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Abstract

Data centers are fundamental infrastructures for the digital world that we
know today. To work, however, they use a high amount of energy and this
consumption is expected to grow in the future. The purpose of this thesis
is studying and finding solutions that would allow to decrease their energy
impact. Specifically it attempts to address a critical issue that occurs in air
cooled data centers when both cooling and exhaust air flows mix within the
computer rooms, this issue is due to poor design or to non-efficient manage-
ment and operation of the cooling infrastructure. When these mixes occur,
indeed, the energetic efficiency of the cooling operations drops.

So, in order to improve the air cooling efficiency in this thesis we focused
on the minimization of cooling and exhaust air flows mixing, using control
on fans speed of the cooling infrastructure, avoiding in that way to install
an opportune hardware which is the most expensive solution to these kind
of problems.

The following work is so developed: after a brief introduction, methods
to detect where and when flow mixings happen are discussed and proposed;
then strategies are built in order to identify, from field data, models that can
help detecting whether these mixing events occur or not, on top of classical
Prediction Error Methods (PEM) approaches; in the end, Model Predictive
Controllers are designed for the operation of the cooling infrastructure of
a data center, exploiting the identified models, mentioned above, and com-
pare them against model free Proportional Integrative Derivative (PID) con-
trol strategies. The results are then based on field tests performed in an
industrial-scale air-cooled datacenter with an installed capacity of 240 kW.
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Chapter 1

Introduction

In nowadays’ connected world, data centers have become essential. They
are facilities composed of networked computers and storage that businesses
or other organizations use to organize, process, store and disseminate large
amounts of data. With so much information exchange and with developing
countries increasingly eager to exploit the possibilities of an information-
based society, the number and dimension of data centers is constantly growing
- as much as their electricity demand.

This increasing energy consumption due to the exchange and storage of
information has been a driving force behind a progressive improvement in the
cooling systems of data centers. Since their efficiency is yet not at the physical
limit, for this reason it has been decided to develop this project, dedicated to
improving data center’s cooling system operations through dedicated data-
driven modelling and development of model-based control strategies.

1.1 The structure of a data center, in general
terms

Data centers are generally composed by an Information Technology (IT) and
a Cooling Technology (CT) infrastructure. The first one comprises mainly
the computer systems, i.e., servers, storage devices, and network hardware.
This group is the core of the data center and it provides services to the users.
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4 CHAPTER 1. INTRODUCTION

While working to meet all the users’ needs, the large energy consumption of
this infrastructure generates a huge amount of heat. The CT system (that is
also associated to a big energy consumption for its operation) solves the heat
rejection problem by taking this heat out of the facility. This infrastructure
includes server fans, Computer Room Air Cooling (CRAC), chillers, and
cooling towers. By using these tools the temperature inside the room is kept
constant, as discussed in more details below.

Figure 1.1: Picture of the interior of a data center room in Dallas.

1.2 Temperature control and the flow mixing
phenomenon problem

In 2016 the data centers around the world used roughly 416 Terawatts (or
about 3% of the total electricity), nearly 40% more than the entire United
Kingdom, and this consumption is expected to double every four years. Up to
40% of that electrical power were consumed by CT system. It is obvious how
developing room cooling control systems that keep the room temperature
steady while minimizing the energetic inefficiencies is fundamental to save
money and produce less environmental pollution.
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The most commonly employed cooling systems is air cooling: in this
case the CT works by transforming the warm air of the room into cold air,
trying to keep the temperature within the computer room at a predeter-
mined temperature. During this operation, hot air and cold air may mix up.
This phenomenon, that will be studied in deep in the following sections, can
lead to uncertainties in the temperature measured inside the data center, a
non-ideal response of the cooling infrastructure, and to an overall non-linear
behaviour of the thermal dynamics within the data center. As consequence
of this, the energy consumption will increase. Therefore, before continuing,
it is important for us to study in detail these mixing phenomena and make
educated decisions about how to control the cooling infrastructure based on
the results.

Figure 1.2: Aerial view of the Facebook data center in Luleå, Sweden.

1.3 Thesis collocation

The purpose of this work is to develop data-driven strategies to understand
how air flow mixing phenomena happen inside a generic computer room.
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These will then constitute the basis for the design of cooling room tem-
perature control algorithms. The section below this one shows how different
working regions exist within a data center room. They depend on the amount
of flow mixing generated by different value of the cooling system’s fans speed.
Considering these different working regimes, chapter 4 contributes by design-
ing data-driven linear modeling strategies that can be used to simulate how
the computer room temperature behaves in each of these regions depending
on the operating conditions of the cooling infrastructure. In Chapter 5 these
models are used to design Model predictive control (MPC) strategies for the
management of CRAC systems. These strategies are then compared against
a model free controller PID, so that the thesis focuses also in comparing dif-
ferent operation strategies, trying to understand which one leads to better
energy consumption.

We notice that, as for the air control, usually it consists in keeping the
cooling system’s airflow constant, and changing only its temperature. Driven
by the intuitions developed in the last two years by the thesis’ supervisors,
in this thesis we instead control the room temperature through changing
the airflow of the cooling system (i.e., of the CRACs) while keeping the
temperature of the output flow constant. This method is innovative because
in literature there are few evidence of temperature and flow mixing control
only through CRAC fans speed. Therefore our duty will be to give a greater
formalism to this new approach that tries controlling the room temperature
through taking into account the flow mixing phenomena.

To introduce also the conclusions that we drawn through working on this
specific problem, we can say that in our opinion flow mixing phenomena
should always been taken into account when studying how to both design
and operate a data center room. Identifying these phenomena, moreover,
can be useful for better defining the room temperature model, which may in
its turn benefit the performance for the controller. However, we leave more
details on what we just said in this paragraph to Section 6.
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1.4 Literature review

In literature we can find many examples of data center models. Fluid dy-
namics studies had given a great contribution, for example: [1] proposes a
model that predicts transient air temperatures in an air-cooled data cen-
ter, [2] presents a heat flow model which uses temperature and ambient sen-
sors to characterize the hot air recirculation, based on these informations, and
accelerates the thermal evaluation process for high performance datacenters.
What is missing in these papers and mostly in all fluid dynamics study is the
control part that we decided to introduce in this thesis. An example of model
designed for control it is given by [3] [4]. The data center room studied was
the same of our project. In their study, linear and non-linear models of the
room temperature were designed relying on the servers temperature; after
that, was developed a direct control (Linear Quadratic Regulator (LQR))of
the CPU temperatures, but with drawback big non-linear phenomena caused
by the servers’ fans. In our case, instead, we have decided to use a smaller
and simpler model, that excludes the servers temperature, in order to avoid
non-linearity phenomena.

Concerning the control, [5], for example, introduces a system based on
CRAC control. A distributed sensor network is used to increase the aware-
ness/information on data center state; the strategy is based on simple PID
controllers. An example on how to tune them can be seen in [6] where an op-
timal self tuning controller is presented, it combines,for a server fan cooling
system, a PID neural network (PIDNN) and a fan-power-based optimization
in the transient-state temperature response in time domain. PIDNN with a
time domain criterion is used to tune all online and optimized PID gains.

As above mentioned, the intention of this study is to use PID only as start-
ing point for the development of more complex controller, as in [7]. Indeed,
LQR and MPC were designed to control the data center room temperature.
Other ideas on how to design a MPC can be found in [8] and [9] which im-
plement a stochastic MPC to control the servers’ temperatures. All of these
examples were taken into account when the controllers were designed for this
project. For completeness of information, not only the technique proposed is
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used to cool down the data center temperature, e.g. [10] defines 13 different
basic heat removal methods, classifying them as direct air (our case) and as
indirect air methods relied on the outdoor conditions.



Chapter 2

Motivation

2.1 Working mechanisms of air cooled data
centers

As mentioned in Section 1.1, different data centers are cooled using different
types of cooling systems. The most commonly technologies used are CRACs
(see also Figure 2.1), that use refrigerants to cool the air flowing through
them, or Computer Room Air Handling (CRAH) units, that use instead
chilled water to achieve the same result. These two types of units can work in
both direct output or raised floor system configurations. A typical example of
a data center with a direct output configuration of the cooling infrastructure
is shown in Figure 2.2. With this configuration there are CRACs on both
sides of the computer room, and racks in the middle, dividing in this way the
room into separate hot and cold aisles. Racks (as the one in Figure 2.3) are
used to contain several servers by stacking them in ad-hoc metallic structures.
The rack shown in Figure 2.2 is for example 2.1 meters high and may contain
up to 30/40 servers. To create homogeneity in the air flows, all the servers
have the same air flow direction. Thus, servers’ fans push hot air into the
hot aisle, that then rises to the ceiling and goes inside the CRAC unit as the
sketch of Figure 2.5. Usually, CRACs have fans on their top, and these fans
push the air down through a chiller tube where the refrigerant is flowing. The
cooled air exits then the CRACs and travels up to the front of the servers,

9
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Figure 2.1: Example of a typical CRAC unit.

Figure 2.2: Example of a data center with hot aisle (central panel) and cold
aisles (right and left panels) configuration.
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Figure 2.3: A typical Dell R430 server.

enters them, becomes warmer, and in this way closes the cycle that continues
indefinitely.

In the raised floor case the CRAC units push the air directly into a cavity
in the floor that arrives up to where the servers inlets are mounted in the
room. With raised floors the phenomena will be the same as with the direct
output configuration; however, in this case the flow direction will be different
since coming from the bottom.

Both cooling configurations can be affected by flow mixing phenomena.
This phenomena arises when hot air and cold air meet and create turbulences.
The latter as we will see create several problems, especially regarding the
temperature control of the room. Is purpose of this thesis try to explain how
that phenomena happen and how to solve it.

2.2 Flow mixing phenomena

In the past, HVAC mixing applications did not demand strict performance
requirements. As long as the air-handling unit did not shut down, or a water
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coil did not freeze due to stratification, the mixing was assumed to be satis-
factory. However, with the advent of more precise control systems and the
higher needs for energy efficiency, the problems of an improper management
of the air flows has become more pronounced. Regarding this problem, we
notice that air temperature and flow sensor readings may be greatly affected
by stratification problems in the mixed air plenum [11]. So, for example we
can have problems with air, gas or liquid mixing phenomena.

In this project the attention focused on air flow mixing phenomena within
a data center room endowed with classic configurations of direct cold flows
from the CRACs towards the servers inlets. In this configuration, flow mix-
ing phenomena in the cold aisle is likely to occur, specially if improper air
containment mechanisms are implemented – something that happens often
in mid sized data centers. Indeed in these cases there is often no strategy
for mitigating air leakage from the cold to the hot aisle and viceversa. For
this reason the hot exhaust air going towards the CRAC could mix with the
cold stream already within the cold aisle. For new generation’s data centers
the solution adopted is to use new hardware, building for example a hot aisle
enclosure as in Figure 2.4. For old or cheaper installations, instead, the only
solution is to study this phenomenon and try to mitigate it using data driven
identification and control methods, as done below.

The main problem when the flow mixing occurs are room’s temperature
measures. Indeed, if the room temperature is measured, for example, on the
top of a rack in the cold aisle side and we have a flow mixing phenomena in
that region, it happens that the temperature in that point is different from
the one that would be without mixing. Evidence, that will be presented later
on in the thesis, shows that there may exist differences in the measurements
up to +5 °C between the two cases. For example, in a standard working case
with cold air equal to +21 °C, and hot air coming from the hot aisle equal
to +35 °C, we can understand how flow mixing can change the measure of a
the sensor on the top, mentioned before, that instead of detect only the cold
air temperature it measures a mix between both of them. As result, it will
present an higher value than the one expected.

From a control point of view this is not acceptable, since this difference
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Figure 2.4: Classic example of a typical CRAC unit with hot aisle enclosure.
From https://journal.uptimeinstitute.com

caused by the flow mixing phenomenon changes the temperature measure-
ments that are sometimes used as reference signals. This offset, thus, causes
an extra job for the actuators and disturb the functioning of the system. The
consequence is, at the end, an higher and useless energy consumption.

For the reasons above it is important to study flow mixing phenomena:
how they manifest, what are their root causes, and how we can mitigate
their influence on the performance of the cooling system. In our studying
real-world systems, we detected several types of flow mixings, that we cluster
in 3 main groups:

• underprovisioning phenomena: here hot air is mixed with the cold
one coming out from the CRAC (i.e., more air is needed to reach the
reference temperature);

• overprovisioning phenomena: here cold air bounces against the racks
and goes back into the CRAC (i.e., there is a waste of cooling energy);

• standard provisioning situations: here there is no air mixing, so that
cold air enters directly into the servers and hot air goes directly to the
top of the CRAC. This is the best situation possible, corresponding to
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Figure 2.5: Schematic representation of the computer room while in a stan-
dard provisioning situation. Here hot air goes directly into the CRAC, so
that the temperatures sensors in the cold aisle are not affected by flow mixing
phenomena.

Figure 2.6: Schematic representation of the situations corresponding to
CRAC units overprovisioning cooling flows (in the left panel) or underprovi-
sioning them (right panel).

the nominal behavior that the cooling system should have during its
design phase.

In the next sections we will explain all the procedures that we developed
for detecting these phenomena, and how to mitigate their influence through
opportune control strategies.

To conclude this section, we also notice that it is clear how sensors in
different positions can lead to different detection capabilities of the provi-
sioning phenomena described above. In other words, it is fundamental to
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choose the correct placement of the sensing infrastructure. We thus continue
the thesis with a concise description of the data center room used for our
field experiments. This will allow us to describe in more details the sensors
positioning problem and the provisioning detection issues.
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Chapter 3

Structure and study of a real
data center

In this chapter will be explained the real system used for the experiments,
and the study done to define how and where the flow mixing phenomena
affects the data center room.

3.1 SICS’ data center

Tests and studies have been performed at the Swedish Institute of Computer
Science (SICS) ICE facility. The access has been provided by Research In-
stitute of Sweden (RISE) SICS North, a research center in Luleå(SE). The
institute owns and operates two data centers; the one employed in this project
is module 2, i.e., the one that was already shown in Figure 2.2.

This infrastructure is composed by 4 SEE Cooler HDZ CRACs, and 10
racks with approximately 250 servers in them in total. Within racks 1 to 3
the computer room presents HPE BladeSystem c7000 Enclosures, containing
32 servers each. Incidentally, these servers are the most powerful servers
within module 2, and this means that from an airflow point of view the
computer room cannot be considered having geometrical symmetries. The
other servers mounted in the other racks are Dell poweredge r430 units (see
also Figure 2.3) and Dell poweredge r530 units. These servers are mounted

17



18 CHAPTER 3. STRUCTURE AND STUDY

in racks 4 to 10, for a total of 164 units.
To complete the picture we notice that each server has 4 to 5 fans for aid-

ing the air flow within the servers enclosure. Importantly, these fans operate
commanded by servers’ native control algorithms that work independently
from the room’s system. In other words, for each server the fans are con-
trolled by their own controller; since there is no coordination among the
various cooling systems, these local fans can lead (as we will see later on) to
non-linear dynamics plus practical issues on the whole system identification
procedure. Notice that modelling, identification and control of local fans are
problems not related with the scope of this thesis and thus will not be taken
into account in this study [3]. For a comprehensive study on the issues and
experiments on the field we send the reader back to [8] and [9] theses.

We won’t focus on servers fans because we want to work with simpler sys-
tem. Indeed, it has been decided to focus our attention on the cold aisle area,
and more precisely modelling the phenomena happening between CRACs and
racks. To link our models with a servers fans’ model will be a future topic.

We now proceed with considering that the status of the computer rooms
is typically sensed through many sensors; before proceeding we thus describe
the Supervisory Control And Data Acquisition (SCADA) system employed
to sense and control our testbed.

3.1.1 Sensors and actuators

The knowledge of what is measured, where sensors are positioned, and of
what actuators can actually do to steer the system is fundamental, since this
is the starting point for any detection and solution of our control problems.
This is especially true for understanding and controlling the flow mixing phe-
nomena described before – for example, it is crucial to understand at which
height mixings are happening and what they affect. Therefore, knowing the
sensors location is essential (see also Figure 3.1).

In our testbed the sensing infrastructure can be summarized with:

• Temperature sensors:
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– there are 3 for each side of each Rack: on the top, in the middle
and at the bottom;

– one sensor is placed on the ceiling of each aisle – in this case it is
even more important to know the exact location of the cold aisle
sensor because, as hinted before, it can change the sensibility of
the flow mixing detection.

– an additional output temperature sensor is present for each CRAC
in the middle of its outlet air area;

– we can also sense the temperature of the inlet and outlet refriger-
ant (that, incidentally, is composed by 70% of water and 30% of
Ethylene Glycol);

• Fans speed: for each CRAC we can collect its fans speed (in % or rpm);

• Electrical power : almost all the power produced by the room’s equip-
ment can be collected. In this thesis the focus will be only on the
CRACs power consumption.

The last screening process that must be done at this stage is the description
of the actuation infrastructure. Since CRACs will be the only actuators that
we can use to solve or at least manage the problem. So, also in this case, it
is fundamental to map their location. In this thesis will be used:

• CRAC fans speed = u1;

• IT load = u2.

• Refrigerant temperature = u3.

Where u2 and u3 will be kept constant for all the experiments and only u1

will be used to control the temperature inside the room.
Once this preliminary work has been done, the next step is to make tests,

identify and visualize the problem.
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Figure 3.1: Temperature sensors position in Module 2. Each green dot at-
tached to the Racks corresponds to 3 sensors respectively on top, middle and
bottom of them. Blue squares are sensors not taken into account for this
project.

3.2 Identification of areas of interest

To detect the areas of interest it has been decided to design an a-doc method-
ology that could be used for other experiments with different systems struc-
ture. For an exhaustive explanation we send the reader back to [12]. The
methodology used is:

• Identify in which zones it is relevant to detect flows mixing phenomena;

• Listing and/or clustering the most important sensors and actuators
available in the plant;

• Executing air flow experiments and find the most relevant signals;

• Determining the regions where the flow models are approximately lin-
ear.

A further explanation of what done at each step of the list is shown in
subsections below.
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3.2.1 Identify in which zones it is relevant to detect
flows mixing phenomena

All the computer rooms have different designs, that could leads to different
flow mixing regions. In this specific computer room, after its inspection it has
been clear that the flow mixing was in the cold aisles. In that areas cold flow
and hot flow meet generating air turbulence. They could be schematized as in
Figure 2.5 and Figure 2.6. Where as already mentioned in Section 2.2, three
different groups have been detected: underprovisioning, overprovisioning,
standardprovisioning.

After this inspection it is fundamental to study the system through sen-
sors and actuator.

3.2.2 Listing and/or clustering important sensors and
actuators available in the plant

Usually people think that more sensors are in the system and better it is.
The statement is correct, but it brings an issue. Indeed, too many sensors
are difficult to study individually. For example, for each cold aisle there
are almost 20 temperature sensors. Being this study oriented to a model
and control implementation, this number is to high – it is impossible try to
control or model so many sensors. Therefore, after sensors and actuators
identification of Section 3.1.1 is advisable to understand how to use them.
So, on the purpose of studying them a good solution is to cluster sensors in
different groups, in order to find the one that better explains the phenomena
and that can be used as controller’s reference signal.. In this case, sensors in
cold aisle are more important because, as said after the inspection, they are
in the region where air recirculation happen.

Clustering sensors is also important to have a bigger view of the system
and mitigate measures errors that could arise for several reasons e.g. sensor
fault, flow mixing etc.. Since the two sides of the room are almost specular,
was decided to consider just one of them in order to simplify the job according
to server availability, the only difference is represented by the servers’ power.
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Figure 3.2: Clustered sensors within cold aisle. The image refers to the right
side, but nothing change with the left side used.

It was chosen the left side between rack 1-5 which, as already mentioned, it
has more powerful servers and they can give us a wider choice on u2. The
clusters are:

• T1: mean of all the rack input temperature sensors between rack 1-5.
Where input temperature means the flow temperature that is going
inside the rack – from the cold aisle side;

• T2: mean of all top rack input temperature sensors between rack 1-5,
blue line in Figure 3.2;

• T3: mean of middle rack input temperature sensors between rack 1-5,
orange line in Figure 3.2;

• T4: mean of bottom rack input temperature sensors of one side, green
line in Figure 3.2;
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• T5: Crac output temperatures, they can be approximated all equals,
red line in Figure 3.2;

• T6: cold aisle temperature, purple dot in Figure 3.2;

• T7: hot aisle temperature.

After signals clustering it is time to make the first experiment and understand
something more about the system.

3.2.3 Executing air flow experiments and finding the
most relevant signals

Choosing the correct experiments to do is important. Indeed, sometimes a
bad one can lead to a waste of time or, worse, we could not understand that
is a bad experiment and arrive to false conclusions. The final result will be
the project failure. So, to do not incur in this types of problems, and to find
different type of provisioning linked to the air flow, it has been decided to
use an inverse steps-test of the CRACs fans speed, between u1 = 90 − 30%
(for data center’s safety the fans never go under 30% speed) as in Figure 3.3.
Each step is 10min long, usually enough for the system to reach or almost
to reach the thermal equilibrium.

It seemed to be the best test choice because it could explain how the
temperature grows related to CRACs fans decreasing. Also, It can help to
visualize different provisioning regions finding their thresholds. We will see
it later in Section 3.3.

Being the goal to stress the system only by CRAC fans the rest of the
actuators have been left constant:

• u2 = 50%;

• u3 = 18 °C.

Actually, several u2 have been tested as 0, 25, 50, 75, 100, one for each
test. But, only 50% will be shown for many reasons: first, step responses
of the temperatures have always the same behaviour, only the gain changes.
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Second, being not enough time to study all of them, it has been decided to
focus only on one IT load. From all of them it has been chosen 50% because
it is a good trade off between stress of the system (heat production) and the
needed of a certain ∆T = T7−T5 used to visualize better the flow mixing. For
instance, if ∆T = 1 °C, u1, used to keep the reference temperature constant,
will be small. In this way it will be difficult to study flow mixing with high
CRAC fans speed. On the contrary, it has been decided to do not use values
greater than 50% to do not stress too much the system too much.

Two experiments for each u2 have been done to compare the data and
check repeatability. It is also a good solution design smaller steps where there
are feelings or evidences of a region’s provisioning change. This solution has
been applied as can be seen in Figure 3.3.

In Figure 3.2.3 can be appreciated the temperatures behaviour of the
steps-test

3.2.3.1 Identifying the most relevant signals through correlation
analysis

Once all the signals have been collected (in D = {u1, . . . , u3, T1, . . . , T7}
dataset) and visualized, can be beneficial a step of pruning this set of po-
tential u’s and T ’s. In this way only that components having an actual
information content can be detected. Although more advanced approaches
may be performed, it has been decided to start this pruning step by perform-
ing a correlation analysis, more precisely, given the dataset D of synchronized
time-series with every component in this dataset being a specific signal. Then
what can happen is that: two distinct inputs ui (Ti) and uj (Tj) are highly
correlated, say, e.g.,∣∣∣∣E [(ui − E [ui]) (uj − E [uj])]

st.dev (ui) st.dev (uj)

∣∣∣∣ ≥ 0.95. (3.1)

but this is not the case because three actuators are independent between
each other.

A similar concept can be applied to couples outputs Ti and Tj: if there
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Figure 3.3: Stairs-test, u1 between 90% − 30%.
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exist highly correlated outputs then it may be meaningful to ignore one of
the two. In this case, the most correlated signals are T1 and T3, but since T1

is the mean of all the rack input temperatures and it could be approximated
as the input temperature located almost in the middle of the racks where T3

is located. For this reason only T3 has been taken into account.
It can also happen that a certain Ti is simultaneously uncorrelated to all

the various inputs uj and others Ts. In this case this may be seen as an
indication that there may not be extractable information from the sensor
(something that in any case can be double-checked during the data-driven
modelling step). This is the case of T6 which can be seen as almost constant.
This sensor will not be useful as flow mixing detector, but, as it will be
explained below, it will be useful as model variable because it can catch the
IT load variation (not the case of this test) by increasing or decreasing the
hot flow temperature coming from the hot aisle.

3.2.3.2 Most relevant signal choice

The last step before determining the different provisioning regions is to choose
the signal that better explain the phenomena. The last signals to be studied
after the correlation step are in Figure 3.5.

As it can be seen, two different groups can be detected: decreasing signals
and increasing signals. The first one is composed by T4 and T5. T4 does not
give significant information on provisioning phenomena because it does not
have appreciable changes during the test so it will be discarded. T5, instead,
looking at Figure 3.5 seems to be a perfect candidate because it follow the
steps in input. But, it has three big problems: first, the sensor is inside
the CRAC so it can not detect flow mixing; second, it decreases when u1

decreases and this in a room temperature control is counter-intuitive; third,
the sensor is too close to the actuator u1 and this makes the control too
sensible. Also T5 will be discarded.

Then, we study increasing signals T2, T3, T7. The last one has a non-
linear behaviour and also it is in a position where there is no flow mixing so
it will not used. T2 and T3 are the most interesting signals, they have similar
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Figure 3.5: Last temperatures comparison. Stairs-test
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dynamics (Figure 3.7), they are in a perfect position for our modelling and
control purpose, and as it can be seen they have regions of linear behaviour.
For this reason the last choice between T2 and T3 will be taken into account
only after a better study of them as done below.
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Figure 3.7: Comparison of T2, T3 and u1 during stairs-test.

3.3 Determining regions of different provision-
ing

The key point of this thesis is to identify when different provisioning of the
cooling flows happen and obtain data-driven models that can forecast the
thermal dynamics of the room when these phenomena occur.

Referring to Figure 2.5 and Figure 2.6 for an intuitive explanation, these
events happen depending on the values of the air pressure field within the
computer room (something that is in its turn affected by the speeds of the
various fans rotating within the computer room).

As explained in Section 2.2 three different areas have been detected. The
intuition suggests that the gains will typically be much smaller when the
CRAC are overprovisioning the cooling flows. This implies that these input-
output gains are expected to be clearly different, depending on the flows



3.3. DETERMINING REGIONS OF DIFFERENT PROVISIONING 29

T2 T3

Overprovisioning u1 = 90− 60% u1 = 90− 50%
Standardprovisioning u1 = 60− 45% u1 = 50− 40%

Underprovisioning u1 = 45− 30% u1 = 40− 30%

Table 3.1: Provisioning regions detected for T2 and T3

region. This eventually implies that from the stairs-test it should be imme-
diately possible to not only compute the input-output gains of the system
for the various operating conditions, but also verify for which operating con-
ditions the system experiences a shift from various types of provisioning.

Therefore, looking at Figure 3.7 and checking each gain of each step
response the provisioning regions detected are as in Table 3.1. As it can be
seen in the table, usually with T2 the new provisioning region start a step
before T3. Obviously, it happens because T2’s sensors are in a higher position
than T3 and they are more affected by the flow mixing caused by hot aisle’s
air flow.

So, two useful temperatures have been detected, but with only this ele-
ments there are no evidences for preferring one to the other. For this reason
the final choice will be done only after their model identification, where will
be chosen only the one that has better linear behaviour.
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Chapter 4

Modeling and identifying air
provisioning phenomena in
air-cooled data centers

4.1 Introduction

As we saw in the previous chapter, it is possible to detect that the air-
conditioning system induces different flow conditions. The purpose of this
section is to design a strategy to identify a series of Linear Time Invariant
(LTI) data-driven models of these different flow conditions, using classical
PEM based system identification strategies.

For the sake of completeness, PEM is a framework used in system identifi-
cation to estimate the parameters of dynamic systems having either standard
parametric model structures (like ARX, BJ, OE, or ARMAX) or also non-
standard and non-linear models. The estimate is done through maximizing
the predictive performance of the parameters of these models. More pre-
cisely, the parameters estimation step is performed using data collected after
one or more field test on the real system.

To be more mathematically rigorous, we consider in this thesis that a

31
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typical model structure is

y(k) = F(z)u(k) + G(z)e(k) , (4.1)

with the generic parameters vector indicated with θ = [f1, ..., fnF
, g1, ..., gnG

].
Due to its simplicity and typical effectiveness, in our case we will estimate θ

using the Least Square (LS) principle [13]. Given a regression model y(k) =
gk(u(k), θ) + e(k) with e a random innovation vector with zero mean and
covariance matrix σ2R, k = 1, ..., N , and saying also that N is the number of
samples available for the estimation step, the estimated parameters will be

θ̂LS(y) = arg min
θ∈Θ

1

σ2
||y − g(u, θ)||2R−1 . (4.2)

The system identification procedure that will be adopted in this thesis is thus
shown in Figure 4.1 and it is composed by the following logical steps:

1. Data prepocessing: when performing estimation tasks, data usually
have to be preprocessed for many reasons. For example, they can
be filtered, specially if we are interested to model the system only
in certain frequency (e.g., when the measurements are subject to high-
frequency noise we could then use a low-pass filter to ”clean” the signal
from this noise). An other option is that we can de-trend the data if we
notice that there exists a trend causing some kind of distortion (e.g., a
non-zero mean or some slow ramp due to seasonal effects). The most
important and fundamental preprocessing when dealing with modeling
linear systems is to re-center the data around the desired equilibrium;
in other words, given an equilibrium point with input u0 and output y0
we shall de-offset the data around that point using the transformations
ũ(k) = u(k)− u0 and ỹ(k) = y(k)− y0;

2. Model structure design: when possible, a priori information (typically
under the form of some more or less detailed physics laws) may be used
to guess n potential alternative model structures M1, ...,Mn, that shall
all be checked to see which one gives the best predictive performance in
relevant test sets. In our case there was no a priori information giving
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clear indication to which alternative we shall use. For this in this thesis
we took all the 4 model structures listed above into account;

3. Training step: using a dataset or a part of it (usually its 70%) and
applying it to M1, ...,Mn we compute the estimates θ̂1, ..., θ̂n. In this
way we obtain the ”candidate” models M1(θ̂1), ...,Mn(θ̂n) ;

4. Validation step: using a second dataset or the second part of the one
used during the training step, we can choose the best model among
M1(θ̂1), ...,Mn(θ̂n) which better describe the system. Latter choice is
done using bias variance tradeoff. It says that a model must both accu-
rately captures the regularities in its training data, but also generalizes
well to unseen data. Considering both ways it is almost impossible,
then the model chosen will be the one with a better tradeoff between
them.

Below we will present two different type of models: SISO and Multi In-
put Single Output (MISO). It has been decided to consider these alternative
models to provide comparisons that may work as a baseline for future deriva-
tions and to have the possibility of checking different control configuration
strategies.

Models have been trained and tested with a dataset divided as explained
in point 3 and 4 above, during the test only u1 (CRAC fans speed) changes
with u2 = 50% (IT load) and u3 = 18 °C (refrigerant temperature)kept con-
stant. Each test has been repeated for each provisioning region changing u1

upper and lower limit. Unfortunately, for time issues we could not test both
T2 and T3 regions. So in the end will be presented tests only on T2 regions
(see Table 3.1). T3 will be still tested and it will be useful to understand
whether this regions hypothesis is confirmed or not. A test example for the
overprovisioning region can be seen in Figure 4.2.
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Figure 4.1: Graphical representation of the logical steps used in this thesis
to identify the best model.
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Figure 4.2: Overprovisioning test with u1 between 90% − 60%.

4.2 SISO models for air provisioning phenom-
ena

With only one input and one output, SISO is the simplest model. Keeping
u2 and u3 ideally constant and being the output (T2, T3) only affected by
input u1, SISO model can still be a good solution even if too simple. This
models will be also used as starting point for future models.

We can start giving new notations to outputs that we are going to test:

y1 = T2,

y2 = T3,

and to our input u = u1, too. As said 3 different tests have been done,
one for each region of Table 3.1. They produced three models one for each
provisioning region.

Before the training step is good to notice as in Figure 4.3 y1 has a growing
trend so, as explained before a good choice is to detrend the data and after
that start with the parameters estimation. Data detrended can be seen in
Figure 4.4 .

As second step we decided to test all the model structures, and after
training and validation step we found for both 3 models a discrete-time Box-
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Figure 4.3: Evidence of a growing trend of y1.
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Figure 4.4: Data detrended with MATLAB’s function detrend.
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Jenkins (BJ) structure:

y(t) = B(z)

F (z)
u(t) + C(z)

D(z)
e(t) (4.3)

with sampling time equal to 1min., and A, B, C, D composed by the esti-
mated parameters, shown below.

Ωo 3


B(z) = −0.001− 0.002z−1 + 0.004z−2

C(z) = 1− 0.139z−1 + 0.103z−2 − 0.047z−3

D(z) = 1− 1.139z−1 + 0.139z−2

F (z) = 1− 1.75z−1 + 0.758z−2

(4.4)

Ωs 3


B(z) = −0.004 + 0.003z−1

C(z) = 1 + 0.836z−1 − 0.164z−2

D(z) = 1− 0.159z−1 − 1.267z−2 + 0.08z−3 + 0.258z−4 + 0.088z−5

F (z) = 1− 1.936z−1 + 1.366z−2 − 0.632z−3 + 0.424z−4 − 0.181z−5

(4.5)

Ωu 3


B(z) = −0.003− 0.012z−1 − 0.003z−2 + 0.01z−3 + 0.01z−4

C(z) = 1− 1.35z−1 + 0.5z−2 − 0.057z−3 − 0.0278z−4 − 0.011z−5

D(z) = 1− 2.507z−1 + 1.671z−2 + 0.51z−3 − 0.933z−4 + 0.259z−5

F (z) = 1− 1.027z−1 − 0.29z−2 − 0.052z−3 + 0.636z−4 − 0.239z−5

(4.6)
with Ωo = overprovisioning region, Ωs = standardprovisioning region, and
Ωu = underprovisioning region.

Validation plots can be seen in Figure 4.5. With this second part of the
tests almost all the models follow the real behaviour of their y1. The less
representative model is in Ωs region, where between t = 20 − 40min y1 has
a non-linear behaviour that let fails the model input response. This non
linearity occurs mostly with u = 50%, we can suppose it happens because
we are close to the transition point with Ωu. Therefore, we can expect that
some different turbulences are happening and that the too simple model can
not detect them. Further results will be shown below in Section 4.4.

To show that with y2 we do not have the correct dataset, as said before,
is enough to show Figure 4.6 with Ωo region. In this case we can see how
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Figure 4.5: Validation test plot with y1 real signal and y1e model output signal
(estimated). Starting from the top we’ll have respectively: overprovisioning,
standardprovisioning, underprovisioning.
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Figure 4.6: Validation test with u ∈ Ωo and y2 as output. y1e performance
not acceptable.

the model completely fails the gain in many points e.g. with u = 60%. This
reason pushed us to choose models with output y1.

More elaborated models will be shown in section below where new vari-
ables have been added.

4.3 MISO models for air provisioning phe-
nomena

We want to try to design a more complex model that can give better forecast.
We decided then to add more than one input to the model and what we got
is a MISO model. Using the same test of Section 4.2 we decided to use 3
model’s inputs: u1, T6, Tr (refrigerant temperature inside the CRACs pipes).
If we define:

Trin =CRAC inlet refrigerant temperature,

Trout =CRAC outlet refrigerant temperature,

we get Tr =
Trin+Trout

2
.

When u1 changes it has been detected as also Tr changes see Figure 4.7
as example. This variation means that also the flow outlet temperature of
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the CRAC changes and this is fundamental to forecast the output, that is
directly affected by it.

It has been decided to use also T6 (cold aisle temperature) because when
u2 is constant, as in this case, it does not have big variations, but if we think
to a standard working day: we will have continuous u2 (IT load) changes
with a connected heat production. Therefore, T6 will be useful as feedback
to detect the different heat produced by the servers. Obviously, warmer or
colder air coming from the hot aisle can produce another type of flow mixing.
Then it is fundamental to study it in the future.

As in Section 4.2 the same steps have been done and three models will
be presented. This time both three are discrete-time Auto-regressive with
eXogenous input (ARX) model, and their structure is:

A(z)y(t) = B(z)u(t− nk) + e(t) (4.7)

with sampling time equal to 1 min., nk respectively equal to [1 5 1], [1 7 1],
[1 5 1], and A, B, C, D with estimated parameters:

Ωo 3


A(z) = 1− 0.9723z−1 + 0.08614z−2

B1(z) = −0.003873z−1 + 0.000683z−2

B2(z) = −0.0005198z−5 + 0.0005479z−6

B3(z) = 0.09698z−1 + 0.05518z−2

(4.8)

Ωs 3


A(z) = 1− 0.7676z−1 − 0.3205z−2 + 0.2027z−3

B1(z) = −0.005818z−1 + 0.00249z−2 + 0.0003114z−3

B2(z) = −0.0007365z−7 + 0.001416z−8 − 0.0006097z−9

B3(z) = 0.09947z−1 − 0.1501z−2 + 0.203z−3

(4.9)

Ωu 3


A(z) = 1− 1.169z−1 − 0.2505z−2 + 0.4593z−3

B1(z) = −0.0137z−1 − 0.001871z−2 + 0.01031z−3

B2(z) = −0.001216z−5 + 0.002803z−6 − 0.001944z−7

B3(z) = −0.002418z−1 + 0.1158z−2 − 0.05215z−3

(4.10)

We can now analyse the validation plots below where for each test two plots
are shown. In each plot group are visualized all the inputs and output used,



4.3. MISO MODELS 41

comparing the real ones with the estimated output ŷ1.
Also in this case we can see from Figure 4.8 as y1e still has a gain problem

compared to y1. The augmented inputs did not solve the problem found in
Section 4.2 even if between 20− 40min we have a better estimation, in other
part of the plot the forecast is worse than before. For the other two regions
instead we can detect an also better behaviour than before. Further details
will be shown in next section.
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Figure 4.7: Validation test plot with y1 real signal and y1e model output
signal (estimated). u1 ∈ Ωo.
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Figure 4.8: Validation test plot with y1 real signal and ŷ1 model output signal
(estimated). u1 ∈ Ωs.
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Figure 4.9: Validation test plot with y1 real signal and y1e model output
signal (estimated). u1 ∈ Ωu.
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Provisioning
region

Model
type Type Order Fit

Ωo
SISO BJ [3 3 2 2] 81%
MISO ARX [2 2 2 2] 83%

Ωs
SISO BJ [2 2 5 5] 75%
MISO ARX [3 3 3 3] 69%

Ωu
SISO BJ [2 2 5 5] 85%
MISO ARX [3 3 3 3] 88%

Table 4.1: Models Fit comparison generated by Validation test

4.4 Results

To better understand how many improvements we have with MISO models
instead of SISO, we can make not only a visual comparison as done before,
but also a numerical one. The easiest way to have it is comparing for each
region the Fit of the two models obtained.

In this case, for validation dataset, Fit means the goodness of estimated
output, so in other word, how close ŷ1 is to y1 in percentage. Obviously, we
would like to find a Fit as close as possible to 100% without overfitting.

As it can be valued in Table 4.1 for Ωo and Ωu we have a small improve-
ment with MISO model using smaller orders. This means that in this case
the augmented input model works better than single input one. But, we can
not say the same of Ωs case, where an improvement in the behaviour of the
signal has not been followed by an improvement of the gain.

We can conclude that LTI models proposed are not good enough to de-
scribe the all fans range. Mostly for models ∈ Ωs a deep study even on
non-linear model should be done. Studying the non-linearity effects on the
system (e.g. servers fans) could help not only to design better model, but
also to have an advanced knowledge of the behaviours within the data center
room.

To give a starting point on the control field of this system it has been
decided to design a controller based on that models. Its study can be found
in following chapter.



Chapter 5

Air flow control in data center
room

5.1 Introduction

A lot of research efforts have already been put on minimizing the energy
consumption of IT units. What is perceived as the research direction for
the next few years it is to improve the data center room temperature con-
trol algorithms. As already mentioned, the room-wide cooling systems are
energy-greedy and, if no new hardware technology will arrive, the only so-
lution for improving the overall efficiency of the system is to design better
coolant control strategies.

About control, in this study two approaches are considered: a model free
controller based on PID regulation concepts and a model based approach
using a MPC framework. In order to show two different approaches both
models were implemented.

This chapter will focus on the implementation of the controllers based on
SISO models - indeed, due to time issue, this project did not arrive far enough
to implement a PID controller that could work on-line with MATLAB and
the system.

It has been chosen to use SISO instead of MISO models because latter
needs to work on-line. Indeed, PID can control only one input signal (in
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our case u1), the other two inputs (T6 and Tr), also affected by u1 should be
estimated or used live with an on-line implementation. Not being able to do
either it has been decided to use only the single input models. This choice
is still supported by the fact that this chapter has been done to explain how
two different ideas of control systems work and not to give an exact solution
of them.

The forthcoming text will present three different results:

1. the design and test of a dedicated PID controller on our SISO models;

2. the design and test of a dedicated MPC algorithm on our SISO models;

3. the design and test of a dedicate PID controller on the actual system,
developed on top of an ABB’s controller that was already installed on
the system.

The section will thus show also some simulations with Simulink on both
controllers and the field results. As hinted before, for every controller we will
use as a reference signal the temperature y1 and the induced air flow u as a
control variable.

5.2 PID

PID controllers are widely used in every industrial settings for their simplic-
ity in understanding, implementing and tuning them. Their big diffusion
(they constitute almost 80% of the various industrial controllers installed
worldwide) is due to the fact that the implementation of the controller does
not require any knowledge of the model of the system to be controlled. In-
deed, PID control action is computed starting only from the error given by
the output value measured and the reference signal that the system should
follow. A theoretical explanation of this controller is shown below.

5.2.1 PID theory

A PID is a feedback controller that can work either in continuous or discrete
time. Restricting our attention on the last one, we can think of the controller
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as a system that at every step check if the error e(t) given by subtraction of
the reference signal r(t) (setted by the user) and the process variable y(t) is
equal to zero, if is not PID changes its output trying to solve the problem.

This specific type of controller is composed by three terms: Proportional,
Integrative and Derivative. Applying them we will have an output (input of
the system to be controlled) equal to:

uPID(t) =

[
Kp +

Kp

Ti

Ts

1− z−1
+

Kp

Ts

Td

(
1− z−1

)]
e(t) = PID(z)e(t) (5.1)

where we define Ts as the sampling time, Kp as the proportional gain, Ti =

Kp/Ki, Td = Kd/Kp with Ki defined as the integral gain and with Kd said
to be the derivative gain.

As shown in (5.1), the formula defining PID controllers is composed by
three terms that can be added or neglected according to our need. In this
way can be adopted many strategies using different types of configuration as:
P, PI, PD and PID.

P controllers, augmenting Kp, makes the system response faster, but
it is subject to disturbances that leads to steady state errors. A possible
solution is to use the integral action which reduce the steady state errors
with drawback of bigger overshoot, less stability and saturation problems.
If this issues are too big, to solve them the derivative term can be added.
This action can reduce the overshoot and stabilize the system, see Figure 5.1.
Instead, to solve the integral saturation we can adopt an anti-windup scheme
that is widely explained in literature, e.g., see [14].

Sections 5.4 and 5.5 will describe a practical usage of the Proportional,
Integrative, Derivative controller that is ad-hoc for our system.

5.3 MPC

In this chapter we briefly explain the working principles behind MPCs. These
are considered to be advanced control techniques to be implemented usually
in difficult control problems. For more theoretical details beyond the me-
chanic description provided here we send the reader back to [15] [16]. The
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Figure 5.1: Example of a PID step response. From first to third panel we can
see respectively the contributions of Proportional, Integrative and Derivative
part.
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basic MPC concept can be summarized as follows:

Suppose that we want to control a generic I/O process while satisfying
inequality constraints on the input and output variables. Also suppose that
we have a precise model of aforementioned system that we want to control.
Using that model and current measurements we can predict future values
of the outputs, and the appropriate changes in the input variables can be
calculated based on both predictions and measurements.

5.3.1 MPC theory

To give a fast theory explanation we can use a simple example and think to
design a controller that takes the state of a deterministic, linear system to
the origin. If the setpoint is not the origin (as will be in our case), we can
make modification of the setpoint problem to account for that. The system
model taken as example is:

x(t+ 1) = Ax(t) +Bu(t) (5.2)

y(t) = Cx(t). (5.3)

For a simpler discussion, the state is assumed to be measured, i.e., that
C = I. For simplicity we ignore the case where there is the need to perform
state estimation tasks.

Now we can use the model 5.2 to predict the state evolution given N

inputs collected in a vector u. Importantly, the choice of input and output
constraints is a fundamental aspect that distinguishes MPC for linear systems
from LQR. Indeed, both use an objective function V (·) to measure the
deviation of the trajectory of x(k), u(k) from zero. Many functions can be
used, but in general the control problem is to minimize the following cost
function:

V (x(0),u) = 1

2

N−1∑
k=0

[
x(k)TQx(k) + u(k)TRu(k)

]
+

1

2
x(N)TPfx(N), (5.4)
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subject to

x(t+ 1) = Ax(t) +Bu(t). (5.5)

So, the objective function explicitly depends on the input sequence and initial
state. Note that, tuning the control parameters means varying the matrices
Q and R, i.e., the relative weight of the state being non-zero versus the input
being non-zero. For generality we allow the final state penalty to have a
different weighting matrix, Pf . As hinted before, we can drive the state to
the origin quickly at the expenses of large control action giving larger values
to Q instead of R. Instead, with R large and Q smaller we reduce the control
action and slow down the speed at which the state try to reach the setpoint.

To guarantee that the solution exists and is unique a classic and general
requirement is to have Q, PF and R real and symmetric, Q and PF positive
semidefinite, and R positive definite.

5.3.2 The objective function for our SISO models

In this section we propose our MPC controller applied to the models devel-
oped in Section 4.2. Then, it will be a simple simulation of the real system.

As explained before, MPC to work needs the state of the system, for this
reason models designed in Section 4.2 have been transformed in State Space
models using ss MATLAB function. Starting from an initial temperature
of y1(0) = 28 °C and with a reference signal set to r = 26.5 °C the MPC
constraints used are in Table 5.1. The number of inputs u(t) collected to
predict the state evolution were N = 10. It has been decided to use a simple
objective function V (·) to be minimized, and it is shown below

V (x0,u) =
N−1∑
k=0

e(k)TRe(k), (5.6)

subject to

x(t+ 1) = Ax(t) +Bu(t). (5.7)
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I umin 35%
umax 90%

O y1min 22 °C
y1max 30 °C

Table 5.1: MPC constraints

With e(t) equal to ŷ1 estimated using the model minus r.
The test explanation and results are listed below in Section 5.5.

5.4 Implementation

This section will show some field tests that we performed leveraging a phys-
ical PID that was already installed on the system. This controller has been
supplied by ABB, and is delegated to control the data center room tempera-
ture through the CRAC’s fans speed (i.e., through respectively the variables
y1 and u defined in our problem formulation). To be more precise, physically
there are two different controllers, one for each side of the room, and one
can decide if he wants to control each CRAC independently (i.e., the two
sides of the room separately), or to control the whole system with only one
controller, so that the second one will work as a slave device.

For technical issues given by the still not complete installation of the
control system, we had to use the configuration where there is only one
controller for all the CRACs installed in our computer room. Specifically,
it means that there was one master CRAC with a specific reference signal,
and all the others three CRACs working as slaves. Being our control signal
y1 strongly connected to only one side of the room, it has been decided to
study only that part even if the PID could control the whole of it.

To complete the technical description of our hardware, the ABB system
employed in our field experiments was such that its output voltage signal
(i.e., the signal uPID) was between a range of 0-10 Volts and was controlling
the CRAC fans speed u with a ratio of 1:10 (i.e., example u = 35% if
uPID ' 3.5V or u = 72% if uPID ' 7.2V , and so on).
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As for tuning the parameters of this PID, we applied a classical procedure
and tried several different PID’s coefficients in similar tests. These were
made to try the various configurations and they had 3 different parts: first
30min open loop with u fixed, second 30min closed loop with reference
signal r = y1(30), third a step response is applied to the system changing the
servers IT load (u2) for 90min. Sometimes even with 90 minutes it has been
difficult to reach the steady state and unfortunately due to time issues we
could not extend the tests longer. A message that we can extrapolate from
these partial results is that if after 90 minutes stability can not be achieved,
then the system is probably too slow and the PID coefficients should be
changed.

Said so, many coefficient have been tested starting from the PI config-
uration; sadly, when we though to have the perfect ones the test could not
be performed for system’s issues. So, below will be shown only some of the
coefficients among the many tested, and our table can give an idea of the
path taken to get the best results that we achieved. We will start from low
Kp with Kd = 0 until a higher proportional and derivative gain, for more
detail about the theory behind it look Section 5.2.1.

In Figure 5.2 we can see that using a PI with Kp = 2 and Ki = 0.05 ∗ 60
we have a controller response too slow when the error is different to 0. For
example, we can see that it needs at least 10min. to bring an error from
0.1 to 0. Also the integral actions seems to be not strong enough so: in
Figure 5.3 one can hopefully appreciate how we tried to solve the problem
with a PID with Kp = 9, Ki = 0.07 ∗ 60 and Kd = 0.05/60. We can see how
the slope is higher but still not steep enough. To try to solve this problem,
our last choice was to set Kp = 11, Ki = 0.11 and Kd = 0.05, unfortunately
as said before, due to some technical problem on the system we could not
try these last values that seemed promising.

5.5 Simulation

This section will present some tests performed using our PID and MPC
controllers described in Section 5.2 and 5.3. As for these technologies, sev-
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Figure 5.2: PI test with coefficients Kp = 2, Ki = 0.05.
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Figure 5.3: PID test with coefficients Kp = 9, Ki = 0.07 and Kd = 0.05.
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eral coefficients have been tested, but only the most promising ones will be
presented. As said in Section 5.1, the simulator used in our experiments cor-
responds to the SISO models that we trained from the field data. However,
using that models we could not make the same step test as in Section 5.4
because there was no input that would allow us to add an IT load to the
system. It was therefore decided to create a step by changing the value of
the reference signal.

In the following we will present two examples of such kind of tests. Dur-
ing the first one we will compare the same inputs corresponding to field and
simulated realizations of the system dynamics under the action of the PID
controller; this to understand how much the simulation deviates from reality.
The results obtained here show the existence of two steps, the first one hap-
pening at 90min in open loop with u fixed, and then the system will enter
into a closed loop with a specific reference signal with r < y1(90). As one can
see in Figure 5.5, the main difference with Figure 5.4 is that without noises
that can be given by many different components inside the room we will have
almost the same rising time, but a completely different settling time and fans
equilibrium point. The solution as already said is to obtain a better model
that can detect all that noises.

The second test focuses instead on the performance of the MPC. In this
case an initial value and a reference value (to which the system will have
to follow) will be set, as specified in Section 5.3.2. As one can see, in this
case after 10min. the controller has minimized the objective function 5.6
(e(10) = 0) making sure that y1 is aligned with r.

More details about the results obtained using the PID and MPC schemes
will be given in the next section.

5.6 Results

Differences between the performance of PID and MPC schemes can be sum-
marized as follows: if we take as an example a test as the one explained in
section above, we can see how the MPC strategy does not produce overshoots,
and how its settling time is extremely short.
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Figure 5.4: ABB’s PI field test with coefficients Kp = 2, Ki = 0.05 ∗ 60.
y1(0) = 28.1 °C, r = 26 °C
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Figure 5.5: PI simulation with coefficients Kp = 2, Ki = 0.05 ∗ 60. y1(0) =
28.1 °C, r = 26 °C
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Figure 5.6: MPC simulation with y1(0) = 28 °C, r = 26.5 °C

Having a controller based on the model thus makes the whole system
more precise and less prone to steady state error. Having a fast but at
the same time precise system can also improve energy consumption, one of
the fundamental reasons for the implementation of these systems. This said,
however, we have to notice that our tests are based on simulations performed
through the very same model that was used to construct the controller. In a
sense, it is thus expected that the MPC scheme has excellent performance.
One should however test it on the real system to draw more meaningful
conclusion.

In any case, we can claim that using PID technologies is a good solution
when one does not have reliable models at hand, some developmental time,
or special needs to implement advanced control scheme. That said, even if
we cannot make claims based on evidence from the field, for this specific
problem of managing CRAC systems we firmly believe that the use of an
MPC scheme can be a better choice from an energetic point of view.
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Conclusions and future works

This study on air behaviour within a data center led us conclude that, first
of all, choosing which physical signal is most meaningful to be analyzed
to obtain models that can be useful from a control perspective requires a
careful and data-driven study of the air flows phenomena. What we learned
is indeed that non-expected phenomena may occur, and that blueprints of
the computer rooms are insufficient to forecast what actually may happen
from an air flow distributions phenomena.

We also discovered that, at least in our setup, it may be meaningful to try
to find combinations of different linear models each characterizing a specific
provisioning region. During our efforts we compared several black box strate-
gies, for both SISO and MISO formulations of our models. Interestingly, we
found that in our specific field case even if the last type of models seems to
lead to better forecasting results, there is the need for some improvements in
some specific air provisioning region before being able to implement effective
MPC schemes.

As for this topic, we also confirmed that, through using an identified SISO
model to describe our physical setup, MPC strategies can, when compared
with a classic PID approaches, lead to completely different ways to bring the
system to a chosen target value of the temperature within the computer room.
At last, even if not supported by quantitative evidence, the intuitions that
we developed leads us to conclude that if it is possible, the use of predictive
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control is preferable in air cooled data centers management systems.
In conclusions, we also identified a list of possible future works, whose

foremost points could be:

• with the same data collected during this project, design more compli-
cated models taking into account the provisioning regions detected and
other non-linear phenomena as servers fans;

• implement a controller focusing on maintaining a specific room tem-
perature while minimizing the energy consumption;

• explore the possibility of using Computational Fluid Dynamics (CFD)
programs as an aid to identify the various air provisioning regions and
to train the models describing these phenomena.
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