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Chapter 1
Algebraic groups

1.1 Algebraic groups

1.1.1 Definitions and basic notions

Let K be an algebrically closed field. By A™ we denote the affine space of dimension
n endowed with the Zarisky topology (the topology having as closed basis the zero-
loci of polynomial systems). With the name "affine algebraic variety" we refer to a
closed subspace X of A" (for some n). Let I < K[Tj...T,] be the (radical) ideal
of the polynomial vanishing on X; we denote by K[X] = KTy .. 'T“]/I the ring
of regular functions on X over K (sometimes called "coordinate ring" of X over
K), that can be identified with the algebra of the polynomial functions on X with
coefficients in K.

We say that a map ¢ between affine algebraic varieties X,Y, with Y C A", is a
morphism of affine varieties if it can be expressed in coordinates by polynomial
functions on X, that is

p:X =Y
z— (P1(x) .. ()

where 1; € K[X] for any i. Morphisms of affine varieties are continuous with respect
to the Zarisky topology.
Any morphism of affine varieties ¢ : X — Y induces functorially (contravariantly)
a morphism of algebras:

¢* : K[Y] — K[X]
frfoo

If X C A" Y C A™ are algebraic varieties, so is the product X x Y C A™*",
We will always consider the product endowed with the Zarisky topology. It holds
KIX x Y] =2 K[X]| x K[Y].

In this thesis, we will assume most of the basic notions of algebraic geometry re-
garding affine (and sometimes projective) affine varieties.
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Now we introduce the notion of "algebraic group", a mathematical object that will
play a central role in the present thesis.
For a group G, we call inversion map the map

G —= G

33—>$_1

and multiplication map the map

uw:GxG—G
(z,y) — zy.

Definition 1.1.1. An (affine) algebraic group G is an affine algebraic variety which
has a group structure such that the multiplication and the inversion maps are mor-
phisms of algebraic varieties.

Example 1.1.2. We give some examples of algebraic groups

o The additive group (K, +) is an algebraic group (as affine variety, it is the zero
locus of the ideal (0)). Its coordinate ring is K[T]. We will denote this algebraic
group by Gy.

e The multiplicative group (K*,-) is an algebraic group. Indeed it can be identified
as the zero locus of (xy — 1) in A2, which is an affine variety. Its coordinate
ring is given by

K[w,y]/(

vy — 1) KT,

We will denote this algebraic group by G,y,.

o The group GL,(K) of invertible n x n matrices over K. It is the subset of
the space of the n x n matrices where the determinant (which is a polynomial
function) does not vanishes: GLp(K) = {A € M, (K) | det(A) # 0}. Hence,

identifying the space of the nxn matrices affine space of dimension n?, G Ly, (K)
2
can be identified with the closed subset of A™ 1

{(A,d) € A" | d(det(A)) — 1 =0}

via the polynomial map A — (A, det(A)™1). Its coordinate ring is given by

KIGLn(K)] = KT Shsissn/ gy oy 1) = K[T“" det1<T>L en
<i,j<n

Where T = (Tij)1<ij<n-

e The group SL,(K) of n x n matrices with determinant equal to 1 over K. Its
coordinate ring is

K[SLn(K)] = K[Tz‘,j]lsmgry( det(T) — 1)
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Note that we endow the product of affine varieties with the Zarisky topology,
not the product topology, hence (although morphism of varieties are continuous) an
algebraic group is not, in general, a topological group.

Example 1.1.3. The field K is algebraically closed, therefore infinite. The additive
group G is an algebraic group, but it is not a topological group endowed with the
Zarisky topology. Indeed the Zarisky topology in K is the co-finite topology, since any
polynomial system can have only finitely many zeros. Therefore the product topology
on K x K has a closed basis consisting of sets of the form F x K and K x F' with
F C K a finite set. Then p=1(0) = {(a, —a) | a € K} C K x K is not closed in the
product topology. Therefore the multiplication map is not continuous with respect to
the product topology, hence G, is not a topological group.

1.1.2 Connectedness

Generally speaking, for topological spaces (hence, in particular, for affine varieties)
we have the following distinct definitions:

Definition 1.1.4. e A topological space X is said to be "connected” if it cannot
be decomposed as disjoint union of closed proper and non-empty subsets.

o A topological space X is said to be "irriducible” if it cannot be decomposed as
union of closed proper and non-empty subsets.

Anyway, for algebraic groups we have the following result:

Proposition 1.1.5. [9, Proposition 1.13[Let G be an algebraic group. Then the
irreducible components of G are pairwise disjoint, hence they are the connected com-
ponents.

In general, any affine variety has a finite number of maximal irreducible subsets
(19, Proposition 1.10]), hence an algebraic group has a finite number of maximal
connected subsets, that is, of connected components. Moreover, there exists a unique
irreducible component containing the identity of the group e (namely the connected
component of the identity), that we will denote by G°. The following holds:

Proposition 1.1.6. [0, Proposition 1.13]The irreducible component G° containing
e is a closed normal subgroup of G of finite indez.

Therefore , G/ 0 is always a finite group.

Proposition allows us to give the following definition:
Definition 1.1.7. GV is the mazimal connected closed subgroup of G.

In the development of this thesis, we will often assume G to be a connected
algebraic group, hence G = G.
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As always for affine varieties, connectdness of the variety can be read on the ring
of regular function being an integral domain. This is enough to show that the alge-
braic groups GL,(K), G4, G, of the previous example are connected (also SL,,(K)
is connected, but it is not so evident from the ring of functions).

1.1.3 Hopf Algebras

In the case of an algebraic group G, the group structure over G allows some extra
structure over its coordinate ring K[G]: it turns out to be an Hopf Algebra. To
define an Hopf algebra, we need the following definitions.

Definition 1.1.8. For any K vector spaces V., W, we define the twist map 7 : V ®
W — W ®V as the map given by 7(v @ w) =w v for anyv € V,w € W.

Definition 1.1.9. A K-vector space A with two linear maps m : AQ A — A, called
multiplication, and u : K — A, called unit, is a K-algebra if the following diagrams
commute:

A AR A T2 Ae A ARA — ARK
z'd®ml lm u®idT X‘ lg
AA —™ A KoA—— 3 A

The commutativity of these diagram is referred as, respectively from left to right, the
"associativity” and "unit” property.

Definition 1.1.10. A linear map f : Ay — Ay between two algebras (A, my,uy),
(A2, ma, uz) is an algebra morphism if

fomi=mao(f®f)
and
uz = fou
Remark 1.1.11. If (A, m,u) is an algebra, A ® A is an algebra with
o multiplication mag 4 defined by maga = (Mg ®@my) o (idg @ T ® id4)
o unit uazA(lk) = ua(lg) @ ua(lg) (and extended by linearity)

Definition 1.1.12. A K-vector space C' with two linear maps A : C — CRC, called
comultiplication, and € : C — K, called counit, is a K-coalgebra if the following
diagrams commute:

CRCRC = CaC CoC % oo K

z‘d®AT AT e®z‘dl X T@lK

C®C<TC K®C<1—C
K&
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The commutativity of these diagram is referred as, respectively from left to right,
"coassociativity" and "counit” property.

Definition 1.1.13. A linear map f : C1 — Cy between two coalgebras (C1, A1, €1),
(Co, Ag, €2) is a colgebra morphism if

Apof=(f®[f)eol

and
€1 =¢€0f

Remark 1.1.14. 1. If (C, A ¢€) is a coalgebra, C' ® C' is a coalgebra with

e comultiplication Acgco defined by Acge = (ide @ T ® ide) o (Ac ® Ag)

e counit ecge defined by ecoc = €c @ €c
2. K is a coalgebra with

e comultiplication Ak defined by Ag(\) =A@ X for ant A € K
o counit ex defined by ex(\) = 1g for any A € K

Definition 1.1.15. A K vector space B with linear maps m : BB — B, u: K —
B,A:B— B®B ande¢: B — K is a bialgebra if

e (B,m,u) is an algebra
o (B,A¢€) is a coalgebra
e A e are algebra morphisms

Definition 1.1.16. A K vector space B with linear mapsm : B& B — B, u: K —
B,A:B—-B®B,e:B—=KandS: B — B is a K-Hopf algebra if

e (B,m,u,A ¢€) is a bialgebra

e S: B — B is a K-linear map such that the following diagram commutes:

S®id . )
B®B s B® B < o5 B® B
AT lm AT
B € 5+ K “— B +— K +— B

The map S is called antipode.
As already stated above, we have the following result:

Proposition 1.1.17. [7, §7.6] Let G be an algebraic group over the field K, and let
KI[G] be the ring of reqular functions. Then K|G] is an Hopf algebra.
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Proof. The algebra structure on K[G] is the usual one as polynomial ring.

The coalgebra structure is given by the pull-back of the group multiplication p*
(recalling that K[G x G] = K[G] ® K[G]) and of the group identity e* (regarding
the identity of the group as the morphism from the trivial group to G, and recalling
that K[e] = K). The coassociativity and counit properies follow respectively from
the associativity of p and the definition of e by controvariant functoriality of the
pull-back.

Plugging together the two structures we have a bialgebra, since, again by functo-
riality of the construction, the pullback of morphisms of affine varieties (namely pu
and e) are algebra morphisms.

The antipode is given by the pull-back of the group inversion ¢*. Indeed, write
j: G — G x G for the map defined by j(g) = (g,9) for any g € G and note that,
under the isomorphism K[G x G] = K[G] ® K[G], the pull back j* is the usual
multiplication of K[G]; then the the following diagram commutes by the propertics
of the inversion i:

G x G 4 _ G x G idxi s Gx G
iX1d
[ i [m
G — {e} > G < {e} ¢ G

where {e} is the trivial group and the bottom maps are the only group morphism
existing. Then passing to the coordinate rings an considering the controvariant
functoriality of the pull-back this diagram yields the fact that i* is an antipode.

[

Example 1.1.18. Consider the algebraic group G = GL,(K) and its coordinate
ring K[G] = K {Tm, #(T)] .
1<i,j<n

The Hopf algebra structure is then given by the usual algebra structure and the
coalgebra one defined by:

e lhe counit

e K[G] - K
defined by e x (f) = f(In), with I, being the n x n identity. So e*(T;j) = dij,
e*(#@)) =1
1y | k] e ]
det(T) I<ij<n det(T) I<ii<n det(T) I<ii<n

defined by p*(T; ;) = > p_y Tir ® Ty; and Iu*(detl(T)) = detl(T) ® detl(T)’

The antipode

1

1
¥ :K 7—'1 B K 7—'7 B
' { ! det(T)] 1<i,j<n 7 { " det(T)} 1<i,j<n
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is defined by z*(#@)) = det(T) (which is a polynomial expression in T; ;) and

#(Ty) = (~1) b det(T]) where T = (Ty.0)r b o

1.1.4 Chevalley theorem and Jordan decomposition

In what follows V' will always be a finite dimensional K-vector space. We already
introduced some linear groups as example of algebraic groups. Actually, any closed
subgroup of GL,(K) inherits an algebraic groups structure.

Now we present a result that can be seen somehow as the converse of the previous
statement. We need the following natural definition.

Definition 1.1.19. A morphism of algebraic groups is a group morphism
¢ :G1 — G
that is also a morphism of varieties, that is the pull-back
¢ K[Ga] — K[G1]

1s @ morphism of algebras.

It is an isomporphism if it is also bijective and ¢~ "

s an algebraic group morpism.

We have a strong characterization of algebraic groups: any algebraic group can
be embedded as closed subgroup of a general linear group. This result will be a
corollary of the following theorem ( known also as Chevalley theorem).

Theorem 1.1.20. /9, Theorem 5.5[Let G be an algebraic group, H < G a closed
subgroup. Then there exists a morphism of algebraic groups ¢ : G — GL(V) and a
one dimensional subspace W < V' such that H = staby(W) = {g € G | ¢(9)W =

Corollary 1.1.21. Given an algebraic group G over K, there exist an injective
morphism of algebraic groups from G into G Ly, (K) for some n € N.

Proof. Is the Theorem taking as closed subgroup H = {e}. ]

The following result is a decomposition for elements in an algebraic group, the
so called "Jordan decomposition". Thanks to the existence of the embedding in
GL,(K), we will be able to define it in a general algebraic group. The course of
reasoning is to define it for GL,(K) and then give a theorem that guarantee that it
makes sense also in the general setting.

Definition 1.1.22. An element X € GL(V) is called
o unipotent if (X —id) is nilpotent

o semisimple if X is diagonalizable
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Proposition 1.1.23. [0, Proposition 2.2[For any g € GL(V') there exist unique
elements u,s € GL(V') such that u is unipotent, s is semisimple and it holds g =
SUu = us.

Proof. The proof relies on the existence of the classical additive Jordan decomposi-
tion (i.e. ¢ = s+n with s semisimple, n nilpotent and s, n commuting elements). [

Theorem 1.1.24. [9, Theorem 2.5] Let G be an algebraic group. Then

1. for any embedding p : G — GL(V') and for any g € G there exists unique gy, gs
such that p(gy) is unipotent, p(gs) is semisimple and g = gu9s = JsGu;

2. the elements gy, gs do not depend on the chosen embedding;

3. for any morphism of algebraic groups ¢ : G — H, ¢(gy) = ¢(g)u and ¢(gs) =
$(9)s-

The decomposition g = gugs = gsGuy 1S called "Jordan decomposition” of g.

This last result allows us to define unipotent and semisimple elements also for a
general algebraic group G.

Definition 1.1.25. Let G be an algebraic group, g € G with Jordan decomposition
g = gugs- Then we say that:

e g is unipotent if g = gy
e g is semisimple if g = gs.
If all the elements in G are unipotent, we say that G' is an "unipotent group”.

K = ]F_p, this decomposition is the analogue of the p, p’-decomposition for finite
group. This connection is made clear in the following remark.

Remark 1.1.26. Let G be a group, p a prime. Any element of G of finite order can
be decomposed uniquely as product of an element of order a power of p (p-element)
and an element of order coprime with p (p'-element) that commute with each other.
Indeed, if h € G is an element of order k = p®s (where p® is the biggest power of p
dividing k, hence s is coprime with p), by Bezout identity there exist ¢,b € 7. such
that k = ap® + cs. Then h = (h®™")(h), and since the order of h™" divide s it
is prime with p, while the order of h® divides p® and so it is a power of p. This
decomposition is called the p,p’ decomposition of h.

Let now K = ]F_p, G be an algebraic group over ]F_p, oG — GLn(IF_p) a closed
embedding. Since any element ofIETp lies in some finite extension of ¥, any element
of GL,(F,) is in some GLy(Fpa), hence it has finite order; so any of its elements
has a p,p’ decomposition.

In GLn(IFTp), the following equivalences hold:
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e u s unipotent < u is a p-element
Indeed, if u is unipotent, there exists an m € N such that (u—1I1)"™ = 0, therefore
for any p* > m, 0 = (u—I)?" = uP" — I, so the order of u divides p" and
hence is a power of p. Conversely, if uP” = I, it holds (u—IW" =uP" —I =0,
so u 18 an unipotent element.

e s is semisimple < s is a p'-element
Indeed, if s is semisimple, it is conjugated in GL, (]F ) to a dzagonal matriz
d = diag(a;)1<i<n, therefore its order is max{ order of a; in ]Fp |i=1...n}
and the order of elements in E* 1s always coprime with p because for any
a € IFT, there is a q, power of p, such that a9~ —1 =0, and g — 1 is coprime
with p. Conversely, if s™ = I with m coprime with p, then s is semisimple:
the minimal polynomial of s divides x — 1, and since p does not divide m this
polynomial has all distinct roots in IF because it is coprime with its derivative.

Hence given an element g € G the g, and gs of the Jordan decomposition of g
are actually respectively the p-element and the p'-element of its p, p’'-decomposition.

Example 1.1.27. Let G = GL,(F,), g € G. Then g is conjugated in GL,(F,) to

Jﬁkl)
T1
T e
some matriz of the form A = v with x; € F, | where
g
Jf denotes the Jordan block of dimesion k; X k; with eigenvalues equal to x;:
Z; 1
. ri 1
S = 2
€T
Then
(K1)
w11y, Vet (ks)
ko
xol U:-
A = ASAU frd 2 k2 . Ty !
xn]k" Ua(:]:’_%
where for any 1 = 1...n, the matriz U:iil) 15 the upper unitriangular matriz of
Iz !
dimension k; X k; of the form Ui]f"’l) = 1 %_1 is the Jordan decom-

%

position of A, with Ag the semisimple part, A, the unipotent one and AsA, = Ay As.
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As has order coprime with p, since its order is the least common multiple of the or-
ders of the diagonal blocks, and the i-th diagonal block has the same order as x;
because (i1, )" = xil]k for any h € N. Any element of IFTD* has always order co-
prime with p, so any diagonal block has order coprime with p an therefore also As
has order coprime with p.

Ay has order a power of p, since its order is again the least common multiple of the

orders of the diagonal blocks Ui]iﬁ), and any of this block has order a power of p.

Indeed a direct computation shows that

-1
i

(U(ki))l’ — 1 p:ci_l x. ? =

and iterating the computation it yields (U;I_f"l))pki = Iy,. So Ug_f"’l) has order a power

of p for any i =1...n, and therefore also A, has order a power of p .
So A is the p'-part of A and Ay is the p-part of A.

Before ending this section, we state another consequence of Chevalley Theorem

Corollary 1.1.28. [9, Proposition 5.7[Let G be an algebraic group, H < G a normal
closed subgroup. Then the coset space G/ 7 15 an affine variety and an algebraic
group (with the usual quotient group structure).

Moreover, if H < G is a closed subgroup, there exists by Theorem a
morphism of algebraic groups ¢ : G — GL(V) such that H is the stabilizer of a
line, and we can consider the projective space P(V') and its element W € P(V)
corresponding to the line stabilized by H; the action of G on V' induces an action
of G over P(V) with action map

G x P(V) = P(V)
(9,0) = o(g)(v)

(where the overlying bar denotes the equivalence class of the element of V' in P(V))
that is also a morphism of algebraic variety. Then ¢ induces a bijection between the
left cosets of H and the orbit of W in (V') under the action of G,

$: G/ GaWw CPV).

An algebraic group acting on an algebraic variety with an action map which is also a
morphism of varieties has orbits that are open in their closure |9, Proposition 5.4]),
and so the bijection ¢ allows us to endow G/ 7 With a structure of quasi-projective

variety. The space G/ 77 is often referred to as "homogeneus space" or as "quotient
space of G by H"
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1.1.5 Lie algebra of an algebraic group

We can always functorially attach to an algebraic group a Lie algebra as follows.
Recall that, given an algebra A over K, a derivation D € Der(A) of A is an endo-
morphism of A that respects the Leibniz rule for the product. The K-vector space
End(A) of the endomorphisms of A is a Lie algebra structure with Lie bracket given
by the commutator [0, §1.2], that is

[f.9]=fog—gof forf,g € End(A).

The set of derivation of an algebra is a linear subspace of End(A), and moreover
f, g are derivations, then their commutator is a derivation as well:

[f; gl(ab) = f o g(ab) —go f(ab) = f(g(a)b+ ag(b)) — g(f(a)b+af(b)) =
b(fog—go f)la)+a(fog—go f)(b) = alf g](b) +blf, g](a)

. So Der(A) with bracket given by the commutator is a Lie algebra [0, §1.3].

Definition 1.1.29. We call Lie algebra of G the space of the "left invariant deriva-
tions of K[G]":

Lie(G) = {D € Der(K[G])| Do Ay = Ay 0D for any x € G}

where Ay : K[G] — K[G] (x € G) is defined as M\o(f)(g) = f(x71g) for f €
K[G],¢ € G.

The Lie bracket is given by the commutator
[Dl, D2] =DyoDy—Dyo D Dy, Dy € Lie(G)

Note that this is indeed a Lie algebra since it is a lincar subspace of the derivation
and if two derivations D and Do are left invariant, their commutator is left invariant
as well:

[D1,Do)A\y = D1oDyo Xy — DaoDyoNy=DyoNgoDy— Doso)yo0Dy =
Az 0 D1oDy—AgoDgoDy =)\ o[Dy, Do

The tangent space of an affine variety X at z € X is a finite dimensional K-vector
space that can be defined as

To(X) = {6 : K[X] = K linear [5(fg) = f(x)d(g)+(f)g(z) for anyf,g,€ K[X]}
For an algebraic group G, we get an isomorphism
© : Lie(G) — T.(G)

defined by
O(D)(f) = Df(e),
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so we can identify the Lie algebra of an algebraic group with its tangent space at
the identity.

For any morphism of affine varieties ¢ : X — Y we can define the differential at a
point x € X as the linear map d;¢ : Ti(X) — Ty(4)(Y) defined by d,¢(5) = 6 o ¢*
for any ¢ € T,,(X). Thus the assignment of a Lie algebra to an algebraic group is a
functorial construction, since for any morphism of algebraic group ¢ : G — H we can
define d¢ : Lie(G') — Lie(H ) considering the previous identification Lie(G) = T,(G)
and setting d¢ := de¢, and composition and identity are preserved when passing to
the differential.

Example 1.1.30. We write gl,(K) for the Lie algebra of the n x n matrices over K
with Lie bracket given by the commutator: [X,Y] = XY —Y X for X,Y € M,(K)
The Lie algebra of GL,(K) is gla(K); the isomorphism

¢ = Lie(GLn(K)) — gla(KK)

is given by mapping an X € gly(K) in Dx € Lie(GL,(K)) defined by
Dx(Tij) =Y TiuXuj.
=1

Note that under the identification of Lie(G L, (K)) with Tr, (G L, (K)) this derivation
18 1dentified with
0x(Tij) = Dx(Tij)(In) = Xi ;.

1.2 Reductive Algebraic Groups

1.2.1 Solvable, Semisimple and Reductive Algebraic Groups

Our aim is to study more in detail the structure of algebraic groups, focusing on a
class in particular (the one of "reductive" algebraic groups). In order to do this we
give now some definitions.

Definition 1.2.1. A group is said to be "solvable" if its derived series terminates:
GGG =G> [G,¢=GP>...> G e}
We have the following inclusion
Proposition 1.2.2. [9, Corollary 2.10/If G is an unipotent group, then G is solvable.

Example 1.2.3. o GL,(K) forn > 2 is not solvable. Indeed |G Ly (K),GL,(K)] =
SLp(K) and [SLy(K), SL,(K)] = SL,(K). [12, Lemma 4 Corollary 2, §8/

e The group T, < GL,(K) of invertible upper triangular matrices is solvable.
Indeed a direct computation of the diagonal element of a commutator shows
that [T, T,] = U,, the group of the upper triangular matrices with only ones
on the diagonal; since Uy, is unipotent, it is solvable.
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The group T, < GL,(K) of invertible upper triangular matrices of the example

it is an important example of solvable group. Indeed, It can be shown that

any connected solvable algebraic group can be embedded in a closed subgroup of T,,;
this is a consequence of the Chevalley Theorem and of the following result.

Proposition 1.2.4. /9, Corollary 4.2[Any connected solvable subgroup of G Ly, (K)
18 conjugated to a closed subgroup of T,,.

Now we can define the following subgroups that play a key role in the description
of the structure of a group G.

Definition 1.2.5. Let G be an algebraic group, we call:

e "radical of G", denoted by R(G), the largest connected normal solvable subgroup
of G

e "unipotent radical of G", denoted by Ry (G), the largest closed normal connected
unipotent subgroup of G.

The existence of such subgroups is guaranteed by the fact that the product of
normal, connected, solvable (respectively unipotent) groups is a normal, connected,
solvable (respetively unipotent) group [10, §6.4.14].

Example 1.2.6. Let T;, be again the group of upper triangular matrices. This is
solvable, hence R(T,) = Ty. Its unipotent radical is Uy, the group of upper triangular
matrices with all diagonal terms equal to 1.

To these definitions are related the following ones

Definition 1.2.7. Let G' be a connected non-trivial algebraic group. Then we say
that G is

e semisimple if R(G) = {e}
o reductive if R, (G) = {e}

Note that from the inclusion R, (G) < R(G) it follows that a semisimple group
is always reductive.

Proposition 1.2.8. [7, §19.5] Let G be a connected algebraic group. Then
° G/ R(G) is semisimple;
° G/ Ru(G) 18 reductive.

Example 1.2.9. o GL,(K) is reductive, but not semisimple:

— its radical is

R(GLn(K)) = {/\In|/\ S K*}
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— its unipotent radical is trivial:
Ru(GLn(K)) = {In}

e [0, Example 6.17] SL,(K) is semisimple.

1.2.2 Tori and Borel subgroups

Now we introduce some particular subgroups of algebraic groups that will be very
helpful for understanding the structure of algebraic groups, in particular of reductive
ones.

Definition 1.2.10. An algebraic group T is called "torus" if T = G, for some
reN.

A torus T contained in an algebraic group G is said to be maximal if it is not a
proper subgroup of another torus.

Note that tori are always abelian groups, since G, is abelian.

Example 1.2.11. The subgroup D,, < GL,(K) of invertible diagonal matrices is a
mazimal torus in GLy(K). Indeed it is isomorphic to G}, via

D, — Gy,
diag(ty...ty) — (t1...tn)

1

where diag(ty ...ty) =
n

It is mazimal since if A € GLy(K) is contained in a torus containing Dy, it com-
mutes with any diagonal matriz and this implies that A is diagonal. Indeed choose
A € K different from 1 and for any 1 <i <n let \; = diag()\divj)lgjgn be the diag-
onal matriz with diagonal terms equal to 1 but the i — th; then AN; = AN;A implies
a;j = Aa;j and aj; = /\_1aij for any j # 1, and therefore a;; = 0 = aj; for any j # i.
So Dy, is not a proper subgroup of any torus in GL,(K).
Any closed connected subgroup of Dy, is a torus. [10, Corollary 3.2.7]

Note that tori are groups consisting only of semisimple elements. Indeed saying
that a group T is isomorphic to the direct product of copies of G, is equivalent to
say that the embedding p in Theorem can be chosen to have image in the
subgroup of the diagonal matrices.

Proposition 1.2.12. /9, Corollary 6.5] All mazimal tori of a connected algebraic
group G are G-conjugated.

A consequence of this fact is that any semisimple element of a connected linear
algebraic group is contained in a maximal torus |9, Corollary 6.11].
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Example 1.2.13. In GL,(K) any maximal torus is conjugated to D, (as defined

in Ezample )

The Proposition allows us to define without ambiguity the "rank" of an
algebraic group G as follows: if 7" < G is a maximal torus in G and 7' = G7,,, then
rank(G) =r.

Now we state a property known as "rigidity of tori". As usual, we define the nor-
malizer of a subgroup H < G to be the subgroup Ng(H) ={g € G | g 'Hg C H}
of G and the centralizer of H to be Cq(H) = {g € G | g~thg = h for any h € H};
they are closed and Cg(H) is normal in Ng(H).

Proposition 1.2.14. [0, Corollary 3.2.9] Let G be an algebraic group and T a
maximal torus of G. Then
Ne(T)" = Co(T)°

and the centralizer of T' has finite index in the normalizer of T

For reductive connected groups, something more can be said:

Proposition 1.2.15. /9, Corollary 8.13] Let G be a reductive and connected alge-
braic group. If T is a mazimal torus of G, then

Co(T)=T.

Proposition , among other uses, guarantees that the group we are going
to define (the "Weyl group"), which is central in the study of reductive groups, is
always finite.

Definition 1.2.16. Let G be an algebraic group, T a maximal torus of G. We call
"Weyl group" of G the group

W= NG(T)/CG(T)‘

Note that, since maximal tori are all conjugated in GG, choosing different maximal
tori gives rise to isomorphic Weyl groups.

Remark 1.2.17. Let G be an algebraic group, T a maximal torus of G. The Weyl
group W = NG(T)/Cg(T) induces an action on T defined for any w € W by

wit = wtw " for w a representative of w in Ng(T), t € T.

This is well defined since taking two different representatives of w, namely w and @,
it holds & = wx with x € Cq(T), hence for anyt € T

ot = wate o™ = wtw L.
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Example 1.2.18. Let G = GL,(K) and consider its maximal torus D,,. We want
to compute its Weyl group. GLy,(K) is reductive, hence Cq(Dy,) = D,.
The normalizer is given by Ng(Dy) = {M € GL,(K)]M~'D,M = D,}, that is
matrices that correspond to base changes that maintain the diagonal form of the di-
agonal matrices; it is easy to see that this matrices con do nothing else than permute
the basis vectors and multiply each of them by a non zero scalar, therefore they are
the monomial malrices (i.e. matrices with exactly one non zero entry in any row
and column).
Hence the group

W= NGLn,(K)(Dn)/(Dn>

is the group of the permutation matrices (i.e. matrices with exactly one 1 in any
row and column, and zeros in any other position), that is

W = 5,.

W acts on D,, permuting the diagonal element For any w € W, continue to indicate
by w the corresponding element of Sy; then for any t = diag(ty ...t,) € Dy,

wtw™t = diag(%(l) = -tw(n))

The maximal tori also play an important role in understanding the structure of
solvable groups. Indeed it holds the following result.

Proposition 1.2.19. /7, §19.3/Let G be a solvable algebraic group, T € G a mazimal
torus. Then

G =R,(G) «T.

This means that in a solvable group G' any maximal torus is a complement of the
unipotent radical, i.e. any element of G can be written as a product of an element
of a torus and a unipotent one, and R, (G)NT = e. For instance, consider the group
T, of the upper triangular matrices: its unipotent radical is U, (see ) and a
maximal torus is D,,. It is easy to see that the intersection of this two subgroups is
trivial and that they indeed decompose the whole Tj,.

For reductive groups we do not have a decomposition as nice as for solvable ones.
Nevertheless, we have some results.

Theorem 1.2.20. [9, Proposition 6.20], [0, Theorem 8.22] Let G be a connected
reductive group. Then

e R(G) = Z(@)° is a torus
o [G,G] is semisimple
o [G,G]IN R(G) is finite
and G = R(G)[G,G] = Z(G)'[G, G).
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Example 1.2.21. Consider GL,(K). We already know that its radical is given by
the scalar matrices K*I, and it coincides with its center. Its derived subgroup is
SL,(K) (Example ), which is semisimple (Example ). Therefore the inter-
section K*I N SLy,(K) of the center and the derived subgroup of GL,(K) is finite
because in K there are finitely many n™-roots of 1 (n if the characteristic of K is 0,
ﬁp’n) if the characteristic of K is p) hence there are finitely many scalar matrices
whose determinant is one.

Given A € GL,(K), let a be a zero of 2™ — det(A); then A can be decomposed as

the product of a scalar matriz and a matriz whose determinant is equal to 1
A= (al)(a A);

note that the decomposition is not unique in general since it depends on the choice

of a.

Now we introduce the so called "Borel subgroups" of a group G.

Definition 1.2.22. A subgroup B < G is called "Borel subgroup" if it is a maximal
closed connected and solvable subgroup of G.

Example 1.2.23. The group T, of the Example is a Borel subgroup of G Ly, (K).
Indeed it is a closed connected solvable group, and it is maximal by

The following proposition stresses out how Borel subgroups behave under conju-
gation action by G, and give an insight on the structure of these subgroups.

Proposition 1.2.24. [0, Theorem 6.12][9, Theorem 6.4] All Borel subgroups of a
connected algebraic group G are G-conjugated and self normalizing, that is

N¢(B) =B

The proof of the fact that Borel subgroups are G-conjugated relies on the fact
that a solvable group acting on a projective variety has a fixed point [!, Theorem
10.4] and using the fact that given a Borel subgroup B < G, the homogeneus space
G/ B is a projective variety. Indeed, we can consider a rational representation of
G on V as in Chevalley Theorem in a way that B is the stabilizer of a one
dimensional subspace W C V' this rational representation induces an action on
the flag variety F(V) = {V1 C Va-+ C Viipv)—1 C V | V; are linear subspaces },
which is a projective variety, and by Theorem B, being solvable, stabilizes a
flag f = (W C Wy .-+ C W,,); the canonical map from G/ ‘B to the orbit of f under
G in F(V) is an isomorphism of varieties ||, Theorem 11.1|. By maximality of B this
orbit is minimal and therefore (this is a property of algebraic group action that are
also morphism of variety ||, Lemma 1.8]) closed; it follows that G/ B is a projective
variety.

Then letting another Borel subgroup B’ act by left translation on G/ B, the fact
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that it has a fixed points implies that in is contained in a subgroup conjugated to
B, and by the maximality properties of Borel subgroups we have the equality.

Remark 1.2.25. The above discussion allows us also to give a structure of projective
varieties on the set of all Borel subgroup of G

B={B C G| B is a Borel subgroup of G }.

Indeed thanks to the properties of Borel subgroups stated in Proposition the
following map is a bijection

G/B — B.

9B gBg™!

Hence B inherits a projective variety structure from the homogeneus space G/ B

Example 1.2.26. Consider G = GLy(K) and its Borel subgroup Ts.
We have an isomorphism of projective varieties

F(K?) = PYK)
() CK2 - 7

Ty stabilizes the standard flag ({0} C Key € K?), which is the same as saying that
it stabilizes €1 € PY(K); hence GLQ(K)/B has a projective variety structure given
by the bijection

GL(K) 2 PY(K)
912 —g.€1

and the collection of Borel subgroups of GLo(K) is a one dimensional projective
space over K.

Remark 1.2.27. Observe that since a torus is a connected solvable subgroup of G,
it is always contained in a Borel subgroup of G. In particular, this holds also for
mazximal tori, so (taking into account that Borel subgroups are all conjugated) the
maximal tori of G are the ones of its Borel subgroups.
Moreover, the pairs (T, B), with T being a maximal torus, B a Borel subgroup such
that T' < B are all G-conjugated (where G acts by simultaneous conjugation on the
elements of such a pair). Indeed Borel subgroups are all conjugate by Proposition
and mazximal tori in a Borel subgroup are conjugated via an element of the
Borel: take as group the Borel subgroup in Proposition

Remark 1.2.28. Le B < G be a Borel subgroup, T a mazimal torus of B (hence
of G), U = Ry(B) its unipotent radical. Since Borel subgroups are solvable, it holds

B=UXxT.

Moreover, the unipotent radicals of the Borel subgroups are the maximal closed con-
nected unipotent subgroups of G (and they are all conjugated).
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1.2.3 Root systems

In what follows G will be connected and reductive. For any x € G, there is an
automorphism ¢, : G — G defined by c.(9) = zgx~!. We define the adjoint
representation of G to be the following rational representation of G on g = Lie(G)

Ad:G — GL(g).
T — deg

Let T" < G be a maximal torus. We denote by X (7") the set of the characters of
T, that is the set of the morphisms of algebraic groups x : T — G,,. X(7T) is an
abelian group with the group structure given by (x1 + x2)(¢t) = x1(f)x2(t) for any
t € T. The action of the Weyl group W on the maximal torus 7" induces an action
of the Weyl group on the character group, given by

(w.x)(t) = x(w™L.t) win Wt eT.

Since T is a torus, it consists of commuting semisimple elements, therefore (since
Ad is a rational representation and using Theorem ) so does Ad(T') < GL(g),
hence the element of Ad(T') can be simultaneously diagonalized |7, Proposition 15.4].
We set for any x € X(7T))

gy ={veg| Adt)v = x(t)v}
the T-eigenspace in G relative to the character y.

Definition 1.2.29. The "set of roots" of G is
®(G) =f{a e X(T) | a# 0,80 # 0}
that is the set of characters of T' with non-zero eigenspace on g.

The action of W on X(7T') stabilizes ®(G), hence there is an action of the Weyl
group of G on the set of roots of G |9, Proposition 8.4].

Example 1.2.30. Consider the group GL,(K) and its Lie algebra gl,,(K), and the
maximal torus Dy, of diagonal matrices. It can be computed (via the isomorphism
between gl,(K) and T7, (GLy(K))) that the Adjoint representation is given by the
standard conjugation (Ad(g)X = gXg~! for g € GL,(K), X € gl (K)).

Then considering the matrices E; j = (8 m0j1)1<mi<n with 1 < i # j < n we obtain

Ad(diag(h .. .tn))Ez',j = titj_lEiJ.
Hence setting x;j(diag(ty .. .t,)) = t,-tj_l, the set of roots of GLy,(K) is given by

O(GLn(K)) = {xij € X(Dn) | 1 i #j < n}
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We have the following structure theorem for connected reductive groups

Theorem 1.2.31. [0, Theorem 8.17] Let G be a connected reductive algebraic group,
T < G a mazimal torus, g = Lie(G) and ® = ®(G). Then for any o € ®(G), gqo is
one dimensional and there exisls a unique unipotent one-dimensional subgroup U,
of G normalized by T' and such that Lie(Uy) = ga-
The group G is generated by these unipotent subgroups together with the chosen
maximal torus, that is

G=(T\Uy | a € D)

The U, of the above theorem are called root subgroups of G (and the eigenspaces
0o are called root subspaces of g).

Example 1.2.32. Consider G L, (K) with mazimal torus D,, as in Example
Then the root subspace relative to x;j; is

(g[n)iJ = <Eiaj>K

and the root subgroup is
Uij = In+ (Eij)k.

The set ¢(G) has the following abstract structure.

Definition 1.2.33. A subset ® of a finite dimensional Fuclidean vector space E is
called abstract root system in FE if

o O is finite, ® #0, (P) = F
e Ifc € R is such that ca, o« € @, then c € {1,—1}
o For any o € @ the reflection s, € GL(E) along « stabilizes ®.
o for any o, 5 € ¥, s,(8) — 5 € Za.
The group W = (sq | a € @) is called the Weyl group of ®

It turns out that ®(G) C ®(G) ®z R is a root system with Weyl group W

isomorphic to the Weyl group of G. Calling C, = Ng(ker(a)?), the reflections
Sq € W (with a € ®(G)) corresponds to the class in Ne (T)/C o(T) of elements in
Ne (T)\ Ce, (T) |9, Proposition 9.3].
From the theory on abstract root systems we have notions of base, commonly de-
noted by A, and set of positive roots with respect to A, usually denoted by ®.
Chosen a base A one can show that the Weyl group W is generated by the set
S = {sq | € A}, called "simple reflections". We call length of an element w € W
(denoted by I(w)) the minimal length of a word with letters is S that is equal to w
in W.
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Example 1.2.34. Consider G Ly (K) with mazimal torus Dy, as in Ezample
Its Weyl group W of G L, (K), is isomorphic to the symmetric group Sy,. Any element
o €5, acts on the set of roots via

o(Xij) = Xo(i),0(j)-

The reflection s; ; relative to the root x;; is indeed the (i, 7) transposition: ker(x;j)°
1s the set of diagonal matrices with same i-th and j-th entries, therefore the elements
of its centralizer that normalize but do not centralize D,, are in the same class as
the (i,7) transposition matriz in W.

Positive systems are deeply linked to Borel subgroups.

Proposition 1.2.35. Let G be a connected reductive algebraic group, T a maximal
torus of G. Let B be a Borel subgroup of G containing T'. Then there exists a base
A, with respective positive system ®T, such that

B=(T,U, | a € ®T)
Note that Ry (B) = (U, | a € ®T).

Example 1.2.36. Consider G L, (K) with mazimal torus D,, as in Ezample
Consider the Borel subgroup T, of the upper triangular matrices. Then

A={xiis1 |1 <i<n}
s a base with relative positive system
ot ={y;|1<i<j<n}
that satisfies
Th=(Dy,U;j | 1<i<j<n).

The unipotent radical of T,, consists of the upper unitriangular matrices and it is
indeed generated by the root subaspaces contained in it.

The simple reflections relative to this basis are the permutation matrices relative to
the transpositions of adjacent indices.

1.2.4 Root data and dual groups

In the previous section we showed how to any reductive algebraic group can be
associated a root system. Differently from what happens for semisimple Lie algebras,
this combinatorial datum is not enough to characterize reductive algebraic group;
nevertheless, taking a slightly more complete datum (called root datum) allows one
to classify algebraic reductive group.

Definition 1.2.37. A root datum is a quadruple ¥ = (X, ®,Y, ®V) that satisfies
the following conditions:
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1. XY are free abelian groups of finite rank and there exists a mon degenerate
bilinear map (-,-) : X x Y — 7 such that

(«,): X = Hom(Y,Z)
X = (X0) (1.2)

(-,):Y - Hom(X,Z)
7= ()
are isomorphisms (i.e. (-,-) is a perfect pairing between X and Y ).
2. @ is a finite subset of X, ®V is a finite subset of Y and there exists a bijection

o — oY

a—a

such that {a,a) =2
3. for every a € @, the maps sq : X — X, sqv : Y = Y defined by
Sa-X =X — (X, a")a forall y e X
Sav.y =7y — {a, y)a forallyeY
are such that so(®) = @, sav(®V) = Y

Note that this is an enhancement of the concept of root system, since if ¥ =
(X,®,Y,®V) is a root datum, @ is a root system in the subspace in X spanned by
®, ®V is a root system in the subspace in Y spanned by ®V |3, Proposition 1.2.5].

Definition 1.2.38. Let ¥ = (X,®,Y,®Y) and V' = (X', &Y', ®"V) be root data
with paring respectively (-,-) and (-,-)". If § : X' — X a group homomorphism, the
corresponding transpose map is the map 6" : Y — Y/’ defined by

OO, m = (07 ()
forany X' € X',y €Y.

Remark 1.2.39. Note that if ¥ = (X,®,Y,®V) is a root datum, for any o € @
and for x € X,y €Y it holds

(sa(X):7) = (x — (6@, = (Gy) — (G e ) e, ) = (s ()

That is, sqv as in Definition is the transpose of sq.

This implies that the map vV : We — Wev that maps any element of the Weyl
group of ® in its transpose, that is an element of the Weyl group of ®V, is an anti-
isomorphism.
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Thanks to Remark , we can refer without ambiguity to Wg as "the Weyl
group of W',

Definition 1.2.40. Let ¥ = (X, ®,Y,®Y) and V' = (X', &Y' ®"V) be root data
with paring respectively (-,-) and (-,-)". A group homomorphism 6 : X' — X is an
homomorphism of root data if it maps bijectively ®' onto ® and for any o/ € @’
SV(6()) =o'V, If§ + X! — X is also an isomorphism of groups, § is called
isomorphism of root data.

We say that two root data are isomorphic if there exists an isomorphism of root
data between them.

Remark 1.2.41. The definition of isomorphism of root data can be reformulated as
follows.

Let U = (X,9,Y,®V) and V' = (X', &', Y', ®"V) be root data with paring respectively
-,y and (-,-)". They are said to be isomorphic if there exist two maps 6 : X — X',
€:Y =Y’ such that

e ), ¢ are isomorphisms of abelian groups;
o (0(x),e() = (x,7) for any x € X,y €Y
e §(D) =9, (DY) =",
e c(aV)=d(a).
Taking ¢ = (6¥) ™! yields the equivalence between the two definitions.

Now we see how this concepts are related to algebraic groups.
Let T be a torus. We denote by Y (T') the set of the cocharacters of T', that is the set
of the morphisms of algebraic groups v : G,, — T. Y(T) is an abelian group with
the group structure given by (v1 + 72)(A) = v1(A)y2(A) for 1,72 € Y(T'), A € Gy
There is an action of the Weyl group W of G on the cocharacter group, given by

(W) (A) = w.(v(N)) w in W\ € G
Definition 1.2.42. We denote by (-,-) the bilinear map
() X(T)xY(T) = 7Z
defined as follows: for any x € X(T'),v € Y(T) and for any A € Gy,
Yo y(A) = A,

This definition makes sense since the composition of a character and a cochar-
acter is an automorphism of G,,, and the only automorphisms of GG, are the maps
that act by rising the elements to some integer power [2, §1.9].
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Proposition 1.2.43. [9, Proposition 3.6] Let T be a torus, X(T) the character
group and Y (T') the cocharacter group. Then (-,-) is a perfect pairing between X (T)
and Y(T)

x = (6

(-,):Y(T) = Hom(X(T),Z)
V= <,’Y>

Are isomorphisms.

Lemma 1.2.44. [2, Proposition 3.1.1] Let T be a torus. The following maps are
isomorphisms of abelian groups
Y(T) ®z K* - Hom(X(T),K*)
T @A (x = A
X(T) ®z K* — Hom(Y (T
X ® A (= AN

,K¥)
)
Proposition 1.2.45. [2, §1.9] Let G be a connected reductive group, T < G a

mazximal torus, ®(G) be the set of roots of G. For any a € ®(G) there exists an
unique o¥ € Y (T) such that for any x € X(T), sa.x = X — {x, a")a.

The element o

a. Note that is particular

of Proposition is called coroot corresponding to the root

(o, = a — 54.0 = 20
that is (o, aV)=2.

Definition 1.2.46. Let G be a connected reductive algebraic group with root system
®(G). The "set of coroots” of G is

PV(GQ) ={a" € Y(T) | a € ®(Q)}

Proposition 1.2.47. [5, Lemma 1.2.15] Let G be a connected reductive algebraic
group, T' < G a maximal torus. Then the quadruple

U(G) = (X(T),2(G), Y(T), 2¥(G))
15 a root datum, with Weyl group the Weyl group of G.

Example 1.2.48. Let G = GL,(K), T' = D,, the mazimal torus of diagonal matri-
ces.
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We saw in Example that a root system for G with respect to the maximal
torus T'= Dy, is given by

O ={xij|ll >i#j<n}

where x;;(t) = titj_l fort =diag(ty,... ty,) € T, and it has Weyl group isomorphic
to the symmetric group Sy, with reflection relative to the root x;; given by the per-
mutation s;; = (i, 7).
Since the map
T — Gy,
diag(tl, - tn) — (tl, .. .tn)

18 an isomorphism, the character group of G is
X(T)=(i|1<i<ny
the free abelian group generated by

Xi - T — Gm.
diag(tl - tn) — 1

With respect for this basis, xij = Xi — xj. For analogous reasons the cocharacters
group of G s

Y(T)= (i l1<i<n)z,
where the v; are the cocharacter mapping X € Gy, in the diagonal matrices on which
diagonal appear only ones but for the (i,i) — th position, where there is A (e.g.
mn(A) = diag( A\, 1,1,...,1), vo = diag(1, A\, 1,...,1) ete). Denoting as usual by (-, )
the paring between charcater and cocharacter, we have

xi 0 (\) = A — 2\ {Xis)
Hence
(Xi»v5) = 0ij
(e, {xili=1...n}, {yj |7 =1...n} are dual base).
Hence the coroots of ® are given by

Y = {y[1 <i#j<n}

where v;; = v — 75 (that is, for X € Gy, 7ij(X) is the diagonal matriz having A as
(i,i) — th component, \=1 as (j, j) — th component and ones everywhere else on the
diagonal). Indeed

0 fork#i,k#j
Xk Yig) = (—1)6“c - (—1)5"" = 1 fork=1
—1 fork=j
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for any 1 < k,i,5 <n, therefore it holds

Xk, fork # ik #j
Sij Xk = Xj, for k=1
Xi, for k=
= Xk — (Xk: V1) Xij-

Hence the root datum of G is

U={xi—xjl1<i#j<n}, (x|l <k<n)g,
{vi—vll<i#j7<n}, (]l <k<n)z).

By Proposition , to any connected reductive group G with a maximal torus
T < @ can be associated a root datum W(G). This assignment depends in fact only
on the isomorphism class of the algebraic group. Indeed let G1,Go be connected
reductive algebraic groups with root data W(G1), U(G2) with respect to the maximal
tori 77 < G71 and T < (o, and assume that ¢ : Go — (G7 is an isomorphism of
algebraic groups mapping 75 in 7. Then ¢ induces an isomorphism of groups
f: X(T1) — X(T3) between the character groups given by f(x) = x o ¢, and this
defines an isomorphism of root data W; — Wy [10, §9.6.1]. In particular, it follows
that the root datum of a group GG does not depend on the choice of the maximal torus
( since by Proposition , maximal tori in an algebraic group are all conjugated).
Conversely, if two algebraic groups have isomorphic root datum, they are isomorphic.

Theorem 1.2.49. [10, Theorem 9.6.2] Let G1, Gy be connected reductive algebraic
groups with isomorphic root data respectively V(G1), V(Ga). Then G and Ga are
isomorphic as algebraic groups.

Furthermore, the following existence result holds

Theorem 1.2.50. [/(), Theorem 10.1.1/Le ¥ be a root datum. Then there exists a
connected reductive algebraic group G with mazimal torus T with root datum V(G) =
(X(T),®,Y(T),®") isomorphic to V.

Adding up the previous results, we have seen that root data classify completely
connected reductive algebraic groups: there is a bijection

{connected reductive algebraic groups}/N __, {root data}/N (1.9)

Where by ~ we mean the equivalence relation given by isomorphisms of the ob-
jects (algebraic groups on the left, root data on the right).
This classification allows us to define the dual group of a reductive connected alge-
braic group.

Definition 1.2.51. If ¥ = (X, ®,Y,®Y) is a root datum, the quadruple ¥* =
(Y, ®V, X, ®) is called the root datum dual to V.
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The fact that in the definition of root datum the roles of (X, ¢) and (Y, ¢") can
be interchanged yields the fact that if U is a root datum, so is U*, therefore the
Definition is coherent. Note that the dual of a root datum is defined up to
isomorphism: any root datum isomorphic to ¥* is a root datum dual to V.

Remark 1.2.52. [f ¥ = (X,®,Y,®Y) is a root datum with perfect pairing {-,-) :
X xY — Z, the dual ¥* = (Y, ®", X, ®) root datum has perfect pairing (-,-)" :
Y x X = 7Z given by (y,x)" = (x,7) forany x € X,7y €Y

Definition 1.2.53. Two connected reductive algebraic groups G, G* are said to be
dual if their root data are dual to each other.

Therefore by the correspondence (1.9) any algebraic group G has a dual group
G™, and it is unique up to isomorphism.

Remark 1.2.54. In a more explict way, G and G* are dual to each other if, given
T < G, T* < G* mazimal tori, there exists an isomorphism ¢ : X(T) — Y (T™)
between the character group of G and the cocharacter group of G* mapping the roots
of G in the coroots of G* and satisfying 6" (5(a)V) = aV for any a root of G.

Remark 1.2.55. [2, Proposition 4.2.3] Let G and G* be connected reductive groups
with Weyl groups respectively W, W* and assume G,G* are dual to each other.
Then there ezists an isomorphism of root data between the root datum V(G) of G
and the dual root datum V(G*)* of G* , therefore there exists an isomorphism of
groups ¢ : X* — Y inducing this root data isomorphism. This induces an isomor-
phisms between the Weyl group of the root system (X*, ®*) and the Weyl group of the
(co)root system (Y, ®), and by Remark there is an anti-isomorphism given
by taking the transpose between the Weyl group of the root system (X, ®) and the
one of (Y,®"). Hence we can induce an anti-isomorphism of the Weyl group of G
and the one of G*, denoted by 0 : W — W™, mapping sy in ss) and such that

O(w.x) = 6(w).6(x)
foranyw e W, x € X. .

Example 1.2.56. The algebraic group G = GLy(K) is the dual of itself. Indeed
recall from Example that the root datum W = (®, X(T),®V,Y(T)) of GL,(K)
15 given by

O ={xi—x[1<i#j<n}
X(T) = (xx|l <k < n)z,
OV = {y; —yll <i#j<n},
Y(T)= (vl <k <n)z.

Where Xi(t) =t; fort= diag(tj)lgjgn eT, %()\) = diag()\dz’j)lgjgn.
Then the dual datum is given by
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v = (Y, Y(T), 8, X(T))
With ®V,Y (T),®, X(T) defined as above. But the group isomorphism
60:Y(T)— X(T)
Vi = Xi

defines an isomorphism between these root data.

Indeed, its transpose 8" : Y (T) — X (T) is defined by

(0(vi)sv5) = (i, 67 ()Y,

hence 6 =6, and 6(vi — ;) = xi — xj € ® for any vi —v(j) € .

1.2.5 Bruhat decomposition

We now give a decomposition of a connected reductive algebraic group G in double
cosets of a Borel subgroup B < (. In order to do this, we introduce the following
group-theoretic definition:

Definition 1.2.57. A pair (B, N) of subgroups of a group G is called BN -pair for
G (or "Tits system") if it satisfies the following conditions:

1. G=(B,N).
2. BN N is normal in N.
3. the group W = N/B A N s generated by a set of involutions S.

4. BnB-BsB C BnsB|) BnB, where s € N is a lifting of an involution s € S C
W in N andn € N.

5. B # $Bs with s as before.
The group W is called "the Weyl group” of the BN -pair.

Definition 1.2.58. Let G be a group and let (B, N) be a BN -pair for G with Weyl
group W and set of generating involution S. For any w € W, the length of w is the
manimal number of elements in S needed to write w as product of elements in S and
it 1s denoted by l(w).

Theorem 1.2.59. [7, Proposition 3.1.2] If G is a connected reductive algebraic
group, B < G 1is a Borel subgroup and T < B is a maximal torus, then the pair
(B, Nq(T)) is a BN -pair for G, with Weyl group NG(T)/T and as set of generating
inwvolutions the simple reflection relative to the base associated to the chosen Borel
subgroup.
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This structure allows us to get the so-called Bruhat decomposition for reductive
algebraic groups.

Theorem 1.2.60. Let G be a group with a BN -pair (B,N). Then

G = |_| BoB
weWw

where w € N is any lifting of w € W.

Proof. Two double cosets are identical or disjoint; we prove that the double cosets
are the same if and only if w, ¥ are representatives of the same element in W.
First, observe that if w and @& are representatives of the same element in W, then
w = wt for some t € BN N; therefore, since BN N C B, BB = BitB = BwB.
Hence the coset is independent of the chosen representative, so we can write just
BwB with w € W.

Now we prove that if BwB = BvB with w,v € W, then w = v. We assume
l(v) < l(w), and we proceed by induction on I(v).

If [(v) =0, then v = 1. If B = BwB, then any representative of w must lie in B, so
w=1in W.

If I[(v) > 0, then we can write v = v's with s € S and [(v") < I(v). Then since
Bv's = Bu C BuB = BwB, we have by the fourth conditions on BN-pairs that

Bv' € BwBs C BwB - BsB C BwsB U BwB

hence Bv'B = BwsB or Bu'B = BwB. Since (V') <

that either v/ = ws or v/ = w, but since (V) < I(v) < l(w) we get v/ = ws, hence
v="1"'s =ws? =w.

On the other hand, again with an induction on the length it can be proved that
the union of these double cosets is closed under multiplication; then it is the whole
group G, since B and N generates G and they both are contained in the double

cosets union. O]

l[(v) it follows by induction

In particular, the previous decomposition holds for connected reductive algebraic
groups, with B being a chosen Borel subgroup, N = Ng(7T') the normalizer in G of

a maximal torus contained in B and W = IV G<T)/T the Weyl group of G.

Remark 1.2.61. If G = GL,(K), the Bruhat decomposition is obtained by Gaussian
elimination: by left multiplication with a upper triangular matriz by, any invertible
matriz g can be made into a matriz with all the pivot in different rows, and the latter
can be made upper triangular by left multiplication by some permutation matriz @ .
Hence wbig € T}, so g € T,wT,, for somew € W.

This allows us to parameterize by W the orbits of a G-action on the projective
variety of the Borel subgroups B for G connected reductive group. Indeed, remember
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that the structure on B is given via the bijection G/ B— B,gB— gB g~ L. Consider
then the action of G on G/ B given by left multiplication, meaning z.gB = zgB.
Note that, like for double cosets (see the proof of Theorem ), the coset wB €
G/ ‘B does not depend on the choice of the representative w € Ng(T) of w € W: if
w and @ are two representatives in Ng(T') of the same element w € W, there is an
x € T such that & = wz and therefore since T C B we have B = wxB = wB. So
the coset wB with w € W is a well defined set.

Theorem 1.2.62. Let G be a connected reductive algebraic group, B < G be a
Borel subgroup. Consider the G- action via left multiplication on both components
of G/B X G/B. Then there is a bijection

W — {G — orbits on G/B X G/B}
wr— G.(B,wB)

Proof. The map is surjective. Let (g1 B,¢g2B) € G/ B X G/ B; it lies in the same
G-orbit as (B, g; 1gQB). By Bruhat decomposition, there exists a w € W such that
g1 'g2 lies in BwB. Then (B, g; 'g2B) lies in the same G orbit as (B,wB); hence
any G-orbit contains an element of the form (B,wB) for w € W.

The map is injective. Suppose w,w’ € W and assume that (B, wB) lies in the same
G-orbit as (B,w’'B) . Then there exists a ¢ € G such that (B,wB) = (¢9B, gu'B)
that means gB = B, hence g € B, and therefore gw'B = wB implies w’ € BwB,
hence by disjointedness of the double cosets in the Bruhat decomposition it follows
w = w'. Hence different w € W give rise to different G-orbits. ]

The previous action can be read, thanks to the bijection we recalled before,
instead that on the homogeneous space G/ B, on variety B of the Borel subgroups;
hence we can restate the previous result as follows

Corollary 1.2.63. Let G be acting on B x B via g.(By, Bo) = (9B1g~ ', gBag™)
for g € G, By, By € B. Then the following map

W — {G — orbits on B x B}

w+— G.(B,wBw™)
s a bijection
Definition 1.2.64. In the notation of Corollary , the G-orbit G.(B,wBw™)
is denoted by O(w).

If (B1,B2) € O(w), we say that By and Ba are in "relative position w'", and we
write By Sy By

The above definition is intrinsic, meaning it does not depend on the choice of the
Borel subgroup B and the maximal torus 7" (hence from the explicit realization of
the Weyl group) accordingly to the following result



1.2. REDUCTIVE ALGEBRAIC GROUPS 35

Proposition 1.2.65. Let B, B be Borel subgroups of G and T,T be mazimal tori
contained respectively in B and B, and let g € G such that

T=gTg ', B=gBg "
Then

1. The induced isomorphism between the realizations of the Weyl group

~Y

NG(T)/T N NG(T)/T
does not depend on the choice of g in point (1).

2. By, By € B are in relative position w € Ne (T~)/T with respect to (T, B) if and
only if they are in relative position @ € NG(T)/T with respect to (T , B)

Proof. 1. Note that there exists a ¢ € GG as in the statement by Remark
To show that the isomorphism ~ does not depend on the choice of g it suffices
to prove it in the case B = B,T =T. Then Nag(T)N B =T, hence g € T and
so it acts trivially via conjugation on the Weyl group.

2. Suppose (B1, By) = z.(B,wBw™1). By definition of ~ , we have
(B,wBw™') = (¢9Bg ™' gwBw 'g"") = g.(B,wBw™ ).

Then (B,oB& 1) is in the same G- orbit as (B,wBw™"'), hence as (By, Bs).
[

Example 1.2.66. Let G = G Ly(K) be the group of 2 X2 invertible matrices, B = Ty
the Borel subgroup of the upper triangular matrices, T = Ds the mazimal torus

consisting of the diagonal matrices; the Weyl group is given by W = N(D 2)/D2 =
Sy = {1,s}. The Borel subgroup variety is B = PYK), with isomorphism given
by gTog™t — g.61 (see Ezample ; recall ¢4 = [1,0],é2 = [0,1]). Denote by
Ty = sTys the Borel subgroup of the lower triangular matrices. Then

e O(1) = A(PYK)) is the orbit containing all the elements of the form

(¢Tog™ ", gTog™") = (9.1, 9.61), for g € G.

e O(s) = (P! x PYY\ A(PY(K)) is the orbit containing all the elements of the
form (9T2g~" 9Ty g7") = (9.61.9.62), for g € G.

1.2.6 Levi and parabolic subgroups

We end this first chapter introducing parabolic subgroups. These groups can be seen
somehow as a generalization of the Borel subgroups, since they have some property
in common with the latter.
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Let G be a connected reductive algebraic group, B < G a Borel subgroup and
T' < B a maximal torus with relative Weyl group W generated by S = {s4jqca}
with A basis of the root system ®(G) relative to B.

Definition 1.2.67. We call standard parabolic subgroup of W the subgroups of W
of the form
Wy = <3a € SI>

for some I C A, where St = {sq € S | o € I}. A subgroup of W is said to be
"parabolic” if it is conjugated to Wy for some I C A.

The set @7 := ®(G) () D, Lo is called parabolic subsystem of roots. For W7
standard parabolic subgroup of W, let Pr be the set Py := BW;B = | | wew, BwB.
It can be shown that P; is actually a subgroup using properties of BN-pairs and
that W is generated by the set S of simple reflections |9, Lemma 11.14]. This
allows us to give the following definition.

Definition 1.2.68. We call standard parabolic subgroups of G the subgroups of G
of the form
P =BW;B= | | BwB.
weWr

for Wi standard parabolic subgroup of W. A subgroup of G is said to be parabolic if
it is conjugated to Pr for some I C A.

Remark 1.2.69. [9, Proposition A.25/The parabolic subsystem of roots @y is a root
system with Weyl group W

Using the notation of the above definition, we now give a characterization of the
standard parabolic subgroups

Proposition 1.2.70. /9, Proposition 12.1] The standard parabolic subgroups P,
I C A, are closed connected self normalizing subgroups of G containing B. They
are not mutually conjugated. In addition

P[:<T,Ua | a€@+U(I)]>.

Moreover, any closed connected subgroup of G containing B is a standard parabolic
subgroup.

Corollary 1.2.71. The parabolic subgroup of G are precisely the closed connected
subgroups of G containing a Borel.

Proof. By Proposition any closed subgroup of G containing B is a standard
parabolic subgroup, and any standard parabolic subgroup of G contains B. Any
Borel B in G is conjugated to B by Proposition , 8o since conjugation is a
group automorphism, any subgroup of G containing B is conjugated to a subgroup
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of G containing B, hence to a standard parabolic subgroup of G. So any subgroup
of GG containing a Borel is a parabolic subgroup. Conversely, any parabolic subgroup
is obtained by conjugation from a standard one by definition; then conjugating B
by the same element yields a Borel subgroup contained in the parabolic subgroup
we are considering. ]

Remark 1.2.72. [/, §11.2] The parabolic subgroups of G are precisely the ones such
that the homogeneous space =/ p is a complete (hence projective, since homogeneous
spaces are always quasi-projective) variety.

Example 1.2.73. Let G = GL,(K), D, < T, be the usual mazximal torus and Borel
subgroup. The root system base relative to T, is given by the roots A = {x;i+1 €

X(Dp)| 1 <i<n—1}, where xiit+1(diag(ty...tn)) = tit;&l.

Fiz j € {1...n} and let I = {xii+1 € A |i # j+ 1}. Therefore (identifying
W=8,)Wr={ceS,|o()<jforanyi<j}=5;xS,_j. Then

pr= || TwoT,
O'ESj XS,,L_j

is the subgroups of the block upper triangular matrices with diagonal blocks j X j and
n—j xn—7j, that is

Pr={Ac GL,(K) |Ag; =0 when k>jandl < (n—j)}

A A

The associated parabolic subsystem of roots ®y is given by
O ={xixli, k< jorik>j}.
Then
DU = {xip | i,k <jorik>j U{xix |1 <k}={xir|i<Jjifk<j}

and indeed
Pr=(Dp, Uy | i <jif k<)

where the root subspaces are U; ), = I, + KE; .

Generally speaking, the standard parabolic subgroups of GL,,(K) (taking as usual
diagonal and upper triangular matrices as torus and Borel) are block upper triangu-
lar matrices, that means that they are stabilizer of flags in the natural n-dimensional
representation (the Borel subgroups of G L,, are the stabilizer of a complete flag, since
they are all conjugated to T},).

Now we present the so called Levi decomposition of a parabolic subgroup.
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Definition 1.2.74. Let H be an algebraic group. We say that H has a Levi decom-
position if there exists a connected reductive subgroup L < H such that

H=R,(H)>L.
Such an L s called "Levi subgroup” of H.

Now let GG be a connected reductive algebraic group, 7' a maximal torus contained
in a Borel subgroup B. Let I C A, where A is the base of the root system associated
to B, and consider the standard parabolic subgroup P;. Let

Ur = <Ua|Oé€(I)+\(I)[>
Li:= <T,Ua | OéE@[>

Then we have the following result

Proposition 1.2.75. [9, Proposition 12.6] Let P be a standard parabolic subgroup
of a connected reductive group G. Then Uy = Ry (Pr) and Py = Uy X Ly is a Levi
decomposition for Pr, and any other closed complement to Uy is conjugated to Ly

in Pr. Moreover, Li is reductive with maximal torus T and root system ®r, and
Ly = Cg(Z(L1)).

Ly is called standard Levi complement of P;. Note that, in contrast with what
happens for standard parabolic subgroups, different Levi standard complements may
be G-conjugated. The result can be extended to all parabolic subgroups of G. Note
that in the case the parabolic subgroup is a Borel subgroup B, the Levi comple-

ment is just the torus and we find again the usual semidirect product decomposition

Theorem 1.2.76. /7, Proposition 3.4.2] Let P be a parabolic subgroup of a connected
reductive group G, and let T' < P a maximal torus contained in P. Then there exists
a unique Levi subgroup of P containing 1. Moreover all Levi subgroups of P are
R,(P) conjugated.

Note that, since any parabolic subgroup is conjugated to some standard Parabolic
subgroup Pr, the Theorem implies in particular that any Levi subgroup of
of a Parabolic subgroup is G-conjugated to a standard Levi subgroup. By abuse of
terminology, we usually call the Levi subgroup of a parabolic subgroup P of G a
Levi subgroup of G.

Example 1.2.77. Consider the standard parabolic subgroup of Pr < GL,(K) of
Example .Then its unipotent radical s

e I A
U1=<Uik|z§]sz§j>={(g s > |AeMn_j,j(K)}
n—j
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while its standard Levi complement is
Ly = (Dp,Upg | 1,k < jorik>j)

_ { ( f‘él XQ ) A1 € GL;(K), Ay € GLn—j<K)}






Chapter 2

Finite Groups of Lie type

2.1 The Frobenius morphism

2.1.1 Frobenius morphisms on algebraic varieties

In what follows we will work with algebraic groups over K = E7 with p > 0 a prime.
For any p power ¢ = p® with e € N, there exists a unique finite subfield FF, C I[‘Tp
which contain exactly ¢ elements; this field can be defined as the fixed point of the
morphism ¢ : F, — F, defined by o(z) = 29, for € F,,.

The aim of this section is to generalize this kind of argument to algebraic groups,
coming to define the so-called finite groups of Lie type.

Before working with algebraic groups, we need to define the concept of "being defined
over F," (or "having an [ -rational structure") for affine varieties. We start with
an example:

Example 2.1.1. Let X = F—pn. Define the map

n —g

Fq:F_p — [,

We call this map "standard Frobenius morphism”" over ]F_pn. It is an Fg- linear
map and a bijective morphism of affine varieties; yet, it is not an automorphism of
algebraic varieties (the inverse is not a morphism). The fized points set of this map,
denoted by (En)FQ, is Iy .

IfV C En 15 a closed subset whose vanishing ideal I is contained in Fq[asl e T,
then Fy(V) C V. Hence F, restricts to a morphism V. — V and VIe =V N Iy

Our intent is to define a morphism with similar properties as the standard Frobe-
nius morphism for general affine varieties. In order to do this, we study the associ-
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ated algebra morphism F’. We have

Fy Fplat, ooy an] — Fplzr ... xp)
n n
Z a;T; —» Z CLZ‘:E;Z
i=1 i=1

and it has the following properties

e it is injective (since Fj, is surjective) and F;(E[xl, o)) CFpad, .. 2] =

{f9) feFylz1,...,ma]}.

e Since every element in ]PTP belongs to some [F)e, hence to some Fgn, for any
f = 2?21 a;jz; € Fplxq, ..., @] there exists an m € N such that all the
coefficients a; belong to Fgm; this implies that a; = a] , hence F)"(f) =

m m

n q . n q qm . m
Doic ity =0 o =f1
This lead to the following ("intrinsic") definition.

Definition 2.1.2. Let X be an affine variety over ]F_p. A morphism
F: X=X

is called "(geometric) Frobenius Morphism" if there exists a ¢ = p© with e € N>
such that the associated ring homomorphism

F*: Fp[X] = Fy[X]
satisfies the following conditions:
e It is injective and F*(F,[X]) = {f?| f € F,[X]}
o for any f € F,[X] there exists an m € N such that (F*)™(f) = f4"

If such a morphism exists, we say that X is defined over Fy (or that it admits an
F,-rational structure) and F' is the (geometric) Frobenius morphism associated to
this structure.

The set of F-fized points

X ={zeX | F(z) =1}
is called set of Fy-rational points in X and denoted by X (IF,).

Remark 2.1.3. Let X be an affine variety over IFTp endowed with a Frobenius mor-
phism F, that determines a IF -rational structure. We define the "arithmetic Frobe-
nius map" as the map

TR [X] = Fp[X] st 7(f) = F*7N(f9)



2.1. THE FROBENIUS MORPHISM 43

that is well defined and bijective since F™* is injective and has as image {fI|f €
F,[X].

Since F* is a E-algebm morphism and f — f% is a ring morphism of E[X], T
is is a ring morphism and it satisfies T(Af) = (F*)71(\If9) = N(F*)71(f9) =
NT(f) for any X € ]F_p Hence 7 is F-linear, but not ]F_p—lmear: it is an IFj-algebra
morphism, but not an IF_'p-algebm morphism. Note also that T commutes with F™*,
since 7o F*(f) = (F*)"Y(F*(f)?) = (F*)"YF*(f9)) = f9 = F*o7(f). Moreover
for any f € F,[X] there exists an m € N such that 7™(f) = f [5, Remark 4.1.2].
The fized point set of T on IFT,[X] is

([FolX))™ = {f € F[X] | 7(f) = £} = {f € F[X]|F*(f) = f9}.

This set can be proved to be a finitely generated I 4-subalgebra of I[Tp[X | that contains
a set of algebra generators for Fy[X] [5, Lemma 4.1.3], and this implies that the
natural map

(Fp[X])" ®@r, Fp — FpX]

1s an isomorphism. Note that reading the action of T and F* on (IFT,[X])T QF, Fp,

we have for any f @ X € (Fp[X])” @F, F)
F(fel)=Ff1aA T(f@N) =feA.

Actually it can be shown that the following are equivalent,:to give a decomposi-
tion E[X] = A Qp, IFTp (the isomorphism given by the product) where A is an
Fy-subalgebra, to give a (geometric) Frobenius morphism or to give an arithmetic
Frobenius map. Indeed, any of them uniquely determines the other two. [, Propo-
sition 4.1.8]

Note that from Definition it is clear that if F' is a Frobenius morphism
relative to an Fg-structure, then a power F™ with n € N> is still a Frobenius mor-
phism, relative to an Fyn-structure.

There is also a more "concrete" characterization of a Frobenius morphism, that
relates it in a strong way with the standard Frobenius morphism.

Proposition 2.1.4. Let X be an affine variety overF_p defined over ¥y with asso-
ciated Frobenius morphism F. Then there exists an n > 0 and a closed embedding
L:X—)IFTpn such that 1o I = Fj 0.

Moreover, the vanishing ideal of 1(X) is generated by polynomials in Fylxy ... x,]

Proof. Consider F,[X]™ = {f € F,[X] | F*(f) = f} as in Remark ; it s a
(reduced) finitely generated F,-algebra, hence there exists a (radical) ideal J C
Fylx1 ... 2] such that

]Fp[X]T — Fq[$1 .. xn]/J
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Then, since F,[X] = (F,[X])” @p, F,, we have

IETP[X] _ Fp[l‘l .. .ZL‘n]/I

with Z being the ideal generated by 7 in Fy[z1 . .. x,] (note that J = ZNFy[x1 . . . 2]).
Then the canonical projection 7 : Fp[zy ... 2,] — F,[X] is a surjective morphism
with kernel Z, hence the affine variety morphism ¢ : X — IETpn defined by (* = 7 is
a closed embedding having as image ¢(X) = V(Z). Therefore the defining ideal of
the variety (¢(X))isZ = (J).

Moreover, 7 restricted to Fy[21 . . . 2,,] is the canonical projection onto F,[X]", hence
for any f € Fy[z1...2y], it holds

(Fgo )" (f) =mo Fy(f) = n(f*) = n(f)! = Fron(f) = (to F)*(f)

Hence, since F,[X] = (E[X])T@)Fq F,, (F,0t)* = (1o F)* and this yields the equality
of the morphisms of affine varieties. O

Example 2.1.5. e The standard Frobenius morphism Fy on the affine space X =
Fpn defined in Ezxample is a Frobenius morphism. The corresponding
arithmetic Frobenius morphism 1 : Fplzy ... xy] — Fplzr ... 2] as in Remark

is defined on [ = ¢ | ax; € Fplry... 2] by

n n

O aws) = (F) O am)®) = (F) () alad) =
i=1 i=1 i=1

n
Z ag(FJ)_l(:cg) = Z alz;.
i=1

=1

It follows that ]PTp[_xl c.ap|T = Folar .. 2], and the decomposition of Remark
is given by Fplxy ... xp] = Fylw1 ... 2] ®@p, Fp

The embedding of Theorem 1s the identity.
o Let X = IﬁTpn, let 0 € S, be the permutation ( 711 nil Z) and
consider the morphism -
]F_p2 N ]F_2
(z1,22...an) — (zd, 20 | . . . 21).

This is a Frobenius morphism because the associated algebra morphism is injec-
tive and with image { f|f € F,, plx,yl}; furthermore for any f € F, vz, y| there e-
ists an m € N such that all the coefficients of f lie in Fym, so (F*)2m(f) fq

(we need the 2 in the exponent since it is the orde'r of the permutation o) . We
do not give more details since denoting by o : IF — Fp the morphism permut-
ing the entries according to o, it holds F' = Fy 0 and since ¢ has finite order
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and commutes with I, we will prove in Corollary that this is enough to
guarantee that F is a Frobenius morphism.

The associated arithmetic Frobenius morphism 7 : IE‘Tp[xl co ] = F_p[xl e T
is defined by 7(x;) = xp—iy1 for 1 <i <mn, 7(a) = a? for any a € ]PTp.
Choosing C to be a generating element of IF(’;Q, the IFy-subalgebra of the fized
points of T 1s

Fplei,ze...xn]” =Fy[Cx1 + (Yo, (oo + (Tapoy, . .., Cap + (aq].

A closed embedding as in Theorem 18 given by
L F, > T,
(wi)1<i<n = (€2 + (Tp—i)1<i<n)

Indeed this is a closed embedding and Fyou(zy ... 2,) = (CqSUg—Fqung_i)lgign =
((q:cg + Cx%_i)lgign) = 1(zf, xgl_l . x‘f) =10 F(xy...2p).

Corollary 2.1.6. Let X be an affine variety overF_p defined over Fy with associated
Frobenius morphism F. Then F is a bijective map and the set X of the F,-rational
points of X 1s finite.

Proof. We use the notation of Proposition . The fixed point set of the standard
Frobenius £y lies in IFZ, hence it is finite; since ¢t o F' = Fj; o and ¢ is injective, this
implies that also the F,-rational points of X are a finite set.

The bijectivity of F' follows, again, from the fact that c o F' = F, o+ and from the
bijectivity of Fj. ]

Remark 2.1.7. As already pointed out in Remark , any element of E lies in
Fpe for some e € N>1. Moreover, for any q power of p, (F,)? = Fiz2, the standard

Frobenius morphism for the ¢* structure of I[Tpn; note that for any q power of p, for
any e € N>y there exists an n € N>y such that ¢" > p°. Hence for any q power of p

F, =@
n>1

From the characterization given in Proposition , we can transfer this observa-
g2
tion on the structure of F, on an algebraic variety X defined over Fy, that is

X =Jxr
n>1

If an affine variety is endowed with a Frobenius morphism /' inducing a rational
structure, this structure is inherited by its F-stable closed subsets.

Lemma 2.1.8. /5, Corollary 4.1.5]Let X be an affine variety over IFTp defined over
F, with associated Frobenius morphism F. Let X' be an F-stable closed subset of
X, that is F(X") C X'. Then F|x/ is a Frobenius morphism.
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To complete the picture, we give the definition of morphism of varieties defined
over [

Definition 2.1.9. Let X, X’ be affine varieties over IFTp defined over F, with as-
sociated Frobenius morphisms F,F' respectively. Then a morphism of varieties
¢ : X — X' is called rational, or defined over Fy, if po F = F' o ¢.

This definition has an equivalent characterization using the associated ring of
regular functions.

Proposition 2.1.10. Let X, X’ be affine varieties oveer defined over F, with as-
sociated Frobenius morphisms F, F' respectively, and let p: X =X ! b_e a morphism
of varieties. Then ¢ is defined over Fy if and only if ¢* (FP[X’]T/) C IF,[X]"

Proof. If ¢ is defined over F,, then for any f € F_p[X']T/ it holds F* o ¢*(f) =
6 0 F(f) = 6*(J1) = (6*(/) that means *(f) € Fy[X]".

Conversely, ¢*(F,[X']") C Fp[X]" means that for any f in F,[X’]” it holds ¢* o
FI(f) = ¢*(f9) = (¢*(f))? = F 0 ¢*(f). Hence since F,[X’]” generates F,[X’] and
F,[X]o generates F,[X], it follows ¢* o F' = F o ¢*(f). O

Example 2.1.11. Let X = X' = ]F_pn. The morphism + : X — X' of Example
, defined as (v;)1<i<n — (Cx; + CIwp—i)1<i<n with ¢ € K \ Fy , is a rational
morphism considering X endowed with the rational structure given by the Frobenius
F defined by (x:)1<i<n = (27 _; 1 1<i<n, and X' endowed with the rational struc-
ture given by the standard Frobenius morphism Fy. Indeed by construction of v we
have Lo F' = Fjo.
Denoting by 74 the arithmetic Frobenius morphism relative to the standard Frobenius
morphism Fy and by 7 the arithmetic Frobenius morphism relative to the Frobe-
nius morphism F, the rational structures read on the rings of reqular functions
as Fp[X'0 = Fyle1... 2] and Fp[X]T = Fy[Ca1 + (... Cap + (921]. Hence
C(FIX) = (Fyloy .. wy]) = Fo[Crr +(9an, . . ., Cop + (1]
Note that, more in general, in the Proposition we required exactly the closed
embedding to be rational.

The notion of Frobenius morphism can be slightly generalized in the following
useful way.

Definition 2.1.12. Let X be an algebraic group defined over IETp. An automorphism
of algebraic groups F : X — X s called generalized Frobenius morphism if some
power of F' is a Frobenius morphism.

Example 2.1.13. Consider the field Fo, and consider the algebraic variety X =
—9 — —

V(zy—1) C Fy ; the coordinate ring of X is Fo[X] = Fo[z, 27 1]. Then the following

map 1s a generalized Frobenius morphism on X x X:

F: XxX—=>XxX
(z, 2™, (yoy ) = ((wy, 2y ), (ay a7 ly)
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indeed F? = F|xxx.
Anyway this is not a Frobenius morphism: the corresponding algebra morphism

Folz, 2Ly, y ] = Falz, 2 g,y

is defined by F*(z) = xy, F*(y) = ay~ " but 2y ¢ {f? |f € E[X x X1}

Remark 2.1.14. Note that, also if Proposition does not properly hold for
generalized Frobenius morphisms, loosening the assumption on F and requiring it
to be just a generalized Frobenius morphism the properties stated in Corollary

and Remark still hold true. Indeed also if in the case of a Frobenius we derived
these properties from the existence of as embedding as in Proposition , for a
generalized Frobenius F' one can proceed as follows:

o If F is a generalized Frobenius morphism such that F™ is a Frobenius morphism,
then
xFcxt

Since F™ is a Frobenius morphism, by Remark it follows that X*" is finite
and so also the F-fixed points set of X 1s finite.

e Since F™ is a Frobenius morphism

X=JxrcJx"cx,

e>1 i>1

hence it still holds for generalized Frobenius morphisms

X:LJXW.

i>1

Moreover the restriction of a generalized Frobenius morphism F' to a closed F'-stable
subset X' C X is still a generalized Frobenius morphism. Indeed since a power of
F' is a Frobenius morphism, therefore bijective, F' is bijective, and hence (F|x/)" =
F™|x:, and for an appropriate n the latter is a Frobenius morphism for X' from
Lemma

We conclude this section with a lemma that allows us to construct new (general-
ized) Frobenius morphisms from a given one, composing it with an automorphism
of affine varieties.

Lemma 2.1.15. Let X be an affine variety over IETP, F a (generalized) Frobenius
morphism, and ¢ : X — X an automorphism of affine varieties . If there exists
a positive integer n > 1 such that (¢ o F)" = F™, then ¢ o F is a (generalized)
Frobenius morphism.
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Proof. Assume that F' is a Frobenius morphism. Since ¢ is an automorphism of
affine varieties, ¢* is an isomorphism of algebras. It follows that (¢ o F))* = F* o ¢*
is injective (since F* and ¢* are so) and has the same image as F*. Moreover
since F'is a Frobenius morphism ,for any f € IF_p[X ] there exists an m € N such
that (F*)™(f) = 1", so0 ((¢ 0 F)*)""(f) = (((6 0 F)"))"™(f) = (F"))"(f) =
(F)™(f) = (f2 )" = f1 .

If F is a generalized Frobenius morphism, then exists an [ such that F! is a Frobenius
morphism, Hence

(¢O F)nl _ ((¢O F)n)l _ (Fn)l _ (Fl)n

and the latter is a power of a Frobenius morphism, hence a Frobenius morphism.
So 7 o F'is a generalized Frobenius morphism. O

Remark 2.1.16. If ¢ : X — Xis an automorphism of finite order of affine varieties
commuting with F', it satisfies the assumptions of the Lemma
Indeed since ¢* is of finite order, let’s say n € N, and it commutes with F, it holds

((po F)")"(F) = (F*)" o (¢")" = (F7)".

2.1.2 Frobenius morphisms of algebraic groups

Now we can specialize the notion of Frobenius morphism, and hence of rational
structure, to the situation in which the affine variety is also an algebraic group.

Definition 2.1.17. An algebraic group G over E is said to be defined over F,
if it defined over ¥y as algebraic variety with a Frobenius morphism F which is a
morphism of algebraic groups.

So in the case of algebraic groups, we require the Frobenius morphism to be also
a group morphism; this can be rephrased by saying that the multiplication and the
inversion morphisms of the algebraic groups have to be defined over IF, with respect
to the rational structure induced by the Frobenius morphism |11, §11].

Example 2.1.18. Let G = GLn(IFTp), and let ¢ = p™ for some m € N. Define the
map

F, :GLn(F,) — GLo(F,)

(@i,4)1<ij<n — (af })1<ij<n

We call this map the "standard Frobenius morphism" of GLn(E). It is a group
morphism, hence it makes GLy(Ip) into a group defined over Fy.
The set of fived points of this map, denoted by GL,(F,)f is the finite general linear

group GLy(F,) of non singular matrices or IF,,.

The notion of generalized Frobenius morphism for algebraic groups is the analo-
gous in algebraic group context of the definition we gave for algebraic varieties.
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Definition 2.1.19. Let G be an algebraic group defined over ]F_p. A morphism of
algebraic groups F' : G — G is called generalized Frobenius morphism if some power
of F is a Frobenius morphism for some IF,-rational structure on G.

Example 2.1.20. Consider the morphism F in Example . The variety X =
V(zy — 1) € Fy can be identified with the multiplicative group Gy, of Fa. Then
F: Gun % Gy — Gy X Gy, is defined by (x,y) — (zy,xy~1) and so it is a group
morphism, thus it is a generalised Frobenius morphism on the rank two torus.

More generally, generalized Frobenius morphisms which are not Frobenius mor-
phism on reductive connected algebraic groups are the ones that allow to build the
so called Suzuki and Ree groups. Details about their existence and classification can
be found in |11, §11].

We now show as the results of the previous section translate in the situation
of algebraic groups. In particular the following proposition is the equivalent for
algebraic groups of Proposition . It states, essentially, that for any algebraic
group G defined over [, with Frobenius morphism F', there exists a realization of G
as group of matrices with respect to which the Frobenius morphism is the standard
one.

The idea of the proof is to show that a closed embedding as in Theorem can
be chosen to be defined over F,, (considering G'L,(F,) endowed with the I -rational
structure defined by the standard Frobenius morphism F7).

Proposition 2.1.21. /5, Proposition 4.1.11]Let G be an algebraic group over IFTp
defined over ¥y with Frobenius morphism F. There exists an n > 0 and a closed

embedding of algebraic groups v : G — GLy(F,) such that

Lol =1TF,0.

Corollary 2.1.22. Let G be an algebraic group over]F_p defined over I, with gen-
eralized Frobenius morphism F. Then

1. the set GF' of the Fy-rational points is a finite subgroup of G.
2.G= Un>1 GFn

Proof. GF is a subgroup of G because F is a group morphism. The other claims
follow directly from Remark ]

So any algebraic group G with a generalized Frobenius morphism F' produce a
finite subgroup G*". The finite groups of this kind are referred to as finite algebraic
groups. We will be interested in studying the finite groups arising in this way from
a connected reductive algebraic group. These are called finite groups of Lie type or
finite reductive groups.
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Definition 2.1.23. Let G be a connected reductive algebraic group over ]F_p, let F
be a generalized Frobenius morphism. The finite group of F-fized points GT' is said
to be a finite group of Lie type.

We will be interested in recovering properties of these groups from the ones of
the algebraic group from which they arise, and this will be the main focus of the
next section. Before starting, we give some results that can be useful to construct
(generalized) Frobenius morphisms and therefore to give some examples.

First, we point out that (generalized) Frobenius morphisms restrict to (generalized)
Frobenius morphisms on closed subgroups which are F-stable.

Lemma 2.1.24. Let G be an algebraic group, F' a (generalized) Frobenius morphism.
Let H < G be a closed and F-stable subgroup. Then F|g is a (generalized) Frobenius
morphism.

Proof. Since H is a subgroup, a group automorphism of G that stabilizes H restricts
to a morphism of groups on H. Then the statement follows from Corollary ,
and Remark for what concerns generalized Frobenius morphism. ]

Lemma, (and Remark ) give us the following result.

Lemma 2.1.25. Let G be an algebraic group, F a (generalized) Frobenius morphism,
and let 7 : G — G be an automorphism of algebraic groups. If there exists a positive
integer n > 1 such that (7 o F)" = F", then T o F' is a (generalized) Frobenius
morphism.

In particular, this is the case if T has finite order and commutes with F.

The following example is an application of Lemma to the case in which 7
is an inner automorphism.

Example 2.1.26. Let G be an algebraic group oveT]F_p defined over I, with Frobe-
nius morphism F. For any h € G denote the automorphism of algebraic groups of
G given by the conjugation by h with c, (that is, cp(x) = hah™! for x € G). Then
the composition cp o F', denoted often by hF', is still a Frobenius morphism.
Indeed by Corollary , there exists an n > 1 such that h € GF". Then

(cn o F)" = cppny..im—1(ny © F".

But F™(hF(h)---F*~Y(h)) = hE(h)---F"Y(h), i.e. hE(h)---F" Y(h) is F"-
stable and that means that cppp)...pn-1(n) commutes with the Frobenius morphism
F™.  Moreover it has finite order, say k > 1 (because any element of an alge-
braic group over I[Tp lies in a finite subgroup by Remark , so in particular
it has finite order). Then proceeding as in Remark we see (¢ o F)" =
(ChF(h)-Fn-1(h) © F™)k = Frk | hence ¢y, o F is a Frobenius morphism.
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Now we give some examples of reductive algebraic groups endowed with gen-
eralized Frobenius morphisms, and we point out the resulting finite group of Lie
type. We have already seen in Example the case of GL,, (IFTP) with standard
Frobenius morphism.

Example 2.1.27. 1. The special linear group SLn(F_p) of ddegree n over I[Tpis a
closed subgroup of GL,(IFp), and it is stable under the standard Frobenius mor-

phism Fy defined in Example . Hence by Remark , the restriction
of Fy to SLy(IF),) define an IFy-structure over it, and the group of Fy-rational
points 1s

SL,(Fy)f* = SL,(F,),

the invertible matrices with entries in Fq and determinant one.

2. Consider again the general linear group GLy(Fy), and let 7 be the endomor-
phism 1 : GLy(Fp) — GLu(F,) defined by 7(A) = AT, Then 7 is an au-
tomorphism of order 2 commuting with the standard Frobenius morphism Iy,
hence the morphism F' := 7 o Fy is again a Frobenius morphism by lemma

. Observe that (F')* = Fz, hence GLn(IF_p)F/ C GLy(Fgp2). In particular
GLn(Fp)F/ = GUn(q), the general unitary group over F 2, that is the group
of invertible n x n matrices in F 2 preserving the sesquilinear form defined by
((vi)1<izn, (Wi1<i<n) = D1y viw] with (vi)1<i<n, (wi)i<i<n € (Fg2)™ written
i coordinates with respect to the standard basis.

Note that in this ezample F' is not the standard Frobenius morphism (indeed we
have seen that the group of point fized by F' is a different group from G L, (Fy)),
also if , somehow confusing, by Proposition there exists a closed em-
bedding 1 of GL,(Fp) in some GLy(F,) (note that does not hold necessarily
m =mn) such that 1o F' = Fyo ..

For instance, consider g € GLQn(I[Tp) such that g~ 1 F,(g) = ( [O ISL) The

n
fact that such a g exists in G Loy (IF,) will be a consequence of Theorem

Then consider the closed embedding

v GLy(Fp) = GLay(F,)

A4 0\ _
AHQ( 0 A—T>gl
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This is rational since for any A € GLn(IFTp)

Lo F'(A) =

Fq(A_T) 0 -1 _
g ( 0 Fq(A)> 97" =

0 Ip Fy,(A) 0 0 I,\ _1
I\ 1, o 0 FAN)\ 1, 0)Y T

2.2 Lang map and rational structure

In this section, G will always be an algebraic group over F_p defined over I, and F
will be a generalized Frobenius morphism.

2.2.1 Lang map and Lang-Steinberg Theorem

The main philosophy of what follows in this thesis will be to study finite groups of
Lie type by gaining information from the reductive group from which they arise. To
pursue this goal, it is very useful to define the following map, known as Lang map.

Definition 2.2.1. The morphism of algebraic varieties

L:G—= G
g— g "F(g)

18 called the Lang map.

We have that £(z) = 1 if and only if z is a F-stable point. Moreover if L(g) =
L(h) then there exists a F-stable element 2 € G¥ such that ¢ = zh; furthermore
if G is connected, we will see in Theorem , known as Lang-Steinberg Theorem
that L is surjective.

As we already said, now we are going to prove surjectivity of the Lang map in the
case in which G is connected. This is a key result for everything that follows.

Theorem 2.2.2. (Lang-Steinberg Theorem) Let G be connected. Then the Lang
map L : G — G is surjective.

Proof. Let € G, and define the map £, : G — G by L.(g9) = g '2F(g). The
proof articulates in two steps:
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e The image of £, contains an open subset of G.
The key point is that the differential of a generalized Frobenius morphism at
the identity is nilpotent, because the differential of a Frobenius morphism at the
identity vanishes. Indeed let as usual F; be the standard Frobenius morphism
over GLy(F,), 6 € Tr,(GL,(F,)) be a derivation and recall that F,[GL,(F,)] =
IFT,[T,-]-, ﬁ] with 7,7 = 1...n. We have the following computation:

(dLFy)(8)(T3g) = 6 0 Fy(Tyy) = 6(Tfh) = g ox(Ty5) = 0.

By Proposition , this implies the vanishing of the differential at the iden-
tity for any Frobenius morphism.
Then denoting by ¢ the inversion map g — ¢! of G, d1 L is given by

A L=dit+d1F = _idTl(G) +d1 F

that is surjective since dy F' is nilpotent.

Now take F/ = zFx~! = ¢, o F. By Example it is still a generalized
Frobenius morphism (so dj F’ is nilpotent), so defining £' : G — G as £'(g) =
g 'F'(g) we still have that its differential at the identity di£’ is surjective.
Hence the image of £’ contains an open set. Writing r, : G — G for the right
translation for x (r,(g) = gz for g € G) we have that £, = r; o £" and hence,
since right translation by an element of the group are open maps L, contains
an open set as well.

e The Lang map L is surjective.
We proved that the image of the map £, contains an open set of G. Then
since G is connected, hence irreducible, this open set is dense (that is, £, is
dominant). Note that the same argoument holds for = 1, hence £ = £; is
dominant as well. It follows that £(G) N L,(G) # 0, so there exist g,h € G
such that g~ 1F(g) = h~'2xF(h) that yields x = L(gh™!).

]

Corollary 2.2.3. Let G be connected, H be a closed normal connected and F-stable
subgroup of G. Then

ar, o
= (T
Proof. Let m : G — G/ 17 be the canonical projection map. Then 7 maps G* to
F
(G/H)F with kernel HY', so there is an injective map 7 : G /yF — (G/H)F.
Surjectivity follows from the Lang Steinberg Theorem. Indeed let gH € (G/ H)F ,
i.e. F(gH) = gH. Since H is F-stable, this means that ¢~ 'F(g) € H. But since H
is connected, by Lang Steinberg Theorem the Lang map £ : H — H is surjective,

hence there exists h € H satisfying h~'F(h) = g~ 'F(g). Then gh~! € G and so
m(gh ') = gh™'H = gH. ]
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Note that the above corollary does not hold if the subgroup H is not connected,
as shown in the following example.

Example 2.2.4. Let the characteristic p of the base field be odd. Consider the
connected reductive algebraic group SLQ(IF_p) and the standard Frobenius morphism
E,, with q a power of p. We have SLa(IFy)Fs = SLy(F,).

The center of SLQ(E) is Z = {I,—1}, so it is F' stable but not connected, and the
map

— F,
7 SLa(F,) - (SL“FP)/{I, _1}>

18 not surjective.
—%
For instance, let ¢ € I, such that (9 = —(. Since the characteristic p is odd,

¢ # —C and hence ¢ € F_p* \IF,. Then for

(¢ 0
A‘(M*)’

— F,
the coset AZ lies in <5L2(Fp)/{l —I}> , since Fy(A) = —A, but since £A do

not have entries in ¥y, there is no matriz in SLo(IF,) whose image is AZ.

2.2.2 Existence of F-stable objects

Now we state another fundamental consequence of Lang Steinberg Theorem, that
will ensure the existence of F-stable objects (such as tori or Borel subgroups) and
will allow us to deduce structural results about groups of Lie type from the knowl-
edge we have of algebraic groups.

Proposition 2.2.5. Let G be connected. Let X be a non empty set endowed with a
G-action, that we write as (g,x) — g.x (9 € G,x € X ), and with a map F' : X — X
compatible with the action and with F, that is F'(g.x) = F(g)F'(x). Then any F'-
stable orbit O of the G-action on X contains a F'-fized point.

Proof. Let O be an orbit of G in X, and assume it F’-stable. Let x € O; since
O is F'-stable, F'(z) € O, so there exists ¢ € G satisfying F'(z) = g.z. Since
G is connected, the Lang map L is surjective, hence there exists h € G satisfying
h='F(h) = g~'. Then F'(h.x) = F(h).F'(x) = F(h)g.x = h.x, so h.x € O is F'
stable. O

The above theorem has some fundamental consequences, about the existence of
F-stable "substructures" of G.

Corollary 2.2.6. Let G be connected. Then
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1. There always exists an F'-stable Borel subgroup By.
2. Any F'-stable Borel subgroup B contains an F'-stable mazimal torus Tj.

3. For any standard parabolic subgroup Pr (I < A, A base for the root system of
G) there exists an F-stable parabolic subgroup Py conjugated to Pr.
Moreover, any F'-stable parabolic subgroup admits an F'-stable Levi decomposi-
tion.

Proof. 1. Consider the set
B = {B C G|B is a Borel subgroup of G}.
The (generalized) Frobenius morphism F' induces a map

F':B—B
B — F(B)

This is well defined since F' is a morphism of algebraic groups and so F'(B) is
still a closed solvable connected subgroup, and the maximality follows from the
bijectivity of F.

Then G acts on B by conjugation on the Borel subgroups:

g.B=gBg~! forany Be B,

and F’ is compatible with this action and with F. The action is transitive by
Remark , so there is just one orbit in B. Therefore it is F’-stable and
we can conclude that there is a F/-fixed point in B, that is an F-stable Borel
subgroup of G.

2. Take as group By and let it act by conjugation on the set of its maximal tori.
A reasoning analogous to the previous one shows that there exists an F-stable
maximal torus.

3. Similarly to the previous points |3, Corollary 4.2.15]
Wl

In what follows, we will often need to fix or use an F-stable torus or Borel
subgroup, and we will usually denote them by T and By respectively.

Note that in the Remark we stated that any F'-stable Borel subgroup con-
tains a maximal torus, but the converse is not true: in general, not any F-stable
maximal torus is contained in an F-stable Borel subgroup.

Definition 2.2.7. An F'-stable torus contained in an F-stable Borel subgroup is
called mazimally split.
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Example 2.2.8. o Consider the group GLy(IF,) with the standard Frobenius Fy.
Then T,, (the subgroup of the upper triangular matriz) is an F-stable Borel sub-
group, and D,, (the subgroup of the diagonal matrices) is an F'-stable mazimal
torus contained in it.

e Consider again the group GLn(]F_p) but with Frobenius morphism F' = T o Fy,
as m Frample
Then D, is an F-stable mazximal torus, but T, is not an F-stable Borel sub-
group: F'(T),) is the Borel subgroup of the lower triangular matrices. In other
words, using the notation of Definition , Ty = F'(T3,), where w € W de-
notes the permutation ( le n i 1 Tll > (recall that the Weyl group W of

GLn(I[Tp) is isomorphic to Sy, and can be represented by permutation matrices).

2.2.3 Parameterization of F-stable objects

We are now going to give a refinement of Proposition that allows us to param-
eterize the orbits of the finite group of Lie type GF. It will be particularly useful,
among other applications, to investigate conjugacy classes of GF'.

Definition 2.2.9. We say that two elements of v,y € G are F-conjugate if exists
g € G such that y = g 'z F(g).

Note that with this terminology the Lang Steinberg Theorem can be rephrased

saying that if G is connected, then it has just one F'-conjugacy class, since surjectivity
of the Lang map is equivalent to the fact that the F-conjugation orbit containing
the identity is in fact the whole group.
Adopting this point of view, it follows that connected closed subgroups of a not
necessarily connected group GG are always all contained in the F-conjugacy class of
the identity, from which we can deduce the following Lemma, that will be needed
for Theorem

Lemma 2.2.10. Let H be a closed normal connected F-stable subgroup of G.
Then the natural projection induces a bijection between F-conjugacy classes of G
and F-conjugacy classes of G/ I

Proof. Clearly F-conjugate elements are mapped into F-conjugated elements.

Now assume gH, g'H to be F-conjugated in G/ 7. This means that there exists

an h € H and an x € G satisfying hg = 27 1¢/F(z). Then consider the morphism

gF = c40 F": it is a (generalized) Frobenius morphism by Example . Moreover

since H is normal in G, gF can be restricted to a Frobenius morphism on H (Lemma
). Then since H is connected by Lang-Steinberg Theorem applied to gF there
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exists an y € H such that h = y~'gF(y)g~'. Therefore y~'gF(y) = hg = 2~ 1¢'F(x)
from which we obtain g = (xy) !¢’ F(zy), that is g and ¢ are F-conjugated in G. [

Theorem 2.2.11. Let G,X,F' : X — X be as in Proposition ,and let O be
an F'-stable G-orbit in X. Let xg € OF and assume Stabg(wo) is closed. Then the
following holds.

1. Let g € G. Then g.xg € OF if and only if L(g) € Stabg(zo).
2. The Lang map induces a bijection
{GT -orbits on OF}  —{F-conjugacy classes in Staba(wo)/(Stabg(a:o))o }
G".(g.mg) — L(g)

(where the overlying bar on the right hand side denotes the equivalence class in

the quotient StabG(xO)/StabG(XO)O)

Proof. Note that an zp € OF as in the assumptions exists by Proposition

1. Observe that

g.zo € OF if and only if
g.x0 = F(g.20) = F(g9)F'(x0) = F(g).70 if and only if
zo =g 'F(g).z0 = L(g).x0 if and only if

L(g) € Stabe (o)

2. By Lemma it is enough to prove that the map

{GF-orbits on OF} —{ F-conjugacy classes in Stabg(zo) }
G"(g.x0) - L(9)

is a well defined bijection. Indeed Stabg(xp) is a closed subgroup by assump-
tion, hence it inherits the structure of algebraic group and then its connected
component containing the identity Stabg(z0)° is always a closed normal con-
nected subgroup. Moreover Stabg(zg) is F-stable, since g € OF and so
g.xg = xo implies F(g).x9 = F(g).F(xg) = F(g9.x0) = F(x9) = x9. There-
fore in particular also the connected component of the identity Stab(zg)? is
F-stable (since F', being a rational morphism, is continuous).

The map is well-defined. Indeed we have a well defined map

OF — {F-conjugacy class of Stabg(zo)} (2.1)

induced by g + L(g): if g,h € G are such that g.xg = h.xg € OF then
y = h~lg € Stabg(zo), so (since g = hy)

L(g) =g 'F(9) =y 'h'F(h)F(y) =y 'L(R)F(y)
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that is, £(g) and L(h) are in the same F-conjucagy class in Stabg(zo).
Moreover if h € GF', the elements g.xg, gh.zg € OF have the same image in
(2.1): L(gh) = h™tg7 F(9)F(h) = h='L(g)F(h), that is L(gh), L(g) are in the
same F-conjugacy class in Stabg(zo).

The we can consider the map

{GF-orbits on O} —{ F-conjugacy classes in Stabg(zo) }
G'.(gwo) = Llg)

as in the statement.

This map is injective. Indeed, take h.z,g.x € OF such that L(g), L(h) are
F-conjugate in Stabg(zg), that is, there exists an n € Stabg(xg) such that
g 'F(g) =n"'h~'F(h)F(n). Then gn~'h~'is F-stable and gn~'h~.(h.2g) =
gn~'.xg = g.zg (because n~! € Stabg(xp)); hence h.zg and g.7g lie in the same
G* orbit.

The map is surjective. Since G is connected, by the Lang-Steinberg Theorem £
is surjective, so in particular any element of Stabg(zg) can be written as L(g)
for g € G, and g.zg € OF by point 1.

]

Theorem has a number of relevant applications. Indeed it allows to param-
eterize up to GT-conjugation several F-stable objects, whose existence was shown
in Corollary

Corollary 2.2.12. Let G be connected and reductive.
1. The F-stable Borel subgroups of G are all GF conjugated

2. The pairs (T, B) given by a maximally split torus T and a F-stable Borel sub-
group in G containing T are all G¥ -conjugated.

3. Fixzing an F-stable maximal torus Ty and writing W = Ne (TD)/TO for the Weyl
group, the assignment gTog~' — L(g) induces a bijection

GF -conjugacy classes of
F'-stable mazimal tori in G

} — {F-conjugacy classes in W'}

Proof. 1. By Remark , G acts transitively on B. This action satisfies the
assumption of Theorem : taking By an F-stable Borel subgroup we have
Stabg(Bo) = Na(Bo) = By, that is closed. Moreover it was already discussed
in Corollary that it satisfies the assumption of Proposition . Hence

there is a bijection between Gf'-conjugacy classes of F-stable Borel subgroups
and [F-conjugacy classes of B (V( By)" But By is connected, hence there is just

one GF-conjugacy class of F-stable Borel subgroups.
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2. By Remark , G acts transitively by simultaneous conjugation on the pairs
(T, B) with T maximal torus, B Borel subgroup and 7' < B. The Frobenius
morphism F' induces a map on the set of such pairs (it maps tori in tori, Borel
in Borel and preserves the inclusion) compatible with F' and the G-action.
Taking an F-stable pair (To; By), Stabg((To, Bo)) = Na(Bo) N Ng(Tp) = Bo N
Ng(Tp) = To which is closed. Moreover also in this case the stabilizer is
connected, hence applying Theorem there is just one G¥-conjugacy class
of F-stable pairs (T, B).

3. Again, G acts transitively (by Proposition ) by conjugation on the set T
of all maximal tori in G, and this action satisfies the assumptions of Theorem
. Then fixing an F-stable torus Tj the assignment g.Tp = gTog~" — L(g)

induces a bijection

F-conjugacy classes in }
0

GF-orbits on TF { a
e TSI gy

and Stabg(Th) = Ng(Tp); by Proposition Ng(Tp)? = Cq(Tp) = Ty, so
in this case © ta’bG(TO)/St abe(Th)? = W. Hence the F-stable maximal tori can

be parameterized, up to GF-conjugation, by F-conjugacy classes of the Weyl

group of G.
O
2.2.4 Conjugacy classes in finite groups of Lie type
Theorem has another important consequence: it allows us to parameterize

the conjugacy classes of the finite group G* knowing the F-stable conjugacy classes
of G.

Corollary 2.2.13. Let G be connected. Let C be an F-stable G-conjugacy class in
G. Take a F-stable point g € CF. Then the assigment g.xg — L(g) induces a
bijection

{ GF -conjugacy classes } { F'CCYO?]'U%CLC?/ classes of }
G\Zo
7 (Colaa)o

Proof. GG acts transitively on C by conjugation. The Frobenius morphism can be
restricted to C since it is F-stable, and it is compatible with the action of G and
with F. Since G is acting by conjugation, Stabg(z¢) = Cg(zo) and it is closed. So
we can apply Theorem O

contained in C¥

Remark 2.2.14. Any F-stable point x € G lies in an F-stable conjugacy class
C of G, since F(grg™') = F(g)xF(g7"') € C for any g € G, and clearly any G* -
conjugacy class is all contained in one G-conjugacy class. Moreover, by Proposition

any F-stable conjugacy class contains a F-stable point. Hence in order to know
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the conjugacy classes of G¥ it is enough to know F-stable conjugacy classes of G,
and then use Corollary

Example 2.2.15. o In G = GL,(FF)), centralizers are connected. Indeed, for
any A € GL,(F,), C(A) := {A € M, (F,)|gAg—" — A = 0} is a linear subspace
of ]Wn(E), hence irreducible, and so Cg(A) = C(A) NG is a principal open
set in C'(A) and hence irreducible.

Hence any F'-stable conjugacy class of GLn(IFTp) contains exactly one conjugacy

class of GLyp(IFy).

11

o Consider G = SLy(F,) with p odd, and take u = ( 0 1

> . Its centralizer in

GLy(F)) consists of all matrices of the form g 2 with a € E*, be I[Tp,

and it is connected. Intersecting it with G yields the centralizer of u in G, that

1s therefore
-{(3)(3 5) o)

Howewver, this is not connected: it has two connected components, namely the
one consisting of matrices with 1 on the diagonal and the one consisting of
matrices with —1 on the diagonal. It follows that the conjugacy class of u in
SLy(IFy) contains two distinct conjugacy classes of SLa(IFy).

1 a
0 1
of the two classes according to the class of a in ]F‘IV(Fq*)z Indeed taking

In particular, elements of the form u, = with a € Fy belong to one

aclF,y, letae IFTP such that a® = a. Then ug is obtained by u by conjugation
for do = diag(a,a™), and L(dy) = diag(a?™1, al~9) that in CG(U)/Cg(u)O
belongs to the class of I if a € F%, i.e. if a is a square in F;, and in the class
of —I otherwise.

2.3 The action of the Frobenius Morphisms

In this section G will always be a connected reductive algebraic group over E with
p prime, F' a generalised Frobenius morphism for G.

2.3.1 F-stable Tori

Thanks to Corollary , we can always fix a pair (Tp, By) in G consisting of an
F-stable Borel subgroup By and an F-stable maximal torus 7p in it. Such a pair
is uniquely determined up to G¥-conjugacy. In particular all maximally split tori
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of G lie in the same G conjugacy class as Tp. Recall that by Corollary , the
assignment gTog~! — L(g) induces a bijection

{ GF-conjugacy classes of

— {F-conj lasses i
F-stable maximal tori in G } {F-conjugacy classes in W'}

so if we fix Ty to be a maximally split torus, the identity of the Weyl group W (7p)
corresponds under this bijection to the class of maximally split tori.
We introduce the following notation.

Definition 2.3.1. Let G be connected and reductive, Ty < G be a mazximally split
torus, let w € W. We denote by T,, any mazimal torus contained in the GF -
conjugacy class which correspond to the F-conjugacy class of w € W(1y) via the
bijection induced by gTog™ +— L(g). We say that T, is obtained from Ty by twisting
with w.

More explicitly, a torus obtained from Ty by twisting with w € W is of the form
T, ={gtg” ' | t € Ty} with ¢ € G such that L(g9) =w

for some W lift of w in Ng(Tp). By letting ¢ range in £71(c), we obtain the whole
GF conjugacy class of tori denoted by T,,. Note that by Corollary (point
3) choosing a different representative of w in Ng(T') or choosing another element
W' € W F-conjugated to w gives rise to the same GF-conjugacy class of F-stable
tori, hence writing gTog~! such that £(g) = w does not give rise to any ambiguity.
If T, = gTog~ " with £(g) = w, conjugation cg induces an isomorphism of algebraic
groups Ty — T, satisfying
cgowl = Focy.

Indeed,
g 0wF(t) = cycg1 1) (F(1)) = epig) (F (1)) = Fley(t).

In other words, conjugation by ¢ is a morphism of algebraic groups defined over I,
where T is endowed with the rational structure given by wF' and T, with the one
given by F. In particular, to study the F-fixed points in T, it can be observed that

gtgt = F(gtg™!) ifand only if F(t) =w 't
So conjugation by g restricts to an isomorphism of finite groups
TE =2 T8 = {t € Ty |w.F(t) = t}.

Since Ty is F-stable, the Frobenius morphism F' induces a map on the Weyl group
w = Ne (TO)/T03 by Corollary , the F'-stable points of W are given by

F _ Ng(Tp)F
W = /T({?.
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Conjugation by ¢ induces an isomorphism between the F-stable points of the Weyl
group relative to a torus obtained from Ty by twisting with w € W, W(T,,) =

NG(TW)/TW, and the wF-fixed points of W:
Wa(T)F 2wl = {z e W | w.F(z) = z}.

So, in particular, the Weyl groups obtained from different F-stable tori have non-
isomorphic groups of fixed points points.

Example 2.3.2. o Consider GLy(IF,) with the Fy-rational structure given by the
standard Frobenius Fy. As seen in Corollary , the GLo(IF,) conjugacy
classes of F'-stable mazximal tori in GLQ(FP) are parameterized by the Weyl
group W = Sy = {I,0}.

The identity I corresponds to the class of mazximally split tori. A torus in this
class is Da, the subgroup of diagonal matrices (see Example ). Hence the
mazimally split tori in GLQ(IFTD) with respect to this Fy-rational structure are

all and only the tori of the shape
T = gDyg~! with g € GLy(F,).

Now we find a representative for the class of the tori that can be obtained from
Do by twisting with o. This is the class of F-stable tori that are not contained
in any F'-stable Borel.

Taking o € F(’;z \ [y, the matriz

satisfies

s =i =t (57 ) (o) = (10)

that is a representative of o in NGLQ(E)(DQ). So a mazimal F'-stable torus in

GLy(F)) non-mazimally split will be given by

1 aa? — b b—a —x
T, = xDyx~ ! = = F
o rL9x {Sa,b oﬂ—a<(a—b)aq+1 baq_aa> |a7bE p}

where s, has been computed as 5,5 = :zz_aliag(a7 b)x_1 for any a,b € E.
Then the F-stable maximal tori in GLo(IF,) that are not contained in a F'-stable
Borel subgroup will be all and only the ones in the shape

T =gT,g " with g € GLo(IFy).



2.3. THE ACTION OF THE FROBENIUS MORPHISMS 63

A direct computation shows that the Frobenius morphism acts on sqp € Ty,
with a,b € F),, by
F(Sa’b) — qu,aq

hence the fized points are given by
TF = {sapla,b € Fiz b= a’}.

We observe that the morphism oI acts on Dy by o F(diag(a,b)) = diag(b?, a?).
So we have

F(zdiag(a,b)z™") = F(sqp) = Spa,a1 = zdiag(b?, az ™t = z(wF(diag(a, b))z ",

and indeed from the theory we expected c, to be defined over ¥y with respect to
the rational structures on Ty and T, given respectively from oF and F';

hence in particular the fized points are given by
DgF = {diag(a,b) | a,b € Fp,b=a%},

and the conjugation by x yields indeed an isomorphism cy : DgF — TF.

o Let G = GL,(IFy), F = F,; the standard Frobenius morphism and let T = D,
the maximally split torus of the diagonal matrices.
GF -conjugacy classes are parameterized by F-conjugacy classes in W = S,, (the
symmetric group). Since the action induced by Fy on Sy, is trivial, Fy;-conjugacy
classes of Sy, are the same as usual conjugacy classes, hence they are given
by the possible lengths of the disjoint cycles in the permutations factorization
(therefore in bijection with the partitions of n). Let the parameterization be
such that the G¥ -conjugacy class of T corresponds to the identity of Sy,.
Let wy, = (1,2,...,n) € Sy, T, a maximal torus obtained from T by twisting
with wy,. Then

TE =1l — e T |t = w, F(t)w, '}
t
Let t = , € T'; then

tn

hence t € TYF if and only if t; = ti(i) for any i > 1, that is

t =17,
ti =t =17 for anyi>2.
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So T o Twnk o % as an abelian group.

In general, let w € S, and assume that the disjoint cycles in its factorization
have lengths ny,no,...ng. Then w is in the same conjugacy class as the permu-
tation o109 -+ -0 = (1,2,...,n1)(n1+1,n14+2...n1+ng) - (25;11 N, ... Nk);
then any of these cycles o; is of the same kind of the permutation w, considered
above, and any of them acts on a different block of the matrices of T'. Hence

O’1F
Dyt
oo F
Dnz ~ ]F* ]F* ]F*
— qn1>< qn2><>< an.
DO'kF
Nk

In particular, the order of Tf is given by the minimal polynomial of w (in this
case, p, = (2™ —1)(a" —1)--- (2™ — 1)) evaluated on q,

o Consider GLy(F,) with Frobenius morphism F' = 1o Fy as in example
We have seen in Example that D,, is F — stable and T), < F(T,) with
(1 2 o
w_<n n—1 - 1>'
Then take g € GLn(F,) such that £(g) = & and set By to be the Borel By =
gThg™t. Since w =w™! = L(g)~ = F(g7Y)g) we have

F(By) = F(g)F(T,)F(g~") = F(g)wThw 'F(g7") = gTng™' = B,

that is, By = ¢~ Ty is a F-stable Borel subgroup. Therefore set Ty = gDpg~ .

It is F-stable because g ' F(g) = & € W(D,,), so in particular g € Ng(Dy,)
(we are using point 1 of Theorem ). Moreover Ty is mazximally split since
it is contained in the F-stable Borel By. Hence D, = g~ Tyg, and L(g™ ') =
gF (g™ = gF(g)gg™! = g lg~! that is a representative of w™! = w in
W (Tp) (see Proposition ); so Dy, is obtained from the mazximal split torus
Ty by twisting with w.

2.3.2 F-action on characters

Now Let T' be an F-stable maximal torus. Then F' induces maps on the character
and cocharacter groups defined by:

F(x)=xoF for x € X(T') (2.2)
F(y)=Fox for v € Y(T)

These actions satisfy
(F(x),7) = 06 F()

because F(x)oy=xo Foy=xoF(y).
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Example 2.3.3. e Let G = GL,(F)), F = F; the standard Frobenius morphism,
T = D,, the maximally split torus of diagonal matrices. Character and cochar-
acter groups are given by

X(T)= (sl <k <n)g with xi(t) = t; for t = diag(tj)1<j<n € T
Y(T) = (mll <k <n)z  withvi(\) = diag(\)1<j<n for X € F, .
Then

F(xi)(t) = F(t;) = (t:)? = (xi(t))?
andF () (\) = F(diag(\) 1< j<p) = diag(X%)1<j<p = 7i(N)1
This shows that

F(x) = qx for any x € X(T) (2.4)
F(vy) =qy for any v € Y(T)

e Let G = GL,(F),), F = F, the standard Frobenius morphism, T = T,, a F-
stable torus obtained from D,, by twisting with w € W (Dy,). If L(z) = w, then
¢y : Dy — T is a 1somorphism of algebraic groups satisfying c, owkFy, = Fyoc,.
Recall that conjugation c; induces an isomorphism on the Weyl groups c, :
NG(D”)/D — NG(T)/T ; we continue to denote by w the image of w under
this isomorghism. Then, the action of Fy on the character group X (T') can be

described as

Fy(x) = qutx

The action of F' on the character group X (7") can be described as follows.

Proposition 2.3.4. Let T be a torus defined over I, with Frobenius morphism F,
X(T) its character group. Then the action of F' on X(T') can be written as F = qFy,
with Fy : X(T) — X(T') group automorphism of finite order.

Proof. A character A : T — IBTP* can be regarded as a regular function on T
(postcomposing with the natural inclusion IFT,* — IFT, ). This define an inclusion
X(T) — F,[T], therefore by definition of Frobenius morphism we can define

Y X(T) = Fp(T)

such that
F*(p(N) = A%

(that is, v is the restriction to X(7') of the arithmetic Frobenius map defined in
Remark ).
Note that for any t € T

VA (F () = F(0(N)(t) = A(t)* (2.6)
that is, ¥(\) is defined by the following commutative diagramm
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Tt o7

B Jv

]F—p* i} E*

and since F' is a bijective group morphism this equation determine uniquely ().
It follows that for any A € X(T) it holds ¥(\) € X(T). Indeed ¥()) is a group
morphism T" — Fp* because all the arrows in the diagram are group morphisms.
Hence we can write ¢ : X (T') — X(7T'), and since (2.0) can be written as F'o¢ = q
in X (7). By bijectivity of F' and the fact that ¢ is a group automorphism of X (7")
1 is a group automorphism of X (7T') .

Furthermore, (2.6) implies that for all m > 1 we have (™ (\))(F™(t)) = \(t9"),
that is F"™ o "™ = ¢ on X (7).

The group morphism v has finite order. Indeed by Proposition T can be
embedded as algebraic group in G Ly, (F,) for some n € N with F-rational structure
given by the standard Frobenius morphism F.Since the embedding is a rational
morphism of algebraic groups, 7" will be embedded in some Fy-stable torus 1" <

GL,(F,). Then in GL,(IF,) by Example the action of F, on X (7T") can be
written as F, = qw with w an element of the Weyl group of GL,(F,) (relative to
T"). Since the Weyl group is finite, it follows that there exists an m € N such that
F = ¢™id on X(T"), and so for such an m we have I = ¢™ on X(T'), hence
Fm =q¢m = F"o4¢™ on X(T), that is (by bijectivity of F) ¢)™()\) = A, so ¥ has
finite order. In particular ¢ is invertible, so setting Fy = ¢! we obtain that F acts
on X(T') as qFp. O

Remark 2.3.5. [, §1.18] In particular if F is a Frobenius morphism and T < G
is an F-stable mazimal torus, the group morphism Fy : X (T') — X(T) permutes the
roots of the root system ® of G relative to T.

Note moreover that since T is F-stable, F' permutes the root subgroups U, because
they are the minimal non trivial subgroups of G normalized by T, and it holds

F(Ua) = Upy(a)-

Corollary 2.3.6. [, Proposition 1.4.19] Let F' be a generalised Frobenius morphism
for G such that F% is a Frobenius morphism defining G over Fy,. Let q be the positive
real number defined by ¢¢ = qo. Then for any F-stable mazimal torus T of G the
action induced by F' on the character group, F : X(T) — X(T), satisfies

(det(F)| = gramka(X(T),
Moreover, the extension of F' on Xgp = X(T) ®z R can be written as
F =qFy with Fy € GL(XR),
with Fy of finite order and inducing a permutation on the root system of G.

In particular, the number ¢ in Corollary does not depend on the possible
choices of d and ¢ in its definition (since it can be deduced uniquely from the
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determinant of F' and the rank of the character group). Therefore we can give the
following definition

Definition 2.3.7. The F-rank of a F-stable torus T in G is the dimension of the
q-eigenspace, (q as in Corollary ) of the extension of F on Xg = X(T) ®z R.
If the F-rank of T is equal to the rank of T', we say that T is F-split

Remark 2.3.8. Note that if T < G is a F-stable torus with respect to F', then
there exists an n € N such that T is F™-split: it is enough to take n as the order of
Fo € GL(XR) in Corollary

Observe that T is F™-split, it implies that the isomorphism T — (]F_p*)r, with r =
rank(T), that can be regraded as an element of (X(T)", is rational considering T
endowed with the rational structure given by F'™ and (]F_p )" endowed with the rational
structure given by the standard Frobenius morphism Fyn (q as in Corollary ) [,
Proposition 7.1.3]. Therefore in particular q" is a power of p and F™ is a Frobenius

morphism inducing an IF gn-structure.

Note moreover that all maximally split maximal tori of G are G¥-conjugated, so
they are isomorphic through a rational morphism of variety and therefore F' acts
in the same way on all maximally split tori, and in particular it induces the same
action on the character groups of maximally split tori. So we can give the following
definition:

Definition 2.3.9. The F-rank of G is the F-rank of the mazimally split tori of G.
We use the following notation:

eq = (_1)(F-mnk of G)

2.3.3 Duality for finite groups of Lie type

Now we wish to define what it means to be dual for group with a rational structure,
that is: given G and G* connected reductive algebraic groups dual to each other
and endowed with Frobenius morphisms F' and F™* respectively, we wish to give
"compatibility" conditions between the isomorphism inducing the duality and the
Frobenius morphisms.

Definition 2.3.10. Let G, G* be connected reductive algebraic groups with gener-
alised Frobenius morphisms F, F*. We say that (G, F') and (G*, F*) are dual to each
other if there is a mazximally split torus T < G and a mazimally split torus T* < G*
such that

1. The root data of the two groups ¥(G) = (X(T),®(R),Y(T),®"(G)) and
U(G*) = (X(T%),®(G*), Y (T*), ®V(G*)) are dual to each other, with isomor-
phism

§: X(T)—=Y(TY)
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2. It holds
doF =F*"o0§

Theorem 2.3.11. [, §1.5.18/For any pair (G, F) consisting of a connected reduc-
tive group with a generalised Frobenius morphism there exists a corresponding dual
pair (G; F*) as in Definition

Example 2.3.12. Consider GLy(IF,) with the standard Frobenius morphism Fy.
We show that it is self dual with respect to the mazimally split torus T = Dy,
Recall (Example ) that the root datum of G L, (IFy) is given by

U= (0, X(T),®V,Y(T)) :
O ={xi—xjll <i#j<n}
X(T) = (xkll <k <n)z,
OV = {yi -yl <i#j<n},
Y(T) = (wll <k <nj)z).

Where
Xi(t) =t fO?“t = diag(tj)lgjgn eT
Yi(A) = diag(k5i*])1§j§n for A e E*
We already saw in FExample that there is an isomorphism between the root

datum of G an its dual induced by
0 X(T)—Y(T).
Xi = i

It remains to check that o satisfies the condition § o Fy = Fy o4
By example ,

Fo(xi) = qxi forany 1 <i<n
Fy(vi) = qui for any 1 <i <n.

It follows
d o Fy(xi) = 6(qxi) = qvi = Fy(vi) = Fy o 0(xa)-

Remark 2.3.13. /2, Proposition 4.3.2] Let (G, F), (G*, F*) be dual to each other
with mazximally split tort T, T* as in Definition ; let W the Weyl group of G
relative to T, W* the Weyl group of G* relative to T*. Then the anti-isomorphism

0 W — W*
given in Remark satisfies

§(F(w)) = F* ' ((w))
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Proposition 2.3.14. Let (G, F), (G*, F*) be dual to each other with mazximally
split tori T, T* and let W the Weyl group of G relative to T', W* the Weyl group
of G* relative to T*. The assignment w — 6(w™') where & is the anti-isomorphism
0 W — W* from Remark induces a bijection between the F'-conjugacy
classes of W and the F*-conjugacy classes of W*.

Proof. Let w,w’ be F-conjugated in W: w = 2~ '%'F(x) for some x € W. Then
applying 6 we have

S(w) = (e ")(wW)S(F(x)) = 6(a™ (W) F*~ (3(x)).

Therefore

and applying F* it yields
FR(0(w) ™) = 8(x) T F(0(w) ™ F(8(2))

that is, F*(5(w)™!) and F*(6(w')~1) are F*-conjugated. But since any element is
F*-conjugate to its F* image (because F'*(y) = y~lyF*(y) ) this implies that &(w) !
and §(w’)~! are F-conjugated. The converse can be proved in an analogous way. [

Corollary 2.3.15. There assignment T,, — Tj(y-1 induces a bijection

GF-conjugacy classes N Gt *—conjugacy classes
of F-stable maximal tori in G of F*-stable maximal tori in G*

Proof. 1t follows from Corollary and Proposition ]






Chapter 3

Representation Theory for
finite groups of Lie type

From now on, G will always be a connected reductive algebraic group over ]FTJ, with
p prime, F' will be a generalized Frobenius morphism for G' and £ will denote the
the Lang map as in Definition

In this chapter we are concerned with the representation theory of the finite groups
of Lie type, and in particular we deal with linear representations on spaces defined
over a field of characteristic zero. A quite standard technique to gain knowledge
about the irreducible representations of a group is to detect a suitable family of
subgroups and to build representation of the group by induction starting from the
ones of the subgroups. Our approach will focus mostly on characters, and for our
purpose we will need the concept of generalized character.

Definition 3.0.1. A generalized character of a group is a linear combination of
characters of the group with coefficient in Z

In particular, we build generalized characters of the group (called Deligne-Lusztig
generalized characters) inducing them from characters of the F-fixed points groups of
F-stable tori. This allows to parameterize and study the irreducible representations
of the group.

3.1 The Deligne-Lusztig generalized characters

3.1.1 l-adic cohomology

In order to define the generalized characters we are interested in, we need the con-
cept of l-adic cohomology.

Let [ be a prime and let Z; denote the ring of the l-adic integers. We denote by
Q, the fraction field of Z;, and Q is the algebraic closure. This is an algebraically
closed field of characteristic zero |2, §7.1].
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Remark 3.1.1. We will need to consider complex characters of finite groups. Note
that these characters take values in the subring of the algebraic integers, therefore it
makes no difference to consider this characters as taking values in C or @, since
the algebraic integers are a common subring.

For what concerns the operation of complex conjugation (that we will need for the
scalar product on class functions), on complex roots of unity it coincides with taking
the inverse and the latter is a well defined operation for roots of unity in @ as well,
and it can be extended on elements of @ that are sums of roots of unity. These
are the only elements in Q; on which generalized characters of finite groups take
value, and therefore these are the only elements of Q; for which we need to define
the conjugation.

From now on, let X be an algebraic variety over F,, ad let [ be a prime different
from p.
For any i € Z one can associate to X a finite dimensional vector space H.(X, Q)
over @, called the i-th l-adic cohomology group of X with compact support. The
construction of these spaces can be found in [2, Appendix].
For any algebraic variety, only finitely many l-adic cohomology groups are non trivial.

Proposition 3.1.2. /2, Property 7.1.1] Ifi ¢ {0,1, ..., 2dimX} then H/(X,Q;) =0

The correspondence between an algebraic variety and its l-adic cohomology groups
is functorial (contravariantly), by [3, Proposition 8.1.2|. In particular, the following
result holds.

Proposition 3.1.3. /2, Property ’7.1.3]_Any automorphism g : X — X of X induces
linear automorphism g* € GL(H{(X,Q))) for any i € N, in such a way to make
H{(X,Q;) a module over the group Aut(X) of automorphisms of X .

So for any element g € Aut(X), we can consider is action on the i-th cohomology
group of X for any i € Z. We denote the trace of this linear automorphism by
Tr(g|H!(X,Q;)). Note that this will be possibly non-zero for finitely many 4.

Definition 3.1.4. Let g : X — X be an automorphism of X of finite order. We
define the Lefschetz number of g on X to be

L(9,X) =) (~1)'Tr(g|H(X, Q)

We now state some properties of the Lefschetz numbers that we will need in the
sequel.

Proposition 3.1.5. [2, Property 7.1.4] Let g € Aut(X) of finite order. Then
Z(g,X) is an integer and is independent of the choice of .

Proposition 3.1.6. [2, Property 7.1.5] Let X,Y be algebraic varieties over ]F_p, let
f: X =Y be a morphism of algebraic varieties with fibers isomorphic to an affine
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space of fived dimension. Let g : X — X, ¢ : Y — Y be automorphisms of finite
order such that ¢’ o f = fog. Then

L9, X)=Z(g,Y)

Proposition 3.1.7. [7, Proposition 8.1.10] Let H be a finite subgroup of Aut(X)
such that the quotient variety X/ 1y exists. Then

H(X, Q) = 1iX 7, Q)

Moreover let g € Aut(X) be an automorphism of X of finite order that commutes
with all the elements of H. Then

260.%/y) = o D L lah. X).
heH

Note that if X is an affine variety and H is a finite group, the quotient variety
0% 77 exists |1, Theorem 5.52|, hence in this case the assumptions of Proposition
are satisfied.

3.1.2 The Deligne-Lusztig generalized characters

Let T be an F-stable maximal torus of G. By Remark , T' is contained in
some Borel subgroup B of G, not necessarily F-stable. Denote by U = R, (B), the
unipotent radical of B. We consider the set £~1(U). It is an algebraic subset of G,
hence an affine algebraic variety over IETp.

Lemma 3.1.8. Let T be an F-stable maximal torus contained in a Borel subgroup
B, let U be the unipotent radical of B. Then G acts by left translations and T
acts by right translations on L~1(U), and these actions commute with each other.
This defines an action of GF' x TF on L71(U)

GE x T8 — Aut(£~H(U))
(9,1) = (x> gat™)

Proof. Let v € L71(U).

For any ¢ € GF, it holds L(gz) = 27 'g ' F(9)F(x) = »7'F(z) = L(x) € U,
therefore gr € L71(U).

For any t € TF, it holds £(xt) = t o~ 'F(2)F(t) = t 1 L(2)t € t71Ut = U, where
we can write the last equality because 7' normalizes U. Therefore gt € £L71(U)
The actions commutes since left translation and right translation always commute
in a group. [l

Corollary 3.1.9. Let T be an F-stable maximal torus contained in a Borel subgroup
B, let U be the unipotent radical of B. For any i € N, the i-th cohomology group
of L7YU) is a left GF-module and a right T* -module such that for any g € GF,
te TV and for any v e H(L™(U), Q) it holds (gv)t = g(uvt).
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Proof. 1t is a consequence of Lemma and Proposition O

We can now define the generalized characters of Deligne and Lusztig. Let T be
an F-stable maximal torus and 6 : TF — C be an irreducible character of T we
will write § € Irr(TF). We already observed in Remark that since 6 takes
values in the ring of algebraic integers, it makes no difference whether to consider it
as taking values in C or in Q.

Definition 3.1.10. (Deligne-Lusztig generalized characters) Let T be an F-stable
maximal torus contained in a Borel subgroup B and let U be the unipotent radical
of B. Let 6 € Irr(TF) be an irreducible character of TY'. We define the function
R%a G — Qy to be

RE0) = i 3 20,0 £7 0D
teTr
for any g € GF.

When the algebraic group G we are considering is clear from the context (as it
will be in the broad majority of our discussion) we drop the G in the notation and
we simply write Rt g in place of Rg o

Proposition 3.1.11. The functions Rt g defined in Definition are generalized
characters of GF.

Proof. We use the same notation as in Definition ; we regard 6 as taking values
in Q.
Let e be the idempotent element of the group algebra of T over Q; defined by

—1
e = |TF| Z O(t
teTF

It acts on HY(L 1 (U),Q;) (extending the action of T* to its group algebra) as a
projector on the submodule on which T acts by the character 6:

Hy(L™HU), Qe = Hy(LH(U), Qu)g = {v € HALTH(U), Qi) | vt = 6(t)v}

(see |2, Proposition 7.2.1]). Therefore, for any g € G¥', it holds
Tr(g|HA(L™(U), Qu)p) = Tr(glHo(L ™ (U), Qr)e)
Observe that since e? = e, H é(ﬁ_l(U ),Q;) can be decomposed as
U), Qe @P HALT (U), Q)1 —e).

These spaces are both (g, e)-stable and (g, €) acts as g on HYLY(U),Q))e, while it
annihilates H:(£~1(U), Q;)(1 — e). Therefore

Tr(glHALH(U), Que) = Tr((g, ) HA(L™H(U), Q)
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So, since

Tr((g, )| Ho(L™H(U), Q) |TF| > Tr((g- DAL O), Q)0 ),

teTr

we can conclude that

Rr(g |TF| > Zg 0. LN

teTr

= 7y 2 0 )2 Trllo, LT V). @)

teTr

- e 3 Trllon DL ). ot )

teTr

= STl ). T

So the Rt are an alternating sum of characters of GF, hence they are generalized
characters. N

Note that according to the definition we gave, a Deligne-Lusztig generalized char-
acter Ry g seems to depend on the choice of the Borel subgroup B containing the
F-stable maximal torus 7', so we should write Ry<pg. Anyway, we drop the B in
our notation because the Rr g turn out to be independent of the choice of the Borel
subgroup. This will be a consequence of the scalar product formula we are about to
give in Theorem (whose proof does not use the independence from the choice
of B of the RT,g).

We denote the scalar product of complex characters of GI' by

(f. e GF| Z () f'(9) for f, f’ complex characters of GF

geGF

where the overlying bar denotes complex conjugation. This operation makes sense as
well for characters of G¥' taking values in @Q; by Remark . This scalar product
can be extended by linearity to generalized characters.

Theorem 3.1.12. [2, Theorem 7.3.4] (Scalar Product Formula) Let T, T be F-
stable tori and let 6 € Irr(TF), 0' € Irr(T'F). Then

(Rrp, Ry o) r = {geGF | gTg ' =T" and ¢/ o c, = 0}

|TF |
The scalar product formula has some important consequences. In order to state
it in clearer way, we introduce the following useful notation

Definition 3.1.13. Let T, T’ be F-stable tori and let 0 € Irr(TF), 0/ € Irr(T'F).
If there ezists g € GY such that gTg~! =T and 0 o cy = 0, we say that (T,0) and
(T',0") are G -conjugated.
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Corollary 3.1.14. Let T, T’ be F-stable tori and let € Irr(TT), 0/ € Irr(T'F).
Then

1. The generalized character Ry g is independent on the choice of the Borel sub-
group B containing T

2. The generalized characters Ryg and Ry g are either equal or orthogonal, and
they are equal if and only if (T,0) and (T',0') are GF -conjugated.

Proof. 1. Recall that the proof of Theorem in [2] does not make usc of
the independence of Ry from the Borel. Let B, B’ be two Borel subgroups
containing T. Let U be the unipotent radical of B and U’ be the unipotent
radical of B’. Write

Rr<py = rmy D Z((0.0).L7 WA

teT¥

Rrps= |T—1F‘ S LA(g. 1), L7 U0

teT¥

Then
(Rr<B9, Rr<B#9)cr = (Rr<B6, Rr<B'9)r = (Rr<B0s RT<Br 9) 3 -
This implics
(Rr<pp — Rr<pr o, Rr<Bo — Rr<p g)ar =0
that is, Rr<p g — Rr<p ¢ has norm zero and therefore Rr<p g = Rr<p g

2. Suppose (T, 6) and (T”,6’') are not G¥' conjugated, so there is no g € G¥' such
that g7g~! = T" and ' o ¢,-1 = 6, then by Theorem

(Rrg, Rro)gr = 0.

On the other hand, suppose that (7,6) and (1”,6") are GF' conjugated. We
want to prove Ryg = Ry gr.

Recall (see the beginning of § ) that since g € G¥', conjugation by g induces
a rational morphism between 7" and 7”, that restrict to an isomorphism ¢, :
TF — T'F. Now let B be a Borel subgroup containing T, and let B’ = gBg~!,
which is a Borel subgroup containing 7”. If U is the unipotent radical of
B, then U' = gUg™! is the unipotent radical of B’. Then for any y € G,
L(y) € U' = gUg™" if and only if L(yg) = g7 'L(y)F(9) = g7 'L(y)g € U.
Therefore

LU =L (U)g

and we have the following commutative diagram
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lcg(t) l-t

LU — L7H)
LYy — £7YU)

So we can apply Proposition and we get for any z € GF', t € TF

Z((w.1), L7HU)) = L((2,¢4(), L7HU")).

So for any = € G

Ry (o) = gy D LUt LU0 =

ter”
ﬁ Z L((x,¢4(1), L7HUN (cg(t7) =
teTr
ﬁ > L (1), L7 U))OE) = Ryp(w)
teTF

]

So taking pairs (7, 0) consisting of an F-stable maximal torus and an irreducible
character of TF up to G conjugacy, we obtain all the Deligne-Lusztig characters
Rtp, and they form an orthogonal basis of the space they span. This subspace of
class functions of G¥' is called the space of the uniform functions.

Definition 3.1.15. A class function of G¥ is called a uniform function if it is a

linear combination of Deligne-Lusztig characters.
In particular, the character of the regular representation is an uniform function.

Proposition 3.1.16. /2, Corollary 7.5.6]The character of the reqular representation

of GI' is given by
1
Xreg = W Z Z ereqRr
Por gerrr(Tr)

Where the first sum runs over the set of the F'-stable mazimal tori of G, |GF|p 15
the largest power of p dividing |G| and g is as in Definition

Corollary 3.1.17. Let x be an irreducible character of GY'. Then there exists a
pair (T,0) consisting of a mazimal F-stable torus and an irreducible character of
TF such that

(X, Rr9)cr #0

Proof. If x were not an irreducible component of any generalized Deligne-Lusztig
character, since the regular representation is uniform by Proposition , x would
not be a component of the regular representation of x either. But this is a contra-
diction, since any irreducible character of G appears as component of the regular
representation of GF'. ]
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So any irreducible character appears as irreducible component in some general-
ized Deligne-Lusztig character.
However note that since the Ry g are just generalized characters, the fact that they
are orthogonal to each other (Corollary ) does not imply that different Deligne-
Lusztig generalized characters do not have any irreducible component in common.
Indeed, it is not true, in general, that the sets of irreducible characters appearing
in different generalized Deligne-Lusztig characters are disjoint. However, disjointed-
ness of the sets of of the irreducible components can be achieved considering classes
of pairs (T, 6) that keep track of the action by conjugation of the algebraic group G,
called geometric conjugacy classes, and grouping up the Deligne-Lusztig generalized
characters relative to pairs (7,6) in the same geometric conjugacy class. To study
and describe these classes will be the main focus of Section
Before passing to study these classes, we give an alternative description of the gen-
cralized Deligne-Lusztig characters, that allows in particular to give an casier and
more intuitive description of Rr1 ., the generalized characters obtained by induc-
ing the trivial one.

3.1.3 An alternative description for RT,ITF

Let Ty be a maximally split maximal torus of G, and let By be an F-stable Borel
subgroup of GG containing Ty, let Uy denote the unipotent radical of By.

If the F-stable torus T is obtained by Ty by twisting with w, with w € W, there
exists a g € G such that £(g) = & (w € Ng(T') representative of w) that induces an
isomorphism ¢4 : Ty — 7" which is rational considering Tj endowed with the rational
structure induced by wF' and T" with the one induced by F (see the begin of § ).
We can give an alternative description of the Deligne-Lusztig generalized character
using this isomorphism.

For any irreducible character 6 of T$'%, let RV - GF — Q be

1
0

> Ll(gt), LTH@U)OE) (3.1)

teTyt

for any g € GF'.

Using techniques similar to the ones used in Corollary , one can prove the
following result, that shows that equation (3.1) is just an alternative description for
the Deligne-Lusztig generalized characters.

Proposition 3.1.18. /9, Lemma 2.3.19] The functions RS defined in (3.1) are
independent of the choice of the representative w € Ng(Ty) of w € W.

Moreover, if T is an F stable mazximal torus of type w and g is an element of G
such that T = gTpg~ ", then 6 o cg—1 15 an irreducible character of TF and

0
Rw = RT,HOCg_l .
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This description is particularly useful when we consider the trivial character 17~
of the F-fixed points set of an F-stable torus 7. Indeed if T is of type w, with
w € W, then
Lor

RT,].TF = RUJ
because 1pr o ¢y = Lyor. This allows to give a more intuitive description of the
characters RT,lT -

We will need the following definition, where we use notation from Definition

Definition 3.1.19. For any w € W we denote by X, the set given by
Xo={B€B| (B F(B))€OWw)}

Remark 3.1.20. We claim that the set X, is an algebraic variety. In order to prove
1t, we investigate its structure.

Given By, an F-stable Borel subgroup containing Ty, for any w € W the G-orbit
O(w) of pairs of Borel subgroups of G in relative position w is

O(w) = G.(By,wByw™ ') C B x B.
We also define I' to be the graph of F' on B x B, that is
I'={(B,F(B)) | Be B} CBxB.

Then X, is the image of the projection of O(w) N T on the first component. Since
O(w) is open in its closure (being an orbit of the action of an algebraic group on an
algebraic variety whose action map is also a morphism of varieties [9, Proposition
5.4]) and T' closed (being a graph), O(w) NI is an algebraic variety. Then since B
s a projective variety, it is complete, hence the projection on the first component is
a closed map and therefore the set X, is an algebraic variety.

Example 3.1.21. Let G be GLa(F)), F be the standard Frobenius morphism Fy.
Recall that Do denotes the maximally split maximal torus consisting of diagonal
matrices, Ty is the Borel subgroup consisting of upper triangular matrices and T, =

sThs™1 denotes the Borel subgroup of the lower triangular matrices. The Weyl group
is W= S5y ={1,s}. We have

Xy ={B € B|F(B) # B} = {gTbg~" |g € GLs(

X1 ={B € B|IF(B) = B} = {gTz9"" |g € GL2(F}) s.t. g 'F(g) € Do}
F,) s.t. g ' F(g) is anti-diagonal}

Indeed we have

(1) = {(gTg ", gTog™") | g € GLo(F,)}

O1) =A{ »)} CB
O(s) = {(9Tog ", 9Ty g7 ") | g € GLy(F,)} C B
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while the graph of Iy is given by
I ={(yTog ", F(9)T2F(9)"") | g € GL2(Fy)} S B x B
Therefore

O()NT = {(gTg ', gTog ") | g € GLo(Fy) s.t. g~ 'Fy(g) € To}
O(s)NT ={(gTag™ ", 9Ty g7") | g € GLa(Fy) s.t g~ ' Fy(g) € TasT}

since g1 F,(g) € NG, P)(Dg), we have that g~ F,(g) € Ty if and only if g~ 1 F,(g)
is a diagonal matriz, g 1Fq(g) € TysTy if and only if g~ F,(g) is an anti diagonal
matriz. So the projection of the first component of these two sets are the varieties
X1 and X.

Moreover, by Example there is an isomorphism B = P! (F ) given by gTog™ " +—
g.e1, where g.e1 denotes the line of g.eq in P! (F ). By Ezample we have that
through this isomorphism it holds:

O(1) = A(PY(F,)) = {([a, 0], [a,b]) | [a,b] € P'(F,)}
O(s) = P(F,) x P'(F,) \ A(P'(F,)) =
= {([a,b],[c,d]) | ([a,b],[c,d]) € P (]F_) X Pl(IE‘Tp) s.t. ad — be # 0} }.

-1

where the square brackets denote the homogeneous coordinates in P*(F,) ),
The graph of Fy, can be described as

I = {([a,0], [a?,8%]) | [a,b] € P (Fp)}.

To give a description of X1 and X through this isomorphism, consider the morphism
of projective varieties induced by the standard Frobenius morphism on PY(F,), that
is the morphism given by (writing it in homogeneous coordinates)

F,:P\(F,) - P'(F,)
la,0] > [a%, 1]

and denote by PY(F,) the set
PY(F,) := PY(F,)!" = {[a,0] € P*(F,) | a% — ab? = 0}
Then
X; = PY(F,)
Xs = PY(F,) \ P'(F)

Definition 3.1.22. An irreducible character x of GF' is called unipotent if there
exists an w € W such that

<X>$(7X )>GF 7é 0
where L(-, X,,) : GF' — 7 is the generalized character g — £(g, Xy).
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We now use the varieties X, to give an alternative description of the Deligne-
Lusztig generalized characters induced by the trivial character of TF.

Lemma 3.1.23. /2, Proposition 7.7.7]Let w € W, w a representative of w in
Ng(Ty). Then

1. The group (U NwUYTYE acts on L7Y(WU) by right translation
2. The map

LY wU) = X,
x+— xBr !

is a surjective morphism of varieties with as fibers the orbits of (UNwU w_l)Té"F
on L~HwU)

Theorem 3.1.24. Let T be an F-stable maximal torus of G obtained from a mai-
mally split torus Ty by twisting with w. Then

Rra,.(9) = Z£(9, Xw)

Proof. By Proposition )

1TuF'
jgjxlTF ::]%w 0
and by definition for any g € G¥’
1 wF .
R, (9) TwF| > Z((g,0), L7 (@U)).
teTyt

Now, £L~Y(wU) is an affine variety acted upon by the finite group 7%, so by Propo-
sition

-1 . 1 wF
295 W) or) = TwF| ST Z(g.t), £71@0) = RS (g).
teTyt
Moreover by Lemma there is a projection £~ 1(wU) — X, whose fibers are

the orbits of (U NwUw™H)TEE on L7HWU), therefore it factorizes as
—1/-
L) - £ WU >/T5,F S X

The latter morphism is compatible with the action of G¥" on both varieties, and has
as fibers orbits isomorphic to (U N &wUw™1), which is isomorphic as variety to an
affine space. Then by Proposition ,

1TwF

2(9.X) = 26,5 OV pr) = BT (g).

So we proved
RT,lTF (g) = 3(97 Xw)
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Remark 3.1.25. By Theorem , an irreducible character x of G is unipotent
(as in Definition ) if and only if there exists an F' stable torus T such that

<X7 RT,]-TF>GF 7é 0.

3.2 Lusztig classification of irreducible characters

We saw in Proposition that any irreducible character of GF appears in at least
one Deligne-Lusztig generalized character. We now wish to investigate under which
conditions two Deligne-Lusztig generalized characters have no irreducible component
in common. The answer to this question relies on the notion of geometric conjugacy
classes.

3.2.1 Geometric conjugacy

If T and T" are two F-stable maximal tori of G they are G-conjugated, so we can
write 7" = ¢Tg~! for some g € G. However, in general this conjugation is not a
rational morphism with respect to the rational structures induced by F' on both the
maximal tori. So in particular conjugation by elements of G' does not, in general,
conjugate T to T'F| hence we cannot use it in a naive way to compare Irr(TF)
and Irr(T'F). Nevertheless, we now introduce a device (the norm morphism) that
will allow us to do this comparison.

Definition 3.2.1. For any n € N, we denote by Ngn/p the homomorphism of T
given by

NFn/F T —T
ts tF(t)F2(t) - F"7L(t)
The morphisms Npn /g are called norm morphisms.

Remark 3.2.2. Note that any Npnp norm morphism on T' restricts to
Npowp : T = T".
Therefore each character 0 of TY determines a character § o Npn /g of T,

Definition 3.2.3. Two pairs (T, 0) and (T',0") consisting of an F-stable torus and
an irreducible character of the F-fized point group of the torus are geometrically
conjugated by g € G if

T = ng_1

and for any n € N such that g € GI"
9 @] NFTI/F — 0/ (¢] NFn/F (¢] Cg

as characters of TF".
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Example 3.2.4. The set {(T,17r) | T is F-stable} is a geometric conjugacy class.
Indeed two F-stable tori T, T' are conjugated in G, and if T' = ¢Tg~ ! for g € G,
then for any n such that g € G™ it holds

Lpr o Npnyp(x) =1 =1qr 0 Npajp(grg ™)
for any x € TF".

Theorem 3.2.5. [, Proposition 11.1.8] Let T and T' be F-stable tori, § € Irr(TT),
¢' € Irr(0'). If Rry, Ry g have a common irreducible component, then (T,6) and
(T',0") are geometrically conjugated in G.

Theorem stresses out the importance of geometric conjugacy classes in or-
der to study the irreducible representations of the finite group G¥ by mean of the
Deligne-Lusztig generalized characters. We therefore spend some thoughts to inves-
tigate them; we will find a description of geometric conjugacy classes in terms of the
group of rational cocharacters of the torus, that will lead to a parameterization of
these classes using the dual group.

In order to do that, we need some preliminary results. Let Q(p) denote the localiza-
tion of 7Z away from the ideal generated by p, that is

Q) = {f | r,s € Z , p does not divide s}
s

Lemma 3.2.6. 1. The group ]F_p* s isomorphic to the additive group Q(p)/Z.

2. There is an embedding IFTP* - Q
Proof. 1. (Sketch, for details see |2, Proposition 3.1.3|) Recall ]FT,* = Uyepnnso Fo-
It can be shown that for any power ¢ of p it is possible to choose a (, € ]F_‘p*

to be a ¢ — 1 primitive root of 1 (that is a generator of ]FZ) in a way that this

. n .  F 1 .
elements satisfies ((4»)" = (;. Then, mapping ¢, € F, to = € Q(p) induces

q—1
the desired isomorphism.

2. The group @(p)/Z can be embedded into the complex group of the roots of 1

by mapping ¢ — ¢”5". The roots of 1 are algebraic integers and so they lie in
a common subfield of C and Q;, as in Remark . So since IFTD* = @(p)/Z
by point 1, we have an embedding as in the statement.

]

Note that the isomorphism ]PTP* = Q(p)/Z and the embedding IETP* — Q of
Lemma are not canonical. From now on we shall assume these two maps
chosen once and for all.
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Proposition 3.2.7. [, Proposition 11.1.7] Let T be a torus with a generalized
Frobenius morphism F. Let n € N be such that T is F"-split, and let q be the
positive real nuber associated to F as in Corollary . Let X(T) and Y(T) be
respectively the characters and the cocharacters group of T. Then the following
holds:

1. The sequence

res|pr

0 — X(T) 229 x(17) 225 1p(TF) — 1

is exact, where the map res|pr is given by taking the restriction of characters
of T onTY and regarding the restriction as irreducible characters by taking the
embedding of ), into Q.

2. Let ¢ € ]F_p* denote the image ofﬁ under the chosen isomorphism Q(pVZ —

IF_p*, and let ve 1 Y(T') — TF" be the map defined by v — ~(C). Let the norm
morphism Npnp act on Y (T') by v = Npn po~y. Then the following diagram

0—— V(1) EY vy s P 51
lNFn/F lzd lNF'”/F

— Nn o
Ly () SR

1s commutative with exact rows.

Point 2 of Proposition in particular yields an isomorphism

FaY(T
I )/(F —id)Y (T):
Therefore we can consider a character € Irr(TF) as a character of Y/(7') such
that (F'—id)Y (T) lies in its kernel. Observe moreover that under this isomorphism,
again by point 2 of Proposition , 0 and 0 o Npnp are identified with the same
character of Y (7). This yields the following result:

Proposition 3.2.8. /7, Proposition 4.1.3] Let T and T’ be F-stable tori, § €
Irr(TF), 0 € Irr(0'). The following are equivalent

o (T,0) and (T',0") are geometrically conjugated by g € G;

o T' = gTg~" and conjugation by g transforms 0, regarded as character of Y (T")
in 0 regarded as character of Y (T)

With this new description, we can parameterize geometric conjugacy classes.
Since F-stable maximal tori are all G-conjugated,fixing a maximal torus 7" by Propo-
sition we can find representatives of the shape (T',6), 6 € Irr(TF) for any ge-
ometric conjugacy class. Hence it is enough to consider elements of this kind. With
this reduction, it is enough to consider the Ng(7T') action, i.e. the W action. Then
considering the group isomorphism between characters of Y (7") and X (7T') Rz Q(p)/Z
of Lemma we have the following bijection:
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Lemma 3.2.9. [2, Proposition 4.1.4[Fix an F-stable maximal torus T. There is a
bijection

G‘eometric conjugacy classes of F-stable W -orbits on
pairs (T7,0") with T' an F-stable » — (T @(/ )
mazimal torus, 0" € Irr(T") (T) @z =) 7}

3.2.2 Relations with the dual group

The parameterization of geometric conjugacy classes in Lemma can be better
described in terms of the dual group of G. From now on, (G*, F*) will be a pair
consisting of an algebraic group and a generalized Frobenius morphism that is in
duality with (G, F') as in Definition
Let T < G, T* < G* be the maximally split tori posed in duality. So there is an
isomorphism

§: X(T)—=Y(T")

that can be extended to
5 X(T) 0z oy — v (1T7) 27 oy

by letting it act as the identity on Q(p)/Z. Let W be the Weyl group of G relative
to T', W* the Weyl group of G* relative to T*. By Remark there is an anti-
isomorphism § : W — W™ respecting the action of the Weyl group on X(7') and
satisfying, by Remark ,

doF =F*o00.

Therefore ¢ induces a bijection

F-stable W-orbits on F*-stable W*-orbits on (3.2)
X(T) @z Qo) Y(T") 0z Qo) |
Moreover under the fixed isomorphism Q(FVZ — ]F_Z;k of Lemma , there is

an isomorphism of abelian groups
V(1) @z Qoyy — 17

given by evaluation, that is vy @ A — (A) for any 7y @ A € Y(T7) ®z @(p)/z [2,
Proposition 3.1.2].
So we can rephrase bijection (3.2) as

{ F-stable W-orbits on

F*-stable W*-orbit T
X(T)®ZQ(7’)/Z }—>{ stable orbits on }

It can be observed |2, Corollary 3.7.2] that the F*-stable W*-orbits on T* are the
intersections of the F*-stable semisimple G*-orbits with T%. Therefore the previous
discussion can be summarized in the following statement



3.2. LUSZTIG CLASSIFICATION OF IRREDUCIBLE CHARACTERS 86

Theorem 3.2.10. /7, Proposition 11.1.5] Let (G*, F*) be in duality with (G, F).
There is a bijective correspondence between geometric conjugacy classes of pairs
(T, 0) consisting of an F-stable maximal torus of G and an irreducible character of
TF, and F*-stable conjugacy classes of semisimple elements in G*.

We will sometimes denote by A, the geometric conjugacy class posed in bijection
with s in Theorem

Example 3.2.11. Consider the geometric conjugacy class consisting of pairs of the
shape (T, 1pr) with T an F-stable torus of Example . Under the bijection of
Theorem , this class corresponds always to 1, the semisimple conjugacy class
of G* consisting only of the identity.

Indeed according to Proposition the trivial character of T can be identified
with the trivial character of Y (T'). Therefore, since the various bijections we consid-
ered were induced by group isomorphisms, the class of (T, 1pr) corresponds to the
identity element of T™.

There is also a parameterization for GF'-conjugacy classes of pairs (T, ) consisting
of an F-stable torus and an irreducible character of T in terms of the dual group,
that can be regarded as a refinement of Theorem
Indeed if T' < G and T* < G* are maximal tori posed in duality, Proposition
yields an isomorphism Irr(TF) = 7+ " Moreover by Corollary we have
a bijective correspondence between G¥-classes of F-stable maximal tori in G and
G classes of F*-stable maximal tori in G*. Using these facts, one can show the
following result.

Proposition 3.2.12. /9, Proposition 11.1.16] There is a bijection

(T,0) with T an F-stable (T*,s) with T* an F*-stable

GF-conjugacy classes of pairs G+ *—conjugacy classes of pairs
maximal torus and 6 € Irr(T) mazimal torus and s € T*F

Note that the bijection in Proposition is canonical once we choose the maps
in Lemma
Now, recall by point 2 of Corollary that the GF-conjugacy classes of pairs

(T,0) with T an F-stable maximal torus and 6 € Irr(T) parameterize the Deligne-
Lusztig generalized characters R%Q. For this reason, we will sometimes write R% (s)
in place of R%e (or simply Rp+(s) in place of Ry g, when the algebraic group G is
clear from the context) where (T',6) and (T, s) correspond to each other under the
bijection in Proposition

3.2.3 Lusztig series

The parameterization introduced in the last section allows us to identify a partition
for the irreducible characters of the finite group of Lie type G. The definition of
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this partition will enable us to state a powerful result, the Jordan decomposition for
characters (Theorem ).

Definition 3.2.13. The Lusztig (geometric) series associated to a semisimple F*-
stable semisimple conjugacy class (s) of G* is the set of irreducible characters of
GF that are irreducible components of an Rt g for some pair (T,0) consisting of an
F-stable torus and an irreducible character of TY that is in the geometric conjugacy

class posed in bijection with s in Theorem
We will denote it by &(GF, (s))

Theorem 3.2.14. We have
Irr(GF) = I_I(s)co‘"(GF, (s))

with (s) running over the F*-stable semisimple conjugacy classes of G*.

Proof. By Corollary for any y irreducible character of G there exists a
(T, 0) such that x is an irreducible component of Ry g, so x belongs to some Lusztig
series. Moreover by Theorem two Deligne-Lusztig generalized characters Ry g
and Ry ¢ have no irreducible component in common if (7,6) and (7”,0’) are not
geometrically conjugated, so Lusztig series are disjoint. O

Remark 3.2.15. Note that the definition of Lusztig series associated to (s), with
(s) an F*-stable semisimple conjugacy class of G*, can be reformulated as follows:

E(GY,(s)) = {x € Irr(G") | {x, Rrg)ar # 0 for some (T, 0) € Ao}

Indeed if (x, Rrg)gr # 0 for some (T,0) € A, then x is an irreducible component
of Rt and so x € &(GT,(s))

Conversely, suppose that x € &(GF, (s)), so x is an irreducible component of Ry g
for some (T',0) € \5). By Corollary we know that there exists a pair (T',0")
such that (x, Ry g/)gr # 0 and since x is an irreducible component of both Ry g and
Ry g, by Theorem it follows that (T,0) and (T",0") are in the same geometric
conjugacy class ().

Remark 3.2.16. By Example the identity element of G* corresponds to the
geometric conjugacy class consisting of pairs of the shape (T, 1pr) where T runs
over the F-stable tori of G. Then by Remark we have

&G 1) = {x e Irr(GF) | (x, Rra,p)ar # 0 for some F-stable torus T}.
Hence by Remark we have

&(GY' 1) = {unipotent characters of GT'}
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The unipotent characters of G are an important class of irreducible characters
because of the following result, known as Jordan decomposition for characters. It
enlightens a correspondence between the Lusztig series of a finite group of Lie type
G* and the unipotent characters of other finite groups of Lie type, so it allows to
classify irreducible characters of G by means of a semisimple conjugacy class of
the dual group and of a unipotent character (of another finite group of Lie type).

Theorem 3.2.17. [, Theorem 2.6.4](Jordan decomposition for character) Assume
Z(G) to be connected. For any semisimple element s € G let (s) be the conjugacy
class of s in G*. Then there is a bijection

E(GT,(5)) = €(Ce-(5)", 1)
such that if x — py, it holds

* C %
O RE (3)) o = 2620 (000 RS, Den o)

for any maximal torus T* of G* containing s.

Remark 3.2.18. We stated Theorem for groups with connected centre because
if Z(G) is connected then all the centralizers of a semisimple element in the dual
group are connected [2, Theorem 4.5.9], and through all this chapter we assumed
connectdness of the algebraic group.

Newvertheless, the Theorem can be extended to groups whose center is not connected,

reformulating definitions and results in an appropriate way. For instance, see [,
Theorem 11.5.1].



Appendix A

Lusztig and Harish-Chandra
Inductions

In this appendix G is a connected reductive algebraic group over E, with p prime,
F is a generalized Frobenius morphism for G, £ denotes the the Lang map as in
Definition , and .Z denotes the Lefschetz number as in Definition

The purpose of this appendix is to give a quick introduction to the Harish Chandra
induction theory, a theory deeply linked to the one of the Deligne-Lusztig generalized
characters set out in Chapter

The Deligne-Lusztig generalized characters introduced in Definition can be
considered as part of a more broad construction, that allows to construct generalized
characters starting from irreducible characters of the fixed point set of the Levi
subgroups of parabolic subgroups of G.

Let L be an F-stable Levi subgroup of a parabolic subgroup P of GG and let U be the
unipotent radical of P. As we did in Lemma for a maximal torus T contained in
a Borel subgroup B, we can in this more general setting define an action of G¥' x L¥

on L~HU)
GF x LF — Aut(£~H(U)).
(9:0) = (& = gal™)
This allows to give the following Definition.

Definition A.0.1. (Lusztig induction) Let L be an F-stable Levi subgroup of a
parabolic subgroup P of G and let U be the unipotent radical of P. Let A EET(LF)
be an irreducible character of LY. We define the function Rr<px: GF — Q to be

Rucra(a) = T 3 Z((0.0.£7W)A)
leL?
for any g € GF.

It can be shown with the same proof of Proposition that the functions
Rr<p defined in Definition are generalized characters of GF'.
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However, it is not known in general if the generalized character introduced in Defi-
nition are independent of the choice of the parabolic subgroup. Nevertheless,
it is proved that this property still holds in several cases (see [3, Theorem 3.3.7]). In
Proposition we have seen that the independence holds in the situation where
the Levi subgroup is a torus (and hence the parabolic subgroup is a Borel subgroup),
and this allowed us to develop the theory of Deligne-Lusztig generalized characters
in Chapter

A different direction that can be taken and guarantees independence of the general-
ized character Rj<p ) of the parabolic subgroup P is to restrict ourselves to study
the case in which the parabolic subgroups are required to be F-stable.

Proposition A.0.2. [7, Theorem 5.5.1] Let L be an F-stable Levi subgroup of two
different F'-stable parabolic subgroups P and (). Then

Rr<p) = Rr<g
for any \ € Irr(LF).

In this setting, the fact that the Levi subgroup is F'-stable and also the parabolic
P is required to be F-stable ensures that also the unipotent radical U of P is F-
stable. Therefore if x € £L71(U) , then zu € L~ Y(U), so we can define a map
r: LN U) = Gy
= azU

F
whose image is (G/U)F ~ G /7F, and whose fibers are isomorphic to the affine
varicty U. The action of G by left translation satisfies g o = 7 o0 g (for any
geGF ), therefore by Proposition it holds

Lo, L7V = 25,9 /).

F
Moreover & /UF is a discrete variety. This implies (by [3, Proposition 8.1.8|) that

F
the [-adic cohomology of G /U F is all concentrated in degree zero, and
F _ __[nF
(Y /r Q) = [G /UF]

—[~F
is a permutation module for G¥ (where Q lG /UF] denotes the algebra of the

functions over Q; of the finite variety GF/ U F) . The fact that the [-adic cohomology
is all concentrated in one degree guarantees that in the situation where the parabolic
subgroup P is F-stable, the generalized character defined in Definition is an
actual character.

Now, if L is an F-stable Levi subgroup of an F-stable parabolic subgroup P with
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F
unipotent radical U, since P = U X L we can consider L as the quotient P Ve UF

and given a character \ of LY we define inflation of )\ to be the natural lifting of A
to PF through the quotient, that is

Infilr (\)(lu) = (1) for any u € UF.
Recall that if H is a subgroup of a group K, and y is a character of H, Frobenius
induction allows to construct a character of K as follows:
1 _
a0 = > ke

{keK | kxk—'cH}

With these two constructions, we can describe the characters Ry<p ) of Definition
in the case where the parabolic subgroup P is F-stable in a more elementary
way.

Proposition A.0.3. Let L be an F-stable Levi subgroup of an F'-stable parabolic
subgroup P with unipotent radical U, let X € Irr(LY). Then

Rp<py = IndGr o Infllx ()

Proof. Let g € G¥. Then

1 | —T[F
Rr<pa(9) = 77 > Tr(QJ HQ lG /UF]>>\(Z)
le|LF|
1 F _
= A S 1" €9 r | gal U = 2UFYAQ)
leL?
1 1 _
= 7 > o7 {z e GF | 27 Ygz = WUT}A(I)
leL¥”

1
PP Y

leLF {2€GF | z-1lgzelUF}
1 F _
= > > Inflle Az tga)
leL¥ {zeGF | z—1gaclUF}

— IndSr o Infilr (\)(g)
O

Definition A.0.4. (Harish-Chandra induction) Let L be an F-stable Levi subgroup
of an F-stable parabolic subgroup P with unipotent radical U, let X € Irr(LY). The
character of GF

IndSyx o Inf1vr ()

is called Harish-Chandra induction of X.
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Example A.0.5. Let Ty be an F'-stable maximally split mazximal torus of G, and let
By be an F'-stable Borel subgroup containingT'. Then the Deligne-Lusztig generalized
character R, 1, ts an actual character and is equal to

0

' F F
Rr,1,, = InngF oIn fzig (1pr) = Jndg5(1 Br)

The theory of Harish-Chandra induction is broadly studied and yields some deep
and complete results for representations of finite groups of Lie type. A reference for
this is |3, Chapters 5-6].
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