
UNIVERSITY OF PADUA

Bachelor Degree in Control Systems

Realization and Co-Simulation of a

Three-Loop algorithm for a missile

trajectory control

Thursday, September the 27th, 2012

Chair, CS Dept: Pinzoni Stefano Student: Casella Diego

Advisor: Marcuzzi Fabio

Co-Advisor: Da Forno Roberto

Academic Year 2011/2012

2

CONTENTS 3

Contents

1 Introduction 5
1.1 About the Thesis . 5
1.2 About µLab R© software . 6

2 Missile 2D model 8
2.1 Linearization . 12

2.1.1 ∆θ̇ calculus . 13
2.2 Frequency Domain Considerations 15
2.3 Trim Condition Analysis . 16

3 Missile Control strategies 18
3.1 Open-Loop Control . 18
3.2 Rate-Gyro Control . 19
3.3 Three-Loop Control . 20

3.3.1 Phase margin and loop gain 22
3.3.2 Alternate way to analize instability 22

4 Three-Loop matlab simulation 25
4.1 Continuous model . 25
4.2 Discretized model . 27
4.3 Discretized model - explicit loop delay 29
4.4 Noise disturbance e�ects . 32

4.4.1 Noise disturbance ∼ N(0, 0.25) applied to ac 32
4.4.2 Noise disturbance ∼ N(0, 0.25) applied to nB 33
4.4.3 Noise disturbance ∼ N(0, 0.25) applied to ∆θ̇ 34
4.4.4 Noise disturbance ∼ N(0, 0.25) applied to ∆δ 35
4.4.5 Noise disturbance ∼ N(0, 0.0025) applied to ac 37
4.4.6 Noise disturbance ∼ N(0, 0.0025) applied to nB 38
4.4.7 Noise disturbance ∼ N(0, 0.0025) applied to ∆θ̇ 39
4.4.8 Noise disturbance ∼ N(0, 0.0025) applied to ∆δ 40
4.4.9 Noise disturbance applied to ∆δ, take two 41

4.5 Faulty conditions analysis . 43
4.5.1 Absence of nB . 43
4.5.2 Absence of ∆θ̇ . 44

4.6 Moving toward a Co-Simulated approach 45

5 Three-Loop Co-Simulation 46
5.1 Algorithm characterization . 46

5.1.1 Input module . 47

4 CONTENTS

5.1.2 Limited input values 49
5.1.3 Output module . 49
5.1.4 Loop execution time estimation 51

5.2 µLab environment setup . 53
5.3 Co-Simulation results . 55
5.4 Noise disturbance e�ects . 56

5.4.1 Noise disturbance ∼ N(0, 0.25) applied to ac 56
5.4.2 Noise disturbance ∼ N(0, 0.25) applied to nB 57
5.4.3 Noise disturbance ∼ N(0, 0.25) applied to ∆δ 57
5.4.4 Noise disturbance ∼ N(0, 0.0025) applied to ac 59
5.4.5 Noise disturbance ∼ N(0, 0.0025) applied to nB 60

5.5 Faulty conditions analysis . 61
5.5.1 Absence of nB . 61
5.5.2 Absence of ∆θ̇ . 62

6 Conclusions and further development 63

7 Acknowledgements 64

Appendix A Complete Three-Loop Algorithm 67

Appendix B Complete missile_aeroframe_2d script 72

1. Introduction 5

1 Introduction

Provide an accurate and e�ective model representation of a physical system
is a frequently required task for every Control Systems Engineer.
Nonethless, its simulation and authentication process could represent di�cult
zones to pass through, especially if the system being examinated is composed
of both mechanics and electronics components. In fact, in such cases there is
no simple answer about how to mathematically treat the electronic devices
integrated inside those systems.

If we consider, for example, the well-known problem of the DC motor speed
stabilization, there are plenty of books about that topic exposing di�erent
approaches to that mathematical problem, solved with matlab. Few of them
do actually take into consideration how the controller is being implemented
on an electronic device but, simulating the �rmware and the physical system
under the same application, is an approach nobody undertake ever.
Co-Simulation allows us to overcome the aforementioned problems, achieving
higher levels of model accuracy by simulating the interactions between the
embedded �rmware of the controller and the physical model being controlled,
bringing to light aspects that were understimated or even not esteemed at
all. For this purpose, we will use the µLab co-simulation software1, which
grants us the ability to evaluate how the whole system evolves.

1.1 About the Thesis

The purpose of this thesis is to implement a piece of software that realizes
the so-called Three-Loop Algorithm, which aims at stabilizing the trajectory
of a missile over a given �ight path, and verify its correctness with the mis-
sile model provided by means of a Co-Simulation approach. Therefore, in
Chapther 2 we will �rst estimate the equations ruling the law of motion
for the missile system then, in Chapter 3, we will analize the mathematical
expression of the Three-Loop Algorithm. In Chapter 4, the results of the
complete matlab model simulation will be exposed,in both the absence and
presence of various sources of disturbances, and we are also going to analize
how the controller behaves when faulty conditions occur. We will also discuss
the limitations and obstacles that are not easy to spot or to model with a
pure matlab approach, which will consequentely lead us to the co-simulated
world. Then, in Chapter 5, we will implement the C code for the Three-
Loop Algorithm, designed speci�cally for being executed by the Microchip's

1For a comprehensive explanantion on how it works, see subsection 1.2

6 1.2 About µLab R© software

PIC18F4620 microcontroller. In that chapter we will see how the real code
interacts with the matlab missile model, thanks to µLab co-simulation soft-
ware. Starting from a naive implementation, which is a simple transposition
in C code of the Three-Loop Algorithm, we will pass through an iterative
process which will show us the obstacles involved at each step, the solutions
adopted to overcome them, and the results obtained each time.

1.2 About µLab R© software

As we already mentioned, µLab provides an environment speci�cally designed
to ease Engineers' study about the interactions between the �rmware, and
the mathematical model represeting the system for which the �rmware is
written. This is how µLab interface looks like:

Figure 1: µLab interface.

As you can see, it pretty much resembles Simulink, although the way
µLab works behind the scenea is di�erent compared to how Simulink does it.
The blue/red/green blocks in µLabMachine view, known as component mod-
els, contain a standard Matlab or Python function2, and may de�ne a set of
parameters and physical variables needed to be passed to the µLab environ-
ment. Every component model sends/receives its parameter and variables
to/from other component models by means of links : unlike Simulink, µLab's
links can connect parameters or variables of the same nature only(i.e. volt-
age, current, temperature, frequency etc. . .). This is because in muLab the
simulation is enforced to have a physical meaning, not abstract.

2which is solved by their respective interpreters.

1.2 About µLab R© software 7

The grey block, called embedded platform, is the key component of µLab. It's
purpose is to behave as a real microcontroller would do, so it provides the
same set of input/output peripherals, stores the same binary �rmware used
to �ash the real electronic device, and executes it as the real controller does.
That's where the real power of µLab comes to light: when the simulation
starts it executes, in a 1:1 fashion, every assembler instruction contained in
the binary �le, triggers the a�ected pins, and forwards their state to the other
component models connected so the other components can use those values
to complete the whole simulation. In this way, it is possible to perform a
true co-simulation between the �rmware that will be hosted in the controller
and the mathematical model, where the �rmware gets executed as it would
happen in the real device, and its e�ects are forwarded to the Matlab (or
Python) models and solved with its speci�c tools.
It also has other interesting features, such as the ability to track and save
the value of each memory location of the microcontroller, trigger pre-de�ned
actions when a given register reach a speci�ed value and, the most interesting
of all of them, the Python routine substitution, which speeds up �rmware
prototyping by replacing a given �rmware routine 3 with a Python script,
without the need to recompile the sourcecode at all.

3Or even the entire �rmware

8 2. Missile 2D model

2 Missile 2D model

In the following paragraph we are going to brie�y illustrate the physics in-
volved with the missile model, in two dimension, courtesy of Da Forno's
slides[6] [7]. These assumptions could be expanded to cover the general 3D
case.

FN

M

xB

θ
α

γ

yB

zB

VM

path reference

Figure 2: Missile representation.

The variables appearing in Figure 2 have the following meaning:

• FN , the normal force applied to the missile, which keeps the missile
�ying, measured in [N];

• M , the rotational inertia acting on the missile, responsible for the tra-
jectory changes, measured in [kg·m2].

• (xB, yB, zB) represent the local coordinate system, centered on the mis-
sile's center of mass;

• VM , the missile's speed, expressed in [Mach];

• α, the angle of attack [rad];

• γ,the �ight path angle [rad];

• θ, the pitch of the missile [rad];

First, we need to determine the equations governing the run of FN and
M . The general expression of FN is given by the following equation

FN = Q·SRef ·CN (2.1)

2. Missile 2D model 9

in which Q equals to

Q =
1

1
· ρ·V 2

M (2.2)

and the variables appearing are, consequentely:

• ρ, the istantaneous radius of the circumference tangent to the trajec-
tory, see Figure 5;

• SRef , the reference area;

• CN , the normal force coe�cient.

Before proceding any further, in Figure 3 and 4 we will also illustrate the
missile's plant, and the detailed view of the wing and tail �n.

FTAIL FWING FBODY FNOSE

XW XCPN

XL'

XCG

XCPB

XCPW

XHL

L

d

Figure 3: Missile's plant.

Now we have everything needed to calculate CN :

CN = 2α︸︷︷︸
nose

+
1, 5·SPlanα2

SRef︸ ︷︷ ︸
body

+
8·SW ·α
β·SRef︸ ︷︷ ︸
wings

+
8·ST (α + δ)

β·SRef︸ ︷︷ ︸
tailfin

(2.3)

The general equation for the rotational inertia M is :

M = Q·SRef ·CM · d (2.4)

We are going to decompose the torque for each missile section, that is:

MNose = FMNose
· (xCG − xCPN) = 2α·Q·SRef ·

>0︷ ︸︸ ︷
(xCG − xCPN) (2.5)

10 2. Missile 2D model

ST

SW

CTW

CTT

CRWCRW

hT

hW

Figure 4: Detailed view of the wing and tail �n.

MBody = FMBody
· (xCG−xCPB) =

1, 5·SPlanα2

SRef
·Q·SRef ·

<0︷ ︸︸ ︷
(xCG − xCPB) (2.6)

MWing =
8·SW ·α
β·SRef

·Q·SRef ·
<0︷ ︸︸ ︷

(xCG − xCPU) (2.7)

MTail =
8·ST (α + δ)

β·SRef
·Q·SRef ·

<0︷ ︸︸ ︷
(xCG − xHL) (2.8)

and now we can sum everything up, and �nally obtain CM :

CM =
MNose +MBody +MWing +MTail

Q·SRef · d
(2.9)

The standard values and proportions are:

xCPM = 0, 67·L′

xCPW = L′ + xW + 0, 7·CRW − 0, 2·CTW
AN = 0, 67·L′· d
AB = (L− L′)· d

xCPB =
0, 67·AN ·L′ + AB· (L′ − 0, 5(L− L′))

AN + AB
xCG ' 0, 5·L (simpli�ed)

(2.10)

Since the missile trajectory control is performed by adjusting its acceleration,
we need to determine it �rst:

nB =
FN
m

=
CN ·Q·SRef

m
(2.11)

2. Missile 2D model 11

or, if we know the weight of the missile instead of its mass

nB =
CN ·Q·SRef · g

w
(2.12)

The rotational inertia equation[6] becomes

θ̈ =
M

Iy
=
Q·SRef · d·CM

Iy
(2.13)

Considerations about α and γ Consider the following �gure:

xB

θ
α

γ

yB

zB

VM

YI

xI

ZI

Figure 5: Schematic of the missile

The question we are interested in is: what is responsible of the missile's
trajectory change? - The force normal to the trajectory -
VM is always tangent to the CG trajectory, so every trajectory change is
performed by supplying an acceleration normal to VM . According to Figure
6 :

• ρ is radius of the circle istantaneously tangent to the trajectory;

• γ̇ denotes istantaneous angular speed (also, the angular speed the VM
is spinnig with);

• ac is centripetal acceleration, responsible of the trajectory change.

with ac given from the equation below:

ac = γ̇2· ρ = γ̇· γ̇· ρ︸︷︷︸
VM

(2.14)

12 2.1 Linearization

VMac
ρ

γ

Figure 6: Scheme of the istantaneous acceleration.

If we introduce the notation nL = ac, then (2.14) can be rewritten as

nL = γ̇·VM =⇒ γ̇ =
nL
VM

(2.15)

If the angle of attack α is su�cient small (< 15◦), nL could be easily substi-
tuted by nB, the normal acceleration of the veichle's axis. Hence

α = θ − γ =⇒ α̇ = θ̇ − γ̇ =


θ̇ − nL

VM
generic form

θ̇ − nB
VM

when α < 15◦
(2.16)

2.1 Linearization

Now, we need to describe the following relationships

nL−→ (?)
γ̇−→ and

α−→
δ−→
(?)

γ̇−→

by recalling the equation (2.15)

γ̇ =
nL
VM
' nB
VM

(2.17)

By recalling equation (2.12), and estimating ∆nB, we get

∆nB =
Q·SRef
m

·
(
∂CM
∂α
·∆α +

∂CM
∂δ
·∆δ

)
︸ ︷︷ ︸

4
=∆CM

(2.18)

2.1 Linearization 13

(
∂CM
∂α

, ∂CM
∂δ

)
are evaluated in the missile equilibrium, called Trim Condition,

taking place when (FN ,M) = (0, 0). Thus


∂CM
∂α

= 2 +
1, 5·SPlan· 2·α

SRef
+

8·SW
β·SRef

+
8·ST
β·SRef

(2.19a)

∂CM
∂δ

=
8·ST
β·SRef

(2.19b)

We also de�ne (
∂CM
∂α

,
∂CM
∂δ

)
4
= (CNα , CNδ) (2.20)

Combining (2.18) and the previous de�nition with (2.17) we obtain

∆γ̇ =
∆uB
VM

=
Q·SRef
m

· (CNα∆α + CNδ∆δ)

= −zα·∆α− zδ·∆δ (2.21)

From Figure 2, it's easy to see that

∆α = ∆θ −∆γ =⇒ ∆α̇ = ∆θ̇ −∆γ̇ (2.22)

hence, by applying equation (2.21), it yelds the result below

∆α̇ = ∆θ̇ + zα·∆α + zδ·∆δ (2.23)

2.1.1 ∆θ̇ calculus

By applying to (2.13) the same process that lead us to (2.21), we obtain

∆θ̇ =
∆M

Iy
=
Q·SRef · d

Iy
·∆CM (2.24)

where ∆CM has already been de�ned in (2.18). Therefore

∆θ̈ =
Q·SRef · d

Iy
·
(
∂CM
∂α
·∆α +

∂CM
∂δ
·∆δ

)
= Mα·∆α +Mdelta·∆δ (2.25)

with obvious meaning of the terms Mα and Mδ. If we apply the Laplace
transform on the above formula, the result is

s·∆θ̇(s) = Mα·∆α(s) +Mδ·∆δ(s) (2.26)

14 2.1 Linearization

substituting the previous result inside equation (2.23) gives us

∆α̇ =
1

s
(Mα·∆α(s) +Mδ·∆δ(s)) (2.27)

and, if we multiply by the continuos integrator 1
s
, we get

∆α =
1

s2
(Mα·∆α(s) +Mδ·∆δ(s)) +

1

s
· (zα·∆α + zδ·∆δ) (2.28)

After some algebraic steps, left as exercise for the reader, the �nal formula
yelds

∆α =
s· zδ +Mδ

s2 − s· zα −Mα

·∆δ (2.29)

Furthermore, by substituting (2.29) in (2.21)

∆γ̇ = −
(
zα

s· zδ +Mδ

s2 − s· zα −Mα

+ zδ

)
·∆δ (2.30)

Now we are �nally able to tie the missile acceleration nB and the tail �n
angle variation, that is

∆nB = VM ·∆γ̇ = −VM
(
zα

s· zδ +Mδ

s2 − s· zα −Mα

+ zδ

)
·∆δ (2.31)

At this point it is fairly easy to retrieve the transfer function between ∆nB
and ∆δ. After some algebraic calculus and some handy de�nitions, we get
the following transfer function:

∆nB
∆δ

= k1·
1− s2

ω2
Z

s2

ω2
AF

+
2· ξAF
ωAF

· s+ 1

(2.32)

where 

k1 = −VM ·
zδ·Mα − zα·Mδ

Mα

ω2
Z =

zδ·Mα − zα·Mδ

zδ

ωAF =
√
−Mα

ξAF =
zα·ωAF
2·Mα

(2.33)

2.2 Frequency Domain Considerations 15

2.2 Frequency Domain Considerations

We are interested in analizing the frequency response of (2.32), therefore we
performed the following substitution

s −→ iω, i =
√
−1 (2.34)

obtaining

∆nB
∆δ

(iω) = k1·
1 +

ω2

ω2
Z

− ω2

ω2
AF

+ iω· 2· ξAF
ωAF

+ 1

(2.35)

If ω = 0
∆nB
∆δ

= k1 =⇒ ∆δ =
1

k1

∆nB (2.36)

In general, ∣∣∣∣∆nB∆δ
(iω)

∣∣∣∣ = k1·

∣∣∣1 + ω2

ω2
Z

∣∣∣∣∣∣(1− ω2

ω2
AF

)
+ i· ω·2·ξAF

ωAF

∣∣∣
= k1·

(
1 + ω2

ω2
Z

)
√(

1− ω2

ω2
AF

)2

+
(
ω·2·ξAF
ωAF

)2
(2.37)

With the following Bode plot of the phase

10
0

10
1

10
2

10
3

60

65

70

75

80

85

90

95

M
ag

ni
tu

de
 (

dB
)

Bode Diagram

Frequency (rad/s)

Figure 7: Bode diagram of
∣∣∆nB

∆δ
(iω)

∣∣.

16 2.3 Trim Condition Analysis

2.3 Trim Condition Analysis

We need to �nd out (α, δ) in order to compensate FN and balance M . Re-
calling the formula (2.12)

FN = m· a = m·uB = Q·SRef ·CMTrim
(2.38)

hence

CMTrim
=

m·uB
Q·SRef

(2.39)

where, under Trim condition, uB = g· cos(θ). It must also be valid the
equation

CMTrim
= y1·αT + y2·α2

T + y3· δT (2.40)

y1 = 2 +
8·SW
β·SRef

+
8·SWT

β·SRef

y2 =
1, 5·SPlan
SRef

y3 =
8·ST
β·SRef

(2.41)

In order to balance torques, it must be CM = 0, hence

CM = 0 = y4·αT + y5·α2
T + y6· δT (2.42)

y4 =
2 (xCG − xCPM)

d
+

8·SW (xCG − xCPW)

β·SRef · d
+

8·ST (xCG − xHL)

β·SRef · d

y5 =
1, 5·SPlan (xCG − xCPB)

SRef · d

y6 =
8·ST (xCG − xHL)

SRef · d
(2.43)

We have now two equations, with six variables:
y1·αT + y2·α2

T + y3· δT = CMTrim

y4·αT + y5·α2
T + y6· δT = 0

(2.44)

2.3 Trim Condition Analysis 17

if we solve δT from the second equation, and put its result in the �rst one,
we get:

δT =
−y4αT − y5α

2
T

y6

(2.45)

CMTrim
= y1·αT + y2·α2

T + y3·
(
−y4αT − y5α

2
T

y6

)
(2.46)

after some algebric manipulation, we get

α2
T

(
y2 −

y3· y5

y6

)
︸ ︷︷ ︸

p2

+αT

(
y1 −

y3· y4

y6

)
︸ ︷︷ ︸

p3

−CNTrim = 0 (2.47)

and the system of two equations (2.44) can be rewritten4 as
αT =

−p3 +
√
p2

3 + 4p2CNTrim
2p2

δT =
−y4αT − y5α

2
T

y6

(2.48)

In an analogous way, we also obtain

∆θ̇

∆δ
= k3

1 + Tα· s
s2

ω2
AF

+
2ξAF
ωAF
· s+ 1

(2.49)

where 
k3 =

k1

VM

Tα =
Mδ

Mαzδ −Mδzα

(2.50)

4as you may have noticed, instead of the standard ± solution, we kept only the additive
one since it's the only one that has a physical sence.

18 3. Missile Control strategies

3 Missile Control strategies

Conceptually, the blocks scheme we are going to implement looks like the
�gure below:

nC −→ Autopilot
δC−→ Actuator

δ−→ Missile −→ nB = nL

where

• nC is the commanded acceleration, which is derived from the tracking
strategy adopted according with the target type:

� �xed target

� moving target

• δC is the commanded �n angle generated by the autopilot block;

• δ is the e�ective �n angle;

• nL is the normal acceleration needed to perform the tracking.

The most common control stategies are, in increasing order of accuracy and
complexity:

• Open-Loop Control;

• Rate-Gyro Control;

• Three-Loop Control.

3.1 Open-Loop Control

This is the easiest of the three type of controller we are going to discuss: by
assuming low operational frequencies5, the equation (2.32) can be simpli�ed
obtaining

∆nB

∆δ
' k1 =⇒ ∆δ ' 1

k1

·∆nB (3.1)

We are not discussing any further this rudimentary controller because of the
poor performances o�ered.

5that is, ω < ωAF .

3.2 Rate-Gyro Control 19

3.2 Rate-Gyro Control

To improve the poor performances of the Open-Loop controller6, we intro-
duced a feedback from the angular velocity ∆θ̇ retrieved with a rate-gyro.

nc KDC KR 1

1

ΔNB

Δδ

nB≃nL

Δθ
Δδ

autopilot gains

rate-gyro

missile
actuator

Figure 8: Rate-Gyro schematic

As we have already seen in (2.32) and (2.49),

∆nB
∆δ

= k1·
1− s2

ω2
Z

s2

ω2
AF

+
2· ξAF
ωAF

· s+ 1

∆θ̇

∆δ
= k3·

1 + Tα· s
s2

ω2
AF

+
2· ξAF
ωAF

· s+ 1

If we substitute those transfer functions in the block above, the global transfer
function we get is

nB
nC

=
KDC · k1·KR

1−KR· k3

·
1− s2

ω2
Z

s2

ω2
AF · (1−KR· k3)

+

2· ξAF
ωAF

−KR· k3·Tα

1−KR· k3

· s+ 1

(3.2)

If want to achieve in steady state nB = nC , it must be veri�ed the following

KDC · k1·KR

1−KR· k3

=⇒ KDC =
1−KR· k3

k1·KR

(3.3)

6 which also has a very low damping factor.

20 3.3 Three-Loop Control

The natural frequency ωn and its damping factor ξ are:
ωn = ωAF

√
1−KR· k3

ξ =
ωn
2
·

2· ξAF
ωAF

−KR· k3·Tα

1−KR· k3

(3.4)

Usually, KR ' 0, 1.

3.3 Three-Loop Control

The complete scheme is the following:

nc KDC KA

1

1

ΔNB

Δδ
nB≃nL

Δθ
Δδ

autopilot gains

rate-gyro

missile

actuator

KR 1
ωi
s

Δδ

accelerometer

Figure 9: Three-Loop Algorithm schematic

The Simulink implementation is easy but, on the other hand, the Matlab
one is more complicated and requires a time domain representation{[

(nC ·KDC −∆nB)(−KA) + ∆θ̇
] ωi
s

+ ∆θ̇
}
KR = ∆δ (3.5)

that can be rewritten as[
−(nC ·KDC −∆nB)KA + ∆θ̇

s
ωi + ∆θ̇

]
KR = ∆δ (3.6)

Now it is possible to inverse Laplace-transform the above equation, and ob-
tain{

ωi

∫ t

0

[
∆δ̇(τ)− (nC ·KDC −∆nB)KAdτ + ∆θ̇(t)

]}
KR = ∆δ(t) (3.7)

3.3 Three-Loop Control 21

if we de�ne

a(t)
4
=

∫ t

0

[
∆δ̇ − (nC ·KDC −∆nB)KA

]
dt (3.8)

we would notice that its derivative

ȧ(t) =
[
∆δ̇ − (nC ·KDC −∆nB)KA

]
(3.9)

is the di�erential equation that is gonna be integrated along with the missile
dynamics.

22 3.3 Three-Loop Control

3.3.1 Phase margin and loop gain

Assuming the standard feedback scheme recalled in Figure 10, if the feedback

C G

H

(a) Closed loop

C G

H

1
2

(b) Feedback action inter-
rupted

Figure 10: Feedback scheme references

action gets interrupted as shown in Figure 10(b) , supposing in (1) does exists
the signal g1 and removing the reference signal, in (2) we will have

g2(s) = (−g1(s))C(s)G(s)H(s) (3.10)

we can conclude that if{
|C(s)G(s)H(s)| = 1

∠(C(s)G(s)H(s)) = −180◦
=⇒ g1 ≡ g2 (3.11)

which means the signal is self-substaining and there is presence of an oscil-
lating component. It is necessary to have a su�cient phase margin and loop
gain that satisfy the following{

|C(iω)G(iω)H(iω)| = 1

∠(C(iω)G(iω)H(iω)) 6 −180◦ + φ
(3.12)

or |C(iω)G(iω)H(iω)| = 1

n
∠(C(iω)G(iω)H(iω)) = −180◦

(3.13)

Standard values for stabilization are n ' 2 and φ ' 45◦.

3.3.2 Alternate way to analize instability

According to Figure 11, the transfer function between X(s) and d(s) is

X(s) =
1

1 +H(s)G(s)C(s)
d(s) (3.14)

3.3 Three-Loop Control 23

C G

H

d(S)

X(S)

Figure 11: Closed-loop controller with noise

in frequency domain

X(iω) =
1

1 +H(iω) G(iω)C(iω)
d(iω) (3.15)

if HCG(iω) = −1 =⇒ |X(iω)| −→ ∞, which leads us to the previous result:

HCG(iω) = −1 =⇒

{
|HCG| = 1

∠(HCG) = −180◦
(3.16)

By imposing stability between pins (1) and (2) and the following project
constraints

• ωCR = 50 [rad/s];

• ξ = 0, 3 ;

• τ = 0, 1 [s]

now we are �nally able to determine all the parameters of the block scheme.

ω =

τωCR

(
1 +

2ξAFωAF
ωCR

)
+ 1

2ξτ
(3.17)

ω0 =
ω

√
τωCR

(3.18)

ξ0 =
1

2
ω0

[
2ξ

ω
+ τ − ω2

AF

ωCRω2
0

]
(3.19)

which lead us to

KA =
k3

kCk1

(3.20)

ωi =
TαKCω

2
0

1 +KC +
ω2

0

ω2
Z

(3.21)

24 3.3 Three-Loop Control

Furthermore,

K0 = − ω2

τω2
AF

(3.22)

K =
K0

k1(1 +KC)
(3.23)

which allows us to calculate the last two blocks gains

KR =
K

KAωi
(3.24)

KDC = 1 +
1

KAVM
(3.25)

4. Three-Loop matlab simulation 25

4 Three-Loop matlab simulation

After modeling the entire system, it is now time to con�rm the overall quality
of the assumptions previously made. Therefore, we will �rst simulate the
continuous model and then we will proceed to morph the Three-Loop section
into its discrete, real counterpart. At the end of this chapter, we will �nally
recap and brie�y discuss the informations gathered.

4.1 Continuous model

The �rst simulation will be performed on the continuous model, which has
qualitative means only. It will tell us if the model responds as we would ex-
pect, so we can proceede with discretizing the subsystem which implements
the Three-Loop algorithm. If we spot anything suspicious here, it means
there have been made some mistakes in the modelization process and hence
the model must be revisited. The Simulink model is shown in Figure 12.
By issuing a commanded acceleration input signal ac, the corresponding ac-

rrrrrrrrrrrrr

oorrooorr

vvvv

ccvcc

vcccc

II

II

))))))))

))))))))

dvvd)ddvddcdd))

)))d))))

)))d))))

dvvd)ddvddcddd)

11cdv1d1

11cdv1drr11)dv

1ceed

gv)c)dc

)1cdv11

)1cdv1c

-g010

-g

-)C

-)C

-A

-A

1
)

Id1dcvv1ev1

1
)

Id1dcvv1ev
A))c

A))1
A))

Figure 12: Simulink schema of the system.

celeration normal to the missile axis nB which causes the desired trajectory
change is showed in Figure 13.

As we can see, the acceleration nB overlaps almost perfectly7 the signal
ac, con�rming the sinthesys made in the previous chapter. We can also
notice the evolutions of the input and output feedback signals: ∆θ̇ smoothly
increases to generate an adequate FN which keeps the missile on track, while

7A small delay is present because of the dynamics of the loop.

26 4.1 Continuous model

0 2 4 6 8 10
−1

0

1

2

3

4

5

time [s]

[m
/s

2]

n

B
a

c

(a) Evolution of the commanded accelera-
tion ac and the normal acceleration nB

0 5 10
−0.02

0

0.02

0.04

0.06

0.08

0.1

time [s]

[r
ad

/s
]

(b) ∆θ̇ response

0 2 4 6 8 10
0

5

10

15

time [s]

[d
eg

]

(c) ∆θ response

0 2 4 6 8 10
−0.8

−0.6

−0.4

−0.2

0

time [s]

[r
ad

]

(d) ∆δ response

Figure 13: Follow-up of overall evolution of the signals, continuous model.

∆δ denotes the angle of the tail �n needed to modify the angular velocity,
and therefore M , and perform the trajectory change.

4.2 Discretized model 27

4.2 Discretized model

Since the continuous model simulation was good, we can now proceede with
a more re�ned model, which will also take into consideration the compound
nature of the system. For that reason, we are going to discretize part of the
model representing the Three-Loop algorithm, while keeping unchanged the
missile model. As you can guess from Figure 12, the entire Three-Loop algo-
rithm is composed of simple algebraic operations, and a continuous integra-
tor. Hence, according to [4], a �rst approximation is to insert a Zero-Order

Hold after the two transfer functions output, and convert the continuous in-
tegrator into a discrete one. After these improvements, the model obtained

rrrrrrrrrrrrr

oorrooorr

vvvv

ccvcc

vcccc

rrvr-rvrrv
2r2rc

rrvr-rvrrv
2r2r

II

II

))))r)))

))))r)))

dvvd)drvddcdd)r

)))dr)))

)))dr)))

dvvd)drvddcdddr

11cdv2d1

11cdv2drr12rrv

1crer

gvrc)rc

)1cdv21

)1cdv2c

-g010

-g

-)C

-)C

-A

-A

1
)

Idrrcvvrrv

-dd)

1-1

)1)cvrrr-d1er
Idrrcvvrrv1 Arrc

Arr1
Arr

Figure 14: Simulink schema of the discretized system.

is shown in Figure 14. Running a simulation with that model will produce
the results exposed in Figure 15.

28 4.2 Discretized model

0 2 4 6 8 10
−1

0

1

2

3

4

5

time [s]

[m
/s

2]

n

B
a

c

(a) Evolution of the commanded accelera-
tion ac and the normal acceleration nB

0 5 10
−0.02

0

0.02

0.04

0.06

0.08

0.1

time [s]

[r
ad

/s
]

(b) ∆θ̇ response

0 2 4 6 8 10
0

5

10

15

time [s]

[d
eg

]

(c) ∆θ response

0 2 4 6 8 10
−0.8

−0.6

−0.4

−0.2

0

time [s]

[r
ad

]

(d) ∆δ response

Figure 15: Overall evolution of the signals, with discretized Three-Loo Al-
gorithm.

As we just saw, the overall responses of the signals are almost the same
of the continuous case, therefore we need another level of approximation to
notice something di�erent.

4.3 Discretized model - explicit loop delay 29

4.3 Discretized model - explicit loop delay

Since the previous simulations were not close enough to the real model, we
will now consider how the Three-Loop Algorithm works inside an electronic
device:

• at �rst, it collects all the inputs neeeded;

• then, it performs the computations and obtains the result;

• �nally, the result is made available at the chip output;

All those operations are not istantaneous, they will take some time to be
perfomed indeed. Hence, a non neglibile delay between the input acquisition
and output has to be introduced in the model. We need an upper bound

rrrrrrrrrrrrr

oorrooorr

vvvv

ccvcc

vcccc

rrvr-rvrrv
2r2rc

rrvr-rvrrv
2r2r1

rrvr-rvrrv
2r2r

II

II

))))r)))

))))r)))

dvvd)drvddcdd)r

)))dr)))

)))dr)))

dvvd)drvddcdddr

11cdv2d1

11cdv2drr12rrv

1crer

gvrc)rc

)1cdv21

)1cdv2c

-g010

-g

-)C

-)C

-A

-A

1
)

Idrrcvvrrv

-dd)

1-1

)1)cvrrr-d1er
Idrrcvvrrv

1

1

)r2vyArrc
Arr1

Arr

Figure 16: Simulink schema of the complete system with delay block.

for the maximum execution time of the loop, easily given by the number of
operations performed by the algorithm multiplied by TCY , the instruction
execution time. Assuming:

• operational frequency of 40MHz −→ TCY = 100ns;

• presence of 15 algebraic operations inside the loop;

• an average of 8 microcontroller instructions needed for each operation,
which sums up the retrival of the operands from their temporary loca-
tion, the actual operation call, and the storage of the result in an other
temporary memory address;

• the ADC module acquisition and conversion time, which lasts about
30µs;

30 4.3 Discretized model - explicit loop delay

we obtain

TLOOPUpperBound = 15· 8· 100· 10−9 + 4· 30· 10−6 = 132µs (4.1)

To play safe, we further increase the TLOOPUpperBound to 200µs, bringing the
results shown in Figure 17.

0 2 4 6 8 10
−1

0

1

2

3

4

5

time [s]

[m
/s

2]

n

B
a

c

(a) Evolution of the commanded accelera-
tion ac and the normal acceleration nB

0 5 10
−0.02

0

0.02

0.04

0.06

0.08

0.1

time [s]

[r
ad

/s
]

(b) ∆θ̇ response

0 2 4 6 8 10
0

5

10

15

time [s]

[d
eg

]

(c) ∆θ response

0 2 4 6 8 10
−0.8

−0.6

−0.4

−0.2

0

time [s]

[r
ad

]

(d) ∆δ response

Figure 17: Overall evolution of the signals, with discretized Three-Loo Al-
gorithm.

If, at a �rst sight, nB response seems unchanged, a closer look will re-
veal an interesting behavior, far di�erent from the previous two simulations
made. In fact, the cyan respose in Figure 18 now resembles a sawtooth wave
overlapping nB response seen in the previous section. This behavior is closer
to the real case than the other two, because it nicely describes how a de-
layed, discretized controller acts: since its output is made available to the
outside after a certain amount of time, during which the input has evolved,

4.3 Discretized model - explicit loop delay 31

its response shows an oscillating component due to the e�orts the controller
makes to compensate its previous action.

3.98 4 4.02 4.04 4.06 4.08

4.82

4.84

4.86

4.88

4.9

4.92

time [s]

[m
/s

2]

n

B
 continuous

n
B

 discretized

n
B

 discretized 2

a
c

Figure 18: Overall responses of nB for the three simulations made.

32 4.4 Noise disturbance effects

4.4 Noise disturbance e�ects

Until now, we saw how the system evolves in ideal conditions. Here, we are
interested about how the model behaves when there is a source of electrical
noise applied to one of its inputs. We are asking ourselves: will the controller
be able to perform its duty even in presence of noisy signals? How the model
will react to such stimulus? Which gimmicks may be used to reduce the
e�ects of the noise?
All the results exposed hereafter were made with the discretized model with
explicit delay block, and an AWGN [5] signalX applied. Due to the nature of
the signals applied at the microcontroller's pins, in the [0, 5V] range, we will
consider �rst a very noisy source of disturbance of ±10% the maximum value,
that is ±0.5V , so X ∼ N(0, 0.25). Then, a more sensible noise disturbance
X ∼ N(0, 0.0025) will be applied.

4.4.1 Noise disturbance ∼ N(0, 0.25) applied to ac

In this section, the system will be supplied with the usual commanded ac-
celeration overlapped with the noisy signal X previously de�ned. From

0 2 4 6 8 10
−4

−2

0

2

4

6

8

time [s]

[m
/s

2]

a

c
n

B

(a) Evolution of the commanded accelera-
tion ac and the normal acceleration nB

0 2 4 6 8 10
−0.2

−0.1

0

0.1

0.2

time [s]

[r
ad

/s
]

(b) ∆θ̇ response

Figure 19: Overall evolution of the signals characterizing the algorithm,
with noise applied to ac.

the results exposed in Figure 25 and Figure 26, nB still follows ac evolution
even though it is edgy, while ∆θ response is almost identical to the ideal
simulations made.

4.4 Noise disturbance effects 33

0 2 4 6 8 10
−5

0

5

10

15

time [s]

[d
eg

]

(a) ∆θ response

0 2 4 6 8 10
−0.8

−0.6

−0.4

−0.2

0

0.2

time [s]

[r
ad

]

(b) ∆δ response

Figure 20: Overall evolution of the signals characterizing the algorithm,
with noise applied to ac, continued.

4.4.2 Noise disturbance ∼ N(0, 0.25) applied to nB

Now we will see what happens when the commanded acceleration evolves
smoothly, while nB is a�ected of the source of noise X aforementioned.

0 2 4 6 8 10
−1

0

1

2

3

4

5

time [s]

[m
/s

2]

n

B
a

c

(a) Evolution of the commanded accelera-
tion ac and the normal acceleration nB

0 5 10
−0.05

0

0.05

0.1

0.15

time [s]

[r
ad

/s
]

(b) ∆θ̇ response

Figure 21: Overall evolution of the signals characterizing the algorithm,
with noise applied in nB.

34 4.4 Noise disturbance effects

0 2 4 6 8 10
0

5

10

15

time [s]

[d
eg

]

(a) ∆θ response

0 2 4 6 8 10
−0.6

−0.4

−0.2

0

0.2

time [s]

[r
ad

]
(b) ∆δ response

Figure 22: Overall evolution of the signals characterizing the algorithm,
with noise applied in nB, continued.

As seen in Figure 21 and Figure 21, nB exhibits a marked noise rejection
property, making the entire controller behaving seamlessly.

4.4.3 Noise disturbance ∼ N(0, 0.25) applied to ∆θ̇

Here we added the AWGN signal X to ∆θ̇, obtaining the results below:

0 2 4 6 8 10
−30

−20

−10

0

10

20

30

time [s]

[m
/s

2]

n

B
a

c

(a) Evolution of the commanded accelera-
tion ac and the normal acceleration nB

0 2 4 6 8 10
−4

−2

0

2

4

time [s]

[r
ad

/s
]

(b) ∆θ̇ response

Figure 23: Overall evolution of the signals characterizing the algorithm,
with noise applied to ∆θ̇.

4.4 Noise disturbance effects 35

0 2 4 6 8 10
−5

0

5

10

15

time [s]

[d
eg

]

(a) ∆θ response

0 2 4 6 8 10
−3

−2

−1

0

1

2

3

time [s]

[r
ad

]

(b) ∆δ response

Figure 24: Overall evolution of the signals characterizing the algorithm,
with noise applied to ∆θ̇, continued.

Due to the small range of values assumed by ∆θ̇, the e�ects of the noise
are way more noticeable than the two previous simulation. That means
extra care must be taken when designing the connection carrying ∆θ̇ signal,
otherwise a source of noise will lessen the overall missile's performances.

4.4.4 Noise disturbance ∼ N(0, 0.25) applied to ∆δ

Here we add the AWGN signal X to∆δ, obtaining the results shown below:

0 5 10
−400

−200

0

200

400

time [s]

[m
/s

2]

n

B
a

c

(a) Evolution of the commanded accelera-
tion ac and the normal acceleration nB

0 2 4 6 8 10
−40

−20

0

20

40

time [s]

[r
ad

/s
]

(b) ∆θ̇ response

Figure 25: Overall evolution of the signals characterizing the algorithm,
with noise applied to ∆δ.

36 4.4 Noise disturbance effects

0 2 4 6 8 10
−10

0

10

20

30

time [s]

[d
eg

]

(a) ∆θ response

0 2 4 6 8 10
−30

−20

−10

0

10

20

30

time [s]

[r
ad

]
(b) ∆δ response

Figure 26: Overall evolution of the signals characterizing the algorithm,
with noise applied to ∆δ, continued.

The same deduction made in the previous section applies here too: the
nature of the ∆δ implies careful design in order to make it free from noise
disturbances.

4.4 Noise disturbance effects 37

4.4.5 Noise disturbance ∼ N(0, 0.0025) applied to ac

Since a ±10% noise a highly unlikely case, starting fom now, until the end
of this chapter, we will consider a more realistic case of ±1% of noise signal.
Let's assume the commanded acceleration ac being polluted by an AWGN
signal with zero mean, and σ2 = 0.0025 : the responses obtained are shown
in the �gures below.

0 2 4 6 8 10
−1

0

1

2

3

4

5

time [s]

[m
/s

2]

a

c
n

B

(a) Evolution of the commanded accelera-
tion ac and the normal acceleration nB

0 5 10
−0.05

0

0.05

0.1

0.15

time [s]

[r
ad

/s
]

(b) ∆θ̇ response

0 2 4 6 8 10
−5

0

5

10

15

time [s]

[d
eg

]

(c) ∆θ response

0 2 4 6 8 10
−0.6

−0.4

−0.2

0

0.2

time [s]

[r
ad

]

(d) ∆δ response

Figure 27: Overall evolution of the signals characterizing the algorithm,
with noise applied to ac.

With such realistic noise, the whole system exhibits a good disturbance
rejection; the feedback signal ∆δ evolves much more smoothly compared
with the ±10% case and, consequentely,the acceleration signal nB is much
smoother too which means that globally, the physical model is less strained
by the noise applied.

38 4.4 Noise disturbance effects

4.4.6 Noise disturbance ∼ N(0, 0.0025) applied to nB

We already noticed how good is the whole system at rejecting a noisy source
applied to nB, so the results we expect will be most likely better than the
±10% case. That's exactly what we expected: both the acceleration nB and

0 2 4 6 8 10
−1

0

1

2

3

4

5

time [s]

[m
/s

2]

n

B
a

c

(a) Evolution of the commanded accelera-
tion ac and the normal acceleration nB

0 5 10
−0.02

0

0.02

0.04

0.06

0.08

0.1

time [s]

[r
ad

/s
]

(b) ∆θ̇ response

0 2 4 6 8 10
0

5

10

15

time [s]

[d
eg

]

(c) ∆θ response

0 2 4 6 8 10
−0.8

−0.6

−0.4

−0.2

0

time [s]

[r
ad

]

(d) ∆δ response

Figure 28: Overall evolution of the signals characterizing the algorithm,
with noise applied to nB.

the feedback signal ∆δ show a little ripple due to the noise entered in the
control loop.

4.4 Noise disturbance effects 39

4.4.7 Noise disturbance ∼ N(0, 0.0025) applied to ∆θ̇

Let us see now how ∆θ̇ evolves with such noise. As we just saw, the evolution

0 2 4 6 8 10
−4

−2

0

2

4

6

8

time [s]

[m
/s

2]

n

B
a

c

(a) Evolution of the commanded accelera-
tion ac and the normal acceleration nB

0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

time [s]
[r

ad
/s

]

(b) ∆θ̇ response

0 2 4 6 8 10
−5

0

5

10

15

time [s]

[d
eg

]

(c) ∆θ response

0 2 4 6 8 10
−1

−0.5

0

0.5

time [s]

[r
ad

]

(d) ∆δ response

Figure 29: Overall evolution of the signals characterizing the algorithm,
with noise applied to ∆θ̇.

of the signals is greatly improved compared with the±10% case but still, they
are not good enough for our purposes. Therefore, extra care must be taken
to avoid noise disturbance interfering with the signal ∆θ̇8.

8 i.e. by placing the controller next to the gyro and using shielded cables for the
connections.

40 4.4 Noise disturbance effects

4.4.8 Noise disturbance ∼ N(0, 0.0025) applied to ∆δ

We are now interested to see how the signals evolves when the feeedback one
gets polluted by AWGN signal. In the ±10% case the model was completely
unmanageable; let's see now what happens. The only visible improvement

0 2 4 6 8 10
−40

−20

0

20

40

time [s]

[m
/s

2]

n

B
a

c

(a) Evolution of the commanded accelera-
tion ac and the normal acceleration nB

0 2 4 6 8 10
−4

−2

0

2

4

time [s]

[r
ad

/s
]

(b) ∆θ̇ response

0 2 4 6 8 10
−5

0

5

10

15

time [s]

[d
eg

]

(c) ∆θ response

0 2 4 6 8 10
−3

−2

−1

0

1

2

3

time [s]

[r
ad

]

(d) ∆δ response

Figure 30: Overall evolution of the signals characterizing the algorithm,
with noise applied to ∆δ.

made is a somewhat continuous ∆θ evolution, while the others are still too
much noisy to perform any kind of control. Again, particular care must be
taken to reduce the possibilities for the noise to mess with ∆θ .

4.4 Noise disturbance effects 41

4.4.9 Noise disturbance applied to ∆δ, take two

Since the previous simulation was unacceptable, we need to �nd an alternate
way to make the noise applied in ∆δ more tolerable by the system. If we
look at the block models in Figure 9 and Figure 16, we notice ∆δ coming
from a delay block preceded by the scalar multiplication KR· 10. If we stop
for a moment in that scalar multiplication, we would notice that KR· 10 =
73.657· 10−3, so the value of ∆δ gets delayed and actually scaled by a factor
of ∼ 13.5 !
If we could �nd a way to remove that operation, the signal-to-noise ratio will
be improved enough to permit the engineers to design connections between
the system and the controller able to deal with such noises.
Removal of that block is of course not possible because it would change
the closed-loop response, however we can trick the model as follows. If we
consider the procedure of scaling a signal and then its delaying, we can assert
that it is equivalent of delaying the signal �rst, and then perform the scaling
operation.
Therefore, it is legitimate to swap the order of the two blocks. After that
swap, we are now able to perform two tricks on the simpli�ed scheme blocks,
shown in the �gure here below:

W z-1 k

(a) Simpli�ed closed-loop schema with
delay and gain block.

W z-1 k

k

(b) Equivalent schema after mov-
ing the gain block.

Figure 31: Gain block repositioning: before and after.

42 4.4 Noise disturbance effects

Applying this gimmick to the discretized model, and repeating the simu-
lations, leaded us to the following plots:

0 2 4 6 8 10
−4

−2

0

2

4

6

8

time [s]

[m
/s

2]

n

B
a

c

(a) Evolution of the commanded accelera-
tion ac and the normal acceleration nB

0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

time [s]

[r
ad

/s
]

(b) ∆θ̇ response

0 2 4 6 8 10
−5

0

5

10

15

time [s]

[d
eg

]

(c) ∆θ response

0 2 4 6 8 10
−0.8

−0.6

−0.4

−0.2

0

0.2

time [s]

[r
ad

]

(d) ∆δ response

Figure 32: Overall evolution of the signals characterizing the algorithm,
with noise applied to ∆δ and block gain repositioned.

That's a huge improvement compared with our last simulation, and even
though the signals are higly disturbed by the noise applied, the overall signal-
to-noise ratio is much great than the previous one, hence it will be easier to
come up with a solution to protect from the noises threatening ∆δ.

4.5 Faulty conditions analysis 43

4.5 Faulty conditions analysis

We want now to investigate how the system reacts under some faulty con-
dition, like a missing feedback signal due to the physical link breakage. We
omitted of course the cases of ac signal interrupted because the missile won't
move at all, and also the case of ∆δ absence because it means that ∆δ signal
coming out from the controller doesn't reach the actuators and therefore the
missile won't start.

4.5.1 Absence of nB

Suppose the connection between the accelerometer and the controller for
some reason breaks, how the entire system will react? As seen in Figure 33,

0 2 4 6 8 10
−20

0

20

40

60

80

time [s]

[m
/s

2]

n

B
a

c

(a) Evolution of the commanded accelera-
tion ac and the normal acceleration nB

0 2 4 6 8 10
0

0.5

1

1.5

time [s]

[r
ad

]

(b) ∆θ̇ response

0 2 4 6 8 10
0

50

100

150

200

250

300

time [s]

[d
eg

]

(c) ∆θ response

0 2 4 6 8 10
−10

−8

−6

−4

−2

0

time [s]

[r
ad

]

(d) ∆δ response

Figure 33: Overall evolution of the signals characterizing the algorithm,
without nB.

the absence of feedback from nB makes the controller act boldly in the vain

44 4.5 Faulty conditions analysis

attempt to compensate the gap between ac and the supplied measure of nB,
which is zero in this simulation. This creates a feedback action one order
of magnitude greater that the standar case, causing the missile to undergo
accelerations for which it wasn't designed for, with the risk of damaging itself.
It is also interesting to note how the overall responses of the signals resemble
the standard ones9; that means the two inner control loops are responsible
of the signals evolution, while nB of the outer loop controls the magnitude
of the other quantities.

4.5.2 Absence of ∆θ̇

With the deductions made previously, we are now interested on seeing how
the system reacts when the two feedbacks from ∆θ̇ get interrupted.

0 5 10
−100

−50

0

50

100

time [s]

[m
/s

2]

n

B
a

c

(a) Evolution of the commanded accelera-
tion ac and the normal acceleration nB

0 2 4 6 8 10
−100

−50

0

50

100

time [s]

[r
ad

]

(b) ∆θ̇ response

Figure 34: Overall evolution of the signals characterizing the algorithm,
with noise applied to ∆θ̇.

9Neglecting of course the higher mangitude of the latter.

4.6 Moving toward a Co-Simulated approach 45

0 2 4 6 8 10
−100

−50

0

50

100

time [s]

[d
eg

]

(a) ∆θ response

0 2 4 6 8 10
−100

−50

0

50

100

time [s]

[r
ad

]

(b) ∆δ response

Figure 35: Overall evolution of the signals characterizing the algorithm,
without ∆θ̇.

As we can see from Figure 34 and 43, the responses of the signals without
feeedback action from ∆θ̇ are completely unstable and therefore the system
cannot be controlled at all.

4.6 Moving toward a Co-Simulated approach

Until now we made out simulations based upon a continuous missile model
and a discretized representation of the microcontroller. Even though we
gathered a lot of interesting results from those simulations, we do also realize
the microcontroller discretization is still too much approximated and does
not capture the most interesting behavior the microcontroller exhibit. One
example for all: the ADC capture and decode process.
In the discretized representation of the controller, the analog inputs are col-
lected and processed istantaneously; in the real world, every ADC read and
conversion is performed sequentially, and requires some time to be completed.
Furthermore, every conversion introduce the so called granular error eq = ∆

2

which could be problematic to deal with10. For this reason, and others that
will come, we need to switch to a co-simulated approach.

10∆ is the so called quantization step, given by
2vsat
2bit

[5]

46 5. Three-Loop Co-Simulation

5 Three-Loop Co-Simulation

As we saw in the previous chapter, modeling the Three-Loop algoritm by
means of pure mathematical expressions doesn't really give us a complete
idea about how the microcontroller implementing that algorithm will interact
with the missile model. Due to the nature of matlab in fact, it is impossible
to easily describe the following phenomena all together:

• the �nite nature of the resources made available by the hardware pro-
vided for the PIC18F4620 microcontroller;

• the delays and quantization errors made when converting an analog
signal to its digital counterpart;

• the delay between the inputs being collected, and the instant when the
output is made available to the system;

• the �nite arithmetic available on the chip that is, 8-bit operations;

• the absence of �oating point arithmetic instructions, which must be
emulated through �xed point instruction routines, with consequent in-
crease of the main loop execution time.

This is not even the worst case scenario: if you think about the presence of the
so called interrupt service routines11 (ISR), used to free the microcontroller of
the time-expensive busy wait paradigm, you will realize that matlab alone is
no longer able to provide accurate simulations. This is why we are now going
to move into the Co-Simulation world, where the �rmware will be executed
as if it would be inside a real controller and, at the same time, it interacts
with the matlab models representing the missile components.
Before start going any further, we need to write down the implementation
of the Three-Loop algorithm which requires, in turn, to know exactly which
modules of the microcontroller are needed to accomplish our purpose.

5.1 Algorithm characterization

The algorithm itself is not complicated: looking at Figure 16, we notice the
presence of simple arithmetic operations such as sums and multiplications,
and just one discrete integrator.
However, due to the nature of the microcontroller in use, we need to set up
extra modules needed to interact with the surrounding world; such operation
will make the complete program more complex as we would ever expect with
a pure matlab simulation.

11Invoked for example when an ADC conversion has been completed.

5.1 Algorithm characterization 47

5.1.1 Input module

In order to process the inputs coming from the outside, we have to retrieve
the signals through the I/O pins the chip provides. Since the nature of
the signals in use is analog, we cannot simply rely on the digital I/O pins
provided.
Instead, we must turn on and set up correctly the ADC module [1]. Then,
for each sample we need to retrieve, we have to notify the module to start a
new conversion, and wait for the result.
The registers involved in the setup and functioning of the ADC module are[1]:

• ADCON0, the A/D control register 0: an 8-bit register, which controls
the module operational status:

� bit 7-6: unimplemented;

� bit 5-2: CHS<3:0> analog channel select bits. Tells the micro-
controller which of the pins connected with the module is currently
being used;

� bit 1: GO/DONE status bit;

� bit 0: ADON enable bit.

• ADCON1, the A/D control register 1:an 8-bit register, which controls
the module port usage:

� bit 7-6: unimplemented;

� bit 5: V CFG1, the voltage reference con�guration bit. Tells
whether the module must use V SS (V CFG1 = 0) or an external
negative reference (V CFG1 = 1);

� bit 4: V CFG0, the voltage reference con�guration bit. Tells
whether the module must use V DD (V CFG0 = 0) or an external
positive reference (V CFG0 = 1);

� bit 3-0: A/D Port Con�guration bits control, tells the module
whic pins are con�gured ad analog inputs.

• ADCON2, the A/D control register 2: an 8-bit register, which controls
the module conversion modes:

� bit 7: ADFM , tells whether the result stored is left or right jus-
ti�ed;

� bit 6: unimplemented;

48 5.1 Algorithm characterization

� bit 5-3: ACQT<2:0>, provides a range of acquisition times mul-
tiple of TAD

12

� bit 2-0: ADCS<2:0>, provides a range of conversion clock select
bits tied with the frequency of the oscillator.

• ADRESH and ADRESL: the registers holding the high and low part
of the conversion result.

As you can see, the number of parameters for con�guring and making the
module just work is pretty high however, with help of the manufacturer
data sheet [1], its con�guration will be easy. From the table[2], TADmin for
our microcontroller equals to 0, 7µs. Since it must be veri�ed the following
equations

TAD = ADCS<2:0>·TOSC ≥ TADMIN
(5.1)

we can easily determine ADCS<2:0>. Assuming an operational frequency
of 40MHz, hence TOSC = 25ms, we get:

ADCS<2:0> =

⌈
TAD
TOSC

⌉
= 7 (5.2)

Since 7 is not a valid multiple of Tosc, we choose the nearest, increasing one,
which is ADCS<2:0> = 8. Given the need of three analog inputs, that is
ac, nB and ∆θ, and according to what we said before about the constraints,
the vaules of those registers will be

ADCON0 = 0b00000001

ADCON1 = 0b00001100

ADCON2 = 0b00101001

(5.3)

Of course ADCON0 value is not �xed, because it changes accordingly with
the ping being multiplexed in the ADC module.
Once set up the module, we must follow these steps to perform an A/D
conversion:

• select the desired pin by means of CHS<3:0>;

• wait TACQ;

• start the conversion by setting GO/DONE bit;

• loop until GO/DONE gets cleared, meaning the conversion ended;

• read the value from ADRESH and ADRESL;

12TAD is the amount of time needed by the module to convert one bit.

5.1 Algorithm characterization 49

5.1.2 Limited input values

Inside matlab, you can apply whatever commanded acceleration aC , and the
simulation, be it correct or wrong, will be always performed. This is not true
in the real world case of course: if you apply a signal with amplitude of say,
30 Volts, the microcontroller will blow up for sure.
Therefore we need to scale and traslate the inputs, if necessary, in order to
�t the microcontroller admissible range for its inputs, which is in our case
[0, 5]V olt and then, in the �rmware, convert back the values to their original
ones. Of course if a signal is too small to be converted, i.e. his magnitude si
equal to the ADC quantization step = 5

210
= 4.88· 10−3, the signal must be

expanded to get a better resolution13. By inspecting Figure 17 and assuming
ac in the [0, 5V] range:

• ac does not need any conversion since it is already in the range granted
from the PIC hardware. However, inside the PIC, the value will be
converted by the ADC module in a integer value between [0, 1023] so,
to obtain the original value back, we have to multiply the result of the
conversion by 0.004875;

• nB must be scaled to �t the aforementioned range. Since its values are
in the [0, 50V] range, it is su�cient to perform a simple division by a
10 factor. Inside the microcontroller, to restore its original value we
have to multiply the converted result by 0.04875;

• ∆θ belongs to the [−0.03, 0.1V] range, so to �t the PIC's ADC range
and get a better conversion, the original signal must be translated by
adding the constant 0.03 and then multiplied by 38.46. Once inside
hte PIC, the converted value has to be multiplied by 0.000127077 and
then subtract 0.03 to retrieve the original value.

5.1.3 Output module

Once all the computations are preformed, the microcontroller has to forward
its analog result to the outer world, right into the missile model. There is a
little problem however: the PIC family doesn't have any analog output pin,
so our problem now is: how is it possible to send the result outside?
One solution could be considering buying an expensive module expansion
called dsPIC made exactly for this purpose; however this solution is overkilling
because that module has a lot of features that will never be used in our ap-
plication.

13But, of course, this will expand the noisy component overlapping the signal too.

50 5.1 Algorithm characterization

An other solution could be to use eight or ten pins of the microcontroller, and
send the result out in parallel. This solution isn't optimal because wastes a
lot of peripherals that could be used for other purposes.
There is a way out however: since every PIC has a PWM module we could
use the result, appropriately converted, to modulate a PWM waweform, thus
using just one pin. The PWM waveform is sent to the missile model and,
before being processed, its duty cycle value will be converted to the original14

microcontroller result.

As we previously saw with the ADC module, PWM is higly con�gurable
too but this time, to get things more complicated, it actually belongs to the
CCP15 module. The register needed to set up and use PWM module are:

• CCP1CON , the CCP1 control register: an 8-bit register which controls
the module behavior:

� bit 7-6: unused;

� bit 5-4: they represent the two LSB of the 10-bit PWM duty-cycle,
if the module works as PWM, or unde�nded otherwise;

� bit 3-0: CCP1M<3:0> are the CCP Module select bits;

• CCPR1L, the 8-bit register holding the 8 most signicative bits of the
duty cycle value;

• PR2, the 8-bit register which determine the duration of the PWM
period TPWM ;

• T2CON , the 8-bit Timer2 control register used by the PWM module
to produce the �nal waveform, where:

� bit 7-3: don't take part in the PWM calculus, hence are unde�ned;

� bit 2: TMR2ON , enables the Timer2 module;

� bit 1-0: T2CKPS<1:0>, reprensents the Timer2 Clock prescale
select bits;

Now we can �nally see how all those registers are tied together to produce
the desired TPWM and TDUTY . According with[3], the formulas are

TPWM = [PR2 + 1]· 4·TOSC ·T2CKPS<1:0>

TDUTY = (CCPR1L : CCP1CON<5:4>)·
TOSC ·T2CKPS<1:0>

(5.4)

14There are quantization errors of course in play.
15Capture/ Compare/PWM Module.

5.1 Algorithm characterization 51

If we want to use the module at its maximum resolution, that is 210 =
1024 levels, register PR2 must be set ot its maximum value too, which is
28 = 256. There is only one degree of freedom in the equations, given by
T2CKPS<1:0>. By tweaking it, TPWM minimum and maximum value will
be {

TPWMmin
= 25, 6µs if T2CKPS<1:0> = 1

TPWMmax = 409, 6µs if T2CKPS<1:0> = 16
(5.5)

Which PWM period is the most suitable for our application?
If we consider the approximations made in Section 4.2, where we estimated
the loop duration about 200µs, we safely choose TPWM = TPWMmin

, and the
corresponding register values are

CCP1CON = 0b00001100

PR2 = 0b11111111

T2CON = 0b00000111

(5.6)

5.1.4 Loop execution time estimation

As we saw in Figure 16, the algorithm must implement the discrete integrator

yk = yk−1 + uk·TL (5.7)

TL is the loop execution time, and its value must be carefully calculated, in
order to get a reliable result.
The question now is: how could we exactly measure the loop execution time?
Thanks to the particular arcitecture of the PIC products,

[...]all single-word instructions are executed in a single instruction
cycle, unless a conditional test is true or the program counter
is changed as a result of the instruction. In these cases, the
execution takes two instruction cycles.

Therefore, we just need to count the assembly instructions contained in the
main loop, multiplied with their number of instruction cycles, and then mul-
tiply the �nal value by TCY .
There still is however a �aw with that approach, originated because of the
way the analog to digital conversion takes place. As described in Section
5.1.1, we set the GO/DONE bit to start the conversion and then, we check
thab bit until it gets cleared by the microcontroller. The code for this speci�c
operation looks like this:

52 5.1 Algorithm characterization

// start conversion

ADCON0bits.GO_DONE = 1;

// loop until the conversion is finished

while (ADCON0bits.GO_DONE != 0)

Nop(); // how many time do we spend in here?

As we saw in that code snippet, there is no way to know a priori how many
iterations are performed beforehand. Considering that, for each main loop
iteration, there are three A/D conversions, is fundamental to �nd a method
to determine exactly the number of iterations made in each busy-wait loop,
otherwise the overall accuracy of the Three-Loop algorithm will progressively
worsen.
The proposed solution is all about creating at the beginning of the main loop,
one variable for each loop and substitute the Nop() calls with one of those
variables, which gets incremented at each busy-wait cycle:

int adc_loop_counter = 0;

...

...

// start conversion

ADCON0bits.GO_DONE = 1;

// loop until the conversion is finished

while (ADCON0bits.GO_DONE != 0)

acLoopCounter++; // count the iterations made

So now it is only matter of opening the listing �le created during the compile
process, and count the number of instructions needed to implement the busy-
wait loop. For example, the portion of disassembly listing referring to ac
acquisition looks like

// loop until the conversion is finished

while (ADCON0bits.GO_DONE != 0)

000114 a2c2 BTFSS 0xc2,0x1,0x0

000116 d006 BRA 0x124

000122 d7f8 BRA 0x114

acLoopCounter++;

000118 0e1e MOVLW 0x1e

00011a 2adb INCF 0xdb,0x1,0x0

00011c 0e1f MOVLW 0x1f

00011e e301 BNC 0x122

5.2 µLab environment setup 53

000120 2adb INCF 0xdb,0x1,0x0

000124 50c4 MOVF 0xc4,0x0,0x0

Tadc_loop = [adc_loop_counter· 9 + 1]·TCY (5.8)

There is an other problem however: when we opened the listing �le to count
the number of instructions needed to implement the busy-wait cycle, we no-
ticed the listing is composed of almost a thousand lines of code. That's
because the PIC doesn't support natively �oating point operations, so every
time we did a convertion to a float type, or made an arithmetical operation
where one of the operandw was a float, we actually called a particular rou-
tine provided by Microchip R©, which emulated in software the �oating point
operation. So now we have also to take into consideration the delay produced
by those algorithms, count them, multiply by their execution time listed in
[2] and sum everything.
After cleaning up the listing, counting the �oating point routines, the stan-
dard instructions, and considering the three delays to acquire the analog
input, the �xed delay equals to 187.3µs.

The complete algorithm is shown in Appendix A

5.2 µLab environment setup

Now we are �nally able to build up our test environment: we added one
embedded platform, which repesents the microcontroller being used, then we
added the main matlab script responsible to update nB and ∆θ̇, based on
∆δ input given by the controller, called missile_aeroframe_2D.m. We also
added other two utility scripts: duty2rad.m, which converts the duty-cycle
value to radians, and normalizer.m, which normalizes the model output to
the range suitable for being passed back to the controller.
Those components communicates to each other by means of the so called
links, used to connect the variables and parameters speci�ed in each compo-
nent.

54 5.2 µLab environment setup

Figure 36: Testbench overview.

We could have inserted the two supplementary scripts into the main one,
but this representation �ts better the real case where the signals usually
need to be adjusted by external components such as ampli�ers or attenuators
before being ready to be used. The complete script is shown in Appendix B

5.3 Co-Simulation results 55

5.3 Co-Simulation results

In this section we �nally are able to test the interactions between the �rmware
written and the matlab model of the missile, in absence of noise. We stopped
our simulations after 8 seconds because it tooked about two hours to simulate
that time span, so we opted for stopping the simulations at half of the last
decreasing ramp. As we can see, the delay between the acceleration nB

0 2 4 6 8 10
0

1

2

3

4

5

time [s]

[m
/s

2]

a

c
n

B

(a) Evolution of the commanded acceler-
ation ac and the normal acceleration nB

0 5 10
−0.02

0

0.02

0.04

0.06

0.08

0.1

time [s]

[r
ad

/s
]

(b) ∆θ̇ response

0 2 4 6 8 10
0

5

10

15

time [s]

[d
eg

]

(c) ∆θ response

0 5 10
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

time [s]

[r
ad

]

(d) ∆δ response

Figure 37: Overall evolution of the signals characterizing the algorithm.

and the commanded acceleration ac is even more noticeable. Due to the
quantizations taking places in the PIC device, nB response is even more
noisy compared with what we would expect from the matlab only simulation,
even though it is still acceptable for our goal.

56 5.4 Noise disturbance effects

5.4 Noise disturbance e�ects

Similarly to what we did in Chapter 4, we want to test the performances of
the compound system when a source of AWGN noise interacts with one of the
connections between missile and controller. We will repeat the simulations
�rst with noise disturbance ∼ N(0, 0.25) and then with noise disturbance
∼ N(0, 0.0025).

5.4.1 Noise disturbance ∼ N(0, 0.25) applied to ac

0 2 4 6 8 10
−10

−5

0

5

10

time [s]

[m
/s

2]

a

c
n

B

(a) Evolution of the commanded accelera-
tion ac and the normal acceleration nB

0 5 10
−0.02

0

0.02

0.04

0.06

0.08

0.1

time [s]

[r
ad

/s
]

(b) ∆θ̇ response

0 2 4 6 8 10
0

5

10

15

time [s]

[d
eg

]

(c) ∆θ response

0 5 10
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

time [s]

[r
ad

]

(d) ∆δ response

Figure 38: Overall evolution of the signals characterizing the algorithm,
with noise applied to ac.

Even though ac signal is very noisy, the feedback signal obtained ∆δ looks
slightly noisy, producing a smooth nB response.

5.4 Noise disturbance effects 57

5.4.2 Noise disturbance ∼ N(0, 0.25) applied to nB

0 2 4 6 8 10
0

1

2

3

4

5

time [s]

[m
/s

2]

a

c
n

B

(a) Evolution of the commanded acceler-
ation ac and the normal acceleration nB

0 5 10
−0.05

0

0.05

0.1

time [s]
[r

ad
/s

]
(b) ∆θ̇ response

0 2 4 6 8 10
−5

0

5

10

15

time [s]

[d
eg

]

(c) ∆θ response

0 5 10
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

time [s]

[r
ad

]

(d) ∆δ response

Figure 39: Overall evolution of the signals characterizing the algorithm,
with noise applied to nB.

We can notice how those evolutions almost resembles the ones described in
section 4.4.2; a slightly noisy ripple is present here, which is more noticeable
in the ∆δ response.

5.4.3 Noise disturbance ∼ N(0, 0.25) applied to ∆δ

In Chapter 4 we saw how this particular case was the worse ever run, because
the nature of the signal ∆δ makes it higly sensitive to external noise sources.
Anyway, moving to the co-simulation approach forced us to consider every
detail about how the microcontroller works, and how it interacts with the
surrounding environment. In this simulation for example, simulating a source

58 5.4 Noise disturbance effects

of noise applied to ∆δ is completely useless, because ∆δ is not a�ected at all
by such noise: here is why.
As explained in Section 5.1.3, PIC devices doesn't ship with digital to analog
output converter so we had to use the PWM module to perform a conversion
trick: internally, we converted ∆δ into an integer value which is used to
modulate a pwm waveform. Externally, this waveform gets captured by a
supplementary device which perform a conversion from the duty-cycle to the
original value, which is sent to the missile model. So now the information is
no longer binded to a voltage value as it happens for the inputs; instead, the
information is binded to how much time the waveform stays in its high state,
or logic "1" level. This di�erence in how the information gets transmitted is
crucial because of how the levels in a TTL/CMOS device are treated:{

logic level 1 if voltage ∈ [3.3, 5] Volts

logic level 0 if voltage ∈ [0, 0.8] Volts
(5.9)

So it's easy to see that noises with amplitude ±10% of the microcontroller
operational range, that is [0, 5V], are not su�cient to trigger a wrong logical
level detection. Of course this won't be always true in a real world appli-
cation because logic ports su�ers of a certain amount of bias but still, we
are referring to an ideal situation where a 0 logic level means 0V olts and a
logic level 1 refers to 5V olts; in any case, such a big source of noise is highly
unlikely to happen so these assumptions are most likely true.

5.4 Noise disturbance effects 59

5.4.4 Noise disturbance ∼ N(0, 0.0025) applied to ac

0 2 4 6 8 10
0

1

2

3

4

5

time [s]

[m
/s

2]

a

c
n

B

(a) Evolution of the commanded acceler-
ation ac and the normal acceleration nB

0 5 10
−0.02

0

0.02

0.04

0.06

0.08

0.1

time [s]
[r

ad
/s

]
(b) ∆θ̇ response

0 2 4 6 8 10
0

5

10

15

time [s]

[d
eg

]

(c) ∆θ response

0 5 10
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

time [s]

[r
ad

]

(d) ∆δ response

Figure 40: Overall evolution of the signals characterizing the algorithm,
with noise applied to ac.

Here, again, the responses are almost equals to the pure matlab simulation
counterpart, with a more evident delay present here due to the algorithm
execution.

60 5.4 Noise disturbance effects

5.4.5 Noise disturbance ∼ N(0, 0.0025) applied to nB

0 2 4 6 8 10
0

1

2

3

4

5

time [s]

[m
/s

2]

a

c
n

B

(a) Evolution of the commanded acceler-
ation ac and the normal acceleration nB

0 5 10
−0.02

0

0.02

0.04

0.06

0.08

0.1

time [s]

[r
ad

/s
]

(b) ∆θ̇ response

0 2 4 6 8 10
0

5

10

15

time [s]

[d
eg

]

(c) ∆θ response

0 5 10
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

time [s]

[r
ad

]

(d) ∆δ response

Figure 41: Overall evolution of the signals characterizing the algorithm,
with noise applied to nB.

The responses here start being di�erent compared to the simulation made
in a pure matlab environment: nB evolution is more noisy, the same obser-
vation holds for the other signals too.

5.5 Faulty conditions analysis 61

5.5 Faulty conditions analysis

We will repeat now the analysis of the most common faulty condition that
could happen since we are interested about how the microcontroller will react
to such situations.z

5.5.1 Absence of nB

0 2 4 6 8 10
−40

−20

0

20

40

time [s]

[m
/s

2]

a

c
n

B

(a) Evolution of the commanded accelera-
tion ac and the normal acceleration nB

0 2 4 6 8 10
−10

−5

0

5

10

15

time [s]

[r
ad

/s
]

(b) ∆θ̇ response

0 2 4 6 8 10
−5

0

5

10

15

20

time [s]

[d
eg

]

(c) ∆θ response

0 5 10
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

time [s]

[r
ad

]

(d) ∆δ response

Figure 42: Overall evolution of the signals characterizing the algorithm,
with noise applied to ∆θ̇.

We can see as, with no signal nB available, the controller produces com-
pletely erratic responses.

62 5.5 Faulty conditions analysis

5.5.2 Absence of ∆θ̇

0 2 4 6 8 10
−40

−20

0

20

40

60

time [s]

[m
/s

2]

a

c
n

B

(a) Evolution of the commanded accelera-
tion ac and the normal acceleration nB

0 2 4 6 8 10
−15

−10

−5

0

5

10

15

time [s]

[r
ad

/s
]

(b) ∆θ̇ response

0 2 4 6 8 10
−10

−5

0

5

10

15

20

time [s]

[d
eg

]

(c) ∆θ response

0 5 10
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

time [s]

[r
ad

]

(d) ∆δ response

Figure 43: Overall evolution of the signals characterizing the algorithm,
with noise applied to ∆θ̇.

Here the response doesn't look like what we got in the matlab simulation
counterpart, but this shouldn't be that surprising because the microcontroller
limits the inputs it receives, thus preventing them to diverge inde�nitely.

6. Conclusions and further development 63

6 Conclusions and further development

Even though the two di�erent simulation approaches showed similar results
in most of the tests performed, the co-simulation one provided a better under-
standing of the underlying hardware in use. Without this approach we would
never notice the problems which necessarily arises when we mix physical ob-
jects governed by electronics devices until the moment when the �rmware
gets tested for the �rst time on a tangible system. Of course this thesis is
not and ending point, but a good point to start with: there's a lot room
for improvements like testing better types of controllers like the classic PID,
or adopting a space-state controller, or even trying to implement a Model
Predictive Control (MPC). And the best way to get accurate and reliable
results, as the complexity increases, is with no doubt the adoption of the
Co-Simulation approach.

64 7. Acknowledgements

7 Acknowledgements

As this chapter of my life turned to its end, it was inevitable to think about
everything that happened to me in these years. Lots of joyful and, sometimes,
sorrowful moments; but I've always been surrounded by awesome people that
cheered me up when I was letting me down, and shared my happiness when
I succeeded in something important for me.
So, it's time to say a huge and passionate "Thank You" to all these great
guys/gals :)
The �rst "Thank You" of course goes to my parents: without their support
and their con�dence in me, I wouldn't never reach such important destina-
tion all alone.
The same goes for my brother Matteo and his �ancée Evi, randomly popping
out in my room while I was about to set my computer on �re because of these
evilish simulations, and handing me some praline or chocolate candy to cheer
me up.
Of course I have to thank my grandparents, uncles and aunties, cousins; they
were always interested in my progress and eager to come here today and cel-
ebrate this important goal achieved.
I have to say "Thank You", and also "I'm sorry", to my beloved �ancée
Mariaelena, because of her endless patience and support. So many times I've
been detached and annoyed, especially in these last chaotic months, because
of people I had to deal with whom pissed me o�. I have to thank her for
withstanding the nerd/geek side of me, for the joyful moments spent together
and for the others that will come.
An other huge "Thank You" goes also to Alberto and his brother Francesco:
they are irreplaceable friends, they supported me as much as my �ancée did
and does. I will never forget the craziest and funniest drinking spree I've
ever had: the day after I was up at 8.30 a.m., studying Signal and Systems,
without any tangible sign of hangover. We really needed to move on and
leave our concerns behind us, and that night certainly we made it :) Also,
thank you Alberto for introducing me to the Linux world: it changed my life,
really. Anyway, come back to KDE!
"Thank You" Riccardo too, we had a lot of funny and embarassing moments
together, like the reinterpretation of the bubble-sort algorithm, or the famous
quote " With great power comes great responsibility", you know what I'm
talking about ;) It's a shame that you never, ever, listened to my advices on
how to start a proper chat with a girl.. Such precious advices thrown in the
wind! Jokes aside, it's always a pleasure to talk with you and I'm glad for
the moments we spent.
Thank you Nicola for the nerdy jokes made during the classes we shared,

7. Acknowledgements 65

and the knowledge about everything we wondered about, and for all my
programming-related doubts you helped me to understand.
Thank you Simone for hosting the most awesome lan-parties I've ever joined,
and of course I have to thank again Alberto, Francesco, Nicola, Simone,
and also Ivan, Daniele, Edoardo, Alessandro, Andrea (Bordy) and Andrea
(Larry) for sharing the fun all together. Also thank you Simone for the copy
of Visual C++ 2003, 100% genuine, you gave me: that's how my program-
ming life started, you fool! :)
Thank you Ivan and Alessandro for the hours spent playing Quake III Arena,
and related chitchat during Ciscato's class on the perfect strafe-jump. I'm a
pro now!
Thank you Daniele and Edoardo for the time spent talking about the awe-
some character personi�ed by Mr. Jonh Glover, the fun with Mosconi's
speeches, and the hours of serious study we spent together.
Manuel, thank you for the explanations you gave me back in high school
about Dragon Ball, and the mangas read back at that time. It was a hard
time for us, but we also had funny moments playing PGA Tour or chess
during Emilio's lessons.
Thank you Stefania for being a true friend, and for all the co�ee breaks at
the bar/ general hospital we made. I was really sorry for the idiots that
hurted your feelings in the past; thankfully, now you are happier than ever.
I'll never forget our crazy holiday in Spain: Girona, Barcelona, Zaragoza,
Madrid and Valencia, �ve cities in one week.. I Dunno how we managed to
survive, anyway we did it!
Also, thank you Alessandra (and the others above) for the funny moments we
had at Jappelli, the chat about fashion and drinks, and the "you are gloomy
and lonely people" poster.
Giulia, thanks for for trying to make Mariaelena attend our classes, and
agreeing that Pierobon is one of the most awesome professor ever had even
if, at �rst, we didn't understand that much of what he was talkin about.

From the working side of my life, I have to say a huge "Thank You" at
Walter and Sergio for their unconditional help and support.
I've got to thank also Lino, Roberto, Mirco, Fabio, Sergio, Victor and Franco,
my ex co-workers, and the craziest crew you will ever meet, I mean it :) The
work was tough but at the end of the day you were always going home with
a smile on your face, remembering some amusing episode happened.

Last but not least at all, I have to say "Thank You" to Google for spon-
soring my work as programmer for two consecutive summers, and of course
KDE because choose me as student eligible to get Google's sponsorhip, and

66 7. Acknowledgements

for providing the best Linux Desktop Environment out there. It's been a
pleasure to work with you, and since my academic life is over now, I hope to
contribute back again.

I want also to say "Thank You" to all the people that never trusted in
me, in what I was about to do, and in the choices I made. There's nothing
more rewarding than succeed despite of other's expectations.

A. Complete Three-Loop Algorithm 67

A Complete Three-Loop Algorithm

/**

* Author: Diego Casella

*/

/// Includes

#include <p18f4620.h>

#include <delays.h> // Needed for Delay10KTCYx

/// Configuration bits

#pragma config OSC = XT // Use external oscillator

#pragma config WDT = OFF // WatchDog Timer turned off

#pragma config PWRT = ON // Power-up timer turned on

#pragma config MCLRE = OFF

#pragma config LVP = OFF

/*

* Macro which tests if theValue is in the [min, max] range.

* If not, sets the appropriate LATD port accordingly

*/

#ifdef __DEBUG

#define TEST_BOUNDS(theValue, min, max, minPort, maxPort)\

LATDbits.LATD##minPort = 0; \

LATDbits.LATD##maxPort = 0; \

if(theValue < min) { \

LATDbits.LATD##minPort = 1; \

} \

if(theValue > max) { \

LATDbits.LATD##maxPort = 1; \

}

#else

#define TEST_BOUNDS(theValue, min, max, minPort, maxPort) \

;

#endif

/*

* main program here

*/

void main(void) {

68 A. Complete Three-Loop Algorithm

/// Setup vars, ADC and PWM modules

unsigned long int adcResult;

double adcConvertedResult;

double yEulerPrevious = 0;

// 28 fp instructions + 176 1-cycle instructions + 3 delays

double time = 0.0001873;

double result = 0;

unsigned int duty = 0;

double tcy = 0.0000001;

double _time = 0;

int acLoopCounter = 0;

int nbLoopCounter = 0;

int thetaLoopCounter = 0;

/// setup ADC

// set RA0..2 as inputs

TRISA = 0b00000111;

// 8*Tosc and 12*Tad, left-justified

ADCON2 = 0b00101001;

// Vref- = Vss, Vref+ = Vdd, and set

// AN0..2 as analog pins

ADCON1 = 0b00001100;

// select AN0, turn on ADC and put it

// enabled and idle state

ADCON0 = 0b00000001;

// debug purpose only

TRISD = 0xff;

// Set RC2 initial state

LATCbits.LATC2 = 0;

/// ADC test enabled?

LATAbits.LATA3 = 0;

/// setup PWM

CCP1CON = 0b00001100;

// We want RC2 acting as PWM output

TRISC = 0b11111011;

// prescaler = 1, activate TMR2

A. Complete Three-Loop Algorithm 69

T2CON = 0b00000100;

// period = 255

PR2 = 0b111111111;

// set duty cycle = CCPR1L / PR2

// note: period = (PR2+1) * Tcy * prescaler

CCPR1L = 0b00000000;

/// disable adc/pwm/dac test output port

LATAbits.LATA3 = 0;

/// Starting Three-Loop algorithm

while (1) {

// reset the counters first

acLoopCounter = 0;

nbLoopCounter = 0;

thetaLoopCounter = 0;

_time = 0;

/// reading the autopilot acceleration

ADCON0bits.CHS0 = 0;

ADCON0bits.CHS1 = 0;

// wait about 20us to charge AD capacitor

// NOTE: too much delay, move in a ISR!

Delay10TCYx(20);

// start conversion

ADCON0bits.GO_DONE = 1;

// loop until the conversion is finished

while (ADCON0bits.GO_DONE != 0)

acLoopCounter++;

// now read from ADRESH e ADRESL

adcResult = ((unsigned int)ADRESH << 2) |

((unsigned int)ADRESL >> 6);

// convert the result back into [0, 5] range

// note: 0.00488 = 5/1023

adcConvertedResult = adcResult * 0.004887585;

// computing result_1

// g2acc1 * KDC = 9.81*1.0531

result = adcConvertedResult * 10.33075;

70 A. Complete Three-Loop Algorithm

// Test result_1

TEST_BOUNDS(result, 0, 52, 0, 1)

/// reading nB from AN2

ADCON0bits.CHS1 = 1;

// wait about 20us to charge AD capacitor

Delay10TCYx(20);

// start conversion

ADCON0bits.GO_DONE = 1;

// loop until the conversion is finished

while (ADCON0bits.GO_DONE != 0)

nbLoopCounter++;

// now read from ADRESH e ADRESL

adcResult = ((unsigned int)ADRESH << 2) |

((unsigned int)ADRESL >> 6);

// convert the result into degreees

// note: 0.04887585 = 50/1023

adcConvertedResult = adcResult * 0.04887585;

// Test result_2

TEST_BOUNDS(adcConvertedResult, -0.1, 50, 2, 3)

/// 1st loop

result -= adcConvertedResult;

// multiply by KA

result *= 0.02743794;

/// reading deltaTheta from AN1

ADCON0bits.CHS0 = 1;

ADCON0bits.CHS1 = 0;

// wait about 20us to charge AD capacitor

Delay10TCYx(20);

// start conversion

ADCON0bits.GO_DONE = 1;

// loop until the conversion is finished

A. Complete Three-Loop Algorithm 71

while (ADCON0bits.GO_DONE != 0)

thetaLoopCounter++;

// now read from ADRESH e ADRESL

adcResult = ((unsigned int)ADRESH << 2) |

((unsigned int)ADRESL >> 6);

// convert the result into degreees

// note: 0.000127 = (5/1023)*0.026

adcConvertedResult = adcResult * 0.00012707 - 0.03;

// Test result_3

TEST_BOUNDS(adcConvertedResult, -0.02, 0.1, 4, 5)

/// 2nd loop

result = adcConvertedResult - result;

// multiply by WI

result *= 32.34312;

// euler integration

// y(k) = y(k-1) + u(k)*time

// time spent waiting ac conversion

_time = (acLoopCounter*9+1)*tcy;

// + time spent waiting nB conversion

_time += (nbLoopCounter*9+1)*tcy;

// + time spent waiting theta conversion

_time += (thetaLoopCounter*9+1)*tcy;

result = yEulerPrevious + result * (time + _time);

yEulerPrevious = result;

/// 3rd loop

result += adcConvertedResult;

// dont perform result*KR*10, signal too

// small and noisy

// Test result_3

TEST_BOUNDS(result, -0.6, 0.1, 6, 7)

// convert before send to PWM

result += 0.6;

result *= 1451.42;

72 B. Complete missile_aeroframe_2d script

// convert double to int

duty = (int) result;

// set duty cycle

// note: duty = CCPR1L * Tosc * prescaler

CCP1CONbits.DC1B0 = 0b00000001&duty;

CCP1CONbits.DC1B1 = 0b00000001&(duty>>1);

CCPR1L = duty>>2;

}

}

B Complete missile_aeroframe_2d script

function [component] = matlabModel(component, context)

%% Reading muLab parameters and variables

globalTime = context.globalTime

% Delta fin angle

DELTA_DELTA = getfield(component.variables,'DELTA_DELTA')

ADC_PWM_DAC_TEST_ENABLED = ...

getfield(component.variables,'ADC_PWM_DAC_TEST_ENABLED')

if ADC_PWM_DAC_TEST_ENABLED == 5

% we're just interested in testing the ADC module

return;

end

%% Pre-computed parameters (improves speed)

%% We define all these variables as 'global' at the very

%% first simulation step, so they are cached globally

%% instead of begin re-created/computed in every function

%% invocation

global index;

global time;

global delta_delta;

global delta_delta_s;

global TFnd;

global TFqd;

global integrator;

if globalTime == 0

B. Complete missile_aeroframe_2d script 73

index = 1;

DENnd = [307.888604797530e-006 ...

745.670831812253e-006 ...

1.00000000000000e+000];

DENqd = [307.888604797530e-006 ...

745.670831812253e-006 ...

1.00000000000000e+000];

NUMnd = [349.637890026630e-003 ...

0.00000000000000e-003 ...

-1.11796938975997e+003];

NUMqd = [-1.35528510971017e+000 ...

-1.62833381004383e+000];

TFnd = tf(NUMnd,DENnd)

TFqd = tf(NUMqd,DENqd)

integrator = tf([1], [1 0]);

% lsim requires at least two samples, fake it just for now

time = [0 context.samplingPeriod];

% Same with the delta_delta vector, but we just keep the

% second value equal to zero.

delta_delta = [0 0];

elseif index == 1

% Update just the index, don't increase the array because

% it's already of size 2

index = index + 1;

time(index) = globalTime;

delta_delta(index) = DELTA_DELTA;

else

% Update the index, then grab globalTime and DELTA_DELTA,

% save them in the vector of the times and inputs so lsim

% can advance its simulation.

% Note: growing arrays is a DAMN SLOW operation!

index = index + 1;

time = [time globalTime];

delta_delta = [delta_delta DELTA_DELTA];

end

% simulate the response of TFnd and TFqd

ub = lsim(TFnd, delta_delta, time);

74 B. Complete missile_aeroframe_2d script

delta_theta = lsim(TFqd, delta_delta, time);

% Retrieve results

DELTA_THETA = delta_theta(index)

NB = ub(index)

% save results

component.variables = setfield(component.variables,'NB', NB)

component.variables = setfield(component.variables,

'DELTA_THETA', DELTA_THETA)

end

REFERENCES 75

References

[1] PIC18F2525/2620/4525/4620 Data Sheet, ch. 19.0 10-Bit Analog-To-
Digital Converter (A/D) Module, Microchip, 2004.

[2] PIC18F2525/2620/4525/4620 Data Sheet, ch. 26.4.3, Table 26-25: A/D
Conversion Requirements, Microchip, 2004.

[3] PIC18F2525/2620/4525/4620 Data Sheet, ch. 16.4, Enhanced PWM
Mode, Microchip, 2004.

[4] D. Ciscato, Appunti di Controllo Digitale, Libreria Progetto, Via
Gradenigo 2, 2010.

[5] Benvenuto N., Corvaja R., Erseghe E., and Laurenti N., Communications
Systems - Fundamentals and Design Methods, Wiley, 2007.

[6] Da Forno R, 01 - Dinamica 2D Missle, unpublished, slides.

[7] Da Forno R., 03 - Strategie di Controllo Missile 2D, unpublished, slides.

	Introduction
	About the Thesis
	About Lab® software

	Missile 2D model
	Linearization
	 calculus

	Frequency Domain Considerations
	Trim Condition Analysis

	Missile Control strategies
	Open-Loop Control
	Rate-Gyro Control
	Three-Loop Control
	Phase margin and loop gain
	Alternate way to analize instability

	Three-Loop matlab simulation
	Continuous model
	Discretized model
	Discretized model - explicit loop delay
	Noise disturbance effects
	Noise disturbance N(0,0.25) applied to ac
	Noise disturbance N(0,0.25) applied to nB
	Noise disturbance N(0,0.25) applied to
	Noise disturbance N(0,0.25) applied to
	Noise disturbance N(0,0.0025) applied to ac
	Noise disturbance N(0,0.0025) applied to nB
	Noise disturbance N(0,0.0025) applied to
	Noise disturbance N(0,0.0025) applied to
	Noise disturbance applied to , take two

	Faulty conditions analysis
	Absence of nB
	Absence of

	Moving toward a Co-Simulated approach

	Three-Loop Co-Simulation
	Algorithm characterization
	Input module
	Limited input values
	Output module
	Loop execution time estimation

	 Lab environment setup
	Co-Simulation results
	Noise disturbance effects
	Noise disturbance N(0,0.25) applied to ac
	Noise disturbance N(0,0.25) applied to nB
	Noise disturbance N(0,0.25) applied to
	Noise disturbance N(0,0.0025) applied to ac
	Noise disturbance N(0,0.0025) applied to nB

	Faulty conditions analysis
	Absence of nB
	Absence of

	Conclusions and further development
	Acknowledgements
	Appendix Complete Three-Loop Algorithm
	Appendix Complete missile_aeroframe_2d script

