the total effective energy of an event
is unknown, because the proton remnants, that carry a sizable fraction of the proton energy,
are scattered at small angles and are predominantly lost in the beam pipe, escaping undetected.
Experimentally, it is therefore not possible to define the total and missing energy of the event,
but only the total and missing transverse energies (i.e. in the plane transverse to the beams).
Moreover, the center of mass may be boosted along the beam direction; it is therefore very useful
to use experimental quantities that are invariant under such boosts, such as pseudorapidity (see
Section 4.2.1).

The collisions are between two counter-rotating proton beams, each with an energy of 4.0 TeV
(in 2012) giving a total collision energy of 8 TeV . The machine is composed by 1232 magnet
dipoles, which can yield a magnetic field up to 8.3 T , and by 392 quadrupoles for the focalisation
of the beam. In order to reach this very high value of magnetic field the magnets are brought at
the temperature of 2.3 K with a cryogenic system based on liquid helium. Radio frequency cavities
installed between one dipole and the following provide to generate an opportune electric field to
increase the proton energy of 0.5 MeV per turn. The luminosity is

L =
γfkBN

2
p

4πεnβ∗
F

where γ is the boost Lorentz factor, f is the revolution frequency, kB and Np refer respectively to
the number of the bunches and to the number of protons per bunch. εn is the normalised transverse
emittance while β∗ is the betatron function at the interaction point. Finally F is the reduction
factor due to the crossing angle of the bunches. For LHC the design value for the luminosity is
L = 1034cm−2s−1 [27] for collision energy of 14 TeV , which corresponds to one billion pp collisions
per second. The maximum number of bunches that can circulate in the machine is 2808 with a
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25 ns time span between each other. The gaps of the beam are used to synchronise the beam,
acquiring calibration data and providing resets to front-end electronics.

4.2 The Compact Muon Solenoid

The Compact Muon Solenoid (CMS) [28], shown in Fig. 4.2, is a cylindrical barrel 21.6 m long, with
a diameter of 15 m. It is one of two general purpose particle physics detectors built at LHC. The
detector has been designed to study various aspects of pp collisions at

√
s = 14 TeV and heavy-ion

(Pb-Pb) collisions at
√
s = 5.5 TeV , that will be provided by the LHC at a design luminosity of

1034cm−2s−1 and of 1027cm−2s−1, respectively.

Figure 4.2: The Compact Muon Solenoid [1]

To enhance the physics reach of the experiment the CMS subcomponents must provide:

• a high performance system to detect and measure muons

• a high resolution method to detect and measure electrons and photons

• a high quality central tracking system to give good reconstruction of charged particle tracks
and accurate momentum measurements

• a “hermetic” calorimeter, designed to entirely surround the collision and prevent particles
from escaping

With these priorities in mind, the first essential item was a very strong magnet. The higher a
charged particle’s momentum, the less its path is curved in the magnetic field, so when knowing
its path its momentum can be measured. A strong magnet was therefore needed to allow us to
accurately measure even the very high momentum particles, which can provide a discovery of new
physic at high energy, such as energetic muons. A large magnet also allowed for a number of layers
of muon detectors within the magnetic field, so momentum could be measured both inside the coil
(by the tracking devices) and outside of the coil (by the muon chambers).

The magnet is the Solenoid in Compact Muon Solenoid; it is a coil of superconducting wire
that creates a magnetic field when electricity flows through it; the CMS solenoid has an overall
length of 13 m and a diameter of 7 m, and generates a homogeneous magnetic field of the strength
of 3.8 T [?] (∼ 100, 000 times stronger than that of the Earth). To reach the necessary current of
41.7 MA/turn, the 220 t solenoid cold mass is composed of a 4-layer of NbTi wires co-extruded



44 CHAPTER 4. EXPERIMENTAL ENVIRONMENT

Figure 4.3: CMS front and side views, with its main apparatus highlighted [?]

and mechanically reinforced with Al. The solenoid thickness is 3.9 radiation lengths and it can
store up to 2.6 GJ of energy. The field is closed by a 12, 000-tonne yoke made of five three-layered
dodecagonal barrel wheels and three end-cap disks at each end of common structural steel. The coil
is cooled down to 4.8 K by a helium refrigeration plant, while insulation is given by two pumping
stations providing vacuum on the 40 m3 of the cryostat volume. Its main role is to increase the field
homogeneity in the tracker volume and to reduce the stray field by returning the magnetic flux of
the solenoid. In addition, the yoke is instrumented with four layers of muon stations and the steel
plates play the role of absorber for these four interleaved layers (“stations”) of muon chambers,
which provide for a measurement of the muon momentum independent of the inner tracking system.

The CMS magnet is the largest magnet of its type ever constructed and allows the tracker and
calorimeter detectors to be placed inside the coil. ATLAS in contrast has chosen the so-called small
coil solution, where only the tracker is inside the solenoid coil (with a field strength of 2 T ). Their
calorimeters and the muon system are located outside the solenoid coil and are in an extra toroidal
magnetic field. CMS is a little smaller compared to ATLAS, but with a weight of 14, 000 tonnes
CMS is much heavier and weighs twice as much as ATLAS.

4.2.1 CMS coordinate system

The interaction point is chosen as the center of the coordinate system, the z-axis points along the
beam pipe towards the Jura mountains from LHC Point 5, the y-axis points vertically upward
and the x-axis points to the center of the LHC. Since the detector has a cylindrical shape the
cylindrical coordinate system is used. It is described by the radial distance to the beamline r, the
polar angle θ and the azimuthal angle ϕ. The polar angle is measured with respect to the z-axis:
θ = 0 corresponds to the positive z-direction and θ = π to the negative z-direction. The azimuthal
angle is measured from the x-axis in the xy-plane: ϕ = 0 points to the positive x-direction and
ϕ = π/2 to the positive y-direction. The pseudo-rapidity η is defined as:

η = − log tan

(
θ

2

)
This leads to an η of 0 for particles moving perpendicular to the beam direction and the beam
direction itself has a pseudo-rapidity of +∞ in +z and −∞ in −z direction. The region of |η| < 1.4
will be referred to as the central region in the following. Both ∆η and ∆ϕ of two particles are
independent of Lorentz boosts, therefore the distance between two particle can be measured in a
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(a) Scheme of the silicon strip detectors and their angular |η| coverage (b) The barrel region of the silicon strip
detector. Some of the modules can be
seen without the pixel detector installed

Figure 4.4: The CMS tracker systerm

third Lorentz invariant variable:

∆R =

√
∆η2 + ∆ϕ2

4.2.2 Tracker

The CMS tracker [29] [30] is a cylindrical detector of 5.8 m in length and 1.2 m in radius and
measures charged particles within the |η| < 2.5 pseudo-rapidity range and is fully immersed in the
3.8 T magnetic field produced by the CMS superconducting solenoid. Its purpose is to provide
high resolution track hits as close as possible to the interaction point. The large charged track
density close to the beam requires the usage of a pixel system (Section 4.2.2), which can provide
three dimensional hit information while keeping the pixel occupancy low. The precise and efficient
measurement of the tracks close to the interaction region is essential to determine their impact
parameters with respect to the collision point and moreover to provide a precise reconstruction of
secondary vertices. These quantities are the basis for the tagging of b-jets.

The typical momentum resolution achieved by the inner tracking system is ∆pT /pT = 0.7% at
1 GeV , 5% at 1 TeV [31].

Pixel detector

The pixel detector is the closest one to the beam pipe, therefore it is exposed to very high levels
of radiation coming from the collisions. The radiation at a distance of 8 cm from the beam pipe
will be of about 10 million particles per cm2 per second. This number is very high and demanded
a careful design for this system. The radiation hardness achieved in the pixel detector system will
allow it to operate for about 10 years. When a charged particle passes through any of those sensors,
the electrons in the silicon get enough energy to create electron-hole pairs and therefore a small
electrical current, this current is read out by the electronics attached to each tile. The pixel readout
allows the experimentalist to know a charged particle trajectory with a space resolution of one tile
(100 µm by 150 µm).

Silicon strip detectors

Once the particles leave the pixel detector [32], they pass through ten layers of Silicon Strip De-
tectors (SSD) (Fig. 4.4). These detectors surround the pixel system and they go out until a radius
of 130 cm completing the central part of the CMS tracker (Fig. 4.4a). The SSD contains 15, 148
sensitive modules with a total of 9.3 million strips. All the information produced is read by 80, 000
microelectronic chips. Each one of these modules is made out of a set of sensors, a mechanical
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support structure, and the electronics for the readout. The SSD has an active area of 200m2 and
consist of four inner barrel layers assembled in shells (TIB); two inner end-caps, each one composed
of three small discs (TID); an outer barrel formed by six layers of detectors (TOB); and two outer
end-caps that close the tracker (TEC) [33].

4.2.3 Electromagnetic calorimeter

The electromagnetic calorimeter (ECAL) [34] of the CMS detector is a homogeneous crystal
calorimeter. The CMS ECAL is build out of lead tungstate (PbWO4) crystals, a transparent
material denser (8.3 g/cm3) than iron, with a radiation length X0 of 0.89 cm, a Molière radius
RM of 2.19 cm and with fast response (80% of light emitted within 25 ns, corresponding with
the designed bunch crossing rate of the LHC). ECAL is composed of a barrel covering |η| ∼ 1.48
and two endcaps covering 1.48 < |η| < 3.0. The barrel is made of 61200 trapezoidal and quasi-
projective crystals of approximately 1×RM in lateral size and about 25.8X0 in depth. The barrel
inner radius is 124 cm. Viewed from the nominal interaction vertex, the individual crystals appear
tilted (off-pointing) by about 3◦ both in polar and azimuthal angles and the granularity is about
∆η × ∆ϕ = 0.0175 × 0.0175 rad. The barrel is divided into two halves, each made of 18 super-
modules containing 1700 crystals. Each super-module is composed of four modules. The end-caps
consist of two detectors, a pre-shower device followed by PbWO4 calorimetry. The pre-shower
is made of silicon strips placed in a 19 cm sandwich of materials including about 2.3 X0 of Pb
absorber. It covers inner radii from 45 cm to 123 cm, corresponding to the range 1.6 < |η| < 2.6.
Each end-cap calorimeters are located at a distance of 314 cm from the nominal vertex and cover
1.479 < |η| < 3.0. They are made of 7324 rectangular and quasi- projective crystals of approxi-
mately 1.3×RM in lateral size and about 24.7 X0 in depth.

The ECAL has an energy resolution of better than 0.5% above 100 GeV . The HCAL (see
Fig. 4.5), when combined with the ECAL, measures jets with a resolution ∆E/E ≈ 100%/E⊕ 5%.

One of the principal CMS design objectives is to construct a very high per-
formance electromagnetic calorimeter.  A scintillating crystal calorimeter of-
fers excellent performance for energy resolution since almost all of the ener-
gy of electrons and photons is deposited within the crystal volume.  CMS has 
chosen lead tungstate crystals which have high density, a small Molière radi-
us and a short radiation length allowing for a very compact calorimeter sys-
tem.  A high-resolution crystal calorimeter enhances the H!"" discovery po-
tential at the initially lower luminosities at the LHC
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Figure 4.5: The CMS Electromagnetic Calorimeter (ECAL)

4.2.4 Hadronic calorimeter

The magnet system directly following the hadronic calorimeter (HCAL) [35] has a large impact
on its design since most of the hadronic calorimeter is located inside the magnet coil which can
not be enlarged arbitrarily. The most important requirements to be fulfilled by the hadronic
calorimeter are those of maximizing the number of hadronic interaction lengths inside the magnet
coil to minimize the non-Gaussian tails in containment and guaranteeing the hermeticity for the
measurement of jets and of the transverse energy. This is achieved by using brass as absorber
material with layers of active, scintillating material in between. The scintillating material is chosen
to be a plastic scintillator connected with wavelength- shifting fibers to the multi-channel hybrid
photodiodes which read out the signal.
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Figure 5.1: Longitudinal view of the CMS detector showing the locations of the hadron barrel
(HB), endcap (HE), outer (HO) and forward (HF) calorimeters.

Table 5.1: Physical properties of the HB brass absorber, known as C26000/cartridge brass.

chemical composition 70% Cu, 30% Zn
density 8.53 g/cm3

radiation length 1.49 cm
interaction length 16.42 cm

(∆η ,∆φ) = (0.087,0.087). The wedges are themselves bolted together, in such a fashion as to
minimize the crack between the wedges to less than 2 mm.

The absorber (table 5.2) consists of a 40-mm-thick front steel plate, followed by eight 50.5-
mm-thick brass plates, six 56.5-mm-thick brass plates, and a 75-mm-thick steel back plate. The
total absorber thickness at 90◦ is 5.82 interaction lengths (λI). The HB effective thickness increases
with polar angle (θ ) as 1/sinθ , resulting in 10.6 λI at |η | = 1.3. The electromagnetic crystal
calorimeter [69] in front of HB adds about 1.1 λI of material.

Scintillator

The active medium uses the well known tile and wavelength shifting fibre concept to bring out the
light. The CMS hadron calorimeter consists of about 70 000 tiles. In order to limit the number of
individual elements to be handled, the tiles of a given φ layer are grouped into a single mechanical
scintillator tray unit. Figure 5.5 shows a typical tray. The tray geometry has allowed for construc-
tion and testing of the scintillators remote from the experimental installation area. Furthermore,

– 123 –

Figure 4.6: The CMS Hadronic Calorimeter (HCAL)

The barrel part of the hadronic calorimeter covering 0 < |η| < 1.4 consists of 15 layers of
absorber of 5 cm combined with scintillators as thin as 3.7 mm accompanied by two external layers
of stainless steel for mechanical strength. In front of the first layer of absorber a 9 mm scintillator is
located and it is optimized to collect 1.5 times more light then the other scintillators. The end-caps
of the hadronic calorimeter cover 1.3 < |η| < 3.0 with a granularity of ∆η ×∆ϕ = 0.175 × 0.175.
Each end-cap consists of 1152 towers.

The last part of the hadronic calorimeter is the hadronic forward calorimeter (HF) which in-
creases the containment and hermeticity of the system. It is located 11.2 m from the nominal
interaction vertex and has a depth of the absorber of 1.65 m. It covers 3.0 < |η| < 5.0 and is
made of steel as absorber and quartz fiber. The signal is produced by light emitted due to the
Cerenkov effect in the quark fibers and is channeled by them to photomultipliers detecting the
light, which enables the hadronic forward calorimeter to derive an effective electromagnetic frac-
tion of energy corresponding to the first centimeters of the absorber as in this region of |η| where
no electromagnetic calorimeter is available.

4.2.5 Muon system

While electromagnetic and hadronic particles are mainly contained inside the calorimeters, muons
are able to travel through the solenoid with minimal energy loss inside the detector. Muons can
provide strong indication of interesting events at hadron collider and are natural candidates for
triggering purposes. The CMS muon system [36] was designed to cope with three major functions:
robust and fast identification of muons, good resolution of momentum measurement and triggering.
The muons are measured in the pseudo-rapidity window |η| < 2.4, with detection planes made of
three technologies: Drift Tubes, Cathode Strip Chambers, and Resistive Plate Chambers. Matching
the muons to the tracks measured in the silicon tracker results in a transverse momentum resolution
between 1 and 5%, for pT values up to 1 TeV/c.

The muon spectrometer [36] consists of three different kinds of detectors: 250 drift tubes cham-
bers (DTs) in the barrel region of |η| < 1.2, 540 cathode strip chambers (CSCs) covering the
end-cap region up to |η| < 2.4, and 912 resistive plate chambers (RPCs) in the range of |η| < 1.6
covering the whole barrel and parts of the end-caps. The iron magnet return yoke hosts the muon
detector stations. The barrel region (|η| < 1.2) is composed by 5 wheels, each divided in 12 sectors
which cover each a 30◦ azimuthal angle. Four iron gaps within each sector are equipped with de-
tector stations. The barrel muon station consists of one DT and two RPCs joint together. The two
end-caps are made of three iron disks and four layers divided into two or three stations of CSCs



48 CHAPTER 4. EXPERIMENTAL ENVIRONMENT

12 Chapter 1. Introduction

high, cathode strip chambers (CSC) are deployed and cover the region up to |η| < 2.4. In

addition to this, resistive plate chambers (RPC) are used in both the barrel and the endcap

regions. These RPCs are operated in avalanche mode to ensure good operation at high rates

(up to 10 kHz/cm
2
) and have double gaps with a gas gap of 2 mm. A change from the

Muon TDR [4] has been the coating of the inner bakelite surfaces of the RPC with linseed

oil for good noise performance. RPCs provide a fast response with good time resolution

but with a coarser position resolution than the DTs or CSCs. RPCs can therefore identify

unambiguously the correct bunch crossing.

The DTs or CSCs and the RPCs operate within the first level trigger system, providing 2

independent and complementary sources of information. The complete system results in a

robust, precise and flexible trigger device. In the initial stages of the experiment, the RPC

system will cover the region |η| < 1.6. The coverage will be extended to |η| < 2.1 later.

The layout of one quarter of the CMS muon system for initial low luminosity running is

shown in Figure 1.6. In the Muon Barrel (MB) region, 4 stations of detectors are arranged in

cylinders interleaved with the iron yoke. The segmentation along the beam direction follows

the 5 wheels of the yoke (labeled YB−2 for the farthest wheel in −z, and YB+2 for the farthest

is +z). In each of the endcaps, the CSCs and RPCs are arranged in 4 disks perpendicular to

the beam, and in concentric rings, 3 rings in the innermost station, and 2 in the others. In

total, the muon system contains of order 25 000 m
2

of active detection planes, and nearly

1 million electronic channels.
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Figure 1.6: Layout of one quarter of the CMS muon system for initial low luminosity running.

The RPC system is limited to |η| < 1.6 in the endcap, and for the CSC system only the inner

ring of the ME4 chambers have been deployed.

Figure 4.7: Section view of the CMS muon chambers and their coverage as a function of η [?]

and RPCs.



Chapter 5

Simulation, reconstruction and
Datasets

5.1 The Compact Muons Solenoid FastSimulation

The events generated by the MonteCarlo generator contain only a list of finale states particles with
their energies and momenta as coming out of the hard interaction process; they need to undergo
the simulation of the detector response to be compared with the real data. The CMS collaboration
has developed two different types of MonteCarlo simulation: a detailed GEANT4 -based [37] simu-
lation, and a simpler but faster implementation of particle propagation and interaction (called Fast
Simulation [38]). The FastSimulation is based on a detector model with simplified geometry, re-
sponse evaluation and pattern recognition, to decrease the processing time per event. The particles
produced by event generators, used as inputs to the simulation, are propagated through the detec-
tor undergoing all the physically relevant material effects and interactions. With complex events
taking minutes to simulate using Geant4, the FullSimulation cannot keep up with the constraints
imposed by time, computing power and needed statistics. At 100-1000 times faster per event, the
FastSimulation is the only way to produce large statistic data sets necessary especially for beyon
the standard model analyses that require to cover a large phase space of parameter points. Let’s
look in more details at the Fast Simulation approach:

• GEOMETRY: the FastSimulation uses a simplified version of the CMS geometry, using nested
cilindrical layer. Particles are propagated from one layer to the next;

• MATERIAL EFFECTS: bremsstralhung, photon conversion, multiple Coulomb scattering,
energy loss through ionization and nuclear interactions are computed analytically . Cross
sections are taken from Particle Data Group (or Data Libraries) and the kinematics are
derived from single particle collisions saved beforehand.

• TRACK RECONSTRUCTION: since the pattern recognition phase of track reconstruction
is very time consuming, the Fast Simulation implements instead an emulation of the pattern
recognition. The hits of the ”true” MonteCarlo particle are used to build and fit the track,
for this reason no fake tracks are possible. This is reasonable in the configuration of tracking
of 2011 and 2012 where the fake rate is very small.

• MUON: muons are propagated in the magnetic field through the tracker and calorimeters
with average energy loss, then dE/dX and multiple scattering in the iron yokes of the muon
chambers are computed. Muon simulated hits are produced in all sections of the muon
revelation system.

49
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• CALORIMETRY: the Grindhammer [39] parametrization is used to simulate electron showers
in the Electromagnetic Calorimeter (ECAL). Photons undergo pair conversions based on the
number of radiation lenghts they have traversed. Energy leakage into the crystal gaps and into
the Hadron Calorimeter (HCAL) are included, as well the electronic noise. Shower simulation
in the HCAL is similar, with different types of particles parametrized from GEANT-based
simulation results.

In chapter 3 we studied the generation of the signal process. In order to be able to compare the
MonteCarlo events with the data, the next step is to run the FastSimulation on the Les Houches
Event files. The explicit command we set was:

cmsDriver.py Hadronizer_TuneZ2star_8TeV_generic_LHE_pythia_tauola_cff.py

--filein=file:process.lhe --step GEN,FASTSIM,HLT:7E33v2

--beamspot Realistic8TeVCollision --conditions START53_V7C::All

--pileup 2012_Summer_inTimeOnly --datamix NODATAMIXER

--eventcontent AODSIM --datatier AODSIM --fileout=file: process.root

• Hadronizer TuneZ2star 8TeV generic LHE pythia tauola cff.py is the fragment which con-
tains the information about the hadronization of the signal, implemented by PYTHIA 6.4 [40].
Tauola performs the polarization of the fermion particles.

• the input file is the Les Houches Events generated in 3;

• Generation, FastSimulation, HighLevelTrigger with 6× 1033 instant luminosity are used;

• √s = 8 TeV;

• START53 V7C::All, Global Tag;

• Pileup “2012 Summer inTimeonly”: represents the distribution used to simulate the effects
of the multiple interactions based on the pattern of the pile-up distribution measured in data,
during the second half of 2012 data taking, shown in Fig. 5.1 ;

• eventcontent and datatier set the type of object in output of the FastSimulation: AOD,
that is Anaysis Object Data. AOD is the compact analysis format, designed to allow a wide
range of physics analyses whilst occupying sufficiently small storage so that very large event
samples may be held at many centres. AOD events contain the parameters of high-level
physics objects, plus sufficient additional information to allow kinematic refitting.

5.2 Event reconstruction in CMS

The event reconstruction is the operation of constructing physics quantities from the raw data
collected by the experiment. The reconstruction process is seen as a collection of independent units,
each one providing a set of corresponding reconstructed objects as an output. Each reconstruction
unit retrieves information from the input event, and produces and adds to the event new products.
It is performed as a “Framework application”, in which all steps are explicitly scheduled in advance,
and care is taken to ensure that any information required by a given reconstruction unit will have
already been prepared by a prior unit. The output of the Data Acquisition (DAQ) system consists
of signal pulse heights, the time when the signal occurred, and the address of the detector element
where it occurred. The Particle Flow algorithm, [41], is an event recostruction method based on the
optimal combination of informations among all the available subdetectors of the Compact Muon
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Figure 5.1: Pile-Up distribution

Solenoid. This approach has its reason in the intrinsic structure of the detector; charged particle
tracks, ECAL and HCAL clusters and muon tracks are the fundamental building bricks of this
algorithm. These must be delivered with high efficiency and low fake rate event in high-density
environments like jets hadronization. The Particle Flow method is an off-line way to determine
momenta, energy, directions and positions of the individual physical objects. Looking at Fig. 5.2,
we can better understand how the Particle Flow algorithm works: an ECAL cluster not linked to
any track is a photon, an ECAL and HCAL cluster matched to a track is a charged hadron, an
HCAL cluster without a track gives a neutral hadron. Electrons are only ECAL cluster linked to
a track; a muon releases hits in the muon chambers. These are the basic elements, from which we
can reconstruct other composite physical objects, as τ leptons, from their decay products, jets from
hadronization and missing transverse energy. Since thousands of particles are generated in each
event, some quality requirements are needed. The CMS collaboration study the best compromise
between purity and efficiency to give the most realistic reconstruction of physical objects.

5.2.1 Track reconstruction

The high resolution of the tracker and the large magnetic field allow an extremely accurate mea-
surement of the momentum of the charged particles. The proton-proton interaction region, known
as the beamspot, is used as a first estimate of the hard interaction point. Tracks are seeded from
either triplets of hits or pairs of hits with an additional constraint from the beamspot or a pixel
vertex. This first estimate of the trajectory is then propagated outwards in a search for compatible
hits with the combinatorial track finder (CTF). An additional search for hits is performed from the
outer boundaries of the detector and propagating inwards. Finally, the tracks are fitted and fil-
tered to remove those that are likely fakes. Before starting the next iteration of the algorithm, hits
that were unambiguously assigned to a track are removed from the collection to create a smaller,
cleaner collection. The first iterations usually pick up prompt tracks, with high quality and higher
pT , while the the following iterations find displaced tracks or tracks with missing hits in the pixel
detector, allowing the reconstruction of conversions or nuclear interactions, down to very low pT .
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Figure 5.2: Transverse view of CMS detector with some examples of tracks

5.2.2 Vertex reconstruction

The primary interaction vertex is reconstruced combining collections of tracks. These candidate
tracks are clustered along the z−axis, then a fit algorithm is performed to find the most compatible
vertex with the selected tracks. The reconstruction of the vertex is then used to better estimate
track momenta and parameters. In this analysis, at least one primary vertex is required to be
reconstructed from at least four tracks, requiring the track fit to have ndof ≥ 5, with zPV <
24 cm and ρPV < 2 cm, where |zPV | and ρPV are the vertex distance with respect to the nominal
interaction point along the z − axis, and to the transverse plane. Prompt tracks are defined by
some variables, the transverse impact momentum d0, the number of hits and the normalized χ2.

5.2.3 Muon Reconstruction

The muon offline reconstruction starts with the reconstruction of hit positions in the DT, CSC and
RPC sub-systems. The hits within each DT and CSC are matched. In the offline reconstruction,
the latter are collected and matched among each other in order to generate seeds, which give the
position, direction and a first pT estimate of the muon candidate. The segments and hits from
all three muon sub-systems are used in a muon track fit, which is based on the Kalman filter
technique [42]. The result is a collection of objects reconstructed in the muon spectrometer, which
are referred to as standalone muons. To improve the momentum resolution, a beam-spot constraint
can be applied in the fit. To benefit from the full CMS resolution, the standalone muon tracks are
then matched with the tracks reconstructed in the central silicon tracker and combined to form
global muon tracks. For each standalone muon track, a search for tracks matching it among those
reconstructed in the inner tracking system (referred to as “tracker tracks”, “inner tracks” or “silicon
tracks”) is performed, and the best matching tracker track is selected. For each “tracker track” -
“standalone muon” pair, the track fit using all hits in both tracks is performed, again based on the
Kalman filter technique. The result is a collection of objects referred to as “global muons”. The
efficiency to reconstruct a global muon candidate with pT > 7 GeV and |η| < 2.4 is 99% for events
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accepted by the HLT. Quality criteria impose the agreement of the two approach, leading to a high
efficiency in recostructing high energy leptons.

For each muon candidate, a number of quantities is computed that can help to distinguish
isolated muons from the muons embedded in jets. Tracker- and calorimeter- based isolation re-
quirements are imposed to reduce the contamination from the W +jets and tt backgrounds with
secondary muons from b-quark jets. First, the sum of the pT of the tracks, within a ∆R = 0.3
cone around the global muon candidate, must be lower than 10 GeV for the muon to pass the
loose tracker isolation and 2 GeV for the tight tracker isolation. The tracks contributing to the
sum need to pass the transverse momentum threshold of 0.9 GeV and come from the event vertex
(|ztrack − zµ| < 0.2 cm). Second, the energy in the electromagnetic and hadronic calorimeters,
within a ∆R = 0.3 cone around the global muon candidate, must be lower than 10 GeV for the
muon to pass the loose calorimeter isolation and 5 GeV for the tight calorimeter isolation. In both
cases, a veto cone of ∆R = 0.01 around the global muon candidate is taken into account. Together
with these muon isolation criteria, the muon selection has an efficiency of 92% for muons passing
the HLT requirements.

5.2.4 Electron Reconstruction

Electrons energies are measured in the CMS Hadron Calorimeter. To collect the photons and elec-
trons energy in the Electromagnetic Calorimeter, local deposits (“basic clusters) are summed into
superclusters (SCs) which are extended in φ . After applying small energy corrections the super-
clusters are used to reconstruct photons and electrons, and to seed electron track reconstruction.
Electron reconstruction uses two complementary algorithms at the track seeding stage: “tracker
driven” seeding, more suitable for low pT electrons as well as performing better for electrons inside
jets and “ECAL driven” seeding. The “ECAL driven” algorithm starts by the reconstruction of
ECAL “superclusters” of transverse energy ET > 4 GeV and is optimized for isolated electrons in
the pT range relevant for Z or W decays and down to pT 5GeV . A “supercluster” is a group of
one or more associated clusters of energy deposits in the ECAL constructed using an algorithm
which takes account their characteristic narrow width in the η coordinate and their characteristic
spread in φ due to the bending in the magnetic field of electrons radiating in the tracker material.
As a first filtering step, superclusters are matched to track seeds (pairs or triplets of hits) in the
inner tracker layers, and electron tracks are built from these track seeds. Trajectories are recon-
structed using a dedicated modeling of the electron energy loss and fitted with a Gaussian Sum
Filter (GSF) [43]. The filtering performed at the seeding step is complemented by a preselection.
For candidates found only by the “tracker driven” seeding algorithm, the preselection is performed
based on a multivariate analysis. For candidates found by the “ECAL driven” seeding algorithm,
the preselection is based on the matching between the GSF track and the supercluster in η and φ.
The few “ECAL driven” electron candidates (∼ 1% for isolated electrons) not accepted by these
matching cuts but passing the multivariate preselection are also kept.

5.2.5 Jet Reconstruction

Almost every process of interest at the LHC contains quarks or gluons in the final state. While par-
tons are not directly observable they manifest themselves through hadronization to stable particles
which can then be detected in tracking chambers and calorimeters. Perturbative theory and the
hadronization model describe the interaction between constituent partons of the protons and the
subsequent showering into stable particles. In addition to the hard interaction effects such as the
underlying event and multiple pp interactions [44], which will change the observable energy flow,
also have to be modeled. The evolution of a jet from hard interaction to observable energy deposits
is shown schematically in Fig. 5.3. Jet algorithms cluster energy deposits in the calorimeter or
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1 Introduction
Standard model processes in proton-proton collisions involving large momentum transfers are described by the
scattering of partons. While partons are not directly observable they manifest themselves through hadronization
as stable particles which can then be detected in tracking chambers and calorimeters. Perturbative theory and
the hadronization model describe the interaction between constituent partons of the protons and the subsequent
showering into stable particles. In addition to the hard interaction effects such as the underlying event and multiple
pp interactions, which will change the observable energy flow, also have to be modeled. The evolution of a jet
from the hard interaction to observable energy deposits is shown schematically in Figure 1.
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Figure 1: Evolution of a jet

Jet algorithms cluster energy deposits in the calorimeter or four-vectors of particles. A successful jet algorithm
will provide a good correspondence between the parton level and the particle level, where particle level refers
to the stable particles remaining after the hadronization stage. Traditionally at hadron colliders, jets have been
defined using cone based clustering algorithms which search for stable cones around the direction of significant
energy flow. The steps in a typical cone based algorithm are shown in Figure 2. Initially, a cone is defined using
the highest ET particle (or four-vector) and the summed four-vector is calculated for all particles within the cone
resulting in a proto-jet. The procedure is repeated until a stable proto-jet is found such that the proto-jets’s four-
vector coincides with the sum of the four-vectors of all the particles within the cone. Once all stable proto-jets are
found, a splitting/merging procedure is applied to ensure that all particles will end up in only one jet.

Iterative cone algorithms that consider every tower as the starting direction for the initial cone take a prohibitively
long time to execute. In order to reduce the computation time, a minimum pT requirement is applied to the four-
vectors resulting in a subset referred to as “seeds” for the initial trial cone direction. If a pT cut is applied to the
particles used as seeds, then the procedure becomes collinearly unsafe at pQCD parton level and different sets of
stable jet configurations can be found depending on the pT cut. Cone algorithms which use seeds also have the
problem of being infrared unsafe at pQCD parton level. The addition of a soft parton can lead to a new stable cone
configuration. These two effects are illustrated in Figure 3 and Figure 4.
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Figure 5.3: Evolution of a jet

four-vectors of particles. A successful jet algorithm will provide a good correspondence between
the parton level and the particle level, where particle level refers to the stable particles remaining
after the hadronization stage. Candidates found by the Particle Flow algorithm are clustered into
jets using the anti-kT algorithm [45] with a cone size of 0.5. The process of hadronization usually
results in a number of hadrons in tight cone aroung the original quark or gluon direction. Hadron
originating from heavy flavour quarks can decay emitting leptons. Other hadrons sometimes leave
all their energy in the ECAL, so they might be confused with electrons deposit, or others can leave
a track in the muon chamber. These are called fake leptons, since they are not part of the signal
process. There are several difficulties in reconstructing the product of a quark or gluon hadroniza-
tion: particles could be generated with large momentum with respect to the original parton, or
there could be initial state radiation or soft radiation that contribute with additional tracks. The
criteria for clustering particles into jet is the following:

dij = min
(
k2p
ti , k

2p
tj

) ∆2
ij

R2
(5.1)

diB = p2p
T i (5.2)

i and j are the particles involved in the step of the algorithm (that is iterative among the clusters
of particles); dij is the distance between those and diB is the distance between the ith-esim particle
and the beam line. ∆2

ij = (yi − yj)2 + (φi − φj)2; pT i,yi and φi are with respect the transverse
momentum, the rapidity and the azimuthal angle of the ith particle. p in the standard kT algorithm
was equal to 1; in the anti-kT version is -1 (this explain the name). The algorithm compares dij
and diB iteratively:

• dij < diB for some j; i and j are clustered into a jet;
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Figure 5.4: Infrared safety (top, adding a soft gluon) and Collinear safety (bottom, splitting one
parton into two collinear partons) should not change the jet clustering results

• dij > diB for all j: i is a jet.

Anti-kT algorithm is now a standard tool to reconstruct jet safely respect to collinear and
infrared emission. In Fig. 5.4 we can see a sketch that clarify the concept of infrared and collinear
extra radiations.

5.2.6 b-jets Reconstruction

Several algorithms are defined with the purpose to tag jets stemming from b quarks hadronization,
or b-jets. Such jets usually contain B-hadrons which present several characteristics which allow
to discriminate between b-jets and jets stemming from light quark hadronization (also referred to
as light jets). First of all, the tracks produced by long lived particle decays (such as B-hadrons)
are expected to have a non negligible impact parameter(IP). The IP is invariant with respect to
changes of the long lived particle kinetic energy, this is due to the cancellation of the boost effects
on the flight path (scaling as γ and the average angle of the decay products with respect to the
flight direction (scaling as 1/γ ). The typical scale of the IP is the one of the decaying particle
cτ ; for a B-hadron this corresponds to about 450µm. In CMS the IP can be measured with a
precision between 30µm and hundreds µm. Given that the uncertainty can be of the same order of
magnitude as the IP, a better observable for b-tagging is the impact parameter significance defined
as

S =
IP

σIP
(5.3)

The IP in CMS is life time signed: tracks orginating from the decay of particles travelling in the
same direction of the jet are signed as positive, while those in opposite direction are tagged as
negative. This is obtained by using the sign of the scalar product of the IP segment with the jet
direction. On the other hand, it is possible to reconstruct the secondary vertices from B hadron
decays inside of jets. To do this an adaptive vertex fit is performed. The first simple way of
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Dataset Run Range Integrated Luminosity

/SingleMu (Electron) /Run2012A-22Jan2013-v1 /AOD 190450-193621 876.164 pb−1

/SingleMu (Electron) /Run2012B-22Jan2013-v1 /AOD 193833− 196531 4405.519 pb−1

/SingleMu (Electron) /Run2012C-22Jan2013-v1 /AOD 198022− 203742 7049.058 pb−1

/SingleMu (Electron) /Run2012D-22Jan2013-v1 /AOD 203777− 208686 7369.0 pb−1

Table 5.1: Data and Integrated Luminosity

producing a discriminator based on track impact parameters is an extension of the so-called Track
Counting algorithm used in past experiments. The track counting approach identifies a jet as a
b-jet if there are at least N tracks each with a significance of the impact parameter exceeding S.
Currently two algorithms are defined: Track Counting High Purity, for N = 3, and Track Counting
High Efficiency, with N = 2. Other algorithms are available in the CMS reconstruction but they
will not be described since they have not been used in this study.

5.2.7 Missing Transverse Energy

Neutrinos do not interact in the detector hence their presence creates an energy imbalance which
can be measured, EmissT . At a hadron collider such as the LHC, the energy imbalance is computed
in the transverse view only, since the longitudinal momentum of the individual colliding partons
is not known (just the longitudinal momentum of the whole proton can be measured) and only
the transverse momentum of the colliding partons can be assumed with a large precision to be
zero. The particle flow algorithm reconstructs the missing transverse energy ET from the vectorial
sum of all the candidates transverse momentum. In order to have the best definition of the ETmiss
special care must be taken in the evaluation of the calorimeter noise. A cleaning algorithm to
reduce the detector noise is applied to the calorimeter hits themselves, before the rest of the event
reconstruction.

5.3 Trigger and Datasets

As we said before, the center of mass energy at the LHC reached during 2012 was
√
s = 8 TeV.

The luminosity reached during the data taking was of 19.7 fb−1, known within 4.0% - a plot of the
luminosity reached by the LHC during 2012 is shown in Fig. 5.5. The collision events used for the
analysis are taken from the SingleMu and SingleElectron Primary Datasets, selected using specific
HLT paths that select events with at least one high energy lepton (muon or electron). The exact
nomenclature of the paths used is the following:

• HLT_IsoMu24_eta2p1

• HLT_Ele27_WP80

In practice this means that events are selected requiring either a muon with pT > 24GeV/c and
|η| < 2.1 or an electron with ET > 27GeV and tracking identification criteria yielding an electron
selection efficiency of 80%. In order to reproduce the effect of the online selection on Monte Carlo,
the events are weighted with and η-dependent efficiency derived from data.

In each run the luminosity sections flagged as bad according to the validations performed by
each Detector Performance Group (DPG) and Physics Object Group (POG) are excluded. Tab.
5.1contains the run ranges used for the present analysis.
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Chapter 6

Analysis Strategy

Starting from the observation that the top partner single production considered here and the
Standard Model single top production share the same list of objects in the final state, we would
like to exploit as much as possible the similarities between the two analysis to simplify several
technical aspects. The dominant Feynman diagram for the process is the same: As it will become
clear in the following a simple recasting of the single top analysis ( [46] and [4]) is not possible
given the different kinematical regime of the new Top Partner signal and a new strategy for signal
to background optimization will be described. However, we will make use the same analytical tools
and backgrounds, but for the signal we will use the events generated by us with Madgraph.

6.1 Event pre-selection

Given the final state that we expect, the initial pre-selection of the events witll require the presence
of a reconstructed lepton and neutrino (from the Missing Energy), represetning the decay products
of the W boson; a b jet from the decay of the T̃ , from the decay of the Top Partner, and an
untagged jet, that is the forward jet. The exact requirements imposed on the various objects are
the following:

• MUON:

1. pT > 26 GeV;

2. GlobalMuon;

3. PFMuon;

4. |η| < 2.1;

5. χ2
norm < 10;

6. At least 5 valid hits in the silicon tracker;

7. At least 2 segments must match the global muon object in the muon chambers

q q′

T̃W

b

b̄

g

Figure 6.1: T̃ single production feynman diagram

59
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Figure 6.2: Standard Model top quark single production feynman diagram

8. At least one hit in the inner tracker;

9. Irel = Ich.h+max((Iγ+In.h.−IPU ),0)
pT

, with Ich.h, Iγ , In.h., IPU respectively the sum of the
transverse energies deposited by stable charged hadron, photons, neutral hadrons, in a
cone size of ∆R =

√
(∆η)2 + (∆φ)2 < 0.4; IPU ≡ 0.5×∑ pPUT is the sum of transverse

momenta of tracks associated to non-leading vertices, used to estimate contributions
from pileup events (0.5 refelcts the ratio neutral-to-charged, from isospin invariance).
Irel < 0.12.

• ELECTRON:

1. pT > 30 GeV (ECAL driven);

2. |η| < 2.5;

3. |ηSuperCluster| > 1.5660 && |ηSuperCluster| < 1.4442 not considered;

4. pass Conversion Veto;

5. Irel = Ich.h+max((Iγ+In.h−ρ×A),0)
pT

; here the correction from pileup events is performed by
subtracting the average density ρ over the η−φ space of particles not used to reconstruct
jets, multiplied by an “effective area” A ( effective portion in the η − φ space available
for the energy deposit of PU particles inside of the isolation cones around the electron
momentum direction). ∆R < 0.3 and Irel < 0.1.

• JETS:

1. anti-kT , ∆R < 0.5;

2. at least 2 constituents;

3. pT > 40 GeV

4. |η| < 4.5;

5. charged hadron energy fraction more than 1;

6. charged Hadron Multiplicity > 1;

7. charged Em Energy Fraction< 0.99;

8. neutral Em Energy Fraction< 0.99;

9. neutral Hadron Energy Fraction < 0.99;

10. the average energy density ρ in the η − φ space of neutral particles not clustered into
jets is used to extrapolate the energy due to pileup interactions.

• B-TAGGING: Track Counting High Purity algorithm [47] is used to reconstruct jet stemming
from b-quarks hadronization. The Pysics Object Group (POG) supports one threshold (of the
discriminator) for this algorithm at the moment, corresponding to a value of 3.41. The advan-
tage of sticking to these reference points lies mostly in the fact that the data/simulation scale
factors and corresponding uncertainties on efficiencies and mistag rates have been evaluated
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elsewhere [48]. The efficiency in simulated signal events with one identified lepton and two
jets,is 43% for jets matched to a b-quark at generator level within ∆R < 0.3, pT > 40 GeV, in
the acceptance of the trackers (|η| < 2.5). For our purpose this is not the optimal choice for
the optimization of the efficency in the reconstruction of the signal - but we can not change
any feature for this analysis, since we can not modify the backgrounds MonteCarlo already
produced. This will be included in the new analysis targeted at the 13 TeV run of the LHC
in 2015.

Events with an additional lepton that passes some looser selections are rejected (pT < 10 GeV, |η| <
2.5, Irel < 0.2 for muons; ET < 20 GeV, |η| < 2.5, Irel < 0.2 for electrons). Events with very high
energy noise in the HCAL barrel or endcaps are rejected, using pulse shape, hit multiplicity, and
timing criteria. The missing transverse momentum /pT is defined as the negative of the vectorial
sum of the transverse momenta of all reconstructed PF particles. /ET is defined as the magnitude
of the transverse momentum vector. The transverse mass is defined as:

mT =

√(
plT + /ET

)2 − (plx + /px
)2 − (ply + /py

)2
(6.1)

Stating that we are at higher energies, we omitted the requirements of mT > 50 GeV, as it was in
the single top reference, beacause we did not have so much contribution from QCD events. Equally,
in the electron channel we did not require /ET > 45 GeV, for the same reason. HT and ST are
defined as the scalar sum of the transverse momenta of the particles in the event:

HT =
∑

i=l,b,j′

pT (6.2)

ST = HT + /ET (6.3)

Events are divided in categories according to the number of jets and tags, using the wording “N-jets
M-tags”. We refer to events with N jets M of which are tagged as b. The categories enriched in top-
partner production that will be considered in the following are the 2J-1T and 3J-1T. The variable
|ηj′ | is defined as the pseudorapidity of the non-tagged jet in the 2J-1T and 3J-2T; in 2J-0T is the
sum of the two jets pseudorapidity and in 3J-1T is the psuedorapidity of the jet with lower value of
the b-tag discriminator. The majority of the backgrounds surviving the final selection contain an
actual b-jet, the main exception being W/Z+c jets. This algorithm was chosen over others because
of the discriminating power with respect to this particular background.

In the following figures there are plots of the standard variables of the reconstructed events; we
can see how strong is the requirement of having a fixed number of jets in our events. The efficiency
of the b-tagging algorithm is another source of loss of events. In 6 tables and plots of the efficiency
of the selections are given.

In the following figures the standard kinematical variables of the recounstructed objects are
shown. There are different scenarios: with and without the PileUp reweighting. The effects of the
PileUp in such a type of events is negligible. The cut in RMS, used in SingleTop to discriminate
jets of the signal from PileUp jets, has no effect in our samples. This is because of the striking
signature of the top-partner single production.

6.1.1 Top Partner Mass Reconstruction

To reconstruct the top-partner invariant mass we combine the information from the kinematical
distribution of the lepton, b-tagged jet and neutrino. This is a process already studied in literature,
the main reference is [49].There is an uncertainty in the choice of the right longitudinal momentum
of the neutrino. This is due to the intrinsic nature of neutrino, that we measure as a missing energy,
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Figure 6.3: Forward jet distributions and selections
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Figure 6.4: b-tagged jet distributions and selections

Figure 6.5: Muon distributions and selections
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Figure 6.6: Missing Transverse Energy with PileUp reweighting (red line) and without (blue line)

then we do not have all the information. So a constraint, from the decay of the W boson is used.
Assuming that all the x and y component of the /ET is due to the escaping neutrino, we could write

m2
W =

(
El +

√
/ET

2 + p2
z,ν

)2

−
(
pT,l + /ET

)2 − (pz,l + pz,ν)2 (6.4)

This equations have in general two solutions

pz,ν =
Λ · pz,l
p2
T,l

±

√√√√Λ2 · p2
z,l

p4
T,l

− E2
l · /E

2
T − Λ2

p2
T,l

(6.5)

where

Λ =
m2
W

2
+ pT,l · /ET (6.6)

If the discriminant in 6.5 becomes negative (mT > mW ), the solutions have an imaginary compo-
nent. This happens in 36 % of the cases (referenza SingleTop), mostly due to the finite /ET reso-
lution. The imaginary component is eliminated modifying /ET in order to reproduce mT = mW ;
this is done requiring the discriminator (then the square root in 6.5) is null. Therefore the smallest
solution for pz,ν is chosen.

6.2 Improving the signal-bakground discrimination

The background is defined as a process which phenomenological signature could be identified as the
signal. Background evaluation is one of the most important step of an analysis: we have to consider
all the possible sources that can mime the signature of the signal. The background contributions
are often divided into physical and unphysical processes. The latter are due to instrumental effects.
Physical backgrounds are instead processes that end in the same final state, both at generator and
at showering level. Exploiting the similarity of the top partner process and single top one it is
obvious to infer not only that they share similar backgrounds but that the single top process itself
is a background for our BSM signal. Coherently with the goals of this work, in this section we
will compute an eximation of the background processes, and we will describe the set of cuts we
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thougth to gain a better significance between signal and backgrounds. The final goal of the thesis
is to place some bounds on the production of T̃ at the Large Hadron Collider with

√
8 TeV. This

is the list of the background actually considered:

• W + jets;

• tt̄;

• single top t-channel;

• single top s-channel;

• di-boson;

• Z + jets;

• tW - channel;

• QCD multijets;

All the backgrounds processes have been simulated with MADGRAPH interfaced to PY THIA
and simulated with the CMS Full Simulation. The value of the top-quark mass used in all simulated
samples is mt = 172.5GeV/c2 . All samples use the CTEQ6.6 parton distribution functions, while
the factorisation and renormalisation scales are both set to 2mt. In order to check the initial signal
to background we superimposed the signal to the stack of the backgrounds, on a 400 GeV window
in the reconstructed ”top partner” mass: we found a low level of significance, mostly due to the low
production cross section used for the signal, but also for a significant contribution of backgrounds
even in the high mass tails. A new selection needs to be devised. Concerning the production
section, we would like to remind the reader that the one used here is only one possible choice. As
seen in previous chapters our model has some parameters to tune; we can always choose a new
set of parameters that enhances the cross section. See for instance in Fig. 3.4 in chapter 3 how
much the cross section can be enhanced. For example, one of the reference in the literature [50]
has chosen a cross section surely higher, without loss of generality. The consequence is that we will
put a bound in different region of the parameters space. Then we had to change the strategy, in
order to reach the goal of our thesis; however it is necessary a debat on the loss of shape of the
reconstructed invariant mass, that has not a sharp peak at the right mass value of the top partner.
In the next chapter we will give some arguments that could explain the particular behaviour of
the reconstructed invariant mass. A table with the nominal cross section used for the top partner
production can be find at Tab. 3.2 in chapter 3, instead Tab. 6.1 contain the cross sections of the
Standard Model background processes. Figs. 6.7, 6.8 describe the difference in the scenario at T̃
mass of 800 GeV, with and without the pseudo-rapidity cut, as described in [46].
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Process Cross Section (pb) Datasets

tW 22.2 T tW-channel-DR TuneZ2Star 8TeV-powheg-tauola

t s-channel 5.4 TToLeptons-s-channel 8TeV-powheg-tauola

t t-channel 86.4 TToLeptons-t-channel 8TeV-powheg-tauola

Zjets 3503.3 DYJetsToLL M-50 TuneZ2Star 8TeV-madgraph

Wjets 36257.2 WnJetsToLNu-TuneZ2Star 8TeV-madgraph

Di-boson WW 54.3 WW TuneZ2Star 8TeV-pythia6-tauola

Di-boson ZZ 8.05 ZZ TuneZ2Star 8TeV-pythia6-tauola

Di-boson ZW 32.66 WZ TuneZ2Star 8TeV-pythia6-tauola

tt̄ 234 TTJets SemiLeptMGDecays 8TeV-madgraph

Table 6.1: Backgrounds cross sections - The samples are generated either inclusively or with a final
state restricted to the leptonic mode; Leading Order where not indicated - all crosse sections are
taken from [4]
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Figure 6.7: Signal and backgrounds - no cuts - 800 GeV T̃ mass
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Figure 6.8: Signal and backgrounds - η > 2.0 - 800 GeV T̃ mass

However, we have observed that the top-partner invariant mass (reconstructed in this way) is
not a good variable to exploit for the exctraction of the signal. A better way to place a bound in
the T̃ production could be a fit in the shape of ηj′ that is a discriminating variable of the process.
So we pass from a cut-and-count to a shape fit strategy. The evaluation of the significance is an
important step in such an analysis; compatibly with the directives of the CMS statistical group,
we compute the significance as

s = 2(
√
S +B −

√
B) , (6.7)

rather than

s =
S√
S +B

(6.8)

the reason is dictated by the particular situation, composed by few events of signal and a larger
number of background events. Tab. 6.2 contain the values of significance we have computed at this
step of the analysis.

Mass (GeV) and cut Signal (events) Backgrounds (events) S/
√
S +B

600 51 3681 0.84

700 18 1436 0.48

800 8 634 0.32

900 5 294 0.29

1000 3 165 0.24

ηj′ > 2.0

600 30 569 1.24

700 10 232 0.60

800 4 112 0.42

900 2 50 0.39

1000 0 (0.31) 30 0.31

Table 6.2: Number of events and significance for 2J-1T sample, muon channel
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6.2.1 The new kinematical selection

Having made the observation that a cut-and-count (in the top-partner invariant mass variable)
strategy would not have been the right choice for such a situation, we decided upon a fit in the
forward jet pseudo-rapidity, that is discriminat for those reasons we have cited above. This means
that we will avoid the use of the psuedo-rapidity |ηj′ | for a cut, and we have to improve the signal-
background ratio using different variables. The main features of the kinematics of the T̃ production
in single channel have to be exploited. The most important feature is that we are dealing with a
heavy particle. Some consequences:

• hardness of the process;

• the decay of the T̃ is almost back to back;

• the W boson produced in the process has a high energy (it is “boosted”), then its decay
products are collinear at most;

• the forward jet is not ”fat”;

• the forward jet and and the b-tagged jet are back to back;

We chose to evaluate only the most important sources of backgrounds,that are WJets and TTBar,
we can check directly in the figure6.7. First of all we checked all the variables of the various samples
we had to deal with. A list of those:

• lepton, b-tagged jet, forward jet pT and η;

• mlνb top partner invariant and transverse mass - described in the previous chapter;

• HT =
∑

i=l,b,j′ p
i
T ; scalar sum of the transverse momenta of the lepton, the b-tagged jet and

the forward jet;

• ST = HT + pνlT ;

• dR(l, b) =
√

∆2ηlb + ∆2φlb; a measure of the distance between the b-tagged jet and the
lepton;

• dPhilν = |∆φlν |; azimuthal angle between the lepton and the candidate neutrino from the
missing transverse energy measured, from the decay of the W gauge boson from the T̃ ;

• ET - weighted root mean square (RMS) of the forward and b-tagged jet towers’ φ;

• pj′bT =

√
(pT

j′ + pT
b)

2
, vectorial sum of the transverse momenta of the forward and b-tagged

jet.

To decide the right value for every cut, we tried different values valuating every plot for every sample
and superimposing them and valuating the signficance of the background-signal discrimination. So
here a list of the cut we thought to:

1. reconstrucion and jets selection;

2. HT > 300− 350− 400− 450− 500 GeV;

3. ST > 400− 450− 500− 550− 600 GeV;

4. dR(l, b) > 2.0;
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5. |dPhi(l, ν)| < 1.5;

6. mlνb 400 GeV windows size;

7. bJetP t > 140− 175− 210− 245− 280 GeV;

8. mlνb
T > 400− 500− 600− 700− 800 GeV;

9. fJetRMS && bJetRMS < 0.05;

10. pj
′b
T > 120− 150− 180− 210− 240 GeV;

11. ηj′ > 2.0;

The plots here below are all taken from the sample 2J 1T , in the muon channel. In every canvas
there are five pads, one for every mass of the top partner, and there is the pad with the backgrounds
quoted before, for the scenario of 800 GeV of T̃ mass.
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Figure 6.9: HT; cut values: 300-350-400-450-500 GeV
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In these two plots we can see the difference between the shape and the values of the signal
sample and the backgrounds ones; as we stated, our process is harder than SM ones. This is due
to the heaviness of the particle that decays. We also studied the correlation between HT and ST
in our process, in order to understand if both two cuts were efficient. Then we plotted HT with a
cut in ST and viceversa, so we understood that that was not a large correlation between these two
variables in the sample; a cut in ST after a selection in HT is substantially a cut in the missing
transverse energy. We plotted similar histograms also for the backgrounds:

The angular variables are very important for a discrimination of such a process, the W boson
of the Standard Model processes is not boosted as in our case. This property reflects in our signal
in the collinearity of the lepton and the neutrino present in the decay. To support this idea,in Fig.
6.14 there is the parton level transverse momentum of the reconstructed W .

Instead, in the 6.15, we can state that the T̃ is produced at rest. Choosing a 400 GeV window
in the top partner reconstructed invariant mass would be a very good cut if the variable wasn’t
affected by the problems we have seen. However it has a good discriminant power, since in Standard
Model processes the invariant mass reconstructed is peaked at top-quark mass values. Even though
we miss too much signal events we opt for this cut. An additional cut on the transverse mass of
the reconstructed object helps little, because the transverse mass is slightly peaked at lower values
than the complete invariant mass.

We have theoretical reasons to suppose that the forward jet produced in the T̃ decay process is
less ”fat” than those produced in Standard Model processes; also the b-tagged jet has this feature,
probably due to its hardness.
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Figure 6.10: ST; cut values: 400-450-500-550-600 GeV
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Figure 6.11: Study of the correlation of the transverse momenta scalar sum variables: 600 GeV
sample

Figure 6.12: Study of the correlation of the transverse momenta scalar sum variables: WJets
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Figure 6.13: Study of the correlation of the transverse momenta scalar sum variables: TTbar
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Figure 6.14: Transverse momentum pT of the W boson
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Figure 6.15: ∆Rlb ; ∆Rlb > 2.0
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Figure 6.16: ∆φlν ; |∆φlν | < 1.5
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Figure 6.17: mlνb;400 GeV window
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Figure 6.18: b-tagged jet pT ; cut values: 140-175-210-245-280 GeV
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Figure 6.19: mT,lνb; cut values: 400-500-600-700-800
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Figure 6.20: RMS of the jets ; fJetRMS&&bJetRMS < 0.05
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Figure 6.21: di-jet pT vectorial sum; cut values: 120-150-180-210-240
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sample 1 2 3 4 5 6 7 8 9 10 11

600 GeV 60 55 53 52 48 45 44 43 41 40 24

700 GeV 22 19 19 18 17 16 15 15 15 15 8

800 GeV 10 9 9 8 8 7 7 7 6 6 3

900 GeV 6 5 5 5 5 4 4 4 4 4 2

1000 GeV 4 4 4 3 3 2 2 2 2 2 1

Table 6.3: Muon channel , 2J 1T sample

600 GeV 44 40 39 38 36 34 33 33 33 32 18

700 GeV 18 15 15 15 14 12 11 11 11 11 6

800 GeV 9 8 7 7 6 6 5 5 5 5 3

900 GeV 5 4 4 4 4 3 3 3 3 3 2

1000 GeV 3 3 3 3 3 2 2 2 2 2 1

Table 6.4: Electron channel , 2J 1T sample

600 GeV 27 20 19 17 16 14 13 13 12 11 7

700 GeV 12 9 8 8 7 6 6 6 6 6 4

800 GeV 6 4 4 4 4 3 3 3 3 3 1

900 GeV 4 2 2 2 2 1 1 1 1 1 1

1000 GeV 2 1 1 1 1 1 1 1 1 1 0

Table 6.5: Muon channel , 3J 1T sample

600 GeV 35 27 25 23 22 20 18 18 18 17 10

700 GeV 13 9 9 8 7 6 6 6 5 5 3

800 GeV 6 4 4 4 4 3 3 3 3 3 1

900 GeV 4 3 3 3 2 2 2 2 2 2 1

1000 GeV 2 2 1 1 1 1 1 1 1 1 0

Table 6.6: Electron channel , 3J 1T sample

6.3 Selections, efficiencies and event yields

The next tables contain the number of events for every sample of signal (which differs in mass of
the particle generated) and for WJets and TTbar background processes; the events are normalized
to present luminosity: 19.7 fb−1.
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WJets 600 GeV 20160 4387 2983 2260 1698 946 836 764 691 566 98

WJets 700 GeV 20160 2790 2029 1516 1161 475 417 374 341 312 52

WJets 800 GeV 20160 1868 1406 1035 807 248 217 185 168 161 24

WJets 900 GeV 20160 1271 973 703 562 133 113 100 90 88 14

WJets 1000 GeV 20160 899 689 491 396 78 66 58 52 51 8

Table 6.7: Muon channel , 2J 1T sample

WJets 600 GeV 17112 4058 2774 2109 1551 844 757 692 629 490 67

WJets 700 GeV 17112 2626 1877 1406 1059 424 380 339 307 267 35

WJets 800 GeV 17112 1758 1289 962 733 241 216 190 173 157 18

WJets 900 GeV 17112 1196 909 670 513 136 118 102 96 92 13

WJets 1000 GeV 17112 833 643 467 367 76 66 54 50 49 4

Table 6.8: Electron channel , 2J 1T sample

WJets 600 GeV 8408 2394 1679 1301 983 556 473 437 402 327 71

WJets 700 GeV 8408 1546 1097 855 660 294 257 237 221 189 42

WJets 800 GeV 8408 1000 747 581 453 169 140 125 117 105 26

WJets 900 GeV 8408 683 519 403 322 96 77 65 61 59 17

WJets 1000 GeV 8408 463 373 282 229 51 44 36 32 31 9

Table 6.9: Muon channel , 3J 1T sample

WJets 600 GeV 9623 2723 1881 1432 1068 582 505 467 422 340 75

WJets 700 GeV 9623 1741 1266 979 745 323 286 254 230 209 44

WJets 800 GeV 9623 1144 852 658 513 163 144 127 114 107 24

WJets 900 GeV 9623 769 594 452 352 85 73 64 59 58 13

WJets 1000 GeV 9623 525 410 317 252 47 38 28 27 26 6

Table 6.10: Electron channel , 3J 1T sample

TTbar 600 GeV 57129 8283 5508 2935 2107 986 850 767 700 634 52

TTbar 700 GeV 57129 4157 2948 1475 1070 323 273 245 219 209 18

TTbar 800 GeV 57129 2231 1670 779 566 121 105 90 76 74 6

TTbar 900 GeV 57129 1302 1038 439 322 50 45 40 33 33 2

TTbar 1000 GeV 57129 806 666 256 192 24 22 19 16 16 1

Table 6.11: Muon channel , 2J 1T sample

TTbar 600 GeV 48515 7577 5097 2713 1963 926 799 717 649 583 54

TTbar 700 GeV 48515 3874 2770 1377 997 315 271 236 204 194 16

TTbar 800 GeV 48515 2124 1621 739 544 122 107 95 79 76 5

TTbar 900 GeV 48515 1253 998 416 310 59 52 45 36 36 1

TTbar 1000 GeV 48515 785 646 242 185 27 25 23 18 18 1

Table 6.12: Electron channel , 2J 1T sample
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TTbar 600 GeV 56376 8755 5695 2946 2340 1083 912 830 757 652 94

TTbar 700 GeV 56376 4502 3114 1589 1288 396 330 293 261 242 34

TTbar 800 GeV 56376 2401 1749 879 715 160 137 122 105 102 14

TTbar 900 GeV 56376 1354 1024 501 417 67 62 52 43 42 6

TTbar 1000 GeV 56376 802 628 300 252 31 28 25 19 19 3

Table 6.13: Muon channel , 3J 1T sample

TTbar 600 GeV 65833 9392 6070 3132 2487 1141 965 872 807 696 104

TTbar 700 GeV 65833 4714 3224 1666 1340 414 346 310 283 264 40

TTbar 800 GeV 65833 2477 1778 910 735 163 139 122 108 105 17

TTbar 900 GeV 65833 1371 1028 518 424 72 62 54 45 44 6

TTbar 1000 GeV 65833 790 624 304 251 33 30 27 23 22 3

Table 6.14: Electron channel , 3J 1T sample
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sample efficiency (%)

600 GeV 6.45 ± 0.01

700 GeV 5.18 ± 0.01

800 GeV 4.27 ± 0.02

900 GeV 4.29 ± 0.02

1000 GeV 3.22 ± 0.02

Table 6.15: Efficiencies of the 2J-1T sample, muon channel
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Figure 6.22: Sketch of the final efficiencies for the signal samples

6.3.1 Efficiencies

The efficiencies of the selections are given for every signal sample in the next table. A clear
representation of the selections in the number of jets is shown in Tab. 6.15. We note that the muon
channel and the electron one are almost equal, instead the two categories 2J-1T and 3J-1T are one
half to the other (the latter is less efficient). In Fig. 6.23 we resum in a table the number of events
in every sample, for the signal and for the backgrounds.
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sample events

600 GeV T̃ 23

WJets 442
ZJets 27
Di-boson 11
TTBar 364
tW-channel 56
t-quark s-channel 7
t-quark t-channel 27

MC tot 938

Data 962

S/
√
S +B 0.74

sample events

700 GeV T̃ 9

WJets 186
ZJets 8
Di-boson 6
TTBar 126
tW-channel 24
t-quark s-channel 3
t-quark t-channel 11

MC tot 367

Data 377

S/
√
S +B 0.49

sample events

800 GeV T̃ 4

WJets 98
ZJets 1
Di-boson 3
TTBar 48
tW-channel 13
t-quark s-channel 1
t-quark t-channel 4

MC tot 171

Data 176

S/
√
S +B 0.32

sample events

900 GeV T̃ 2

WJets 50
ZJets 1
Di-boson 2
TTBar 22
tW-channel 6
t-quark s-channel 0
t-quark t-channel 1

MC tot 85

Data 88

S/
√
S +B 0.27

sample events

1000 GeV T̃ 1

WJets 23
ZJets 1
Di-boson 1
TTBar 9
tW-channel 3
t-quark s-channel 0
t-quark t-channel 0

MC tot 41

Data 42

S/
√
S +B 0.21

Table 6.16: 2J-1T sample, µ channel final event yields

600 GeV T̃ 23

MC total 938

Data 962

S/
√
S +B 0.74

(a)

700 GeV T̃ 9

MC total 367

Data 377

S/
√
S +B 0.49

800 GeV T̃ 4

MC total 171

Data 176

S/
√
S +B 0.32

900 GeV T̃ 2

MC total 85

Data 88

S/
√
S +B 0.27

1000 GeV T̃ 1

MC total 41

Data 42

S/
√
S +B 0.21

Table 6.17: 2J-1T e channel
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Figure 6.23: Stack of the top partner reconstructed mass with the final set of kinematical cut

6.4 On the reconstruction of the top partner invariant mass

As we saw in the previous chapters, during our work we found that the reconstruction of the top
partner mass didn’t work very well as it was for the single top quark production process. The peak
is not very sharp at all (at half maximum it has a width of about 150-200 GeV), and it is not
centered at the right value, but some points lower. There is a strange shoulder at about 200-300
GeV, that is something we do not expect, that could have its origin in the recombination of the
reconstructed objects (we may not match the right particle in the reconstruction). First, we noted
which were the differences between the Standard Model single top production and the process we
generated. As we said, these were the hardness of the process, in particular, for what concern the
top partner mass, we were interested in the three objects from the decay. So, as we noted previously,
the W in the decay is boosted: lepton and neutrino have almost the same energy and direction.
This is confirmed by a plot of the cosinus of the difference of the azimuthal angle between the two
objects: It is interesting to note in this figure how the angle reduces with the increasing mass of
the top partner (and subsequently the enhancement of the boost of the W gauge boson produced).
Initially we thougth that the reason of the wrong reconstruction was to impute to the badness of
the algorithm we used. As we have shown there is an uncertainty in the longitudinal momentum
of the neutrino. The algorithm studied in [?] takes as the z-component of the momentum of the
neutrino the smallest; the motivation, as we read in that work, is dictated by reasons concerning
the trigger. Then we tried to change algorithm, because at first look, we thoguth the right choice
was in the biggest longitudinal component. First, we tried to recover at parton level the same
algorithm. Then, as we noted, that neutrino and lepton are collinear and have almost the same
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600 GeV T̃ 10

MC total 719

Data 730

S/
√
S +B 0.38

700 GeV T̃ 3

MC total 320

Data 324

S/
√
S +B 0.21

800 GeV T̃ 1

MC total 123

Data 125

S/
√
S +B 0.17

900 GeV T̃ 1

MC total 61

Data 63

S/
√
S +B 0.15

1000 GeV T̃ 0

MC total 32

Data 32

S/
√
S +B 0.11

Table 6.18: 3J-1T µ channel

600 GeV T̃ 10

MC total 719

Data 730

S/
√
S +B 0.38

700 GeV T̃ 3

MC total 320

Data 324

S/
√
S +B 0.21

800 GeV T̃ 1

MC total 123

Data 125

S/
√
S +B 0.17

900 GeV T̃ 1

MC total 61

Data 63

S/
√
S +B 0.15

1000 GeV T̃ 0

MC total 32

Data 32

S/
√
S +B 0.11

Table 6.19: 3J-1T e channel final yelds

Figure 6.24: Top partner reconstructed mass, mlνb
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Figure 6.25: Cosinus of the difference of the azimuthal angle between lepton and candidate neutrino
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Figure 6.26: Various reconstruction of T̃ mass (800GeV): with original we mean the algorithm used
during all the thesis

energy, we reconstruct the mass in the following ways:

pν,z =
|ET |
|plT |

pl,z + o
(
α2
)
, (6.9)

this is the scalar version of the hypothesis, instead the following is what we call the vectorial :

pν =
|ET |
|plT |

pl + o
(
α2
)

(6.10)

The reason for trying also a vectorial version of the scalar algorithm, substituting all the candidate
neutrino with the momentum of the lepton is due to an uncertainty on the whole reconstruction of
the neutrino. In the following figure there is the comparison between all the algorithms we tried.
The last two figure show the evolution of the reconstruction with the longitudinal momentum of
the neutrino with the highest value. As we can see, it is not a problem of the algorithm of
reconstruction. It is evidently a problem of physical object reconstruction, as we can see in the
comparison in 6.25: the loss of events we have during the simulation with CMSSW is almost in
process with lepton and neutrino collinear (that are the events we are interested in!). As we have
seen when the efficiencies were computed, more than an half events do not compare in the sample
2J 1T because of the b-tagging algorithm, that has a bad efficiency itself. Perhaps the request of
such a type of catalogue, divided into a fixed number of jets and b-tagged jets, is not a good one; it
would be more interesting to get from a source with events with N number of jets and at least one
b-tagged jet. For this purpose we would need a more exact classification of the forward jet: in the
single top analysis package the forward jet is classified as the jet with lower b-tag discriminator.
Althoguh this could be a good approximation, perhaps a classification based on the pseudo-rapidity
(and other request, like in the root mean square of the ET weighted calorimeter towers’ φ) would
be a better solution. We can see in the following figures, Figs. 6.28, 6.29 and 6.30, the discrepances
in the reconstruction of the forward jet, from generator level, to the FASTSIM with the effect of
the detector included.

To right understand these figures, we have to note the two histograms superimposed compare
two different steps in the analysis, the parton level generation and the CMSSW reconstruction after
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Figure 6.27: Reconstruction of the T̃ mass with the highest longitudinal momentum: comparison
at parton level and after CMSSW simulation. The dark line is the original algorithm, with the
smallest pz chosen; the red line is the algorithm with the highest pz chosen.

Figure 6.28: MadGraph and CMS reconstructed forward jet pT and psuedo-rapidity ηj′
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Figure 6.29: MadGraph and CMS reconstructed b-tagged jet pT and psuedo-rapidity ηj′
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Figure 6.30: MadGraph and CMS reconstructed muon pT and psuedo-rapidity ηj′
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the selection in the number of light and b-tagged jets, then we can see the loss of events - comparing
them with the efficiencies computed above. There are two features of these distributions we have to
emphasize, the badly reconstructed pseudorapidity of the forward jet and the transverse momentum
of the b-jet. The first is not peaked at high values, then it is not a very good discriminant (even if
after all it has a good power on the backgrounds). The latter instead has something like a peak at
low values (those are events that exceed the amount we expect from parton level distribution). So
there are surely some issues on the reconstruction and right selection of the jets. If we regard Fig.
6.3 we can state that the exact selection of two jets in the event roughly cut the jets forward. The
forward jet itself has central values of the peak we do not expect.
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Chapter 7

Interpretation of results and
comments

7.1 Bounds on the production of T̃

Since we do not observe any excess that could be ascribed to the production of a new Top Partner
object, we proceed in estimating the bounds on its production cross section. The Bayesian and
the classical frequentist, with a number of modifications, are two statistical approaches commonly
used in high energy physics, and in particular at LHC [51], for characterising the absence of a
signal. We obtain these results through a dedicated Python written software, [52] for a reference.
Placing an upper limit means: the largest value of the signal s for which the probability of a signal
under-fluctuation equal to what has been observed or less is more than a given level α (usually
10% or 5%). An upper limit with a given Confidence Level means that we observe a maximum of
the signal s such that p ≥ α = 1 − CL, where p is the probability (p-value) to found an excess
grand equal to the background only hypohesis yield. Both methods allow one to quantify the level
of incompatibility of data with a signal hypothesis, which is expressed as a confdence level. It is
common to require a 95 %C.L. for ”excluding” a signal, this is however a convention. The top-
partner single production process is said to be excluded at, say, 95% C.L., when the 95% C.L. limit
on µsignal drops to one, i.e. µ95%CL = 1. In the next sub-sections, we will follow this convention
and discuss limits on the common signal strength modifier µsignal. In the following, the signal
events of T̃ production are denoted by s, instead the event yields from Standard Model background
are written as b. The distribution we consider is binned; every bin i follow a Poisson distribution,
around the expected Poisson mean λi. This expected yield is given by the sum over all considered
backgrounds and signal.

λi = µsignal · si +
∑
p

bp,i (7.1)

The variable µsignal expresses the normalization constant that should be applied to the signal to
have an exclusion limit on the production of our particle, at 95% confidence level. The Poisson
probability to observe ni events, where i runs over the number of bins of the distribution, is:

Πi
(µsignals+ b)ni

ni
e−(µsignals+b) (7.2)

Generally, for each independent source of systematic uncertainty, a nuisance parameter is intro-
duced. A background normalization uncertainty is modeled with a coefficient for the template Bp
with a log-normal prior. A shape uncertainty is modeled by choosing a Gaussian prior for the nui-
sance parameter and using this parameter to interpolate between the nominal template (which is not
affected by the uncertainty) and the shifted templates which are obtained by applying plus/minus
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1sigma systematic shifts to the simulated samples and re-deriving the templates. This interpolation
uses a smooth function which is cubic in the range up to 1 σ and a linear extrapolation beyond 1
σ.

7.1.1 Bayesian approach

The Bayes theorem is invoked to assign a probability to the signal hypothesis by calculating the
posterior ”probability density function” L(µ):

L(µ) =
1

C

∫
θ
p(data|µsignals+ b)ρθ(θ)πµsignal(µsignaldθ (7.3)

The functions ρtheta(θ) describes our prior belief in the scale and description of the uncertainties on
signal and backgrounds event yields. πµsignal(µsignal) is the prior probability on the signal strength,
which is commonly take to be flat for µsignal ≥ 0 and zero elsewhere. C is set to normalise the
probability density function to unit area. The Bayesian one-sided 95% CL is defined as:∫ µ95%CL

0
L(µsignal)dµsignal = 0.95 (7.4)

• Bayesian methods construct the posterior given by the likelihood function times the prior
and make statistical inferences from this posterior. This involves integrating out the nuisance
parameters which is done in theta using a Markov Chain Monte-Carlo method.

• Calculate Quantiles of the marginal posterior of µsignal. This can be used to derive quantile-
based Bayesian confidence intervals (where upper limits are just a special case).

The Bayesian methodology is a likelihood principle since the inference is based on the data alone.
It is critized to be a subjective method, mainly due to the freedom of decision in the choice of the
prior distribution.

7.1.2 CLs approach

We have to define a test statistic qµ designed to discriminate signal-like events from background-like
ones. The test statistic compresses all signal-backgrounds discriminating information into a unique
parameter. Using the Neyman-Pearson lemma (citazione), the ratio of the two likelihood Q is the
most powerful discriminator. It’s better to use a log version:

qµ = −2ln

(L(data|µsignals+ b)

L(data| ˆµsignals+ b)

)
(7.5)

with 0 ≤ ˆµsignal ≤ µsignal and where L(data|rate) is a product of Poisson probabilities, for the num-
ber of observed or simulated (that make the difference between observed and expected limit). Events
with qµ ≥ 0 appear to be under the background only hypothesis, viceversa for the background-
plus-signal hypothesis.

θ is a conditional maximum likelihood estimator; it gives a constraint on the extimation of the
likelihood maximum, and it reproduces the systematics uncertainties in data. Generating Markov-
Chain Monte Carlo pseudo-data for the two hypothesis allows one to construct the Probability
Density Function f(qµ|µsignal,θ) and f(qµ|0,θ). The nuisance parameters for the two different hy-
pothesis are set by the maximization described above. Having defined this two distributions we
can build the two confidence level interval:

pµsignal = P (qµ ≥ q − µobs.|s+ b) =

∫ ∞
qpbs.µ

f(qµ|µsignal, θobs.µsignal
)dqµ (7.6)

1− pb = P (qµ ≥ q − µobs.|b− only) =

∫ ∞
qpbs.0

f(qµ|0, θobs.0 )dqµ (7.7)
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Figure 7.1: Forward jet pseudorapidity ηj′

The CLs is defined as:

CLs(µsignal) =
pµsignal
1− pb

(7.8)

To reach the desired 95% Confidence Level, we adjust µsignal until we reach CLs = 0.05. The
calculation of the expected limit and its correlated fluctuations is slightly different. The expected
median upper-limit and its ±1, 2σ is a bound on the background only hypothesis. Generating a
large set of background only pseudo-data, we calculate the µ95%CLs

signal for each of them, as if they
were real data. Then, one can build a cumulative probability distribution of results by starting
integration from the side corresponding to low event yields. The point at which the cumulative
probability distribution crosses the quantile of 50% is the median expected value. The ±1σ (68%)
band is defined by the crossings of the 16% and 84% quantiles. Crossings at 2.5% and 97.5% define
the ±2σ (95%) band.

7.1.3 Results

To place a bound for the production of T̃ , we use a modified frequentist method, known as CLs, and
a Bayesian approach too, implemented in the theta software [52]. The signal is, of course, scaled
to the cross section (per luminosity - and a data-driven scale factor). The backgrounds yields are
scaled to the cross section and luminosity of the analyzed datasets. The presence of systematics
uncertainties affect the value of λi. Systematics uncertaintes have not been directly computed for
this new selection. We then apply an overall factorization of systematics uncertainties adding a
log-normal distribution equal to the 10 % of the total event yields of background, [46]. In figure 7.2
a plot of the 95%CLs with the Monte Carlo generated during our work.
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Figure 7.2: 95% CLs on σ×Br(Wb) of T̃ single production at Large Hadron Collider,
√
s = 8TeV

and
∫
Ldt = 19.7fb−1

7.1.4 Theoretical interpretation of the results

The theoretical band discussed in 3 is superimposed to this plot: it is a straighforwad procedure
having used such methods for placing a bound (that is on µsignal - a normalization to the cross-
section rate). The only free coupling c2 is tuned to obtain this scenario: given the mass of the
top-partner and setting the mass of the top-quark to its Particle Data Group value, there is an
unique relation linking y to c2. Modifying one of these, we are going to enhance or reduce the chiral
rotation angle θL. We remind that:

gT̃ b =

√
2

2
gEW sin (θL(y, c2,MΨ)) (7.9)

For our model the particular dependence between c2 and sin(θL) is inverse: sin(θL) ∝ 1/c2.
Fig. 7.3 is the exclusion plot with c2 ∈ [1/3, 1]. In Fig. 7.4 we have plot the distribution of
the c2 parameter, that as we described in Chapter 3, completely controls the coupling for the T̃
production, as a function of the mass. The grey band shows the 95% CLs region excluded with the
present analysis. We can see that, as we expected from the results, we have stronger bounds for
low masses, since the efficiency in the reconstruction is slightly worse for high mass scenario.
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Figure 7.4: 95% CLs excluded region in the (1/c2,MT̃ ) space. In blue the excluded area, in orange
the present bound given by CMS and ATLAS, [2] and [3]



Chapter 8

Conclusions

The Large Hadron Collider facility, with its high center of mass energy and luminosity, allows
for direct search of TeV-scale new physics. We studied top-partners in the single production
mechanism, the most promising (for branching ratio and signature) decay channel. We analyzed
the signal by exploiting the heaviness of the particle, and the hardness and collinearity of its
deacay products, we implemented several cuts to improve the signal-background discrimination.
The systematic uncertainties are recasted with an extimation from the single top analysis. We
extrapolated the event yields by fitting the pseudo-rapidity of the forward jet of the process, that is
a discriminant variable of the signal. The present Thesis has excluded with 95% Confidence Level
the presence of the 2/3 charged partner of the top with mass until 1 TeV, in the framework of the
Composite Higgs model. The exclusion is sensitive to a large area of the parameter space of the
model, as we can see in Fig. 7.4. Event though not all the area is filled, the present work is an
important step that could lead to a more complete and efficient analysis to be used at the next Run
of the Large Hadron Collider in 2016. As we discussed in the last chapter, more efficient tools can
be used to better reconstruct the events. Preparing a dedicated analysis for RunII can immediately
start from this work, that despite of its brief nature, contains all the informations to prepare a new
analysis. Data completely agrees with Standard Model predictions, hence no new physics is found.
We summarize all our work in the two final figures, that we reported here, the exclusion plot and
the exluded area in the parameter space. The values of the costant that completely controls the
coupling of the top-partner with the Standard Model fermions, c2 would be naturally c2 ∼ 1. In
that region we do not be able to exclude nothing, we are sensitive to values 1/3 ≤ c2 ≤ 2/3.
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